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and the usual techniques of the irreducible representations
of the rotation group can no longer be applied, if one
desires to keep the representation small and avoid lengthy

projection calculations.

It must be noted further that the use of Slater
determinants is convenient in the sense that the correspon-
ding matrix can be diagonalized fairly rapidly with present

day computers,















where in order for the Wu to be orthogonal, the matrix of
the coefficients qu has to be unitary.

The coefficients-qu which reduce the Hamiltonian
matrix to its diagonal form obey the infinite system of

eguations

! =0T E 2.8
5' (v]H|V") Uy, v By (2.8)

providiné,'at least in principle, the required energy levels
and wave functions of the system. In practice one does not
consider the infinite set of equations (2.8), but instead
a finite, truncated, set of states are used in order to -

obtain an approximate solution of (2.8).
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elements and to the fact that the harmonic oscillator well
reproduces fairly well the shell closures occuring at the
so-called magic numbers, if an appropriate spin orbit
coupling is introduced.

The fact that such wave functions are not self con-
sistent is not a very serious drawback, in the sense that
it has been possible to prove that harmonic oscillator wave
functions are indeed very close to being self consistent
(Ne 59) and also that eigenvalues and eigenvectors of a
cut off oscillator well are very close to the corresponding
ones of an infinite well. |

Actually, a potential which is intermediate between
the square well and the harmonic oscillator well and which
also has an experimental basis is the Wood Saxon potential
obtained by fitting the data on nucleon-nucleus scattering.
This potential which is flat at the center and fali; off

smoothly to zero at the edge of the nucleus is given by

V(r) = - Vo/[1 + exp pl(r - R)I
where
u—l = 0.5 x 10713 cm.
and
R = 1,33 A3 x 10713 cn

r .
A being the mass number of the nucleus and V0 & 50+60 Mev.,

For TR ’ v(r) = -V for <.R
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all the interesting features of the low lying nuclear levels.

Methods of performing this act of truncation are
based essentiallyion the fact that the single particle wave
functions are chosen to be as close as possible self consis-
stent. sSince the extreme single particle model is so success-
ful in explaining ground state spins and 9ther properties, it
appears reasonable to keep our functional spéce as close
to this model as possible.

The 2 particles in the nucleus are thus divided into
two classes: the first A - V particles remain undisturbed
in complctely filled orbits to form an inert core, while
the remaining v particles (the so called valence particles)
are allowed to occupy as few of the possible single particle
orbits available as possible.

In the case of u_ailowed orbitals, which are labelled
by a set of guantum numbers oy ;.... au then the moéel space
h is the finite vector space which is spanned by a complete
set of Slater determinants which are the mathematical "reali-
zation" of the n particle configurations.

The presence of a constant of motion can be used to
further simplify the numerical analysis. The corresponding
operators split the finite vector space h into subspaces which
are disjoint and are labelled by the possible values that
the resultant operators can assume. .Having defined the

model space, the Hamiltonian matrix can then be evaluated.
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Its subsequent diagonalization, which corresponds to a
solution of the Schroedinger equation within this model
space, can then be performed separately in each subspace

of the model space h.
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calculation [Ma 67]. It is possible to prove that all matrix
elements between many particle states Qf'the [4,4,4,-———~ 4]
supermultiplet symmetry are unchanged by variation in w, m, b, h
as long as the quantity = 10[w+m] - 8[b+h] remains unchanged.
Various values of n, and n, can be used with the~above

potential, in order to fit the data

= 16 MeV

= 1.36 fm }

E.
A
- |
for nuclear matter, allowing the determination of the con-
c

stants c¢ for given v.

3" 74
Four different forces of this form have been used
in this work,whose characteristic parameters are given in
Tables I and II and which will be referred to as force 2, 3,

4, 5 respectively.









