
Upscaling of the porous shallow water equations through
the use of periodic homogenization

Lisa Patrascu

June 2025 - under the supervision of Nicholas Kevlahan

i



Contents
1 Abstract 1

2 Introduction 1
2.1 The Darcy, Brinkman, and Shallow Water Equations . . . . . . . . . . . . . . . . 3
2.2 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Implementation of periodic homogenization (PH) 5
3.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 The corrector problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Discrete linear system for the SGS pressure gradient . . . . . . . . . . . . 6
3.1.3 The Lippmann–Schwinger formulation for homogenization . . . . . . . . . 8

4 A quick validation of PH 10
4.1 Laminate tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Extension of testing to three dimensions . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 A note about using conservation of total dissipated power as a validation criterion 12

5 Comparison of PH to a well known intuitive approach 13
5.1 Testing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Results of PH and VA test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2.1 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Testing permeability homogenization for the porous shallow water equations 16
6.1 Model configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Testing model features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Permeability distribution for the porous SWE . . . . . . . . . . . . . . . . . . . . 18

6.3.1 Fine-scale permeability configurations . . . . . . . . . . . . . . . . . . . . 18
6.3.2 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.4 Understanding how flow interacts with permeability-defined substructure . . . . 20
6.4.1 Marsh substructure tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4.2 Aside: addressing the instability of non-diagonal semi-permeable cases . . 24
6.4.3 Tunnel set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4.4 Should non-diagonal permeability matrices be ruled out . . . . . . . . . . 26

6.5 Use of PH to upscale fine-scale pSWE simulations . . . . . . . . . . . . . . . . . 27
6.5.1 Steady state comparison of averaged fine-scale and homogenized simulations 28
6.5.2 Decomposition of kinetic energy into its components . . . . . . . . . . . . 32

7 Conclusions 34

8 Acknowledgements 35

ii



List of Figures
1 True, Brinkman and smoothed bathymetry choices . . . . . . . . . . . . . . . . . 2
2 Fluid modelling equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Homogenization of subgrid-scale structure . . . . . . . . . . . . . . . . . . . . . . 4
4 Flow turning through a homogenized system . . . . . . . . . . . . . . . . . . . . 4
5 Example 2D homogenization domains . . . . . . . . . . . . . . . . . . . . . . . . 5
6 Separation of scales: global, grid, and subgrid . . . . . . . . . . . . . . . . . . . . 6
7 Flowchart for steps necessary to determine effective permeability using periodic

homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8 Blockage homogenization set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9 Laminate homogenization set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10 Blockage homogenization set-up in 3D . . . . . . . . . . . . . . . . . . . . . . . . 11
11 KDEs for total dissipated power over homogenized blocks . . . . . . . . . . . . . 12
12 Ranking homogenization test configurations in terms of speed and accuracy . . . 14
13 Arakawa C-grid layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
14 Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
15 Labranche Wetlands and Strait of Gibraltar . . . . . . . . . . . . . . . . . . . . . 18
16 Substructure configurations for pSWE tests . . . . . . . . . . . . . . . . . . . . . 19
17 Vorticity around a permeability-defined bluff body . . . . . . . . . . . . . . . . . 21
18 Velocity flow of diagonal solid/fluid marsh set-up . . . . . . . . . . . . . . . . . . 21
19 Velocity flow of non-diagonal solid/fluid marsh set-up . . . . . . . . . . . . . . . 22
20 Pressure gradient redirecting flow around a bluff body . . . . . . . . . . . . . . . 23
21 Vorticity of the solid/fluid diagonal marsh set-up . . . . . . . . . . . . . . . . . . 23
22 Velocity plot of diagonal solid/fluid tunnel set-up . . . . . . . . . . . . . . . . . . 25
23 Velocity plot of non-diagonal solid/fluid tunnel set-up . . . . . . . . . . . . . . . 25
24 Comparison of kinetic energy of fine, fine and averaged, and homogenized simulations 29
25 KDE of velocity distribution in fine, averaged versus homogenized fields . . . . . 29
26 Relationship between velocity variance and kinetic energy for all pSWE tests . . 30
27 Spatial distribution of relative velocity error for solid/fluid diagonal marsh . . . . 31
28 Spatial distribution of relative velocity error for solid/fluid diagonal tunnel . . . 31
29 Decomposition of kinetic energy rate of change into components in the diagonal

marsh case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
30 Percent contribution breakdown of components influencing rate of change of ki-

netic energy for all pSWE tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

List of Tables
1 Description of code objects for discrete solving of LS form . . . . . . . . . . . . . 8
2 Necessary macro-strain and prefactors to calculate 2D components of effective

permeability matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Necessary macro-strain and prefactors to calculate 3D components of effective

permeability matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Blockage homogenization test results . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Comparison of all PH versus VA effective permeability calculations . . . . . . . . 15
6 Permeability matrices used for pSWE tests . . . . . . . . . . . . . . . . . . . . . 19
7 Parameter values necessary to reproduce pSWE tests . . . . . . . . . . . . . . . . 20
8 Solid-representing permeability matrix choices and their inverses . . . . . . . . . 22
9 Steady-state Reynolds numbers for all marsh tests . . . . . . . . . . . . . . . . . 24
10 Stiffness ratios for permeability matrices used . . . . . . . . . . . . . . . . . . . . 24
11 Reynolds numbers of all tunnel tests . . . . . . . . . . . . . . . . . . . . . . . . . 26
12 Comparison of residual rate of kinetic energy change in all pSWE tests . . . . . . 34

iii



1 Abstract
Due to the large and costly nature of ocean models, they are often limited in computational
resolution - meaning accurate solvers must take into account boundary geometry at the subgrid-
scale without explicitly modelling it. One method of characterizing subgrid-scale features is
Brinkman penalization, where the solid/fluid interface is modelled as a porous medium, which
yields many stability, accuracy, and efficiency benefits [10, 11]. In this work, we aim to extend
the Brinkman method by testing a penalization that accounts for a position dependent tensorial
permeability which will allow the model to experience friction in a directionally dependent fashion
- implicitly preserving roughness that may be lost in a porosity-only approach. We simulate flow
through solid/fluid and semi-permeable permeability-defined substructure configurations using
the porous shallow water equations at both the subgrid-scale as well as the coarsened scale. Our
findings indicate that coarsened simulations well approximate averaged fine-scale simulations in
both velocity distribution and total kinetic energy. We coarsen subgrid-scale permeability using
the periodic homogenization approach, which we find to be rigorous, fast, and accurate.

2 Introduction
There are many different types of coastline topographies, each with distinct characteristics that
play an essential role in determining ocean–coast interactions. For example, just west of the
Mississippi river, the swampy Atchafalaya Basin of Louisiana is dominated by clusters of herba-
ceous plants. Understanding water flow through this region is imperative for flood control and
wetland conservation. The ocean dynamics in the Gulf of Mexico depend on the gulf’s shape
as well as its bathymetry, which is a mix of continental shelves, slopes and submarine canyons.
It is important to accurately simulate since it plays a key role in circulating warm water into
the global ocean system [19]. The Strait of Gibraltar is a narrow channel which connects the
Atlantic Ocean to the Mediterranean Sea, which is not only significant for similar reasons to the
Gulf stream, but is also widely used as a benchmark case for testing ocean models.

The diverse nature of these complex coastal geometries means that their accurate simulation
not only requires a technique that properly represents their unique characteristics, but also one
that accounts for their consequent numerical challenges. Simple rocky bathymetry or coastlines
are reasonably well-approximated by solid, no-slip boundaries, but the introduction of any more
realistic and sharply varying features make them prone to numerical instability. Areas that are
not quite solid nor pure fluid, like patches of plant growth in a marsh or estuary, are more accu-
rately modelled as a porous medium, but their small scale makes them difficult to characterize
given a limited resolution. Processes that model flow through small and distinct passages, like
a narrowing channel, even sometimes require ad-hoc hand tuning like the manual opening of a
gap.

On top of these numerical challenges, the development of techniques that model water flow
along and through complex coastlines must also strike a fine balance between efficiency and
accuracy. As such, realistic ocean models are large and costly, leading to a limit in computa-
tional resolution. To mitigate any resulting instability, they might smooth sharper features and
reintroduce an artificial friction term to compensate for the loss of roughness. Though both
regional and global ocean models either implicitly or explicitly require some characterization of
the unresolved subgrid-scale (SGS) features to ensure accuracy at a limited resolution, fulfilling
this through a scalar friction term is not only arbitrary but also neglects to capture directional
dependence.

An alternative approach is Brinkman penalization, described and successfully implemented
on peaked bathymetry by Debreu et al. in [10]. This approach modifies the Shallow Water
Equations (SWE) by the addition of a scalar permeability–porosity term that is used to pe-
nalize a region between the true bathymetry and a smoothed computational boundary that
lies fully within the solid area (Figure 1). Brinkman penalization corrects for the failings of
topography-conforming coordinate approaches such as spurious flows caused by staircase geome-
tries in z−coordinates and the trade-off between smoothing and pressure gradient errors in σ−
coordinates while increasing robustness and improving computational performance [11]. The
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modelling of the interface between a solid/fluid boundary as a porous medium is what allows
this method to include the impact that SGS features have on the flow, which provably maintains
accuracy at a lower resolution without compromising stability (see [11] for the successful results
on the Gulf Stream Separation problem).

As successful as Brinkman penalization is with porosity, we believe that the inclusion of
a permeability factor would only provide further improvement. While porosity quantifies the
fluid volume fraction, permeability gives a measure of the interconnectedness of pores. One
computational cell may have a small amount of solid material, but arranged in such a way that
completely blocks the fluid flow. For example a cell filled with clay, which is highly porous
but has a low permeability. Conversely, gravel has a low porosity but a high permeability. A
penalization that only relies on porosity can severely misclassify substructure that truly needs
an additional tensorial permeability characterization to properly describe flow through.

Therefore, to ultimately build on Brinkman penalization, we propose to test an improvement
on the scalar implementation of permeability–porosity by replacing it with a Darcy-type tensor,
which would flexibly permit the independent penalization of velocity along both its principal
axes [6]. In a scalar approach, the representation of SGS features at the grid-scale is done by a
spatial average, which does not need to change for the upscaling of porosity (due to its inherent
scalar nature as a volume fraction). However, the coarsening of an anisotropic SGS permeability
matrix in the context of a differential equation is provably not an average [1, 17, 22], so we choose
to coarsen SGS permeability using periodic homogenization, a rigorous coarsening method that
is well-established in its application to conductivity and elasticity problems [18]. In fact, a
tensorial permeability applied to the diffusive Darcy equation is even often referred to as a
“hydraulic conductivity” in the engineering community [15].

