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LAY ABSTRACT 

Artificial intelligence (AI) is increasingly used in clinical research to help automate the 

classification and evaluation of scientific studies. However, understanding how complex 

AI models make decisions, known as interpretability, is important for ethical use, and it 

remains a major challenge. This thesis explores how generative language models, 

particularly GPT from OpenAI, can enhance the interpretability. Two approaches were 

tested: 1) using GPT to classify medical research articles by explaining its reasoning, and 

2) using GPT to interpret decisions made by another advanced model by assigning a 

numerical importance value, called feature attribution, to each word. Results showed GPT 

was effective in classifying articles and explaining its own decisions, but it was not able 

to effectively explain other models using feature attributions. These results support the 

use of GPT to improve the transparency and accessibility of automated medical text 

classification and highlight potential future research in this field.  
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ABSTRACT 

Background 

The rapid growth of medical literature necessitates effective, transparent automation tools 

for classification. Generative large language models (LLMs), including the Generative 

Pre-trained Transformer (GPT), have the potential to provide transparent classification 

and explain other black box models.  

 

Objective 

This sandwich thesis evaluates the performance of GPT in 1) classifying biomedical 

literature compared with a fine-tuned BioLinkBERT model, and 2) explaining the 

decision of encoder-only models with feature attributions compared to traditional 

eXplainable AI (XAI) frameworks like SHapley Additive exPlanations (SHAP) and 

integrated gradients (IG). 

 

Methods 

Randomly sampled, manually annotated clinical research articles from the Health 

Information Research Unit (HIRU) were used along with a top-performing BioLinkBERT 

classifier. In Chapter 2, GPT-4o and GPT-o3-mini were used either alone or with 

BioLinkBERT’s predictions in the prompt to classify article methodological rigour based 

on HIRU’s criteria. Either the title and abstract or the full text was provided to GPT. 

Performance was compared to the BioLinkBERT model and assessed primarily using 

Matthew’s correlation coefficient (MCC). In Chapter 3, GPT-4o was used to generate 

feature attributions for the BioLinkBERT model through masking perturbations and was 
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compared to SHAP and IG using a modified area under the perturbation curve (AOPC) 

metric which gives a measure of performance. 

 

Results 

GPT-4o alone, using full text (MCC 0.429), achieved comparable classification 

performance to BioLinkBERT (MCC 0.466). Performance was worse with other models 

and inputs. As a perturbation explainer, GPT-4o’s (AOPC 0.029) performance was poor 

and significantly underperformed compared to SHAP (AOPC 0.222) and IG (AOPC 

0.225). The identified important tokens by GPT did not align with the manual appraisal 

criteria. 

 

Conclusion 

GPT has potential in appraising biomedical literature, even without explicit training. 

GPT’s transparency through textual explanations improves interpretability. GPT’s poor 

performance in generating faithful feature attributions warrants future research. The 

inherent variability and stochasticity of GPT outputs necessitate careful prompting and 

reproducibility measures.   
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CHAPTER 1  

INTRODUCTION
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1 | 1 Health Information Research Unit 

Evidence-based medicine (EBM) is a framework that informs clinical decisions according 

to the best available literature, clinical knowledge, experience, and patient preferences 

(Tenny & Varacallo, 2022). According to the hierarchy of evidence, randomized 

controlled trials (RCTs) are considered the strongest form of primary evidence and is able 

to establish causality. To aid in the search for relevant, rigorous literature, the Health 

Information Research Unit (HIRU) at McMaster University has been maintaining the 

Premium LiteratUre Service (PLUS) (Haynes et al., 2006). The service involves 

retrieving, categorizing, and appraising articles from 123 journals indexed in PubMed, a 

leading repository of biomedical literature, by research methods experts on a daily basis. 

Specifically, articles are classified by human reviewers into one of four mutually 

exclusive classes: 1) original study, 2) review, 3) evidence-based guideline, and 4) non-

experimental. Articles classified as 1), 2), or 3) can then be labelled with eight non-

mutually exclusive labels: 1) treatment, 2) primary prevention, 3) diagnosis, 4) prognosis, 

5) etiology, 6) quality improvement, 7) economics, and 8) other. Subsequently, the 

studies are appraised for their methodological rigour as being either sound or unsound. 

Methodologically sound articles are then sent to practicing clinicians worldwide to 

determine their clinical relevance to practice and newsworthiness. Those that are deemed 

both clinically relevant and newsworthy are ultimately delivered to clinician subscribers 

and other services, such as Evidence Alerts. The methodological criteria have been 

modified from those used when developing Clinical Hedges, a database curated by HIRU 
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in 2000, comprising 49,028 unique records published in 161 journals indexed in 

MEDLINE (Wilczynski et al., 2005). 

 

1 | 2 The Increasing Burden in Medical Knowledge Translation 

In the healthcare field, the sheer volume of clinical research has become a major 

challenge. The rapid expansion of digital information has resulted in an overwhelming 

amount of unstructured text data. For example, PubMed indexed over 36 million articles 

by 2025, with nearly one million new publications added each year (MEDLINE PubMed 

production statistics, 2018). Although this surge in literature offers tremendous 

opportunities to advance medical science, it also poses significant difficulties for 

clinicians and researchers who must navigate vast amounts of information to stay up to 

date. This issue is further compounded by the accelerating pace of medical knowledge, 

which was estimated in 2020 to double every 73 days—an enormous leap from the seven-

year doubling rate observed in 2010 (Densen, 2011). As a result, there is an urgent need 

for powerful, automated tools that can efficiently classify and retrieve text-based 

information to support timely and accurate clinical and research decision-making. 

 

1 | 3 Artificial Intelligence (AI) and Natural Language Processing (NLP) 

NLP is a field of AI that involves using machines to understand, interpret, process, and 

generate human language (Stryker & Holdsworth, 2025). Text classification is an 

extensively explored NLP task, and it involves assigning predefined categories to free, 

unstructured text and is critical for information retrieval, content organization, and 
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decision support across multiple domains (Taha et al., 2024; Wan, 2023). Prominent 

examples of text classification include sentiment analysis (S. Kumar et al., 2023) and 

spam email detection (AbdulNabi & Yaseen, 2021). Several major AI architectures have 

been extensively explored for the task of text classification. 

 

1 | 3.1 Rule-based methods 

The most rudimentary AI systems for NLP leverage rule-based, deterministic methods, 

such as pattern matching with regular expressions (Kowsari, Meimandi, et al., 2019; 

Markov et al., 2021). One example of this is the Bing Liu Lexicon, a dictionary of 6,790 

words mapped to either a positive or a negative sentiment (n.d.-a). Sentiment analysis 

with a lexicon-based approach may leverage this dictionary and count the number of 

words with either a positive or negative sentiment (Haddaoui et al., 2025). However, the 

rules require substantial manual labour to develop and maintain. They often scale poorly 

as texts become longer with complex contextual dependencies, as exponentially more 

rules are required (Chatla et al., 2024; Kotelnikova et al., 2021; B. Kumar et al., 2024; X.-

L. Li, n.d.; Michael et al., 2023).  

 

1 | 3.2 Shallow learning (SL) and traditional deep learning (DL) models 

As opposed to rule-based AI, supervised ML is a branch that involves automatically 

creating a functional model from a set of inputs and outcomes, which then can be applied 

to another set of inputs. ML is further categorized into SL and DL (Sarker, 2021; Xu et 

al., 2021). Specifically, SL does not involve complex hierarchies or layers of features and 
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transformations. On the contrary, DL most often refers to neural networks (NNs) and 

their variants, which almost always involve numerous layers of computations.  

SL techniques, such as Naïve Bayes and Support Vector Machine (SVM), are 

relatively simple architectures that leverage well-defined statistical principles or 

geometric decision boundaries and have been explored in text classification (Kowsari, 

Meimandi, et al., 2019; Q. Li et al., 2020). Compared to rule-based systems, SL does not 

require the manual definition of rules but rather learns relationships among the input 

features. This is a process called training, and the trained model can then be applied to 

new pieces of text for prediction. Common features include bag-of-words, where the 

feature represents the frequency of each word in the English vocabulary (Taha et al., 

2024), and term frequency-inverse document frequency, which is the product of how 

often a word appears in the document and the inverse of how often the word appears in a 

set of documents (Taha et al., 2024). While SL techniques are typically more effective 

and scalable than rule-based systems (Muliono & Tanzil, 2018; Taha et al., 2024), they 

require meticulous feature engineering and data augmentation to extract meaningful 

representations from free text (Q. Li et al., 2020; Oleynik et al., 2019; Yin et al., 2014). 

Furthermore, due to their simplicity, their scalability is often limited, and they are unable 

to fully capture complex semantic dependencies and relationships (Le et al., 2017; 

Lokker, Abdelkader, et al., 2024; Nassif et al., 2021). Nevertheless, SL methods remain 

relevant today due to their computational efficiency and often superior performance when 

training data is limited (Aphinyanaphongs et al., 2005; Q. Li et al., 2020; Oleynik et al., 

2019; Pasupa & Sunhem, 2016). 
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In contrast to SL methods, DL marked a significant advancement. The 

multilayered nature of DL enables more complex relationships to be learned, often 

precluding the need for sophisticated feature engineering or data augmentation (Q. Li et 

al., 2022; Wan, 2023; Xu et al., 2021). Recurrent NNs (RNNs) and their variants, such as 

bidirectional long-short-term memory and gated recurrent units, have demonstrated 

improved performance in a variety of NLP tasks due to their ability to model sequential 

relationships within text (L. Guo et al., 2018; Shahid et al., 2020; Sunagar & Kanavalli, 

2022; Y. Zhou, 2020). However, RNNs suffer from issues such as vanishing and 

exploding gradients (Noh, 2021; Wu et al., 2024), unidirectional context interpretation 

(Cui et al., 2018), and challenges with rare vocabulary (Mienye et al., 2024; Ravi et al., 

2020). RNN variants mitigate these concerns to a certain extent. However, compared to 

vanilla RNN, these variants suffer from a substantial increase in model complexity and 

longer computational times (Shiwei Liu et al., 2021). 

 

1 | 3.3 Transformer models 

The transformer architecture was initially introduced in 2017 and typically consists of 

either an encoder, decoder, or both (Aitken et al., 2021; Nielsen et al., 2024; Vaswani et 

al., 2017). The introduction of transformer-based pre-trained language models has 

revolutionized text classification by addressing many of the limitations inherent in earlier 

approaches (Pu et al., 2024; Vaswani et al., 2017). These are typically end-to-end models 

that require little data preprocessing. Compared to sequential recurrent NNs, transformers 

are able to process all inputs in parallel with positional encodings that map the relative 
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location of each textual token, resulting in drastically improved training times (H. Zhang 

& Shafiq, 2024). Tokens are pieces of text that transformer models use as input features 

and are generated by model-specific tokenizers (Zimmerman et al., 2024). Among the 

tokenizers, subword tokenizers are one of the most commonly used, which break down 

words into subwords for processing (Velayuthan & Sarveswaran, 2024). For instance, the 

word “prespecified” would be processed as three separate inputs, “pres,” “##pec,” and 

“##ified.” Transformer’s multihead self-attention mechanism models how each token 

would be affected by all other tokens in the input (Hernández & Amigó, 2021), mitigating 

issues around vanishing and exploding gradients and resulting in more accurate 

representations of long-range dependencies (Devlin et al., 2018). In other words, self-

attention allows a model to better interpret each word’s meaning in consideration of its 

context, especially over long pieces of text (Vaswani et al., 2017). In addition to 

parallelization and self-attention, transformers respond well to transfer learning, a 

technique where a model developed for a particular task is reused as the starting point for 

a model on a related task (Hosna et al., 2022). This method significantly reduces the 

amount of time and resources required when compared with training a model from 

scratch, resulting in domain-specific variants that achieve better performance in their 

respective fields (Chalkidis et al., 2020; J. Lee et al., 2019). 

 

1 | 3.3.1 Encoder-only transformers 

Encoder-only transformer architectures, such as Bidirectional Encoder Representations 

from Transformers (BERT) (Devlin et al., 2018), consist solely of the encoder stack. The 
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input text is processed through subword tokenization, and the output is an embedding (a 

numerical vector) of fixed size that is the sum of the token, positional, and segment 

embeddings. For text classification specifically, a special token at the beginning, 

“[CLS]”, is inserted, processed, and passed to a traditional NN for classification. This 

token can also be used as a feature in other types of classifiers (Afzal et al., 2024).  

Encoder-only transformers are typically pre-trained on large corpora of text data. 

BERT, for instance, is trained on BookCorpus with masked language modelling, where a 

portion of tokens are masked and predicted, as well as next sentence prediction, where the 

model determines whether a pair of sentences is consecutive (Devlin et al., 2018). 

Another architecture, Efficiently Learning an Encoder that Classifies Token 

Replacements Accurately (ELECTRA), utilizes replaced token detection where a 

generator-discriminator pair is trained, in which the generator replaces tokens with 

plausible alternatives and the discriminator attempts to detect replaced tokens (Clark et 

al., 2020). This approach, compared to BERT’s masking, enables learning from all input 

positions as opposed to masked ones and is typically more efficient computationally 

(Cortiz, 2021). 

These architectures are commonly adapted to domain-specific texts, as previously 

mentioned. BioBERT and BiomedBERT are prominent examples of BERT variants that 

focus on biomedical text, similar to BioELECTRA (Gu et al., 2022; Kanakarajan et al., 

2021; J. Lee et al., 2019). These models may be pre-trained from scratch using domain-

specific texts (Gu et al., 2022; Kanakarajan et al., 2021) or continually pre-trained from 
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general corpora (J. Lee et al., 2019). These domain-specific variants typically outperform 

their general counterparts in domain-specific NLP tasks. 

Pre-trained models are often fine-tuned for specific downstream tasks via 

supervised learning (Lokker et al., 2023; F. Zhou, Parrish, et al., 2025). Compared to 

training from scratch, pre-training and fine-tuning with a low learning rate require 

substantially less data and computational resources and often achieve better performance, 

especially for the biomedical corpora that often involve complex vocabulary and 

contextual dependencies (Devlin et al., 2018; J. Lee et al., 2019; Lokker et al., 2023).  

 

1 | 3.3.2 Decoder transformers and generative large language models (LLMs) 

In contrast to encoder-only models, decoder-based transformers focus on generative 

language modelling with autoregressive self-attention, where each token attends only to 

previous tokens (Roberts, 2023). This directionality allows the model to predict, or 

generate, future tokens sequentially based on what is already present (Jiawen Deng, 

Heybati, Park, et al., 2024). Decoder models are typically pre-trained using causal 

language modelling, where a piece of text is given, and the model is asked to predict 

subsequent tokens (Decoder models - Hugging Face NLP Course, n.d.). 

 This architecture gave rise to generative LLMs, including the Generative 

Pretrained Transformer (GPT) from OpenAI, that have garnered significant attention. 

LLMs, as the name suggests, are massive models trained on diverse internet texts using a 

combination of causal language modelling and reinforcement learning. One of the most 

advanced models by OpenAI, GPT-4, is speculated to have approximately 1.8 trillion 
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parameters by some sources (Bastian, 2023; Howarth, 2024), while BERT comprises only 

110 million (bert: TensorFlow code and pre-trained models for BERT, n.d.). 

Furthermore, these models can be fine-tuned with domain-specific text, similar to 

encoder-only transformers (Luo et al., 2022).  

These models are typically used by providing them with a “prompt” or instruction 

that starts the autoregressive sequence (Schulhoff et al., 2024). The model then generates 

subsequent tokens sequentially based on the prompt and previous generations. The 

combination of the autoregressive nature and extensive training enables the models to 

learn complex representations and is typically considered task-agnostic. While the 

primary task is text generation, LLMs can be easily adapted to a myriad of NLP tasks, 

including classification, through prompting or fine-tuning (E. Guo et al., 2024; Holistic 

Evaluation of Language Models (HELM), n.d.; Open LLM Leaderboard - a Hugging 

Face Space by open-llm-leaderboard, n.d.; Jin et al., 2019).  

In addition to architecture, the sophistication of the prompt can drastically affect 

an LLM’s performance (J. He et al., 2024; J. Kim et al., 2023). Consequently, prompt 

engineering has been an active area of research, and methods such as role prompting, 

chain-of-thought, decomposition, and few-shot prompting have shown promise in most 

circumstances (Schulhoff et al., 2024). 

 

1 | 4 Automated Biomedical Literature Processing 

Clinical practitioners and researchers rely on article retrieval from medical databases to 

inform clinical decisions and synthesize the most up-to-date evidence. However, 



10 

 

healthcare research has become increasingly complex and abundant, making it 

challenging for readers to remain current with all available evidence in their respective 

fields (Gai et al., 2021; Markey et al., 2024; Mendlovic et al., 2022; Number of clinical 

trials by year, country, WHO region and income group (1999-2022), n.d.; J. Sun et al., 

2021; Zhao et al., 2022). Empirical search systems, such as the Medical SubHeadings 

(MeSH) indexing terms and author-identified keywords, provide tags for articles to 

improve the efficiency of literature retrieval from medical databases. These approaches, 

however, are not without issues. For example, it may take up to one year for an article to 

be fully indexed in MEDLINE (Irwin & Rackham, 2017), and keywords may vary from 

author to author despite similar contexts (Dhammi & Kumar, 2014). 

Since 2002, the Medical Text Indexer-Automatic has been used to automate 

MeSH indexing with rule-based methods (MEDLINE 2022 initiative: Transition to 

automated indexing, 2021). The MTI-NeXt Generation adopts an NN model and 

significantly outperforms its predecessor with regard to recall (MTIX: The next-

generation algorithm for automated indexing of MEDLINE, 2024). Additionally, studies 

have also used ML to classify articles based on their topic or type (Qingyu Chen et al., 

2022; Thushari et al., 2023), as well as to evaluate ML models based on standardized 

corpora, such as the Hallmarks of Cancer (Baker et al., 2016; Shicai Liu et al., 2021; 

Verma et al., 2024). Additionally, several experiments have used ML to classify articles 

based on methodological soundness (Aphinyanaphongs et al., 2005; Kilicoglu et al., 

2009; Lokker, Abdelkader, et al., 2024; Lokker et al., 2023; Marshall et al., 2016) or 

relevance for systematic reviews (Aum & Choe, 2021; Chernikova et al., 2024; Lange et 
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al., 2021; Qin et al., 2021; Shekelle et al., 2017; van den Bulk et al., 2022). Software 

platforms aimed at supporting systematic reviewers, such as Covidence (Covidence - 

Better systematic review management, 2020) and Rayyan (Shanaa, 2021), are leveraging 

multiple model architectures to rank titles and abstracts (TIABs) based on their potential 

relevance to a review topic or classify whether they are RCTs.  

More recently, studies have examined the role of LLMs in traditional biomedical 

NLP tasks, such as question-answering and relation extraction (Ateia & Kruschwitz, 

2023; Bousselham et al., 2024; Rehana et al., 2023; J. Zhang et al., 2024). With regards to 

text classification, studies used GPT to conduct TIAB screening for systematic reviews 

(E. Guo et al., 2024), identify health-related tweets (Y. Guo et al., 2024), classify health 

advice in the scientific literature (S. Chen et al., 2024), as well as critical appraisal (Hasan 

et al., 2024; Lai et al., 2024; Pitre et al., 2023). In general, while GPT often performed 

worse than other methods, it precludes the need for lengthy training using a large, 

annotated dataset. Therefore, the convenience and flexibility are of particular interest to 

clinicians and researchers alike. 

In response to advancements in machine automation, HIRU has conducted several 

experiments using ML for medical text classification. For example, Lokker et al. fine-

tuned BERT and four variants for binary classification of the methodological soundness 

of clinical articles and reported 63% of work saved in a literature surveillance process 

while maintaining sensitivity >99% (Lokker et al., 2023). Another experiment leveraging 

AutoML and LightGBM has been conducted and published as well (Lokker, Abdelkader, 

et al., 2024). More recently, two additional experiments have been conducted, leveraging 
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a series of domain-specific BERT models to classify literature based on study design (F. 

Zhou, Lokker, et al., 2025) and methodological soundness specifically for RCTs (F. 

Zhou, Parrish, et al., 2025) and systematic reviews (F. Zhou, Afzal, et al., 2025). These 

experiments demonstrate satisfactory performance of BERT models, with the best models 

achieving an area under the receiver operating characteristic curve (AUROC) >94% and 

Matthew’s correlation coefficient (MCC) ranging from 0.75 to 0.90. 

 

1 | 5 Explainability in Artificial Intelligence 

Important aspects of decisions in the clinical context are transparency and explainability, 

as they are crucial for correctness, reproducibility, ethical practice, and knowledge 

translation (Fukami, 2024). Similarly, decisions made on clinical literature must be 

supported with direct evidence as well (Gannot et al., 2017). For instance, Cochrane Risk 

of Bias (ROB) tools involve a series of clear, unambiguous decisions to ensure that the 

final result is justified (J. P. T. Higgins et al., 2011; J. A. C. Sterne et al., 2019). In high-

stakes domains like biomedicine, the explainability of NLP models is crucial for building 

trust. A model’s predictions should ideally be backed by rationales that align with human 

domain knowledge (Talebi et al., 2024). 

Considering this, a major pitfall of DL, including transformers, is the lack of 

explainability of model decisions (Price, 2018). While DL can consider the vast array of 

variables and relationships in biomedical information, its sophistication comes at the cost 

of interpretability. In other words, as a model becomes more complicated, less is 

understood about its decision-making process. For instance, decisions from logistic 
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regression models can be traced to individual features’ odds ratios and weights. In an NN, 

each feature is processed through multiple layers of neurons with individual weights, 

activations, and biases, rendering it much more difficult to interpret the impact of a 

certain feature. This is known as the infamous black box problem (Fomin & Astromskis, 

2023).  

Consequently, a model may achieve satisfactory performance yet provide minimal 

insights into how these decisions were reached. Therefore, it is unfeasible to predict how 

well a model can generalize to another dataset, to examine systematic biases in the 

model’s decisions, or to further improve its performance in a constructive way other than 

trial-and-error. Due to the aforementioned reasons, the applicability of black-box models, 

especially those without external validation, is limited in medicine and clinical research 

(Wadden, 2021).  

One solution to the black box issue is using a framework to assign importance 

attributions to each input feature with respect to how much they contribute to the model’s 

output (M. Mersha et al., 2024). These frameworks can be broadly categorized as either 

model-specific or model-agnostic. They can also be categorized based on their scope, 

where local models attempt to explain individual decisions provided by an algorithm, 

while global models attempt to explain the entire workings of the algorithm.  

