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Abstract

A study of long term deflections in reinforced concrete beams is
presented in this thesis. Two simply supported beams and four contin-
uous beams were tested under sustained loads for periods of about 1 1/2
years. " When the deflections were compiled it was observed that all
beams had long term to shoz;: term deflection ratios that exceeded ACI

and CAN3-423.3 Code limits.

A finite element program was developed to model concrete
behaviour for short term and long term loading. When compared with
experimental data, the model predictions were almost always within the

normal variability limits for deflections.

A parametric study using the Factorial Design HMethod was under-
taken to develop an accurate long term deflection prediction wmethod
using deflections generated by the finite element model. The ACI and
CAN3-A23,3 Code approach of wusing a long term to short term
deflection ratio was adopted in this study. The resulting relationship
had mixed results which raises questions about the advisability of using

the deflection ratio approach for predicting long term deflections.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Long term deflections in reinforced concrete beams are an impor-
tant serviceability consideration that has not yet received the atten—
tion it deserves. The introduction of Ultimate Strength Design methods
has increased the importance of deflection criteria because it has led
to the use of more slender members that are sensitive to deflections.
Unfortunately the ability to predict the long term &eflectious of
reinforced concrete beams has not kept pace with advances in predicting
their ultimate strengths. This has led to the increased likelihood of

deflection problems, and the possibility of serviceability failures.

The ability to accurately predict deflections is a difficult
problem that has been impeded in the past by many different factors.
Among these were a general lack of concern about serviceability consi-
derations in general, the length of time required for long term testing,
the large number of influencing variables, the effect of load history,

and the variability of the material, Factors that are difficult to




quantify like tension stiffening, bond breakdown, initial stresses due
to shrinkage, and degree of cracking have also contributed to the
problem. To make the task of deflection prediction even more formidable
is the fact that test results on identical beams often produce

deflections which vary significantly.

Currently accepted techniques for calculating long term deflec—
tions were derived from a limited supply of experimental data, and
consequently their general applicability may be open to question. The
recent and current ACIL approaches for computing long term deflections
(2), which were also used in the Canadian Code (12), was to apply the

folloéing multipliers to the instantaneous deflection.

1&1_ = 2-1.2 A's/As (1.1)

and now

2.0

A= T E 5000

(for loads sustained beyond 5 years)

These equations were formulated by Branson (8) and were based primarily
on the data of Washa and Fluck (53)(54) and Yu and Winter (56). While
these equations may provide a reasonable approximation for the deflec-
tions from these tests, it is difficult to assess their applicability
for general use, The very simplicity of the approach is evidence of
their approximate nature. Since the adoption of these approaches there
have been very few concentrated attempts to verify their accuracy or to
suggest alternatives, Through experimental work and the use of a finite
element model, this thesis is dedicated to discovering whether the
current approach is the best solution, or whether some alternative

should be proposed.




1.2 Objectives

The major objectives of this thesis were threefold:

1) To provide long term deflection results from beams loaded
for a substantial period.
2) To develop an accurate finite element model to simulate long
term deflections in reinforced concrete beams.
3) To provide a long term deflection prediction method using an
organized parametric study.
Each of these objectives alone could be the subject of a separate study,
but it was felt that an exhaustive study addressing all three objectives
would be more useful in contributing to the knowledge of long term
deflections. The final objective is the ultimate goal of this thesis
but it was necessary to fulfill the other two before this one could be
addressed. To meet the objectives it was necessary to delve into the
way concrete properties are treated and to assess the methods that are
used to predict them. This effort may be considered a minor objective

that complemented the others,

1.3 Literature Review

Research into 1long term deflections of reinforced concrete
members is still in its infancy, and very little attention seems to have
been focused on this subject. This may be due to the relatively recent

interest in serviceability, which has only latelx_emerged as an impor-




tant design consideration. [This may reflect inéreasing concern arising
from more frequent serviceability problems,] The prime thrust of
research work to date has been in estimating the effects of sustained
loads on deflections. Previous investigations have provided useful
insights into the magnitudes of long term deflections, but a relative
scarcity of reliable experimental data has impeded a complete under-
standing of this phenomenon and has hindered the development of an
accurate prediction method. This lack of complete data may explain the
general lack of consensus on even a general technique for controlling
long term deflections. A brief review of some of the important work

that has been done in this area is now presented.

Washa and Fluck (54) provided the experimental data which has
served as the baslis for most of the empirical design methods currently
available. 1In their first study, they observed the effect of compres-
sion reinforcement on time dependent deformations. Thirty-four full
size beams with various dimensions and reinforcement details were tested
for a period of two and a half years. Many of these specimens were more
characteristic of slabs than they were of beams, so the collected data
was really a mixture of both conditions. The main conclusion from this
study was that compression reinforcement had a beneficial effect on

reducing deflections because it decreased curvatures due to shrinkage.

In a second study, Washa and Fluck (53) furnished the only
readily avallable data on long term deformations of statically indeter-
minant beams. Eighteen full scale beams, representing three different

gizes and three different reinforcement. patterns were tested for two




and a half years. The inclusion of compression reinforcement reduced
time dependent deformations for these beams, but the effect was not as
pronounced as for the simply supported beams from their earlier study.
Washa and Fluck concluded that although the plastic flow generally
tended to relieve the maximum stresses, inelastic deformations in one

region of a beam induced an increase in the maximum stresses elsewhere.

Miller (34) was one of the first researchers to investigate and
report on the warping of concrete beams due to shrinkage. Shrinkage
deflections were measured for sixteen small uncracked reinforced
concrete beams. A major conclusion from this study was that shrinkage
deflections were strictly a geometrical phenonomen and therefore the
elastic properties of the materials were not governing factors. Using
his experimental data, Miller suggested a prediction method whereby the
shrinkage curvature was dependent on the shrinkage strain and on the

depth of the section.

In 1960, Yu and Winter (56) presented experimental data on
T-beams, and proposed prediction methods for instantaneous and long term
deflections. Twelve T-beams were tested over a five to six month period
to determine thelr deflections. From these and other tests, (53)(54)
two simplified methods were developed to estimate time dependent deflec—
tions. 1In the first method, an effective modulus of elasticity was used
in the usual elastic deflection formulas to account for the time depen-—
dent effects. The long term deflection in the second method was found
by multiplying the instantaneous deflection by a factor which depended

on the duration of loading and on the reinforcement details. A compar




ison of the two methods indicated that although they both showed fair
agreement with test data, the deflection multiplier method produced the
best results., In addition, the effective modulus method did not perform

well for beams with both tension and compression reinforcement.

In 1962, Gesund (20) published one of the first theoretical
studies on the effects of creep and shrinkage on deflections. His
analysis showed that because of shrinkage, the plane of zero stress was
not the plane of zero strain. He also derived a simple model from
normal beam theory using an effective modulus of elasticity to account
for the long term effects. Deflections for both statically determinant
and indeterminant beams were calculated by evaluating separately the
influence of the elastic, c¢reep and shrinkage strains. Gesund concluded
that, in a prediction method, the deflection should be divided into two
parts, one part due to elastic and creep strains, dependent on the

moment, and the other part due to shrinkage, dependent on the geometry.

In 1963, Hajnal-Konyi (23) conducted an experimental program to
check the effects of concrete strengths, steel strengths, steel percen-
tages, and various span to depth ratios on long term deflections. Six
pairs of small beams loaded under service load were observed for four
and three quarter years. Probably the most striking result from Hajnal-
.Konyi's tests was that even those beams with small span to depth ratios
had high long term to short term deflection ratios. In fact, all of the
twelve beams tested had deflection ratios which exceeded the upper limit
of 2.0 specified in the ACI Code equations (Eq. l.1). The average long

term to short term deflection ratio for the beams reinforced with mild




steel was 2,69, and 2.36 for those reinforced with high strength steel.
Hajnal-Konyi's results also showed that although beams made with
stronger concrete generally had lower time dependent deflections than

those made with weaker concrete, the differences were relatively small.

Hajnal=Konyi compared his test data with deflections calculated
by various analytical methods. The ACI method of factoring the initial
deflection was compared with a method using an effective modulus, The
method using an effective modulus of elasticity showed better agreement
with the experimental results than the ACI method of using a factored
initial deflection. (This is the reverse to what Yu and Winter found).
Hajnal-Konyi also noted that methods which took into account the
contribution of the concrete tensile strength performed better than

those which did not.

Hajnal-Konyl examined the use of limiting span—-to—-depth ratios
as a means of limiting long term deflections. He concluded that since
reinforced concrete design is based on the assumption that there are no
tensile stresses in the concrete, the slenderness of beams should be
related to the effective depth and not to the overall depth. In
addition, he suggested that the Ilimiting slenderness ratios should

depend on the stresses in the steel and the concrete,

Corley and Sozen (17) tested four beams for a two year period,
and using this plus previous data (23)(53)(54)(56) proposed a simple
method for estimating long term deflections. The variables in their

tests were the amount of tension steel and the depth of the sectiom.




The six foot long and three inch wide test beams were smaller than those
generally found in service so the results need to be viewed objectively.
An interesting point which emerged during the test was that even though
the total deflections of the beams were different, the ratio of the

total to the instantaneous deflection was always about the same.

A simple method £for calculating long term deflections was
proposed by Corley and Sozen in which the curvatures due to creep and
shrinkage were determined separately. The creep curvature was computed
as a percentage of the instantaneous curvature, where the factor was
dependent on the amount of steel and the depth to the neutral axis. The
shrinkage curvature was estimated from the reinforcement details and the
depth of the section. Good agreement was reported between the proposed
equations and the experimental data. Finally, Corley and Sozen noted
that the influence of the tension in the concrete was significant for

lightly reinforced sections.

In 1972, Stevens (50) conducted a series of sustained loading
tests on reinforced concrete beams and then discussed simple methods to
predict strain and deflections. Twenty-nine full scale beams .were
subjected to sustained loads for a two year period. The concrete cover,
amount of reinforcement, type of environment, type of concrete, and
overall dimensions were varied to determine their influences. A number
of conclusions were reached from these sustained loading tests. One of
these was that for cracked beams, the contribution of the concrete in
tension decreased considerably with time. Another observation was that

although beams made with lightweight concrete has larger 1nitial

O




deflections than those made with normal concrete, the subsequent changes
were quite similar. Stevens also determined that for analysis purposes,
using an average relative himidity gave a good analytical approximation

for beams exposed to variable humidities.

Stevens proposed two different methods for predicting the total
strains due to long term loading. In the first method a normal elastic
analysis was used to calculate the elastic strains, and an effective
modulus of elasticity was used to account for the creep effects. In the
second method the curvature was calculated by assuming that the strain
in the steel could be found from an elastic anmalysis, and the compres-
sive strain could be found in terms of the initial strain, the creep

coefficient, and the shrinkage strain. In both cases the time dependent

oy
X

properties of the fconcrete were needed as input variables.

An extengive examination of the long term properties of concrete
and a comparison and discussion of available prediction methods was
compiled by Branson (8). In this study he stated that long term

deflections were affected by the following effects:

a. Creep of concrete in compression and tension, including bond
creep

b. Shrinkage of concrete

c. Formation of new cracks and the widening of earlier cracks

d. Relaxation of tensile stresses in concrete

a. Movement of the neutral axis
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f. Compression steel
g€. Repeated load cycles

h. Moment redistribution in statically indeterminant elements

After examining the experimental work of previous investigators,
Branson proposed a number of methods for predicting long term deflec—
tions. For calculating shrinkage curvatures alone, Branson suggested an
empirical method based on a modification of Miller's method (34). They
both assumed that the shrinkage curvature was a direct function of the
free shrinkage and the steel content and an inverse function of the
depth of the section. Using the full thickness rather than the
effective depth was observed to give the best results. Branson also
concluded that the effect of cracking could be ignored in a simple

shrinkage analysis.

Branson also proposed a method for calculating creep deflec~
tions, where the initial deflection was multiplied by a factor which
depended on the compression steel ratio. Branson concluded that the
compression gteel ratio rather than the ratio of tension to compression
steel gave the best representation of the effect of compression
reinforcement. The same method was proposed for combined creep plus
shrinkage deflections, but the constants in the basic equation were
modified. Branson preferred factoring the initial deflection to using
an effective mdoulus of elasticity, because he felt that it was easier

to use, more adaptable, and seemed to give better results.
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In 1982, Hobbs (26) did a theoretical analysis of shrinkage
curvatures using the Equivalent Tensile Force Method. This method was

later expanded to include creep curvature, but a comparison with experi-

mental results showed only falr agreement.

It is obvious from the preceding review that although some
research work has been done in the area of long term deflections of
reinforced coancrete beams, there is still no general agreement on the
best method of prediction. Even though over 100 beams have been tested
to date, there 1is no complete statistical sample of deflections
available. This is probably due to a lack of coordination between
researchers. This lack of coordination seems to have prevented the
methodical development of a prediction method from all of the available
collected data. Compared to most other areas of concrete research, the
amount of experimental data which is available on this subject is not
very large. This is perhaps understandable considering the amount of
time which is required for testing and the high cost of £full scale
experiments. 1t is also unfortunate because there is a very high vari-
ability assoclated with long term deflections, and significant trends
may not be readily apparent where the number of tests are limited. One
problem with the long term deflection tests which have been conducted is
that there 1s very little available data on the deflections of coantin-
uous beams. This is surprising considering their prevalence 1in
practice. In addition, information of the deflectiom characteristics of

beams with compression reinforcement also seems lacking.
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The prediction methods and Building Code equations that are
currently in use are very simple and therefore probably relatively
inaccurate. Washa and Fluck's data provided most of the experimental
data which has been used to develop almost all of the currently avail-
able prediction methods. This is regrettable because the influence of
their particular material and storage parameters has tended to over—

shadow the results of other researchers.

Since long term deflection prediction methods are necessarily
empirical in nature, an important issue must be raised. When the
experimental data that was used to develop a prediction method is also
used to verify it, the results are favourably biased and the empirical
equations may appear to be better than they actually are. In almost all

cases this is what has been donme with current prediction methods.

In the available literature, two major approaches have been
proposed for predicting time dependent deflections. These have been
identified as the Effective Modulus of Elalsticity Method and the
Factored Initial Deflection Approach. Very little attention seems to
have been paid to any other approaches, so it may be advantageous for
future researchers to examine alternatives. The one difficult require-
ment which all useful design equations must satisfy is that they can
only make use of information which is readily available to designers.
The necessity for simplicity and accuracy are difficult requirements to
deal with, and until an extensive parametric study is completed, or a
fundamental analytical technique is developed, the accurate prediction

of long term deflections may be an elusive goal.
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l.4 Thesis Outline

An outline of the organization of this thesis is provided to aid
the reader, Chapter 2 contains the experimental work which was done in
this study. There 18 a lack of experimental data on long term deflec-
tions, and the six beams tested, four of which were continuocus, should
add to the current supply. These beams were also tested to provide some
means for verifying the finite element model. In Chapter 3 the develop-
ment of the éinite element model is discussed. First the constitutive
relationships necessary for accurately specifying the material
properties are chosen. Then the finite element modelling of reinforced
concrete is examined and the proposed model is derived. It is hoped
that this model will provide a workable compromise between efficiency
and accuracy. The short term and long term accuracy of the proposed
model is also checked using available experimental data to ensure that
the model may be used confidently to simulate reinforced concrete
behaviour. 1In Chapter 4 a parametric study using the Factorial Design
Method to develop a long term deflection prediction method is presented.
Results generated by the proposed model are used to provide the
necessary data., Finally, the general conclusions and recommendations

are contained in Chapter 5.




CHAPTER 2
EXPERTMENTAL PROGRAM

2.1 Introduction

The examination of the existing literature reported in Section
1.3 indicated that there was a serious shortage of varied experimental
data on long term deflections. This was particularly the case for full
size beams and continuous members. The number and range of parameters
which have been tested seemed very limited, and this has very likely had
a significant impact on the accuracy of current design equations. In
most cases the available experimental data tends to be incomplete, and
this makes it extremely difficult to develop empirical design methods,
and to verify analytical models. Obviously the acquisition of more
experimental information would greatly improve the situation. With
these factors in mind an experimental program was undertaken with the
dual purpose of assessing the accuracy of the proposed finite element
model, and providing usable experimental data for future researchers.
This information may also be useful for evaluating the design methods
currently in use. The material properties, test set-up, beam specific—
ations, and results from the experimental program are presented in this

chapter.
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2.2 Degign of Experiment

Six simply supported beams, of which four were continuous, were
designed, constructed, and tested under controlled conditions. The
testing program was not intended to be a complete statistical study of
the factors which influence long term deflections, but rather a brief
exmaination of some of the more important parameters. The main elements
of interest included the section depth, the tension steel ratio, the
compression steel ratio, the age of loading, the level of sustained load
as a percentage of ultimate load, and the existence of negative and
positive moments. The experimental program was designed so that the
beam sizes and test conditions were realistic. P?:oblems such as scaling
effects, unusual concrete properties, unusual support conditions, and
uncommon span lengths were therefore eliminated. All of the beams were
full sized, and had span-to-depth ratios which were large enough to
minimize shear effects. The loads which were applied to the beams were
well within the service load range, and the resulting bending moment
diagrams resembled those of uniformly loaded beams. All of the beams
were simply supported and determinant, which meant that the reactions,
and therefore the bending moment diagrams, were always known. It was

hoped that these considerations would ensure that the experimental

program produced results that were both useful and reliable.

2.2.1 Concrete Mix Design

A concrete mix was designed to produce a 28 day compressive

strength of 4000 psi. This strength was chosen because it is represen—
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tative of concretes generally used in reinforced concrete structures.
The mix ,prOportions, given by weight, are shown in Table 2.1. The
concrete produced by this mix is slightly “pasty™, and the subsequent
creep and shrinkage strains, although well within normal limits, should
be slightly higher than usual. The same carefully controlled concrete
mix was used throughout the test so that differences due to changing mix

parameters could be eliminated.
2.2,2 Batching and Curing

The experimental program was divided into three distinct series
of two beams per series. This was done because of time limitations in
the mixing and placing of the concrete in each set of beams. In addi-
tion, staggering the casting days made the scheduling of the preparation
and loading of the beams easler. On each mixing day, before the first
batch was prepared, the nine cubic foot horizontal drum concrete mixer
was conditioned with a “butter batch™ of approximately one quarter of
the mixer capacity. This concrete was thrown out and the regular
batches were then prepared. A slump test was taken after each batch was
mixed to ensure that the concrete met the required specifications. A
Standard 12 Inch High Slump Cone was used to measure the slump and in
all cases the value was within 3/4 of an inch of the specified slump of
2 1/2 inches. All of the aggregate was air dried, but in the third
series it was observed that the sand on this day was slightly damp, and
therefore it was necessary to make some minor adjustments in the mix to
get the correct slump. Mixing and pouring proceeded quickly so that

neither the mixer nor the concrete was allowed to dry out.
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The concrete for the beams was placed in wooden forms and
vibrated internally using a poker type vibrator. Three 12 in. high
cylinders were poured from every batch, and one 22 x 6 x 6 in. prism was
poured from nearly every second batch. The cylinders were placed and
vibrated in three layers, and the prisms were placed and vibrated in two
layers. Nine batches was the maximum needed to make all of the beams,

cylinders, and prisms required for any series.

When the concrete had begun to harden, approximately four to
five hours after pouring, wet burlap was placed over the beams,
cylinders and prisms. The burlap was' kept moist throughout the seven
day curing period. When this period was over, the specimens were taken
from the laboratory floor and placed in a humidity controlled environ—
ment. Further details about the tent used to control the humidity are

mentioned later in this chapter.

2.3 Concrete Properties

2.3.1 Compressive Strength

Cylinders from different batches for each beam series were
tested at ages of 7 days, 28 days, and after the end of the test. The
reason for determining the uniaxial compressive strength was to ensure
that the concrete satisfied the specified strength of 4000 psi, and
because information was needed for the prediction of other material

properties which were not tested separately. The compressive strength
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test was conducted in accordance with ASTM specifications, and the

results are shown in Table 2.2.

2.3.2 Stress-Strain Relatioaship

The modulus of elasticity is a very important material property,
especlally for a finite element analysis, and is found from the stress-
strain diagram. The concrete stress-strain relationship in this test
was measured by one of two methods. 1In the first method, a compresso—
meter was used in accordance with ASTM specifications to plot the
stress—strain diagram until failure. In the second method, a mechanical
strain indicator called a Demec gauge was used. This indicator has an
8" gauge length. To use the Demec gauge it was necessary to equip the
cylinders with two sets of gauge points which were mounted on opposite
sides of the cylinders. During the loading sequence, readings were
taken with the Demec gauge at regular intervals until failure and the
strains were calculated by averaging the results on both sides of the
cylinders. The compressometer was used more often than the Demec setup
because the compressometer was easler to use and it eliminated the need
for halting the loading procedure to take readings. The results from
the modulus of elasticity test for various concrete ages are shown in

Table 2.3.




Table 2,1 Concrete Mix Data

Component Percent by Weight in
Weight pef

Portland Type 1 14.0 21,2

Cement

Water 9.1 13.8

Sand ' 46.6 70.6

Gravel 30.3 45.9

Table 2.2 Compressive Strength

(psi)
Series 1 Series 2 Series 3
7 days 3310 3336 3370
28 days 3966 4280 4433
761 days 4191
803 days 3866 4776

t

Table 2.3 Modulus of Elasticity (psi~x 106)
Series 2 Series 3

7 days - 3,292
28 days 3.375 3.957
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2.3.3 Shrinkage

The shrinkage properties of the concrete were determined from
22 x 6 x 6 in. prisms which were cast at the same time as the beams and
cylinders. One pair of Demec gauge points were mounted on each of the
four sides of the prisms, n;;r the middle of each side., Strains were
measured with the Demec Strain Indicator and the total shrinkage was
calculated by averaging the four results from each prism. All of the
prisms were initially moist cured for seven days after which they were
stored in the controlled environment. The relative humidity was main-
tained at 50% * 5% and the temperature ranged between 70°F and 75°F.
Shrinkage. results for all three series are presented in Figure 2.1. It

should be noted that the age of the concrete when the initial readings

were taken is different for each series.
2.3.4. Creep

The creep properties of the concrete were evaluated with prisms
which were identical to those used for shrinkage. The Demec gauge
points were also the same, as were the conditions of storage, and the
measurement of the strains. The creep specimens were subjected to
different load levels and loading ages to provide a general represen-—
tation of the creep properties of this concrete, Since the analysis was
exclusively concerned with the service load state, where creep is nearly
linear with stress (38), the prisms were subjected to constant loads of
either 15%, or 30%, of f£f'¢c. It was felt that this range would give a

good overall picture of the service load creep for this concrete.
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The creep specimens were tested using the setup illustrated ia
Figure 2.2. Before the prisms were loaded, 2" thick notched metal
plates were plastered to the top and bottom of each specimen. A ball or
roller was then placed between this plate and another identical plate.
A compression load cell was then added to the top of this arrangement

and the specimen was centered in the spring-loaded creep frame.

The load was applied with a hydraulie jack by jacking between
the top plate of the frame and the plate above the springs. This force
compressed the springs and loaded the specimen. When the specified load
level was reached the nuts on top of the plate covering the springs were
tightened, and the jack was released. The load level was monitored and
adjusted at regular intervals throughout the test to ensure that the
applied load remained coustant.‘ The springs were included in the
apparatus to moderate the reduction in the load produced by the creep

and shrinkage strains.

Creep results from all three concrete series are shown in Figure
2.3, The creep strains in this figure were calculated by subtracting
the shrinkage strains of Figure 2.1 from the total long term strains
¥

which were measured with the creep specimens. Any long term changes in

the elastic strain were included as part of the creep.
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2.4 Beam Tests

2.4.1 Description of Test Beams

The cross—sectional properties and reinforcement details of the
four different beam designs are shown 1n Figures 2.4 to 2.7. A total of
six beams were designed and all of the beams had a common width of 6
inches, a concrete cover of 2 1/2 inches, and a side cover of 1 inch.
There were two different lengths, two different depths, three different
steel areas, and two different support conditions. Two 16 foot beams
and four 24 foot beams were produced. Minimum shear reinforcement was
provided for all of the beams even though they were not loaded to
failure. Plain 1/4 inch diameter closed stirrups were used in all
cases. All beams had maximum stirrup spacings corresponding to the Code

limitation of one half the depth of the section.,

All of the beams contained either two or four vertical 1 1/2
inch diameter hollow tubes through which threaded rods could be passed
to apply the loads and to tie the beams together. This will be

discussed further in the next section.

2.4.2 Beam Test Setup

One or two days before the beams were loaded, the two beams of
each series were arranged as shown in Figure 2.8. The beams were placed
back-to-back so that the two beams could be loaded at the same time

using only one set of load cells, supports, and loading apparatus. It
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also reduced the amount of laboratory space needed for the testing
period. .The. one drawback to this kind of setup is that the direction of
the gravity load for the bottom beam is in the opposite direction to the
applied loads. This is not usually observed in practice. Each pair of
beams in the setup consisted of one 14 inch deep beam and é6ne 11 1/2
inch deep beam. The 14 inch beam was placed on the bottom because it
had a 1ow;ar ultimate load than the 11 1/2 inch beam. If the 14 inch
beam had been placed on top, the additional gravity load would have

caused the beam's total load to be outside of the service range.

To arrange the beams as shown in Figure 2.8, the 14 inch thick
beam was placed upside down on blocks. Roller bearings were located at
the support points and the 11 1/2 inch thick beam was placed on top.
The position of the roller bearings coincided with the position of the
blocks so that the weight of the top beam would not affect the load
distribution of the bottom beam. The load points were positioned at the
quarter points for all beams, and also at the ends of the continuous
beams. It was thought that this loading arrangement would give moment
distributions which were reasonably close to those for uniformly loaded
beams, and would therefore give a more accurate representation of design
loads. Threaded rods were passed through the hollow tubes which were
embedded in both beams, and the load was applied at these locations by
tightening the nuts located near the top of the threaded rods. Spreader
beams were positioned along the center span to distribute the load from
the threaded rod locations to the load points. Helical springs were
placed on top of the spreader beams, and at the ends for the continuous

beams, to moderate the changes in the load that occurred because of the

D
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time dependent deflections. A compression load cell was placed near the
bottom of every threaded rod, and for the continuous beams a tension
load cell was inserted near the top of the rods between threaded rod

portions.