In the limit of vanishing permeability and porosity, the porous SWE approximate no-slip
solid boundary conditions. Coupled with a rigorous homogenization procedure, appropriate
choices of spatially varying porosity and tensor permeability allow one to model coastlines of
arbitrary complexity. Therefore, with the ultimate goal of later being able to apply this method
to realistic ocean models, we test periodic homogenization’s performance on diagonal and full
matrices against another well known coarsening method, as well as a testing a porous Shallow
Water Model with substructure configurations that mimic marsh and tunnel domains in both
fine and upscaled resolutions. We test a variety of permeability matrices, both semi-permeable
and solid-representing, with the hope that this method can provide improvements in modelling
not only solid/fluid boundaries, but also expansive low-lying wetlands like coastal Louisiana.

Figure 1: The bathymetry of an ocean model is often smoothed to prevent numerical instability
(default bathymetry in the Figure), where an artificial bottom friction is added back in to com-
pensate for the loss of roughness. A proven alternative approach is Brinkman penalization, which
takes a smoothed boundary internal to the true bathymetry and represents the area between this
boundary and the pure fluid as a porous medium.

2



2.1 The Darcy, Brinkman, and Shallow Water Equations

Figure 2: Fluid modelling equations from simplest (Darcy) to most involved (Navier-Stokes).
Brinkman penalization was developed as a modification to the Navier-Stokes equations via the
analysis of the Brinkman equations [4, 5].

The simplest model for flow through a porous medium is the Darcy Equation. In Darcy flows,
velocity u at some point in space is proportional to the pressure gradient ∇P :

ϕu = −K∇P,

where ϕ is the scalar porosity (ϕ = 1 for a pure fluid) and in n dimensions, the tensor K is the
n×n permeability matrix. Taking the divergence of this equation, and enforcing incompressibility,
∇ · u = 0, gives the Darcy equation,

−∇ · (K∇P ) = 0. (1)

When supplemented with Neumann boundary conditions for the pressure, (1) is an elliptic
Cauchy problem (i.e. Laplace equation) for the stationary distribution of velocity and pressure in
a porous medium given a permeability distribution K(x). The Brinkman Equation modifies the
Darcy Equation by the addition of a viscous diffusion term and allows for the modelling of time-
dependent flow that is in a transitional state between the Darcy and Stokes regimes. Through
the analysis of the Brinkman Equation was the idea of Brinkman penalization formed, which is
the addition of a friction of the form K−1u to the Navier-Stokes equations [4, 5]. An assumption
is made that the permeability will be symmetric positive definite to ensure invertibility.

The SWE, which are the limit of the Navier-Stokes equations for long, shallow regimes, can
also be penalized by a Brinkman-type term. These are the equations we will look at in §6 when
simulating flow over complex boundary geometries, but this first requires the homogenization of
SGS permeability, for which now turn our focus back to the Darcy equation.

2.2 Homogenization
The discrete homogenization problem for permeability is characterized by accurately representing
permeability on a coarse grid from data on a fine grid (Figure 3). We assume there is a clear
separation of scales between the two grids. An accurate or physically useful homogenization can
be proven or obtained in a variety of ways, for example through a mathematical limit [2, 14], in
a statistical sense [12], or numerically [15].

Naively, one might think that spatially averaging the permeability over a grid-scale cell is
an acceptable homogenization. However, this method may fail to preserve important quantita-
tive properties of the porous medium flow, such as blocking effects and “turning the flow” (see
Figure 4).
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Figure 3: The process of homogenization assigns every cell in a domain, of which each had pre-
viously a unique permeability matrix Kϵ varying on the subgrid, one representative permeability
matrix Kl.

Figure 4: A homogenized system should still preserve key characteristics of the original flow,
such as flow being turned by a barrier.

Homogenization, also known as upscaling or coarsening, is essentially a type of subgrid-scale
(SGS) model, which is such a generalized tool that it has been implemented in many different
subdomains within mathematics, physics, and engineering. Periodic homogenization (PH) is
a well-established and mathematically rigorous method widely used in engineering disciplines
to model qualities such as small-scale conduction or elasticity. It was introduced in the early
1990s by Allaire [3], and was soon after implemented numerically by Moulinec and Suquet [18].
This original theoretical and computational approach forms the basis of many homogenization
algorithms for elliptic equations used today.

Although we will primarily use PH for two-dimensional domains, it can also be applied
to three-dimensional systems with very little modification [13]. In our case, the two spatial
dimensions can either be thought of as a horizontal x—y 2D-SWE model (e.g., swampy coastlines)
or a vertical x—z slice (e.g., ocean models, bathymetry), as illustrated in Figure 5.

In this work, we present a new application of PH to upscale the Darcy Equation in order to
provide accurate grid scale coastal or bathymetry conditions from SGS permeability data. PH
generates a coarse-scale topography model that can be used in conjunction with a flow solver to
create SGS-informed simulations at a limited resolution.
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Figure 5: Horizontal and vertical homogenization problems. The two dimensions can either
represent an aerial view, like a swamp with pockets of lower permeability [9], or a vertical slice
with complex bathymetry. The small scale permeability can take on any value depending on the
local properties of the small scale topography data.

3 Implementation of periodic homogenization (PH)

3.1 Set-up
If a global domain (say of an ocean model) ΩL is discretized into grid-scale cells with length-
scale l ≪ L, homogenization should be performed on one of these grid-scale cells based on its
contained SGS features. There should be a clear scale separation between a grid-scale cell Ωl

and subgrid cell Ωϵ such that ϵ ≪ l. Any given grid-scale cell Ωl in the domain contains a
permeability matrix Kϵ, which varies on the subgrid scale and can be homogenized into one
representative permeability matrix Kl. Our goal is to perform this homogenization using PH,
which along with the assumption of scale separation also requires SGS permeabilities Kϵ be
symmetric and positive definite (i.e. flow through a porous medium must dissipate energy).
Having satisfied these conditions, the following steps are performed on each grid-scale cell Ωl to
find its corresponding Kl:

1. Pose Darcy’s equation as a corrector problem, with SGS permeability matrices Kϵ and
grid-scale average pressure gradient El as inputs.

2. Reshape corrector problem into a discrete Lippmann–Schwinger (LS) form.

3. Solve discretized corrector/LS for SGS perturbed pressure gradient ∇wϵ.

4. Use Lippmann–Schwinger formulation and ∇wϵ to solve for homogenized grid-scale per-
meability matrix Kl.

We now describe each step of the above algorithm.
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Figure 6: Graphic illustrating the separation of scales. The global domain ΩL

is split into grid-scale cells Ωl and further into subgrid-scale cells Ωϵ where L ≫ l ≫ ϵ.

3.1.1 The corrector problem

The “corrector problem” is an alternate form of Darcy’s equation that splits the strain field
(pressure gradient) into an average gradient and a perturbation:

∇ · [Kϵ(El +∇wϵ)] = 0

where El is the grid-scale pressure gradient and ∇wϵ is the periodic SGS pressure gradient. Scale
consistency requires that the average of the total gradient be equal to the grid-scale pressure
gradient (El +∇wϵ = El). Although the corrector problem itself can be solved computationally
for the SGS pressure gradient ∇wϵ with a given grid-scale pressure gradient El (which also
provides boundary conditions for Ωl), the need to compute derivatives makes a direct approach
computationally inefficient. However, a clever transformation and discretization allows one to
find a ∇wϵ that leverages the O(ϵ) periodicity assumption in order to take advantage of highly
efficient Fourier methods.

3.1.2 Discrete linear system for the SGS pressure gradient

This process follows directly from the work of de Geus et al. [13] as well as that from Brisard
and Legoll [7], with variables scaled down a dimension (ie. tensor to vector, vector to scalar)
and renamed to increase legibility in the context of this work. Defining the SGS velocity field
uϵ = Kϵ(El +∇wϵ), the corrector problem can be rewritten in its weak form∫

Ωl

F̃ (∇ · uϵ) dΩl =

∫
Ωl

(∇F̃ )uϵ dΩl = 0

using a test function F̃ , where the divergence theorem moves the divergence from the velocity
field to a gradient on the test function.

The operator Γ0 is defined such that ∇F̃ = Γ0 ∗ δF̃ and using the associative property of
convolution and the distributive property of the tensor product over a convolution, a new weak
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Figure 7: Flowchart depicting how the Darcy Equation is taken through the corrector problem
to achieve the LS formalism, whose (numerically determined) solution is microscale pressure
gradient ∇wϵ, which can be used in the ϵ → 0 limit of LS to solve directly for the effective
macroscale permeability matrix Kl.

integral form appears: ∫
Ωl

(Γ0 ∗ δF̃ )uϵ dΩl =

∫
Ωl

δF̃ (Γ0 ∗ uϵ) dΩl = 0.

where δF̃ is the new test function that happens to have no position dependence, and therefore
can be taken out of the integral.

This integral is then discretized using shape functions N that sample discrete values of the
continuous fields δF̃ and uϵ at nodes Xm,

Nk(Xm) = δkm. (2)

Additionally, since this relation must be valid for any δF̃ , the integral further simplifies to∫
Ωl

N(Γ0 ∗ uϵ) dΩl = 0.

Using the trapezoid rule to approximate the integral, where all nodal quantities have an equal
weight of one assigned by the shape function (2), we have∑

k

N (Γ0 ∗ uϵ) = 0. (3)
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Although this integral represents a convolution in physical space, it is a tensor product in Fourier
space. In Fourier space (with periodic SGS cells Ωϵ), the projection Γ̂0 is a diagonal matrix where

Γ̂0(q) =

{
0, ∥q∥ = 0,
qiqj

∥q∥1/2 , ∥q∥ ≠ 0,

where q is the wave number. The definition of the operator Γ0 enforces a zero mean component
such that ∫

Ωl

∑
k

N(Γ0 ∗ uϵ) dΩl = 0 (4)

In the above sums, k indexes the nodes of N .
Since Kϵ is a linear operator, solving equation 4 for SGS velocity uϵ is akin to solving

F−1[Γ̂0F(Kϵ(El +∇wϵ))] = 0 (5)

for SGS pressure gradient ∇wϵ.
To use a nonlinear operator Kϵ, a linearization process is required with initialization such

that u
(0)
ϵ = KϵEl and u

(1)
ϵ = u

(0)
ϵ + δu = Kϵ(El + ∇wϵ). With Equation 4, this results in the

same target equation to solve as the already linear system.
The code used for this section is largely based on that accompanying [13]. Written in Python,

we have modified it use the notation introduced here and with the additional goal of solving for
the homogenized matrix Kl instead of only the solution for ∇w in both two and three dimensions.
The process of solving for Kl is covered in the following section.

In the script associated with Table 1, equation 5 is represented in a single line of code

GK_fun(grad_w) = -GK_fun(E),

which is solved for the SGS pressure ∇wϵ using the conjugate gradient method. A summary of
code objects, their types, and their descriptions is provided below.