 

1 | 5.1 Perturbation-based explainable artificial intelligence (XAI) frameworks 

Perturbation-based frameworks work by systematically modifying input instances to 

assess how these alterations affect model output, thus identifying the relative importance 
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and contribution of each feature to the model's final decision (Hsieh et al., 2024). For 

instance, by changing or removing certain tokens from the input and observing how the 

model’s predictions change, it can be inferred to a certain extent which tokens are 

important for the decision. 

 

1 | 5.1.1 Local Interpretable Model-agnostic Explanations (LIME) 

LIME is a framework used to explain the decisions of any classifier locally (M. T. 

Ribeiro et al., 2016). It approximates individual predictions with a linear model, which is 

simpler and interpretable. Specifically, it generates perturbed instances of an input 

instance and examines how changes to the instance affect the model’s predictions. Then, 

weights to the perturbed instances are generated, and a linear model is fitted. However, 

LIME is strictly local, and each explanation would not be able to be generalized to other 

instances or to the model as a whole. LIME is also computationally expensive for large 

feature spaces, such as BERT models with a max token length of 512, and the fitted linear 

model is limited in complex models aimed at mapping non-linear relationships. For 

language tasks, LIME also struggles to generate meaningful perturbed instances, as small 

changes in words can result in significant shifts in semantic meaning or render the input 

grammatically incorrect. 

 

1 | 5.1.2 Anchor 

Anchor, developed by the same researchers behind LIME, builds upon the local, model-

agnostic approach with a rule-based system (Molnar, 2024). Similar to LIME, Anchor is a 
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model-agnostic, local explanation framework. It uses reinforcement learning and a graph 

search algorithm. The framework outputs IF-THEN rules called anchors that can be 

applied to one or several local instances. Along with the rule, Anchor returns the coverage 

and precision of the rule, indicating how much of the perturbation space the rule applies 

to and the precision of the rule in the coverage. When generating these rules, those that 

are more specific (i.e., more AND statements) offer better precision but less coverage. A 

balance must be struck considering the precision and coverage of these rules.  

 

1 | 5.1.3 SHapley Additive eXplanations (SHAP) 

SHAP differs from LIME and Anchor in that it draws from cooperative game theory, 

specifically Shapley values, to attribute prediction contributions across all features 

(Lundberg & Lee, 2017). The Shaley value represents the average contribution of a 

feature to the prediction for a specific instance. These values can be aggregated over 

multiple instances due to Shapley’s additive nature for a better representation of a 

feature’s impact. To calculate the Shapley value, a baseline prediction value is first set at 

the probability when no features are present, which is the prevalence of the class. Then, 

the model’s prediction with each feature subset combination is calculated, and the 

marginal contribution—the difference in the model’s prediction—for the feature in each 

subset is calculated by subtracting the predicted value of the subset without the feature 

from the predicted value of the subset with the feature. A weighted average of all 

marginal contributions is used to calculate the Shapley value.  



16 

 

SHAP suffers from similar limitations as LIME, where significant computational 

effort is required, and its complexity scales factorially with the size of the feature space. 

This makes SHAP infeasible for typical DL text models with hundreds of features. To 

address this concern, approximation methods have been developed (Lundberg & Lee, 

2017). One notable variant is the SHAP partition explainer, also known as partition 

SHAP (shap.PartitionExplainer — SHAP latest documentation, n.d.). Partition SHAP 

leverages a hierarchical tree-based partition by iteratively grouping the text using the 

cosine similarity of token embeddings, where close tokens are grouped first. This enables 

the capture of feature interactions (H. Chen et al., 2020; Lundberg & Lee, 2017). Owen 

value, a generalization of the Shapley value for hierarchical structures, is computed by 

masking or removing features in clusters together at each node of the hierarchical tree, 

thereby reducing the computational cost to quadratic complexity (López & Saboya, 

2009).  

 

1 | 5.2 Gradient-based explanation frameworks 

As opposed to perturbation-based frameworks that rely on modifications to input 

instances, gradient-based explanations systematically examine model parameters to 

explain how the model makes predictions (Y. Wang et al., 2024). As the name implies, 

gradient-based frameworks leverage the model’s own gradients during backpropagation 

and, therefore, are only applicable to differentiable architectures, including NNs. 

Consequently, they are typically more computationally efficient as well. 
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1 | 5.2.1 Vanilla gradients 

Vanilla gradients are the baseline gradient method and involve computing the gradient of 

the model’s output relative to the input features (Y. Wang et al., 2024). A larger gradient 

would indicate that the output would change more relative to changes in the input feature, 

indicating that the feature is relatively more important. This method is extremely efficient 

computationally (28 saliency maps – interpretable machine learning, n.d.). However, the 

method only captures the importance in a single iteration and may lead to overfitted 

attributions (Adebayo et al., 2018). Specifically, a well-converged NN would be saturated 

and have smaller gradients for confident predictions (Miglani et al., 2020), and in 

contrast, some instances can be unstable (Ghorbani et al., 2017).  

 

1 | 5.2.2 SmoothGrad 

SmoothGrad builds on top of vanilla gradients by averaging gradients over multiple noisy 

versions of the input, similar to perturbation-based methods (Smilkov et al., 2017). The 

addition of noisy inputs mitigates gradients with local spurious fluctuations, resulting in 

more consistent, reliable explanations. 

 

1 | 5.2.3 Integrated Gradients (IG) 

A more sophisticated gradient-based framework compared to vanilla and smooth 

gradients is IG (Sundararajan et al., 2017). As opposed to one-shot or few-shot gradients 

around the input, IG uses gradients on multiple steps along the path between a defined 

baseline and the instance input to establish feature importance. In other words, input 
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features are slowly added, step by step, from an empty baseline to the input instance, and 

the gradient at each step is considered. By accumulating infinitesimal gradients along this 

trajectory, IG produces attributions that sum up to the difference in model output between 

the input and the baseline. This results in more intuitive explanations, analogous to 

Aumann-Shapley values, which are a continuous analogue of Shapley values (Kirman et 

al., 1976). This approach also better mitigates issues surrounding gradient saturation and 

noise (Enguehard, 2023; Kirman et al., 1976; M. Ribeiro et al., 2024; Sikdar et al., 2021).  

 

1 | 6 The Role of Generative LLMs for Interpretable Text Classifications  

While the aforementioned ML model architectures and XAI frameworks have been 

examined in numerous studies, several limitations hinder their applicability in medical 

text classification (M. A. Mersha et al., 2025; Minaee et al., 2020; Taha et al., 2024). 

First, their explanations are limited to numeric attributions, and the interpretation remains 

a challenge for clinicians and clinical researchers (Zeng, 2024; Zytek, Pido, et al., 2024; 

Zytek, Pidò, et al., 2024). Second, the training and fine-tuning of traditional ML models 

require a substantial amount of high-quality annotations, which is often infeasible for 

tasks like systematic reviews (Golestaneh et al., 2024). Third, computational cost remains 

a significant consideration for both the training and the explanation of text classifiers, 

especially for deep NNs (Justus et al., 2018). Lastly, the development and implementation 

of these architectures require a substantial amount of technical knowledge. The effort of 

communication between researchers and software engineers adds another barrier to the 

workflow. 
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The rise of generative LLMs offers an interesting opportunity to tackle the above 

limitations. LLMs are able to provide plain-text rationale surrounding a decision using 

techniques such as chain-of-thought prompting, similar to how a critical appraiser would 

explain their ratings for the methods criteria of an article during conflict resolution (Wei 

et al., 2022). Additionally, LLMs that are pre-trained on merely general corpora have the 

potential to achieve satisfactory zero-shot performance (Ateia & Kruschwitz, 2023; 

Kojima et al., 2022). This flexibility allows LLMs to be used in a variety of tasks, 

including critical appraisal (Hasan et al., 2024; Lai et al., 2024; Pitre et al., 2023). 

Furthermore, LLMs can be queried remotely at a relatively accessible cost. For example, 

in April 2025, GPT-4o has input and output costs of USD$2.50 and USD$10.00 per one 

million tokens, respectively (Precios, n.d.). This mitigates concerns about local 

computational hardware requirements. LLM use also involves free text prompts, making 

them accessible for stakeholders without an extensive technical background.  

 

1 | 7 Objective 

The overarching objective of this thesis was to explore the applications of LLMs, 

specifically GPT models by OpenAI, to improve the interpretability of automated medical 

text classifications. GPT was used to 1) provide zero-shot interpretable classifications of 

medical literature, and 2) generate feature attributions using perturbations, similar to 

perturbation-based XAI frameworks. Original studies with the purpose of treatment, 

primary prevention, or quality improvement from HIRU’s PLUS and Clinical Hedges 

datasets were leveraged for both experiments. For experiment 1), the ability of GPT to 
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explain model decisions was compared to the best-performing encoder-only model fine-

tuned in a previous study (F. Zhou, Parrish, et al., 2025), and for experiment 2) 

performance of GPT was compared to the SHAP partition explainer and IG.
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CHAPTER 2  

ZERO-SHOT INTERPRETABLE BIOMEDICAL LITERATURE APPRAISAL WITH 

GENERATIVE LARGE LANGUAGE MODELS 
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2 | 1 Abstract 

2 | 1.1 Background 

The automation of clinical literature appraisal has garnered wide attention as an 

increasing number of articles are being published every year. While encoder-only 

transformer models have demonstrated strong performance, their development requires a 

large, high-quality dataset for training, and their decisions are opaque. Task-agnostic, pre-

trained large language models (LLMs) have the potential to conduct zero-shot appraisal 

with supporting rationales. 

 

2 | 1.2 Objective 

To assess the performance of Generative Pre-trained Transformer (GPT) -4o and GPT-

o3-mini in automating the methodological appraisal of randomized controlled trials 

(RCTs) compared to a fine-tuned encoder-only BioLinkBERT model. 

 

2 | 1.3 Methods 

A stratified random sample of 800 articles from the McMaster Premium LiteratUre 

Service and Clinical Hedges databases was appraised using two prompting schemes: 1) 

classifier (independent assessment) and 2) verifier (validation of BioLinkBERT 

predictions). Both GPT models utilized title and abstract (TIAB) or full text. Performance 

was primarily evaluated against human assessments using Matthew’s correlation 

coefficient (MCC). Bootstrapping over 1,000 iterations was used to estimate 95% 

confidence intervals (CIs). 
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2 | 1.4 Results 

Using full text, GPT-4o demonstrated comparable performance (MCC 0.429; 95% CI 

0.387 to 0.470) to BioLinkBERT (MCC 0.466; 95% CI 0.409 to 0.519), drastically 

outperforming GPT-o3-mini (MCC 0.272; 95% CI 0.211 to 0.334). GPT-4o's verifier 

scheme showed similar performance (MCC 0.391; 95% CI 0.335 to 0.444). GPT models 

provided transparent criterion-specific justifications. Performance using TIAB alone 

markedly decreased for GPT models (MCC ≤0.100), highlighting dependency on 

detailed methodological information. 

 

2 | 1.5 Conclusion 

GPT-4o effectively automates RCT critical appraisal with comparable performance to 

specialized fine-tuned models when provided full text, enhancing interpretability and 

transparency through explicit justifications. Limitations in abstract-level detail suggest 

complementary roles for fine-tuned models when full texts are unavailable. Future studies 

should optimize goal-specific prompting to further facilitate adoption in clinical 

knowledge translation workflows. 
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2 | 2 Introduction 

Randomized controlled trials (RCTs) are generally considered the gold standard primary 

evidence in informing clinical practice. However, they often suffer from poor 

methodological design or small sample sizes due to resource constraints (Hariton & 

Locascio, 2018). The critical appraisal process ensures that study limitations are assessed 

and findings are interpreted within the appropriate context (Al-Jundi & Sakka, 2017). For 

RCTs, critical appraisals are often conducted as a part of the knowledge synthesis and 

transfer process when preparing systematic reviews (J. A. C. Sterne et al., 2019) or in 

knowledge transfer workflows such as the McMaster Premium LiteratUre Service 

(PLUS) (Haynes et al., 2006). Given the complexity of critical appraisal, it often 

necessitates expertise in both clinical practice and research methodology and is typically 

performed in duplicate to enhance reliability (J. Higgins & Welch, 2011). The growing 

volume of biomedical literature further exacerbates this challenge, increasing the burden 

on clinical researchers and systematic reviewers (Number of clinical trials by year, 

country, WHO region and income group (1999-2022), n.d.). 

To address these difficulties, the use of artificial intelligence (AI) for automation 

has been an area of ongoing investigation (Santos et al., 2023). Previous machine learning 

(ML) methods, including naïve Bayes, SVMs and NNs, were widely applied to natural 

language processing (NLP) tasks (Aphinyanaphongs et al., 2005; Hassan et al., 2012; 

Kilicoglu et al., 2009; Lokker, Abdelkader, et al., 2024; Lokker et al., 2023; Marshall et 

al., 2015; Millard et al., 2016-2). However, each suffers from architecture-specific 

limitations, including the need for feature engineering (Kowsari, Jafari Meimandi, et al., 
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2019; Scott, 1999) and poor scalability (X. He et al., 2019; Lokker, Abdelkader, et al., 

2024) for shallow learning (SL) methods, and the requirement for substantial 

computational resources for neural networks (NNs) (Thompson et al., 2020). Their 

development and implementation require substantial technical knowledge and a large, 

robust training set, often precluding smaller research groups from leveraging these 

models (Golestaneh et al., 2024; Hestness et al., 2017). Moreover, these traditional 

models often lack transparency in their decision-making and generalizability across 

different appraisal tools or criteria (Harish et al., 2022; K. Li et al., 2022; Wadden, 2021).  

The introduction of large language models (LLMs) utilizing decoder transformers, 

including the GPT by OpenAI, revolutionized NLP (Yenduri et al., 2023). Their pre-

training on vast, diverse datasets allows them to perform a wide range of language tasks 

with natural language prompts and minimal task-specific training and fine-tuning (Jiawen 

Deng, Heybati, Park, et al., 2024). LLMs have demonstrated the ability to classify 

medical text, identify key study limitations, and generate structured summaries, making 

them potentially viable tools for automating critical appraisal in systematic reviews and 

knowledge translation (Qijie Chen et al., 2023; Ghosh et al., 2024; E. Guo et al., 2024; 

Tang et al., 2023; Van Veen et al., 2023). Moreover, advanced prompting techniques, 

such as chain-of-thought reasoning and stepwise decomposition, allow LLMs to articulate 

their decision-making process transparently, improving the interpretability and 

confidence (E. Guo et al., 2024; Schulhoff et al., 2024). Despite this, few studies have yet 

examined using GPT to appraise biomedical articles, and existing literature suffers from 
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limited sample size or replicability concerns (Hasan et al., 2024; Lai et al., 2024; Pitre et 

al., 2023). 

The Health Information Research Unit (HIRU) at McMaster University is a 

pioneer in clinical knowledge transfer, constructing the Clinical Hedges database and 

spearheading PLUS (Haynes et al., 2006; Lokker, McKibbon, et al., 2024; Wilczynski et 

al., 2005). In the exploration of automated methods for biomedical literature classification 

and appraisal, HIRU has conducted and published several experiments utilizing various 

forms of traditional ML, utilizing Microsoft AutoML and LightGBM (Lokker, 

Abdelkader, et al., 2024) and encoder-only transformer architectures (Lokker et al., 2023; 

F. Zhou, Parrish, et al., 2025). While these studies have been largely successful, obtaining 

high-quality labels for training or fine-tuning remains a significant challenge for 

independent researchers and smaller groups. Additionally, the interpretability of 

automated predictions poses difficulties for human-in-the-loop workflows that require 

duplicate assessments or verification.  

Due to the aforementioned concerns, LLMs utilizing autoregressive decoders can 

be a potential solution. For this study, the performance of two state-of-the-art LLMs from 

OpenAI, Generative Pre-trained Transformer (GPT) -4o and GPT-o3-mini, in appraising 

RCTs based on methodological rigour alone and in justifying and verifying a top-

performing encoder-only transformer model was examined.  
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2 | 3 Methods 

2 | 3.1 Dataset description 

This study uses the same dataset and a classifier fine-tuned in a previous study (F. Zhou, 

Parrish, et al., 2025). In brief, encoder-only transformers were fine-tuned to classify 

rigour (see Appendix A1 for the 9-item tool) (Methodological Criteria, n.d.) of primary 

articles on treatment, prevention, and/or quality improvement from the PLUS and the 

Clinical Hedges database associated with the McMaster HIRU (Appendix A2). Details 

regarding the development of these two databases are published elsewhere (Haynes et al., 

2006; MCMASTER+, n.d.; Wilczynski et al., 2005; F. Zhou, Parrish, et al., 2025).  

Briefly, the dataset included 53,219 (31,928 rigorous; 60.0%) articles from the 

PLUS database, spanning from its inception in 2003 to 2023. These were used for model 

development and evaluation. Specifically, 42,575 (25,561; 60.0%) were randomly 

allocated for training, 5,322 (3,203; 60.2%) for validation, and 5,322 (3,164; 59.5%) for 

testing. Additional external testing was conducted using 1,011 (575; 56.9%) articles from 

PLUS published in 2024 and 6,572 (1,587; 24.1%) articles from the Clinical Hedges 

dataset.  

For the current study, a random sample of 800 PLUS articles was selected 

stratified by the four evaluation datasets (PLUS-validate, PLUS-test, PLUS-2024, and 

Clinical Hedges), resulting in 200 articles from each. Each of the 200 articles was also 

stratified by the predicted rigour probability by the encoder-only transformer model into 

10 bins. This resulted in 200 articles from each dataset and 20 articles per probability bin 

per dataset. 
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2 | 3.2 Classifier description 

The encoder-only transformer model chosen for comparison was a BioLinkBERT-base 

model configured with a learning rate of 3E-5, a batch size of 64, a random seed of 2, 

with class weight adjustments to address class imbalance, and trained using only the 

TIAB (F. Zhou, Parrish, et al., 2025). Fine-tuning was conducted for five epochs, but 

early stopping led to the selection of weights from epoch 2, which corresponded to the 

lowest validation cross-entropy loss. On the original PLUS-validate set (n=5,322), the 

BioLinkBERT model achieved the best loss of 0.291, an AUROC of 0.941, and an 

accuracy of 0.879 using the default threshold of ≥0.50. 

Two GPT models, GPT-4o (gpt-4o-2024-11-20) and GPT-o3-mini (o3-mini-2025-

01-3), were used for rigour classification. For both models, the presence and frequency 

penalty were set to the default value of 0. To ensure reproducibility, the temperature was 

set to 0 for GPT-4o and the seed was set to 1 for GPT-o3-mini. The reasoning effort for 

GPT-o3-mini was set at the default value of medium to achieve a balance between 

performance and practicality. 

 

2 | 3.3 Prompting 

Two different prompting schemes—classifier and verifier—were used to assess the 

performance of the GPT models (Figure 2-1), and structured output was leveraged to 

ensure consistency. Each of the two schemes was tested with both the TIAB and the full 

text of the article. Details regarding the prompts can be found in Appendix B.  
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In the classifier scheme, GPT was directed to independently assess the 

methodological rigour of each article by generating a justification followed by a rating for 

each criterion individually. Subsequently, a final assessment was made by GPT, where an 

article was rated rigorous only if all 9 criteria were met.  

In the verifier scheme, GPT was provided with the probability-based rigour 

classification predicted by the BioLinkBERT model and was tasked with explaining the 

rationale behind this decision. As in the classifier scheme, GPT generated justifications 

and assigned ratings for each criterion. However, in this scheme, GPT was additionally 

required to explicitly state whether it concurred with the classification determined by 

BioLinkBERT.   
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Figure 2-1. Flowchart for the classifier and verifier schemes 

 

A Classifier; B Verifier.
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2 | 3.4 Full text preprocessing 

PDFs of the articles were retrieved and converted to plain text using the pdfminer package 

in Python, in which columnized formatting in typeset documents was able to be 

recognized and extracted properly. Optical character recognition was used to convert 

Portable Document Format to an extractable format for those that could not initially be 

extracted properly. For full texts with multiple chapters or which exceeded the 128,000 

token limit, including Kiru et al. (Kiru et al., 2016) and Hopewell et al. (Hopewell et al., 

2021), the scientific summary was used as the input. 

 

2 | 3.5 Evaluation and statistical analysis 

The following metrics were used to assess classification performance: sensitivity, 

specificity, accuracy, F1 score, Matthew’s correlation coefficient (MCC), and work saved 

over sampling (WSS) (Cohen et al., 2006). MCC was used as the main metric to establish 

relative performance, as it is a balanced measure that is particularly useful for imbalanced 

classification tasks when the cost of false positives and false negatives is equally 

important (Chicco & Jurman, 2020; Jiawen Deng, Moskalyk, et al., 2024). The formulae 

for confusion matrix metrics are in Table 2-1, and detailed interpretations of these 

metrics can be found in our previous publication (F. Zhou, Parrish, et al., 2025). 

Bootstrapping over 1,000 iterations was utilized to estimate the 95% confidence interval 

(CI).  
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Table 2-1. Evaluation metric formulae 

Metric Formula 

MCC 
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Sensitivity 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 
 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

F1 score 
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 
 

WSS 
𝑇𝑁 + 𝐹𝑁

𝑁
− (1 −

𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
) 

MCC Matthew’s correlation coefficient; WSS Work saved over sampling. 

 

2 | 3.6 Example outputs from GPT 

GPT outputs of four articles from the PLUS-test set, one in each quadrant of the 

confusion matrix for BioLinkBERT, were presented. 

 

2 | 3.7 Software and hardware 

Software development was conducted using Visual Studio Code and Python 3.11.9. Pre-

trained models were sourced from the Hugging Face transformers library, while model 

evaluation was performed using torch. The openai library was used to query GPT-4o and 

-o3-mini. Data and statistical analyses were conducted using pandas, numpy, and scikit-

learn, while matplotlib and seaborn were employed for data visualization. The software 

environments can be found in Apppendix C. 
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The initial fine-tuning of encoder-only transformer models was performed utilizing 

computing resources from the Cedar cluster, provided by the Digital Research Alliance of 

Canada. Each model was trained on a single NVIDIA V100 Volta graphics processing 

unit (GPU) (32GB memory) with an allocation of eight central processing unit (CPU) 

cores and 40GB of random access memory. 
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2 | 4 Results 

The stratified sampling of 800 articles resulted in 340 (42.5%) rigorous articles. The 

performance metrics of the models can be found in Table 2-2, and confusion matrices for 

all models can be found in Figure 2-1. Using TIAB as inputs, the fine-tuned 

BioLinkBERT model achieved an MCC of 0.466 (95% CI 0.409, 0.519) with 64.4% of 

errors as FNs (Figure 2-1A).  