In most cases the applied loads were measured in more than one
way. Compression load cells were the primary means of measuring the
loads for the 16 foot beams, and the secondary method for measuring the
loads for the 24 foot beams. The compression cells were compressed
between two 6" x 6" x 1/2" plates and two 3" diameter x 2" thick plates.
The thick plates were put in to decrease stress concentrations on the
load cells. Unfortunately, difficulties were discovered with the
accuracy of the compression load cells. The readings from these cells
were not always repeatable and .seemed very semsitive to slight 1load
eccentricities, PFor this reason, tension load cells were added to the
instrumentation for the 24 foot beams. The tension load cells seemed to
produce more reliable and repeatable readings. For the 24 foot beams,
the tension load cells were conslidered as the primary means of measuring
the applied loads, and the compression cells acted as a backup. The
deformation of the springs acted as a further backup, but these results
were not very rellable because the springs deflected slightly out of

their vertical plane.

The main aim of the experimental work was to obtain deflection
data and this was done with dial gauges. Deflection measurements were
taken at the center of every beam and also at the ends of the continuous

beams. A metal bar was glued to the bottom of the beams at the
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designated locations, and the dial gauges were fixed against these. The
dial gauges were marked in divisions of .00] inches, which was

considered mors than enough accuracy for the expected deflections.

When the beams, c¢ylinders, and prisms were fully cured, they
were placed in a humidity controlled tent. A 29 foot lomng, by 15.5 foot
wide, by 8.5 foot high polyethelene covered frame was constructed to
house the test specimens. A relative humidity of 502 * 5% was main-
tained in this tent using a humidifier—dehumidifier tandem. A temper-
ature of 70°F to 75°F was maintained in the laboratory. Two oscillating
fans were positioned at opposite ends of the tent to eliminate any air

stratification.

2.4.3 Applied Loads

Two simply supported beams, designated A and B, were tested in
Series 1. Beam A was the top beam and Beam B was the lower beam.
Initially the loads applied to the quarter points of the two beams were
set at 1400 pounds, This was well within the service load range for
these beams. As mentioned earlier there was some difficulty with the
load cells of this series, and towards the end of the test it became
apparent that the loads had varied with time. Therefore the test was
ended, the final deflection readings were taken, and the beam was
unloaded. To determine what loads were actually present at the end of
the test, accurate tension load cells were installed in the setup and
the beam was Iimmediately reloaded until the previocusly recorded final

deflections were duplicated. The load at this point was 1050 pounds,
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which represented a drop of 27% from the initial load. This load was
then assumed to represent the final load applied to the beams. This may
not be -exactly correct because the loads on the two load cells at the
end of the test were not necessarily the same, but it was felt that this
was probably a reasonably accurate representation of the true

gituation,

Series 2 and 3 both consisted of two continuous beams, desig-
nated C and D for the 8 day loading, and E and F for the 28 day loading.
The loads initially applied to the quarter points of the interior spans
were 1800 pounds and the loads at the ends were 2700 pounds. Unfor-
tunately as was the case for Series 1, there was some variance in the
applied loads on these beams. At the end of the test period the load
cells were recalibrated and it was discovered that while the loads at
the ends of the beams of Series 2 and all of th; loads of Series 3 had
changed by less than 14Z, and usually much less, the load measured by
one of the interior load cells of series 2 had increased by 50Z. Figure

2.9 shows the initial and final loads applied to the continuous beams.

An inspection of the time~deflection curves that follow shows
that there were no abrupt changes in their slopes. This suggests that
the load changes were gradual rather than sudden. Through logic and
further study of the deflection curves it was postulated that the change
in load was probably logarithmic in nature, and this was the assumption
that was made for the model verification described later in Section

3'4.
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Series 1

The crack patterns for Beam A and Beam B are not contained in
this Chapter but are shown later in Section 3.5, where they are compared
with finite element simulations. The long kerm deflection curves for
these two beams are presented in Figure 2,10 and Figure 2.1l1. The
immediate deflection of Beam A was .220 inches and the additional long
term deflection was .662 inches, which gave a ratio of long term to
short term deflection of 3.0. The immediate deflection of Beam B was
«166 inches, the additional long term deflection was .352 inches, and
the ratio of long term deflection to short term deflectionr was 2.1. The
deflection ratio of Beam B was not much higher than the Code (12)(58)
approximation of 1.8, but the ratio for Beam A was mich higher than the
Code approximation of 1.9. Had the load not dropped with time the
tested deflection ratios would have been even higher, which perhaps

emphasizes the inadequacy of the current code approach.
Series 2

Beam C and Beam D were continuous beams loaded to an age of
eight days. Beams C and D were loaded in stages so that all loads
increased at the same rate. This meant that the final loads on the load
cells at the ends of the beams were reached before the final loads on
the load cells in the interior span. The midspan deflection of Beam C,
the top beam, was .199 inches, while the deflection at the midspan of
Beam D was .067 inches. The long term deflection curves for these beams

are shown in Figures 2.12 and 2.13. The total long term deflection for
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Beam C was .670 inches, and .487 inches for Beam D. These wvalues
represerited the combined effects of shrinkage, creep, and increased

loads. Crack patterns for the two beams can he found in Figure 2.14.
Series 3

The results of Series 3 gave a much better picture of the
behaviour of a beam under constant loads than did the other two series.
Although there was some change in the applied loads with time, the
mid-span moments of these beams changed very little. It is therefore
reasonable to assume that the measured deflections represented the
constant load condition very well, The load deflection curves for Beams
E and F are presented in Section 3.5. The loading procedure used with
Beams E and F was somewhat different from that used for Beams C and D.
The loads of E and F were applied proportionally so that the final loads
at all locations were reached at the same time. This meant that the
loads on the load cells in the center span increased at a faster rate
than those at the ends. This scheme was easier to monitor and was
easier to simulate in a finite element model than the previous scheme.

Beam E had a short term deflection of .143 inches and Beam F had a short

term deflection of .070 inches.

" The long term deflection curve for Beam E is8 shown in Figure
2.15. The time dependent deflection for this beam was .316 inches,
which meant that the long term to short term deflection ratioc was 2.2.
Figure 2.16 shows the long term deflection curve for Beam F, where the

time dependent deflection was .202 inches, and the ratio of long term to
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short term deflection was 2.9. These ratios are again significantly
higher than the Code predictions and would have been even higher had the

test continued for a longer period of time,
2.4.4 Summary

The most significant fact which emerged from the long ‘term test
results was the evidence that the ACI Code approach for predicting long
term deflections is not always very accurate., In addition, based on the
values observed from these tests, there does not seem to be any conser—-
vatism built into it. The long term deflections from Series | and
Series 3, which represented constant and slightly dropping load
conditions, were all higher than the Code predictions. In a deflection
sensitive structure this could cause damage and inconvenience. The
results also gave some indication that the Code approach of freating
simply supported beams and continuous beams the same way may not be
advisable, The continuous beams tested in this program had high
compression steel ratios, and yet their deflection ratios were also very
high. This may be due to the fact that the action in one high moment
region of a beam may significantly affect the long term deflectioms in
another. While recognizing that the Code equations need to be simple,
there is obviously a need for a more accurate approach, or, failing that
a more conservative approach. Unlik; Series 1 and Series 3, Series 2
did not provide much of an insight into the performance of the Code
equation, but it did show how deflections are affected by changing

loads. Structural members are rarely subjected to constant loads

throughout thelr design lives, and deflections may vary between high and
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low extremes. Designers must keep this fact in mind when assessing the
influence of deflections. Another fact that surfaced during the test
was the apparent long term sensitivity of the test equipment. Durabil-

ity is a key element because equipment which appears to be perfectly

acceptable in a short term test may fall over the long term.

The experimental data presented in this chapter served other
purposes besides testing the accuracy of the present ACI Code prediction
method. It was also used to check the accuracy of the finite element
model detailed in Chapter 3, and will provide long term deflection data
for future researchers. Hopefully the data will help further the know-
ledge of long term deflection behaviour and aid in the development of a

successful method for treating deflections in design.




CHAPTER 3

kY

FINITE ELEMENT MODEL

3.1 Constitutive Relationships

3.1.1 Strength and Elastic Relationships

Accurate constitutive stress and stress—strain relationships are
very important for the overall accuracy of finite element solutions.
This is not a major problem when all of the necessary experimental data
is readily available, but often this i? not the case. When experimental
values have not been provided it becomes necessary to use empirical
prediction equations to £ill in the missing informatiom. Although these
prediction methods may be very useful, it must be remembered that they
are really only approximations of the correct values. This section
containsg a review of the established prediction methods which have been
developed for the tensile strength of concrete, the modulus of elas-
ticity of steel and concrete, the compressive strength of concrete, and
the changes of these values with time. Also their proposed use in the

finite element model presented later in this chapter will be examined.

- 47 -
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Modulus of Elasticity of Concrete

The modulus of elasticity 1is probably the most important
material property used in a fin%te element analysis. It represents the
stiffness of the material and is found from the stress-strain diagram.
In the case of concrete, the calculation of the elastic modulus is comp-
licated by its nonlinear nature, Fortunately the concrete stress—strain
relationship is approximately linear up to maximum stresses of about 757
of ultimate (38), and an average value, usually defined as a secant
modulus, can acceptably represent the behaviour in this range. Since
this study was mainly concerned with the service load state, it was
possible to use the secant modulus exclusively to represent the

stiffness of the concrete.

Predicting the modulus of elasticity of concrete 1is very
difficult and has not yet reached a very high level of sophistication.
It is generally accepted that the modulus of elasticity can be approxi-
mated by an equation which is a function of the compressive strength and
the unit weight of concrete (8)., Most of the prediction methods now
avallable relate the elastic modulus to these two quantities. Because
the actual relationship is much more complicated than this, current
equations are not very accurate (8). Other factors which influence the
modulus of elasticity include, the condition of the specimen when

tested, the properties of the aggregate, the mix proportions, the age of

the specimen, and the curing conditioms.
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The modulus of elasticity prediction method chosen for use with
the proposed finite element model was suggested by Branson (8) and is as

follows:

Ec = (39.0 - .0015 £'c) A f'c (3.1)
where Ec = modulus of elasticity (psi)
f'c = compressive strength (psi)

w = unit weight (pcf)

Branson reported that in a comparison with 274 experimental values,
about 62% of the data fell within 10Z of the values calculated by this
equation, 83% fell within 202 of the calculated results, and 957 were

Most of the preceeding discussion was concerned with the stress—
strain relationship of conrete in compression, but concrete exhibits a
different behaviour in temsion. Houde (27) reported that the stress-—
strain curve in tension was nearly linear up to 901 of the ultimate
strength, and a straight line could be used to represent its behaviouf
without any significant loss of accuracy. It was therefore assumed in
this study that concrete was linearly elastic in tension until failure.
Information on the tensile modulus of elasticity of concrete is very
rare and there are no readily recognized prediction methods that can be
used in the absence of experimental data. Therefore, it was necessary
to assume that the modulus of elasticity in tension was the same as that

in compression, although this is only approximately correct.
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Modulus of Elasticity of Steel

The modulus of elasticity for steel is a much easiler property to
predict than the corresponding value for concrete. When more exact
information is not available, ACI Standard 318 (2) has suggested that a
value of 29,000,000 psi can be used as the modulus of elasticity for
reinforcing steel. Since steel is not a highly variable material, this
value should always be reasonably close to the correct one., In the
range of stresses which were considered in this study, steel is linearly
elastic, and failure is not a factor. Therefore incorporating the rein-
forcement properties into the finite element model was relatively simple

and accurate.

Tensile Strength

The tensile strength of concrete 1s mnot usually a very signifi-
cant design parameter, but in a finite analysis which must predict the
onset and progression of cracking, this parameter is extremely impor-
tant, Unfortunately experimental tensile strength is rarely reported in
the literature, and it is usually necessary to use a prediction formula
to determine it. Towards this end, researchers have developed a few
relatively simple equations which relate the tensile strength to the
compressive strength. The tensile strength of concrete is an extremely
difficult quantity to measure, but 1s 1s generally thought that the
modulus of rupture gives a fair representation of the cracking behaviour

in beams (38). Therefore, in this study, whenevef a reference is made
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to the tenslle strength of concrete, it will actually be the modulus of

rupture that is being discussed.

Researchers have discovered that many of the factors which
affect the compressive strength also affect the tensile strength (8),
and prediction formulas have been designed to reflect this relationship.
Unfortunately the relationship between tensile strength and compressive
strength is very complex and is also affected by the age and strength of
the concrete, the type of curing, the degree of compaction, and the
methods used to measure the two strengths. This, and the fact that the
tengile strength is normally a highly variable quantity makes its

prediction extremely difficult.

In the finite element modél of this study, the following predic-
tion equation suggested in the ACI Code (2) was used to represent the

tensile strength when reliable experimental data was not available.

fr = 7.5/f'c (3.2)
where fr = modulus of rupture (psi)

f'c = compressive strength (psi)

It should be noted that this equation is very approximate, and values

between 7.5/f'c and 12/f'c have been reported (8) for normal weight

concrete.
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Compressive Strength and Time

This study was primarily concerned with the service load state,
so the compressive strength of concrete (f'c) was not itself an impor-—
tant material property. However, f'c was one of the major variables in
the prediction equations for the tensile strength of concrete, the
modulus of elasticity of concrete, and the bond properties. Since these
values were Iimportant, the compressive strength was needed for the

analysis.

The compressive strength at the time of a test is usually speci-
fied 8o it is rarely necessary to use prediction equations to estimate
it. However, equations may be necessary when a prediction of the change
in compressive strength with time is required. 1Imn this study predic-
tions of changes in compressive strength with time were necessary
because the tensile strength, modulus of elasticity, and bond properties
were all time varient, and their prediction was dependent on f'c.
Branson (8) proposed the following hyperbolic design equation which was
used in this study to define the gain in the compressive strength with

time. For moist cured, normal cement:

t

(f.'t.".)t = %00 + .85¢ (£'c)28d (3.3)

where (£'c)28d = 28 day compressive strength

t = time (days)

Similar equations were suggested for moilist cured high-early strength

cement, steam cured normal cement, and steam cured high—early strength
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cement. These equations I1mply that the development of strength is
dependent on the type of cement and the curing conditions, but obviously
there are also other factors. When testing his equations, Bransom found
that in a comparison with 253 test specimens, 62% of the data fell
within 10%Z of the values calculated by his formulas, and 937% were within

20% of the calculated values.
Discussion

The accurate prediction and representation of the elastic and
strength properties of concrete and steel have significant effects on
the ultimate accuracy of finite element solutions. Unfortunately, it is
not always possible to rely on empirical prediction methods for missing
information. Pré'diction methods; have been developed for the tensile
strength of concrete, the modulus of elasticity of steel and concrete,
and the changes Iin the compressive strength with time, Some of the;se
equations have been presented in this section. In nearly every case the
compressive strength 1s the only unknown wvariable in the prediction
equations, Unfortunately the material relationships are much more
complicated than this, and the formulas are usually not very accurate.
This situation may have arisen because researchers in the past seemed
willing to sacrifice accuracy for simplicity. Although this may be
acceptable for design purposes, it significantly limits the effective-
ness of analytical models which rely on these equations. More accurate
relationships are required to improve the situation, but for now it is
necessary to use the methods that are currently available. If the

limitations of these prediction methods are properly understood, they
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can gtill be extremely wuseful because they usually give a fair

estimation of otherwise unknown material properties,
3.1.2 Shrinkage

Introduction

It 1s well known that concrete changes its volume when it is
subjected to variations in moisture content. When it gains water it
expands, and when it loses water it shrinks. Concrete is seldom contin-
uously saturated so shrinkage is the moisture change which is usually
most important to engineers. This study 1s concerned with the time
dependent behaviour of reinforced concrete, and therefore it is neces-
8sary to accurately model concrete ;hrinkage. The fact that shrinkage is
highly variable and not uniform throughout a specimen, means that it is
difficult to simulate it analytically. When experimental data is not
available, the problem 1s even more difficult because prediction methods
are needed to determine shrinkage strains. Since these strains are

often not reported in the literature, the prediction of shrinkage formed

a necessary part of this study.

The currently accepted technique for predicting shrinkage is to
relate it to matevrial and storage parameters. This approach of predic-
ting shrinkage has been examined in many studies (3)(4)(8) and many
empirical prediction methods have been proposed. Unfortunately there is
no universal agreement on the identity of all of the important factors

that influence the shrinkage behaviour, and the empirical methods which
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have been developed are very dissimilar in form and give widely differ—-
ing solutions., Hence the objective of the following discussion is to
examine the prediction of shrinkage strains and to select the prediction

method best sulted for inclusion in a finite element model.

Prediction Methods

The shrinkage mechanism, and thus the parameters affecting
shrinkage are not completely understood. Since a rational theory for
shrinkage is not available, prediction methods have been developed
empirically by studying the influencing parameters and assuming their
effects. As mentioned earlier, researchers have attempted to identify
these factors experimentally, but there is little agreement on which
factors should be included in an equation. Complicating the problem is
the difficulty in identifying any interdependence between parameters.
The cement paste parameters which have been identified include the
water/cement ratio, cement content, cement composition, air content, and
moisture content. The aggregate parameters have been reported to con-
sist of the -aggregate stiffness, the total aggregate conrtent, and the
gradation. Other factors such as the relative humidity, temperature,
time of drying, and member size have also been -identified (3)(4)(8)
(37)(38). The quantitative effects of those parameters on the shrinkage
curve are difficult to determine, and to properly develop an accurate
empirical design method, it 1is necessary to use a very large and well
organized statistical sample. This does not seem to have been done

yet.
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Numerous prediction methods have been developed over the years.
These vary from very simple equations to quite complex relationships.
All of the methods can be separated into two main groups. In the first
group, a shrinkage curve 1s defined for a set of standard conditions
which can be modified for nonstandard conditioms. In the second
category, the entire shrinkage curve is derived from empirically based
equations. It should be noted that these prediction methods have very
little theoretical basis and are almost entirely empirical in nature.
None are capable of predicting shrinkage strains exactly and they can
never really replace the acquisition of reliable experimental data. In
the next few paragraphs the available shrinkage prediction methods are
examined, and the specific ways im which they predict shrinkage are
detailed. From this review a method was selected for use with the

finite element model.

Schorer, 1943 (8)

Schorer 1introduced one of the first shrinkage prediction
equations, shown below. This simple relationship highlighted the
importance of the relative humidity on the ultimate shrinkage strain.

It did not however give the complete shrinkage curve.

Eshu = 12.4.10"0(90-0)

Naturally this equation 1s not very accurate because it depends
exclusively on the relative humidity, and there are many more factors

involved. it has been reported that the strains predicted by this
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equation are usually much less than the actual values (8), nevertheless,
this equation did provide an important first step towards the develop-

ment of more accurate methods.

Jones, Hirsch, and Stephenson, 1959 (8)

Jones, Hirsch, and Stephenson proposed a method for predicting
shrinkage of lightweight concrete using standard curves. A single curve
was derived empirically for specific concrete mix and storage condi-
tions. When the cement content, slump, air content, percent fines,
relative humidity, or size differed from the standard conditions, the
shrinkage curve was modified with empirically derived correction curves.
Although this method was developed specifically for 1lightweight

concrete, 1t does not appear to be any less accurate for normal concrete

(8).

Meyers, Branson, Schumann, and Christiason, 1970 (33)

Meyérs, Branson, Schumann, and Christiason proposed a shrinkage
prediction method that was very similar to the method suggested by Jones
et al. A hyperbolic equation was used to characterize the time depen-
dence of concrete shrinkage, and a standard curve was introduced for a
set of fixed mix and storage parameters. Correction factors were
applied to the standard shrinkage curve when other conditions were
present, and these factors were determined from test data for which the
only variable was the parameter under consideration. This technique

effectively eliminated the possibility of detecting any interdependence
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between the variables. The important parameters which were used in the
analysis were the relative humidity, the age, the dimensioms, the slump,
the percent fines, the cement content, and the air content. These
factors are essentially the same as those suggested by Jones et al.
This method was later adopted im the ACI Code for the prediction of
concrete shrinkage in the absence of experimental data.

-

CEB 1978 (13)

The CEB adopted a simplified empirical prediction method for the
calculation of shrinkage which used a standard shrinkage curve. This
curve was related to the specimen dimensions and was modified for the
effects of relative humidity, cement type, and temperature. The modifi-
cation factors were presented in tables and graphs, and although.this is
useful for design purposes, it is not directly applicable to computer
programs. A potential weakness of the CEB procedure is the fact that
there is no provision for the effect of mix parameters. It has been
noted that this could have a serious Iimpact on the accuracy of its
solutions because these factors are actually very important (4). The
method seems to be an updated version of the one introduced in 1970, but
the 1970 CEB (8) method also included the effects of the water/cement
ratio and the cement content. It is possible that simplifications may
have been made in the current procedure to accommodate designers.
Designers do not usually have access to mix properties and would not be

able to use a more complex relationship.
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Bazant and Panula 1978 (3) (4)

Bazant and Panula proposed a square root hyperbolic prediction
method for shrinkage in which the entire shrinkage curve was calculated
from empirically based equations. This prediction method was developed
exclusively for normal concrete and there is no provision for the treat-
ment of lightweight concrete. Although the formulas were empirically
derived, there was a certain theoretical basis in their development.
Diffusion theory was used to determine the effect of specimen size and
shape on the shrinkage curve. The other parameters in the relatiomship,
whose effects were found empirically, included relative humidity,
temperature, water/cement ratlio, cement content, the aggregate/cement
ratio, gravel/sand ratio, sand/cemept ratio, modulus of elasticity, and
28 day compressive strength. A wide range of experimental data was used
to develop the empirical formulas, and computer optimization techniques
were used to’ determine the constants and coefficients. In this way it
was possible to include the interd;pendence that may have existed

between variables. This capacity for including interdependence is this

method's greatest advantage.
Summary

Bazant and Panula's method was chosen in this study as having
the greatest potential for accurately predicting shrinkage strains in a
finite element model. Shrinkage data from 11 different s;urces were
used to develop these formulas, which seems to be more than was used for

the other methods reviewed. It is also the most complicated method, and
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although complexity does mnot always improve accuracy, the added
complexity allows for the inclusion of more effects. In assessing their
approach, Bazant and Panula used all of the experimental data they could
find to compare their equations with the CEB and ACI methods. This
comparison indicated that their equations performed best. This evidence

seems to support the selection of this method.

3.1.3 Creep

Introduction

The time dependent behaviour of concrete 1is influenced by two
main properties, shrinkage and creep. Both of these phenomenons have
significant effects on the long term deflections of reinforced concrete
beams and an accurate finite element model requires a good represent-
ation of both of them. Although there appears to be some interdepend-
ence between shrinkage and creep, it is normal to treat them separately.

This section will examine the inclusion of creep.

Creep can be defined simply as the time dependent deformation of
concrete due to applied stresses. Like shrinkage, the inclusion of
creep strains in an analytical model is not a simple task, even when
reliable experimental data is available. If data has not been provided,
an empirically based prediction method is required to generate creep
strains. Numerous studies have been devoted to creep prediction but
none of them have so far been completely successful in developing a

method that is always reasonably accurate. It 1s the object of this
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section to review creep and creep prediction, and to provide the

rationale for choosing a method for use with the finite element model.

Various hypotheses have been developed to explain creep but no
agreement has yet been reached on which explanation is the correct one.
Most of the creep mechanisms that have been proposed so far can be
grouped into a few general theories. Viscous and viéco-elastic flow,
solid solution, thermodynamic, deferred elasticity, and seepage theories
have all gained some acceptance (37). None of these theories completely
explains the causes of creep, so the true mechanism may be some combin-
ation of them, There is some evidence (3)(37) that there are two dis-
tinct components of creep. One takes place in the absence of moisture
movement between the concrete and the atmosphere and is called basic
creep, and the other is affected by the drying process and is called
drying creep. An accurate prediction method must consider both parts.
The difficulty in measuring and separating creep and shrinkage, basic
creep and drying creep, and the uncertainty surrounding the creep

mechanism, may account for the relative inaccuracy which is evident in

current creep prediction methods.

Prediction Methods

Since there is no general theory for creep, researchers have had
to rely on experimental data to identify and quantify the influencing
parameters in a creep relationship. There is no overall agreement
between researchers about which variables should be included in a creep

relationship and this has led to the development of widely differing
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prediction methods. The prediction of creep from material and eanviron-
mental parameters has developed in much the same way as for shrinkage.
More research work has been done with creep than with shrinkage, but
this does not seem to have made its prediction any more accurate. All
of the available prediction methods can again be separated into two main
groups. The creep curve in the first group is specified for a certain
set of standard conditions which can be modified for nonstandard
conditions. 1In the second group the entire creep curve is calculated
uniquely from empirical relationships. Unless otherwise specified, the
prediction methods reviewed in this section have combined basic and
drying creep together, implying that the time shapes of the two curves
are the same. Care must be taken when using methods employing this
gimplification because there is some evidence that this assumption may
not be exactly correct (3). The following section will review the
prediction of creep and explain the cholce of the method used in the

finite element model presented later.
Ross 1937 (37)

Ross provided some of the earliest work on creep and creep pre-
diction. He suggested that the creep time curve was best represented by
a hyperbolic functiom, and this contention has generally been supported
by subsequent researchers (33). Ross used an empirically based predic-
tion chart to estimate the effects of mix and storage parameters on the
creep curve. He assumed that creep strains were dependent on the stress
level, the water/cement ratio, the relative humidity, the age of

loading, and the diameter of the specimen. Although this method 1is
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mainly of historical interest now, Ross' work £formed ﬁhe foundation of

many subsequent investigations.