24

and then minimize E(ao,o) with respect to e, and o. This

is done in our computation by applying a parabolic fit to

E(ao,o)' , E(ao+600,0) »  E( _+28a_,0)

to yield:

E(a j,0) (6.1)
and then another parabolic fit to
E(a_rsotéo) E (o _+8a_,0+80) , E(a_+28a ,0+280)

to yield:

E(aO" , 0 + §0) (6.2)
and finally another parabolic fit to
E(uo,o+260) ’ E(uo+600,o+260) ' E(ao+26ao,o+260)

to yielad:

E(ao ,0 + 2680). . (6.3)

From (6.1), (6.2) and (6.3)

E(do,cm) P E(ao+601010m) ) E(ao+26ao'cm)

is fit to yield

E((’Lom'cml

where the parameters' values are the ones corresponding to
the minimum energy corresponding to zero deformation. The
process can be continued by repeating each step and starting

with the best fit value obtained in the previous_calculation.
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Once the values of the parameters for the best
ground state energy are obtained, their value is used for
the complete diagonalization of the Hamiltonian matrix in
all the different subspaces, in order to obtain the spectra

of the nuclei considered.-
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The poor fit to the energy levels obtained can be
in part attributed to the restriction on the oscillator
constants which has been imposed in order to maintain ortho-
ganality of the eigenvectors.

This is dramatically observed in the case of O17 for
the J = %-states, which in the case of force number 3 lies
at more than 4 MeV above the experimental level.

The restriction on the oscillator cons£ant is then
such as to bring the 2s particle inside the orbits of the 1lp
particle in such a way that the valence particles feel the
repulsive part of the potential more than they should.

In particular, the matrix elements between the 2s
states are in general larger than the matrix elements between
s and 4 states. It is then expected that a decrease of the
coefficient Cy4 appearing in the density dependent part of
the repulsive part of the potential will increase the matrix

elements between the s states leadihg to the lowering of the

% levels [Hu 67]. This is in fact what is observed as a

general trend with the use of forces 4 and 5.

The energy interval between experimental and calcula-
ted % levels in .the case of calculation with force 5 is
reduced to 3 MeV only and one expects that the relaxation of
the restriction on the oscillator constants, if possible, would

lower sitill further the level. The case of force number 2

shows the same tendency, although the different type of density
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dependence in this case prevents a direct comparison. Further-
more, the lowering of this level in this case is not as one
would expect, due to the presence of a higher density de-
pendence attractive part in the potential.

It should be noted also that the observed deviations
from the experimental levels could be explained by allowing
an admixture of core excitation to the single particle
motion, whose evidence is found in the splitting of the 1/2+
and 3/2+ levels in 017, the occurrence of low lying negative
parity states in this nucleus‘and the E2 admixture for the
neutron hole transition 3/2° =+ 1/2  in 015. The same phenomenon
appears in the case of O18 where the difference in energy
between the calculated and experimental O+ excited state
drops from about 7 MeV to about 5 from force 3 to force 5.
In an analogous way the 2+‘excited state comes down to about
0.8 MeV in the casc of force 5.

It must be further noted that in the particular case
of O18 some of the levels such as O+, 2+ can be identified
as rotational levels. This brings further doubts on the
validity of the approach used here in the sense that the action
of truncation of the Hilbert space'has been too drastic
and has no "life" left in it to describe such rotational
levels.

In O19 this general trend is once mere indicated by
the behaviour of the 1/2+ level found experimentally at 1.46
MeV, and when calculated lies at 4.43 for force 3 and goes

down to 3.15 MeV for force 5. Similar behaviour is shown by
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It is important to note, finally, that the best fit
to the levels has been obtained by the use'of force 1, in which
no density dependence has been included, although this force
in this particular region tends to overbind the nuclei.
The reason for this behaviour is essentialiy
the fact that in obtaininé such a force the emphasis was put

on the fit of energy levels in Li6.
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On the other hand, nuclei such as F2 ana Ne?? have

been found to have strong prolate deformations [Co 65]
due to the progressive influence of the ldo orbitals constant
some doubts on the possibility of evaluating the spectra
of sucn nuclei at zero deformation.
An important conclusion reached is that forces
which are density and energy (state) dependent are extremely
important énd should not be neglected at leasf in the
calculations of the binding ehergies of such nuclei [Ma 67].
The reason why such forces give a poor fit to the
energy levels with respect to a force not density dependent

as force 1, is not clear yet and this problem should be

further investigated.