 

2 | 4.1 GPT classifier performance 

When TIAB were provided, both GPT models classified most instances as non-rigorous, 

resulting in MCCs ≤0.1 (Table 2-2) and >94% of errors as FNs (Figure 2-2B, 2-2C). 

When the full text was provided, GPT-4o had an MCC of 0.429 (95% CI 0.387, 0.470) 

with 4.8% (17; Figure 2-2D) of errors as FNs. GPT-o3-mini had an MCC of 0.272 (95% 

CI 0.211, 0.334) with 67.1% (232; Figure 2-2E) of errors as FNs.  

 

2 | 4.2 GPT verifier performance 

When TIAB were provided, the MCC of GPT-4o increased markedly (0.427 [95% CI 

0.372, 0.483]), with 73.9% (204; Figure 2-2F) of errors as FNs. The performance of 

GPT-o3-mini remained poor with an MCC of 0.087 (95% CI 0.025, 0.147) and 94.6% 

(389; Figure 2-2G) of errors as FNs. When the full text was provided, GPT-4o had an 

MCC of 0.391 (95% CI 0.335, 0.444) and 71.9 % (210; Figure 2-2H) of errors as FNs. 

GPT-o3-mini had an MCC of 0.149 (95% CI 0.084, 0.209) with 65.8% (264; Figure 2-

2I) of errors as FNs. 
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2 | 4.3 Example outputs from GPT 

Of the four articles, the two that were manually labelled rigorous had a predicted rigour 

probability of 41.7% (Leong et al., 2006) and 94.3% (H.-H. Kim et al., 2023) by 

BioLinkBERT. The two that were non-rigorous had a predicted probability of 60.8% 

(Issler et al., 2009) and 28.8% (Moe et al., 2011). The outputs from GPT-4o classifier 

using full text are tabulated in Table 2-3, and the output for other GPT schemes can be 

found in Appendix D. 
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Table 2-2. Classifier Performance 

Model Scheme Input MCC Sensitivity Specificity Accuracy F1 Score WSS 

BioLinkBERT 

(reference standard) 

N/A TIAB 0.466 

(0.409, 

0.519) 

0.773 

(0.732, 

0.809) 

0.699 

(0.662, 

0.738) 

0.730 

(0.701, 

0.756) 

0.707 

(0.675, 

0.738) 

0.273  

(0.239, 

0.306) 

GPT-4o - Classifier 

with TIAB 

Classifier TIAB 0.097 

(0.038, 

0.154) 

0.043 

(0.025, 

0.061) 

0.988 

(0.979, 

0.997) 

0.589 

(0.559, 

0.620) 

0.081 

(0.048, 

0.113) 

0.018 

(0.006, 

0.030) 

GPT-o3-mini - 

Classifier with TIAB 

0.083 

(0.022, 

0.144) 

0.073 

(0.049, 

0.100) 

0.964 

(0.948, 

0.978) 

0.588 

(0.558, 

0.619) 

0.131 

(0.088, 

0.173) 

0.021 

(0.005, 

0.039) 

GPT-4o - Classifier 

with Full Text 

Full 

Text 

0.429 

(0.387, 

0.470) 

0.960 

(0.939, 

0.977) 

0.422 

(0.386, 

0.462) 

0.649 

(0.620, 

0.677) 

0.698 

(0.667, 

0.728) 

0.221 

(0.193, 

0.248) 

GPT-o3-mini - 

Classifier with Full 

Text 

0.272 

(0.211, 

0.334) 

0.450 

(0.404, 

0.499) 

0.803 

(0.767, 

0.834) 

0.654 

(0.624, 

0.685) 

0.523 

(0.478, 

0.566) 

0.146 

(0.112, 

0.183) 

GPT-4o - Verifier with 

TIAB 

Verifier TIAB 0.427 

(0.372, 

0.483) 

0.517 

(0.471, 

0.563) 

0.875 

(0.847, 

0.902) 

0.724 

(0.697, 

0.751) 

0.612 

(0.571, 

0.654) 

0.227 

(0.194, 

0.260) 

GPT-o3-mini - 

Verifier with TIAB 

0.087 

(0.025, 

0.147) 

0.078 

(0.055, 

0.107) 

0.962 

(0.945, 

0.977) 

0.589 

(0.558, 

0.621) 

0.138 

(0.099, 

0.184) 

0.023 

(0.007, 

0.041) 

GPT-4o - Verifier with 

Full Text 

Full 

Text 

0.391 

(0.335, 

0.444) 

0.502 

(0.453, 

0.553) 

0.858 

(0.829, 

0.884) 

0.708 

(0.679, 

0.734) 

0.592 

(0.549, 

0.634) 

0.208 

(0.174, 

0.242) 

GPT-o3-mini - 

Verifier with Full Text 

0.149 

(0.084, 

0.209) 

0.374 

(0.330, 

0.419) 

0.763 

(0.728, 

0.795) 

0.599 

(0.569, 

0.627) 

0.441 

(0.392, 

0.485) 

0.079 

(0.045, 

0.111) 

Note: All numerical values are shown as score (95% CI from bootstrapping). 

BERT Bidirectional Encoder Representations from Transformers; GPT Generative Pre-trained Transformer; MCC Matthew’s 

correlation coefficient; TIAB Title and abstract; WSS Work saved over sampling.  
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Table 2-3. Example output for the four articles in the PLUS-test set using GPT-4o - Classifier with Full Text 

PMID Label Predicted 

Rigorous 

Probability 

(%)† 

Criterion Justification Assessment 

19489805 Non-

rigorous 

60.8 1 The article is written in English. TRUE 

2 The study is about human participants, specifically 

mothers and their infants. 

TRUE 

3 The study addresses an important clinical topic, 

namely the prevention of sudden infant death 

syndrome (SIDS) through educational interventions. 

TRUE 

4 The analysis in the article is consistent with the study 

question, focusing on the effect of the educational 

intervention on infant sleep position. 

TRUE 

5 Participants were randomly allocated to intervention 

and control groups. 

TRUE 

6 The study had more than 10 participants per group 

completing the primary outcome assessment at the 3-

month follow-up. 

TRUE 

7 The primary outcome was assessed in more than 80% 

of those randomized at the 3-month follow-up. 

TRUE 

8 The primary outcome, infant sleep position, is 

clinically important as it relates to the prevention of 

SIDS. 

TRUE 

9 No subgroup analyses were reported in the study. TRUE 

Final All criteria for rigour were met based on the provided 

information. 

TRUE 

21183586 Non-

rigorous 

28.8 1 The article is written in English. TRUE 

2 The study involves human participants with chronic 

kidney disease. 

TRUE 
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3 The study addresses dietary interventions in chronic 

kidney disease, which is relevant to clinical practice. 

TRUE 

4 The analysis aligns with the study's objective to 

compare the effects of vegetarian and meat diets on 

phosphorus homeostasis. 

TRUE 

5 Participants were randomized to the order of the two 

diets in the crossover design. 

TRUE 

6 Only 8 participants completed the study, which is less 

than the required 10 per group. 

FALSE 

7 The primary outcomes were assessed in all 

participants who completed the study. 

TRUE 

8 The primary outcome, phosphorus homeostasis, is 

clinically important for CKD management. 

TRUE 

9 No subgroup analyses were reported in the study. TRUE 

Final The study does not meet the criterion of having at 

least 10 participants per group completing the 

primary outcome assessment. 

FALSE 

16916871 Rigorous 41.7 1 The article is written in English. TRUE 

2 The study is conducted on human participants. TRUE 

3 The study addresses the effectiveness of text 

messaging reminders in improving attendance in 

primary care, which is relevant to clinical practice. 

TRUE 

4 The analysis aligns with the study's objective to 

evaluate the effectiveness and cost-effectiveness of 

text messaging reminders. 

TRUE 

5 Participants were randomly allocated to the 

intervention and control groups. 

TRUE 

6 Each group had more than 10 participants completing 

the primary outcome assessment. 

TRUE 
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7 The primary outcome (attendance rate) was assessed 

in more than 80% of those randomized. 

TRUE 

8 The primary outcome (attendance rate) is clinically 

important. 

TRUE 

9 Subgroup analyses were preplanned and conducted 

appropriately. 

TRUE 

Final All criteria for rigour were met based on the provided 

information. 

TRUE 

36395875 Rigorous 94.3 1 The article is written in English. TRUE 

2 The study is conducted on human participants. TRUE 

3 The study investigates the effects of different 

antiplatelet therapies after coronary bypass surgery, 

which is relevant to clinical practice. 

TRUE 

4 The analysis aligns with the study's objectives, 

comparing outcomes between two treatment groups. 

TRUE 

5 Participants were randomly allocated to the two 

treatment groups. 

TRUE 

6 Each group had 102 participants completing the 

primary outcome assessment. 

TRUE 

7 The primary outcome was assessed in 97.5% of 

participants, meeting the 80% threshold. 

TRUE 

8 The primary outcome, major adverse cardiovascular 

events, is clinically significant. 

TRUE 

9 Subgroup analyses were preplanned and adhered to 

the randomization groups. 

TRUE 

Final All criteria for rigour have been met based on the 

provided information. 

TRUE 

† Predicted by the BioLinkBERT model.
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Figure 2-2. Confusion matrices for classifiers 

 

A BioLinkBERT; B GPT-4o - Classifier with TIAB; C GPT-o3-mini - Classifier with 

TIAB; D GPT-4o - Classifier with Full Text; E GPT-o3-mini - Classifier with Full Text; 

F GPT-4o - Verifier with TIAB; G GPT-o3-mini - Verifier with TIAB; H GPT-4o - 

Verifier with Full Text; I GPT-o3-mini - Verifier with Full Text. 
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2 | 5 Discussion 

In response to the advancements of ML and the need for transparency and usability in 

medical NLP, two state-of-the-art LLMs from OpenAI were assessed in assisting clinical 

knowledge translation and critical appraisal workflows. To our knowledge, this is the 

largest study on LLMs for critical appraisal to date and the first to assess a reasoning 

LLM for this task. 

 

2 | 5.1 Summary of findings 

Our findings demonstrate that GPT models have the potential to assist in classification 

and appraisal workflows, even without additional task-specific training. Notably, both 

GPT-4o and GPT-o3-mini achieved performance comparable to BioLinkBERT when full 

texts were available, despite BioLinkBERT being fine-tuned on over 40,000 labeled 

articles. This is particularly significant given that the dataset used in this evaluation 

included a higher proportion of articles that BioLinkBERT struggled to classify with high 

confidence (i.e., a predicted rigorous probability close to 0% or 100%), making it a 

challenging benchmark. Moreover, GPT’s ability to generate concise justifications for its 

classifications enhances transparency and provides convenience for manual verification, 

offering a practical advantage in real-world applications. These results highlight the 

potential of LLMs in biomedical literature appraisal, particularly in scenarios where 

labeled training data is limited or unavailable. 

Abstracts, however, seldom contained enough information for GPT to make 

confident decisions which resulted in erroneous negative classifications due to 

insufficient reporting of methodological details. Conversely, BioLinkBERT and other 
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encoder-only transformer models remain relevant when access to full text articles is 

restrictive, as their performances were satisfactory when only the TIAB was used as input 

for fine-tuning and assessment (Lokker et al., 2023; F. Zhou, Parrish, et al., 2025).  

 

Based on this experiment, providing the predictions from BioLinkBERT to GPT did not 

significantly improve performance compared to using either alone. Nevertheless, GPT’s 

natural language justifications may still serve as a valuable reference for human 

researchers.  

 

2 | 5.2 Development and implementation considerations 

While GPT’s overall performance was comparable to the best models from our previous 

experiments (Lokker et al., 2023; F. Zhou, Parrish, et al., 2025), careful consideration is 

required before adopting it as a ROB assessment tool. A key challenge is ensuring 

reproducibility, a fundamental principle of evidence-based medicine (National Academies 

of Sciences, Engineering et al., 2019). The inherent stochasticity of LLM outputs, which 

is influenced by parameters such as temperature (n.d.-b), must be accounted for in both 

research and deployment. Future studies should implement measures to enhance 

reproducibility, such as setting deterministic parameters or conducting sensitivity 

analyses to assess variability in model outputs. 

The importance of evaluating a model in the context of its intended use case was 

also highlighted. For HIRU, deployed models must prioritize sensitivity for confident 

negative classifications and traditional deep-learning models achieve this through 

threshold tuning. For LLMs, it is important to adjust the instructions to align with the 
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specific objective—whether optimizing for balanced classification, maximizing 

sensitivity for negative classifications, or enhancing specificity for positive 

classifications. Future research should explore prompting techniques to optimize goal-

specific performance while maintaining interpretability and reliability. 

In addition, it is known that prompt engineering can significantly affect the 

model’s performance (Schulhoff et al., 2024). Techniques such as role prompting, 

decomposition, and chain-of-thought should be considered and evaluated on a small 

validation set before large-scale implementation. While GPT-o3-mini had worse 

performance, the built-in chain-of-thought mechanism of reasoning models may reduce 

the need for complex, sophisticated prompting (G. Wang et al., 2024). Therefore, 

reasoning-optimized models may offer a distinct advantage in deployment settings where 

ease of implementation and interpretability are crucial.  

 

2 | 5.3 Comparison with existing literature 

Three studies have examined the use of LLMs for biomedical critical appraisal. Lai et al. 

(Lai et al., 2024) utilized ChatGPT and Claude to assess 30 RCTs using the original 

Cochrane ROB tool (J. P. T. Higgins et al., 2011), where each RCT was assessed twice by 

each LLM. Performance was measured using accuracy, and ChatGPT and Claude 

achieved a mean accuracy of 0.845 (95% CI 0.815, 0.873) and 0.895 (95% CI 0.870, 

0.918). Despite this, numerous domains had a sensitivity at or close to 0 due to models 

predominantly classifying instances as negative. Given the high prevalence of negative 

cases in the dataset, this led to an inflated overall accuracy but resulted in poor sensitivity, 

reflecting the model's limited ability to correctly identify positive instances. Future 



M.Sc. Thesis – F. Zhou; McMaster University – eHealth 

44 

 

research should include MCC as a primary classification metric or normalize accuracy 

based on class prevalence. 

Pitre et al. (Pitre et al., 2023) leveraged GPT-4 to appraise 157 RCTs identified 

from Cochrane reviews using the ROB-2 tool (J. A. C. Sterne et al., 2019). They analyzed 

three prompts with limited, extensive, and optimized instructions. Despite the existence of 

ground truth in the form of ratings from Cochrane reviews, performance was measured 

with weighted Cohen’s κ. Across all the prompts and ROB assessment domains, the level 

of agreement was poor, ranging from 0.11 to 0.17. The authors suggested that GPT had 

issues understanding the implications of randomization and allocation concealment 

methods, making reasonable assumptions about attrition, and comprehending the effect of 

blinding on outcomes. Token limits were also identified as a potential challenge. 

Hasan et al. (Hasan et al., 2024) presented a framework for using GPT-4 to assess 

307 articles using Risk Of Bias In Non-randomized Studies of Interventions (J. A. Sterne 

et al., 2016). Similar to Pitre et al. (Pitre et al., 2023), only agreement metrics, including 

Cohen’s κ, were used to assess performance. Overall, the agreement between GPT-4 and 

Cochrane reviewers was poor with κ ≤0.15 in 6 of 7 domains and 0.13 for the overall 

assessment. The authors highlighted challenges with file handling, token limits, and the 

quality of prompt engineering. 

Overall, these studies demonstrated mixed performance of current LLMs in 

critical appraisal. While the performances are not directly comparable to our results, 

future studies may wish to include large datasets, leverage API functions to mitigate 
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concerns surrounding output stochasticity, and consider appropriate classification metrics 

during evaluation.  

 

2 | 5.4 Limitations 

Several important limitations must be considered when interpreting our findings. First, 

the findings are limited to PLUS’s criteria and articles from 123 journals indexed by 

PubMed. Additionally, neither the Clinical Hedges nor the PLUS database documented 

ratings for each criterion, and therefore, performance per criterion was not available 

(except that articles that were labelled rigorous met all criteria). Second, due to current 

API limitations, the time and cost associated with GPT compared to BioLinkBERT or 

manual evaluation could not be analyzed. However, it was not unreasonable to observe 

that GPT was drastically more efficient resource-wise compared to other methods due to 

its ease of implementation and relatively cheap cost per text token (USD$2.50 and 

USD$10.00 per one million input and output tokens at time of analysis, respectively). 

Lastly, while the κ for PLUS’s criteria was assessed to be ≥0.80 (Wilczynski et al., 1993), 

there are still likely inaccuracies in manual article labelling. If feasible, future studies 

should consider direct labelling to minimize the biases introduced by noisy labels and 

having standardized, open access datasets would benefit the community of researchers.  

 

2 | 6 Conclusion 

This study demonstrated the promising capabilities of LLMs, particularly GPT-4o and 

GPT-o3-mini, in automating the critical appraisal of RCTs. GPT models achieved 
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comparable performance to a fine-tuned BioLinkBERT model, with GPT-4o being 

notably effective when utilized both independently and in verifying BioLinkBERT 

predictions. Methods to mitigate the stochastic nature of LLMs, advanced prompting 

techniques, and a wide range of classification metrics were utilized. LLM performance 

was constrained by the level of methodological detail available in abstracts alone, 

indicating the continued utility of fine-tuned encoder models when full text access is 

limited. Ultimately, GPT models showed enhanced interpretability through their ability to 

generate transparent, criterion-specific justifications, facilitating easier integration into 

clinical knowledge translation workflows. Future research should prioritize enhancing 

reproducibility, further optimizing prompting strategies, and evaluating cost-effectiveness 

and efficiency in real-world applications.  
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CHAPTER 3  

UNDERSTANDING TRANSFORMER-BASED CLASSIFICATIONS OF MEDICAL 

TEXT: USING AN LLM FOR ATTRIBUTION OF FEATURE IMPORTANCE
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3 | 1 Abstract 

3 | 1.1 Background 

Deep learning has demonstrated excellent performance in biomedical literature 

classification. However, the opacity of these models’ decision-making processes limits 

their interpretability and adoption. Explainable artificial intelligence (XAI) methods, 

including SHapley Additive exPlanations (SHAP) and integrated gradients (IG), have 

been proposed to address this issue, yet computational complexity remains high. 

Generative large language models (LLMs) may offer a novel approach for generating 

interpretable, context-aware explanations. 

 

3 | 1.2 Objective 

To investigate the effectiveness of Generative Pre-trained Transformer (GPT) -4o as a 

perturbation-based explainer for a BioLinkBERT text classifier by comparing its 

explanations to SHAP partition explainer and IG in terms of faithfulness. 

 

3 | 1.3 Methods 

A stratified sample of 200 articles from McMaster PLUS and Clinical Hedges databases 

was classified by BioLinkBERT. GPT-4o, SHAP partition explainer, and IG were used to 

generate token-level feature attributions. GPT-based explanations were derived through 

iterative masking perturbation. Explanations were evaluated using a modified version of 

the area over the perturbation curve (AOPC), correlation analyses, and qualitative 

assessment of feature importance attribution. 



M.Sc. Thesis – F. Zhou; McMaster University – eHealth 

49 

 

 

3 | 1.4 Results 

SHAP (AOPC 0.222; 95% confidence interval [CI] 0.200 to 0.244) and IG (AOPC 0.225; 

95% CI 0.202 to 0.247) provided consistent and faithful explanations, effectively 

identifying tokens relevant to study rigour (e.g., "randomized," "blind"). Conversely, 

GPT-4o explanations were poor (AOPC 0.029; 95% CI 0.014 to 0.043) with nonsensical 

token attributions. Correlation analysis showed moderate alignment between SHAP and 

IG (Pearson’s r 0.367), whereas GPT-4o had minimal (Pearson’s r ≤0.032) correlation 

with these established methods. 

 

3 | 1.5 Conclusion 

GPT-4o, despite its advanced contextual capabilities, performed poorly as a standalone 

explainer compared to established methods like SHAP and IG. These findings highlight 

the need for further research into specialized prompt engineering and potential hybrid 

methods integrating LLMs with traditional XAI techniques to improve interpretability 

without sacrificing computational efficiency or explanation quality. 
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3 | 2 Introduction 

The rapid growth of biomedical literature has driven the development of automated 

classification systems to facilitate knowledge synthesis and translation (MEDLINE 

PubMed production statistics, 2018). Deep learning, particularly encoder-only 

transformer architectures such as Bidirectional Encoder Representations from 

Transformers (BERT), has gained significant attention in biomedical text classification 

(BLURB leaderboard, n.d.). These models excel due to their ability to capture contextual 

information, leverage transfer learning, and minimize the need for extensive data 

preprocessing and feature engineering, making them highly effective for biomedical 

applications (Devlin et al., 2018; Vaswani et al., 2017). 

However, the complex, multi-layered nature of BERT models undermines their 

interpretability, posing challenges in understanding their decision-making processes 

(Wadden, 2021). Explainable artificial intelligence (XAI) techniques aim to address this 

limitation by providing insights into feature importance (Gohel et al., 2021). One widely 

used XAI framework is SHapley Additive exPlanations (SHAP), which is grounded in 

game theory and utilizes Shapley values to systematically estimate feature contributions 

by perturbing inputs (Lundberg & Lee, 2017). Despite its theoretical robustness, SHAP 

has substantial computational overhead. It requires summing marginal contributions 

across feature subsets, which leads to an exponential increase in complexity as the feature 

space grows (Bertossi et al., 2020). Consequently, computing SHAP values becomes 

impractical for BERT models that process long sequences of up to 512 tokens. 
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To mitigate this challenge, a partition explainer groups features into structured 

partitions, which reduces complexity while preserving interactions. By approximating 

Shapley values using Owen values (López & Saboya, 2009), the partition explainer 

enhances scalability, making it particularly suitable for high-dimensional text 

classification tasks. Another widely used method is integrated gradients (IG) based on the 

Aumann-Shapley method, which ensures axiomatic fairness and path-integrated 

attribution of feature importance (Enguehard, 2023; Kirman et al., 1976; M. Ribeiro et al., 

2024; Sikdar et al., 2021). It offers a computationally efficient approach to estimating 

feature importance by measuring the accumulated gradients along the path between a 

baseline and the instance input. IG has been widely applied in natural language 

processing (NLP) tasks, providing a balance between interpretability and computational 

feasibility (Enguehard, 2023; M. Ribeiro et al., 2024; Sikdar et al., 2021). However, these 

methods face challenges in explaining text classifiers due to significant multicollinearity 

between input tokens and high-dimensional feature spaces (H. Chen et al., 2020; 

Enguehard, 2023; Mosca et al., 2022). 