Wagner 1958 (8)

Wagner was one of the first researchers to use standard curves
and correction factors for creep prediction. He suggested that the
ultimate specific creep of a normal welght concrete was related to age
of loading, type of cement, relative humidity, cement paste coatent,
water/cement ratio, and the minimuﬁ dimension. A standard creep
coefficient was presented for fixed mix and storage properties which was
used as a reference point in the creep analysis. Empirically deriQed
correction factors were used to‘mndify the standard creep coefficient
when nonstandard conditions were present. Unlike most current
prediction methods, only the ultimate specific creep was calculated by
this method. Since wmany researchers have found that the creep of
lightweight concrete 1s not significantly different from the creep of
normal concrete (8)(37), this method would probably be valid for both

cases.
Jones, Hirsch, and Stephenson 1959 (8)

The procedure that was developed for creep by Jones, Hirsch, and

Stephenson 1is very similar to their method for shrinkage. A creep curve
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for lightweight concrete was presented for standard conditions of cement
content, slump, air content, percent fines, stress level, size, relative
humidity, and age of loading. The standard creep curve was modified
with empirically developed correction factors when nonstandard condi-
tions existed. Apparently the authors thought that the factors that
influence shrinkage were esgentially the same as the factors which
affected creep since the parameters they chose were the same for both
relationships. This method was developed from data oa lightweight
concrete. As mentioned earlier, the creep of lightweight concrete is
probably similar to the creep of normal concrete, so this method is

probably applicable for both cases.

Meyers, Branson, Schumann, and Christiason 1970 (33)

Meyers, Branson, Schumann, and Christiason proposed a prediction
method for creep which is also very similar to their method for shrink-
age. This method might be considered an updated version of Jones
et al's creep method because the important parameters in both instances
are essentially the same. The hyperbolic specific creep curve was used
by the authors to represent the creep time curve for concrete. Standard
conditions of relative humidity, size, age of loading, slump, air
content, cement content, and perc;nt fines, were defined for a partic-
ular concrete and a reference creep curve was presented. This curve was
modified with empirical correction factors when any other conditions
were present. The correction factors and the standard creep curve were
developed from mixed experimental data for normal and lightweight
concretes, and for Type I and Type III cements. This method was adopted

by the ACI (1) as a suggested creep prediction approach.
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CEB 1978 (13)

The creep prediction method introduced by the CEB in 1978 is a
major departure from the formulation they suggested in 1970 (8). In the
1978 version, creep was divided into two parts consisting of a revers-
ible (delayed elastic) part and an irreversible part. The irreversible
creep was also divided into two parts. The first represented the
irreversible component of the deformation which develops during the
first few days after loading, and the second represented the irrevers-
ible delayed deformation (flow) which is primarily affected by the ag;e
of the concrete when loaded. From this theoretical basis, an empirical
prediction method was developed. The total creep coefficient was
assumed to depend on relative humidity, composition of the concrete,
dimensions of the specimen, temperature, and rate of hardening of the
concretes The creep curves for the reversible and irreversible compo—-
nents were calculated separately and later combined to represent the
total creep. The recoverable part of the _delayed deformation was
agsumed to be independent of aging in -its development, and a single
creep time curve applicable for ‘all conditions was defined. The
irreversible creep was calculated from the concrete strength, the
relative humidity, the dimensions, the age of loading, and the temper-
ature. The fact that the composition of the concrete was not included
in the analysis may mean that this method was primarily intended for
designers. If this is the case, it may not be accurate enough for
analytical models. The method is also not directly adaptable to
computer modelling because the creep curves and coefficients are
presented in charts and tables which do not readily lend themselves to

computer programming,
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Bazant and Panula 1978 (3) (&)

Bazant and Panula proposed a unique creep prediction method that
is more complex than any of the other methods which have been presented.
In their formumlation the total creep was separated into a basic creep
component and a drying creep component, and both were evaluated separ-
ately. The authors felt that this was necessary because the basic and
drying creep time curves did not have the same shape. By examining a
wide range of experimental data, Bazant and Panula developed an empiri-
cal creep prediction method by using computer optimization techniques.
They related the basic creep to water/cement ratio, age when loaded,
compressive strength, aggregate/cement ratio, sand/cement ratio,
aggregate/gravel ratio, and type of cement. The drying creep was
related to relative humidity, age when loaded, compressive strength,
sand/aggregate ratio, water/cement ratio, gravel/sand ratio, £inal
shrinkage strain, and member dimensions. The presence of a shrinkage;
type function in the drying creep equations seems to indicate that
Bazant and Panula did not simply assume that shrinkage and creep were
additive. This agrees with experimental evidence. Although these
prediction equations were almost entirely empirical, they did have some
theoretical justification because diffusion theory was used to analyze
the effect of member size and shape on the drying creep. The authors
stated that their prediction method was applicable to all creep periods
including very long time creep and very short time creep. Most other

methods cannot make this claim.
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Summary

After careful consideration the creep prediction method chosen
as the most appropriate for use with the finite element model presented
later in this chapter was the one proposed by Bazant and Panula. Bazant
and Panula used experimental data from 36 sources to derive their
equations, and this appears to be more than was used to derive the other
methods which were reviewed. Their method had some theoretical basis
and their statistical analysis seemed reasonably detailed. In addition
the equations used in their method were easily incorporated into a
computer program. For these reasons the Bazant Panula method was

gselected for use in this study.
3.1.4 Creep Under Variable Stresses

Most research work on creep has been devoted tc the effects of
constant stresses, but since concrete structures are rarely subjected to
constant stresses throughout their design 1lives, it is important to
understand the influence of variable stresses on creep. Even when the
applied loads on a member are kept constant there can be significant
variations in stress due to indeterminacy or the movement of the neutral
axis. A proper representacién of creep must include some provisiom for

this condition.

A number of theories have been proposed to treat the effect of
variable stresses on creep, but all have problems with accuracy and

adaptability. This is not surprising because there is a limited supply
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of experimental data avallable on this subject and researchers have had
to draw their conclusions from small statistical samples. The analysis
is further complicated by the high variability normally associated with

~

long term properties.

Four main methods have been proposed for computing creep under
varying stresses and these have been identified as the Effective Modulus
Method, the Rate of Creep Method, the Method of Superposition, and the
Rate of Flow Method. This section will examine the techniques which
have been proposed for treating the effects of variable stresses on
concrete creep and discuss how the phenomenon was considered in the

finite element model to be presented later in Chapter 3.

Effective Modulus Method

The Effective Modulus Method is the least sophisticated proposal
for considering the influence of variable stresses on creep. In this
method a normal elastic analysis i1s used to determine the short term
behaviour of concrete, but the modulus of elasticity is replaced by an
effective modulus when the effect of creep is considered. The effective
modulus is a reduced modulus of elasticity which represents the sum of

elastic and creep strains. The effective modulus can be defined as:

Ec

L+ClEc

E'ec
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where E'c = effective modulus
Ec = elastic modulus

¢

specific creep (creep strain/unit of stress)

This method is the easiest one to apply to an analytical model because
it only requires the replacement of the modulus of elasticity. In this

regard it can be very useful in some cases.,
Rate of Creep Method

The Rate of Creep Method is a little more theoretically complex
than the Effective Modulus Method bdbut it does seem to give better
results. This method assumes that the rate of creep is independent of
the age of loading and the previbus stress history. The rate of creep
for a certain stress in an interval of time is known, and by differen-—
tiating the specific creep curve, the creep under a varilable stress can

be defined as:

de

t 1
c IO f(Et—')dt

where ¢ = creep

—— = rate of creep

dt = time increment

rh
[}

stress during time increment

The Rate of Creep Method is reasonably simple to apply and in many
instances gives acceptable results. The method generally overestimates

creep under a decreasing stress (18).
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Method of Superposition

The Method of Superposition is‘probably the most tedious method
to apply numerically to a creep problem but it also has some significant
theoretical advantages over the other methods mentioned. The principal
advantage of this approach is that it allows for the considefation of
gtress history. Variable stresses are treatéd in this method by super-
imposing the creep curves for each applied stress, where stress decre-
ments are considered as increments of negative stress., Strains produced
in the concrete by a stress increment at any time are coasidered to be

independent of the effects of stresses applied at any other time.
Rate of Flow Method

The Rate of Flow Method is the latest creep formulation which
allows for the consideration of the effect of variable stresses. In
this method the total creep is divided into a reversible (delayed
elastic) part and an irreversible (flow) part. The implication is that
reversible and irreversible creep are caused by different mechanisms and
variable stresses only affect the delayed elastic compoanent. This
assumption tends to contradict the superposition principle which assumes
that creep 1s a single reversible phenomenon. The effect of stress
higtory and creep recovery are implied in the Rate of Flow Method and
there is some theoretical justification in its development. This method
is not genmerally applicable to all creep problems because the separation

of the reversible and irreversible components means that only the 1978
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CEB creep prediction method, or specific experimental data, can be used

to analyze creep.
Discussion

For this study 4it was anticipated that concrete would be
subjected to sone variations in stress and it was therefore necessary to
account for this effect in the creep formulation. None of the methods
which have been described are consistantly accurate for variable
stresses and there is no general consensus as to which is the best one
to use. It has been stated that all of the suggested methods give an
adequate representation of creep for small or gradual changes of stress,
and when this occurs the simplest method is probably the best (37).
However, when large or sudden changes in stress are experienced, the

methods can give very different solutions.

In this study the Rate of Creep Method was chosen to represent
the creep for variable stresses because this method provided the best
combination of generality, computational efficiency, and accuracy.
Theoretically and numerically this may not be the most accurate method
avallable, but the following examination of sgome of the practical
difficulties assoclated with the other methods, and creep analysis in

general, should explain the choice.

The Effective Modulus Method suffers from a number of serious
weaknesses and is not usually appropriate for a creep analysis unless it

is substantially modified (46). 1In its normal form this method predicts
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complete strain recovery when the stresses in the concrete are removed.
In actual fact concrete does not exhibit this kind of behaviour. 1In
addition, since the effective modulus does not have the same value as
the modulus of elasticity, it does not give the correct solution for an
instantanegus change of strain due to a changing stress. with
decreasing stresses the strains are generally underestimated and with
increasing stresses the strains are usually overestimated (18). These -
deficiencies combined with the omission of the effect of stress history,
effectively eliminates this method for all but the simplest creep

analyses.

The Rate of Flow Method has some theoretical justification but
the validity of dividing the creep into reversible and irreversible
components 1s still open to question (3). There is a major difficulty
with applying this method to concrete creep because if the 1978 CEB
creep prediction method is not used, specific experimental data is
required to determine the reversible and irreversible strains. This
information is rarely available and the 1978 CEB prediction method seems

overly simplified for a detailed analysis.

The superposition method also has some theoretical justification
but the required computational effort is substantial because the creep
equations need to be modified at each load level. Although this method
is often fairly accurate for increasing stresses (18), researchers have
found that the principle of superposition may give erroneous results,
particularly where changes in load c¢ause a decrease in the total

concrete strain (44). In addition the superposition method cannot be
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applied to all creep analyses because a creep curve needs to be defined
at the age of each load change. This is possible when prediction
equations are used to determine the creep relationship but is usually
unrealistic when experimental data is used. This is particularly true
for a constantly changing load. Even when the use of the Method of

Superposition is possible, the computational effort can be substantial.

It is generally recognized that Rate of Creep Method is not the
most accurate one avallable for treating the effects of wvariable
stresses but unavoidable sources of error tend to reduce the superiority -
of the more complex methods. Whether the creep strains are determined
experimentally or with prediction equations, significant inaccuracies
are Inevitable. For example, the creep strains in the parametric study
were generated with the Bazant-Panula prediction method and this method
has an expected error range of about * 20Z. An error of this magnitude
virtually eliminates the benefits of using a more exact and complex
formulation for variable stresses. The increased costs cannot be
Justified. When experimental data is used to determine the creep
stfains, the high variability which i1s normally observed in long term
tests reduces the accuracy of the results. In addition, the conditions
under which creep tests are conducted are not exactly the same as those
experienced in beams. It is therefore unrealistic to expect the creep
curves to be the same, In particular the effect of size must be
recognized as a factor that affects the curves for creep specimens and

beams differently.
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There are some simplifications usually made for creep which also
affect the accuracy of creep analyses and these may also limit the
effectiveness of using a complex creep method. One simplification which
has some effect on creep results is the problem of using uniaxial creep
data to represent multiaxial 'creep behaviour. Creep strains from
experimental and prediction equations are usually derived from uniaxial
gstress states, while concrete 1s wusually subjected to multiaxial
stresses. Jordaan and Illston (28) found that although there were
strong similarities between uniaxial, biaxial, and triaxial creep, there
were also significant differences. Since the results from uniaxial
tests are usually used to represent the three dimensional case, it is
inevitable that this factor will cause some error in the solution.

Another simplification affecting creep analysis to some degree
is the assumption that creep in tension is the same as creep in
compression. The range of tests on creep in temsion 18 inadequate for
any systematic quantitative information to be derived (37), but
experimental results tend to indicate that there can be significant
differences between tensile and compressive creep. It is difficult to
assess the importance of the difference between creep in tension and
compression because the tensile stresses in beams are not very high, but

it is important to recognize this as a possible source of error.

Another source of inaccuracy present in all of the methods
dealing with variable stresses is the assumption that stresses are
constant through each time increment, and that when changes do occur
they occur in discrete steps, This is not really true for the class of

structures which were examined in this study because the stresses in
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these members did not change in a stepwise fashion. A highly accurate
solution would require the selection of very small time increments which
would drastically increase the computational costs. If this was not

done the accuracy could be reduced.
Summary

Research into concrete creep is usually related to constant
stress states but since concrete structures are usually subjected to
variable stresses it is Iimportant to consider this fact In a creep
analysis. The four techniques described in this section for treating
variable stresses ranged from simple and inaccurate formulations to
complex and fairly accurate formulations. Unanimous agreement between
researchers about which is the best method for handling variable
stresses does not exist., It seems that Europeans tend to favour the
Rate of Flow Method while North Americans seem to prefer some form of
the Method of Superposition. This is reflected in the literature on the
subject. 1In this study it was determined that the Rate of Creep Method
was probably the most suitable method for inclusion in the finite
element model presented later in this chapter. It was fairly simple to
apply and 1its accuracy was expected to be acceptable. Neville (37)
concluded that the Rat:e‘ of Creep Method was adequate for most creep
analyses where exact results were not required, and this suggestion
weighed heavily in the choice. Basic inaccuracies not related to the
-methods themselves tended to reduce the advantages of the more complex
and accurate methods, and thus their additional cost and effort were

deemed unjustifiable.
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3.1.5 Bond Stress And Bond Slip

Introduction

The exact nature of the bonding between concrete and reinforce-
ment is both complex and largely unknown. This is unfortunate because a
proper representation of reinforced concrete behaviour using the finite
element method requires some understanding of the interaction between
the concrete and the reinforcement. 1In an attempt to model the bond
phenomenon, a few simple bond stress—-slip relationships have been
proposed. Unfortunately there i3 a limited amount of useful experi-
mental data available, and current relationships are probably only
preliminary attempts in an ongoing search for an accurate constitutive
law. The difficulty in accurately measuring and interpreting experi-
mental data on bond characteristics has seriously impeded a proper
understanding of this subject, and this has led to problems in identi-
fying and quantifying the elements in a constitutive law., Despite the
deficiencies in current bond stress—slip relationships, the following
section will attempt to review the present status of this topic, and
gselect the most appropriate technique for modelling the phenomenon in a

finite element model.

Mechanisms

Bond stress can be characterized as the shearing stress which
acts parallel to the reinforcement along the steel—-concrete interface.

It is thought that bond is created by three main mechanisms. These are

E}
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chemical adhesion, friction, and mechanical interlocking between
concrete and steel (31). Chemical adhesion and friction are comsidered
the primary reasons for the bond .of plain reinforcing bars, while
mechanical interlocking is thought to be the most prevalent for deformed

bars (31).

Bond s8lip 1s present in reinforced Eoncrece when reinforcing
steel moves in relation to the surrounding concrete. Before cracking
concrete beams exhibit wvery low bond stresses and 1little or no slip.
The rate of change of stress in the steel along the length of the bars
18 relatively small at this point. It is only after cracking that bond
gtress and bond slip become significant. There is no real consensus on
the reason for bond slip., Lutz and Gergely (31) attributed bond slip to
the crushing of the concrete paste in front of the ribs of the deformed
bars. This conclusion was disputed by Mirza and Houde (35) on the basis
of their observations of pullout tests. They suggested that bond slip
was caused by the internmal cracking of the concrete layer closest to the

bar, and the cracking of the small concrete teeth near the bar lugs.

Test Methods

Before discussing the prediction of bond stress and bond slip,
it may be informative to examine the tests used to determine them. This
will highlight the limitations and relative accuracy of any empirical
formulas that were developed from them. The procedure which has been

used most frequently to evaluate bond properties is the pullout test.




78

In this test, an embedded reinforcing bar is pulled out of a concrete
cylinder or prism. Depending on the type of test, the maximum axial
stress In the concrete can be compression or tension, and the rein~

forcing bar can be pulled out from one or both ends.

Each variation possesses a number of fundamental weaknesses.
Cracking has a profound effect on bond, but when the concrete is in
triaxial compression there is no possibility for the formation of trans-—
verse tension cracking. This does not reflect the behaviour in beams.
This problem can be partially corrected by placing the concrete in
tension, but when the reinforcement is concentrically located, the
horizontal shearing stresses in the specimen may not be representative
of the stresses that actually exist in beams (42). Eccentrically rein-
forced pullout specimens have been used occasionally to correct this
problem, but even this does not eliminate all of the problems. In light
of the many difficulties which are associated with the pullout test,
there is some question about the validity of using it at all to simulate

local bound behaviour (49).

A limited number of beams have been used to measure bond
properties but these results alone are insufficient for developing
empirical prediction equations. Extensive testing of full size beans
would probably produce more useful and realistic data than is possible
from pullout specimens, but the cost has so far been prohibitive. Even
if these tests were done the results would still be flawed. The deter—
mination of local bond streasl and slip is extremely difficult and very

sensitive to experimental error (35). This may account for the
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disparity in the results which have been published on bond properties,

and the subsequent differences in reported prediction methods.

Prediction Methods

An accurate finite element model requires a reliable represent-
ation of the interaction between steel and concrete. Bond in a finite
element model is usually simulated with spring elements. The stiff-
nesses of these elements are defined by the bond stress-gslip relation~
ship. A few simple empirical equations have been developed to relate
local boad stress to local bond slip, but Iin view of the limitations
mentioned earlier it seems probable that these formulas really oaly

approximate the correct behaviour.

Nilson 1968 (40)

Initially, a linear bond stress—slip law was proposed by Ngo and
Scordelis (39), but Nilson (40) recognized that the actual response was
nonlinear. At that time the available experimental data was insuffi-
cient for the derivation of a fundamental bond law, so Nilson devised an
equation indirectly from the results of Bresler and Bertero. Bresler
and Bertero studied the distribution of steel strain in concentrically '
reinforced tensile pullout specimens. From measurements of steel strain
along the reinforcing bars, Nilson was able to calculate the average
local bond stresses. Bond slip was found indirectly by estimating the
concrete displacements on the basis of the measured slips at the faces

of the test specimens. Although there was considerable scatter, a
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definite trend was recognized. The following third degree polynomial
wags fitted to the data and an equation was obtained which related the
local bond stress to the local bond slip.

9 3

3 a% + 1986 x 10° d

d - 5356 x 10°

u = 3606 x 10
where u = local bond stress
d = local bond slip
No claim was made about the accuracy or generality of this
equation, and it was really only intended as an example of a possible
bond stress—slip law. A slip limit of 449 x 10-'6 inches, corresponding
to a local bond stress of 719 psi, was used as the termination point of
the relationship., Nilson assumed that when the slip limit was exceeded
the local bond stress became zero in the immediate vicinity of a crack.
When the slip 1limit was exceeded elsewhere, Nilson assumed that the
local bond stress remained essentially constant. Even though this
equation was not practical as a universal prediction formula, it was an
important preliminary step in the development of a realistic bond-slip

relationship.
Nilson 1972 (41)

Further research by Nilson in 1972 resulted in a more generally
applicable bond stress-slip relationship. Nilson performed pullout
tests on concentrically reinforced tension specimens. He measured steel

strains with strain gauges mounted in the reinforcement, and concrete
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strains with embedded strain gauges. The bond slip was found indirectly
from the differences between the concrete and steel strains. Using
curve fitting techniques, the following bond stress—-slip law was
proposed which was a function of the concrete strength and the distance

from the loaded end.
u = 3100 (l.43c + 1.5)d f'c
where u = local bond stress (psi) < (l.43ec + 1.5) f'c

c- = distance from the loaded end (inches)
f'c = compressive strength (psi)

d = local bond slip (inches)

The most unique feature of this relationship was the dependence
of the bond stress on the distance from the loaded end. In a beam this
represents the distance from a crack face. Unfortunately this conclu-
sion has not been supported by subsequent research. Edwards and
Yannopoulos (19) tested a large number of pullout specimens and conclu-
ded from their results that the distance from the loaded end had no
effect on bond stress or slip. This was also the finding of Mirza and

Houde (35 ) .
Venkateswarlu and Gesund 1972 (52) '

Venkateswarlu and Gesund (52) approached the formulation of a

bond stress-slip relationship from an entirely different direction.
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They used a slip modulus to relate bond stress to bond slip. This slip
modulus was derived indirectly from a crack width prediction equation.
The crack width formula was obtained from experimental beam crack width
data reported by other researchers. The two authors found that their
slip modulus depende\d on the steel stress, the modulus of rupture of the
concrete, the tension steel ratio, and the modular ratio. The idea of
using crack widths to calculate bond slip is an interesting one, and one

that probably deserves further study.

Mirza and Houde 1979 (27) (35)

Mirza and Houde tested 62 tension specimens to determine the
bond properties of reinforced concrete. From these test results they
developed an empirical bond slip prediction equation. This equation
related the bond slip to the steel stress and the ratio of concrete to
steel areas. The authors recognized that their equation was only an
approximation, but in view of the high experimental variability usually
experienced in tension tests, this was not considered a serious problem.
To develop the bond stress-slip relationship, tension specimens with
internally instrumented bars were employed. Using this data to find the
bond stress, and the slip prediction equation to calculate the bond
slip, an empirical nonlinear bond law was proposed. This equation was
normalized to a common concrete strength and cover as follows:

2.3 15,4

6 + 1.35><101 d” - .33x1077d (3.4)

2

u = 1,95x10" - 2.352109d
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where u = local bond stress (psi)

d = local bond slip (inches)

The maximum local bond stress for all concrete strengths and covers was
reached at a local slip of about .0012 inches. After this point the
bond stress was assumed to depend upon the distance from a crack face.
Mirza and Houde observed from theilr test data that the bond stress
beyond a distance of 3 to 4 inches from a cracked surface remained
relatively constant after the slip limit was exceeded. When the slip
limit was exceeded within 3 to 4 inches from a crack face, the bond
stress was found to decrease progressively to zero. This finding agreed
with Nilson's earlier comments about bond behaviour past the slip

limit.

The accuracy of Mirza and Houde's bond stress—-slip equation is
difficult to assess because bond slip was calculated by what was
admittedly an approximate equation. When the variability of this slip
equation is combined with thg errors which usually accumulate in pullout
test results, it seems reasonable to assume that this empirically
derived stress-slip formula would not give an exact repfesentation of
the bond relationship. Realistically it may only provide a rough
estimation of the c;:rrect behaviour., On the postitive side, the fact
that some of Mirza and Houde's findings were also supported by other
regsearchers (19)(40), and none have been seriocusly refuted, tends to
give credence to the validity of their results. One very attractive
feature of this relationship is the ease with which it can be incorp-

orated into a finite element model.
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All of the bond relationships reported in this section were
developed from short term results. The main purpose of this study's
analytical model however was aimed at long term behaviour. It should be
recognized that the bond relationships may not be strictly applicable
for this application. However until research work is dome in this area
it is necessary to assume that the bond behaviour of reinforced concrete

for long term loading is the same as for short term loading.

Summary

It is obvious from the preceeding review that there is still a
great deal of confusion surrounding the subject of bond in reinforced
concrete. There is no real consensus on the true relationship between
bond stress and bond slip, and researchers are still attempting to
identify the parameters that affect them, The u;xcertainty surrounding
this subject is quite understandable because of the difficulty in
measuring and interpreting experimental bond data. The development of
usable bond stress—-slip relationships 1s therefore still in a prelim-
inary stage, and current equations are simple and relatively inaccurate.
Despite the weaknesses in current prediction. methods, some represen~
tation of bond was required for the finite element model that was
developed in this study. The equation developed by Mirza and Houde was
chosen for this. Their equation was readily adaptable to a computer
program, and some of their findings have also been supported by other
researchers. Thelr equation is therefore probably as accurate as any
other, More research in this area would help in clearing up the

uncertainties about bond behaviour, and might aid in the development of
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a more accurate bond stress-slip relationship. Until this is done,

modelling of bond will always be very approximate.

3.2 Finite Element Modelling

3.2.1. Literature Review

The finite element method is a very powerful analytical tool
which has only recently gained wide acceptance in the analysis of
reinforced concrete. With the advent of modern high speed computers,
this tool has become a practical and cost effective way to simulate the
behaviour of concrete members. However, a number of material and
geometric problems make the application of this method to reinforced
concrete very difficult. For instance, rei_.nft;rced concrete is a highly
varlable three-dimensional material that 1is composed of both steel and
concrete., These materials have very different properties and the inter-
action between them is not well understood. The stress and stress-
strain relationships for concrete are nonlinear which makes their
analysis very complicated. Another significant nonlinearity is caused
by progressive cracking which not only changes the geometry, but also
Introduces the effects of dowel action, aggregate interlocking, and
tension stiffening. Concrete in also influenced by the nonlinear time
dependent effects of creep and shrinkage. Modelling all of these
factors with the finite element method is a significant numerical
problem, that is further complicated by the fact that many of the

effects are not well understood.
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~ To date, researchers using the fiﬁite element method for
reinforced concrete have focused most of their attention on developing
numerical techniques which can simulate the behaviour of some 0of the
more Iimportant factors that influence reilnforced concrete behaviour.
The purpose of this section is to examine some of the developments that
have been made in finite element modelling of reinforced concrete, and
hopefully shed some 1light on the possibilities and limitations that

currently exist with this approach.
Ngo and Scordelis 1967 (37)

Ngo and Scordelis were among the first in 1967 to use the finite
element method for reinforced concrete. In their model, the steel and
concrete were both represented with two-dimensional triangular elements
of unit width. Transformed section concepts were used to formulate the
properties of the elements at the level of the reinforcement. The steel
and concrete were both considered as linearly elastic materials. This
was a significant simplification because concrete is actually highly
nonlinear. The interaction between the steel and the concrete was
modelled with special linkage elements. Horizontal springs coannecting
the steel and concrete nodes were used to represent the bond behaviour,
and vertical springs were used to represent the dowel action. There was
insufficient data available for the derivation of stiffnesses for the
vertical springs and they were not included in the analysis. However

the horizontal springs were included.
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One discovery made by Ngo and Scordelis was that the horizontal
linkage elements were not very sensitive to errors, since substantial
variations in the stiffness of the horizontal springs did not affect the
results very much. Five beams with predefined crack patterns were
analyzed to illustrate the proposed model. Cracking was simulated by
separating the nodes at the crack locations. This model was one of the
first attempts at modelling reinforced concrete with the finite element
method and although Ngo and Scordelis' model was not very practical, it
did demonstrate the potential of the finite element method as an

analytical tool for studying reinforced concrete.