Code Object Type Description
ndim scalar number of physical dimensions (ie. 1D, 2D, 3D)
N scalar number of nodes/cells in one dimension

prodN scalar number of entries in E and grad_w (ndim x N x N)
K (ndim,ndim,N,N) vector symmetric invertible positive definite microscale perme-

ability matrix Kϵ

E (ndim x N x N) vector macroscale pressure gradient El

grad_w (ndim x N x N ) vector microscale periodic pressure gradient ∇wϵ (found using
conjugate gradient method)

K_l variable 2× 2 symmetric positive definite homogenized macroscale
permeability matrix Kl

G_hat (v) function projection operator Γ̂0v
K_fun(v) function applies permeability matrix Kϵv

G_fun(v) function applies F−1(Γ̂0F(v))

GK_fun(v) function applies F−1[Γ̂0F(Kϵv)]

Table 1: Description of key code variables and functions used to solve for the microscale pressure
gradient ∇wϵ in the function get_K_l(ndim,N,A).

3.1.3 The Lippmann–Schwinger formulation for homogenization

Using the Green’s function, the corrector problem can be transformed to the Lippmann–Schwinger
equation [7][16]. This equation takes the form

∇wϵ = −Γ0 ∗ (El +∇wϵ),
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where in the limit as ϵ → 0 a homogeneous form

KlEl =

∫
Ωl

Kϵ(El +∇wϵ) dΩl

is obtained. Kl is the homogenized permeability coefficient, which is constant over grid-scale
cells Ωl, and El is the prescribed grid-scale pressure gradient.

Choosing appropriate values for El and pre-factor T allows one to solve for each of the three
distinct entries of the symmetric grid-scale permeability matrix Kl using the relationship

TKlEl = T

(
1

prodN

∑
k

Kk(El k +∇wϵ k)

)
.

As a two-dimensional example, to find the entry Kl 11, we prescribe a macroscale gradient pressure
El = [1 0]T and a pre-factor T = [1 0]. The left hand side of the above equation then becomes

T KlEl = [1 0] K[1 0]T = [1 0] [Kl 11 Kl 21]
T = K

l11.

The other components of the homogenized permeability matrix can be found similarly, using the
given El in Table 2.

Kl component Choice of macro-strain Pre-factor
Kl 11 El = [1 0]T T = [1 0]
Kl 12 El = [0 1]T T = [1 0]
Kl 21 El = [1 0]T T = [0 1]
Kl 22 El = [0 1]T T = [0 1]

Table 2: Imposed macroscale pressure gradients El and pre-factors T for computing components
of the homogenized macroscale permeability matrix Kl in 2D. Note that the expected symmetry
of the permeability matrix can be used as a sanity check by verifying Kl 12 = Kl 21.

The same method can be applied to extract the components of a homogenized permeability
matrix in 3D by making the appropriate dimensionality respecting choices for the macro-strain
and pre-factor (Table 3).

Kl component Choice of macro-strain Pre-factor
Kl 11 El = [1 0 0]T T = [1 0 0]
Kl 12 El = [0 1 0]T T = [1 0 0]
Kl 13 El = [0 0 1]T T = [1 0 0]
Kl 21 El = [1 0 0]T T = [0 1 0]
Kl 22 El = [0 1 0]T T = [0 1 0]
Kl 23 El = [0 0 1]T T = [0 1 0]
Kl 31 El = [1 0 0]T T = [0 0 1]
Kl 32 El = [0 1 0]T T = [0 0 1]
Kl 33 El = [0 0 1]T T = [0 0 1]

Table 3: Imposed macroscale pressure gradients El and pre-factors T for computing components
of the homogenized macroscale permeability matrix Kl in 3D.

In order to determine whether PH is a viable means of coarsening data, it needs to pass
a series of validation tests. Most importantly, a valid method should be able to reproduce
comparable results for cases that can be solved analytically and cases that will have known and
observable physical effects. In the following section we present validation results in two and three
dimensions.
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4 A quick validation of PH

4.1 Laminate tests
Domains that have laminated structures have known analytical homogenized solutions where
coarsened matrix components are expected to follow the arithmetic mean of the corresponding
SGS components in the direction parallel to the laminate and the harmonic mean in the direction
perpendicular to the laminate [6]. We introduce a simple case where the domain Ωl is filled with
permeability matrix K1 except for a “blocking" band with lower permeability K2.

Figure 8: Blockage set-up where the computational homogenization domain with permeability
K1 is split by a blockage of less permeable (K2) cells. Vertically-directed pressure gradients
should theoretically turn flow horizontally and homogenization of the entire domain should aim
to preserve this characteristic.

Tag Set-up K1 K2 Kl

B1 blockage (5x5)
[
1 0
0 1

] [
0.0101 0.01
0.01 0.0101

] [
0.8584 0.0094
0.0094 0.0660

]
B2 blockage (5x5)

[
0.8333 0

0 0.4394

] [
1.0389 0

0 0.2678

] [
0.8627 0

0 0.4025

]
B3 blockage (5x5)

[
0.5 0.2
0.2 0.3

] [
0.93 0.4
0.4 0.6

] [
0.5526 0.2154
0.2154 0.3231

]
Table 4: Test set-ups and their corresponding computed homogeneous permeability values. K1

and K2 are permeabilities of the blockage domain (Figure 8). Kl is the calculated homogenized
permeability matrix. Diagonal cases reproduce analytically expected results to machine precision.
All values are rounded to 4 decimal places.

Table 4 lists a sample of specific SGS permeability choices and their corresponding homog-
enized results using the blockage configuration. For diagonal subgrid permeabilities, analytical
results are easily recovered to machine precision. The results of the non-diagonal cases, however,
require more analysis.

Theoretically, in the Darcy framework, non-zero off-diagonal components of subgrid perme-
abilities are responsible for converting some part of a unidirectional pressure gradient into an
orthogonally directed velocity. This “turning” of the flow (which in this case is not meant in a
time-dependent sense) is an important observed and confirmed characteristic of an anisotropic
porous medium (e.g. soil or layered media [1, 22]) and therefore homogenization should preserve
such a behaviour. We do observe that in non-diagonal cases (B1 and B2, Table 4), homogenized
permeability matrices successfully preserve the presence of off-diagonal components. We also test
a fully laminate configuration (Figure 9) and recover results of a similar nature to the blockage
substructure.

Furthermore, say we attempt to represent a pure solid/fluid system as a porous medium;
a perfect fluid will be represented by the identity matrix while a solid must be represented
by a permeability matrix that properly penalizes pressure-incited Darcy flow in a way that
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reflects the physical nature of a completely impermeable blockage. Take for example case B1 in
Table 4, where we choose to define a solid blockage by a full matrix of small coefficients. We
would expect a vertical pressure gradient to allow little to no flow in the vertical direction (as
it should be blocked) and we would expect almost unpenalized flow in the horizontal direction
provided a horizontal pressure gradient. We should also expect that the blockage may turn a
vertical pressure gradient into a horizontal velocity - which would be indicated by an off-diagonal
component. Looking at the calculated effective permeability components for case B1 does in fact
reflect these effects.

Though the requirement of symmetry does reduce flexibility in capturing turning capabilities
of some media, the maintenance of a non-diagonal structure through homogenization is a positive
result regardless. For future testing, there may also be ways to homogenize based on a perme-
ability that has been transformed into a diagonal matrix through the finding of its principal axes
[6], which could potentially allow for a relaxation of the symmetry requirement.

Figure 9: Laminate set-up where the domain is filled with bands of alternate permeability.
Homogenized permeability matrix components should follow the arithmetic mean in the band-
parallel direction and the harmonic mean in the perpendicular direction.

4.2 Extension of testing to three dimensions

Figure 10: Three-dimensional laminated blockage test case.

In order to confirm that the modification of the code to account for three-dimensional struc-
ture calculates permeability correctly, we expand the laminated blockage into a third dimension.
If the previous two-dimensional case represented the xz plane, the computational domain ex-
tends in the y dimensions with layers of the same laminated structure (Figure 10). Given that
the domain remains cubic, we expect flow behaviour through the newly created yz faces to mimic
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the flow through the xz faces. In other words, there should be permeability symmetry in the
two coordinate directions that display physical symmetry. This behaviour is confirmed when all
blockage and laminate configurations described in the previous section are expanded into a third
dimension with the above symmetry.

4.3 A note about using conservation of total dissipated power as a
validation criterion

At the beginning of this study, we thought that we might be able to validate homogenization
results by using a measure of dissipated power over the computational domain to compare fine-
scale and coarsened representations of the Darcy equation. One might think that along with
preserving the flow characteristics of a porous medium represented with a fine grid, a homogenized
block should also conserve the total dissipated power (TDP). TDP over a domain Ω takes the
form

TDP =

∫
Ω

uT∇P dΩ =

∫
Ω

uTK−1udΩ

where u is the Darcy velocity. However, any type of averaging is dissipative in nature and having
calculated coarse and fine TDP (with proper scaling and equivalent velocities) generated by sys-
tems with both diagonal and non-diagonal permeability matrices yielded very poor comparisons.
Figure 11 shows probability density function estimates of relative error in coarse and fine TDP
for randomly generated blockage, laminate, and Gaussian type permeability matrices (with both
diagonal and non-diagonal set-ups) using 500 samples each. Both cases are found to have very
large TDP consistency errors: between 90 and 100%. The Gaussian case represents a domain in
which every fine-scale permeability matrix was sampled from a normal distribution with a given
mean and standard deviation.

Figure 11: Kernel density estimates for coarse total dissipated power as compared to fine. Run
with equivalent velocities.

Though this measure of TDP is not a reputable method of validating homogenized perme-
abilities, we do go on to use it as a measure of permeability-dissipated energy in the analysis of
our shallow water models later in this study, where it proves to be an important contributor to
balancing energy levels in systems that reach a steady state.
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5 Comparison of PH to a well known intuitive approach
PH is not the only technique known to coarsen simulations of porous media. Given the nature of
upscaling, it is not surprising that studies that require the use of a lower resolution often rely on
some form of averaging, whether the average is applied to fluxes, gradients, or another variable.
Such methods tend to be empirically derived and lack a rigorous mathematical foundation.
However, they have practical advantages since they require fewer constraints and assumptions
(e.g., periodicity, symmetry, positive-definiteness) and can be easier to implement than a method
like PH. To judge how PH performs compared to an averaging approach, we implement the
volume averaging method (VA) described in [20] and will run a series of tests. VA also uses the
Darcy equation to find a homogenized permeability tensor KNSF . As indicated by the subscript,
this method is derived by requiring that the homogenized coarse-scale net surface flux (NSF)
matches the fine-scale (SGS) NSF.

5.1 Testing methods
The test cases that we have chosen to compare the PH and VA approaches upon can either be
solved analytically or have well established empirical results. The computational domain is an
n×n square grid on which four fine-scale structure configurations are tested: blockage, laminate,
Gaussian, and homogeneous.