More recently, pre-trained generative large language models (LLMs) leveraging 

transformer decoders have garnered wide attention in NLP due to their performance and 

flexibility (Minaee et al., 2024). Previous studies explored LLMs in model explanation, 

such as Zytek et al. (Zytek, Pido, et al., 2024) and Zeng (Zeng, 2024), who investigated 

using LLMs to convert SHAP explanations into plain-text descriptions to improve human 

interpretability. Unlike perturbation- or gradient-based XAI methods, LLMs can generate 

explanations while incorporating token-level contextual relationships, potentially leading 
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to more faithful feature attributions. More recently, LLMs now support structured 

JavaScript Object Notation (JSON) output and function calling, providing a convenient 

way to integrate model predictions (Build with Claude, n.d.; Llama AI, n.d., n.d.-c).  

Despite these advances, no prior studies have explored the usage of LLMs as 

standalone explainers for deep learning models in biomedical text classification. To 

address this gap, this study developed and validated a methodology to investigate 

Generative Pre-trained Transformer (GPT) -4o by OpenAI as a perturbation explainer for 

a BERT-based biomedical text classifier (BioLinkBERT identified as the top model from 

our previous study). Performance of GPT-4o was compared against SHAP’s partition 

explainer and IG explanations.  
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3 | 3 Methods 

3 | 3.1 Classifier and dataset description 

This study builds upon the work from a previous study (F. Zhou, Parrish, et al., 2025) 

where 630 encoder-only transformer models were fine-tuned using grid search. The data 

came from McMaster Premium LiteratUre Service (PLUS) and the Clinical Hedges 

database associated with the McMaster Health Information Reseearch Unit (HIRU). 

Detailed descriptions of these two databases are published elsewhere (Haynes et al., 2006; 

Lokker et al., 2023; MCMASTER+, n.d.; Wilczynski et al., 2005; F. Zhou, Parrish, et al., 

2025). In short, both databases include primary treatment, prevention, and/or quality 

improvement studies that had been manually appraised using custom criteria for 

randomized controlled trials (RCTs) (Methodological Criteria, n.d.) as methodologically 

rigorous or non-rigorous (Appendix A1). Articles in the PLUS database from inception 

(2003) to 2023 (n=53,219) were used for training (n=42,575), validation (n=5,322), and 

testing (n=5,322). Articles from 2024 in PLUS (n=1,011) and the Clinical Hedges 

(n=6,572) were used for external testing (Appendix A2). The top-performing models 

were identified on the validation set and subsequently tested. 

For this study, a stratified random sample of 200 articles was selected, 40 from 

each data subset. For each of the 5 data subsets, articles were placed into 10 bins based on 

their predicted probability for rigour and a random sample of 4 articles per probability bin 

per dataset was selected. The probability scores were generated by the model that had the 

lowest validation loss, which was a BioLinkBERT-based model with a learning rate of 

3E-5, a batch size of 64, a random seed of 2, and included class weight adjustments. The 
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model was fine-tuned for 5 epochs before premature termination by early stopping, and 

weights from epoch 2 were used as it achieved the lowest validation loss. Other relevant 

configurations can be found in our previous publication (F. Zhou, Parrish, et al., 2025). 

The model achieved cross-entropy loss of 0.291, an area under the receiver operating 

characteristic curve (AUROC) of 0.941, and an accuracy of 0.879 on the full validation 

set. 

 

3 | 3.2 SHAP partition explainer 

The SHAP partition explainer was used (shap.PartitionExplainer — SHAP latest 

documentation, n.d.) to compute an Owen value for each token in each prediction. The 

partition explainer was chosen due to its efficiency in high-dimensional text classification 

and its ability to capture feature interactions more effectively than standard Shapley value 

approximations (Bitton et al., 2022). SHAP values were calculated using logits back-

transformed from SoftMax probabilities. 

 

3 | 3.3 IG 

IG was employed to estimate token-level feature attributions for each prediction. A 

padded empty sequence was used as the baseline input, ensuring the absence of semantic 

content while preserving the tokenization structure. Attributions were derived by 

computing gradients with respect to the input embeddings across 30 interpolation steps. 

The total IG attribution per token was calculated by aggregating gradients across all 

embedding dimensions. 
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3 | 3.4 GPT 

GPT-4o-2024-11-20 with a temperature of 0 was used to ensure deterministic outputs, 

and both presence and frequency penalties were set to 0. The objective was to evaluate 

GPT’s ability to estimate token-level feature attributions through perturbation-based 

explanations, similar to SHAP. Two prompting schemes, GPT-index and GPT-token, 

were designed to systematically mask tokens and assess their influence on classifier 

predictions. Tokens were obtained by processing the original input through 

BioLinkBERT’s word-piece tokenizer. Both schemes received the number of input 

tokens, predicted logits for both classes and the probability of the positive class. 

Additionally, GPT-token was provided with the complete list of input tokens in a comma-

separated format and the manual appraisal criteria. The full prompts used for both 

schemes are available in Appendix E. A flow diagram can be found in Figure 1. 

 

3 | 3.4.1 Developer Prompt 

In the developer prompt, GPT was provided with 1) the role as a machine learning model 

explainer, 2) the task to explain a binary encoder-only transformer text classifier’s 

prediction via perturbations by masking input tokens, 3) the scheme-specific information 

that will be provided in the user prompts, 4) step-by-step instructions on defining 

importance, masking, function calling, and generating importance values that would be 

executed subsequently (Figure 3-1A). The manual appraisal criteria (Methodological 

Criteria, n.d.) for GPT-token was included in the developer prompt. 
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3 | 3.4.2 Initial User Prompt 

In the initial user prompt, both prompting schemes were provided with the number of 

tokens, the predicted logit of the positive and negative classes, and the probability of the 

negative class (Figure 3-1B). The input tokens in the format of a comma-separated list 

were provided to GPT-token only in the initial user prompt. 

 

3 | 3.4.3 Subsequent User Prompts 

The model was first instructed to generate the definition of “importance” for itself and 

then to call mask_and_predict with lists of individual indices (e.g., [[0], [1], … [x-1]], for 

an input with x tokens), echoing the instructions provided in the developer prompt. To 

call mask_and_predict, function-calling (n.d.-d) in OpenAI’s API was utilized (Figure 3-

1C). The function, in general, takes lists of integers as input and returns the logits for both 

classes and the probability of the positive class for each list of indices to mask, with every 

token at the integer replaced with “[MASK]”.  

Subsequently, the model was prompted 10 times to generate any number of lists 

with any number of indices to mask and call mask_and_predict, where each iteration had 

the results of all previous iterations. The model was explicitly instructed to avoid 

generating the same combinations of indices and to adapt future maskings based on prior 

iteration results. Lastly, the model was asked to redefine “importance” based on the initial 

definition and the results of all masking iterations. 
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3 | 3.4.4 Feature Attribution Calculations 

The model was prompted, with the final message chain including the initial user prompt, 

all iterations of perturbations, and both iterations of importance definition, to generate the 

feature importance for each token, 20 tokens per batch (Figure 3-1D). The model was not 

provided with the feature attributions of other batches. This batched approach was taken 

as the model often had issues with generating longer sequences. The structured output 

function (n.d.-e) of the API was leveraged to generate a list of dictionaries of token 

indices and their corresponding feature attributions.
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Figure 3-1. Flowchart for the generation of GPT explanations 

 
A Developer prompt creation; B Initial user prompt creation; C Subsequent, iterative user prompts for token masking and 

prediction; D Feature attribution calculations. 

 

† Input tokens are only included in the initial user prompt for GPT-token. 

‡ The provided information and instructions in the developer prompt would differ for GPT-index and GPT-token, as GPT-

index was not provided with the input tokens. Detailed prompts can be found in the Supplementary.
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3 | 3.5 Evaluation 

3 | 3.5.1 Area over the perturbation curve (AOPC) 

To establish feature attribution performance, the AOPC metric used in previous literature 

was modified (H. Chen et al., 2020; Nguyen, 2018; Samek et al., 2016). The AOPC was 

calculated for each explanation individually and then averaged across all 200 instances.  

 

The original AOPC is calculated using the following formula: 

 

Equation 3-1. Original AOPC 

𝐴𝑂𝑃𝐶 =
1

𝐾
∑(𝑃(𝑥) − 𝑃(𝑥(𝑖)))

𝐾

𝑖=1

 

 

where 𝑃(𝑥) is the predicted probability for the positive class with the original input 𝑥,  

𝑥(𝑖) is the perturbed input with top 𝑖 important features removed or masked, and 𝐾 is the 

number of perturbation steps. This formula assumes that features contribute to the 

positive class, hence their removal would result in a decrease in the predicted probability, 

and 𝑃(𝑥) − 𝑃(𝑥(𝑖)) would be positive.  

 

For binary text classification, feature attributions could be associated with a negative 

value indicating more support for the negative class. Under such circumstances, their 

removal would lead to an increase in the probability of the positive class. For this reason, 

the AOPC formula was adapted to the following: 
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Equation 3-2. Modified AOPC 

𝐴𝑂𝑃𝐶 =
1

𝐾𝑝 + 𝐾𝑛
(∑ (𝑃(𝑥) − 𝑃(𝑥(𝑖)))

𝐾𝑝

𝑖=1

+  ∑ (𝑃(𝑥(𝑗)) − 𝑃(𝑥))

𝐾𝑛

𝑗=1

) 

 

where 𝑥(𝑖) and 𝑥(𝑗) is the perturbed input with top 𝑖 positive features and top 𝑗 negative 

features masked, respectively. 𝐾𝑝 and 𝐾𝑛 are the number of perturbation steps for the 

positive features and negative features, respectively, which in this case would 

respectively equal to the number of positively and negatively attributed tokens. Similar to 

the original metric, a larger value would indicate higher attribution faithfulness. Note that 

the operands corresponding to the ‘+’ operation must be computed separately (to enable 

the removal of positive features and negative features separately) before the final 

summation is performed. 

 

3 | 3.5.2 Correlation Analysis 

The pairwise correlation between feature attributions for each of the four methods 

(SHAP, IG, GPT-index, GPT-token) was assessed using Pearson’s r, Spearman’s ρ, and 

Kendall’s τ. Distribution similarity was measured with Wasserstein distance. A p-value 

≤0.05 is indicative of statistical significance. The distributions of feature attributions were 

visualized using scatter plots. 
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3 | 3.5.3 Feature Importance Attributions 

The most important 10 features that had an occurrence of ≥1, ≥10, and ≥100 for each 

explainer were examined using bar graphs. 

 

3 | 3.6 Hardware and software 

Initial fine-tuning of encoder-only transformer models was conducted using the resources 

from the Cedar cluster of the Digital Research Alliance of Canada. Each model was 

trained using one NVIDIA V100 Volta (32GB memory), as well as an allocation of 8 

central processing unit cores and 40 GB of random access memory (RAM). IG, SHAP, 

and GPT-4o feature attribution calculations were conducted locally using one NVIDIA 

RTX 2070 (32GB memory), as well as an AMD 9950x with 64GB RAM. 

Visual Studio Code and Python 3.11.9 was used for all software development. The 

transformers library by Hugging Face was used to obtain pre-trained models, and torch 

was used for evaluation purposes. The shap and capum libraries were used to calculate 

feature attributions via partition explainer and IG, respectively. The openai library was 

used to query GPT-4o. Data management and statistical analysis were conducted using 

pandas, numpy, and scikit-learn. Data visualization was done with matplotlib and 

seaborn. The full list of libraries used on the Digital Research Alliance of Canada and 

local environment can be found in the supplementary Appendix B. 
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3 | 4 Results 

3 | 4.1 Characteristics of the dataset and classifier 

The original dataset contained 60,802 instances, of which 34,090 (56%) are rigorous. 

After stratified sampling, the 200 instances contain 83 (41.5%) rigorous articles. Within 

this dataset, the BioLinkBERT model achieved a cross-entropy loss of 0.527, an AUROC 

of 0.812, and an accuracy of 0.705 using the default threshold of ≥ 0.50. 

 

3 | 4.2 Importance definitions by GPT  

GPT, in both prompting schemes, were instructed to define ‘importance’ after being 

provided with the initial user prompt and subsequently redefine importance after all 

iterations of masking have been completed. Both GPT-index and -token initially defined 

‘importance’ as the change in the predicted probability of the positive class before and 

after masking for all (200/200; 100%) instances.  

After redefinition for GPT-index, the definition remained consistent as the change 

in predicted probability in 199 instances (99.5%). Of these, 3 (1.5%), 37 (18.5%), and 16 

(8.0%) instances normalized the change by logits, initial predicted probability, and 

number of masked tokens in a perturbation, respectively. The remaining instance utilized 

the change in the difference between the positive and negative logit as the definition of 

importance. 

For GPT-token, the definition for all (200/200; 100%) instances remained 

consistent, as the change in predicted probability. Among these, 67 (33.5%) and 9 (4.5%) 
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instances normalized the change by the initial predicted probability and number of tokens 

masked, respectively.  

 

3 | 4.3 AOPC analysis 

SHAP and IG explanations achieved similar faithfulness, with a mean (95% confidence 

interval [CI]) of 0.222 (0.200, 0.244) and 0.225 (0.202, 0.247), respectively (Table 3-1). 

SHAP was better at identifying negative tokens, while IG was better at identifying 

positive tokens. GPT-index and GPT-token had significantly worse AOPC of 0.025 

(0.012, 0.038) and 0.029 (0.014, 0.043), respectively. Both had negative AOPC for 

negative tokens.  

 

Table 3-1. AOPC performance 

Explainer AOPC AOPC (Positive 

Tokens) 

AOPC (Negative 

Tokens) 

SHAP 0.222 (0.200, 0.244) 0.277 (0.249, 0.306) 0.037 (0.030, 0.044) 

IG 0.225 (0.202, 0.247) 0.326 (0.293, 0.359) 0.026 (0.019, 0.033) 

GPT-index 0.025 (0.012, 0.038) 0.045 (0.028, 0.063) -0.021 (-0.034, -0.008) 

GPT-token 0.029 (0.014, 0.043) 0.049 (0.029, 0.068) -0.021 (-0.031, -0.010) 

Note: All values are shown as the mean (95% CI) across the 200 instances. 

 

3 | 4.4 Correlation analysis 

Feature attributions from SHAP and IG exhibit moderate correlation with each other, with 

a Pearson’s r of 0.367 (Table 3-2, Figure 3-2). No notable correlation was evident 

between other pairs of explainers. Wasserstein distances reveal that the distributions of 

feature attributions are similar across all explainers. 

 



M.Sc. Thesis – F. Zhou; McMaster University – eHealth 

64 

 

Table 3-2. Correlation of feature attributions 

Explainer A Explainer B Pearson’s r Spearman’

s ρ 

Kendall τ Wasserstei

n Distance 

SHAP IG 0.367* 0.275* 0.192* 0.002 

SHAP GPT-index -0.031* 0.061* 0.041* 0.003 

SHAP GPT-token 0.004 0.037* 0.025* 0.003 

IG GPT-index 0.003 0.038* 0.026* 0.004 

IG GPT-token 0.032* 0.029* 0.020* 0.005 

GPT-index GPT-token 0.083* 0.096* 0.071* 0.001 

*Statistical significance (P<0.05). 

  



M.Sc. Thesis – F. Zhou; McMaster University – eHealth 

65 

 

Figure 3-2. Distribution of feature attributions 
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3 | 4.5 Feature importance attributions 

The 200 instances contained a total of 80,901 tokens. Of these, 6,369, 1,073, and 87 

unique tokens had an occurrence of ≥1, ≥10, and ≥100. The most important unique tokens 

with ≥10 occurrences can be found in Figure 3-3. Those with occurrences ≥1 and ≥100 

can be found in Appendix F.  

Among those with ≥10 and ≥100 occurrences, both SHAP and IG identified 

tokens that were associated with study designs, including “cohort”, “pilot”, “exploratory”, 

“randomly”, and “blind”, among others. For the two GPT explainers, there is no 

consistent pattern among tokens with ≥10 occurrences. Among those with ≥100 

occurrences, GPT-index was able to identify terms such as “controlled” and “trial” as 

being positively associated with higher probability, consistent with SHAP and IG. GPT-

token was able to identify key tokens such as “trial”, “randomized”, and “clinical”, but 

could not identify any negative tokens with ≥100 occurrences.  

Important tokens with ≥1 occurrence for SHAP and IG primarily consisted of 

terms related to study design, year, or topic. There is no consistent pattern between the 

two GPT explainers.  
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Figure 3-3. Important tokens with ≥10 occurrences 

 
A Negative tokens for SHAP; B Positive tokens for SHAP; C Negative tokens for IG; D 

Positive tokens for IG; E Negative tokens for GPT-index; F Positive tokens for GPT-

index; G Negative tokens for GPT-token; H Positive tokens for GPT-token.  
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3 | 5 Discussion 

To our knowledge, this is the first experiment that attempts to leverage decoder 

transformers to establish feature attributions for text classifiers by perturbation. While our 

results do not indicate GPT to be a potential substitute for conventional explanation 

methods in this context, this study nevertheless serves as a valuable exploratory analysis 

that could inspire future research in this area. 

 

3 | 5.1 Summary of findings 

While AOPC does not establish absolute faithfulness, it is a common method to compare 

the relative performance of explainers on the same model (Edin et al., 2024). Our results 

demonstrate that the SHAP partition explainer and IG were similar in their overall 

performance. SHAP was shown to better identify negative tokens, while IG was better for 

positive tokens. Our results also demonstrated that GPT was able to generate reasonable 

definitions of importance when provided the task of generating feature attributions as an 

explainer. In spite of this, neither GPT explainer was able to establish useful feature 

attributions. In particular, the negative AOPC for negative tokens indicate that GPT 

explainers mistakenly associated negative attributions to features that increased rigour 

probability. These findings were echoed by the correlation analyses, where attributions by 

SHAP and IG had a moderate correlation with each other, while the two GPT explainers 

had weak or no correlation with the others.  

While methods to examine the global attributions for transformer models are an 

area of active research (Covert et al., 2020), the accumulated local attributions across all 
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200 instances were examined. SHAP and IG indicate that the BioLinkBERT model 

generally aligned with the manual appraisal criteria (Methodological Criteria, n.d.), with 

terms such as “cohort”, “pilot”, “randomized”, and “blind”, among others, being 

identified as the most important. The tokens identified by GPT did not align with SHAP 

or IG and seemed to be nonsensical. For instance, both GPT-index and GPT-token 

identified “pilot” to be a positive contributor, contrary to manual appraisal and SHAP and 

IG explanations. The poor faithfulness of GPT for this could be limitations in pre-

training, where there is a lack of similar tasks the models could mimic from the training 

corpora (Gordon, n.d.; Yan et al., 2025). 

 

3 | 5.2 Prompting 

A challenge of this experiment was the development of prompts for GPT, considering the 

complex nature of generating feature attributions from perturbations. It is known that 

sophisticated prompting techniques can improve GPT’s performance in NLP (Schulhoff 

et al., 2024; Sivarajkumar et al., 2023, n.d.-f). In this study, numerous established 

techniques in prompt engineering were tested in an attempt to improve performance, 

including role prompting, decomposition by providing instructions step by step, as well as 

chain-of-thought with multiple iterations of perturbations and the redefinition of 

importance (Schulhoff et al., 2024). GPT was also limited in responding with long, 

quantitative sequences despite explicit instructions and structured output restrictions (Z. 

Yang et al., 2023; Yuan et al., 2023). This concern was mitigated by explicitly instructing 

GPT to respond with a certain number of lists as parameters to the mask_and_predict 
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function, utilizing structured outputs and function calling, and decomposing the 

calculation steps to 20 tokens per batch. Despite this, GPT was not able to generate 

faithful attributions. Furthermore, a potential advantage of LLMs would be the ability to 

recognize likely important tokens before any quantitative explanations have been 

generated considering their ability to understand and encode contextualized information 

from plain text (BehnamGhader et al., 2024). Therefore, the two prompting schemes, 

namely GPT-index and GPT-token, were tested. However, the results show that there was 

no meaningful difference regardless of the inclusion of input tokens in the initial user 

prompt.  

 

3 | 5.3 Resource requirements 

A challenge with traditional XAI methods is the significant computation resources 

required. As previously mentioned, the exhaustive nature of calculating SHAP values 

from all possible perturbations is infeasible, resulting in the rise in numerous methods to 

approximate SHAP values (shap.LinearExplainer — SHAP latest documentation, n.d.; J. 

Yang, 2021), including the partition explainer (shap.PartitionExplainer — SHAP latest 

documentation, n.d.). The computational requirement for IG is associated with integration 

steps. While more steps result in higher precision, 30 steps was feasible on GPUs with 

32GB of memory and more efficient than the SHAP partition explainer.  

Significant computational cost was required due to the iterative approach with the 

GPT explainers. Similar to SHAP, the BioLinkBERT model must be queried to obtain 

predictions for the perturbed instances. Additionally, each subsequent prompt in the chain 
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results in increased inference and response times and financial costs from OpenAI’s 

servers. Ultimately, both prompting schemes incurred a direct API cost of approximately 

USD$1.00 per instance. 

 

3 | 5.4 Deployment and research implications 

Explainability and interpretability in biomedical and clinical ML are key areas of research 

(Marcus & Teuwen, 2024; G. Yang et al., 2022). As a pioneer in evidence-based 

medicine and knowledge translation, HIRU aims to not only automate biomedical 

literature classification and appraisal (Lokker, Abdelkader, et al., 2024; Lokker et al., 

2023), but also to ensure that the process is transparent and reproducible to facilitate trust 

among clinicians who subscribe to PLUS and PLUS-associated services. Based on the 

results of this experiment, both SHAP and IG may be suitable for deployment alongside a 

top-performing model. More recently, studies (Dias et al., 2025; Marshall et al., 2017-7) 

and systematic review support systems (Chelsea, 2023; DistillerSR AI, 2023; Rayyan, 

n.d.) have begun to leverage supervised or active learning extensively to support 

knowledge translation and synthesis by relevance ranking or automatic classification. For 

these reasons, systems should attempt to integrate XAI frameworks alongside any black 

box models for better transparency.  

While the performance of GPT as an end-to-end approach for feature attributions 

was poor, this work nevertheless serves as a foundation for future research. Given the 

sensitivity of GPT-based explanations to prompt design, future studies could explore 

more sophisticated, domain-tailored prompting strategies and iterative prompt refinement 
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using techniques such as few-shot learning to better align GPT’s output with domain-

specific interpretability criteria (Schulhoff et al., 2024). Fine-tuning LLM explainers on 

biomedical corpora could also improve their understanding of specialized terminology 

and context (Luo et al., 2022). Hybrid explanation frameworks, such as leveraging LLMs 

to establish partition hierarchy (H. Chen et al., 2020; shap.PartitionExplainer — SHAP 

latest documentation, n.d.), or integrating model-internal signals, such as attention 

weights, with LLM-based explanation methods, may also be of interest (Feng et al., 2023; 

Ntrougkas et al., 2025; Waghela et al., 2024).  