Nilson 1968 (38)

In 1968, Nilson extended the work of Ngo and Scordelis by
including nonlinear effects and progressive cracking. Plane stress
triangular elements were again used to model the steel and concrete, but
Nilson added the effect of concrete's nonlinear stress—strain relation-
ship. A nonlinear bond stress—slip law was used to define the hori-
zontal stiffness of the spring linkage elements. Instead of wusing
transformed section concepts to evaluate the elements at the level of
the reinforcement, the two materials were considered separately. To
facilitate the analysis, the round reinforcing bars wer:ta1 replaced by an
equlvalent square bar. The thickness of the concrete at the level of
the reinforcement was also reduced to account for the concrete material
that was displaced by the steel. An incremental loading procedure was

used to incorporate nonlinear effects and progressive cracking., When

the principal tensile stress in two adjacent elements exceeded the
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tensile strength, a crack was simulated by separating the nodes along
the common edge of the two elements. This restricted the crack orien-
tation because cracks were forced to form along element boundaries.
Unfortunately this could result in incorrect crack patterns., When a
crack formed the element grid was modified, and the load on the
structure was released completely. Then the load was reapplied
incrementally until the next crack formed. This model was much more
practical than Ngo and Scordelis' model, but there was still some need

for improvement.
Will, Uzumeri, and Sinha 1972 (53)

Will, Uzumeri, and Sinha analyzed the behaviour of reinforced
concrete joints using plane stress fectangular elements. Cracks were
assumed to form when the maximum principal tensile stress exceeded the
tensile strength, but in this analysis the proper orientation of cracks
was considered. The orientation of cracks was assumed to form in a
direction perpendicular to the principal temnsile stress. Instead of
gseparating the nodes along cracked element boundaries, cracks were
simulated by modifying the properties of elements which had failed.
This was done by eliminating the stiffness of an element in the
direction normal to a crack. Essentially when a normally isotropic
element cracked, it became an orthotropic element. This technique is
often called the smeared crack concept and has subsequently been used by

most researchers to simulate cracks in reinforced concrete structures.
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Spokowski 1972 and Houde 1973 (47) (25)

At McGill University, Spokowski (47) and Houde (25) were also
studying the application of the finite element method to reinforced
concrete. They added stirrups to their models by representing them as
four degree of freedom bar elements. They assumed that for stirrups
there was no significant displacement between the steel and concrete,
and therefore it was reasonable to ignore the slip between them. Both
researchers used the Ngo and Scordelis spring linkages for steel-
concrete 1nteraction, but this time the dowel action was also
considered. The stiffnesses of the vertical springs used to simulate
dowel action were estimated from empirically derived prediction
equations., Houde (25) also used spring linkage elements to model
aggregate Interlock along cracks. ?hen this was done it was necessary
to use a predefined crack pattern. An incremental loading procedure was
used by both researchers and the maximum principal temsile stress was
used to define the fallure criteria. At the end of each load increment
all of the elements were checked for fallure, and the elements that had
cracked during that increment were identified. The nodal forces of
these elements were reapplied to adjacent elements and redistributed in
the following load increment. Spokowskli and Houde both assumed that
cracked elements were Incapable of carrying any stresses, and the stiff-
nesses of these elements were completely deleted from the system. This
;ssumption is not really correct because cracked elements actually have
some load carrying capacity. The smeared crack approach would probably

have given a more exact answer.
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Scanlon and Murray 1972 (46)

Scanlon and Murray used layered plate bending elements to
simulate the behaviour of reinforced concrete slabs. Each layer of an
element was permitted ‘to have different properties and in this way it
was possible to include the effects of reinforcement and progressive
cracking. The stiffness of the layer at the level of the reinforcement
was calculated by superimposing the Iindividual stiffness of the steel
and the concrete., Unfortunately, this technique made it impossible to
consider bond slip because it was necessary to assume that there was
perfect bond between the concrete and the steel, This reqt'xiremem: may
have seriously affected the observed crack patterns because the progres—
gsion of cracking is highly influenced by bond slip. The smeared crack
concept was used to simulate cracks, and when the maximum principal
tensile stress exceeded the tensile strength, the modulus of elasticity
and the Pois;on's ratio were reduced. In cracked elements the shear
mo:‘iulus was retained and although it was not stated explicitly, this may
have been done to account for aggregate interlock. Tension stiffening
was another feature included in Scanlon and Murray's model. Instead of
immediately releasing the tensile stresses in cracked layers, Scanlon
and Murray simulated tension stiffening by slowly reducing the tensile
stresses. There was still some stiffness retained in cracked elements
in the direction perpendicular to the cracks. Scanlon and Murray
reported that this modification did not affect the prediction of the

failure load, but did have an influence on the load-deflection curve.
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Hand, Pecknold, and Schnobrick 1973 (23)

Hand, Pecknold, and Schnobrick used 20 degree of freedom shallow
shell layered elements to investigate the load deflection history of
reinforced concrete plates and shells. Cracked layers were represented
by the smeared crack concept, and aggregate interlocking and dowel
action were simulated by retaining a fraction of the shear modulus.
This fraction was defined as a shear retention factor, and it was
assumed that this factor was constant. The authors recognized that a
variable shear retention factor that depended on the crack width would
probably give a better representation of the correct behaviour, but they

did not include this in their analysis.

Phillips and Zienkiewicz 1976 (41)

In 1976 Phillips and Zienkiewicz presented a model which used 12
node isoparametric elements to analyze reinforced concrete structures.
Special axial elements lying inside the boundaries of the concrete
isoparametric elements were used to simulate the reinforcement. It was
necessary to assume that there was perfect bond between the steel and
the concrete because the strains in the steel elements had to be the
same as those iﬁ the surrounding concrete elements. Smeared cracks were
assumed to form across part of an isoparametric element when the maximum
principal tensile streas or strain at an integration point exceeded a
limiting value. Crack closure was included in the model. Phillips and
Zienkiewicz concluded that cracks would close when the direct strain

across a cracked region became compressive, and when this occurred the
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cracked elements took on the properties of uncracked elements. Since
the authors recognized that a2 plane of weakness still existed along the
crack, the shear resistance of a previously cracked region was assumed

to be less than that for a region that had never been cracked.

Cedolin and Dei Poli 1977 (14)

Cedolin and Dei Poli analyzed shear critical reinforced concrete
beams with plane strain triangular elements. A limiting tensile strain
was used as the failure criterion, and the smeared crack approach was
used to represent the cracked elements. The shear retention factor that
was suggested by Hand et al (23) was used to simulate aggregate inter—
locking and dowel action. Instead of using a constant shear retention
factor, Cedolin and Dei Polli introduced a variable factor which
decreased linearly with increasing crack widths. As mentioned earlier
this improvement would probably give a better representation of the
actual behaviour of concrete because it is well known that aggregate

interlocking is very dependent on crack widths (23).

Sallam 1978 (45)

Sallam investigated the behaviour of reinforced concrete joints
with the finite element method. He used the four node Goodman joint
(21) in place of the normal, K Ngo and Scordelis linkages to model the
interaction between the steel and the concrete. The stiffness of the
joint elements were evaluated by averaging the displacements between the

steel and concrete nodes. This meant that the stiffness of each joint




was constant all along its length, which is really only an approximation

because the stiffness actually varies nonlinearly.
Bazant and Cedolin 1979 (5)

Bazant and Cedolin investigated the treatment of crack propaga-
tion in finite element analyses of'reinforced concrete and suggested
some Iimprovements to them. They suggested that models which used a
limiting tensile stress or strain as the failure criterion were not
always accurate. This conclusion was based on the observation that
crack propagation could be significantly influenced by the element grid.
They suggested that fracture mechanics criteria should be used to deter—
mine crack initiation and propagation, and the failure in an element
should be expressed in terms of the energy required for crack

extension.
Conclusion

Although the preceeding review is by no means complete, it does
show that significant progress has been made in the af;a of reinforced
concrete modelling by the finite element method. With varying degrees
of success, numerical techniques have been developed to simulate the
effects of aggregate interlocking, dowel action, tension stiffening,
bond slip, and progressive cracking. Despite this progress there are
still many areas requiring further study. Examples of these areas
include concrete-steel interaction, failure criteria, three-dimensional

action, and the effects of time dependent behaviour. Researchers who
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wish to improve the finite element modelling of reinforced concrete must
also deal with the fact that many of the factors which still need to be
simulated are not very well understood to start with. This will
continue to cause problems with accuracy. Another consideration that
has not yet been mentioned is the cost of a finite element analysis.
The improved accuracy which may be achieved through the use of complex
numerical techniques, must be bélanced against the cost. Finite element
modelling of reinforced concrete has made considerable progress in the
time since it was first introduced, but there are still many areas where

significant advancements can still be made.
3.2.2 Concrete Elements

The concrete in the finite element model was represented with
constant stress triangular elements. An option for the inclusion of
geometric nonlinearity was incorporated into the analysis even though
this was not really necessary. Service loaded beams rarely have large-
deflection effects and small deflection theory is usually applicable.
However this option was included for possible later applications. The
elements in this analysis were assumed to be in a state of plane stress,
and an iterative, incremental solution scheme was used to deal with the
many nonlinearities. In this section the derivation and solution of the

finite element equations which were used to model the concrete will be

explained.
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Stiffness Matrix and Load Vector

The derivation of the stiffness matrix and load vector for
congtant stress triangular elements with geometric nonlinearities ig
available in many finite element textbooks (34)(55), but is briefly
presented here for completeness. The 3 node, 6 degree of freedom
element 18 shown in Figure 3.i. The principle of virtual work was used

to formulate the problem and define the element properties.

The displacement functions u and v in the x and y directions for

the triangular element were given by:

(3.5)
v = L1 v, + L2 v, + L3 vy
These equations gave a linear approximation for u and v within the

element.

The principle of virtual work was used to derive a function

which represented the sum of internal and external generalized forces.

[ B o &= =0 (3.6)
v

Where Rh is the nodal load vector, and B is the kinematic large dis-

placement matrix which relates incremental displacements to incremental

1

gtrains. The definition for Bn is characterized as:
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A e = Bn A u (3.7)
where u = nodel digplacements.

For small strains, the stresses were written as a function of

the elasticity matrix D, the initial strains, €, and the initial

stresses, g s 80 that:
og=D(eg~ e:o) LCA (3.8)

The solution of Equation (3.6) required an iterative solution
procedure for which the Newton Raphson method was used. To do this it
was necessary to find a relationship between Equation (3.6) and Aun.

This was accomplished by first writing Equation (3.6) in an incremental

form.

T

n % av - ARn=0 (3.9)

T
[ B ac av+ [ aB
v v

where A Rn = Q) 1f there is no change in the external loads
Then Equations (3.7) and (3.8) were combined to give:
A on = D Bn A un (3.10)

The stiffness matrices where then defined by using Equation

(3.10) and writing Equation (3.9) as:
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Kanun+KnAun=0 (3.11)

where K ¢ Au_ = [ BT o Qv
e T

and K=/ B Toe av
n n n
v
When cracking occurs during loading, Equation (3.6) may not be
completely satisfied in one iteration. 1If this is the case, it may be
necessary to correct the error through an iterative process. Iteration

continues until the error 1s reduced to a value smdll enough not to.

affect the results.
Summary

The nonlinear analysis presented in this section was used to
define the properties of the concrete in £he finite element model and an
iterative incremental solution procedure was employed to solve the
required equations. It was assumed that the two—-dimensional triangular
element gave an acceptable representation of the states of stress and
strain in the concrete. Although it may be possible to increase the
accuracy of the analysis by using more complex elements, it was decided
that the increagsed cost, the extra memory requirements, and the

complexity were not justified.
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3.2.3 Cracked Concrete Elements

When the maximum principal tensile stress in a concrete element
exceeded the tensile strength, that element was assumed to crack.
Cracking is very difficult to simulate in a finite element model because
of problems with computer storage limitations, confusion about
concrete's proper failure criterion, and uncertainty about the true
materlial response. Various techniques have been suggested to deal with
concrete cracking but there are inherent weaknesgses in all of them.
This section contains a review of the methods which have been suggested
for treating cracking in a finite element analysis, and the modifi-
cations which were made to the concrete elements to simulate this

effect.

Probably the best way to model cracking is to redefine the
element mesh by Iintroducing new nodes along crack boundaries. Unfor-
tunately this creates irregularly shaped elements and substantially
increases the required memory storage. A related alternative 1is to
separate the nodes along the closest element boundary to a crack.
Unfortunately this modification usually creates incorrect crack
patterns, and may also substantially increagse the computational effort
and required memory storage. A simpler modelling technique is to
completely delete the stiffness of elements which exceed the cracking
criteria. This means that cracking does not change the element grid and
causes no increases in memory requirements. Realistically however,
cracked elements actually retain much of their stiffness after éracking,

and completely eliminating their stiffness may Introduce a comsiderable
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loss of accuracy. However this idea of cracked regions rather than

discrete cracks leads to a more accurate technique called the smeared -

crack approach. Cracks are simulated in this method by reducing the
stiffness of cracked elements according to a technique reported by
Zienkiewicz (55) for anistropic materials. Bazant and Cedolin (5)
reported that the smeared crack assumption of cracked regions may
actually be closer to reality than the assumption of discrete cracks
because of material inhomogeneity and the stabilizing effect of the

reinforcement.

In this study the smeared crack approach was used to simulate
cracks in the finite element model. According to this technique, an
infinite oumber of finely spaced cracks form in an element when the
failure criteria for that element is exceeded. For this model, failure
took place when the maximum principal tensile stress  exceeded the
tensile strength. Cracks were assumed to form normal to the direction
of the maximum principal tensile stress. Some disagreement exists among
researchers about whether cracking should be coatrolled by the maximum
stresses, the maximum strains, or some other failure criteria, but since
tests for tensile capacity are usually related to stress, the maximum

stresses were used in this study.

The following assumptions were made concerning cracked elements:

1) No stiffness was retained in the direction normal to a
crack

2) Poisson's effect was neglected

3) Shear stiffness was omitted
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These assumptions meant that no provision was made for the effects of

aggregate interlocking and tension stiffening.

Cracked elements were analyzed by rotating their x and y axes to
coincide with the crack direetion. The idealization and orientation of
cracked concrete elements is shown in Figure 3.2. To comply with the
assumptions about cracking, the elasticity matrix, [D], in the global
coordinate system was changed for cracked elements to [D'] in the loecal

coordinate system x', y'.

0 0 0
[D'] =E{0 1 O (3.12)
g 0 0

The 1local stiffness matrix and 1load vector of the cracked
elements in the local coordinate system were derived from virtual work
in the same way as for uncracked elements. To form the global stiffness
matrix and load vector in the X, y system, appropriate transformations
were necessary. Displacements in the x, y system were converted to the

x', y' system with the following transformations.

u' = 4 cog B+ v sin 8

v' = =y gin B+ v cos B (3.13)

where the prime denotes the local coordinate system., Nodal displace-~
ments in local coordinates were related to nodal displacements in global

coordinates with the following transformation matrix.
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{6'} = [T] {8}

cosB sinB 0 0 0 0
~s5inB cosB 0 0 0 0
0 0 cosf sinB 0 0
where [T] = -sinB cosB 0 0 (3.14)
0 0 ¢} 0 cos B sinB
0 0 0 0 -sinf cosB

This leads to the transformation of the stiffness matrix and load vector
to the global system. )
From the potential energy theorem.

v =1 g6 k1) g8} (3.15)
W= {2} [&'} (3.16)

Where K' is the cracked element stiffness matrix in the local coordinate
system, U is the strain energy, P is the local load vector, and W is the

potential energy of loading.

By combining Equations (3.15) and (3.16) with Equation (3.14),
the strain energy and potential energy for the element in the global

system were defined as:
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L oo \
v=1 &% m w1 m o (3.17)
W= [ (8 (3.18)

The stiffness matrix can be extracted from Equation (3.17) and

defined as:
K= [T]7 [K'] [T] (3.19)
The load vector comes from Equation (3.18) and is written as:
pa= (o) [1] (3.20)

This formulation was expected to provide a relatively simple and
accurate way to simulate cracks in concrete. Even though such factors
ag aggregate interlocking and tension stiffening were omitted, the
results should realistically reflect the initiation and progression of

cracks.
3.2.4 Steel Elements

The steel in the finite element model was represeanted with four
degree of freedom bar elements. It was assumed that the transverse
stiffness of the reinforcement was negligible compared to the concrete.
Therefore only the axial stiffness of the steel was included. This
assumption seemed to be reasonable and it substantially reduced the size

and cost of the analysis. Geometric nonlinearity was not incorporated
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into the analysis of the reinforcement because large deflections were
not expected to be present in the beams studied. However provision was

made so that this refinement could be added later if necessary.

Stiffness Matrix

The stiffness matrix of the bar element is available 1in any
finite element textbook (34)(55), but a b;ief derivation is provided
here for completeness. The bar element used in the analysis is shown in
Figure 3.3. Since geometric nonlinearities were not comsidered in the
derivation, the displacements in the transverse direction were omitted.

The linear displacement function of the bar element was thus given by:

X X '
u (1 - E) u1 + 2 u2 (3.22)

The stiffness matrix was developed from the strain energy

expression for an axial element where:

y'A
U --%§ f (u')2 dx (3.23)
: o

and:

10 -1 0]

0 0 0 ¢
k=221-1 0 1 0

0 0 0

Transformation matrices can be used if the direction of the steel is not

parallel to the x-axis. The solution procedure outlined in the section
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on the concrete elements was also followed for the steel elements. FEven
though there were no nonlinearities in the behaviour of the steel
elements, it was necessary to follow an incremental solution procedure
because of nonlinearities elsewhere in the analysis. It was felt that
the bar element gave a good approximation of the stress and strain
states in the reinforcement and that this simple element gave the best

combination of acgcuracy and computational efficiency.
3.2.5 Bond Elements

The intergction between steel and concrete is very important to
the overall response of concrete members. It is therefore essential to
model this phenomenon as accurately as possible in a finite element
model even though there 1s still a great deal of uncertainty surrounding
it. Ngo and Scordelis (37) suggested using special spring linkage
elements to represent the bond characteristics. However, since these
elements only satisfy compatibility at the nodes they may not be very
accurate when a nonlinear bond relationship is used. A different kind
of element was proposed by Goodman, Taylor, and Brekke (21) to study
jointed rock masses. This element can be made to ensure compatibility
along the interface between constant stress elements and is therefore
more suited for concrete bond representations. For this reason the
Goodman joint element was chosen to represent the bond behaviour in the
finite element model of this study. The derivation presented by Goodman

et al, with a few modifications is presented in this section.
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The Goodman jolnt, shown in Figure 3.4, is a 4 node element
which has a finite length but no width. 1Initially, the adjacent nodal
pairs (1,4) and (2,3) seen in Figure 3.4 have the same coordinates, but
when forces are applied to the joint, these palrs separate. The proper-
ties of the element are dependent on the relative movement between the
top and bottom faces, and are defined with empirical relationships.
Dowel actlon was neglected in this study, so the relative displacements
in the vertical direction were restrained. Only horizontal displace-
ments were allowed. The following paragraphs contain details on the
derivation of the stiffness matrix and load vector for the joint

element.
Stiffness Matrix

The displacement at the top and bottom of the joint element were

defined in terms of a nondimensional coordinate o, where:

1- l+a
up = (50 w5 ug
(3.24)
1= I+a
up = (50 )+ u
where u, = displacement of top of element

up = displacement of bottom of element

U, Uy, Ug, Uy = nodal displacements

The relative displacement between the top and bottom of the element were

then defined at any point along the length by:
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1- 1+ 1+ 1-
ap o T (T u t ) uy ) (D (3.25)
The stiffness of the element was found by making use of the

Potential Energy Theorem, the relative displacements, and Mirza and

Houde's nonlinear bond relationships (25)(33) as:

1
kys -% j-l w, ) ks«{uj} da (3.26)

where {N} = |- -]-'-:9-')

The stiffness, k.s, comes from the local bond stress-slip
equation developed by Mirza and Houde. It was expressed by the
following polynomial:

= 1.95x10% - 2.35x10%42 + 1.39 01233 - .33:08%8% (3.27)
Yns

where lubs = local bond stress (psi)

d = local bond slip (in)

Differentiation of Equation (3.27) with respect to slip gave the bond

stiffness per unit length as:
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TDN (3.28)

where D = diameter of reinforcing bar

N = number of bars in the cross—-section

The variation of displacements along the boundaries of the
constant stress triangular elements and the axial bar elements was
linear., However, since the bond stress-slip law was nonlinear, the
variation in stiffness along the interface was also nonlinear. There-
fore the stiffness at the nodes was defined using three point Gauss
Quadrature Numerical Integ'rar.ion. In this way the nonlinear nature of
the bond behaviour could be represented. This modification seemed to
represent a significant improvement over previous methods which have

assumed that the bond stiffness between nodes is linear. -
Load Vector

Like the stiffness matrix, the load vector, shown below, was
also defined in terms of the relative displacement, the nondimensional

coordinate, a, and the bond relationship.
L 1l
F, =3 f_l N} T da (3.29)

The shape factor, {N}, is the same as that given in Equation (3.26), and
the bond stress, Ts, came from the local bond stress—slip law of
Equation (3.27). The bond stress given by Mirza and Houde's equation
leads to the bond stress per unit length as shown im Equation (3.30)

below:
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TS = u..bs TD N (3-30)

The terms in this equation are the same as those in Equation
(3.28). Since the bond stress equation was a nonlinear function, three
point Gauss Quadrature Numerical Integration was used to solve Equation

(3.30).

This formulation appears to be a significant improvemeant over
the Ngo and Scordelis spring linkages because compatibility can be
provided all along the steel~concrete interface. Unfortunately the
accuracy of the solution generated with this approach is also dependent
on the accuracy of the bond relationship. Improvements in the modelling
of bond are therfore very dependent on improvements in the accuracy of

this relationship.

3.2.6 Creep and Shrinkage Formulation

The technique adopted for treating the effect of time dependent
strains on the f£finite element model was first proposed by Kanchi,
Zienkiewicz, and Owen (27). They developed an implicit visco-plastic
model which incorporated material and geometric nonlinearities. This
model was used in the finite element model of this study to treat creep
and shrinkage strains. In the analysis, an incremental solution
procedure was used to determine the cumulative effects of the changing
inelastic strains., The basic formulation of this procedure can be found

in the paper by Kanci et al, but since concrete does not exactly follow
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this formulation the equations were redefined to reflect the

differences.
Creep Strain Increments

The explicit form of the concrete creep strain rate is dependent

on the applied stresses and the time under load. It can be written as:
e
e = £ (o,t) (3.31)

A creep strailn increment A eg, was defined for a time interval

At = cn+1 - tn’ by using the following formulation.

A E; = At [(1-9) En + ¢ E:HJ (3.32)

In this case ¢ = 0, is the Euler scheme or "fully explicit”
¢= 1, i8 "fully implicit”
$ = %, is the implicit trapezoidal scheme, or Crank-

Nicolson rule, which is used for linear equationms

A truncated Taylor series expansion was used to define §:+1.

oc °c
’ GeT
where Hn = (—33—) = Hn (on) (3.34)

The matrix Hu depends on the stress level at the nth creep increment.
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This formulation is very good for linear creep laws, but since
concrete has a nonlinear creep law, Equation (3.33) is not always very
accurate. This has an adverse effect on the convergence rate. To
ensure proper convergence either an iterative scheme or a residual load
vector may be used. In both cases an accurate prediction of é::1+l is
preferable. To accelerate the rate of convergence and to improve the

accuracy of :-.:;'_1, the Taylor series was modified. With the addition of

an extra term, Equation (3.33) can now be written as:

e ¢ "c At
€4l = S + € T+ Hn A . (3.35)

Equation (3.35) is no longer a proper Taylor series, but, for
the given creep curve, the additional term provided a much better

prediction of é:

+1° The creep stralin increment could now be redefined

ass

2
c c e At .
Aen enAt-i-q:en 5 +¢HnA0'nAt (3.36)

Shrinkage Strain Increments

The explicit' form of the shrinkage strain rate can be written

S ge) (3.37)

The shrinkage strain increment As:h, for time increment

At = tn-!-l - tn’ was defined as:
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sh sh sh
A € = &4 € (3.38)

A limited Taylor series expansion was used to define 5221 implicitly.

2
sh sh *sh "sh At
el = & + €, At + e 3 (3.39)

The shrinkage strain increment was then written as:

- 2
A r-:.Sh = g At + ESh At (3.40)
n n n 2

Stress Increments

The stress increments were obtained from the elasticity matrix,

the total strain increment, and the inelastic strains as:

Ao =D(b ¢ —Asc-Ae:h)
. (3.41)
sh
= D (B Aun-Ae Aen)

In this case, A u is the incremental nodal displacement vector, and Bn
is the kinematic large displacement matrix which relates displacement’
increments to strain increments. The Bn matrix is composed of two
parts, corresponding to the linear and nonlinear terms used in the

Lagrangian formulation for‘geometric nonlinearities.