The homogeneous configuration assigns every grid cell in the domain the same permeability
matrix K1. Therefore, when homogenized the coarse-scale permeability matrix should also be
K1. The blockage configuration is shown in Figure 8. The domain has cells with permeability
matrix K1, except for a single row of cells with a lower permeability matrix K2. The laminate
configuration is shown in Figure 9. The domain alternates between bands of permeability matri-
ces K1 and K2. As mentioned earlier, the blockage and the laminated configurations have known
analytical solutions: the effective permeability in the parallel and perpendicular directions are
exactly the arithmetic and harmonic means respectively [6]. The Gaussian test case samples
randomly generated permeability matrices for each fine-scale grid cell from a normal distribution
with a given mean and standard deviation. It has been shown to homogenize into an effective
permeability matrix whose entries reflect the geometric mean, which is valued slightly less than
the arithmetic mean [17].

Blockage configurations were tested with 11× 11, 31× 31, and 101× 101 cells to quantify
accuracy in terms of the upscaling factor. These cases are referred to in the analysis of results
as low, medium, and high resolutions. The other configurations were tested with 31× 31 grids.
All configurations were tested with both diagonal and non-diagonal SGS permeability matrices.
A full summary of configurations and results is provided in Table 5.

5.2 Results of PH and VA test cases
The volume averaging method is not stable for non-diagonal SGS inputs: the effective perme-
ability components calculated get extremely large. This is indicative of the conjugate gradient
method failing to converge. No orientation nor resolution is able to produce reliable results.
There would be an argument to modify this method by first diagonalizing the matrix before
homogenizing and then transforming back to its original basis were not diagonal trials of PH to
outperform VA in both accuracy and computational time by at least an order of magnitude.

All laminated and blockage cases tested with PH produce the expected analytical results
within a couple orders of machine precision, and the homogeneous test cases further produce the
exact result (reproducing the fine-scale permeability). Higher grid resolutions (greater upscaling
ratios) increase accuracy, but also run time. However, all run times (including high resolution
non-diagonal) are fast: 0.01 to 0.1 s. It should be noted that PH is by nature limited to grids
with odd-numbered side lengths and the method cannot be used for grids of even dimensions.

Figure 12 compares the accuracy and computational time of all configurations for VA and
PH, where accuracy is measured against the known analytical results described earlier. Every
single VA case ranks below the worst performing PH case in both metrics. In fact, every non-
diagonal VA case lies in the worst quadrant: slow and inaccurate (or unstable). In fact, the
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highest resolution (101×101) non-diagonal VA case is not even included on the plot as it did not
even reach the iteration ceiling without timing out. Configurations which produce unexpected
results, or use other methods of inferring accuracy are marked with an asterisk and are detailed
in the following section discussing “special cases”.

The high computational efficiency of PH compared to VA is an not unexpected. VA must
make a conjugate gradient calculation with a complex derivative structure, whereas PH reduces
the same system to a linear one via the Lippmann–Schwinger approach and is consequently a
much cheaper approach. The same computational complexity may also explain VA’s lack of
accuracy in diagonal cases, but its instability for non-diagonal cases rules it out as a practically
useful method in its current state.

The two methods also differ significantly in their assumptions and enforced conditions, though
we find PH’s requirements easily met. Although PH assumes periodicity on the fine-scale, this is
not necessarily a drawback since our goal is to apply this method to homogenize SGS structure
in order to provide better physical models at a fixed computational resolution. In other words,
taking permeability matrices that are constant for a single fine-scale cell satisfies the periodicity
assumption, which is automatically fulfilled by the nature of the subgrid’s O(ϵ) structure. The
fact that PH can only be applied to grids of odd dimension is no more of a serious limitation on
the method. The only requirement that must be treated with more awareness is maintaining a
separation of scales.

Because PH lacks an explicit conservation of net surface flux between coarse and fine flows,
we look to test its more physical effects on stationary and non-stationary flows modelled by the
porous shallow water equations (pSWE). The following sections will ultimately apply periodic
homogenization to upscale permeability for the pSWE, where permeability enters via a Brinkman-
type penalization term and porosity is set equal to one.

Figure 12: A comparison in speed and accuracy of each case in Table 5 where cases suffixed with
1 refer to PH and cases suffixed with 2 refer to VA. All cases that use PH perform faster than
those that use VA and all but one perform more accurately. In most cases, accuracy is measured
against corresponding analytical or known solutions, however, cases with asterisks have particular
unphysical properties, such as unexpected negative entries or non-zero entries (see §5.2.1).
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Tag Diag Method Run Time K1 K2 Kl

11x11 Blockage

B11D1 yes PH 0.00212 s
[
0.7226 0

0 0.2667

] [
0.1473 0

0 0.4958

] [
0.6703 0

0 0.2784

]
B11D2 yes VA 1.4901 s " "

[
0.5943 0.0758
0.0758 0.2038

]
B11ND1 no PH 0.00145 s

[
0.7226 0.4338
0.4338 0.2667

] [
0.1473 0.1253
0.1253 0.4958

] [
0.6537 0.4181
0.4181 0.2784

]
B11ND2 no VA 2.0687 s " "

[
2.6477 2.7776
2.7776 2.9138

]
31x31 Blockage

B31D1 yes PH 0.00886 s
[
0.7226 0

0 0.2667

] [
0.1473 0

0 0.4958

] [
0.7040 0

0 0.2707

]
B31D2 yes VA 1.6183 s " "

[
0.6328 0.0712
0.0712 0.1997

]
B31ND1 no PH 0.00682 s

[
0.7226 0.4338
0.4338 0.2667

] [
0.1473 0.1253
0.1253 0.4958

] [
0.6980 0.4284
0.4284 0.2707

]
B31ND2 no VA 7.6023 s " "

[
28.56 15.99
15.99 8.952

]
101x101 Blockage

B101D1 yes PH 0.07777 s
[
0.7226 0

0 0.2667

] [
0.1473 0

0 0.4958

] [
0.7169 0

0 0.2679

]
B101D2 yes VA 2.1700 s " "

[
0.6487 0.0682
0.0682 0.1977

]
B101ND1 no PH 0.06516 s

[
0.7226 0.4338
0.4338 0.2667

] [
0.1473 0.1253
0.1253 0.4958

] [
0.7150 0.4321
0.4321 0.2679

]
B101ND2 no VA timeout " " N/A

31x31 Laminated

L31D1 yes PH 0.00935 s
[
0.7226 0

0 0.2667

] [
0.1473 0

0 0.4958

] [
0.4256 0

0 0.3502

]
L31D2 yes VA 1.440 s " "

[
0.3984 0.0635
0.0635 0.2908

]
L31ND1 no PH 0.00681 s

[
0.7226 0.4338
0.4338 0.2667

] [
0.1473 0.1253
0.1253 0.4958

] [
0.3627 0.3212
0.3213 0.3502

]
L31ND2 no VA 7.469 s " "

[
5.6020 7.2797
7.2797 17.312

]
31x31 Gaussian Random

G31D1 yes PH 0.01062 s µ = 3, σ = 0.1 N/A
[
3.0041 −5e− 5
−5e− 5 2.9997

]
G31D2 yes VA 1.5473 s µ = 3, σ = 0.1 N/A

[
3.00438 −1e− 3
−1e− 3 2.9974

]
G31ND1 no PH 0.17131 s µ = 3, σ = 0.1 N/A

[
2.8181 2.8187
2.8187 2.8340

]
G31ND2 no VA 7.528 s µ = 3, σ = 0.1 N/A

[
209.5 279.66
279.66 373.29

]
31x31 Homogenous

H31D1 yes PH 0.00707 s
[
0.7226 0

0 0.2667

]
N/A

[
0.7226 0

0 0.2667

]
H31D2 yes VA 1.5966 s " "

[
0.6532 0.0694
0.0694 0.1974

]
H31ND1 no PH 0.00798 s

[
0.7226 0.4338
0.4338 0.2667

]
N/A

[
0.7226 0.4338
0.4338 0.2667

]
H31ND2 no VA 7.637 s " "

[
15.615 10.065
10.065 6.4875

]

Table 5: Comparison of periodic homogenization (PH) and volume averaged gradient (VA) in
their performance and calculation of homogenized results for different grid resolutions as well as
diagonal and non-diagonal inputs. PH performs significantly faster and more accurately in both
diagonal and non-diagonal cases while VA struggles to converge to analytical results results in
diagonal cases and blows up in non-diagonal cases. The type of SGS layout is indicated by the
first letter of the tag where B is blockage, L is laminated, G is Gaussian, H is homogeneous.

5.2.1 Special cases

Some special cases where accuracy is determined qualitatively are denoted by asterisks when
shown in Figure 12. The homogenized permeability matrices for these cases are also given in

15



Table 5 under Kl.
Case H31D2, which uses the VA on a homogeneous and strictly diagonal SGS structure

introduces unexpected off-diagonal components in the homogenized permeability matrix. This is
likely an artifact of the method, as homogenizing an already homogeneous fine-scale permeability
matrix must reflect exaclty that permeability matrix when upscaled with any any method and
any upscaling ratio.

Cases G31D1 and G31D2 (Gaussian diagonal configuration), where SGS permeability matri-
ces are diagonal and sampled from a normal distribution, generate negative off-diagonal com-
ponents using both methods. In the context of a permeability-based friction applied to the
porous SWE (discussed further in following sections), negative off-diagonal components leads
to acceleration of the outflow in a perpendicular direction of the inflow. Whether this type of
homogenization result is physical requires further testing in the context of a fluid model. We
choose to classify these results as accurate, since the diagonal components reflect the mean they
were generated from and off-diagonal components remain small. G31D1 (using PH) is classified
as slightly more accurate than G31D2 (using VA) due to its components’ tighter convergence to
the expected average.

Case G31ND1, or the non-diagonal Gaussian substructure upscaled using PH, has homog-
enized permeability coefficients with values lower than the mean used to generate the subgrid
scale. Studies of upscaling statistically isotropic media generally find that the resulting effective
permeability tensor elements are smaller than their means due to local geometries that produce
bottlenecks [12]. Generally, component values are expected to approach the geometric mean
[17]. For this reason, both G31ND1 and the corresponding diagonal cases mentioned above are
marked as “observationally” accurate.

Case B101ND2 is not included in Figure 12 since it did not converge in a reasonable time.
We therefore conclude that VA is not usable for non-diagonal higher resolution cases.

6 Testing permeability homogenization for the porous shal-
low water equations

This section focuses on the implementation of PH for homogenizing the two-dimensional porous
shallow water equation (pSWE) model with a specified fine-scale permeability configuration. A
major benefit for upscaling through permeability is that the homogenization does not have to
be done in dynamic time, but rather just once as a pre-processing step. Once the coarse-scale
permeability configuration has been obtained, it can then be used in the time-dependent pSWE
model. Single and multilayer SWE approximations are the standard for ocean modelling, and it
is shown by [10, 11] for the CROCO ocean model that it is relatively easy to extend preexisting
software to a pSWE model that includes an adaptation for the handling of permeability and
porosity.