FORCES # 1, 2
Analytic form:

V(r, R) = (1-c3p2/3 (®) W*mP +bP +hP

0

- . - 2
where Ar(k) A, 1+ cj (k cz) )

Force Parameters

o .

Force # VA . VR A AL ¢y
1 -78.03 82.8 1.5 0.8 0.0
2 =250 255 1.5 1.247 0.15

v = 10 (w-m) + 8 (b+h)

TABLE I



DV, exp (-r222) + Y exp (=r2/d, (K)2)

0.836

0.0

1.180

0.24

1.00

0.71

0.20

~-1.228

-0-05

0.4

S€



Forces # 3, 4, 5

Analytic form:

‘ : )
V(r, R) = (w+m P,*bP +hP) [va exp ( - 1-2/A§-1 )y + v exp (- rZ/Ar(k)Z)Jl
where
_ 1/3 : !
Va - Va [l T C3 P } : :
2/3]
Vr = VR [l#c4p/3l
= 30 - e )2
Ar Ar (1+ ¢y ( k cz) h)
. o ’ B
Force # VA VR Aa Ar ¢y ¢y cy <, w m h b
3 =250 255 1.5 1.247 0.15 0.836 -0.12731 0.76868 0.5 0.5  =0.375 0.075
4 u " " " " " -0.0436 0.7223 0.5 0.5 =0.2675 0.1375
5 " " " " " " 0.04149 0.6427 0.5 0.5 0.2 0.2 W

TABLE IIX



CONFIGURATIONS

Nucleus

017

MZ Value

1/2
3/2
5/2

S~ W NN = o

1/2
3/2
5/2
7/2
9/2
11/2

AN b & WO

TABLE III

Hamiltonian
x
x
1x1
14 x 14
11 x 11
9 x
X
X
37 x 37
32 x 32
22 x 22
12 x 12
x
1x1
81 x 81
72 x 72
60 x 60
39 x 39
24 x 24
x 9
x 3



Calculations for .017

Occupation matrix {2.0000]8

Restrictions on minimization

For minimum energy

Force ‘Radius
1 2.131
2 2.915
3 2.890
4 2.963
5 3.025

"none"

3.027
5.665
5.567
5.854

6.099

T 3
|0 08333; 12

1.514
2.833
2.784
2.927

3.05

TABLE IV

a(l)‘

.46418
..23250
.25227
.24153

.23193

a(2)

.52877
.29054
.28762
.27289

.26184

B.E. (mev)

-125.432
—}23.135
~151.580
-131.262

~-114.198

8¢



Calculations for 018

Occupation matrix

Restrictions on minimization

For minimum energy

Force

' Radius

2.205
2.996
2.961
3.032

3.091

[2.000]8

"none"

3.240
5.984
5.846
6.13

6.371

[o. 16666]12

1.620
2.992
2.923
3.065

3.185

TABLE V

a(l)

46418
.22692
.24599
.23572

.22630

o (2)

.52877
.28769
.28567
.27183

.26187

B.E. (mev)

~125.433
~128.180
~157.630
~137.108

-119.866

6€



Calculations for ol9

Occupation matrix {2.006}8 L24999}12

Minimization of the ground state performed in a model space spanned by the basis states
(002)2 (011); (002)2 (X00); (011)2(0-11)' (01 1)2 (0-20)%;