Substituting A e: and A e:h from Equations (3.36) and (3.40),

into Equation (3.41), gave the stress increment implicitly as:
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Aid 2 " 2

-1 _ (% c At _,ssh sh At

Ag =F D[BnAun (snAt+¢sn-—-—2) (en At + & 2)]
’ (3.42)
where F = [T+ ¢ALtD Hn] (3.43)

and I = the identity matrix.
Equations of Equilibrium

The equilibrium equation which must be satigfied for any time

was:

[ B o av-R =0 (3.44)
v

The Rn term is the equivalent nodal load vector due to the external

loading.
The incremental form of this equation was written as:

T
J’v B,Ag dV+K__Au -AR =0 (3.45)

where Kc a is the initial stress matrix which is dependent on the stress
level, and A Rn is the change in the external loads during the time
increment. The matrix A Rn is equal to zero if the external load
remains constant throughout the time increment, or is applied in

discrete steps.
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The incremental nodal displacements were determined by combining
Equations (3.42) and (3.43) with Equation (3.45). The total displace-

ments, stresses, and strains where then found.

The incremental stresses obtained from Equation (3.45) may not
satisfy the total equilibrium condition of Equation (3.44). This is due
to the fact that the strain rates calculated by EBquations (3.35) and
(3.39) are not exactly the same as those given by the creep and shrink-
age laws. An iterative solution procedure 1s often used to reduce the
error to an acceptable level. Another suggestion, which was adopted in
this model, is to correct the error in the next time increment with the

residual load vector:

* J, T 4

*
where Rh+1 is the residual load vector which is calculated from the
total load vector, Rﬁ+l’ the updated kinematic large displacement
matrix, Bn+1, and the updated stress vector, Top1®

3.3 Sensgitivity

No discussion about the proposed finite element model would be
complete without providing some analysis of its sensitivity. This is
especlally important for an investigation involving reinforced concrete
because of concrete's complex nature and inherent variabllity. It is
unrealistic to expect a theoretical tool like thé finite element method

to precisely model the behaviour of a reinforced comncrete beam, but as
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long as there is a proper appreciation of the limitations and relative

accuracy of the model, it can be used successfully with some confidence.

The performance of the model is affected to varying degrees by
numerical and material £factorse. Its overall accuracy can only be
assessed after a complete examination of each individuval contributing
factor. Some insights 1nto some of the factors which influence the
model were presented in previous sections dealing with modelling and
material properties. These included discussions about the accuracy of
the creep, shrinkage, and bond equations, and the expected accuracy of
finite element models in general. However at that time there was no
attempt to quantify theilr effects on results from the analytical model.
The objective of the following section 1s to provide this information
and to give some indication of the probable accuracy that might be
expected from the proposed finite element model.

In a sensitivity study, it is only possible to examine factors
which can be varled within the program or changed through input vari-
ables. Any source of inaccuracy which cannot be quantified within the
program cannot be tested for semsitivity. For this reason the effects
of dowel action, tension stiffening, aggregate interlocking, crack
modelling, two-dimensional plane stress modelling, material nonhomogene-
ity, and other similar factors were not studied. No alternatives to the
way the model simulated reinforced concrete were compared. Instead, the
investigation was limited to those. influences which were supplied as

independent variables such as the modulus of elasticity, tensile
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strength, bond stiffness, creep, shrinkage, and the finite element mesh

size.

The standard beam used in the sensitivity study was Corley and
Sozen's Beam Cl (17), details of which can be found in Section 3.42. By
varying some of the parameters of this beam and comparing the results
with those obtained £rom the standard beam, it was hoped that some
indication of the sensitivity of the model would become apparent. It
should be recognized that this sensitivity study is only concerned with
the response of a representative beam, and changes in geometry or

boundary conditions may alsc have an effect on the results,

The sensitivity study was divided into two main sections. The
first one contained an examination of a beam stressed well beyond its
cracking load. The second was concerned with a beam stressed to approx-—
imately 1its cracking load. It was felt that the behaviour of the two
extremes would give a more complete picture of the behaviour of all load
levels, These two main sections were each divided into two subsections
so that short term and long term deflections could be investigated
separately. In each case only one variable was varied at a time and all
other variables were kept constant. The results of the sensitivity

study are shown in Figures 3.5 through 3.22.

3.3.1 Higher Stress Case

The immediate and long term deflections of the sample beam under

relatively high stresses (47% of ultimate using fy = 40 ksi) are shown
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in Figure 3.5 to Figure 3.,12. Each material variable was varied by 207%,
and the number of elements along the length was doubled. In this
gsection very little discussion will be centered on the beam's behaviour
at low load levels since this will be examined later in more detail, A
general examination of the deflections seems to indicate that no single
variable had an undue effect on the final beam deflections. Under short
term loading, the maximum difference between the standard case and the
varied cases was only about 8%, For the long term loading the largest
discrepancy at the end of the loading period was about 97. It should be
noted that the discrepancies at the end of the loading period included

both short term and long term effects.
Tensile Strength

The effect of decreasing the tensile strength by 20% from the
standard value 1s shown in Figure 3.5 and Figure 3.6. The main influ-
ence on the short term load-deflection curve (Figure 3.5) of changing
this parameter was observed in the early stages of loading near the
cracking load. In this range, the load level of crack initiation has a
gsignificant effect on the deflections. The curve for the lower tensile
strength deflections began to diverge from the standard curve at about
407% of the total load. This was due to earlier cracking. When the load
was iIncreased further however, the curves began to converge again as the
degree of cracking in the two cases became more similar., In fact, the
difference between the two curves at the end of the loading period was

only 2%, which certainly indicated that the tensile strength was not as
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significant a factor when the loads were much higher than the cracking

load.

This conclusion also seemed valid for long term deflections. It
can be seen in Figure 3.6 that for the two cases there was very little
difference between the variations in deflection at the beginning and end
of the loading period. This behaviour was not totally unexpected
because the main effect of cracking had already been felt. After

cracking the tensile strength is no longer as important a parameter.

Modulus of Elasticity

The modulus of elasticity of the concrete was also decreased by
20% and the results are shown in Figures 3.7 and 3.8. All other proper-
ties of the concrete'remained unchanged. The results from Figure 3.7,
the short term data, were similar to the varied temsile strength results
in that the influence of the modulus of elasticity was more pronounced
at the lower end of the load deflection curve. The final deflection was
about 8% greater than the corresponding deflection in the standard beam.
This was considerably better than the 20Z difference that one might
expect for a normal :elastic solid. The improvement may be attributed
directly to the effect of cracking. Factors which influence the stiff-
ness of a beam, such as cracking and bond deterioration, probably over—
shadowed the effect of the modulus of elasticity in the highly cracked

beam.
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The influence of the modulus of elasticity on the long term
deflections is shown in Figure 3.8. The modulus of elasticity had no
apparent effect on the long term behaviour of this beam. The difference
in deflections between the standard beam and the reduced modulus beam
was the same at the end of 705 days as it was at the beginning of the
loading period. This result was not really surprising because the
modulus of elasticity has little effect on the factors relating to the

prediction of long term deflections.

Bond Stiffness

Very little needs to be said about the effect of increasing the
bond stiffness by 207 because this change seemed to have no real effect
on any of the deflections. The deflections for this case represented a
highly cracked beam where the effect of bond properties should have been
most visible, and yet the standard deflections were almost the same as
for the varied bond stiffness. Since significant variations were not
apparent, it seems safe to say that the results were not very sensitive
to changes in bond stiffness. These results support the conclusions of
Ngo and Scordelis (39) who also contended that the actual value of the

bond stiffness was not critical for a finite element analysis.

Shrinkage

The effect of increasing the shrinkage strains by 20% is shown
in Figure 3.9. The influence of this change was observed almost immed-

iately, but the deflections never varied from the standard deflections
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by more than a reasonably constant 5%. This indicaéed that for this
particular beam, significant changes in shrinkage strains had a lesser
effect on deflections. This is a reasonable conclusion because shrink-
age 1is only one factor in time dependent deflections. In a highly
stressed beam like the one represented here, the creep effect would be

more likely to dominate.
Creep

The effect on long term deflections of increasing the creep by
20Z is shown in Figure 3.10, and, as just predicted, the effect was more
pronounced than for shrinkage. Creep is a load dependent phenomenon.
Therefore, when the concrete stresses are high, it plays a significant
role in determining the long term deflection. By increasing the creep
by 20Z, the total deflection at the end of the loading period increased
by about 8%. Unlike the shrinkage results, this percentage difference
was not constant throughout the loading period but increased with time

at a decreasing rate.
Element Mesh Size

The accuracy of a finite element solutiomn can be significantly
affected by the finite element mesh. To get some idea of the influence
of this factor the number of elements along the length of the beam was
doubled. The results are shown in Figure 3.11 and Pigure 3.12. From
the nature of the finite element method, it would be expected that

increasing the number of elements would increase the deflection and this
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is indeed what happened. Doubling the number of elements increased the
deflection by 5% for the short term case, and slightly less for the long
term case. Since the convergence of a finite element solution is not
linear, further doubling of the number of elements would probably have a
lesser effect on the deflections., This means that the results shown in
Figures 3.1l and 3.12 really only 1llustrate the relative influence on

the meshes used in these examples.

3.3.2 Lower Stress Case

In Figure 3.13 to Figure 3.22, the sensitivity results for a
reinforced concrete beam loaded to very close to the cracking load (24%
of ultimate using fy = 40 ksi) are shown. As was the case for the
higher stressed examples, each material variable was varied by 20%. The
finite element mesh size was tested by doubling the number of elements
along the length of the beam and by doubling the number of elements
along the height of the beam. An inspection of the short term results
indicated that the model did not perform as well for this level of
loading as it did for the previous one. This. was primarily due to the
fact that some variable changes caused the beam to crack while others
did not. The difference in deflections between a cracked beam and an
uncracked beam can be substantial, Under the given loading, cracking
was not observed in the finite element analysis of the standard beam.
However, a simple stress check of this beam indicated that the beam
should have cracked. The fact that it did not, emphasises the fact that
a finite element solution underestimates the exact solution. An

inspection of the long term deflection results showed that the short
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term variations decreased considerably with time, This occurred because
those beams which did not crack under short term loads, did so when the
load was sustained, The largest difference in the results for the short
term case was approximately 827%, while the largest final difference in
the long term results was only about 7%. The following paragraphs will

discuss these results in more detail.
Tensile Strength

Tensile strength has a significant effect on the lower end of
the load-deflection curve, and Figure 3.13 confirms this. Lowering the
tensile strength of this beam by 20%Z caused a crack to form, whereas
this was not the case for the standard beam. Obviously a beam with a
single crack in it has a much lower stiffness than an uncracked beam.
In this case the increase in deflection was 63%. When the long term
deflection was included in the analysis, Figure 3.14, the difference in
deflections dropped dramatically. This occurred because the standard
beam cracked with time, and the final stiffnesses of the two beams
became very similar, At the end of the loading period the difference
between the two curves was less than 2%. Therefore, in this case a
lowering of the tensile strength accelerated the initiation of cracking.
It also had a significant effect on the individual magnitudes of the
short and long term deflections, but had little effect on the total

deflection.
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Modulus of Elasticity

The modulus of elasticity 1s another variable which has a
significant influence on the stiffness of a beam loaded to around its
cracking load. In an uncracked beam, the modulus of elasticity is the
major material property affecting the stiffness of the beam. Decreasing
the modulus of elasticity by 20% affected the entire load-deflection
curve, as shown in Figure 3.15. At the end of the short term loading
period the standard deflection was 20% less than the deflection for the
low modulus of elasticity. The inclusion of time dependent effects
reduced this discrepancy significantly. The difference between the two
curves at the end of the sustained loading period, shown in Figure 3.16,
was only about 2Z. The modulus of elasticity had little effect on creep
and shrinkage, and after the beam cracked, its influence was not very
strong. As was the case for the tensile strength results, the short
term and long term deflections from this comparison were different, but

the total deflections were almost the same.
Bond Stiffness

The bond stiffness was decreased by 20Z to test the sensitivity
of this wvariable. The results of this comparison were not plotted
because there was no appreciable difference betweén this case and the
standard one., This fact was not really surprising because bond stiff-
ness 1s not much of a factor in a lowly stressed, lightly cracked beam.
Until cracking, the steel stresses are low and there is no slip between

the steel and the concrete.
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Shrinkage

The effect of increasing the shrinkage strains by 20%Z is shown
in Figure 3.17. At the end of the loading period an increase of 7% was
observed in the deflections. The magnitude of the deflection difference
between thls case and the standard one is almost the same as for the
highly stressed beam. This is not very surprising because shrinkage is

not a load-dependent property.
Creep

Increasing the creep strains by 20% did not have as significant
an effect on the lower stressed beam as it did on the higher stressed
beam. Unlike shrinkage, creep is a load dependent property. When
stresses are low, variations in creep strains have less effect on the
deflections. As shown in Figure 3.18, the final difference between the
standard beam and the beam with the higher creep strains was about 4Z%.
The notable aspect of this variation was the fact that the beam with the
higher creep strains had a lower deflection. This may seem contradic-
tory at first, but creep in a simply supported beam relieves some of the
stresses In the tensile zone. This means that cracks initiate later and
do not progress as far into the beam as when creep is less. Creep also
tends to close up existing cracks. Figure 3.18 supports these conclu-
sions because it shows that the first crack iInitiated later than the
crack in the standard beam. Also, the crack did not progress as far

into the beam.
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Finite Element Mesh Size

The effect of doubling the number of elements along the length
of the lower stressed beam had a significant effect on the instantaneous
results. Unlike the standard beam, this beam cracked during the appli-
cation of the load. For this reason the deflection shown in Figure 3.19
was 502 higher thén the standard case. Earlier it was stated that
increasing the number of elements increases the displacements, This
causes an increase in stresses, which speeds up the cracking process.
With time, the standard beam also cracked and this brought the standard
beam deflection more in line with the variable beam deflection, shown in
Figure 3.20. At the end of 705 days, the difference in deflections was
only about 23Z. The effect of cracking on the beam stiffness was
obviously more important that the effect of increasing the number of
elements. In a beam that does not crack however, the number of elements
can make a significant difference. To eliminate the effect of this
variable the number of elements should be as high as is economically

feasible.

For the lower stressed beam, the number of elements through the
height of the beam was also doubled. This particular variation had the
greatest effect on the instantaneous results. The deflections are shown
in Figure 3.21. The standard beam had a deflection which was 45Z less
than the deflection of the larger mesh beam. The main reason for the
difference was the fact that this beam cracked, whereas the standard
beam did not. The deflection of this beam was also higher than the

deflections of the other cracked beams, probably because the first crack
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progressed further into this beam. Until cracking took place, the
deflections of the standard and variable beams were simiiar. It seems
likely that the variable beam cracked first because the centroids of the
lowest elements in this beam were closer to the extreme tension fibre
than the corresponding elements 1in the standard beanm. Since the
stresses in an element were calculated at the centroid, the variable
mesh beam reached its cracking load first. It is also possible that the
crack progressed further into this beam because the centroids of the
elements above the crack were also closer to the crack tip. Stresses
around a crack tip are high and this may have influenced the growth of

the crack.

The long term deflections of this example are shown in Figure
3.22., The standard beam cracked with time and at the end of the loading
period the variable beam deflection was about 5% higher than the
deflection of the standard beam. Once again the effect of cracking
overshadowed other effects. Since the crack in the standard beam never
progressed as deep as for the finer mesh beam, the relative deflections

for this case were not as close as for some of the other examples.

Summary

In this ser;sitivity study the effects of changing many of the
finite element model input variables were examined. It is important to
understand the effects of these changes because concrete itself is a
highly variable material. The main conclusion which may be drawn from

this study was that cracking had the greatest influence on the stiffness
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of the reinforced concrete beam. It tended to overshadow the effects of
all other influences. Since the accuracy of the crack modelling
technique could not be tested directly, its effect on the results is

unknown.

For the beam stressed well beyond its cracking load there was no
single variable that had more than an 8% effect on the instantaneous
deflections for a 20% difference. When long term effects were varied by
20%, only creep and shrinkage strains had differences as lafge as 8%.
In all cases the influence on deflection was not nearly as great as the

variation of the parameter.

The beam loaded to around 1its cracking load was influenced
mostly by variables which.hastened or delayed the onset of cracking.
When the beam was uncracked, the material and mesh size parameters had a
much larger influence than for a cracked beam. When even a single crack
was formed there was no other single parameter which changed the deflec—
tions by more than a few percent. The ratio of long term to short term
deflections in the lower stressed beam was greatly affected by whether
major cracking took place during loading or with time. Obviously the
model 1s much more sensitive to variations when the stresses in the

concrete are near fallure.

One factor that has not been addressed yet is the fact that even
when one parameter does not affect the results very much on it own, the
combined effects of a few parameters can influence the results substan—

tially. Obviously the proposed finite element model will not duplicate
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experimental results exactly. There are far too many possible vari-
ations in the input parameters, and the prediction methods that were
used can only approximate the correct results. However the preceding
sensitivity study showed that small variations in the parameters did not
usually have a significant effect on deflections. Therefore the model

can be used with some confidence in this regard.

3.4 Evaluation of Model for Short Term Loads

The short term beh&viour predicted by the proposed finite
element model was evaluated by comparing its results with experimental
data obtained from a number of different sources. It was important for
the model to accurately predict the immediate deflection of concrete
beams so that the emphasis of this study could be focussed on the long
term effects. Not all of the information required for a complete finite
element analysis was provided in the 1literature, and it was usually
necessary to estimate some of the material properties. Experimentally
obgserved crack patterns, concrete strains, and mid-span deflections from
the literature were used to check all aspects of the accuracy of the
finite element model. It should be noted that concrete is a highly
variable material and an exact duplication between the finite element
model and experimental data is never possible., In general however, the
following examples will show that the model performed very well in most
cases, and, considering the number of assumptions that were made, was

able to simulate the short term behaviour of reinforced concrete beams.
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The short term test deflections reported in the literature did
not include self-weight deflections. Since self weight influences
cracking behaviour, the deflections from the finite element model were
determined by subtracting self weight deflections f£from the total
deflections. The results and conclusions from the Sensitivity section

should be kept in mind when reviewing this chapter.

Beam 7/1

The first beam used to verify the accuracy of the analytical
model was tested by Leonhardt and Walther (30) in 1962. They studied
the mment-she;ar relationship of reinforced concrete beams. Since not
all of the required information was available, it was necessary to
estimate those values using the empirical relationships reported in
section 3.11. The compressive strength of the concrete in this test was
specified as a cube strength. To convert this quantity to a comparable
cylinder strength, an equation developed by L'Hermite and reported by

Neville (38) was used.

The properties of Leonhardt and Walthers Beam 7/1 as well as the
finite element discretization used is shown in Figure 3.23. The tensile
strength of the concrete was estimated using Equation (3.2), and the
concrete modulus of elasticity was estimated using Equation (3.1). The
ultimate load of this beam was 13.5 kips, so the ratio of applied load

to ultimate load was .433.
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The experimental load-deflection curve for Beam 7/1 is compared
in Figure 3.24 with the finite element predictions. The correlation
between the experimental and finite element results is almost unbeliev-
able considering the number of approximations which were made. At no
time was there a varlation of more than a few percent between the two
curves. It was probably coincidence that the results were this good
since experimental variability and the sensitivity of the model would be
expected to create greater differences. However the excellent agreement
between the experimental and finite element deflections indicates that
the model accurately simulated each stage of the loading and cracking

process.
Beam 0A-2

Testing the accuracy of a finite element model with one set of
experimental data does not in itself prove the validity of the model. A
model must demonstrate consistency in simulating correct behaviour. To
achieve this goal the results from a beam tested by Bresler and
Scordelis (10) were compared with the resuits from the finite elemeﬁ:
model. Bresler and Scordelis tested a number of different beams to
determine their shear strength properties. The beam they designated as
0A-2 was chosen for the verification. The authors reported crack
patterns as well as midspan deflections for this beam, so a more
detailed comparison between experimental‘and finite element results was

possible.
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Pertinent information about the test beam and the finite element
discretization are presented in Figure 3.25. The modulus of elasticity
of the concrete was estimated using Equation (3.1). The ultimate load
of this beam was 80 kips, and the ratio of applied to ultimate load was

0.&5.

The experin;ental and finite e;l.ement generated deflections are
presented in Figure 3.26. Loading for this beam was high enough to
cause significant cracking. The correlation between the two deflection
curves was again excellent. The difference between the finite element
predictions and experimental results at 452 of the ultimate load was
only about 8%Z. The behaviour of the finite element curve was almost
identical to the behaviour of the experimental curve. This indicated
that the loss of stiffness in the two beams took place at almost the

same rate,

Since cracking is the most significant factor contributing to
the instantaneous deflection of a reinforced concrete beam, it was vital
that the finite element model simulate it correctly. Bresler and
Scordelis supplied the crack pattern for Beam OA-2 and this is compared
in Figure 3.27 with the finite element solution. It is important to
remember that since cracking is influenced by many different factors, it
is unrealistic to expect the model to duplicate the experimental results
exactly. Rather, it is the general behaviour which is important.
Although the crack patterns in Figure 3.27 were not identical, there

were many similarities. A common feature of both beams was the tendency

for some of the cracks to form at the level of the reinforcement rather

hi
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than at the extreme tension £fibre. This common feature gave a good
indication that the steel-concrete interaction was realistically
gimulated by the finite element model. The crack spacings were also
gimilar. The major difference between the beams was the fact that more
cracks were observed in the experimental beam than were predicted by the
model. They were also initiated at lower loads and progressed further
into the beam. This may have been due to the size of the elements, a
lower tensile strength, or a slightly different stress distribution.
The difference in cracking was reflected to some degree in the deflec-
tions, since the experimental deflections were always slightly greater
than the finite element ocnes. However the effect was not very large and

it decreased as the load increased.

Beam DR10O

In the course of an investigation into 'steel fibre concrete,
Swamy and Al-Ta'an (51) reported on the deflectlon characteristics of a
simply supported beam with tension and compression steel. Beam DRI0O was
selected for the comparison with the finite element model. This beam
was made from normal concrete without steel fibres and most of its
material properties were reported. The details for this test are
presented in Figure 3.28. The ratio of applied load to ultimate load
was about 0.47 in this comparison. Since the cube test was used to
define the concrete compressive strength, L'Hermite's equation was used

to £ind a comparable cylinder strength.
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The load-deflection curves comparing the experimental results

with the analytical results are shown in Figure 3.29:. The correlation
between the two curves is reasonable, but not as good as for the
previous examples. This was the case even though more material proper-
ties were given. The apparent anomaly is not remarkable in itself
because the standard tests which were used to dermine the material
properties do not exactly represent the conditions that actually exist
in beams. In addition, the significant effect of normal experimental
variablility must also be recognized. It is evident from Figure 3.29
that the model predicted a stiffer beam than was actually observed. The
largest difference between the two curves occurred towards the lower end
of the load-deflection diagram where the modulus of elasticity and the
tensile strength are important parameters. After about 40%Z of the load
had been applied, the slopes of the two curves became very similar. The
percentage varlation between the finite element and experimental curves
decreased considerably after the cracking load was exceeded. This is
the same behaviour observed during the Sensitivity Study. The f£inal
difference between the finite element generated curve and the

experimental curve was about 25%.

Experimental variability seems to be the most likely reason for
the finite element model predicting a stiffer beam than was observed
experimentally. The evidence for this conclusion comes from further
data in Swamy and Al-Ta'an's test (51). They tested another beam which
was almost identical in every way to Beam DR10 except for the strength
of the tension steel. In the lower region of the load-deflection curve

this other beam should have had nearly the same deflections as Beam
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DR10. Any differences would be mainly caused by experimental vari-
ability. In fact, this beam had deflections which were almost identical
to the finite element model predictions. This strongly suggests that
the variation between the finite element predictions and the experi-
mental results from Beam DRIQ fell within the bounds of experimental

variability. No model can do better than this.

Beam E3Al

Rodriguez, Bianchini, Viest, and Kesler (44) tested fifty two
two=-span continuous ‘beamé to determine various shear strength proper—
ties. One of their test beams, Beam E3Al, was chosen for the compari-
son., This was the first beam that tested the accuracy of the finite
element model in simulating the behaviour of‘a reinforced concrete beam
with positive and negative moments. All material properties except for
the concrete modulus of elasticity were provided by the authors.
Equation (3.1) was used to determine this value. The information that
was used in this analysis is presented in Figure 3.30. An applied load
to ultimate load ratio of 0.4 was employed in this example to represent

the service load condition.

The deflection results from the comparison between the experi-
mental data and the finite element solution is presented in Figure 3.31.
For most of the diagram these results were almost as good as for the
Leonhardt and Walther beam. The only appreciable difference between the

two curves was observed during the latter loading stages. Normally the
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experimental and finite element curves converged when the load was
increased, but for Beam E3Al the opposite was true. The final differ-
ence between the finite element deflections and the experimental deflec-
tions were about 247. This value was not representative of the entire
curve however. Extensive cracking took place in both the top and the
bottom of the beam and the good results indicate that the model was very

successful in handling the effects of the changing moment directions.

Beam ES5A

The second continucus beam compared with the finite element
model was tested by Bryant, Bianchini, Rodriguez, and Kesler (11). They
were interested in the shear strength of two-span continuous beams with
multiple point loading. Beam E5A had five equal point loads in each
span. The beam and material properties reported for this beam are
presented in Figure 3.32. The applied load to ultimate load ratio used

in the analysis was 0.38.

The finite element and experimental load-deflection profiles for
Beam ES5A are shown in Figure 3.33. The correlation between the two
curves was reasonably good, and at the end of loading the difference
between them was about 17Z. At low load levels the model predicted a
stiffer beam than was observed experimentally, but as cracking took
place the two curves began to converge. As mentioned in the Sensitivity
Section this behaviour may take place when the modulus of elasticity or

the tensile strength are overestimated.
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Beam A,B,C,D

The deflection results from the experimental beams presented in
Chapter 2 were also used to validate the finite element model. The
first beams that were compared with the instantaneous results from the
model were Beams A,B,C and D. Beam A and Beam B were full size, simply
supported members which had both tension and compression steel. Beams C
and D were full size, simply supported continuous members. Complete
details about these beams were presented earlier and will not be
repeated here. Relevant information needed for the finite element
simulations are shown in Figures 3.34 through 3.37. The tensile
strength and the modulus of elasticity of the steel were determined from
the relationships in Section 3.1l. For Beam A and Beam B the modulus of

elasticity of the concrete was also calculated as in Section 3.11.