6.1 Model configuration
For simplicity we assume that the flow is perfectly porous (i.e., porosity equals one), but with
location-dependent permeability matrices. In other words, we allow all the penalization to come
from the permeability term itself. Because we assume the fluid is perfectly porous, the mass
conservation equation is unchanged from the non-porous SWE,

∂η

∂t
+∇ · hu = 0, (6)

where u is the velocity vector and h(x, t) = H + η(x, t) is the fluid column height. H is the
constant mean depth and η is the free surface perturbation. The momentum equation for the
pSWE has an extra Brinkman-type penalization term (-1K−1(hu)) compared to the SWE to
include the effect of permeability:

∂hu

∂t
= −∇ · (hu⊗ u)− gh∇η − fẑ × hu− Ffric + τ +∇ · (νh∇u)− 1K−1(hu), (7)
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where f is the Coriolis parameter, Ffric is an additional bottom friction parameter, τ = (τx, 0)
is the wind stress, and ν is the kinematic viscosity. K(x, y) is the position-dependent 2 × 2
permeability matrix characterizing the material. The indicator function 1(x, y) ensures that
permeability-induced “friction” is not added where the material is a perfect fluid (i.e., where
K = K−1 = I),

1(x, y) =

{
1, solid or semi-permeable
0, perfect fluid

.

The equations are time-stepped using an RK4 scheme and spatially discretized using a first
order finite difference method. Since finite differences are used to determine velocity derivatives,
the computational domain is spatially augmented by an extra grid point in all directions to
allow for the calculation of gradients at the boundaries. Velocity vectors span this augmented
domain with a correspondingly augmented amount of entries that represent measurements at
cell edges. This discretization follows the staggered Arakawa C-grid layout commonly used in
ocean modelling (Figure 13), where scalars are located at cell centres and fluxes at cell edges. If
west/east periodic boundary conditions are used (which this study does), one ghost cell is added
to each lateral boundary to ensure continuity. The north/south boundaries are closed and can
either be set to free-slip or no-slip boundary conditions.

Figure 13: An Arakawa C-grid layout, where velocities are sampled at cell edges and free surface
height and permeability is measured at cell centres.

A constant mean velocity u∞ is imposed after each iteration of RK4 via a split-step approach,

u∗
ij = un

ij − un
ij + u∞

where un
ij is the calculated spatial mean at time tn and u∞ is the x−directed imposed mean

velocity. We take a computational domain that resembles a longer than wide channel with
dimensions [0, 4]× [0, 1] to allow the streamwise flow to develop. The time step ∆t is determined
by the advective CFL criterion,

∆t =
CFLadv∥∥u∞ +
√
gH
∥∥( 1

∆x + 1
∆y )

, CFLadv ≤ 1. (8)

Along with enforcing the advective CFL criteron, we also ensure that the time step satisfies
diffusive stability conditions,

ν∆t

(
1

∆x
+

1

∆y

)
≤ 1

4
. (9)

6.2 Testing model features
We begin by validating the SWE simulations (i.e., without permeability). We first test the
case with zero mean velocity and two initial conditions: initial perturbations to the free surface
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(standing wave and Gaussian droplet). The initial conditions diffuse as expected. Both periodic
and closed boundary conditions were tested and perform as expected as well.

Adding the mean flow, free-slip boundary conditions generates a uniform flow while no-
slip boundary conditions generate the expected Poiseuille flow. All tests confirm the numerical
conservation of both mass and momentum.

Figure 14: No-slip boundary conditions create a Poiseuille flow that displays a velocity gradient
towards the centre of the channel with the typical bullet-shaped velocity structure.

6.3 Permeability distribution for the porous SWE
Permeability is included by supplementing the nx × ny data structure with an nx × ny × 2× 2
matrix that assigns a 2× 2 permeability matrix to each cell in the computational domain. Since
the code extends the domain via ghost cells, the permeability matrix is extended in the same way
by mirroring edge permeabilities. Permeabilities are input as cell-centre quantities where, due
to the fact that the differential equation (7) is evaluated at cell-edges, cell-edge permeabilities
need to be found by averaging neighbouring matrices. This is a preliminary practice and we
encourage that further developments on this method give more thought to how permeabilities
should be sampled on staggered grids.

Permeability configurations are chosen using a fine-scale structure that has practical signif-
icance to real ocean models: a marshy domain and a narrow channel, which each respectively
represent regions like the bayous of Louisiana and the Strait of Gibraltar. Note that both of
these regions are extremely challenging to model using conventional methods.

Figure 15: Left: LaBranche Wetlands of Lousiana. Right: The Strait of Gibraltar, connecting
the Atlantic Ocean to the Mediterranean Sea.

Lastly, in upscaled pSWE simulations we rely only on the PH method to homogenize fine-scale
permeability structure given its far superior test results to VA from the previous section.

6.3.1 Fine-scale permeability configurations

The two permeability configurations considered (labelled “marsh" and a “tunnel") impose their
fine-scale substructure by characterizing each coordinate as having one of two sample perme-
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ability matrices K1 or K2 (Figure 16). These sample permeability matrices can either represent
solid, fluid, or semi-permeable media depending on their values. In terms of practical applica-
tion, the solid/fluid configuration better represents cases like bathymetry or coastline modelling
while the semi-permeable configuration is a good model for marsh-like regions. Since PH can ho-
mogenize full matrices (i.e., with non-zero off-diagonal entries), both diagonal and non-diagonal
permeability matrices are tested in order to investigate the method’s potential.

The permeability matrix for a perfect fluid is described by the identity matrix, while a perfect
solid is described either by a full or diagonal matrix of some small constant ϵ. Computationally,
permeability ϵ = 0.01 is used for solids, where the diagonal entries are set slightly larger than the
off-diagonal entries to ensure the permeability matrix is non-singular. Semi-permeable matrix
components are set to small values bounded between 0 and 1. An overview of the sample
permeability matrices used is given in Table 6.

Figure 16: Masks used to generate the fine scale permeability in the marsh and channel cases.
In the solid/fluid configurations, permeability matrices K1 and K2 represent fluid and solid
matter respectively. In the semi-permeable configurations, K1 and K2 are non-equal intermediary
permeability matrices. Exact permeability matrices can be found in Table 6.

Configuration type K1 K2

fluid/solid non-diagonal
[
1 0
0 1

] [
0.0101 0.01
0.01 0.0101

]
fluid/solid diagonal

[
1 0
0 1

] [
0.01 0
0 0.01

]
semi-permeable non-diagonal

[
0.1473 0.1253
0.1253 0.4958

] [
0.7226 0.4338
0.4338 0.2667

]
semi-permeable diagonal

[
0.1473 0

0 0.4958

] [
0.7226 0

0 0.2667

]
Table 6: Permeability matrices for each configuration type, used for both the marsh and channel
configuration.

6.3.2 Simulation parameters

The ultimate goal of this project is to compare coarse simulations with homogenized permeability
coefficients to corresponding fine-scale simulations averaged to the coarse resolution. An ideal
homogenization method would produce the same results as the averaged fine scale simulation.
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Therefore, the computational domain for both the fine and coarse-scale models is the same, but
discretized with different grid resolutions.

The coarse scale consists of grid cells that represent 11×11 blocks in the fine-scale simulation
(i.e., a upscaling ratio of 11). Each 11× 11 block of fine-scale substructure has a corresponding
11 × 11 × 2 × 2 permeability matrix, which is upscaled to find an effective 2 × 2 coarse-scale
permeability matrix via PH.

Feature Code object Value
Domain and time

Discretization (fine-scale) (nx,ny) (264, 66)
Discretization (coarse-scale) (nx,ny) (24, 6)

Length-scale (Lx,Ly) (4, 1)
Integration time total_time 10

Physical parameters
Coriolis initializer f0 7× 10−7

Coriolis multiplier beta 2× 10−11

Gravity g 1
Mean free surface height H 1
Constant wind forcing tau0 0.015

Bottom friction cb 5× 10−7

Density of seawater rho0 1000
Numerical viscosity mu 0.001

Mean horizontal velocity mean_u 0.1
Numerical parameters

Advective CFL condition cfl 0.99
Boundary conditions

Periodic West/East boundary bc 1
Free-slip noslip 0

Land parameters
No mask masking false

Permeability on permeability true

Table 7: Necessary parameter values to reproduce the simulations in the following sections.

These simulations also ensure that the time step is chosen to satisfy numerical stability. When
the mean velocity is set to u∞ = 0.1, the Reynolds number Re = uL

ν corresponding to the domain
width is Re = 100. Note that this number obviously varies depending on the local flow velocity
and size of substructure features like the blockages in the marsh case or the narrowest point of
the tunnel case. The following test cases are all performed using closed, free-slip north/south
boundary conditions and periodic west/east boundary conditions.

6.4 Understanding how flow interacts with permeability-defined sub-
structure

Typically, solids in fluid models are defined either by masking or via the boundary geometry. This
allows for no-slip or free-slip conditions to be set explicitly at edges where solid and fluid meet. In
addition to the application of the porous shallow water equations (pSWE) to the typically-tested
semi-permeable medium, we want to explore if this method extends to allow for the physically
realistic modelling of flow around completely solid blockages, and whether diagonal or full solid-
representing matrices accomplish this task better. This is obviously a necessary intermediary for
the ultimate use of homogenization on pure solid/fluid domains. Therefore, in order to establish
permeability as a reasonable means of defining bluff bodies, we aim to use it to reproduce telltale
dynamic features that specific boundary geometries will impose on flow.

The type of flow expected within any domain is dependent on the Reynolds number. Larger
objects (high L), larger speeds, and smaller viscosities can all take the flow from a laminar to a
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turbulent regime. Low Reynolds numbers around each blockage should produce a creeping flow,
where higher Reynolds numbers should exhibit vortex shedding. Though the resolutions tested
are not high enough to handle the conditions that produce vortex shedding, low to moderate
Reynolds numbers (∼10-50) are still large enough to generate adverse pressure gradients on the
downstream side of a solid body that result in the steady recirculation of two symmetrically
placed vortices on each side of the wake [21].

A good first test is to insert a single disk-shaped bluff body at the beginning of a channel
domain that is otherwise filled with pure fluid. The matrices used for each permeability are those
from the fluid/solid non-diagonal configuration type given by Table 6. A mean flow carries fluid
from left to right in the domain, where it interacts with the bluff body and splits around it. The
low to moderate Reynolds numbers Re = 97.34 corresponding to the domain width (spanwise)
and Re = 32.45 corresponding to the diameter of the blockage indeed generate opposing vortices
on each side of the blockage (Figure 17). The flow splits into regions of opposing vorticity on
either side of the body that expand in the streamwise direction with time.

Figure 17: Vorticity plot of a mean flow interacting with a bluff body defined by solely perme-
ability (no boundary or mask) with low to moderate Reynolds number Re = 97.34 and resulting
generated opposing vortices (time = 26.23).