For minimum energy

Force Radius p2 z2 a(l) a(2) B.E. (mev)
1 2.278 3.459 1.729 .42380 .50296 -123.273
2 3.071 6.287 3.144 .22362 .28463 -131.099
3 3.028 6.112 3.056 .24162 .28331 -161.250
4 3.095 . 6.387 3.194 .73146 .27087 -140.976
5 3.151 ’ 6.621 3,310 .22244 .26198 -123.847
TABLE VI

ov



Calculations for 020

——y

| ‘ 1
Occupation matrix L2.0000§8 {0.33333'g12

Minimization of the ground state performed in a model space spanned by the basis states

(002)2(100)2; (0022 11! 0-11) 0o2)2 @11y (-20)7% (0022 11! (0-11)%;
won2 @1 @aonl; (o2 (0-11)! xool; (0022 (-1 1){ (0 20); (002)2 (020) (0
(0022 (20! (0-201

For minimum energy

Force Radius 02 z2 a(l) a(2) B.E. (mev)
1 2.351 3.685 1.843 .40578 .48966 -124.044
2 3.151 6.618 3.309 .21870 .28009 -135.570
3 3.107 ' 6.436 3.218 .23303 .27971 ~166.515
4 3.170 6.701 3.350 .22408 .26838 -146.354
5 3.223 6.923 '3.462 .21623 .26041 -129.244

v

TABLE VII



BINDING ENERGIES

125.432

126.007

123.273

124.044

123.135

128.180,
131.099

135.576

TABLE VIII

151.58
157.630
161.250

166.515

-131.262

137.108

140.976

146.354

114.198

119.866

123.847

129.244

€xp

131.762

139.808

143.765

151.370

cy



k

5.08

0.871

EXR

372

12

J=5/2"

5.00 3/2

4,048 172

J=572"

FORCE FF |

FIGURE 1

5.00 372"
3.3 172%
J=5/2
FORCE 2



MEV

5.08 3/2*%
0.87!1 172*
J=5/2%

EXP.

5.35
5.00

FORCE 7 3

172

372" 5.00"
4.539

J=5/2"

FIGURE 2

FORCE # 4

17
0
3/2% 5.00 3,
172*
3.84 Y
J=5/2" J
FORCE 5




8.21

7.12

3.92

3.63
2.55

1.8

EXP.

2+

4+

12.34

10.01

9.38
9.22

8.409
8.08

6.863

5.37

2.68

.99

FORCE ¥ 1

FPTCURE 7

%

[ S < -
i o
n ol

+ +

11.86

10.36
9.8

ONNN

woO—Ww
=00

583
536

4.23

1.66
.35

FORCE 2

P Iy -y

W
ol

O+ +

Sy






MEV

..\l
1

l—l

6.84

3.94

3.14

1.46 1 /2%

J=5/2%

EXP.

6.39

5.19

4.94

449

3.98

3.46

2.92

1.39

0.24l

FORCE # 1

FIGURE 5

g/2*

772*
3/2*
5/2*

ns2*
/2t

7/2%

i72*

9/2

32t

J=5/2%

19
0
518 7727
4.87 /2t
483 9/2*
443 3/0%
4.13 5/2%
374 3/2%
3.3 772"
2.62 172%
.02 g/2*
067 - 372"
J=5/72%

FORCEFF 2



-

MEV

6.84

3.94

314

146 172*
5/2*

EXP.

5.70 3/2*
5.44 5/2+
5.32 7/2%
472 7727
4.57 1/2*
4.43 |/2*
4.3 3/2%
0.98 o/2*
0.8l 3/2*
5/2%
FORCE % 3
FIGUR

772"
5.13 5/2t
3/2
72+
424 7/21
4,22 3/2
375 /2%
0.95 gs2*
0.640 3/2*
5/2*
FORCE #F 4

19
0
5.34 5/2‘:_
5.13 Q/2
5.09 772+
4.89 i/2+
4.49 3/2%
4.445 5/2
3.94 3/t
3.72 7/2%
3.15 72
0.92 gs2*
0.502 32t
5/2%
- FORCES- 5



A

VitV

a-

2-

.67

o+
2+

4*

6.93

6.91

5.89

5.67

5.32

455

3.76

2.4l

2.0l

FORCE & 1

FIGURE 7

2+

574
5.71

5.48

445
2,3]

4.0\

3.39

1.5l
.26

FORCE #2

20

6V



MEV

OONGILID
HONO O

H & Paonoo
(8:]

o »
N

o
(8}
¢}

1.67

EXP.