The load-deflection results comparing the finite element model
deflections with the experimental deflections are shown in Table 3.1. A
short explanation is provided here about why the full curves were not
presented. The load-deflection curves for Beam A and Beam B were not
used because both beams were loaded twice. When the beams were first
loaded there was a problem with the equipment and the load had to be
released. On reloading, the resulting load-deflection curves repre~
sented an already partially cracked beam and were not really comparable
with the curves generated by the model. When loading Beam C and Beam D
the load was applied in stages so that the f;nal loads at the ends of
the beams were reached before the final loads in the interior span. The

load application in the finite element simulation was arranged so that
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the final loads were reached simultaneously. Thus only the f£final

conditions were comparable.

Generally the results presented in Table 3.1 were very good and
the only appreciable difference between the experimental and analytical
results was observed for Beam A. The variation from the experimental
deflections was 58% for Beam A, 15% for Beam B, 15% for Beam C, and 12%
for Beam D. It was mentioned iIn Chapter 2 that there were some problems
with the loading for Beams A and B so the significance of the variation

in the Beam A results is difficult to assess.

The deflection results of Beam D also need further explanation.
No cracks were predicted by the model, yet cracks were observed experi-
mentally. When a stress analysis was performed it became obvious that
the model should have predicted cracking. The reason cracks were not
predicted by the model was explained in the Sensitivity Study of Section
3.3, and had to do with the natural underestimation which is inherent
with finite element models. The finite element deflections were still
reasonably close to the experimental ones because cracking had only
begun experimentally. The good results that were obtained for Beam B
and Beam D were encouraging because they showed that the model was
capable of accurately simulating the behaviour of lightly cracked beams.
Most of the other beams in this verification section were highly

cracked.
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BEAM EXPERIMENT FINITE ELEMENT

DEFLECTION DEFLECTION

(in.) (in.)
A «220 <349
B +166 « 141
C «199 «229
D 067 .059

TABLE 3.1 Short Term Deflection Results for Series 1 and Series 2

Beams From Experimental Program
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Beam E

Beam E was one of the continuous beams reported in Chapter 2,
and the results from this beam were used to validate the model. Beam E
was identical in every way to Beam C except for the age at which it was
loaded. The igformation which was used to generate the finite element

results is presented in Figure 3.38.

The deflection results £from the experiment and the finite
element model are shown in Figure 3.39. The finite element curve
followed the experimental curve very closely until about 70Z of the

total load. After this point the curves diverged slightly.

Beam F

. The last beam from the experimental section, Beam F, was the
final beam used in the short term verification. This beam was identical
to Beam D except for the age of loading. Pertinent information needed

for running the fipite element program is provided in Figure 3.40,

The behaviour of Beam F was very similar to Beam D except that
the results were not quite as good. The finite element model again did
not predict cracking even though cracking was observed experimentally.
In the uncracked region of the load-deflection curve, the finite element
and experimental curves were very nearly the same, When cracking

started experimentally, the curves began to diverge. The difference
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BEAM F
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between the experimental and finite element deflections at the end of

the loading was about 28%.

To get some idea about what accuracy could have been achieved if
the effect of the finite element mesh size was removed, the tensile
strength for Beam F was reduced by 50%Z. This change was implemented to
ensure that extensive cracking would be produced in the finite element
beam. Reducing the tensile strength by 50% should have had a mch
larger counterbalancing effect on the deflections than were initially
caused by the mesh size considerations. The two finite element curves
should have provided an upper and lower bound on the experimental curve.
The results in Figure 3.41 show that this was precisely what happened.
Therefore, if the mesh size had been reduced enough to allow for crack
initiation, the variation between experimental and analytical deflec-
tions would have been much less. The results also showed that reducing
the tensile strength may be a practical way to reduce the number of

elements in the analysis while retaining realistic crack initiations.

Summary

The short term behaviour of 11 reinforced concrete beams were
compared in this section with results generated by the finite element
model. The finite element deflections for five of the beams were within
15% of the experimental ones, and nine were within 25Z. Considering the
fact that normal experimental variability often varies within this
range, it seems safe to say that the model simulated the instantaneocus

behaviour of simply supported and continuous beams very well. The beams
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that were used in the comparison represented many different conditions
and the model was reasonably successful in modelling all of them. The
effect of cracking was successfully represented, as evidenced by the
good agreement observed between the experimental and finite element
load-deflection curves. The model was not exact in its predictions but
axact predictions were never expected. Experimental variability in
reinforced concrete and the complex interaction between its constituent
parts precluded the possibility of am exact duplication between
experimental and finite element results.

The question of experimental variability in reinforced concrete
beam deflections 1is an important one, It is impossible to assess the
accuracy of a finite element model without knowing something about the
natural variability of the material. A brief examination of pertinent
literature (6) showed that there can be significant variations in the
tested deflections of identical beams., Of twenty six pairs of compar-
able beam deflections from this literature, about 50X of the pairs had
variations in deflections less than 10Z, and 907 of the pairs had vari-
ations less than 20%. This would indicate that 20Z variability in
laboratory tested beam deflections would not be uncommon. However vari-
ations much larger than this are still quite possible. This range of
variability was also reported by Branson (8). Since most of the results
in this section were ve;y close to the 207 range, it seems safe to say

that the proposed model was successful in simulating short term

deflections.
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3.5 Evaluation of Model for Long Term Loads

It was with particular interest that the proposed finite element
model was evaluated for long term behaviour because this was the whole
point of its development. Experimental results from a number of differ-
en£ sources were collected to test the accuracy of the finite element
model. Although several references with experimental data were avail-
able, most did not provide information on the concrete creep and shrink-
age characteristics. Fortunately there were a few references which gave
either the creep and shrinkage strains, or sufficient concrete mix

details for the use of prediction equations.

The results in this section generally combined the short term
behaviour with the long term behaviour, but the long term behaviour
alone was also examined. Since there s;ems to be more factors at work
in the behaviour and testing of reinforced concrete beams over the long
term, it seems reasonable that there should be a higher relative experi-
mental variability associated with these deflections than there would be
with short term deflections. The performance of the model must be
judged accordingly. 1In this section the deflections, strain profiles,
and crack patterns, from the reported experiments are compared with the

results generated by the finite element model,
Beam Cl

In 1966 Corley and Sozen (17) reported on the results of a two

r

year study into the deflections of three reinforced coucrete beams.
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These beams were smaller than beams in service usually are, and it is
possible that this may have influenced the results to some degree.
However it was hoped that these small scale effects would be minimal.
Beam Cl was the first of these beams which was compared with the results
from the finite element model. Since the midspan deflections, crack
patterns, and strain profiles were provided by the authors, an extensive
comparison between the experimental and finite element results was
possible. The relevant information used to generate the finite element
results is presented in PFigure 3.42. The tensile strength, concrete
modulus of elasticity, and steel modulus of elasticity were estimated
using the relationships presented in Section 3.1l. Time dependent
strains due to c¢reep and shrinkage were calculated using Bazant and
Panula's prediction method. Two values needed for this method, namely
the concrete density and the cement content, were not reported by the
authors. The density was estimated using an average value for concrete
with a 3/8" maximum aggregate size. The cement content was approximated

by proportioning the density according to the mix proportions.

The load-deflection profiles observed both experimentally and
from the finite element model are shown in Figure 3.43. The correlation
between these two curves was reasonable for total as well as long term
deflections. The total difference between the deflections at the end of
the 705 day loading period was about 23%Z. For the long term deflections

alone, the difference was around 20Z%.

The crack pattern in the flexure span of Beam Cl was provided by

Corley and Sozen and this was compared in Figure 3.44 with the finite
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element solution. Since cracking 1s such a highly variable phenomenon
the importance of this comparison was not in exactly reproducing the
experimental crack pattern, but rather in properly reflecting the
general cracking behaviour. An examination of this figure showed that
the experimental crack spacing was a little smaller than that predicted
by the model, This difference may have arisen because the model
predicted no additional cracking after the load was applied, whereas one

or two additional cracks were observed experimentally.

Small scale effects may also have been responsible for the
smaller crack spacing in the experimental beam. The constitutive bond
law used in the model was based on results obtained with # 8 bars, while
Beam Cl contained # 3 bars. When testing the bond properties of # &
bars, Mirza and Houde (35) determined that such small bars exhibited
lower bond slip than did the larger bars. This would reduce the amount
of bond deterioration and allow cracks to form closer together. Since
the model did not include this characteristic it was not surprising that
the crack spacings were somewhat different, Aside from the difference
in spacings, the model predicted the height and orientation of the

cracks quite well.

The experimental strain profile for this beam was also supplied
by Corley and Sozen, and a comparison between these results and the
finite element predictions is shown in Figure 3.45. The values plotted
for the finite element strains are shown at the centroids of the
elements. It is apparent from this figure that the correlation between
the analytical and experimental short term strains was very good. Both

strain profiles were linear and the curvatures were almost exactly the
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same. The correlation for the long term strains was also very good.
The long term strains were slightly overestimated, but the slope of the

strain profiles, and thus the curvatures, were almost identical.

A note may be necessary here to explain why the deflection
predictions were not as accurate as the strain predictions. With plane
stress elements the strain is constant throughout each element. There-
fore the strain changes at discrete intervals through the depth of the
modeiled beams This is not the way strain is distributed in a real
beam. In a real beam the strain changes continuously through the depth,
The correspondence between strain distribution or curvature, and deflec-
tions; is therefore not as strong in the modelled beam as might be
expected. This however does not take away from the importance of the

model accurately predicting strains,
Beam C3

A second beam tested by Corley and Sozen, Beam C3, was used to
check the consistency of the finite element model. Beam C3 was tested
at the same time and under the same conditions as Beam Cl. The only
difference between them was their cross-sectional dimensions. The
gtresses in Beam C3 were much higher than the corresponding stresses in
Beam Cl, but it was assumed in the analysis that linear behaviour was
gtill predominant. The conditions and properties reported for this beam

are shown in Figure 3.46.
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The experimental and finite element model deflections for Beam
C3 are presented in Figure 3.47. These results were much better than
the results for Beam Cl. The variation in the deflection profiles for
Beam C3 was about 172 for the total deflections, and less than 9% for
the long term deflections. Reasons for the difference between the
experimental and analytical results were discussed for Beam Cl. Experi-
mental variability is the most likely explanation for the improvement
between the results for Beam C3 and the results from Beam Cl. Another
possibility for the improvement is the inelastic behaviour that was not
predicted by the model, The effect of inelastic behaviour is an
increase in short term strains and deflections, and a decrease in °
stresses. Inclusion of this behaviour would improve the short. term and
total deflection predictions, but since the creep law i1s stress
dependent, it might slightly worsen the predictions of the long term

deflections. In either case the results would still be excellent.

The crack patterns observed experimentally and from the finite
element model are shown in Figure 3.44. The crack spacings obtained
from the model were again somewhat larger than the experimental crack
spacings. The most likely reasons for these differences are the same as

for Beam Cl.

The straln diagram comparing the results from the finite element
model with the results from the experiment is shown in Figure 3.48. The
short term strains in the flexure span predicted by the model were very
close to the experimental values., 1In fact the sﬁrain predictions at

centre span were much better than the deflection predictions. The
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predicted long term strain profile was not quite as close to the experi-
mental values as the short term results were but they were still reason-
ably similar. There are a few possible reasons for this difference.
One reason may be the effect of the 1nelastic behaviour described
earlier. Since the model used a linear approximation for the stress—
strain diagram, it would tend to overestimate the stresses. It would
also underestimate short term strains, and because of the higher
stresses, overestimate creep strains. This is precisely the behaviour
which appears in the long term strain profile, but not exactly what was
seen in the short term strain profile. Experimental variability may
have disguised the short term effect. Another possibility is that
normal experimental variability alone may have been the major contri-
buting factor in the difference between the long term experimental and

analytical strains.

Beam C4&

Corley and Sozen also supplied the results for a third beam.
This beam, designated C4, was ldentical to Beam C3 except for the amount
of tension steel it contained. Figure 3.49 provides the necessary

information for the finite element model.

The predicted and observed deflection curves for Beam C4 are
shown in Figure 3,50. Like Beam C3, the concrete stresses in Beam C4
were outside the service load range, and this undoubtedly had some

effect on the results. The total and long term correlation between the
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experimental and analytical curves was again reasonably good, and well
within the normal wvariability 11imits associated with deflections in
reinforced concrete beams. The total variation between the curves at
the end of the 705 day loading period was about 17%, while the

difference in the long term deflection alone was about 12%.

The experimental and finite element model crack patterns, shown
in Figure 3.51, displayed the same general behaviour as observed for
Beam C3. The model again predicted fewer cracks in the flexure span
than were detected experimentally, but this was probably caused by the
small scale effects mentioned earlier. The finite element mesh size was
also not fine enough to allow cracks to form as close together as was
observed experimentally. The heights of the cracks predicted by the
model were somewhat higher than those observed in the experiment. A
contributing factor in this discrepancy may have been the fact that the
state of stress in the finite element beam was not exactly the same as
in the experimental beam because the service load range was exceeded,
and the model used constant stress elements. Another possibility is the
accuracy with which Equation (3.2) estimated the tensile strength.
Despite the differences the predicted crack pattern was still

realistie,

The short and long term strain diagrams £for Beam C4 are
presented in Figure 3.52. The model predicted short term straims that
were almost identical to the experimental values. The long term strains

were also very similar, and in both cases the curvatures were almost

I
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identical. Considering the approximations that were made the results

were excellent.

The deflection results for all three Corley and Sozen beams were
remarkably consistent. The short term deflections were all under-
estimated by the model, but the strain profile;s and long term deflec~
tions were predicted very accurately. The fact that the short term
deflections were not predicted as accurately as the short term strains
was surprising, but this may have been due to the discrete strain
changes from element to element that occurred in the model. Cracking

away from midspan may also have been a factor.
Beam Ghali et al.

Ghali, Dilger, and Neville (21) measured the long term deflec-
tion of a reinforced concrete beam during an investigation into the time
dependent settlement of beam supports. Although this beam was loaded
for less than a year, it was still useful in providing a check on the
accuracy of the model. The compression and tension steel contents -:;f
this beam were identical, and this significantly limited the effect of
shrinkage. The information provided by the authors and estimated from
empirical relationships are presented 1in Figure 3.53. The tensile
strength, concrete modulus of elasticity, and steel modulus of elast-
icity were all calculated using the recommendations of Section 3.1l.
The relative humidity during the course of the test varied between 507%

and 65%Z, so an average value of 587 was used in the analysis. The
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density of the concrete and the cement content were estimated in the

same way as for Beam Cl.

The deflections reported for this beam were plotted in Figure
3.54 with the finite element predictions. The model accurately predic-
ted the Iinstantaneous deflection but underestimated the long term
deflection. At the end of the 240 day loading period the variation
between the experimental and finite element deflections was only about
12%2. The long term variation alone was about 28%Z. The discrepancy in
the long term deflections for this beam were larger than the previous
examples and this fact may raise some questions about either the experi-
ment or the model. Either the load on the beam actually increased with
time, or the long term strains were significantly underestimated. This
case highlights the difficulty in determing whether differences between
the model and test data were caused by experimental error, experimental
variability, inexact material properties, or problems with the model.
Since good results were obtained for many of the other comparisoms the

problem was probably not with the model.

Beam A

Information about Beams A, B, E and F were provided earlier in
Chapter 2 and Section 3.41, and most will not be repeated in this
section. Briefly, Beam A was a full size, simply supported beam, with
tension steel and nominal compression steel. The finite element
discretization and the material properties from Beam A were presented in

Figure 3.34. Since experimental creep and shrinkage strains were
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available it was not necessary to use Bazant and Panula's prediction
equations. The experimental creep and shrinkage curves reported in
Chapter 2 were reduced to usable mathematical equations by assuming that
they followed a hyperbolic function similar to that of Meyers et al.

(33).

At the end of the loading period, the applied load on Beam A had
evidently dropped by about 22%. This decrease was approximated in the
finite element representation with a simple logarthmic function where
the load dropped with the log of time. Since the applied load varied
with time the long term deflections were actually a combination of

instantaneous and time dependent effects.

The long term deflection results for ‘Beam A are shown in Figure
3.55. It 1is apparent from this figure that although the experimental
and finite element short term deflections were not very close to each
other, the total deflections were. The difference between the curves at
the end of the loading period was less than 2% whereas the difference at
the beginning was about 58Z. The two curves converged in the first few
days of loading, so delayed cracking in the experimental beam may have
been the cause of the initial difference. If it was, it points out a
weakness in using the ratio of long term to short term deflections as a
prediction criterion. Even though the difference in initial deflections
was significant, the actual difference in the long term deflections of

the experimental and finite element beams was only about 17%.
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The Beam A crack patterns £from the experiment and the finite
element model are shown in Figure 3.56. It can be seen that the heights
of the cracks for both beams were practically the same, and the average
crack spacings were very similar. However, the model prediction of
crack branching near the reinforcement was not observed experimentally,
and the experimental cracking near the support was not seen in the
model, Some similarities and some differences in crack patterns must be
expected, but the degree of cracking in the tension =zones were

reasonably similar.
Beam B

Beam B was a simply supported beam with tension reinforcement
and nominal compression reinforcement. It was subjected to the same
external loads as was Beam A. The tension steel ratio of Beam B was
lower than Beam A and the section depth was greater, but all other
details were the same. The material properties, load reductions, and
finite element discretization were alsc the same for Beam B as they were
for Beam A. Further details about this beam can be found in Chapter 2,

Sectlion 3.41, and Figure 3.35.

The time-deflection curves for Beam B comparing experimental and
finite element results can be found in Figure 3.57. From this figure it
can be seen that the model underestimated the short term and long term
deflections. The model underestimatgd the total deflections by about
32% and the long term deflections by about 41%Z. The probable reason for

the underestimation of deflections may be answered by looking at the
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crack patterns contained in Figure 3.56, Although the crack heights
were predicted well by the model, the degree of cracking was not. Eight
cracks were observed experimentally and only two were predicted by the
model. It was shown in the Sensitivity Section, and will be shown again
in the Beam F comparison, that the amount of cracking may have a signif-
icant effect on both short and long term deflections. This is
especially true when cracking 1s not very exteusive. The root of the
problem may have been the fact that finite element models underestimate
displacements, stresses, and strains, When the stresses in the
uncracked region of the finite element beam were examined it was
observed that in many places they were almost as large as the tensile
strength, In a more accurate formulation these elements would have
cracked and the resulting deflections generated by the model may have
been much closer to the experimental ones. Increasing the number of
elements may have improved the results, This problem was discussed in

the section on sensitivity.

Beam E

The results for Beam E, a 24 foot continuous beam, were reported
in Chapter 2, and these results were used to verify the accuracy of the
model. Information on the loading, material properties, dimensions, and
finite element discretization were given in Chapter 2, Section 3.41, and
Figure 3.38, and will not be repeated here. Loads on the beam were
nearly constant throughout the loading period and no modifications to

them were deemed necessary.
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The experimental and finite element generated midspan long term
deflection curves for Beam E are shown iIn Figure 3.58. For this beam
there was excellent agreement between the total deflections from the
finite element model and the test beam. At the end of the test the
variation between them was only 3%Z. The variation in the long term
deflections alone was also very good and was less than 16Z. Cracking in
this beam was extensive and if the deflection results are taken as an
indicator, the model seemed capable of accurately simulating both

cracking and the effect of changing moment directioms.

The crack patterns from the experimental beam and the finite
element beam are shown in Figure 3.59. It is shown in this figure that
more cracks were observed in the test beam than were predicted by the
model, especlally in the negative moment region over the support. The
model predicted one crack in this area while nine cracks were detected
experimentally. In the middle of the beam the model predicted three
cracks instead of the six observed in the test beam. Despite having
fewer cracks, the model predicted a larger deflection, which might seem
to be contradictory. However the number of cracks in a beam do not
always relate to its stiffness. Crack heights, orientations, locatiomns,
ag well as other factors, also have a bearing on the stiffness and thus
the deflection of a beam. There were many similarities between the
experimental and analytical crack patterns. The height of the first
midspan crack nearest the support was almost the same in both beams, and
in both cases this was the largest crack. The other cracks near the
midspans were also very similar in heights and orientations. Therefore

the predicted loss of stiffness due to cracking in the midspan of the




209

] 1 [ |
8-50"""’ -
+»
+4 * ¥ * i
+ +
Ul40_ -
+ +
+
— +
=
T 0.30F 4 o+ _
=z
o
— *
)
Lot
|
L
H0.20F ~
+
..,
+ FINITE ELEMENT
010+ _
+ EXPERIMENTAL
] | | | ]
0.00 100 200 300 400 500

AGE OF CONCRETE (DRYS)

FIGURE 3.58 EXPERIMENTAL AND FINITE ELEMENT
DEFLECTIONS FORBEAME




210

BEAM E

YAl
% WV
M | WG
% )
FINITE ELEMENT
T
0O
() EXPERINENTAF
BEAM F
/
W

FINITE ELEMENT

s AN

TRES)
C) EXPERIMENTAL

FIGURE 3.59 EXPERIMENTAL AND FINITE ELEMENT
CRACK PATTERNS FOR BEAM E AND
BEAMF




211

finite element beam may have been very similar to the test beam, even

though there were fewer cracks.

Beam F

Beam F was ‘tested in the same apparatus as Beam E, and had the
same external loads and material properties. The detaills needed for tl;e
finite element analysis were reported earlier in Section 3.41 and Figure
3.39. The midspan deflections for Beam F are presented in Figure 3.60.
It is obvious from this figure that the finite element model signifi-
cantly underestimated the long term deflections. As mentioned in
Section 3.41, the model did not predict any cracks in this beam even
though theoretically it should have. It didn't predict cracking because
of the underestimation that is inherent in the finite element method.
To test the effect that cracking would have had on the long term deflec~
tion of this beam the tensile strength in the model was reduced by 50%.
Loading was stopped after a period of about a hundred days because of
the cost of the analysis. The resulting deflections are also shown in
Figure 3.60. This time the finite element model overestimated the
deflections. Since the true conditions were really somewhere between
the two cases it seems apparent that the model prediction would have
been much better had the accuracy of the solution been improved by

increasing the number of elements.
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Summary

In this section the experimental results from eight reinforced
concrete beams were compared with results generated by the finite
element model, Of the eight, five beams had expe;:imental long term
deflections that were within 207 of the finite element model predic-
tions. This was also the case for the total deflections, where five of
the eight finite element simulations were within 20Z of the experimental

deflections.

Branson (8) reported that the coefficient of variation for long
term deflections was 15 to 20 percent or even higher. The model must
therefore be considered successful in modelling long term behaviour
because this is the approximate range of the finite element results.
Beyond natural variability however, the model is also subject to the
sengitivity of the material and mesh parameters. Also, the model was
based on a number of simplifications that were necessary to convert
concrete behaviour to a mathematical model. These factors would
obviously have some effect on the results, but the relatively good
agreement observed indicates that their importance was not usually very

significant.

Where differences did occur between the test data and the finite
element results, the model generally underestimated the deflectioms.
This fact 1is not really surprising because the finite element method
theoretically provides a lower bound solution anyway. Judging by the

deflections and strain profiles, the creep and shrinkage prediction
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methods that were used with four of the beams also performed adequately.
Cracking also seemed to have beem simulated well. Experimental crack
patterns were supplied for most of the beams and when these were
compared with the finite element model solutioms, the same general
behaviour was usually observed. Usually the model did not predict as
many cracks as were observed experimentally, but the loss of stiffness
due to cracking seemed well represented. The model predicted strain
profiles and curvatures even more accurately than it did deflections, so
it can be said that the model was correctly simulating most aspects of
beam behaviour. Both simply supported and continuous beams were
examined in this comparison, and except for Beam F, the results were all
reasonably coasistent. Based on the results from this section, the
finite element model which was described earlier in Chapter 3 has proven
to be a reasonable method of simulating long term deflections in

reinforced concrete beams.




CHAPTER 4

PARAMETRIC STUDY

4.1 Introduction

The major reason for the development of the finite element model
presented in Chapter 3 was to use it to investigate the effect of
various parameters on long term deflections, and to suggest possible
improvements to current Building Code prediction methods. The Factorial
Design Method was used to set up and analyze a parametric study designed
to accomplish this goal. The deflection data needed for the parametric
study was generated with the f;i.nite element model. A full parametric
study using real life concrete beams would obviously have been prefer-
able to one using the analytical model, but since this was not possible
the analytical model provided the best alternative. - The Factorial
Design Method that was used in the parametric study is a well known,
statistical, systematic, step—-by-step approach, which identifies the
influence and interaction of various independent variables on a depen—
dent variable. 1In this case, the dependent variable was the long term-
to-short term deflection ratio. If it 1is assumed that the finite
element model gave good results, and the major parameters were properly
identified, the relationship derived in this chapter with the Factorial

Design Method should be realistic and accurate.

- 215 -
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The major drawback of using an analytical model to derive an
empirical relationship is that it cannot provide any measure of experi-
mental variability. In reinforced concrete this is an important consid-
eration. The range of * 20%Z on experimental deflections report;d by
Branson (8), and the sensitivity results from Section 3.3, must be kept

in mind while reviewing the results from this chapter.

From the beginning it must be stated that it was never the
object of this study to provide an in depth statistical analysis of all
aspects of the design of a deflection experiment nor was it intended to
use all of the capabilities of Factorial Designs. Instead, this study
was centered on the development of a simple yet realistic approximation
of the effect of long term loading on deflections using some statistical
techniques. For thig reason the number of variables was kept to a
minimum, and no real "screening” was done with the variables. A
description of the theory and application of Factorial Design will not
be included here, but an excellent treatment of this subject can be

found in the text by Box and Hunter (7).

4.2 Design of Experiment

The first stage in the parametric study was the identification
of the influencing variables. These variables had to meet one main
requirement. A1l of the variables had to be readily available to
designers. A design equation containing variables which are not gener-
ally available to designers would not be useful. This requirement

considerably limited the number of usable parameters.,
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In the Canadian Code (12), long term deflections were considered
to be a function of the tension and compression steel areas and are now
only a function of compression steel. However in this study, five
parameters were chosen for study because 1t was felt that one or two
parameters were not sufficient for a truly accurate relatiomship. The-
five parameters chosen for study included the tension steel ratio, the
compression steel ratio, the span—~to-depth ratio, the applied moment to
ultimate moment ratio, and the concrete compressive strength. All of
these values except for the concrete compressive strength have been
identified in earlier studies (8)(9)(23)(54) as being important factors
for long term deflections. The compressive strength was included in the
parametric study because it was felt that this value might reflect the
influence of the concrete mix parameters. Designers do not usually know
much about the concrete mix, and the compressive strength is an

available material value which might show its effect.