  

3 | 5.5 Strength and limitations 

Our study has several strengths. First, a concern of leveraging LLMs in medical research 

is reproducibility, as evidence-based medicine is founded upon concepts of transparency, 

reliability, and the ability to validate findings through rigorous, repeatable methodologies 

(Davis et al., 2024; Jiawen Deng, Heybati, & Shammas-Toma, 2024; Mete & Özmen, 

2024; National Academies of Sciences, Engineering et al., 2019). This concern was 

addressed using a temperature of 0, making the outputs of the LLM deterministic and 

replicable. Second, the original AOPC metric was modified to separately consider 

negative and positive features. This allowed for the better capturing of the faithfulness of 

the explanations. Third, sophisticated prompting techniques for GPT were used. This 

indicates that the poor results from GPT are likely an inherent limitation of the pre-

training and the model architecture rather than the prompt. 
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Nevertheless, important limitations must be considered when interpreting our 

results. First, there has been no known method to establish ground truth in black-box 

models, and explaining text models with a high feature space remains a challenge (Edin et 

al., 2024; Melamed & Caruana, 2023). For this reason, it is important to note that our 

findings are context-, dataset-, and model-specific. Second, due to resource restraints, 

only a subset of the original dataset could be used. While sampling bias was minimized 

through stratified sampling, a larger dataset would further increase our confidence. Third, 

word-piece tokenization often separates words into fragments, potentially affecting how 

feature attributions are assigned (X. Song et al., 2020). The explanations may not 

correspond to human-interpretable linguistic units, especially for numerical texts. Lastly, 

GPT’s performance on a task is prompt-specific. While our prompts were sophisticated, it 

is unknown whether GPT would show promise with a different set of prompts and inputs.  
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3 | 6 Conclusion 

A comprehensive exploration into the application of GPT-4o as a perturbation-based 

explainer was conducted for a BiolinkBERT biomedical text classifier. Our investigation 

compared the performance of GPT-driven explanations with the SHAP partition explainer 

and IG. The results demonstrated that while SHAP and IG provided consistent and 

relatively faithful feature attributions, the GPT-based approaches yielded poor or 

counterintuitive explanations as measured by AOPC and an examination of the most 

important identified tokens. Several challenges were identified. Notably, the sensitivity of 

GPT outputs to prompt design and the computational overhead associated with iterative 

perturbation schemes may limit its current applicability in clinical and biomedical 

settings. Despite these limitations, our work is the first in this area and offers valuable 

insights and establishes a foundation for future research aimed at integrating LLMs into 

the explainability framework. Future investigations may wish to explore advanced prompt 

engineering strategies, domain-specific fine-tuning, and hybrid methods that combine 

internal model signals with LLM-based explanations, or foundational advances in AI to 

enhance interpretability without sacrificing performance.
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CHAPTER 4  

DISCUSSION
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4 | 1 Summary of Findings 

This work explored two ways GPT can improve the interpretability of medical literature 

appraisal. In Chapter 2, GPT-4o and GPT-o3-mini were used, alone or with 

BioLinkBERT, to provide free-text justifications and rationales for each of the nine steps 

of HIRU’s critical appraisal tool. The results showed that GPT-4o alone could achieve 

comparable performance to a fine-tuned BioLinkBERT model without additional training 

when the full text was provided. When the results of BioLinkBERT were provided, GPT-

4o saw an improvement in performance when only TIABs were provided. Otherwise, 

there were no notable improvements in providing BioLinkBERT results for GPT, as the 

performance was not better than using GPT or BioLinkBERT alone. Additionally, GPT-

o3-mini’s performance was worse than that of GPT-4o in every aspect. These results 

demonstrated GPT-4o’s practical potential to classify medical literature without 

significant resource and data constraints while providing justifications for human 

validation in a critical appraisal workflow.  

 In Chapter 3, GPT-4o was utilized as an explainer that defined importance, 

perturbed the inputs, and calculated feature attributions. Compared to the SHAP partition 

explainer and IG, GPT-4o fell short in the faithfulness of their explanations despite 

sophisticated prompting schemes and the fact that GPT-4o generated reasonable 

definitions for importance. Regardless of whether the original input tokens were provided 

in the prompt or not, GPT-4o tended to assign negative attributions to positive token 

features, resulting in nonsensical explanations. The faithfulness of positive attributions 

was also relatively low. Both SHAP and IG performed similarly as measured by a 
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modified version of the AOPC metric. Considering the positive and negative attributions 

separately, SHAP was better at properly assigning negative attribution to negative tokens, 

while the opposite was true for IG. Based on these results, unfortunately, GPT-4o is not 

currently suitable as a standalone perturbation explainer for this type of task. 

 

4 | 2 LLM Mechanisms 

It is important to explore potential reasons for the polarizing findings in Chapters 2 and 3. 

In our experiments, LLMs excelled at language-based classification but struggled with 

calculating numerical feature attributions. This divergence can be explained by the 

fundamental design of decoder language models. Specifically, while their transformer-

based architecture and extensive language training make them excel at reasoning over 

unstructured text, they lack the ability to understand numbers and perform complex 

arithmetic (Shakarian et al., 2023).  

 Recently, state-of-the-art LLMs have been scaled up drastically, with many 

consisting of hundreds of billions or even a trillion parameters (Naveed et al., 2023). The 

multihead self-attention mechanism helps LLMs understand contextual relationships, 

even over long ranges of text and mitigates issues surrounding vanishing or exploding 

gradients associated with recurrent NNs (Pascanu et al., 2012). In the context of 

biomedical literature, GPT can ingest entire articles and reason about their content 

without domain-specific pre-training and has been shown to match or even surpass 

human-level performance on complex language tasks (Brin et al., 2023; Divya Venkatesh 

et al., 2024; E. Guo et al., 2024; Spitale et al., 2023). Overall, the architectural and 
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training characteristics of LLMs make them particularly powerful for language-driven 

reasoning and classification tasks even without fine-tuning or retraining. 

 On the other hand, LLMs have struggled with tasks requiring mathematics and 

arithmetic (Yuan et al., 2023). This may partly be due to the lack of accurate numerical 

text feature representations due to byte-pair encoding (Bostrom & Durrett, 2020; F. Zhou, 

Parrish, et al., 2025). Furthermore, studies have suggested that LLMs heavily rely on 

similar tasks in the original training data. In other words, LLMs often attempt to match 

patterns when approaching numerical tasks, as opposed to reasoning through the solutions 

(Gordon, n.d.; Yan et al., 2025). Considering the novelty of Chapter 3, it is unlikely that 

GPT was trained on similar tasks. Due to the complex nature of the task and prompts, 

GPT may have also experienced performance degradation due to the long contexts (N. F. 

Liu et al., 2023; Ye et al., 2025). Compared to SHAP and IG, which are built on 

theoretically rigorous mathematical frameworks (Lundberg & Lee, 2017; Sundararajan et 

al., 2017), GPT was unable to replicate the same level of sophistication despite reasonable 

definitions of “importance”. Unlike IG or other gradient-based explainers, GPT did not 

have access to model parameters directly. GPT also has no guarantee of satisfying 

important axioms, including conservation or additivity, fundamental to XAI frameworks.  

 

4 | 3 Practice and Research Implications 

Considering the limitations of current ML classifiers, including computational cost, ease 

of use, and transparency, the practical implications of these findings are significant for 

biomedical research workflows. 
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4 | 3.1 LLM development and deployment 

Based on the results, sophisticated LLMs, such as GPT-4o, should be considered in 

knowledge synthesis and translation workflows, especially for organizations with limited 

access to data or computational resources. For zero- or few-shot classification tasks, 

LLMs are relatively inexpensive and efficient, offering potential mitigation towards 

increasing medical literature. Additionally, the ability for LLMs to provide step-by-step 

explanations for every decision is a key strength, allowing human researchers to easily 

verify its decisions. This is echoed by several other studies that utilized LLMs for 

systematic review screening (E. Guo et al., 2024; Oami et al., 2024) or critical appraisal 

(Hasan et al., 2024; Lai et al., 2024; Pitre et al., 2023). In the real world, LLMs can 

drastically reduce the human workload in identifying relevant or high-quality articles, 

thereby significantly reducing time and financial costs (Cao et al., 2025).  

 Currently, no known evidence translation or synthesis systems, such as Covidence 

and DistillerSR, utilize LLMs, despite their integration of ML to aid in relevance ranking 

or RCT identification (Aliani, 2024; Chelsea, 2023). These systems could benefit from 

the deployment of LLMs to further aid researchers in labour-intensive processes. For 

instance, LLMs can highlight relevant texts or make classification suggestions based on 

the inclusion and exclusion criteria and support their own decisions with plain text. 

Additionally, they may also be able to refine inclusion criteria and identify potential areas 

of ambiguity (Delgado-Chaves et al., 2025). These potential uses warrant exploration by 

literature translation systems. 
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One significant limitation of LLMs is the lack of flexibility in terms of threshold 

tuning. In text classification tasks, models may be tuned to prioritize inclusions, 

exclusions, or a balanced approach using different probability thresholds (F. Zhou, 

Parrish, et al., 2025). For instance, most workflows identifying relevant articles would 

prioritize the automated exclusion of irrelevant articles, and deployed models would have 

a high sensitivity to maximize the quality of negative classifications (Lokker et al., 2023; 

F. Zhou, Parrish, et al., 2025). The lack of threshold tuning for LLMs necessitates 

experimentation with different prompts to tailor LLMs’ classifications or to use them as a 

second reviewer (Hasan et al., 2024).  

Many studies examining LLMs primarily focus on the public-facing graphical 

user interface and fail to leverage developer tools, such as the API (Qingyu Chen et al., 

2023; E. Guo et al., 2024; Hasan et al., 2024; Lai et al., 2024; Oami et al., 2024; Pitre et 

al., 2023; Tang et al., 2023; Yanagita et al., 2023). For this reason, current research is 

limited in reproducibility due to the inherent stochasticity in LLMs. Since reproducibility 

is a fundamental concept of scientific research, a temperature of 0, a set seed, or 

averaging over multiple repetitions may be necessary to ensure that the results are 

replicable by others. In the current state, selective reporting of optimistic findings cannot 

be easily identified. In addition, future studies may wish to explore the effects of 

parameters, such as frequency and presence penalty, to assess how they affect 

classification performance.  

In general, reasoning models have demonstrated superior performance in 

complex, reasoning tasks but offer limited benefits otherwise (LiveBench, n.d.; G. Wang 
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et al., 2024). How they perform in medical literature classification has seldom been 

explored. This work demonstrates that they are slightly worse but remain relatively potent 

compared to general LLMs. However, this result may not be generalizable to another 

dataset or reasoning model. Several other factors may need to be considered during 

development. OpenAI suggests that reasoning models may only require high-level 

guidance as opposed to specific instructions (OpenAI platform, n.d.), and this may be a 

key advantage. On the other hand, there is no in-depth exploration of prompt techniques 

for reasoning LLMs, and the additional cost may be prohibitive (Precios, n.d.). 

Ultimately, the choice between general-purpose and reasoning LLM needs to be 

considered holistically. 

 

4 | 3.2 Explainability and confidence in research and practice 

Explanation faithfulness metrics are an area of active research, and there is no known 

established metric to measure the faithfulness of explanations. While the original AOPC 

was used in several previous studies (H. Chen et al., 2020; Nguyen, 2018; Samek et al., 

2016), it has important limitations, including the lack of consideration for negative 

features and the inability to generalize the results of one model and dataset to another. An 

important contribution of Chapter 3 is the modified version of AOPC that considers 

positive and negative features separately. Explanation studies involving tabular or text 

classification should consider this metric, as tokens may significantly affect the predicted 

probability in either direction, unlike image classification. For generalizability, a study 

recently introduced a normalized version of AOPC that allows for direct comparison 
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across different datasets and models (Edin et al., 2024). The normalized AOPC may be 

considered if generalizability is a primary consideration. 

Notwithstanding the importance of interpretability, previous research and evidence-

synthesis platforms seldom integrate explanations with ML models (Chaddad et al., 2023; 

Q. Sun et al., 2024). Considering the findings of Chapter 3, it is recommended that 

SHAP, IG, or both be deployed alongside ML models. Furthermore, externally validating 

models on a different or future dataset is paramount to establishing the generalizability. 

External validation is as important in clinical modelling studies as in medical text NLP 

applications to improve researchers’ confidence in model predictions and gauge 

performance degradation due to potential data drift over time (Heßler et al., 2020; Markey 

et al., 2024; Sahiner et al., 2023). While LLMs may not be able to generate faithful 

attributions, they should be used in combination with current XAI frameworks. For 

instance, generating plain-text explanations with feature attributions from XAI is a 

promising use, allowing non-technical stakeholders to better understand the explanations 

(Zeng, 2024; Zytek, Pido, et al., 2024; Zytek, Pidò, et al., 2024). Additionally, there are 

preferences for using interpretable models as opposed to black box models with XAI 

(Rudin, 2019). Therefore, the inherent interpretability of LLM outputs for text 

classification is a considerable strength. 

 

4 | 3.3 Implications for HIRU 

Currently, HIRU’s automation is rudimentary, with an overarching BioBERT classifier 

excluding potentially irrelevant articles. Articles that pass BioBERT proceed with human 
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evaluations as normal. With the development of HIRU’s Critical Appraisal Process 2.0, 

several implications can be drawn from this work.  

 First, it is important that specific models are used to automate each step of the 

process, as opposed to an overarching model applied to all article types, purposes, and 

rigour criteria. While sophisticated NNs may not necessarily suffer from performance 

degradation, the interpretation of a model with mixed tasks is obscure, as it would be 

difficult to trace the contribution of features or patterns to the prediction. The previous 

experiment that this work extended upon (F. Zhou, Parrish, et al., 2025) is a step in this 

direction, exploring the performance of models specific to the rigour classification of 

original treatment, primary prevention, and quality improvement studies. Furthermore, 

two additional experiments detailing the multiclass classification of study type (F. Zhou, 

Lokker, et al., 2025), as well as the rigour classification of reviews (F. Zhou, Afzal, et al., 

2025), are also complete. Reports of other models are under development and will be 

completed and submitted for publication in the near future.  

 In addition to encoder-only transformers, HIRU should also consider including 

LLMs in its workflow. Using LLMs to provide classifications alongside encoder 

transformer models can provide additional warranty in case of specific errors. For 

instance, during the initial exclusion phase, an article with disagreeing classifications may 

warrant attention from a human reviewer. Subsequently, articles that are passed and 

manually evaluated should be compared with both models and in case of disagreements, 

an arbiter can utilize highlighting based on SHAP and IG feature attributions and 

justifications provided by LLMs to efficiently resolve the conflict. 
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 Lastly, it is evident that drift in medical literature may degrade model 

performance over time (Abdelwahab et al., 2023). This concern is present in HIRU as 

well, as models consistently performed worse on Clinical Hedges and future datasets 

(Lokker et al., 2023; F. Zhou, Parrish, et al., 2025). Studies investigated using feature 

attribution XAI frameworks to track changes in feature importance over time (Duckworth 

et al., 2021; Haug et al., 2022; Y. Lee et al., 2023). Duckworth et al. specifically 

monitored SHAP value changes to assess the presence of drift in a model that predicted 

the risk of hospital admission for patients attending the emergency department 

(Duckworth et al., 2021). This approach may be implemented by HIRU as well to 

periodically retrain models with updated annotations to mitigate performance degradation 

over time.  

 

4 | 4 Future Research Directions 

4 | 4.1 Prompting 

Since the introduction of LLMs, prompting has been the centre of exploration. The work 

presented here leveraged several comprehensive surveys that detailed current best 

practices in prompting (W. Li et al., 2025; Sahoo et al., 2024; Schulhoff et al., 2024; 

Vatsal & Dubey, 2024). Nevertheless, future work should aim to explore how prompting 

affects LLM preferences for inclusion versus exclusion in text classification, allowing for 

additional flexibility tailored toward specific workflows. Additionally, another area of 

interest is how the effectiveness of prompts differs between general LLMs and reasoning 

models in this context, as previous work has suggested that prompt engineering 
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techniques developed for earlier LLMs may hinder performance on newer models (G. 

Wang et al., 2024). To further improve performance, few-shot prompting with 

classification examples may be promising, incorporating a few gold-standard examples 

for in-context learning (Ge et al., 2022). Additionally, injecting domain-specific 

knowledge into LLMs trained on general corpora may be worth exploring (Z. Song et al., 

2025). However, research in this area is limited, potentially due to a lack of data or 

standardized benchmarks (Ge et al., 2023). A promising area of research to further reduce 

manual burden is automated prompt generation. Unlike manual prompt engineering, 

which is time-consuming and often reliant on domain expertise and trial-and-error, 

automated generation seeks to programmatically generate effective prompts for 

downstream tasks. Several recent approaches, such as AutoPrompt (Shin et al., 2020), 

utilize gradient-guided search to discover token sequences that elicit desired model 

behaviour, enabling interpretable and label-efficient prompt creation. RLPrompt and 

PromptAgent (M. Deng et al., 2022; X. Wang et al., 2023) are other notable frameworks 

that leverage reinforcement learning or multi-agent planning to iteratively optimize 

prompts based on task feedback. 

 

4 | 4.2 Standardization for explanations 

Unlike model performance, there is no accepted standardized benchmark and metric for 

the explanation of faithfulness. Consequently, the comparison of XAI methods has 

largely been infeasible. However, Edin et al. made a meaningful contribution by 

introducing the normalized AOPC, allowing AOPC values to be compared across 
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separate datasets and models (Edin et al., 2024). Furthermore, two benchmarks were 

introduced relatively recently as well. The Evaluating Rationales And Simple English 

Reasoning (ERASER) benchmark is a framework used to evaluate NLP XAI using seven 

datasets, including but not limited to sentiment analysis, evidence inference, and 

question-answering (DeYoung et al., 2019). Each of these datasets was annotated by 

humans with decisions and rationales, and several baseline models were provided for 

explanation. Explanation performance was measured by agreement with human rationales 

using Intersection-Over-Union and F1 scores, as well as token rankings and AUPRC. 

Additionally, faithfulness was measured using comprehensiveness, sufficiency, and 

AOPC. The M4 benchmark focuses on evaluating XAI feature attribution faithfulness (X. 

Li et al., 2023). The benchmark encompasses image classification and sentiment analysis 

using ImageNet (Jia Deng et al., 2009) and MovieReview (Zaidan & Eisner, 2008), and 

several publicly available classifiers were recommended. Regarding metrics, four metrics 

are used when no ground truth is present: the most relevant first, the least relevant first, 

the area between the perturbation curves and Infidelity. The PScore and SynScore were 

proposed for cases with pseudo ground truth and synthetic ground truth, respectively.  

 Despite this, there is no known guideline for the development and evaluation of 

explainers. This is partially due to the fact that it is unknown how the task, dataset, model 

performance or model architecture would affect the performance of an explainer, and 

whether a well-performing explainer on standardized benchmarks would generalize to 

bespoke environments. There is also no benchmark focused on medical literature 
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classification. As transparency in AI becomes an increasing concern, future research on 

these gaps may be warranted. 

 

4 | 4.3 GPT for feature attributions 

The task-agnostic nature of this work enabled it to examine GPT’s capabilities in 

generating feature attributions, an area that had not been previously explored. While GPT 

did not obtain satisfactory performance, several interesting areas for continued research 

may be warranted. First, since the task is iterative by nature, reasoning LLMs, such as 

GPT-o3, warrant further exploration as they are designed with automatic chain-of-thought 

and are particularly suitable for complex, numerical tasks (Learning to reason with LLMs, 

n.d.). While this work leveraged long chains of prompts, this may not necessarily be 

beneficial to model performance (Kusano et al., 2024). The reasoning steps built into 

reasoning LLMs may be better suited as the model can decide and adjust the length and 

sophistication for itself. Past studies have found promising results using LLMs to 

translate feature attributions from traditional XAI frameworks to plain-text rationales 

(Zeng, 2024; Zytek, Pido, et al., 2024; Zytek, Pidò, et al., 2024). Considering this, LLMs 

may be used in combination with XAI tools to improve faithfulness. For instance, the 

contextualized understanding of input tokens may allow LLMs to generate hierarchical 

partitions more effectively than default methods relying on spatial distance. This could 

lead to more semantically meaningful input segmentations, particularly for complex 

documents where spatial locality does not necessarily reflect conceptual relationships. 

Future work could explore hybrid frameworks where LLMs are leveraged not to generate 



M.Sc. Thesis – F. Zhou; McMaster University – eHealth 

88 

 

final attributions directly, but to assist with preprocessing steps in perturbation-based XAI 

methods, such as feature grouping, salience filtering, or baseline selection (Salih et al., 

2024). 

 

4 | 5 Strengths and Limitations 

This work has several unique strengths compared to recent literature. First, the 

stochasticity of LLMs was considered and addressed by setting temperature or seed equal 

to 0. This ensures that the model outputs are replicable with the same prompt and 

configurations, allowing other researchers to validate and build on the findings reliably. 

Second, the dataset used by both experiments was sourced from gold-standard databases 

and randomly stratified to mitigate sampling bias. This ensured that the cost associated 

with the experiments was practical while ensuring that the results could be trusted. Third, 

valid comparisons were used in both experiments to provide a clear context of GPT 

performance. For classification, a strong BioLinkBERT model was used as a baseline, 

and for explanations, both the SHAP partition explainer and IG are widely accepted (M. 

Mersha et al., 2024). Lastly, sophisticated prompting techniques were used in an attempt 

to improve the performance of GPT. It is evident through past research that an LLM’s 

performance can be heavily influenced by the content and the structure of the prompts (J. 