6.4.1 Marsh substructure tests

Using the marsh substructure from Figure 16, the fluid/solid configuration from Table 6, and
the simulation parameters from Table 7, a constant mean flow is applied to a channel with solid
blockages. The solid obstacles divert flow to open regions in both diagonal (Figure 18) and
non-diagonal cases (Figure 19). In this configuration, a steady state is reached well before the
integral time-scale (the time-scale for the mean flow to traverse the entire channel). There are

Figure 18: Diagonal permeability matrix case: vector velocity plot for the solid/fluid diagonal
marsh configuration with a mean flow at time = 15. The Reynolds number associated with
the spanwise length-scale is Re = 395.90, just slightly lower than the Reynolds number of its
non-diagonal counterpart below. Since the open pathways and blockages are smaller than the
lateral length-scale, this Reynolds number indicates laminar flow where viscosity dominates.
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Figure 19: Non-diagonal permeability matrix case: vector velocity plot for the solid/fluid marsh
configuration with a mean flow at time = 15. The flow velocity approaches a steady state around
permeability-defined obstacles. The Reynolds number associated with the spanwise length-scale
is Re = 403.62, i.e. viscosity dominates and the flow is laminar.

few differences in the flow between the diagonal and non-diagonal cases. The main one being
that the non-diagonal seems to suffer to keep zero velocities within all solid regions. Seen most
clearly in the lower-left corner of the velocity plots Figures 18 and 19, the allowance of non-zero
velocities to move into these regions essentially reduces how strongly a solid body will divert
flow. In turn, the velocity gradients that are created by the flow “squeezing” between blockages
are generally stronger in the diagonal case, even though the non-diagonal case generates stronger
gradients between solid blockages and the lower boundary. Otherwise, both diagonal and non-
diagonal cases form the expected low velocity regions downstream of all blockages. There are no
characteristics of these voids (e.g. length, circulation around) that are consistent enough between
either of the two cases to be of note.

In the context of the momentum equation (7), diagonally and non-diagonally defined perme-
ability matrices produce qualitatively different effects, much due to the structure of their inverses
(Table 8), which apply a friction to the flow via the term −K−1(hu). A scalar matrix permeabil-
ity (diagonal with equal components) will decelerate both streamwise inflow u in the x−direction
and spanwise inflow v in the y−direction equally and independently (e.g., ∂thv = . . .−K−1

22 (hv)).
A non-diagonal permeability will also decelerate the velocity components u and v in their respec-
tive parallel directions, but the off-diagonal components will accelerate flow in their respective
perpendicular directions (e.g., ∂thv = . . .−K−1

21 (hu), where K−1
21 = K−1

12 < 0).

K K−1

non-diagonal solid
[
0.0101 0.01
0.01 0.0101

] [
5024.87 −4975.12
−4975.12 5024.87

]
diagonal solid

[
0.01 0
0 0.01

] [
100 0
0 100

]
Table 8: Non-diagonal and diagonal choices of permeability matrices for solid material and
their inverses. Applied as a Brinkman friction −K−1(hu), the diagonal case decelerates both
streamwise and spanwise velocities without any changing of direction. The non-diagonal case
accelerates outflows that are perpendicular to the incumbent inflow but removes slightly more
velocity from parallel outflow.

The deceleration of the velocity in the parallel direction causes a mass build-up and therefore
a pressure gradient on the upstream edge of the solid body, leading fluid flow towards the lower
pressure areas around the blockage (Figure 20). In the non-diagonal case, the acceleration in the
perpendicular direction should theoretically aid in the turning of the flow as well. These turning
effects are well present in the marsh tests (Figures 18, 19).

In SWE models that represent solid regions by boundary geometry or masking, the velocity
gradient resulting from no-slip conditions applied to these regions creates a shear flow at the
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Figure 20: However flow is slowed at the edge of a solid region, either by a penalizing permeability
or a no-slip condition, will cause a mass build-up and consequently, a pressure gradient that
redirects flow around the bluff body.

viscous boundary layer that generates vorticity, especially at higher Reynolds numbers. This
vorticity not only contributes to turning the flow around a blockage, but is also the reason
vortices are formed behind bluff bodies. Since, in this simulation, the no-slip boundary condition
is enforced implicitly using a Brinkman friction penalization, the permeability matrix is solely
responsible for replicating this behaviour.

Permeability does the job as expected, as shown by the vorticity plot of the marsh configura-
tion (Figure 21). Similar vortices are generated for both the diagonal and non-diagonal case, due
to the Reynolds numbers for all cases being within a transitional regime. Even when subjected
to higher mean velocities, vortices do not shed but form a steady state.

Figure 21: Vorticity plot of the solid/fluid diagonal marsh configuration with a gentle mean flow
(u∞ = 0.02). Vortices form on top and bottom edges of solid permeability-defined blockages.
The Reynolds number corresponding to the spanwise length-scale is Re = 76.47 (time = 22.5).
The non-diagonal case displays a similar distribution of vortices and an equal Reynolds number.

In addition to solid/fluid permeabilities, semi-permeable input matrices were also consid-
ered. The flow was diverted through blockages similarly to the solid/fluid case, but in the
semi-permeable case a small amount of flow being is able (and expected) to traverse the block-
age. Vorticity followed a similar structure to the solid/fluid cases but at a much weaker level.
The non-diagonal semi-permeable test cases suffered from stability issues when the same mean
velocity as the other cases was used and therefore the semi-permeable runs documented in Ta-
ble 9 were performed with half the mean velocity (and consequently half the starting Reynolds
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number) in order to allow each system to comparably reach a steady state. We find that models
initialized with semi-permeable substructure produce flows with lower Reynolds numbers than
their solid/fluid counterparts.

solid/fluid
(homogenized)

solid/fluid
(fine-scale)

semi-permeable
(homogenized)

semi-permeable
(fine-scale)

diagonal 238.76 403.33 57.06* 85.92*
non-diagonal 366.96 404.36 109.72* 235.53*

Table 9: Steady-state (t = 30) Reynolds numbers of simulations with different permeability types
within the marsh substructure configuration. Each simulation starts with Re = 100 (except for
starred cases that start off with Re = 50 via a reduced mean velocity for stability). Increasing
resolution or adding off-diagonal elements to the permeability structure starts to transition flows
towards a turbulent regime.

6.4.2 Aside: addressing the instability of non-diagonal semi-permeable cases

Observing a velocity flow plot of the unstable case before its blow-up indicates an intersection
of large velocity build-ups in the lesser permeable region, which could potentially be catapulted
into instability due to the specific choice of permeability matrix or the blockage layout. Table 10
compiles the stiffness ratios of the permeability matrices in Table 6, where we see that the choice
of non-diagonal semi-permeable and solid/fluid matrices will actually generate a stiff system,
which will cause instability if the time step is not small enough. Since the permeability matrices
themselves do not influence the CFL-determined time step, this is a likely outcome, especially
in the stiffer semi-permeable case.

We can even get more specific and look at the absolute stability limit for the time stepping
scheme (RK4), which is given by

z ∈ [−2.785, 0]

where z = λ∆t for largest eigenvalue λ and time step ∆t [8]. However, the largest eigenvalue
for the semi-permeable non-diagonal case is λ = −217, meaning that any time step smaller
than ∆t = 0.013 should be stable. Since the time stepping in fine-scale simulations takes ∆t =
0.0075 < 0.013, this configuration lies within the stability limit for RK4. Interestingly, the largest
eigenvalue for the solid/fluid non-diagonal configuration is λ = −10000, which should fail the
stability criterion yet does not crash. In the future, more exploration should be done on how
the permeability-induced evolution time-scales affect the stability of the scheme since this level
of analysis is not enough to determine a clear conclusion.

Configuration type K1 approx. stiffness K2 approx. stiffness
fluid/solid non-diagonal 1 201

fluid/solid diagonal 1 1
semi-permeable non-diagonal 5 214

semi-permeable diagonal 3 3

Table 10: Approximate stiffness ratios of the permeability matrices in Table 6. The non-diagonal
“less permeable” matrices introduce stiffness which may contribute to instability, especially since
this is not taken into account for the time-stepping criterion (which is only based on CFL
conditions).

6.4.3 Tunnel set-up

The tunnel set-up (Figure 16) was specifically defined to mimic a land/water system and therefore
we test only the solid/fluid configuration for this substructure. In this case, we expect a mean
flow to reflect no-slip boundary conditions on the top and bottom walls of the channel where
the streamwise velocity exhibits a gradient towards the centre of the channel, not unlike the
Poiseiulle flow in Figure 14. As the flow squeezes through the narrowest point in the channel,
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it should speed up. Furthermore, since the channel tightens more steeply on the bottom wall
upstream and opens wider on the top wall downstream, the flow should accelerate in the positive
xy−direction. The solid regions of the substructure should display zero velocity.

Both cases exhibit the expected speeding up directly downstream of the narrowed region of
the tunnel as well as the general gradient towards a centrally dominant velocity. The diagonal
case (Figure 22) ubiquitously keeps solid areas at a zero velocity, where the non-diagonal case
(Figure 23) displays two small problem regions doing so: directly at the channel narrowing and
slightly downstream. In the diagonal case, the flow maintains a smoother, mostly central pattern.
This promotes two clear regions of opposing recirculation at the widest area of the channel (which
are actually next to each other due to periodic boundary conditions). The non-diagonal case
behaves differently, where flow seems to bounce between the top and bottom channel walls as
it evolves. Both simulations have much larger Reynolds numbers than the marsh cases which
indicate more turbulent flow (though not quite past the laminar regime yet). The non-diagonal
case has a comparable Reynolds number to the diagonal case, unlike the marsh configurations.
Like the marsh case, however, homogenized simulations display much lower Reynolds numbers
(Table 11).

Figure 22: Diagonal permeability matrix case: vector velocity plot for the solid/fluid tunnel
configuration with a mean flow at time = 22.5. The flow velocity speeds up on downstream side
of a narrowing gap and does not approach a steady state when left to evolve. The Reynolds
number associated with the spanwise length-scale is Re = 1227.11, which is technically still
laminar but more turbulent than the marsh substructure.

Figure 23: Non-diagonal permeability matrix case: vector velocity plot for the solid/fluid tunnel
configuration with a mean flow at time = 22.5. The flow velocity exhibits a similar overall
movement as the diagonal case above but seems to bounce between top and bottom walls rather
than conforming more smoothly to a central flow. The Reynolds number associated with the
spanwise length-scale is Re = 1179.99, slightly higher than the diagonal case.
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solid/fluid
(homogenized)

solid/fluid
(fine-scale)

diagonal 377.07 1223.97
non-diagonal 298.42 1227.77

Table 11: Reynolds numbers of homogenized and fine-scale simulations at t = 30 within the
tunnel substructure configuration. Each simulation starts with Re = 100. Diagonal cases have
higher Reynolds numbers than non-diagonal cases, which is opposite in behaviour to the marsh
case.