The ranges over which the identified parameters were assumed to
act were fixed at the beginning of the parametric stu&y. In a detailed
experimental program this simplification would normally not be recom~
mended because it might limit the flexibility of the analysis. However,
since the variables for reinforced concrete beams have very definite
ranges it was felt that this simplification would not adversely affect

the analysis.,

At the beginning of the design there was no real indication
whether the effects of the parameters would be linear or nonlinear.

This factor usually determines whether a two level Factorial Design is
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used or whether a three level design is necessary. The two level design
is used when the effect of the parameters is known to be linear, and the
three level design is used whenever nonlinearities are present. Since
the two level design 1s more economical to perform than the three level
design, it is preferable to use it whenever possible. There is also a
third alternative called a Star Design. This approach combines the
economy of the two level design with the capabilities of the three level
design. The Star Design 1ls especlally suited for studies where it is
not clear at the beginning whether nonlinearities exist or not. When
this alternative is used a2 normal two level design is performed, and the
resulting relationship is checked for any nonlinearities. If nonlinear-
ities are detected the nonlinear effects can be quantified by performing
additional experiments on values outside the two level design limits.
This means that care must be taken when choosing the ranges of the para-
meters during the initial two level design, since the expanded limits of

the Star Design also need to represent realistic values.

It is possible to further increase the economy of a Factorial
Design by using "Fractional Factorials™., 1In this application a major
variable is deliberately "confounded” or confused with one or more of
the interaction effects. If they are confounded, the effect of an
interaction term and the effect of a major variable will be indisting-
uishable from each other. However if the interaction effect is known to
be very small, the effect of the major variable may be easily observed.
For its economic benefits, Fractional Factorials were used in this para-
metric study and the compressive strength was confounded with the four

factor interaction term. Four factor interaction terms are rarely
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important so the results should not be adversely affected by this

action.

The high and low levels of the five major variables examined in

- the initial two level design are listed below.

Where

Variable Range

p: 72 - 1.78
p': 29 - 1,71
Mapp/Mult: 24 = 46
2/d: 17 - 28
£'c (psi): 3235 - 4560

p =
p' =
Mapp =
Mult =
I'A =
d =
fle =

(The ultimate

Steel) .

below.

tension steel ratio
compression steel ratio
applied moment
ultimate moment

length of beam

depth of beam

compressive strength

moment should be calculated using 60 ksi reinforcing

The confounding pattern used in the parametric study is shown
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Resolution IV Design 25--l

I = % 12345

1+ 2345 12 + 345 24 + 135
2 + 1345 13 + 245 25 + 134
3 + 1245 14 + 235 34 + 125
4 + 1235 15 + 123 35 + 124
5+ 1234 23 + 145 45 + 123

It can be seen from this table that the major variables and the
two factor interactions were all confounded with three factor inter-
actions and higher. The possibility that these higher order inter-
actions were important was very remote and the Fractional Factorial

Design detailed here should be as accurate as a Full Factorial Design.

The Design Matrix used in the parametric study is shown in
Table 4.1. The minus signs in this table represent the low levels of
each variable, and the plus signs represent the high levels. Each row
represents an experiment, or in this case a computer run of an

individual reinforced concrete beam under long term loads.

4.3 Test Conditlions

Once the levels of each variable were chosen they were included
in the properties of a realistic reinforced concrete beam. The depth,

thickness, concrete cover, relative humidity, yleld stress of steel, age
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RON I 1 2 3 4 5 12 13 14 15 23 26 25 34 35 45 = Ai“

fem cale
1 41 =1 =1 =1 =1 +1 41 +1 4+l -1 +1 +l =1 +l =1 -1 3.59 2.79
2 41 #1 -1 -1 =1 -1 =1 =1 -1 =1 +1 +1 +1 +1 +L +1 1.38 1.07
3 41 -1 41 =1 =1 =1 =1 41 +1 41 =1 -1 -1 +l +l +l 1.18 .80
4 +#1 4+ 41 -1 -1 +1 4+ -1 -1 +1 -1 -1 +l +L -1 ~-1 1.0l .73
5 41 -1 -1 41 =1 =1 4+l =1 +1 +1 =1 +l +1 -1 =1 +l .85 .79
6 +1 +1 -1 41 <1 41 -1 41 -1 41 =1 +l =1 =1 +1 =1 1.40 1.25
7 4+l -1 4+l 41 -1 +1 =1 -1 41 -1 +1 -1 +1 -1 4L -1 .6l .54
8 +l 4+l 41 41 -1 -1 +1 + -1 -1 41 =1 -1 -1 -1 +1 .45 .43
9 41 -1 -1 =1 41 -1 +I +1 -1 +1 +1 =1 +1 =1 +l -1 2.5 1,95
10 41 +1 -1 -1 + 41 -1 -1 + 41 + =1 -1 -1 -1 +1 2,91 1.82
11 41 -1 +1 =1 + 41 -1 41 =1 -1 -1 +1 +l -1 =1 +1  ,58 .37
12 41 +1 41 =1 4+ =1 +1 ~1 +l =1 -1 +l =1 -1 +l =1 .70 .51
13 41 -1 -1 +1 4+ 41 # -1 =1 -1 -1 -1 -1 +1 +1 +1 1..78 1,27
14 41 +1 =1 +1 +1 -1 ~1 41 +l -1 -1 -1 41 + -1 -1 .97 .87
15 #1 -1 +1 +1 41 -1 =1 -1 =1 +1 41 +1 -1 +1 -1 -1 .39 .34
16 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +l +1 +1 +1 +1 .62 .57
17 +# 0 0 0 0 .150 0 0 0 0 0 0 0 0 O .68 .54

TABLE 4.1 Design Matrix and Deflection Ratios

for First 17 Computer Runs
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of loading (7 days), and age when drying started (7 days), were all
fixed at reasonable values as shown in Figure 4.1. Although the depth
was part of the span—-to—-depth ratic, it was fixed so that the span
length could be varied independently. Figure 4.1 shows the finite
element discretization, dimemnsions, and properties of the beam which was
used. The finite element discretization was chosen for its balance
between accuracy and economy. Encugh elements were provided to allow
for realistic crack spacings and for a reasonable minimization of the

potential energy.

The creep and shrinkage prediction methods developed by Bazant
and Panula (3)(4) were used to calculate the long term strains. The mix
details for the 3235 psi and 4560 psi concretes are shown in Table 4.2.
These concrete mixes were taken from the literature (16)(25) and repre-—
sent realistic values. The tensile strength, modulus of elasticity of
concrete, and modulus of elasticity of steel were all estimated using

the equations specified in Section 3.1,

It should be noted that the concrete tensile strengths used in
the parametric study were not the same as those calculated by Equation
(3.2). The tensile strengths were reduced from the calculated values to
account for the underestimation of displacements and stresses which
occurs In beams modelled with plane stress elements. It was observed in
the sensitivity and verification sections that the level of crack initi-
ation can have a profound effect on the deflections of beams loaded to
around their cracking loads. Since the underestimation of stresses

artificially raises the cracking load, the resulting deflections may not

be realistic. Therefore the tensile strengths of the beams in the
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MIX # f'c
)} 3235
2 4560
3 4000
4 2990
5 4820

TABLE 4.2 Details of Concrete Mixes Used in

MIX PROPORTIONS
1.0:3.91:2,50
1.0:3.26:3.69
1.0:3.33:2.17
1.0:3.64:4.44

1.0:3.24:3,.67

Parametric Study

w/c
«699
+656
«65
«700

«396
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study were reduced by the amount of this underestimation. An elastic
beam with the finite element grid of Figure 4.1 was loaded under uniform
loads and the Iimmediate deflection was compared with that calculated
from elastic beam theory. The tensile strengths for the parametric
study were then reduced by the same percentage difference as the

underestimation., This difference was less than 10%.

In this study the dependent variable used for predicting long
term deflections was the ratio of long term deflection to short term
deflection. Two different long term—to-short term deflection ratios
were Investigated. In the first case, the ratio was defined using both
the short term and long term deflections generated by the finite element
program. In the second case the long term deflections were generated by
the program, but the short term deflections were calculated using the
Code (2)(12) equation. The main reason for looking at this second ratio
was the recognition that in real 1life the long term deflection of a
reinforced conerete beam would be predicted by multiplying the Code
short term deflection by the long term—~to—-short term deflection ratio.
The actual short term deflection would not be known at the design stage.
It seems logical therefore to use the Code short term deflection to
develop the deflection ratio., In this way it may be possible to reduce
the effect of any errors in the Code short term deflectlon prediction.
When the Code short term deflection is multiplied by the long term—-to-
Code short term deflection ratio, the Code short term deflection may be

cancelled,
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bod Results

The sixteen computer runs which made up the parametric study
were completed according to the scheme detailed in Table 4.1, and the
ratios of long term deflection-to—short term deflection for both cases
were also recorded in this table. These values give a measure of the
average effect of each variable over all conditions of the other vari-
ables. Combining these terms in a linear equation gives a relationship
which relates all major and interaction variables with the deflection
ratio. The notation in the design matrix of Table 4.1 assigns a level
of +1 or -1 to each variable numbered 1 to 5. These nondimensional
variables can be related to the actual variables through the ratios

listed below.

Variable 1 = @ = (.Lf;_§5)

—
Variable 2 = a, = .P_;io)

Mapp _
. (Multi. 35)

Variable 3 = a ™

< =22.5

d
Variable 4 = o, = ( = )

' -
Variable 5 = o = (f c662?§97.5)
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Using the main and interaction effects from Table 4.1, and the
variable ratio o, an equation relating the long term—to-short deflec-
tion ratio to the variables can he writtem. For the first equation the
short term deflections generated by the finite element analysis were

used to provide the denominator of the ratio. The full equation can be

written as follows:

At

3 FEM 1.310 = .130 «

1
+.133a1c:2+.106a1a3+.119 alcl;+'053 Q&

+ .251 a, 03-.}.21 a, %-.240 @ a5+.055 G o
- 033 a o - .091 @, o (4.1)

In the second case, where the short term deflection was
calculated using the design code, the relationship can be written:
L = .893 - .100 @, - J470 @, - 269 « - 044 o + 161
AL cALC  ° . AR St T %G T %
+.12401q2+.123a103+.080a1%+0.25cthj

+ .183 @ & = +045 @ & = <145 @ 05-!- 049 o 9
~ 011 o a - .116 @ o (4.2)

Obviously these equations are very cumbersome, and some of the
terms have very little effect on the deflection ratio. The main vari-
able, %/d, obviously has little influence on either relationship, and
some of the interaction effects are also not very significant. Elimin-
ating the less significant terms by dropping those with values less than

0.100, results in the more simplified equations shown below.
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At

+ .106 al 03+.119 @ cz4+.251 a2 05—.121 % o

- ,240 az 05 (4-3)
At
AL CALC .893 - .100 @ = 470 a, = «249 o + J161 % + .124 q o

+ 123 oy + .183 @ & = .145 % & = .116 % % (4.4)

These equations are still reasonably long, but all of the terms
are important. The high degree of interaction present in the two
deflection equations is interesting and unexpected. This high inter-
action may explain past difficulty in developing an accurate prediction

equation.

The relationships in Equation (4.3) and Equation (4.4) are based
on the assumption that the parameters vary linearly within their ranges.
This is not necessarily true. The assumption must be verified before it
can be accepted. Checking for nonlinearity involves performing an
additional experiment with the variables set at the midpoint of their
ranges. If the relationship is truly linear the deflection ratios for
this run should correspond to the constants in Equation (4.3) or
Equation (4.4). The results from this extra run are shown in Table 4.1
as Run 17. The compressive strength used in the additional run was not
exactly at the midpoint of its range, but was close enough for compari-
son purposes. The concrete mix for this compressive strength is shown

in Table 4.2. ‘
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For Equation (4.3) to be considered a linear relationship, the
deflection ratio from the additiomal rum should have been close to 1l.31,.
The actual value was only 0.68, which is 487 less than expected. The
expected value from Equation (4.4) was 0.89, but the actual value turned
out to be 0.54. The error in this equation was 65%Z. Obviously high
nonlinearity was present in both relationships. It was less evident for
the long term—to—calculated short term deflection ratio equation, but
neither relationship could be considered linear. The Star Design option

was required to quantify the nonlinearities.

Choosing which of the variables contained nonlinear effects was
not very straightforward and involved some guesswork. It seems likely
that the variables which were most important to the linear relationship,

,were the one whose nonlinearities were most likely to be significant in
the nonlinear relationship. However this assumption was not necessarily
the case. Through some "screening” of the variables, the compression
steel ratio, the applied moment to ultimate moment ratio, and the
concrete compressive strength, were selected as having the most
important nonlinear effects. The expanded high and low levels defining

the new ranges for these parameters are shown below.

Variable Range
p': 0 - 2.00
Mapp/Multi: .19 - .51

f'c (psi): 2990 - 4820
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The concrete mix designs for these compressive strengths are shown in

Table 4.2.

The twenty three computer runs which made up the total Star
Design were completed according to the scheme detailed in Table 4.3.
The notation used in this table was the same as in Table 4.l. The
relationship between the nondimensional variables @, and the actual

variables were also the same as mentioned earlier.

The short term deflections from the finite element program, the
long term deflections from the finite element program, the calculated
short term deflections, and .the deflection ratios from the twenty three
computer runs are shown in Table ‘4.4 All deflections in Table 4.4 are
in inches. The equation from the Star Design for the long term—to-—-short
term deflection ratio is written below where all main and interaction

effects with coefficients less than 0.100 have been eliminated.

At

AL FEM - 519 - 130 o - 549 @, = 425 ay + L,212 % + .133 4 9

+ .106 al c3+.119 01 a4+.251 , 03-.121 % G
- .240 @, a + .151 c:zz + 310 032 + 319 052 (4.5)

For the long term—to—calculated short term deflection ratio the

equation is:

At .
AL CALC .366 - .100 @ = 424 @ = «231 o + 134 o + «124 @ a

+ .123 al 05+.183 a2 03- 145 a, 05- 116 @ a5
+ 161 cxzz + 167 032 + .297 a52 (4.6)
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RUN I 1 2 3 4 5 12 13 14 15 23 24 25 34 35 45 22 33 55 A__ft At
fem calc

1 +#1 -1 -1 -1-1 41 +1 +1 +1 -1 +1 +1 -1 +1 =1 =1 +1 +1 +1 3.39  2.79
2 4+ 4+ -1 -1-1 -1 -1-1-1-1+1 +1 +1 +1 +1 +1 +1 +1 +1 1.38 1.07
3 +1 -1 + -1-1 -1 =-1+1 +1 +1 -1 =1 =1 +1 +1 +1 +1 +1 +1 1.18 .80
4 +1 +1 +1 -1 -1 41 +1 -1 -1 +1 -1 =1 +1 +1 -1 -1 +1 +1 +1 1.0t .73
5 +1 -1 -1 +#1 -1 -1 +1 -1 41 +1 -1 +1 +1 =1 =1 +1 +1 +1 +1 «85 .79
6 +1 +1 -1 41 -1 +1 -1 +1 -1 +1 -1 +1 =1 -1 +1 =1 +1 +1 +l 1.40 1.25
7 +1 -1 +1 +1 -1 +1 -1 -1 41 -1 +1 =1 +1 -1 +1 -1 +1 +1 <+l .61 .54
8 +1 +1 +1 +1 -1 -1 +1 4+l -1 =1 +1 -1 =1 =1 =1 +1 +1 +1 +1 «45 «43
9 41 -1 -1 -1+1 -1 +1 +1 -1 +1 +1 -1 +1 -]: +] -1 +1 +1 +1 2.54 1,95
10 +#1 +1 -1 -1+l +1 -1 -1 +1 +1 +1 -1 -1 -1 -1 +1 +1 +1 +1 2,91 1.82
11 +1 -1 +1 -1+4+1 +1 -1+l -1 -1 =1 +1 +1 -1 -1 +1 +1 +1 +l .58 .37
12 41 +1 +1 -1 +1 =1 +1 -1 +1 -1 =1 +1 -1 =1 +1 -1 +1 +1 +1 .70 .51
13 +1 -1 -1 +1 +1 +1 +1 -1 -1 :-1 =1 -1 =1 +1 +1 +1 +1 +1 +1 1.78 1,27
14 +1 4+ -1 +1 +1 =1 =1+l +1 =1 =1 =1 +1 +1 =1 =1 +1 +1 -+l .97 .87
15 41 -1 +1 +1+1 -1 -1 -1 -1+l +1 +1 =1 +1 -1 =1 +1 +1 +] .39 34
6 +l +1 +1 +1 +1 41 41 +1 +1 +1 +1 +1 1 +1 +1 +1 +1 +1 +1 .62 .57
7 +#1 0 0 0 O .15 0 0 0 0 0O 0 0 0 0 0 0 0 .02 .68 «54
8 41 02 00 .15 06 0 0 0 0 0 0 0 0 0 2 0 ,02 1.22 1.00
) +1 0o+2 0 0 .15 0 0 0 0 0 O0 0 0 OO0 2 0 ,02 <44 .33
) 41 0 o+2 0 ,15 0 0 0 0 0 0 0 0 O O 0 2 .,02 55 o45
+1 0 0-2 0 ,15 ¢ 0 0 0 0 0 0 0 0 0 O 2 .02 l.74 .90
+1 0 0 0 0 1,26 0 0 0 0 0 0 O O O O O O 1.58 .98 o76
+ 0 0 0 0-1.37 0 0 0 0 0 0O OO O O O O1l.88 1.02 .84

TABLE 4.3 Design Matrix and Deflection Ratios For All 23 Computer Runs




RON Aicalc(in)

1 .0746
2 «2853
3 .0850
4 «2697
5 .3812
6 <5793
7 .3071
8 «5532
9 «2222
10 «7523
11 «2020
12 7622
13 «8642
14 1.5246
15 «9975
16 1.4834
17 .6666
18 -6691
19 .6893
20 1.0515
21 « 2455
22 6170
23 «6898

Aifem(in)

.0579
«2212
<0547
«1951
«3529
5187
« 2727
<5290
«1705
4708
« 1267
«5554
«6135
1.3805
.8836
1.3588
«3325
<5479
«5035
.8758
.1270
<4799
«5716

M e (in)

« 2657
5273
«1254
3921
«6524
1.2438
«4387
«7662
.6028
1.8395
« 2004
.9418
1,7073
2.7141
1.2268
2,2024
«8923
1.2151
«7298
1.3534
<3483
.9511
1.1531

At(in)

.2078
»3061
.0680
»1970
«2995
«7251
«1660
«2372
«4323
1.3687
.0737
«3864
1.0938
1.3336
«3432
«8436
«3598
«6672
«2243
4776
«2213
4712
«5815
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At At
Aifem calc
3.59 2.79
1.38 1.07
1.18 .80
1.01 «73
«85 «79
1.40 1.25
61 «54
45 «43
2.54 1.95
2.91 1.82
«58 «37
.70 51
1.78 1.27
.97 .87
«39 «34
62 57
+68 «54
1.22 1.00
b4 «33
«55 o45
1.74 «90
.98 76
1.02 -84

TABLE 4.4 Deflections and Deflection Ratios From Computer Runs
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It can be seen in both equations that the midpoint value was
predicted better with these equations than the 1linear ones. For
Equation (4.5) the error was 23%, and for Equation (4.6) the error was
31%. These errors seem high and may indicate that higher order non-
linearity exists, or more likely, that there are more influences present
in the deflection relationship than can be quantified with the £five
major variables. When the deflection relationship is 1limited to vari-
ables which are available to designers, it must be expected that the
resulting relationship will not be exact. In the remainder of this
chapter, Equation (4.5) will usually be referred to as the model short
term equation, and Equation (4.6) will usually be referred to as the

Code based short term equation. Hopefully this will prevent confusion.

The coefficients in the deflection relationships represent a
best f£it between the given equations and the computer generated deflec-—
tion ratlos. Despite the reliability of the Factorial Design Method,
these relationships are only as accurate as the chosen major variables
and equation form allow them to be. The only way to check the accuracy
with which Equation (4.5) and Equation (4.6) represent the deflection
ratios was to compare results with the original twenty—-three deflection
ratios. The cowparisons between the results from the model short term
equation and the twenty-three original deflection ratios are shown in
Table 4.5, and the comparison for the Code based short term equation is

shown 1in Table 4.6.

As shown in Table 4.5 the average error in the deflectiomn ratios

calculated with the model short term equation was 0.16. The standard
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TABLE 4.5

At
Efem

(Equation 4.5) (Actual)

3.35
1.46
1.30
.80
.88
1.23
.68
72
2.45
2.85
.76
.85
1.79
.80
«26
.66
<56
1.69
.03
«58
1.78
1.29
.83

Deflection Ratios From Computer Results

-% ERROR
3.59 «24
1.38 .08
1.18 .12
1.01 .21
«85 .03
1.40 .17
.61 .07
«45 27
2.54 .09
2.91 06
«58 .18
.70 «15
1.78 01
.97 .17
«39 .13
.62 04
.68 .12
1.22 47
44 4l
«55 .03
1.74 04
.98 «31
1.02 .19
average error = ,1l6
g = Z(x~X) - .12

-1

and Equation 4.5 Predictions
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At At
RUN ERROR
Sfem Sfem

(Equation 4.6) (Actual)

1 2.57 2.79 .22
2 1.09 1,07 .02
3 .61 .80 .19
4 .62 .73 .11
5 71 .79 .08
6 1.30 1.25 .05
7 .48 .54 .06
8 .56 .43 .13
9 2.01 1.95 .06
10 1.65 1.82 .17
11 .59 .37 .22
12 .64 .51 .13
13 1.27 1.27 0
14 T4 .87 .13
15 .50 , 34 .16
16 .54 .57 .03
17 .39 .54 .15
18 1.35 1.00 .35
19 .08 .33 .25
20 .40 .45 .05
21 1.05 .90 .15
22 1.01 .76 .25
23 74 .84 .10

average error .13

- (x-x)

— .09

TABLE 4.6 Deflection Ratios From Computer Results
and Equation 4.6 Predictions
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deviation in this error was 0.,12. The results for the Code based short
term equation, shown in Table 4.6, were even better than this. The
average error Iin the deflection ratio was 0.13, and the standard
deviation was 0.09. Therefore it may be concluded that the relation—

ships developed here accurately reflect the computer data.

The deflection relationships calculated with the two equations
matched the finite element generated data quite well. However, since
these equations were intended’ as prediction equations, they would only
be useful 1f they could predict real life deflections. Comparing the
results from the equations with the data that was used to derive them
did not necessarily show how well they could predict other deflections.
The only way to truly evaluate the equations was to compare them with

independent experimental data.

Washa and Fluck's (54) long term deflection data was used to
verify the accuracy of the two deflection relatiomships. Only the
members of Series A and Series B were selected for comparison. These
were the members that most resembled real beams. Washa and Fluck paired
their Series B beams and only provided average deflections for each
pair, The difference between each beam in a pair was the compressive
strength. The £%£/d ratio for the Series B beams exceeded the range for
which either of the deflection equations applied, but the effect should

have been minimal.

The results from the comparison are shown in Table 4.7. 1In this

comparison the long term deflections for the model short term eguation




Beams Equation 4.5 Equation 4.6 Experimental
(in) (in) (in)
B1,B4 42 52 1.18
B2,B5 1.13 o75 1.58
B3,B6 2.25 1.30 2.36
A4 021 .13 «40
A5 74 41 «65
A6 1.39 .86 1.09

TABLE 4.7 Deflections From Equation 4.5,

Equation 4.6, and Experiment
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were calculated by multiplying the experimental short term deflections
by the deflection ratio. For the Code based short term equation, the
Code calculated short term deflections were multiplied by the deflection

ratios.

It seems from the results of Table 4.7 that the model short term
equation performed better than the Code based short term equation. The
average error for the model short term equation was 0.31", ranging from
a low of 0.09" to a high of 0.76". The average error for the Code based
short term equation was 0.55" with a range of 0.23" to 1.06". The
recent Canadian Concrete Code (12) had an imposed lower limit of 0.6 on
the long term~to short term deflection ratio. If this limit was also
imposed on Equation (4.5) and Equation (4.6), the deflection results
would have been better. In this case the average error would have been
0.27" for the model short term equation and 0.49" for the Code based

short term equation.

Equation, (4.5) and Equation (4.6) were both intended as possible
replacements for the ACI (2) and CSA (12) prediction equations. This
recommendation could only be made 1f the equations proved to be more
accurate than the current approaches. Therefore a comparison between
the equations derived in this chapter and the CAN3-A23.3 (12) equations
was required. The comparison showed how well the Code equations
predicted the twenty~three deflection results from the parametric study.
The results from this comparison are shown in Table 4.8. The long term
deflections in this table were calculated by multiplying the model

generated short term deflections by the deflection ratios for each case.
B
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RUN A Actual A Code (1977) A Code (1984%) A Equation 4.5

(in) (in) (in) (in)

1 .2078 .0874 .1001 .1940

2 .3061 +4004 .3849 «3230

3 .0680 .0344 .0619 0746

4 .1970 .1658 .2107 .1561

5 «2995 .5329 .6100 .3106

6 .7251 .9388 .9025 .6380

7 .1660 .1636 «2945 .1854

8 .2372 4497 <5714 .3809

9 .4323 «2575 «2948 4177

10 1.3687 .8521 .8191 1.3418
11 .0737 .0760 .1368 .0963
12 .3864 4721 +5998 4721
13 1.0938 . 9264 1.0605 1.0982
14 1.3336 2.4987 2.4021 1.1044
15 «3432 «5302 «9544 .2297
16 .8436 1.1550 1.4675 .8968
17 .3598 «5538 .7083 .2982
18 .6672 1.0958 1.0958 +9260
19 «2243 .3033 5055 .0152
20 4776 .9108 1.0772 «5080
21 .2213 .1321 «1562 .2261
22 4712 «4991 .5903 .6191
23 .5815 «5945 .7031 4744
average error .2182 «2792 .0743

TABLE 4,8 Deflection Predictions Using Equation 4.5
and the Code Equations
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It is obvious from the results in Table 4.8 that the model short
term equation performed far better than the Code equations. The average
errors for the 1977 and 1984 Code equations was 0.218" and ,279"

respectively, while the average error for the model short term equation

was only 0.074",

A comparison between the Code based short term equation and the
CAN3-A23.3 (l12) equations £for the twenty-three computer generated
deflections is presented in Table 4.9. 1In this example the long term
deflections were calculated by mutiplying the predicted Code short term
deflections by the deflection ratios. Since the calculated short term
deflections were used, this example is probably a more realistic evalua-
tion of the prediction accuracy of the Code equations. The average
error of the 1977 and 1984 Code equations in predicting the twenty=-three
deflections was 0.264" and .373" respectively. The average error for

the Code based short term equation was only 0.075".