He et al., 2024; J. Kim et al., 2023). This research utilized several techniques, including 

role prompting, chain-of-thought, and decomposition, and leveraged relevant developer 

tools such as structured outputs and function calling to ensure performance and 

consistency.  
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 There are also several limitations that must be considered. First, it is important to 

note that the results of both experiments are limited to HIRU’s datasets, criteria, and 

models, and may not necessarily generalize to other contexts, such as observational 

studies or clinical notes. For feature attributions, the proprietary nature of AOPC 

precludes any meaningful comparison to other contexts. Future studies may wish to 

extend this research to other datasets and tools to better assess the potential of LLMs for 

these tasks. The development of standardized benchmarks in this field may also be 

warranted, as previously discussed. Second, while the prompts were sophisticated, it is 

unknown how techniques such as few-shot prompting affect performance. Furthermore, 

due to cost and time constraints, the results are limited to OpenAI’s GPT models with 

specific configurations and may not translate to other configurations or LLMs, such as 

LLaMA and Claude. LLM performance may vary considerably based on configurations 

and prompting strategies (Vatsal & Dubey, 2024). Therefore, studies focusing on other 

techniques and models may be of interest. Third, the computational and financial costs 

were barriers in this work, and consequently, random samples of the original datasets 

were used. The training of encoder-only transformers and the calculation of feature 

attributions and AOPC require access to powerful central and graphical processing units. 

The access to GPT, especially for Chapter 3, was considerably costly at approximately $1 

per instance. This raises concerns relating to the scalability and accessibility of these 

solutions. Nevertheless, these limitations may become less apparent as more efficient 

LLMs are developed. 
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APPENDIX A HIRU CRITERIA AND DATA 

AA1. Rigour Criteria For Original Articles on Treatment, Primary Prevention, and 

Quality Improvement 

Criterion Description 

1 In English. 

2 About humans. 

3 About topics that are important to the clinical practice of medicine, 

nursing, rehabilitation, and other health professions, other than 

descriptive studies of prevalence. 

4 Analysis is consistent with the study question. 

5 Random allocation of participants to study arms. 

6 ≥10 patients/participants per group completing the primary outcome 

assessment. 

7 Primary outcome(s) assessed in ≥80% of those randomized at the 

defined follow-up point. 

8 At least one clinically important outcome measure. 

9 If reporting subgroup analysis, it is preplanned, with groups analyzed as 

they were randomized and interaction between two or more subgroups 

reported. 

Final All 9 criteria met. 
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AA2. Dataset Characteristics 

Dataset Name Publication 

Year of the 

Articles  

No. of Articles Rigorous 

Articles (%) 

Non-Rigorous 

Articles (%) 

PLUS-2003-

2023 

2003 to 2023  42,575 25,561 (60.0) 17,014 (40.0) 

2003 to 2023  5,322 3,203 (60.2) 2,119 (39.8) 

2003 to 2023 5,322 3,164 (59.5) 2,158 (40.5) 

PLUS-2024 2024 1,011 575 (56.9) 436 (43.1) 

Clinical 

Hedges 

2000 6,572 1,587 (24.1) 4,985 (75.9) 
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APPENDIX B GPT CLASSIFIER PROMPT 

AB1. Prompt Dictionary 

Key Content 

ROLE You are an expert clinical researcher. 

CRITERIA Manual appraisal criteria: 

All of these criteria must be met to be rated as being 

rigorous. The article will be rated as not rigorous if any 

criteria are not met.  

The criteria are  

1) in English,  

2) about humans,  

3) about topics that are important to the clinical practice 

of medicine, nursing, rehabilitation, and other health 

professions, other than descriptive studies of prevalence,  

4) analysis of each article consistent with the study 

question,  

5) random allocation of participants to comparison 

groups,  

6) 10 or more patients per group completing primary 

outcome assessment,  

7) primary outcome(s) assessed in 80% or more of those 

randomized at the defined follow-up point,  

8) primary outcome is clinically important or ≥1 

secondary outcome is clinically important, and  

9) subgroup analyses must be preplanned, with groups 

analyzed as they were randomized; analyses must test for 

interaction between 2 or more subgroups. 

TASK_TIAB You are assessing whether a randomized controlled trial 

(RCT) meets the criteria for being considered rigorous. 

You will be provided the abstract of the RCT. 

Based on this information and the provided manual 

appraisal criteria, please do the following: 

- Reason through whether each criterion is met, unmet, or 

cannot be determined based on available information. 

- Reason through whether this RCT, based on the abstract, 

should be considered rigorous (True) or not (False). 

TASK_TIAB_BERT You are trying to explain the rigour classification 

decisions made by encoder-only transformers on a 

randomized controlled trial (RCT).  

You will be provided the input text into the model, and 

the model's predicted probability of a positive (rigorous) 
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classification, and the rigour classification based on the 

default threshold of ≥0.5. 

Based on this information and the provided manual 

appraisal criteria, please do the following: 

- Reason through whether each criterion is met, unmet, or 

cannot be determined based on available information. 

- Reason through whether you agree with the model's 

prediction. 

TASK_FT You are assessing whether a randomized controlled trial 

(RCT) meets the criteria for being considered rigorous. 

You will be provided the full text of the RCT. 

Based on this information and the provided manual 

appraisal criteria, please do the following: 

- Reason through whether each criterion is met (True) or 

unmet (False) based on available information. 

- Reason through whether this RCT, based on the full 

text, should be considered rigorous (True) or not (False). 

INSTANCE_TIAB_BERT Input text: <RCT_title_abstract>. 

 

Predicted positive class (rigorous) probability: 

<BioLinkBERT_probability>. 

Classification: <Rigorous/Not rigorous>. 

TASK_FT_BERT You are trying to explain the rigour classification 

decisions made by encoder-only transformers on a 

randomized controlled trial (RCT). 

You will be provided the input text into the model, the 

full text of the article, the model's predicted probability of 

a positive (rigorous) classification, and the rigour 

classification based on the default threshold of ≥0.5. 

Based on this information and the provided manual 

appraisal criteria, please do the following: 

- Reason through whether each criterion is met (True) or 

unmet (False) based on available information. 

- Reason through whether you agree with the model's 

prediction. 

INSTANCE_TIAB RCT Abstract: <RCT_abstract>. 

INSTANCE_FT RCT full text: <RCT_full_text>. 

INSTANCE_FT_BERT Input text: <RCT_title_abstract>. 

RCT full text: <RCT_full_text>. 

Predicted positive class (rigorous) probability: 

<BioLinkBERT_probability>. 

Classification: <Rigorous/Not rigorous>. 
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AB2. Object Dictionary 

Object Key Content and Type 

Assessment Enum (“met”, “unmet”, 

“cannot_be_determined”) 

RIGOUR_ASSESSMENT_TIAB criterion_1_justification: str 

criterion_1_assessment: Assessment 

criterion_2_justification: str 

criterion_2_assessment: Assessment 

criterion_3_justification: str 

criterion_3_assessment: Assessment 

criterion_4_justification: str 

criterion_4_assessment: Assessment 

criterion_5_justification: str 

criterion_5_assessment: Assessment 

criterion_6_justification: str 

criterion_6_assessment: Assessment 

criterion_7_justification: str 

criterion_7_assessment: Assessment 

criterion_8_justification: str 

criterion_8_assessment: Assessment 

criterion_9_justification: str 

criterion_9_assessment: Assessment 

final_justification: str 

final_assessment: bool 

PREDICTION_EXPLAINATION_TIAB criterion_1_justification: str 

criterion_1_assessment: Assessment 

criterion_2_justification: str 

criterion_2_assessment: Assessment 

criterion_3_justification: str 

criterion_3_assessment: Assessment 

criterion_4_justification: str 

criterion_4_assessment: Assessment 

criterion_5_justification: str 

criterion_5_assessment: Assessment 

criterion_6_justification: str 

criterion_6_assessment: Assessment 

criterion_7_justification: str 

criterion_7_assessment: Assessment 

criterion_8_justification: str 

criterion_8_assessment: Assessment 

criterion_9_justification: str 

criterion_9_assessment: Assessment 

agreement_justification: str 
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agreement: bool 

RIGOUR_ASSESSMENT_FT criterion_1_justification: str 

criterion_1_assessment: bool 

criterion_2_justification: str 

criterion_2_assessment: bool 

criterion_3_justification: str 

criterion_3_assessment: bool 

criterion_4_justification: str 

criterion_4_assessment: bool 

criterion_5_justification: str 

criterion_5_assessment: bool 

criterion_6_justification: str 

criterion_6_assessment: bool 

criterion_7_justification: str 

criterion_7_assessment: bool 

criterion_8_justification: str 

criterion_8_assessment: bool 

criterion_9_justification: str 

criterion_9_assessment: bool 

final_justification: str 

final_assessment: bool 

PREDICTION_EXPLAINATION_FT criterion_1_justification: str 

criterion_1_assessment: bool 

criterion_2_justification: str 

criterion_2_assessment: bool 

criterion_3_justification: str 

criterion_3_assessment: bool 

criterion_4_justification: str 

criterion_4_assessment: bool 

criterion_5_justification: str 

criterion_5_assessment: bool 

criterion_6_justification: str 

criterion_6_assessment: bool 

criterion_7_justification: str 

criterion_7_assessment: bool 

criterion_8_justification: str 

criterion_8_assessment: bool 

criterion_9_justification: str 

criterion_9_assessment: bool 

agreement_justification: str 

agreement: bool 
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AB3. Prompt Chains 

Sequence Role Key 

Classification with TIAB 

1 developer/user† {ROLE} {TASK_TIAB} {CRITERIA} 

2 user {INSTANCE_TIAB} 

3 assistant  {RIGOUR_ASSESSMENT_TIAB} 

Explanation with TIAB 

1 developer/user† {ROLE} {TASK_TIAB_BERT} {CRITERIA} 

2 user {INSTANCE_TIAB_BERT} 

3 assistant  {PREDICTION_EXPLAINATION_TIAB} 

Classification with Full Text 

1 developer/user† {ROLE} {TASK_FT} {CRITERIA} 

2 user {INSTANCE_FT} 

3 assistant  {RIGOUR_ASSESSMENT_FT} 

Explanation with Full Text 

1 developer/user† {ROLE} {TASK_FT_BERT} {CRITERIA} 

2 user {INSTANCE_FT_BERT} 

3 assistant  {PREDICTION_EXPLAINATION_FT} 

 †A developer prompt is used for GPT-4o. However, GPT-o3-mini does not support 

developer prompts, and a user prompt is used instead. 
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APPENDIX C SOFTWARE ENVIRONMENTS 

Library Local Version Cloud Version 

#paycheck 1.0.2 N/A 

#torch 2.2.1 N/A 

Cython 0.29.36 0.29.36+computecanada 

GitPython 3.1.40 3.1.40+computecanada 

Jinja2 3.1.2 3.1.2+computecanada 

MarkupSafe 2.1.3 2.1.3+computecanada 

Pillow 10.0.0 10.0.0+computecanada 

PyNaCl 1.5.0 1.5.0+computecanada 

PyYAML 6.0.1 6.0.1+computecanada 

Pygments 2.16.1 2.16.1+computecanada 

Send2Trash 1.8.2 1.8.2+computecanada 

accelerate 0.27.2 0.27.2+computecanada 

aiohttp 3.9.1 3.9.1+computecanada 

aiosignal 1.3.1 1.3.1+computecanada 

anyio 3.7.1 3.7.1+computecanada 

appdirs 1.4.4 1.4.4+computecanada 

arff 0.9 0.9+computecanada 

argon2_cffi 23.1.0 23.1.0+computecanada 

argon2_cffi_bindings 21.2.0 21.2.0+computecanada 

asttokens 2.2.1 2.2.1+computecanada 

async_generator 1.1 1.10+computecanada 

attrs 23.1.0 23.1.0+computecanada 

backcall 0.2.0 0.2.0+computecanada 

backports-abc 0.5 0.5+computecanada 

backports.shutil_get_termin

al_size 

1.0.0 1.0.0+computecanada 

bcrypt 4.0.1 4.0.1+computecanada 

beautifulsoup4 4.12.2 4.12.2+computecanada 

bitarray 2.8.1 2.8.1+computecanada 

bitstring 4.1.1 4.1.1+computecanada 

bleach 6.0.0 6.0.0+computecanada 

captum N/A 0.3.0+computecanada 

certifi 2023.7.22 2023.7.22+computecanada 

cffi 1.15.1 1.15.1+computecanada 

chardet 5.2.0 5.2.0+computecanada 

charset_normalizer 3.2.0 3.2.0+computecanada 

click 8.1.7 8.1.7+computecanada 

comm 0.1.4 0.1.4+computecanada 

contourpy 1.1.0 1.1.0+computecanada 

cryptography 39.0.1 39.0.1+computecanada 
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cycler 0.11.0 0.11.0+computecanada 

datasets 2.18.0 2.18.0+computecanada 

deap 1.4.1 1.4.1+computecanada 

debugpy 1.6.7.post1 1.6.7.post1+computecanada 

decorator 5.1.1 5.1.1+computecanada 

defusedxml 0.7.1 0.7.1+computecanada 

dill 0.3.8 0.3.8+computecanada 

dnspython 2.4.2 2.4.2+computecanada 

docker-pycreds 0.4.0 0.4.0+computecanada 

ecdsa 0.18.0 0.18.0+computecanada 

entrypoints 0.4 0.4+computecanada 

evaluate 0.4.1 0.4.2+computecanada 

executing 1.2.0 1.2.0+computecanada 

fastjsonschema 2.18.0 2.18.0+computecanada 

filelock 3.13.1 3.13.1+computecanada 

fonttools 4.42.1 4.42.1+computecanada 

frozenlist 1.4.1 1.4.1+computecanada 

fsspec 2024.2.0 2024.2.0+computecanada 

funcsigs 1.0.2 1.0.2+computecanada 

gitdb 4.0.11 4.0.11+computecanada 

huggingface_hub 0.21.4 0.21.4+computecanada 

idna 3.4 3.4+computecanada 

importlib_metadata 6.8.0 6.8.0+computecanada 

importlib_resources 6.0.1 6.0.1+computecanada 

ipykernel 6.25.1 6.25.1+computecanada 

ipython 8.15.0 8.15.0+computecanada 

ipython_genutils 0.2.0 0.2.0+computecanada 

jedi 0.19.0 0.19.0+computecanada 

joblib 1.3.2 1.3.2+computecanada 

jsonschema 4.19.0 4.19.0+computecanada 

jsonschema_specifications 2023.7.1 2023.7.1+computecanada 

jupyter_client 8.3.1 8.3.1+computecanada 

jupyter_core 5.3.1 5.3.1+computecanada 

kiwisolver 1.4.5 1.4.5+computecanada 

lockfile 0.12.2 0.12.2+computecanada 

matplotlib 3.7.2 3.7.2+computecanada 

matplotlib_inline 0.1.6 0.1.6+computecanada 

mistune 3.0.1 3.0.1+computecanada 

mock 5.1.0 5.1.0+computecanada 

mpmath 1.3.0 1.3.0+computecanada 

multidict 6.0.5 6.0.5+computecanada 

multiprocess 0.70.16 0.70.16+computecanada 
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nest_asyncio 1.5.7 1.5.7+computecanada 

netaddr 0.8.0 0.8.0+computecanada 

netifaces 0.11.0 0.11.0+computecanada 

networkx 3.2.1 3.2.1+computecanada 

nose 1.3.7 1.3.7+computecanada 

numpy 1.25.2 1.25.2+computecanada 

packaging 23.1 23.1+computecanada 

pandas 2.1.0 2.1.0+computecanada 

pandocfilters 1.5.0 1.5.0+computecanada 

paramiko 3.3.1 3.3.1+computecanada 

parso 0.8.3 0.8.3+computecanada 

path 16.7.1 16.7.1+computecanada 

path.py 12.5.0 12.5.0+computecanada 

pathlib2 2.3.7.post1 2.3.7.post1+computecanada 

paycheck N/A 1.0.2+computecanada 

pbr 5.11.1 5.11.1+computecanada 

pexpect 4.8.0 4.8.0+computecanada 

pickleshare 0.7.5 0.7.5+computecanada 

pkgutil_resolve_name 1.3.10 1.3.10+computecanada 

platformdirs 3.9.1 3.9.1+computecanada 

prometheus_client 0.17.1 0.17.1+computecanada 

prompt_toolkit 3.0.39 3.0.39+computecanada 

protobuf 4.25.2 4.25.2+computecanada 

psutil 5.9.5 5.9.5+computecanada 

ptyprocess 0.7.0 0.7.0+computecanada 

pure_eval 0.2.2 0.2.2+computecanada 

pyarrow 15.0.1 15.0.1 

pyarrow_hotfix 0.6 0.6+computecanada 

pycparser 2.21 2.21+computecanada 

pyparsing 3.0.9 3.0.9+computecanada 

pyrsistent 0.19.3 0.19.3+computecanada 

python-dateutil 2.8.2 2.8.2+computecanada 

python_json_logger 2.0.7 2.0.7+computecanada 

pytz 2023.3 2023.3+computecanada 

pyzmq 25.1.1 25.1.1+computecanada 

referencing 0.30.2 0.30.2+computecanada 

regex 2023.8.8 2023.8.8+computecanada 

requests 2.31.0 2.31.0+computecanada 

responses 0.18.0 0.18.0+computecanada 

rfc3339_validator 0.1.4 0.1.4+computecanada 

rfc3986_validator 0.1.1 0.1.1+computecanada 

rpds_py 0.10.0 0.10.0+computecanada 
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safetensors 0.4.1 0.4.1+computecanada 

scikit_learn 1.3.1 1.3.1+computecanada 

scipy 1.11.2 1.11.2+computecanada 

sentry_sdk 1.38.0 1.38.0+computecanada 

setproctitle 1.3.2 1.3.2+computecanada 

shap N/A 0.43.0+computecanada 

simplegeneric 0.8.1 0.8.1+computecanada 

singledispatch 4.1.0 4.1.0+computecanada 

six 1.16.0 1.16.0+computecanada 

sklearn 0 0.0+computecanada 

smmap 5.0.1 5.0.1+computecanada 

sniffio 1.3.0 1.3.0+computecanada 

soupsieve 2.4.1 2.4.1+computecanada 

stack_data 0.6.2 0.6.2+computecanada 

sympy 1.12 1.12+computecanada 

terminado 0.17.1 0.17.1+computecanada 

testpath 0.6.0 0.6.0+computecanada 

threadpoolctl 3.3.0 3.3.0+computecanada 

tinycss2 1.2.1 1.2.1+computecanada 

tokenizers 0.15.0 0.15.0+computecanada 

torch N/A 2.2.1+computecanada 

tornado 6.3.3 6.3.3+computecanada 

tqdm 4.66.2 4.66.2+computecanada 

traitlets 5.9.0 5.9.0+computecanada 

transformers 4.38.1 4.38.1+computecanada 

typing_extensions 4.10.0 4.10.0+computecanada 

tzdata 2023.3 2023.3+computecanada 

urllib3 2.0.4 2.0.4+computecanada 

wandb 0.16.0 0.16.0+computecanada 

wcwidth 0.2.6 0.2.6+computecanada 

webencodings 0.5.1 0.5.1+computecanada 

websocket_client 1.6.2 1.6.2+computecanada 

xxhash 3.2.0 3.2.0+computecanada 

yarl 1.9.3 1.9.3+computecanada 

zipp 3.16.2 3.16.2+computecanada 
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APPENDIX D GPT CLASSIFIER EXAMPLE OUTPUTS 

AD1. GPT-4o - Classifier with TIAB 

PMID Label Predicted 

Rigorous 

Probability† 

Criterion Justification Assessment 

19489805 Non-

rigorous 

0.608 1 The abstract is written in English. met 

2 The study involves human participants 

(mothers and infants). 

met 

3 The study addresses an important clinical topic 

related to infant sleep position and SIDS 

prevention. 

met 

4 The analysis appears consistent with the study 

question, as it evaluates the effect of the 

intervention on the outcome. 

met 

5 The study mentions random allocation of 

participants to intervention and control groups. 

met 

6 The study includes 228 mother-infant pairs, 

which suggests more than 10 participants per 

group completed the primary outcome 

assessment. 

met 

7 The abstract does not provide sufficient 

information to determine if 80% or more of 

those randomized were assessed for the 

primary outcome. 

cannot_be_determined 

8 The primary outcome (infant sleep position) is 

clinically important for SIDS prevention. 

met 

9 The abstract does not mention subgroup 

analyses or their preplanning. 

cannot_be_determined 

Final While most criteria are met, some cannot be 

determined from the abstract alone, such as the 

FALSE 
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percentage of participants assessed and details 

on subgroup analyses. 

21183586 Non-

rigorous 

0.288 1 The abstract is written in English. met 

2 The study involves human participants with 

chronic kidney disease. 

met 

3 The study addresses dietary protein sources and 

phosphorus homeostasis, which is relevant to 

clinical practice in managing chronic kidney 

disease. 

met 

4 The analysis appears consistent with the study 

question, focusing on the effects of dietary 

protein sources on phosphorus homeostasis. 

met 

5 The abstract does not specify random allocation 

of participants to the dietary interventions. 

cannot_be_determined 

6 The study included only nine participants, 

which is fewer than 10 per group. 

unmet 

7 The abstract does not provide information on 

the percentage of participants completing the 

primary outcome assessment. 

cannot_be_determined 

8 The primary outcome, phosphorus homeostasis, 

is clinically important for patients with chronic 

kidney disease. 

met 

9 The abstract does not mention subgroup 

analyses. 

cannot_be_determined 

Final The study does not meet the criterion of having 

at least 10 participants per group, which is a 

requirement for rigor. 

FALSE 

16916871 1 0.417 1 The abstract is written in English. met 

2 The study involves human participants 

attending primary care clinics. 

met 
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3 The study addresses the clinical issue of 

improving attendance in primary care, which is 

relevant to health professions. 

met 

4 The analysis appears consistent with the study 

question, as it evaluates attendance rates and 

costs. 

met 

5 The study mentions random allocation to three 

groups, indicating randomization. 

met 

6 The abstract states that 993 participants were 

eligible for analysis, which suggests more than 

10 participants per group. 

met 

7 The abstract does not specify the percentage of 

participants completing the primary outcome 

assessment, so this cannot be determined. 

cannot_be_determined 

8 The primary outcome, attendance rate, is 

clinically important for primary care. 

met 

9 The abstract does not mention subgroup 

analyses, so this cannot be determined. 

cannot_be_determined 

Final While most criteria are met, the abstract does 

not provide sufficient information to determine 

if criteria 7 and 9 are met. Therefore, the study 

cannot be confirmed as rigorous based on the 

abstract alone. 

FALSE 

36395875 1 0.943 1 The abstract is written in English. met 

2 The study is about human patients undergoing 

OPCAB. 

met 

3 The study addresses a clinical question relevant 

to medical practice, specifically the 

management of clopidogrel resistance after 

OPCAB. 

met 
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4 The analysis appears consistent with the study 

question, as it evaluates outcomes like MACEs 

and graft patency. 

met 

5 The abstract mentions random allocation of 

participants to the two groups using a 1:1 ratio 

block table. 

met 

6 Each group had 102 patients completing the 

primary outcome assessment. 

met 

7 The abstract does not specify the percentage of 

randomized patients assessed for the primary 

outcome, but it implies that all randomized 

patients were included in the analysis. 

cannot_be_determined 

8 The primary outcomes, such as MACEs and 

graft patency, are clinically important. 

met 

9 The abstract does not mention any subgroup 

analyses. 

cannot_be_determined 

Final While most criteria are met, the information 

provided does not allow determination of 

whether all randomized patients were assessed 

for the primary outcome or if subgroup 

analyses were preplanned and appropriately 

conducted. 