6.4.4 Should non-diagonal permeability matrices be ruled out

Analytically, we can better understand the difference between the contribution of a diagonal and
a non-diagonal permeability matrix by the simplified differential equation

∂t

[
u
v

]
= −K−1

s

[
u
v

]
which penalizes velocity through the solid representing permeability matrix Ks. In the case of
a diagonal Ks, K−1

s would just be a diagonal matrix populated with the inverses of the original
components. If those components are equal, like they are in the solid diagonal cases in this paper,
this penalization becomes equivalent to a bottom friction, where the scalar friction coefficient
applied is tuned based on the location within the domain. If an initial velocity is applied solely
in one direction (e.g. setting u(0) = u0 and v(0) = 0) with the diagonal components of Ks being
some small constant α, the solution to the differential equation is

u(t) = u0e
−t/α

v(t) = 0

for which u(t) decays exponentially and v is unchanged at 0, approximating a no-slip boundary
condition. In the diagonal case, the decay of the velocity components are proportional only to
themselves.

In order to understand the additional contribution off-diagonal components add to a solution,
we can also solve for the flow in a sample non-diagonal case subject to the same initial conditions.
Starting with the full permeability matrix Ks populated with small constant entries β ≪ α ≪ 1
and eigenvalues λ1,2

Ks =

[
α β
β α

]
, λ1,2 = α± β

we see quickly how this system might become stiff. The more comparable the constants α and
β, the larger the ratio between the eigenvalues and the stiffer the system. Continuing to solve,
the eigenvectors can be assembled into a similarity transform matrix

P = P−1 =
1√
2

[
1 1
1 −1

]
to diagonalize the system such that

K−1
s = PD−1P−1,

where D−1 is the inverse of the diagonal matrix of eigenvalues λ1,2. If a coordinate transform to
vector velocity z is done in the appropriate basis with

z = P−1

[
u
v

]
,

the solution to the transformed differential equation

∂tz = D−1z
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is given by the flow

z(t) =

[
z1(0)e

−λ1t

z2(0)e
−λ2t

]
.

Returned to the original coordinates and subject to the same initial conditions u(0) = u0, v(0) =
0, the final solution is becomes[

u
v

]
=

1

2
u0

[
e−(α+β)−1t + e−(α−β)−1t

e−(α+β)−1t − e−(α−β)−1t

]
.

In the limit β ≪ α, the solution for u is clear and decaying

u(t) ≈ u0e
−t/α,

whereas the limit of v(t) requires a Taylor expansion:

v(t) =
1

2
u0e

−t/α
(
e(1+

β
α )

−1

− e(1−
β
α )

−1)
≈ u0e

−t/α

(
− βt

α2

)
.

In the limit t → ∞, both the diagonal and non-diagonal permeability set-ups lead to u and v
decaying to zero and similarly approximate a no-slip boundary condition. During intermediate
times, the non-diagonal solution generates a negative and non-zero v(t) through the coupling
of velocity components - which is qualitatively very different from the solution v(t) = 0 of the
diagonal case, for which the rate of change of each component depends only on itself.

Even though both penalizations analytically approach a no-slip boundary condition in the
limit ||K−1|| → ∞, it is unclear at this point whether diagonal or non-diagonal permeability
matrices better reproduce physical results. The instability in the semi-permeable marsh case and
non-zero velocities in solid regions that non-diagonal solid permeability matrices seem to generate
are obviously not ideal effects. On the other hand, the results generated by the non-diagonal
case in the tunnel configuration are qualitatively different from those generated by the diagonal
case, indicative of the fact that non-diagonal permeability matrices posses unique flow-turning
capabilities. Provided that there may be some cases which benefit from these capabilities, there
may be ways to constrain the non-physical effects and instability by testing different choices
of non-diagonal matrices and exploring configuration options like “coating” diagonally-defined
solid regions in a non-diagonal layer. An ideal next step would be to determine test cases that
turn the flow in a known manner (e.g. an impinging jet) or reproduce experimentally recorded
trials (e.g. layered soils) with the specific purpose of validating different samples of diagonal and
non-diagonal solid-representing permeability matrices and the qualities of their diverted flow.

The fact that this question is not properly resolved, especially in the context of accurate
upscaling, means that we will be proceeding with the use of both diagonal and non-diagonal
solid-representing permeability matrices. It is possible that non-diagonal permeability is needed
to properly capture the unresolved fine-scale structures in an upscaled simulation. It is also not
impossible that homogenization produce small, off-diagonal components from certain blocking
effects of diagonal fine-scale structure. Therefore, at this point, it would be prudent that any
permeability based upscaling method be prepared to handle both diagonal and non-diagonal
permeability matrices. We find PH a reliable method of doing so.

6.5 Use of PH to upscale fine-scale pSWE simulations
The process of “homogenizing” a simulation starts with the fine-scale permeability matrix being
fed into a method that performs PH over the entire domain. A visualization of the computational
domain ΩL and its discretization is given in Figure 6, where the global scale ΩL represents the
computational domain, Ωl represents a grid-scale cell, and Ωϵ represents a subgrid-scale cell.
The process of PH will take in one grid-scale cell, filled with heterogeneous SGS permeabilities,
in order to assign it one homogenized permeability matrix through the process described in
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§3.1.3. Once this process has been applied to every grid-scale cell, the permeability of the
computational domain can be described using a coarsened grid, where each grid cell hosts an
effective permeability matrix that is representative of its (now upscaled) SGS structure.

It is important to emphasize that when applying this method to an ocean model, the coarsened
length-scale represents the model’s computational resolution - which in a global setting could
correspond to a length-scale of as large as 10 km. This physical limit obviously leaves many
significant coastal features unresolved, that PH could potentially provide a way of capturing
through its representation of SGS structure, until resolution capabilities are improved upon.
Currently, the effect of unresolved SGS bathymetry is represented by an additional bottom
friction term, where a scalar friction coefficient is tuned based on the location, therefore nothing
is to be lost by replacing this method with PH, where equal component diagonal cases replicate
this exactly.

This is a preliminary study of permeability-based Brinkman penalization and we are not yet
at the point where homogenization can be tested in real ocean model. Nevertheless, we can
evaluate how closely coarse-scale simulations with homogenized permeability match averaged
fine-scale simulations. This section primarily focuses on features generated by fine and coarse-
scale simulations and how they compare.

6.5.1 Steady state comparison of averaged fine-scale and homogenized simulations

The homogenized simulations tend to lose detail in the velocity structure as compared to the
fine-scale simulations and their averages. However, in order to be classified as productive, one
must remember that homogenization doesn’t need to fully reproduce fine-scale features, it just
has to capture them better (or at least not worse) than a bottom friction. At a minimum,
a homogenized flow should preserve key qualitative features of system such as if, when, and
how a steady state is reached, as well as a general similarity in spacial velocity distribution.
The questions of whether diagonal or non-diagonal matrices are better suited to a domain or
produce more realistic flow become redundant in this section, because a successful homogenized
flow should approximate its corresponding fine-scale behaviour at a reasonable level of error
regardless of permeability choice.

To be able to state that coarse-scale simulations using homogenized permeability are rea-
sonable models for unresolved SGS structures, it is necessary to compare them with suitably
averaged corresponding fine-scale simulations. Initially, we will evaluate this for flows that have
reached a stationary state. Finding this stationary state (either deterministically or statistically)
generally entails allowing the system to evolve to multiple times its integral timescale. However,
in our chosen configurations, the mean velocity and measure of ∆t imposed are small and the
flow converges to a deterministic steady state well before its integral timescale (5333 time-steps
at the fine scale or t = 40).

A good diagnostic for a steady state is the total kinetic energy

KE(t) =
∑
i,j

1

2
uT
ijuij∆x∆y,

where uij(t) is the vector velocity at location (i, j). It should be noted that ∆A = ∆x∆y is
a factor that should be treated with care depending on whether velocities summed over are
sampled from cell edges or cell centres, whether ghost cells are present, and what resolution
samples are taken at. When this is done over both the averaged fine-scale simulation as well
as the homogenized coarse-scale simulation, a steady state is seen to be achieved at around
t = 22.5 (Figure 24). This steady-state is realized at more or less the same time throughout all
permeability configurations tested.

In the solid/fluid non-diagonal marsh case, although the kinetic energies of both the homog-
enized and the fine-scale simulations reach a steady state, the homogenized simulation achieves
a slightly lower kinetic energy (Figure 24). Other marsh cases, such as the diagonal solid/fluid,
as well as both semi-permeable cases also reach an equilibrium where the homogenized kinetic
energy tends to be smaller than its fine-scale counterpart. The more variance there is in velocity
measurements in a certain area, the larger the kinetic energy will measure. As such, it is natural
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Figure 24: Total kinetic energy measured over the computational domain for the solid/fluid non-
diagonal marsh configuration. The system appears to approach a steady state at a time of about
22.5. The spatially averaged fine scale calculates total kinetic energy from velocities averaged
over blocks with the same resolution as the coarse scale and naturally compares more closely to
coarse-scale measurements.

to see that when fine-scale velocity measurements are spatially averaged to the resolution of the
coarse-scale simulation and then squared and summed, the resulting kinetic energy is lower and
better compares to that of the coarse scale.

We see this effect again very clearly when we plot kernel density estimates (KDEs) for the
steady state velocities averaged over time steps 3000 to 4000 (t ∈ [22.5, 30]). KDEs are essen-
tially a probability density estimate of a normal variable where probabilities are weighted by a
distribution (in this case a Gaussian) in order to smooth a (potentially discrete) density plot.
We choose to use KDEs to visualize due to their clarity over histograms given the continuous
nature of the velocity variable.

Figure 25: Kernel density estimates for time-averaged velocities within a steady state: averaged
fine-scale velocities exhibit more spread than homogenized ones but both tend to centre around
the same mean.

A KDE for the time-averaged steady state velocities that compares the distribution from a fine
and spacially averaged field to a coarsened field shows that though both spanwise and perturbed
streamwise velocities pass the sanity check of centring around their expected means, they exhibit
different statistics (Figure 25). First of all, the variance of the perturbed streamwise velocity u is
much larger than that of the spanwise velocity v. However, the streamwise velocity is much more
similar between the fine and averaged field and the coarsened field than the spanwise is. In that,
the spanwise contribution dominates the total velocity variance . This trend is consistent over
all substructure and permeability configurations other than the solid/fluid non-diagonal marsh
case, where higher variance is displayed in the opposite sense.

29



The connection between this observed trend and the comparison of kinetic energy between
homogenized and fine-scale averaged cases is actually quite intuitive, as the formula for kinetic
energy, which can also be written as 1

2

∑
(u2

ij + v2ij)∆x∆y, is directly related to the variance of
u and v. The variance of some distribution of normal variable x with number of samples n and
mean x̄ is

var(x) = s2x =
∑
i

x2
i

n
− x̄2,

from which total kinetic energy can be written as

KE =
A

2
(var(u) + ū2 + var(v) + v̄2)

where A is the area of the domain sampled over. Together with the variance trends seen in
the KDE plot, we see clearly that this velocity variance is the reason as to why kinetic energy
in homogenized simulations is generally lower than that of its fine-scale counterpart. Plotting
the variance of both velocity components in each configuration shows that this trend is indeed
realized, with all simulations displaying higher kinetic energies at fine scaling than at homog-
enized coarse scaling (Figure 26). The marsh cases have comparable kinetic energies between
scales, but coarsened tunnel cases only retain about 60% of the kinetic energy of their fine-scale
counterparts.