6.76 5+
6.46 3t
6.2 |+
5.52 3*
5.38 et
4.86 2+
4.84 4+
.51 4t
1.4 o+
J=0

FORCE # 3

6.3 J=5%

577 J:3+
5.5 J=6t

5.3 J=17*

5.1l J=3%

4.7 J=a*

4.26 J :2+
141 J=4"

118 J=2%

g=0"

FORCE # 4

«FIGURE 8

5.64
548

. . -
wbo
et Vo)

3.71

.32
1.0l

20




7

0 FORCE #£3

" SPIN  ORBIT -2.0

DA 1

OCCUPATION  MATRIX
2] %  [08333]

RADIUS = 2.8894
p? = 5.5658
5.35 172* . z?2 = 2.7829
5.08 372 499 32* 500 I3//22+ BE = 151658
DA 2
OCCUPATION MATRIX
| 0512 21° [Lieses] '?
RADIUS = 2.95!6 '
pZ = 5.8082
z% = 2.904l
BE = I54.668
0.87 172*
J=5/2* J=ss2* J=5/2* o

EXP DA 1 DA 2

FIGURE 9



-5.08

0.87 -

3/2%

EXP

1/2

J=572"

4.99

4.53

SPIN ORBIT -2.0

3/2 5.0
172t

4.3
J=5/2"

DA 1

FIGURE 10

3/2

1r2*

J=5/2"

DA 2

0'" FORCE#a4

DA 1 -
OCCUPATION  MATRIX
[2]® [0.08333] 2

RADIUS = 2.963I8
p? = 5853
z% = 29268
B.E = 13.262

DA 2

OCCUPATION MATRIX
ns12)° ©.esee

RADIUS = - 3.0244
p? = 6.098
z® = 3.049

BE = 134.363

4



508

0.87

EXPR.

3/2 5.0
- 3.84

i72*

J=5/2%

SPIN ORBIT 2.0

DA 1

3% 4,99
172t

' 3.60
J=5/2*

FIGURE 11

DA 2

3/2*

i72*

J=572%

07 FORCE#5
DA 1
OCCUPATION MATRIX
[2]° [ose3z3]'?
RADIUS = 3.0247

pP? = 6.0993

7?2 = 3.0496

B.E = 114.197
DA 2

OCCUPATION  MATRIX
(.5]% [2)° [.16664]

RADIUS = 3.0854
2

P = 6.3465
Z%2 = 3.1732
8.E = 117.316

£G -



54

3/t

y 172*
6.37
Y
5..
5.08 .
51 3/2
C . 17
o)
172t
11 FORCE # 4
C = SPIN ORBIT COEFF.
3..
2..
14 0.87
172t
D J=5/2% -1 -2 -3 -4 C—

EXP.

PTRUIRR 12



9_
8.28
8- 2"
+
2
7.12 /
7 a*
6_4
. 018
5 FORCE #£ 4
C = SPIN ORBIT COEFF.
4-{3.92 . /2+)
3.63 20*
3.55 4+
3
.98
2 -
: 2t 4y .
T % a*
CAPE 3¢ % s— 2%
|~
O L] T |
=0t - -2 -3 -4

EXP.

FIGURE 13



3

O-——'
0 I8
FORCE ¥ 4
2* DIFFERENT MAJORANA
4+
2
4
o+
4+
a4t
ot 2t
- — 2t
— 0t
4+
ot
4+ 4t
ot
ot
+
—_— 0 [ T I T T T T T ) ——~



57

EXP.

020

Ol9

Om

Oﬂ

(AIW)

v/'38

FIGURE 15