FALSE 

† Predicted by the BioLinkBERT model.  
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AD2. GPT-o3-mini - Classifier with TIAB 

PMID Label Predicted 

Rigorous 

Probability† 

Criterion Justification Assessment 

19489805 Non-

rigorous 

0.608 1 The abstract is written in English. met 

2 The study involves human participants 

(motherâ€“infant pairs). 

met 

3 The topic (infant sleep position related to SIDS 

prevention) is clinically important in public 

health and pediatric care, and it is an 

interventional study, not merely a descriptive 

prevalence study. 

met 

4 The analysis (including logistic regression and 

bivariate analyses) is consistent with evaluating 

the effect of the educational intervention, 

aligning with the study question. 

met 

5 The study is described as a randomized clinical 

trial, implying that participants were randomly 

allocated to the intervention or control group. 

met 

6 With a total sample of 228 motherâ€“infant 

pairs, each group likely included well over 10 

participants completing the outcome assessment. 

met 

7 The abstract states that the primary outcome was 

assessed during a home visit at 3 months, but it 

does not provide information on the follow-up 

rate (i.e. whether 80% or more of those 

randomized completed the assessment). 

cannot_be_determined 

8 The primary outcome (infant sleep position) is 

clinically relevant as it relates to SIDS 

met 
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prevention, which is an important clinical 

outcome. 

9 The abstract does not report any subgroup 

analyses or discuss whether any such analyses 

were preplanned. Without this information, it is 

not possible to determine if this criterion is met. 

cannot_be_determined 

Final While the study appears to meet most of the 

criteria, the abstract does not provide sufficient 

information regarding the proportion of 

participants completing the primary outcome 

follow-up (criterion 7) and details concerning 

preplanned subgroup analyses (criterion 9). As 

per the appraisal manual, if any criterion is not 

clearly met, the overall study is rated as not 

rigorous. 

FALSE 

21183586 Non-

rigorous 

0.288 1 The abstract is written in English. met 

2 The study involves patients with chronic kidney 

disease, so it is clearly about humans. 

met 

3 The topic on dietary protein sources and 

phosphorus homeostasis is clinically relevant for 

managing CKD, which is important in clinical 

practice. 

met 

4 The analysis in the abstract directly addresses the 

research question by comparing the effects of 

vegetarian versus meat diets on phosphorus 

homeostasis related outcomes. 

met 

5 Although the study is described as a crossover 

trial, the abstract does not explicitly state that the 

order of interventions was randomized, making it 

unclear if random allocation was properly 

implemented. 

cannot_be_determined 
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6 The trial enrolled nine patients in total. In a 

crossover design, each patient serves as his/her 

own control; however, the criteria require 10 or 

more patients per group completing the primary 

outcome assessment. This count is not met. 

unmet 

7 The studyâ€™s design included an inpatient 

phase with close monitoring of outcomes, and 

there is no indication of missing data, suggesting 

that primary outcomes were likely assessed in 

80% or more of participants. 

met 

8 The primary outcomes (e.g., serum phosphorus, 

FGF23 levels) are clinically important in the 

management of CKD and have direct 

implications for patient care. 

met 

9 No subgroup analyses were reported. In the 

absence of subgroup analyses, this criterion is 

considered met by default. 

met 

Final While most criteria are met, the study fails to 

meet the criterion regarding sample size 

(criterion 6), and the description of random 

allocation (criterion 5) is ambiguous. Given that 

all criteria need to be fulfilled for a study to be 

considered rigorous, the failure to meet the 

sample size requirement is sufficient to rate this 

study as not rigorous. 

FALSE 

16916871 1 0.417 1 The abstract is written in English. met 

2 The study involves primary care patients (or 

their caregivers) and is clearly about human 

subjects. 

met 

3 The topic (improving attendance in primary 

care) is of clear importance in the clinical 

met 
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practice of medicine and related health fields, 

rather than a mere descriptive prevalence study. 

4 The analysis directly addresses the study 

question by comparing attendance rates between 

intervention and control groups using 

appropriate outcome measures. 

met 

5 The study is described as a multicentre 

threeâ€•arm randomized controlled trial, 

indicating random allocation of participants to 

comparison groups. 

met 

6 With a total of 993 participants reported, it is 

highly likely that each group includes well over 

10 patients completing the primary outcome 

assessment. 

met 

7 The abstract reports the number of participants 

eligible for analysis but does not provide 

information on how many were randomized 

originally or the exact followâ€•up rate, so it 

cannot be determined if 80% or more of those 

randomized had their primary outcome assessed. 

cannot_be_determined 

8 The primary outcome, attendance rate, has 

clinical relevance in primary care, and the study 

also includes a cost analysis which supports the 

clinical importance of the findings. 

met 

9 The abstract does not mention any subgroup 

analyses or whether any planned subgroup 

analyses were performed. Thus, it cannot be 

determined whether subgroup analyses were 

preplanned and analyzed appropriately. 

cannot_be_determined 

Final While most of the key criteria are clearly met, 

the abstract does not provide sufficient 

FALSE 
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information to determine whether the primary 

outcome followâ€•up rate meets the 80% 

threshold (criterion 7) and whether any subgroup 

analyses, if performed, were preplanned and 

correctly analyzed (criterion 9). Since all criteria 

must be met for the study to be considered 

rigorous, these uncertainties lead to a final 

assessment of not rigorous. 

36395875 1 0.943 1 The abstract is written in English. met 

2 The study involves human patients undergoing 

offâ€•pump coronary artery bypass surgery. 

met 

3 The study investigates clinically relevant 

outcomes (graft patency and major adverse 

cardiovascular events) important to practice. 

met 

4 The analysis directly addresses the study 

question by comparing ticagrelor and clopidogrel 

regarding clinically important outcomes using 

intentâ€•toâ€•treat analysis. 

met 

5 Participants were randomly allocated to 

treatment groups using a block randomization 

table. 

met 

6 Each group had 102 patients, which is well 

above the minimum of 10 per group for the 

primary outcome assessment. 

met 

7 The abstract does not provide information on the 

follow-up rate or the percentage of patients who 

completed the primary outcome assessment, 

making it unclear if the 80% criterion was met. 

cannot_be_determined 

8 The primary outcome (graft patency and the 

composite MACEs) is clinically important, thus 

meeting this criterion. 

met 
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9 There is no information provided regarding 

whether subgroup analyses were preplanned or if 

interactions were formally tested. Without this 

detail, it is unclear if this criterion was satisfied. 

cannot_be_determined 

Final Although the abstract meets many of the 

rigorous RCT criteria, the lack of details 

regarding the follow-up rate (criterion 7) and the 

preplanning/reporting of subgroup analyses 

(criterion 9) prevent a full appraisal based solely 

on the abstract. As all criteria must be met for 

the study to be considered rigorous, the overall 

assessment is that the study does not definitively 

meet all criteria. 

FALSE 

† Predicted by the BioLinkBERT model. 
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AD3. GPT-o3-mini - Classifier with Full Text 

PMID Label Predicted 

Rigorous 

Probability† 

Criterion Justification Assessment 

19489805 Non-

rigorous 

0.608 1 The article is published in English and meets the language 

requirement. 

TRUE 

2 The study focuses on human participants 

(motherâ€•infant pairs) and evaluates an educational 

intervention relevant to human health. 

TRUE 

3 The topic addresses the prevention of SIDS through infant 

sleep positioning, an important clinical issue for pediatric 

and maternal health, rather than merely describing 

prevalence. 

TRUE 

4 The analysis directly addresses the study question with 

appropriate univariate and multivariate analyses, aligning 

with the interventionâ€™s effect on the primary outcome. 

TRUE 

5 Participants were randomly allocated to the intervention 

and control groups by using coin tossing in blocks, 

satisfying the random allocation requirement. 

TRUE 

6 The sample groups at the primary follow-up (with over 90 

patients in each group) exceed the minimum threshold of 

10 or more per group completing the primary outcome 

assessment. 

TRUE 

7 The primary outcome (infant sleep position) was assessed 

in approximately 84% of the randomized participants, 

which meets the 80% follow-up criterion. 

TRUE 

8 The primary outcome is clinically significant for SIDS 

prevention, a major public health concern, thereby 

satisfying the clinical importance requirement. 

TRUE 
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9 The trial did not report any preplanned subgroup analyses 

with proper interaction tests as required. Although a 

multivariate analysis was conducted, it did not incorporate 

preplanned subgroup analyses with the required interaction 

testing. 

FALSE 

Final While the trial meets criteria 1 through 8, the absence of 

preplanned subgroup analyses with proper interaction tests 

fails to satisfy criterion 9. As all criteria must be met for a 

trial to be considered rigorous, the study is not considered 

rigorous overall. 

FALSE 

21183586 Non-

rigorous 

0.288 1 The article is written in English. TRUE 

2 The study involves human participants with chronic 

kidney disease. 

TRUE 

3 The topicâ€”dietary protein source affecting phosphorus 

homeostasis in CKDâ€”is clearly clinically relevant to 

medicine and related health fields. 

TRUE 

4 The analyses (paired comparisons, regression analyses, 

interaction testing) are directly aligned with the research 

question regarding the effects of different diets on 

phosphorus and hormone levels. 

TRUE 

5 The participants were randomized to the order of diet 

administration (vegetarian first versus meat first) in a 

crossover design. 

TRUE 

6 Only eight patients completed both arms of the crossover. 

The criterion requires 10 or more patients per group 

completing the primary outcome, which was not met. 

FALSE 

7 With 9 patients randomized and 8 finishing, over 80% of 

participants had the primary outcomes assessed. 

TRUE 

8 The primary outcomes (serum phosphorus, FGF23 levels, 

etc.) are clinically important markers in CKD 

management. 

TRUE 
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9 The study preplanned subgroup analyses (e.g., testing for 

interaction between period and diet assignment) and 

analyzed groups as randomized. 

TRUE 

Final While most criteria are met, the study fails to meet 

criterion 6 as it had fewer than 10 patients per group 

completing the primary outcome assessment. Since all 

criteria must be met for a trial to be considered rigorous, 

this study does not qualify. 

FALSE 

16916871 1 0.417 1 The full text is written in English. TRUE 

2 It involves human participants (patients and caregivers) in 

primary care settings. 

TRUE 

3 The topicâ€”improving attendance in primary careâ€”is 

important to clinical practice, impacting appointment 

keeping and service efficiency. 

TRUE 

4 The analysis was clearly aligned with the study question, 

using appropriate statistical tests and an 

intentionâ€•toâ€•treat approach. 

TRUE 

5 Participants were randomly allocated to three groups using 

block randomization, as documented in the full text. 

TRUE 

6 Each group had well over 10 participants (each group had 

over 300 participants completing the primary outcome 

assessment). 

TRUE 

7 The primary outcome (attendance) was assessed on a large 

majority of those randomized (993 out of 1111 assessed, 

with minimal losses), meeting the 80% threshold. 

TRUE 

8 Attendance is a clinically relevant outcome in the context 

of primary care, fulfilling the criterion for a clinically 

important outcome. 

TRUE 

9 The report mentions subgroup analyses (e.g., by reason for 

followâ€•up and appointment timing), but it is unclear if 

FALSE 
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these were pre-planned and whether proper interaction 

tests were performed as required. 

Final While the study meets criteria 1 through 8, the 

requirements for preplanned subgroup analyses with 

appropriate interaction testing (criterion 9) are not clearly 

addressed. Since all criteria must be met for a rigorous 

rating, the RCT is not considered rigorous. 

FALSE 

36395875 1 0.943 1 The article is written in English. TRUE 

2 The study involves human patients undergoing 

offâ€•pump coronary artery bypass surgery. 

TRUE 

3 The trial addresses clinically important outcomes (graft 

patency and major adverse cardiovascular events) relevant 

to medical and surgical practice. 

TRUE 

4 The analyses (comparisons of MACEs, graft patency, use 

of Cox regression, etc.) are consistent with the studyâ€™s 

primary questions. 

TRUE 

5 Participants were randomly allocated to the treatment 

groups using a 1:1 ratio with a pre-generated 

randomization table. 

TRUE 

6 Each group comprised 102 participants, which is well 

above the minimum requirement of 10 patients per group 

completing primary outcome assessment. 

TRUE 

7 The primary outcomes (e.g., graft patency assessed via 

angiographic follow-up) were measured in a high 

percentage of participants (97.5% follow-up reported). 

TRUE 

8 The primary outcomes, MACEs and graft patency, are 

clinically important endpoints. 

TRUE 

9 There is no evidence that preplanned subgroup analyses 

(with interaction testing) were conducted; while 

multivariable analysis was performed, the requirement for 

FALSE 
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preplanned subgroup analyses with testing for interactions 

was not met. 

Final While the trial meets most criteria including language, 

relevance, randomization, adequate sample size, follow-up, 

and clinical importance of outcomes, it does not satisfy the 

criterion regarding preplanned subgroup analyses with 

interaction testing. Since all criteria must be met for a 

study to be considered rigorous, the trial is not considered 

rigorous. 

FALSE 

† Predicted by the BioLinkBERT model.  
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AD4. GPT-4o - Verifier with TIAB 

PMID Label Predicted 

Rigorous 

Probability† 

Criterion Justification Assessment 

19489805 Non-

rigorous 

0.608 1 The text is in English. met 

2 The study involves human participants (mothers 

and infants). 

met 

3 The topic is relevant to clinical practice, 

specifically in pediatrics and maternal health. 

met 

4 The analysis appears consistent with the study 

question, as it evaluates the effect of the 

intervention on infant sleep position. 

met 

5 The study mentions random allocation of 

participants to intervention and control groups. 

met 

6 The study includes 228 mother-infant pairs, 

which suggests more than 10 participants per 

group. 

met 

7 The text does not specify the percentage of 

participants completing the primary outcome 

assessment. 

cannot_be_determined 

8 The primary outcome (infant sleep position) is 

clinically important for preventing SIDS. 

met 

9 The text does not mention subgroup analyses. cannot_be_determined 

Agreement While the study meets most criteria, the lack of 

information on criteria 7 and 9 makes it difficult 

to definitively classify it as rigorous. However, 

the model's classification as rigorous is 

reasonable given the high probability and the 

information provided. 

TRUE 

21183586 0.288 1 The text is in English. met 
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Non-

rigorous 

2 The study involves human participants with 

chronic kidney disease. 

met 

3 The topic is relevant to clinical practice, 

specifically dietary management in chronic 

kidney disease. 

met 

4 The analysis appears consistent with the study 

question, focusing on the effects of dietary 

protein source on phosphorus homeostasis. 

met 

5 The text does not explicitly mention random 

allocation of participants to comparison groups. 

cannot_be_determined 

6 The study involved nine participants, which is 

less than 10 per group. 

unmet 

7 The text does not provide sufficient information 

to determine if the primary outcome was 

assessed in 80% or more of those randomized. 

cannot_be_determined 

8 The primary outcome, phosphorus homeostasis, 

is clinically important for CKD management. 

met 

9 The text does not mention subgroup analyses. cannot_be_determined 

Agreement The study does not meet all the criteria for being 

rigorous, particularly criterion 6, which is 

unmet. Therefore, I agree with the model's 

classification of not rigorous. 

TRUE 

16916871 1 0.417 1 The text is in English. met 

2 The study involves human participants attending 

primary care clinics. 

met 

3 The study addresses attendance in primary care, 

which is relevant to clinical practice. 

met 

4 The analysis appears consistent with the study 

question, focusing on attendance rates and cost-

effectiveness. 

met 
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5 The study mentions random allocation to 

comparison groups. 

met 

6 The study reports 993 participants eligible for 

analysis, which suggests more than 10 per 

group. 

met 

7 The text does not specify the percentage of 

participants completing the primary outcome 

assessment. 

cannot_be_determined 

8 The primary outcome (attendance rate) is 

clinically important. 

met 

9 The text does not mention subgroup analyses. cannot_be_determined 

Agreement The model's classification as not rigorous is 

reasonable because not all criteria can be 

confirmed as met. 

TRUE 

36395875 1 0.943 1 The text is in English. met 

2 The study involves human participants 

undergoing OPCAB. 

met 

3 The study is relevant to clinical practice as it 

evaluates treatments for cardiovascular 

outcomes. 

met 

4 The analysis appears consistent with the study 

question, focusing on outcomes of the 

treatments. 

met 

5 The study mentions random allocation of 

participants to groups using a 1:1 ratio block 

table. 

met 

6 Each group had 102 participants completing the 

primary outcome assessment. 

met 
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7 The text does not specify the percentage of 

randomized participants assessed for the primary 

outcome. 

cannot_be_determined 

8 The primary outcomes (graft patency and 

MACEs) are clinically important. 

met 

9 The text does not mention subgroup analyses. cannot_be_determined 

Agreement While most criteria are met, some cannot be 

determined from the text. However, the model's 

high confidence suggests it inferred rigour from 

the provided details. 

TRUE 

† Predicted by the BioLinkBERT model. 
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AD5. GPT-4o - Verifier with Full Text 

PMID Label Predicted 

Rigorous 

Probability† 

Criterion Justification Assessment 

19489805 Non-

rigorous 

0.608 1 The article is written in English, as evidenced by the text 

provided. 

TRUE 

2 The study involves human participants, specifically 

mothers and their infants. 

TRUE 

3 The study addresses an important clinical topic, namely 

the prevention of sudden infant death syndrome (SIDS) 

through educational interventions. 

TRUE 

4 The analysis in the article appears consistent with the 

study question, as it evaluates the effect of the 

intervention on the primary outcome. 

TRUE 

5 The study mentions random allocation of participants to 

intervention and control groups. 

TRUE 

6 The study reports that 91 participants in the intervention 

group and 100 in the control group were analyzed at the 

3-month follow-up, meeting the criterion of 10 or more 

patients per group. 

TRUE 

7 The study reports follow-up rates and mentions that 80% 

or more of those randomized were assessed for the 

primary outcome at the defined follow-up point. 

TRUE 

8 The primary outcome, infant sleep position, is clinically 

important as it relates to the prevention of SIDS. 

TRUE 

9 The article does not mention any subgroup analyses, so 

this criterion is not applicable. 

TRUE 

Agreement All criteria for rigour are met based on the provided 

information, so I agree with the model's classification of 

the study as rigorous. 

TRUE 
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21183586 Non-

rigorous 

0.288 1 The article is written in English, as evidenced by the text 

provided. 

TRUE 

2 The study involves human participants, as it mentions a 

crossover trial conducted on patients with chronic kidney 

disease. 

TRUE 

3 The study is relevant to clinical practice as it investigates 

dietary interventions for managing phosphorus 

homeostasis in chronic kidney disease, which is a 

significant clinical concern. 

TRUE 

4 The analysis appears consistent with the study question, 

as the study design and results focus on comparing the 

effects of vegetarian and meat diets on phosphorus 

homeostasis. 

TRUE 

5 The study mentions randomization of participants to diet 

groups, fulfilling the criterion of random allocation. 

TRUE 

6 The study had 9 participants initially, but only 8 

completed both arms of the crossover trial. This does not 

meet the criterion of having 10 or more patients per group 

completing the primary outcome assessment. 

FALSE 

7 The study does not explicitly state whether the primary 

outcome was assessed in 80% or more of those 

randomized, but with only 8 out of 9 completing, it is 

likely this criterion is not met. 

FALSE 

8 The primary outcome, phosphorus homeostasis, is 

clinically important for CKD management, so this 

criterion is met. 

TRUE 

9 The study does not mention subgroup analyses, so this 

criterion is not applicable. 

TRUE 

Agreement I agree with the model's classification of the study as not 

rigorous because it does not meet the criteria of having 10 

or more patients per group completing the primary 

TRUE 



M.Sc. Thesis – F. Zhou; McMaster University – eHealth 

161 

 

outcome assessment and assessing the primary outcome 

in 80% or more of those randomized. 

16916871 1 0.417 1 The article is written in English, as evidenced by the text 

provided. 

TRUE 

2 The study involves human participants, as it is about 

patients attending primary care clinics. 

TRUE 

3 The topic is relevant to clinical practice as it addresses 

attendance in primary care, which is a significant issue in 

healthcare management. 

TRUE 

4 The analysis appears consistent with the study question, 

as the outcomes measured (attendance rates and cost-

effectiveness) directly address the effectiveness of the 

interventions. 

TRUE 

5 The study mentions random allocation of participants to 

the three groups (control, text messaging, and mobile 

phone reminders). 

TRUE 

6 The study reports 993 participants in total, with 

approximately 329 participants per group, which satisfies 

the criterion of 10 or more patients per group. 

TRUE 

7 The study does not explicitly state the percentage of 

participants who completed the primary outcome 

assessment, but it mentions that 993 participants were 

eligible for analysis, suggesting high follow-up rates. 

TRUE 

8 The primary outcome, attendance rate, is clinically 

important as it impacts healthcare delivery and patient 

outcomes. 

TRUE 

9 The study does not provide evidence that subgroup 

analyses were preplanned or that interaction tests were 

conducted between subgroups. 

FALSE 
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Agreement I agree with the model's classification of the study as not 

rigorous because it does not meet all the manual appraisal 

criteria, specifically criterion 9 regarding subgroup 

analyses. 

TRUE 

36395875 1 0.943 1 The article is written in English, as evidenced by the text 

provided. 

TRUE 

2 The study involves human participants undergoing off-

pump coronary artery bypass surgery. 

TRUE 

3 The study is relevant to clinical practice as it investigates 

the efficacy of antiplatelet therapies in a specific surgical 

context. 

TRUE 

4 The analysis aligns with the study question, comparing 

outcomes between two treatment groups. 

TRUE 

5 Participants were randomly allocated to the two treatment 

groups using a 1:1 ratio block table. 

TRUE 

6 Each group had 102 participants completing the primary 

outcome assessment, meeting the criterion of 10 or more 

patients per group. 

TRUE 

7 The primary outcomes were assessed in 97.5% of the 

randomized participants, which is above the 80% 

threshold. 

TRUE 

8 The primary outcomes, such as major adverse 

cardiovascular events, are clinically important. 

TRUE 

9 The study does not mention any subgroup analyses, so 

this criterion is not applicable. 

TRUE 

Agreement The study meets all the criteria for being classified as 

rigorous. The model's prediction of rigorous is correct. 