Figure 26: A figure relating the variance of time-averaged velocity components to total kinetic
energy values for all solid/fluid, semi-permeable, diagonal, and non-diagonal cases. Larger vari-
ance implies a larger kinetic energy. Fine-scale cases ubiquitously display a larger combined
variance in velocity components u and v which consequently implies higher total kinetic energy
values. Solid/fluid cases suffer from larger discrepancies in their coarsened versus fine-scale total
kinetic energies, where semi-permeable systems tend to keep a tighter relationship.

After having found a time period that corresponds to steady state behaviour, the spatial
distribution of the velocities time-averaged over this period can be analyzed to gain more detailed
understanding of the difference between coarse and averaged fine-scale cases than analyzing the
kinetic energy brings. Figures 27 and 28 display the spatial distribution of relative error in
the time-averaged velocities in the solid/fluid diagonal marsh and tunnel cases respectively.
Relative error is measured at the resolution of the coarsened simulation, where homogenized
values are compared to fine-scale spatially averaged values. The marsh case constrains relative
error within 10 × 10−2 throughout all marsh-type configurations in both the streamwise and
spanwise velocities, though the spanwise direction generally stays within an order of magnitude
lower. The tunnel cases also perform similarly, constrained mostly within a relative error 10 ×
10−2, with lower error (expectedly) within regions of solid and variable error within the channel
interior. The only exception to this is in small the region that has a high velocity gradient just
downstream of the channel narrowing, which has a larger relative error in the streamwise velocity
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only. In general, relative error is quite low and consistent throughout all configuration types,
leading us to believe that periodic homogenization actually does a good job at approximating
fine-scale averaged behaviour.

Figure 27: Spatial distribution of relative velocity error averaged over steady state times 22.5-
30 for the solid/fluid diagonal marsh case. The relative error of homogenized velocities when
compared to averaged fine-scale velocities is generally around 10× 10−2 or lower. This result is
similar in other permeability configurations.

Figure 28: Spatial distribution of relative velocity error averaged over steady state times 22.5-
30 for the solid/fluid diagonal tunnel case. The relative error of homogenized velocities when
compared to averaged fine-scale velocities is generally around 10 × 10−2 or lower, with the
exception of the streamwise velocity just downstream of the channel narrowing which has higher
error by an order of magnitude. Regions of solid are (expectedly) well approximated, especially
in the spanwise direction. Similar results hold in other permeability configurations.
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6.5.2 Decomposition of kinetic energy into its components

Another interesting metric to look at is the breakdown of the kinetic energy rate into components,
which is naturally done by multiplying Equation 7 by vector velocity uT . This results in a measure
of the rate of change of kinetic energy on the left hand side and the breakdown of components
that contribute to it on the right hand side. These terms include pressure, advection, Coriolis,
wind, bottom friction, diffusion, and permeability, but are missing the contribution to the kinetic
energy rate that imposing a mean flow in a split step adds to the picture. Given that kinetic
energy tends to a steady state, the sum of all components that contribute to its rate should tend
to zero - which they do, shown in Figure 29.

Figure 29: A breakdown of contributions to the rate of change of kinetic energy by term in
Equation 7 (summed to “rhs total”) as well as the imposition of a mean speed for the diagonal
marsh configuration. The above components comprehensively cover all sinks and sources of
kinetic energy in a simulation given that their sum tends to 0 while kinetic energy tends to a
steady state. Permeability contributes significantly more to the kinetic energy rate of change in
the averaged fine-scale case than the homogenized case.

Laplacian diffusion plays the dominant role (supported by pressure and advection) in de-
creasing the kinetic energy in the homogenized simulation, while both diffusion and permeability
contribute similarly in the averaged fine-scale case. The addition of a mean flow provides a forc-
ing to the system that counteracts the general decrease in kinetic energy imposed by the right
hand side contributions, allowing the flow to reach a steady state rather than decaying to zero.

The breakdown of components for the complete set of configurations run is compiled in
Figure 30, time-averaged over a steady state period. Percent contribution to total change in
kinetic energy is plotted on the y−axis, giving an idea of the ratios between all contributing
terms from both the momentum equation as well as the mean flow. Generally, all components
contribute at about an order of magnitude less in the homogenized cases than the fine-scale
averaged cases. An overview of the residual rate of contribution for each configuration type is
available in Table 12. Most configurations show a general agreement between homogenized and
fine-scale cases that an equilibrium will be reached, except the diagonal solid/fluid tunnel case,
in which the fine-scale does not reach an equilibrium but the homogenized version does.
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Figure 30: Percent contribution breakdown of components that influence rate of change of kinetic
energy. Equilibrium rate of change contributions consistently decrease by an order of magnitude
in homogenized cases and most cases feature permeability as the predominant sink of kinetic
energy rate of change.

An interesting behaviour arises in several of the configurations, most notable in the solid/fluid
non-diagonal marsh configuration, where permeability actually acts as a source for kinetic en-
ergy. Given the positive-definite requirement of a permeability matrix, this only possible when
off-diagonal components are present. Indeed, we see no positive KE contributions from diago-
nal configurations. The off-diagonal entries can accelerate flow in the perpendicular direction,
especially at the boundaries between fluid and solid. Since permeability matrices are averaged
in order to find cell-centre tensors, there is a possibility of non-positive-definite matrices be-
ing generated - which could ultimately “create energy”. However, this doesn’t seem to prevent
configurations that ultimately should evolve to a steady state from settling into one.

Figure 30 shows that diffusion plays a large role in removing kinetic energy in cases where
permeability is less influential. Advective and pressure effects do contribute to the tunnel cases
and the homogenized non-diagonal marsh cases more than other configurations, while the rest of
the terms are negligible for all runs - mostly due to the fact that they were initialized with very
small parameters to focus on permeability.

Overall, given these systems’ comparable general tendencies, kinetic energies, and direct veloc-
ity distributions, we find that simulations coarsened through periodic homogenized do approach
fine-scale simulations averaged to the same resolution, especially in cases that reach a steady
state. We find this to be true for both solid/fluid permeability choices as well as semi-permeable
ones.
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Configuration type Pos/neg KE rate contributions Residual contribution
marsh

solid/fluid non-diagonal 1.02 2× 10−5

solid/fluid non-diagonal (h) 0.96 −6× 10−6

solid/fluid diagonal 1.03 6× 10−5

solid/fluid diagonal (h) 0.84 −1.35× 10−4

semi-permeable non-diagonal 0.96 −1.6× 10−3

semi-permeable non-diagonal (h) 0.92 −3.4× 10−4

semi-permeable diagonal 0.87 −8.6× 10−3

semi-permeable diagonal (h) 0.85 −7.1× 10−4

tunnel
solid/fluid non-diagonal 1.07 5.9× 10−4

solid/fluid non-diagonal (h) 0.99 −7× 10−6

solid/fluid diagonal 1.24 2.31× 10−2

solid/fluid diagonal (h) 0.99 −1× 10−5

Table 12: Ratios of positive to negative contributions to kinetic energy rate of change for all
configurations shown in Figure 30. Ratios less than 1 indicate residual negative rate of change.
Most cases seem to generally balance positive and negative contributions, with small residuals
indicated in the table as well, with the exception of the diagonal tunnel configuration, of which
the fine-scale case does not approach an equilibrium but its homogenized counterpart does.

7 Conclusions
We implemented two different homogenization methods for porous media defined through per-
meability matrices: volume averaging and periodic homogenization, to find that periodic homog-
enization is is not only more robust mathematically, but offers superior computational perfor-
mance, increased accuracy, and the ability to upscale non-diagonally defined permeabilities. It
accurately reproduces cases with empirically known results and approximates analytical solutions
to machine precision, in both two and three dimensions.

We then apply periodic homogenization to a fluid model governed by the two-dimensional
porous shallow water equations, which are derived by adding a Brinkman-type friction term that
has been modified to include a tensorial permeability, to the original shallow water model. We
do so in the context of presenting an extension to the existing literature on the use of Brinkman
penalization, which relies on representing subgrid-scale features in the solid/fluid interface of a
complex coastline as a porous medium to obtain a flow model along the coastline with numerous
stability, accuracy, and computational efficiency benefits ([11]). Where the Brinkman method
has previously only been applied to scalar porosity penalizations, we augment the flexibility of
this penalization by imposing it through a permeabiliy-porosity matrix structure, which has the
additional capability of characterizing a directional dependence in its associated friction. Since
the equal-component diagonal representation of a permeability-defined medium is exactly equiv-
alent to a scalar porosity, this extension only provides a scaffolding for improvement with little
added cost. This added cost is mostly constrained to a preprocessing step that runs indepen-
dently from the shallow water model, meaning that a given medium with a subgrid-scale structure
only needs to go through periodic homogenization once to be used in any number of dynamical
simulations. Furthermore, we have shown that periodic homogenization is extremely quick and
reliable, and can be extended to high resolutions with a very small requirement on computational
resources. Because of this and its ease of implementation in existing ocean models, we find that
adding a matrix-defined permeability is a natural next step to the already successful Brinkman
penalization method.

We also test an actual porous shallow water model subject to a permeability penalization on
subgrid-scale structure that mimics a marsh and a tunnel environment. We define this substruc-
ture through a location-based choice of permeability matrix, where we test both solid and fluid
representing matrices as well as semi-permeable ones. We find that solid-representing perme-
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ability matrices accurately reproduce no-slip boundary conditions along blockages to reproduce
expected results in all choices of substructure configuration. As an exploration, we test non-
diagonal permeability-defined solid regions and find that they produce additional flow turning,
which may be useful for some types of media or substructure, but further tests are required to
understand their effects more comprehensively.

Overall, we find that when porous shallow water models with permeability-defined substruc-
ture are coarsened, they approach their corresponding fine-scale case, averaged to the same
resolution. A spatial distribution of relative error between the time-averaged steady-state veloc-
ities of coarse simulations and fine, averaged simulations shows minimal discontinuity between
these two cases (largely constrained within 1% relative error). We find that in models that reach
a steady state, the kinetic energies of the coarse and fine, averaged simulations tend towards the
same level, with coarsened simulations generally displaying slightly less total energy. This can be
explained by homogenization’s inherent smoothing of features, which tightens the variance in the
coarsened flow velocities. We do not find this to be a failing, since the current prevailing method
having to average scalar porosity penalizations experiences the same effect. All the permeability-
defined method has to do is not perform worse than this method, which it fundamentally cannot
do given that one makes appropriate choices for subtructure matrices.

Therefore, we advocate for the use of permeability-defined subgrid-structure in porous shallow
water models employing a Brinkman penalization, if only to build in the capability of a direction-
ally dependent friction. Furthermore, we think that the coarsening of subgrid-structure should
be done by the method of periodic homogenization, which has proven to be quick, rigorous, and
reliable for both diagonal and non-diagonal input matrices.
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