TRUE 

† Predicted by the BioLinkBERT model. 
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AD6. GPT-o3-mini - Verifier with TIAB 

PMID Label Predicted 

Rigorous 

Probability† 

Criterion Justification Assessment 

19489805 Non-

rigorous 

0.608 1 The studyâ€™s title and abstract are written in 

English. 

met 

2 The study involves human subjects (infant-

mother pairs) and addresses maternal behavior 

regarding infant sleep positioning. 

met 

3 The topic (infant sleep position to prevent 

SIDS) is clinically important and relevant to 

health professionals, rather than being merely 

descriptive of prevalence. 

met 

4 The analysis directly addresses the study 

question by evaluating the effect of an 

educational intervention on infant sleep 

positioning using appropriate statistical 

methods. 

met 

5 It is explicitly described as a randomized 

clinical trial with participants assigned to 

intervention or control groups. 

met 

6 With a total sample of 228 motherâ€“infant 

pairs, it is reasonable to conclude that each 

group has more than 10 participants 

completing the assessment. 

met 

7 The study reports outcome assessment at 3 

months via home visit but does not explicitly 

mention the proportion of participants who 

completed this followâ€•up; therefore, it 

cannot_be_determined 
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cannot be confirmed if the threshold of 80% 

was achieved. 

8 The primary outcome (infant sleep position) is 

a clinically significant measure given its 

relevance to SIDS prevention. 

met 

9 There is no indication that any subgroup 

analyses were preplanned or that interaction 

tests were performed. This criterion is 

specifically required in the appraisal but is not 

met. 

unmet 

Agreement Although the model predicted the article as 

rigorous with a probability of 0.608, the 

manual appraisal indicates that not all criteria 

are conclusively met. In particular, the absence 

of documented preplanned subgroup analyses 

(criterion 9) and uncertain follow-up 

completeness (criterion 7) are critical 

shortcomings, which lead to a conclusion of 

non-rigorous study design. 

FALSE 

21183586 Non-

rigorous 

0.288 1 The text is written in English. met 

2 The study involves patients with advanced 

chronic kidney disease, which means it is about 

humans. 

met 

3 It investigates an intervention (dietary protein 

source) that is important to clinical practice in 

chronic kidney disease care, not merely a 

descriptive prevalence study. 

met 

4 The analysis in the article aligns with the study 

question of comparing the effects of vegetarian 

versus meat diets on phosphorus homeostasis. 

met 
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5 While the design is noted as a crossover trial, 

the text does not explicitly state that 

participants were randomized to the order of 

treatment, making it unclear whether random 

allocation was implemented. 

cannot_be_determined 

6 The study involved only nine patients, which is 

below the threshold of 10 or more patients per 

group completing the primary outcome 

assessment. 

unmet 

7 There is evidence of intensive monitoring of 

outcomes during the inpatient period, 

indicating that primary outcomes were likely 

assessed in at least 80% of the participants. 

met 

8 The primary outcome pertaining to phosphorus 

homeostasis is clinically important in the 

context of chronic kidney disease, and the 

study likely includes clinically relevant 

secondary outcomes. 

met 

9 The abstract does not mention any preplanned 

subgroup analyses or interaction tests between 

subgroups; thus, this criterion is not satisfied. 

unmet 

Agreement Given that criteria 6 and 9 are clearly unmet 

(and criterion 5 remains ambiguous), the study 

does not meet all the criteria required for a 

rigorous classification. This aligns with the 

model's predicted classification of 'Not 

rigorous'. 

TRUE 

16916871 1 0.417 1 The text is clearly written in English, satisfying 

the language requirement. 

met 
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2 The study involves patients (or their 

caregivers) in a primary care setting, indicating 

that it is about humans. 

met 

3 The study addresses an issue (attendance in 

primary care) that is important for clinical 

practice, rather than being merely a descriptive 

study of prevalence. 

met 

4 The articleâ€™s analysis is aligned with its 

study question, assessing the effectiveness of 

text messaging reminders on appointment 

attendance. 

met 

5 The design is described as a multicentre 

threeâ€•arm randomized controlled trial, 

indicating that participants were randomly 

allocated to groups. 

met 

6 With 993 participants analyzed across three 

arms, it is safe to assume that each group has 

more than 10 patients completing the primary 

outcome assessment. 

met 

7 The text reports the number eligible for 

analysis but does not provide information on 

whether the primary outcome was assessed in 

at least 80% of those randomized, leaving this 

criterion unclear. 

cannot_be_determined 

8 Attendance is a relevant process measure in 

primary care that can have implications for 

overall clinical care, thereby meeting the 

clinically important outcome criterion. 

met 

9 There is no mention of preplanned subgroup 

analyses or any interaction tests as required, so 

this criterion is not met. 

unmet 
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Agreement Given that one of the mandatory criteria 

(criterion 9) is clearly unmet and criterion 7 

remains indeterminate, the overall rigour of 

this study cannot be affirmed. Therefore, I 

agree with the modelâ€™s prediction of 'not 

rigorous'. 

TRUE 

36395875 1 0.943 1 The text is clearly written in English. met 

2 The study involves human patients undergoing 

offâ€•pump coronary bypass surgery. 

met 

3 The topic addresses clinically important 

treatments (antiplatelet therapy in coronary 

surgery) relevant to clinical practice. 

met 

4 The analysis follows the study question by 

comparing outcomes (graft patency and 

MACEs) between treatment groups. 

met 

5 Random allocation is explicitly described using 

a 1:1 ratio block table. 

met 

6 Each group has 102 patients, which well 

exceeds the minimum requirement of 10 

patients per group. 

met 

7 The abstract does not specify the percentage of 

patients completing the primary outcome 

assessment at follow-up (only intent-to-treat 

analysis is mentioned), so the adequacy of 

follow-up cannot be determined from the 

available information. 

cannot_be_determined 

8 The primary outcomes (graft patency and 

major adverse cardiovascular events) are 

clinically important endpoints. 

met 

9 There is no mention of preplanned subgroup 

analyses or interaction tests between 

cannot_be_determined 
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subgroups, making it unclear if this criterion 

was met. 

Agreement While the study meets many of the rigorous 

design criteria (language, population, clinical 

relevance, randomization, adequate patient 

numbers, and clinically important outcomes), 

the abstract lacks explicit information on 

follow-up completeness (criterion 7) and on the 

conduct of preplanned subgroup analyses 

(criterion 9). Since all criteria must be clearly 

met to be rated as rigorous, the omission of 

these details suggests that the decision to 

classify the study as rigorous may be 

premature. Therefore, I do not fully agree with 

the modelâ€™s classification as rigorous. 

FALSE 

† Predicted by the BioLinkBERT model. 
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AD7. GPT-o3-mini - Verifier with Full Text 

PMID Label Predicted 

Rigorous 

Probability† 

Criterion‡ Justification Assessment 

19489805 Non-

rigorous 

0.608 1 The article is written entirely in English. TRUE 

2 The study involves motherâ€•infant pairs, making it a 

study about human subjects. 

TRUE 

3 The topicâ€”an educational intervention to improve 

infant sleep position for SIDS preventionâ€”is highly 

relevant to clinical practice in pediatrics and public 

health and is not merely a descriptive prevalence study. 

TRUE 

4 The studyâ€™s analyses (bivariate analyses and logistic 

regression) directly address the study question regarding 

the effect of the intervention on sleep position. 

TRUE 

5 Participants were randomly allocated using a coin toss 

and block randomization, fulfilling the requirement for 

random allocation to comparison groups. 

TRUE 

6 Both groups had well over 10 patients (over 90 in one 

group and 100 in the other) completing the primary 

outcome assessment. 

TRUE 

7 The primary outcome (infant sleep position at 3 months) 

was assessed in 191 of 228 participants (~84%), which 

exceeds the 80% minimum followâ€•up threshold. 

TRUE 

8 The primary outcomeâ€”sleep positionâ€”is clinically 

important as it is directly linked to reduced SIDS risk, 

and thus has direct clinical relevance. 

TRUE 

9 Although the study performed a multivariate analysis, it 

did not report any preplanned subgroup analyses with 

proper testing for interactions between subgroups, which 

is required by the criteria. 

FALSE 



M.Sc. Thesis – F. Zhou; McMaster University – eHealth 

170 

 

Agreement Since all criteria must be met for a study to be rated as 

rigorous and criterion 9 was not met, I disagree with the 

modelâ€™s positive (rigorous) classification. 

FALSE 

21183586 Non-

rigorous 

0.288 1 The article is written in English. TRUE 

2 The study involves human subjects (patients with chronic 

kidney disease). 

TRUE 

3 The topic is clinically relevant, addressing dietary 

management in CKDâ€”a topic important to clinical 

practice. 

TRUE 

4 The analysis in the study (crossover trial design with 

controlled diets) is consistent with the study question 

examining the effect of protein source on phosphorus 

homeostasis. 

TRUE 

5 Participants were randomized to diet order, fulfilling the 

requirement for random allocation. 

TRUE 

6 The study enrolled only 9 patients (with 8 completing 

both arms), which is below the threshold of 10 or more 

patients per group completing the primary outcome 

assessment. 

FALSE 

7 Although only 8 patients completed the trial, this 

represents over 80% followâ€•up of those randomized. 

TRUE 

8 The primary outcome (phosphorus homeostasis and 

related biomarkers) is clinically important for managing 

CKD. 

TRUE 

9 The study did not incorporate any preplanned subgroup 

analyses with tests for interaction, which is a required 

criterion. 

FALSE 

Agreement Given that two criteria (criterion 6 on sample size per 

group and criterion 9 on subgroup analyses) were not 

TRUE 
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met, I agree with the modelâ€™s prediction that the 

study is not rigorous. 

16916871 1 0.417 1 The article is written in English, published in an English 

language journal. 

TRUE 

2 The study involves human participants (patients or their 

caregivers) in primary care. 

TRUE 

3 The research addresses an intervention (appointment 

reminders) that is relevant to primary care practice and 

affects clinical service delivery, rather than being a mere 

descriptive study of prevalence. 

TRUE 

4 The design, execution, and reporting of the analysis are 

well aligned with the study question of assessing the 

effectiveness of text messaging reminders. 

TRUE 

5 The study employed random allocation using a block 

randomization technique, ensuring each participant had a 

chance of being allocated to any arm. 

TRUE 

6 Each study arm had well over the required 10 patients 

per group (with group sizes of 329 to 335), ensuring 

adequate sample size for primary outcome assessment. 

TRUE 

7 The primary outcome (attendance) was assessed in 

nearly all randomized participants with minimal loss to 

followâ€•up, well exceeding the 80% threshold. 

TRUE 

8 Attendance as the primary outcome is a clinically 

important endpoint as it impacts continuity of care and 

efficient healthcare delivery. Alternatively, one of the 

secondary outcomes (cost-effectiveness) also holds 

clinical relevance. 

TRUE 

9 While subgroup analyses were presented, the report does 

not clearly state that these analyses were preplanned, nor 

does it detail formal interaction testing as required by the 

criterion. 

FALSE 
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Agreement Since rigorous classification requires that all criteria are 

met and criterion 9 is not met, the overall evaluation of 

nonâ€•rigour is appropriate. The modelâ€™s predicted 

probability (approximately 0.417) leading to a non-

rigorous classification aligns with this appraisal. 

TRUE 

36395875 1 0.943 1 The article is written in English, as evidenced by 

language and publication details. 

TRUE 

2 The study involves human patients undergoing 

offâ€•pump coronary bypass surgery, demonstrating it 

is about humans. 

TRUE 

3 The research topic is directly related to clinically 

important outcomes in cardiovascular surgery and patient 

care, not merely a descriptive prevalence study. 

TRUE 

4 The analysis is clearly aligned with the study question 

(comparing ticagrelor versus clopidogrel in clopidogrel-

resistant patients), with appropriate endpoints and 

methods described. 

TRUE 

5 Random allocation is explicitly stated; patients were 

randomized in a 1:1 ratio using a block randomization 

method. 

TRUE 

6 Each group comprised 102 patients, which is well above 

the minimum requirement of 10 patients completing the 

primary outcome assessment. 

TRUE 

7 The study achieved a very high rate of followâ€•up 

(around 97.5% for angiographic evaluation), meeting the 

80% threshold. 

TRUE 

8 The primary outcomes (graft patency and major adverse 

cardiovascular events) are clinically important endpoints. 

TRUE 

9 The manual criteria require that subgroup analyses must 

be preplanned with proper interaction testing. The article 

does not provide evidence of any preplanned and 

FALSE 
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appropriately conducted subgroup analyses. Although 

subgroup analysis is not always necessary if the main 

analysis is clear, the manual criteria list it as mandatory 

for a 'rigorous' rating. 

Agreement While all other rigorous criteria are met, the lack of 

evidence for preplanned subgroup analyses (and 

interaction testing) means that not all manual appraisal 

criteria are satisfied. Therefore, despite a high predicted 

probability and model classification as rigorous, I do not 

agree with the classification because criterion 9 is not 

met. 

FALSE 

† Predicted by the BioLinkBERT model.
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APPENDIX E GPT PERTURBATION EXPLAINER PROMPT 

AE1. Prompt Dictionary 

Prompt Key Prompt Content 

ROLE You are a machine learning model explainer. 

TASK You are tasked with explaining binary text 

classification encoder-only transformer model's 

predictions by perturbing its input tokens, 

similar to perturbation based XAI frameworks 

like LIME or SHAP. 

CRITERIA Manual appraisal criteria: 

All of these criteria must be met to be rated as 

being rigorous. The article will be rated as not 

rigorous if any criteria are not met. The criteria 

are 1) in English, 2) about humans, 3) about 

topics that are important to the clinical practice 

of medicine, nursing, rehabilitation, and other 

health professions, other than descriptive 

studies of prevalence, 4) analysis of each 

article consistent with the study question, 5) 

random allocation of participants to 

comparison groups, 6) 10 or more patients per 

group completing primary outcome 

assessment, 7) primary outcome(s) assessed in 

80% or more of those randomized at the 

defined follow-up point, 8) primary outcome is 

clinically important or ≥1 secondary outcome 

is clinically important, and 9) subgroup 

analyses must be preplanned, with groups 

analyzed as they were randomized; analyses 

must test for interaction between 2 or more 

subgroups. 

PROVIDED_INFO_INDEX You will be provided the number of tokens, the 

logits for both positive and negative classes, 

and the probability for the positive class. You 

will NOT be provided the text. 

INSTRUCTIONS_INDEX For a given instance, determine which tokens 

have the greatest impact on the model's 

prediction by systematically masking them. 

You will: 

 

1. Receive an instance with the number of 

tokens and model outputs without any 

masking. 
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2. Define 'importance' for yourself. The 

importance should be a float. A negative and 

positive float should indicate that the token 

increases the chance of a negative and positive 

classification, respectively. 

3. Generate a list of num_token number of lists 

where each list contains the index of 1 token to 

mask (e.g., [[0], [1], [2], [3], ...]). Tokens 

corresponding to the indexes will be replaced 

by `[MASK]` by the `mask_and_predict` 

function. 

4. Repeat steps 4a and 4b for 10 iterations. 

Once all 10 iterations are complete, you will be 

prompted to proceed to step 5. 

4a. Generate a list of lists of one or numerous 

index(es) to mask, based on the results of 

previous iterations. Start with completely 

random number of lists and indexes and adjust 

the number of lists and indexes in each list 

based on model outputs. DO NOT repeatedly 

mask the same combination of tokens. 

4b. Call `mask_and_predict` with the lists of 

indexes to mask. The function will return a list 

of lists in the form of [logit_positive, 

logit_negative, probability_positive], in which 

each list corresponds with the model's output 

given the masked variant.  

5. You will make any adjustments to your 

initial definition of 'importance'. 

6. You will be prompted with indexes of the 

tokens. Please calculate the importance of each 

prompted token in the text. 

7. For each token, output the index and the 

importance. 

DEVELOEPR_INDEX {ROLE} {TASK} 

{PROVIDED_INFO_INDEX} 

{INSTRUCTIONS_INDEX} 

INITIAL_USER_INDEX Number of tokens: <num_tokens>. 

Model output without masking: 

[[<logit_positive>, <logit_negative>, 

<probability_positive>]]. 

PROVIDED_INFO_TOKEN You will be provided the number of tokens, the 

input tokens, the logits for both positive and 

negative classes, the probability for the positive 
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class. You will also be provided the manual 

appraisal criteria (appraised using the full text). 

INSTRUCTIONS_TOKEN For a given instance, determine which tokens 

have the greatest impact on the model's 

prediction by systematically masking them. 

You will: 

 

1. Receive an instance with the number of 

tokens, the tokens, and model outputs without 

any masking. 

2. Define 'importance' for yourself. The 

importance should be a float. A negative and 

positive float should indicate that the token 

increases the chance of a negative and positive 

classification, respectively. 

3. Generate a list of num_token number of lists 

where each list contains the index of 1 token to 

m7 Sask (e.g., [[0], [1], [2], [3], ...]). Tokens 

corresponding to the indexes will be replaced 

by `[MASK]` by the `mask_and_predict` 

function.  

4. Repeat steps 4a and 4b for 10 iterations. 

Once all 10 iterations are complete, you will be 

prompted to proceed to step 5. 

4a. Generate a list of lists of one or numerous 

index(es) to mask, based on which token you 

think is semantically important and the results 

of previous masking iterations. DO NOT 

repeatedly mask the same combination of 

tokens. 

4b. Call `mask_and_predict` with the lists of 

indexes to mask. The function will return a list 

of lists in the form of [logit_positive, 

logit_negative, probability_positive], in which 

each list corresponds with the model's output 

given the masked variant. 

5. You will make any adjustments to your 

initial definition of 'importance'. 

6. You will be prompted with indexes of the 

tokens. Please calculate the importance of each 

prompted token in the text. 

7. For each token, output the index and the 

importance. 

DEVELOEPR_TOKEN {ROLE} {TASK} 
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{PROVIDED_INFO_TOKEN} 

{INSTRUCTIONS_TOKEN} 

{CRITERIA} 

INITIAL_USER_TOKEN Number of tokens: <num_tokens>. 

Input tokens: <token_list> 

Model output without masking: 

[[<logit_positive>, <logit_negative>, 

<probability_positive>]]. 

DEFINE_IMPORTANCE Please define 'importance'. You will use this 

definition to calculate token importance when 

prompted later. 

INDIVIDUAL_MASKING Please generate the initial masking list and call 

'mask_and_predict'. The input must be a list of 

<num_tokens> lists of one index each. 

ITERATION_MASKING Please proceed with iteration <iteration> of 

masking. Generate 10 to 30 lists. Only generate 

indexes from 0 to <num_tokens – 1>. Add, 

remove, or adjust masking based on previous 

maskings and model outputs. Prioritize 

masking tokens that seemed to be important 

from previous iterations AND tokens that have 

rarely been masked in previous iterations. DO 

NOT repeatedly mask the same combination of 

tokens. DO NOT reply with anything else other 

than the function call. 

REDEFINE_IMPORTANCE Based on the results of all previous masking 

iterations, adjust the definition of 'importance' 

for yourself as you see fit. 

ATTRIBUTION_CALCULATION Please calculate token importance for tokens 

from index <i> to <minimum(i + 20 - 1, 

num_token - 1)> based on previous 

information and your definition of 'importance'. 

MASK_AND_PREDICT_OUTPUTS [[<logit_positive_0>, <logit_negative_0>, 

<probability_positive_0>] …] 
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AE2. JSON Object Dictionary 

Object Key Object Type 

TOKEN_INDEX int 

IMPORTANCE_VALUE float  

IMPORTANCE_DEFINITION str 

TOKEN_IMPORTANCE TOKEN_INDEX: IMPORTANCE_VALUE 

TOKEN_IMPORTANCE_RESULTS [TOKEN_IMPORTANCE] 

MASK_LIST [int] 

MASK_LISTS [MASK_LIST] 
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AE3. Message Chain 

Sequence Role Key 

1 developer DEVELOPER_INDEX/DEVELOPER_TOKEN 

2 user INITIAL_USER_INDEX/INITIAL_USER_TOKEN 

3 user DEFINE_IMPORTANCE 

4 assistant  IMPORTANCE_DEFINITION 

5 user INDIVIDUAL_MASKING 

6 assistant MASK_LISTS 

7 tool MASK_AND_PREDICT_OUTPUTS 

8 user ITERATION_MASKING 

9 assistant MASK_LISTS 

10 tool MASK_AND_PREDICT_OUTPUTS 

11 user ITERATION_MASKING 

12 assistant MASK_LISTS 

13 tool MASK_AND_PREDICT_OUTPUTS 

14 user ITERATION_MASKING 

15 assistant MASK_LISTS 

16 tool MASK_AND_PREDICT_OUTPUTS 

17 user ITERATION_MASKING 

18 assistant MASK_LISTS 

19 tool MASK_AND_PREDICT_OUTPUTS 

20 user ITERATION_MASKING 

21 assistant MASK_LISTS 

22 tool MASK_AND_PREDICT_OUTPUTS 

23 user ITERATION_MASKING 

24 assistant MASK_LISTS 

25 tool MASK_AND_PREDICT_OUTPUTS 

26 user ITERATION_MASKING 

27 assistant MASK_LISTS 

28 tool MASK_AND_PREDICT_OUTPUTS 

29 user ITERATION_MASKING 

30 assistant MASK_LISTS 

31 tool MASK_AND_PREDICT_OUTPUTS 

32 user ITERATION_MASKING 

33 assistant MASK_LISTS 

34 tool MASK_AND_PREDICT_OUTPUTS 

35 user ITERATION_MASKING 

36 assistant MASK_LISTS 

37 tool MASK_AND_PREDICT_OUTPUTS 

38 user REDEFINE_IMPORTANCE 

39 assistant IMPORTANCE_DEFINITION 

40 user ATTRIBUTION_CALCULATION 
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41 assistant  TOKEN_IMPORTANCE_RESULTS 
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APPENDIX F GPT PERTURBATION EXPLAINER IMPORTANT 

TOKENS 

AF1. ≥1 occurrences 

 

A Negative tokens for SHAP; B Positive tokens for SHAP; C Negative tokens for IG; D 

Positive tokens for IG; E Negative tokens for GPT-index; F Positive tokens for GPT-

index; G Negative tokens for GPT-token; H Positive tokens for GPT-token. 
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AF2. ≥100 occurrences 

 
A Negative tokens for SHAP; B Positive tokens for SHAP; C Negative tokens for IG; D 

Positive tokens for IG; E Negative tokens for GPT-index; F Positive tokens for GPT-

index; G Negative tokens for GPT-token; H Positive tokens for GPT-token. 

 