Probably the most significant observation that can be made from
the results in Tables 4.8 and 4.9 was the lack of accuracy in the Code
prediction equations. The good results from Equations (4.5) and (4.6)
were not unexpected since this is the same data which was used to derive
them, Conversely, if the Code equations were compared with Equations
(4.5) and (4.6) using data which had been used to derive the Code
equation, it might be expected that the Code equations would appear to
be relatively more accurate. What 1is really important in the
comparisons with the computer generated data, is first the accuracy of

the Code equations themselves, and second, the order of the difference




RUN

average error

A Actual
(in)

.2078
.3061
.0680
.1970
«2995
« 7251
«1660
«2372
<4323
1.3687
.0737
«3864
1.0938
1.3336
« 3432
«8436
»3598
.6672
«2243
4776
.2213
4712
«5815

TABLE 4.9

A Code (1977)

(in)

. 1126
.5164
.0510
«2292
«5756
1.0485
. 1843
4702
«3355
1.3617
1212
.6479
1.3049
2.7595
.5985
1.2609
+6933
1.3382
<4136
1.0936
«2553
6417
7174

«2643

A Code (1984)

(in)

.1289
4964
.0918
.2912
.6589
1.0080
«3317
»5974
«3841
1.3090
.2182
8232
1.4938
2.6528
1.0773
1.6021
.3866
1.3382
.6893
1.2934
3019
«7589
.8485

»3726

A Equation 4.6

(in)

1917
.3110
.0519
1672
.2707
»7531
1474
.3098
.4466
1.2413
«1192
.4878
1.0975
1,1282
.4988
.8010
.2600
.9033
.0551
4206
2578
.6232
.5104

.0747

Deflection Predictions Using Equation 4.6

and the Code Equations
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between the accuracy of the Code equations and the equations developed

in this chapter.

A comparison between Washa and Fluck's experimental data and the
predictions from the equations presented in this chapter was shown in
Table 4.7, A natural extension of this comparison is to contrast those
results with predictions using the Code equations. Before presenting
the results from this comparison, it is necessary to point out that
Washa and Fluck'’s data was used to derive the Code equations. As was
mentioned earlier it is not always very informative to judge a
prediction equation by comparing it with the data that was used to
derive it. Therefore it might be expected that the Code equations
should prediet Washa and Fluck's data very well. What wmay be
interesting is to see how closely the predictioms using Equation (4.5)

and Equation (4.6) compare with the predictions of the Code equations.

In the first comparison, shown in Table 4.10, the deflections
predicted by the model short term equation and the Code equations were
compared with Washa and Fluck's experimental data. The long term
deflections in this table were calculated by multiplying the experi-
mental short term deflections by the deflection ratios. The average
error for the 1977 and 1984 Code equations were 0,24" and .22". This
compared with an average error of 0.31" for the model short term
equation, or 0.,27" if the minimum deflection ratios were limited to 0.6.
The Code equations therefore performed better than the model short term

equation, but the difference was not very significant. Considering the

|
i
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Beams Equation 4.5 Code (1977) Code (1984) Experimental

(in) (in) (in) (in)
B1,B4 42 74 1.03 1.18
B2,B5 1.13 1.37 1.40 1.58
B3,B6 2.25 2.08 2,08 2.36
A4 «21 42 «39 40
AS 74 .87 .89 65
A6 1.39 1.34 1.34 1.09

TABLE 4.10 Deflection Predictions Using Equation 4.5
and the Code Equations

g

Beams Equation 4.6 GCode (1977) Code (1984) Experimental

(in) (in) (in) (in)
B1,B4 52 .66 .92 1.18
B2,B5 75 1.20 1.23 1.58
B3,B6 1.30 1.76 1.76 2.36
A4 .13 42 <39 .40
A5 .41 76 .78 .63
A6 .86 1.12 1.12 1.09

TABLE 4.11 Deflection Predictions Using Equation 4.6
and the Code Equations
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fact that Washa and Fluck's data was used to derive the Code equations,

the results seem encouraging for the model short term equation.

A comparison between Washa and Fluck's experimental data,
predictions from the Code based short term equation, and predictions
from the Code equations, are shown in Table 4.11. This time the long
term deflections were calculated by multiplying the Code predicted short
term deflections by the deflection ratios. The average errors for the
1977 and 1984 Code predictions was 0.28" and .26"., The average error
for the Code based short term equation, Equation (3.6), was 0.55" with
no lower limit, and 0.49" with an imposed minimum deflection ratio of
0.6. In this case the performance of the Code based short term equation
was not very good which may mean that this equation is not an
appropriate prediction equation, However an interesting observation
that may be made from the results in Tables 4.10 and 4.1l is that the
Code equations do not even very accurately predict the data from which

they were derived.

The results from the comparisons with Washa and Fluck's data
indicates that neither Equation (4.5) nor Equation (4.6) were highly
accurate for these examples. On the other hand the equations did give
reasonable estimates of the long term deflections. The inaccuracy that
did exist may have been caused by a number of different factors. One
reason which was mentioned earlier was the supposition that there are
other parameters not included in the equatioms which also influence long
term deflections. Another possibility is the effect of the compressive

strength, Different mixes with the same compressive strengths may have
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different creep and shrinkage characteristics. A third possibility is

experimental variability.

A fourth possibility, and one which may require further thought,
is whether the long term—to-short term deflection ratio is really the
best value to use in predicting long term deflections. If it is diffi-
cult to get highly accurate results ;sing this ratio, it may be advis-

able to use some other criteria for dealing with these deflections.

It may be informative to examine some of the factors which will
affect any prediction equation using a long term-to-short term deflec—
tion ratio. Delayed cracking is one of these factors. It is possibie .
for significant cracking to occur in a beam at the end of its loading,
however it is equally likely for an identical beam to experience this
cracking in the first few days after loading. These two identical beams
could have very different time dependent deflections, and quite differ—
ent deflection ratios. Another factor is the accuracy of the short term
deflection prediction. It was observed that Equation (4.5), Equation
(4.6), and the results from these equations were quite different, even
though the only real difference between them was whether the Code short
term deflection was used or the finite element short term deflection was
used. Perhaps in future it may be advisable to develop a prediction
method that calculates the actual long term deflection and not a

deflection ratio.




246

From the results in this chapter it seems more and more apparent
that any equation predicting the actual long term deflection alone may
never be highly accurate under every circumstance. If this is the case
it should either be recognized that a prediction equation only gives an
approximate value, or some other criteria must be suggested. Perhaps
this could take the form of general guidelines about when, and under
what conditions, long term deflections may be a problem. Another
possibility is to calculate the total deflections rather than long term
deflections. This would also reinforce the idea that it is sometimes
difficult to separate long tern deflections from short term

deflections.

4.5 Summary

In this chapter a parametric study was conducted to develop an

equation for predicting long term deflections of reinforced concrete
beams. Two equations were presented since there may be some question
about whether a deflection ratio should be derived using actual short
term deflections or calculated deflections. The first equation was
developed using short term deflections generated by the finite element
model. The second used Code calculated short term deflections. Of the
two equations presented, the one that was derived using the finite
element generated short term deflections seemed superior to the one
derived from calculated deflections. Comparisons with more independent
experimental evidence may be necesary to finalize this conclusion. The
CAN3-A23.3-M77 suggestion of a lower limit of 0.6 on the deflection

ratio seems advisable for the equations developed in this chapter. 1In

|
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comparisons with twenty-three deflection results generated with the
finite element model, the equations developed in this chapter proved to
be far superior to the Code predictions, When compared with the experi-
mental data of Washa and Fluck, one of the equations was almost as
accurate as the Code equations. When more experimental data becomes
avalilable it should be possible to further verify these results. It
should be strongly stated at this point that the equations presented in
this chapter are only applicable for the ranges that were set during
their derivation. Values 1lying outside these boundaries may produce

inaccurate results and should be used with discretion.

In the future it may be advisable to study alternatives to
predicting long term deflections with a long term—to-short term deflec—
tion ratio. General guidelines about when long term deflections may be
a problem, a prediction equation calculating actual long term deflec-
tions, or the prediction of total deflections, may be preferable to the
deflection ratio approach. However at this stage it seems apparent that
the past and current Code prediction equations are not very accurate and
the equation developed in this chapter should be seriously considered as

a replacement.




CHAPTER 5

CONCLUSIONS

5.1 General

Long term deflections in reinforced comcrete beams have become
increasingly important in the last few years, and this investigation was
launched to further the understanding of this subject. The three main
objectives of this study were to provide experimental data on long term
deflections of reinforced concrete beams, to develop an accurate finite
element model to simulate reinforced concrete beam bdehaviour, and to
develop an empirical long term deflection prediction equation using the
finite element model. The results from this work provided interesting
insights into the time dependent behaviour of reinforced concrete and

the modelling of this complex material,

5.2 Experimental Work

In the experimental program, six reinforced concrete beams, of
which four were continuous, were subjected to sustained load for a
period of 1 1/2 years. The resulting deflections were reported in
Chapter 2. These results were used to evaluate the CAN3-A23,3 (12) Code

prediction equation and later to evaluate the finite element model.

- 248 -
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The wmost striking fact observed from the long term deflection
results was the evident inaccuracy-of the CAN3-A23,3 (12) Code long term
deflection prediction equation. In every case, the prediction equation
significantly underestimated the experimental deflections, even for
those beams which had decreasing loads. In a deflection sensitive

structure this lack of conservatism could have serious consequences.,

Another detail that only became apparent at the end of the test
program was the long term sensitivity of the instrumentation. The
readings from the load cells drifted with time even though the cells
tested perfectly at the beginning of the test. The durability of the
equipment in a long term test 1s at least as important as its initial

accuracy, and this fact must be kept in mind by future researchers.

The results £from the continuous beams indicated that their
deflection behaviour may not be the same as that for simple beams. Even
though these beams had more compression stee} than tension steel in
their positive moment regions, their long term'to short term deflection
ratios were comparable to the deflection ratios of a simple beam with no
compression steel. This may indicate that the effects of high moments
in one reglon of a reinforced concrete beam may significantly affect the
long term deflections in another, 1If this is true an accurate long term
deflection prediction equation mst include this £factor. Not mucﬂ
experimental long term deflectlon data for beams with changing moment
directions exists, and more data is uneeded before the deflections of

these beams can be predicted confidently.
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5.3 Finite Element Model

A great deal of time and effort went into the development of a
finite element model that would accurately simulate the long term behav-
iour of reinforced concrete beams. Since complete material property
data is rarely available, a number of empirical prediction methods were
investigated to determine which ones should be used when the true values
were not availlable. Judging by the deflection results, the chosen
methods were reasonably good for predicting the required values. The
finite element model itself was a combination of plane stress triangular
elements for concrete, bar elements for steel, and Goodman Joint
Elements for bond. An implicit visco-plastic model was used for the

creep formulation.

From the results presented in Chapter 3 it is possible to say
that the model performed reasonably well for both short term and long
term loadings, and was generally successful in simulating the behaviour
of reinforced concrete beams. Probably the most important factor
affecting the finite element results was cracking. For beams stressed
near the cracking load, the finite element model was sensitive to any
factor which might accelerate or delay the omset of cracking. Although
the model was Bo;etimes sensitive to variations in the material proper—
ties and the finite element mesh, especlally at low loads, it usually
generated deflections which were very close to experimental data. When
differences did occur, the model almost always underestimated the
correct deflections. This was not unexpected because underestimation is

an inherent characteristic of the finite element method. Since the
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model was usually very successful in simulating reinforced comcrete beam

deflections it was used confidently in the parametric study.

5.4 Parametric Study

The goal of the parametric study was to produce an accurate long
term deflection design equation using the finite element program from
Chapter 3, and the Pactorial Design Method. A Fractional Factorial
Design using Star Design capabllities was initiated to study the effect
of the tension steel ratio, compression steel ratio, applied moment to
ultimate moment ratio, span—to-depth ratio, and compressive strength, on
the long term—to-short term deflection ratio. Two equations were ulti-
mately developed. In the first equation the deflection ratio was
derived from computer generated short term and long term deflections.
In the second equation the deflection ratio represented long term
deflections from the program, and short term deflections calculated
using the Code equation., Of the two equations the one that appeared
most successful was the one derived from computer generated short term
and long term deflections. This equation proved to be very accurate in
predicting the long term deflections generated with the finite element
model, and was reasomably successful in predicting experimental long

term deflections.

A number of observations were made during the work in the para-
metric study. One such observation was that designers probably do not
have access to enough parameters for a highly accurate prediction

equation. It seems that reasonable estimates may be the best that can
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be hoped for. It also seems that the deflection ratio approach for
predicting long term deflections may have some weaknesses. Delayed
cracking and other influences may adversely affect predictions using the
deflection ratio approach for both long term deflections and total
deflections. In addition, the accuracy of deflection predictions using
this approach is very dependent on predictions of short term

deflectionse.

In light of these observations it may be advisable in future to
investigate other approaches besides the deflection ratio concept for
dealing with long term deflections. A few suggestions were discussed in
Chapter 4. However unless some other approach proves to be superior, it
appears that the prediction equation presented in Chapter 4, may provide

an excellent replacement for current prediction equations.

5.5 Recommendations for Future Research

The objectives laid out at the beginning of this thesis led to
an interesting study of many different aspects of long term deflections
in reinforced concrete beams. It is hoped that the work presented here
will be useful for future researchers. Throughout this thesis many
areas which require future research attention have been identified. A

general overview is provided here.
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1) The acquisition of more experimental long term deflec-
tion data, particularly for continucus or restrained
beams, is required. The data in this study indicated that
there may be significant differences between the long term
deflection behaviour of continuous beams and simple beanms.

This possibility should be investigated further.

2) More research into material properties and their
modelling in a finite element model is necessary. The
modelling of cracking, tension stiffening, bond, aggregate
interlocking, fallure criteria, and other properties,
still needs work. In part, improvements in these subjects
may depend on researchers Jlearning more about their

physical behaviour.

3) Designers and researchers must decide whether deflec~
tion prediction equations should be concentrated on long
tern deflections or total deflections. The best approach

may be different depending on which is required.

4) An enquiry into alternative methods for treating long
term deflections may be warranted. As an example it may
now be preferable to use a simple computer program for

deflections instead of prediction equations.
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APPENDIX A

COMPUTER PROGRAM LISTING

The finite element computér program listing for the program used
in this thesis is presented here. This program is an extended version
of an existing program developed by F.A. Mirza at McMaster University.
The program listed here is most efficient for continuous beams, where
bond slip may be present in both top and bottom steel. For simple beams
where the top steel 1s entirely in compression, it 1is most efficient to
consider the top steel as being fixed to the concrete which enables the

use of common nodes. This reduces the number of degrees of freedom.

The input variables needed for running the finite element

program are listed below.

Input Variables

NPROB Problem number
IGR = 0 TFor no self weight

= 1 For self weight inclusion
ILIN a ]

IT = Maximum Number of Newton~Raphson iterations allowed

- 259 -




JGR

ILO

ITYPE

THICK
GR

CHECK

IDM

TIF

NNOD
NVAR
NNODEL
NBSE
NTSE
NNSP
NNSEL

NBAR

260

= (0 For manual element data input

= ] - For automatlic element data generation

Number of load increments (sets the size of the load
increments)

= () For simply supported at ends

= ] For continuous beans

Thickness of beam

Self weight of beam

Tolerance for Newton-Raphson iterations (percentage)

= 0 For elastic solution

= 1 For creep solution

Printout required after IDM creep increments
Multiplier on each successive creep increment

Total time of loading

Number of concrete elements

Total number of nodes

Number of variables per node (=2)

Number of nodes per concrete element (=3)
Number of bottom steel elements

Number of top steel elements

Number of nodes per Goodman Joint Element (=4)
Number of nodes per steel element (=2)

Number of reinforcement bars in tension zone
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BDIA Diameter of bottom reinforcing bars
TDIA Diameter of top reinforcing bars
ABOT Cross—sectional area of bottom steel

ATOP Cross—sectional area of top steel

X XrCoordinate’of nodes

Y Y-Coordinate of nodes

Xw Height of beam

D Depth of reinforcement

ICo Element node numbers

E Modulus of elasticity for concrete
ANU Poisson's ratio for concrete

ES Modulus of elasticity for steel

FT Tensile strength of concrete

FC Compressive strength of concrete

NCON Number of boundary constraints
ICON Identification of constrained degrees of freedom

CON Constrained boundary conditions
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PROGRAM TST IS A FINITE ELEMENT PROGRAM FOR THE

ANALYSIS OF REINFORCED CONCRETE, THIS PROGRAM

USES PLANE STRESS TRIANGULAR ELEMENTS FOR CONCRETE.,

AXIAL BAR ELEMENTS FOR _REINFORCEMENT. AND GOODMAN

JOINT ELEMENTS FOR BOND. PROGRAM TST 1S CAPABLE OF
gﬁgD%éEgpPRDGRESSIVE CRACKING, BOND SLIP, SHRINKAGE

PROGRAM TST( INPUT, OUTPUT, TAPES=INPUT, TAPES=0UTPUT, TAPEL, TAPE2,
TAPE3, TAPE4, TAPE7)

DIMENSION LJ(8), X(3):Y(3),S5(8,8).FL(8}, AT(3),BT(3),U(B), V(B),
A(17000),B(1100), BB(1100), CC{1100), DD{ 11 100), XX{1100},YY(1100),
IX(1100), JX(1100), CON(S50)Y, ICON(SD), 2(3,46), BL(3,46),C5(3), DU(1100),
ICD(&4), AREA(BOO), SIG(800, 3), EPS(800, 3}, STR(800, 3), AIN(BOO, 3)

: ICR(800), ANG(BOO), XLEN(200), IBF (2, 200}

WRITE(&: 40)

INPUT OF PROGRAM VARIABLES

READ(S,41) NPROB. IGR, ILIN, IT,JGR, ILD. 1TYP, THICK, GR. CHECK
IF(EOF(S).EQ. 1. 0) GO TO_2999

READ{5,901) KV, NPT, IDM, TIF, TL

IF(NPT. EQ. O0) NPT=1

IF(ILIN. EQ. O. AND. KV, EG. 0) WRITE(&, 1500)
IFCILIN. EQ. 0. AND. KV. GT. 0) WRITE(&, 1301

IF(ILIN. GT. O. AND. KV. EGQ. Q) WRITE(&, 1502)

IF(ILIN, GT, Q. AND, KV. GT. 0) WRITE(&, 1503}

IF(IPS, EQ. 0) HRITE(6:1504)

WRITE(&, 1506)

NRITE(6,135) ILIN, IT, IGR.: IPS, IL.O, THICK, GR, CHEC

READ( S, 47) NEL.NNDD.NUAR;NNDDEL.NBSE.NT:E;NN:P NNSEL.NBAR

READ(S3, 48) BDIA, TDIA, ABOT, ATOP
NVEL=NVAR*NNODEL

NVELS=NVAR®NNSEL

NVSEL =NVAR#NNSP

NSP4=NBSE*4

INEL=NEL+NBSE

JNEL=INEL+NTSE

KNEL=JNEL +NBSE

LNEL= KNEL+ITYP*NTSE

REWIND

REWIND 2

REWIND 4

SUBROUTINE LAYOUT SETS THE GEDOMETRY OF THE
PROBLEM AND NUMBERS THE DEGREES OF FRzzDOM
CALL LAYOUT(XX,YY, 1CO, IX, JX.AREA.NEL.NNDD.NVAR.NMAT:NNET-NNDDEL.

$EESELbXLEN-NNSPoINEL:JNEL.KNEL-LNEL. JGR., COVER

SUBROUTINE BANDWH CALCULATES THE HALF EANDWIDTH
caLL BANDNH(ICD.JX LJ, NEL, NVAR, LBAND, NNODEL)
LBAND=LBAND+2

NB3=LBAND+1
HKA=N33*NNET

ITE(6, 42) NPROB, NNET, LBAND, NVA
INITIALIZATION OF ARRAYS AND VARIABLES
CALL PRESET({BL, 3, 6)

CALL PRESET(Z,3,6)
CALL PRESET{SIG. 800, 4)
CALL PRESET(EPS, 800, 3)
CALL PRESET(STR., 800, 3)
CALL PRESET{(AIN. 800, 3)
CALL PRESET{IBF, 2, 200)
CALL PSET({(CS. 3)
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‘S CREEP AND SHRINKAGE
DCOEF, POWER, AN, TSH, TCREEP, E, SHCOEF., TDRY,

Y (. O4%2%¥COVER#THICK ) #x>, 3333
ATION OF ELASTICITY MATRIX FOR CONCRETE

NE CONST CALCULATES THE CONSTANTS FOR
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MAT(BL.AT.BT.U.AL:BE:GA DE, ILIN, JC)
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. 0. AND. KR EQ. 1. AND. IC. GT. O0) WRITE(2) ((

mm
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B ’

). 1
LI

w
.)H

NJTSHIDTINELJICR ANG
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T0
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IF( .0 (1) {«(B

R ST
@ C
—A~DCC

21

(2]
o
z
ur
[
=

&QkLNESET(FLJB)

LOOP FOR THE CALCULATION OF THE STIFFNESS MATRIC
AND LDOAD VECTORS OF THE STEEL ELEMENTS AND THEIR
INSERTION INTC THE GLOBAL MATRICES

DO 191 IEL KKK, JNEL

ES

ARST=ABO

IFCIEL. GT INEL) ARST=ATOP
IF(ILIN. EQ. 0. AND. JC. 6T. 0) GO TO 181
IFCILIN, GT. 0. AND. JC. 6T.~L) GO TO i8¢

265

sd=1,6)

GaCS.ANU.E.EA.El E2;Eg;§?SIGoCSR;DELT;IEL.MM.BCDEF.




L3

ok

* &

180
i81

184
ig2

[
00
=0)

R
0w
[T

201

202
285

READ(4) (ICO(J),J=1,4)

CALL LJMAT{LJ, NNSEL, NVAR, ICO, JX. IEL}
WRITE(3) (LJ(1),I=1,4)
ST=ES*ARST/XLEN(IEL-NEL)
SUBROUTINE_STIFF PLACES THE BAR ELEMENT STIFFNESS
INTD THE STIFFNESS MATRIX FOR STEEL ELEMENTS
CALL STIFF(S,ST,0.0)

DO 180 _1I=1,8

WRITE(7) (S(I.,J),J=1,8)

GD TO 182

READ(3) (LJ(I), I=1,4)

DD 184 I=1,8

READ(7) (S(1,J),J=1,8)

IF(JC. LT. JJJ. AND. IC. EG. 0) GO TO 183
IF(ILIN.EQ.O0) GO TD 183
FL(1)==ARST#SIG(IEL, 1)

FL(3)=-FL(1) ]
CALL SETUP(A; B, S, FL., NVELS, LJ, NVAR, LBANI)
CONTINUE

KKK=JNEL +1

LODP FOR THE CALCULATION OF THE STIFFNESS MATRICES
AND LDAD VECTORS OF THE 4 NODE GOODMAN JOINT
ELEMENT

DO 291 IEL=KKK,LNEL

CALL PSET(FL.8)
IF(ILIN. EQ. 0. AND. JC. GT.0) GO TO 2B1
IF(ILIN, GT.O. AND, JC, GT.-1) G0 TO 281
READ{4) (ICO(J),J=1,4&)

CALL LJMAT{LJ, NNSP, NVAR, ICD, JX,; IEL)
WRITE(3) (LJ(I),I=},8)

60 TD 282

READ(3) (LJ(J), J=1,8)

CALL UMAT(CC.,LdJ, U, NVSEL)

MEL=1El -NBSE-NTSE

IF(SIG(MEL.1).GE.0) GO TO 285

CALL PRESET{(S: S8, 8}

DO 201 I=1,7.2

S(I,1>=1E10

CONTINUE

S(1, 3)=5E9 !
S(1, S)=-35E9

S(1,7)=-1E10

S(3, 3)=-1E10

S(3, 7)=~-5E®Q

S(S, 7)=5E9

b0 202 I=1,7.2

DO 202 J=I,7.2

S(J, I1)=5({I,J)

CONT INUE.

GO TO 284

KEL=IEL-JNEL

IF(IEL. GT. KNEL) KEL=IEL-KNEL

SDIA=BDJIA

IF(IEL. GT. JNEL) SDIA=TDIA

SUBROUTINE BONDEL CALCULATES THE STIFFNESS MATRIX
AND LOAD VECTOR FOR THE GOODMAN JOINT ELEMENT

CALL BONDEL (S, U, XLEN, SDIA, NBAR, KEL, FL. 1LIN, JC, IBF, CF)

CALL SETUP (A, B, S, FL, NVSEL., LJ, NVAR; LBAND)
CONTINUE

IF(ILIN. EQ. 0. AND. IC. GT.0) G0 TOD 132
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372

oY
QO

718

88

856
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#NEL, LJ, AT, BT. ILIN, IC, IPR, DELT, DESH, COR, NVEL, ICR, ANG, CR1, KR, RATIO
#, CHECK, STR, AIN, JNEL, XLEN. ES, FT, CC, IBF, KNEL, LHEL)

IF(RATIO. GT. CHECK. AND. IC. EG. 0} GO TO 724

DO 20 IEL=1, JNEL

JJ=3

IF(IEL. 6T. NEL) JJ=1

IFCICR(IEL). NE. 1) GO TO 372

TRANSLATION OF CRACKED ELEHENT COORDINATE AXES

TO LOCAL AXE

CO=COS (S*ANG ( IEL) )

SI=SIN(D#ANG(IEL))

S8IG(IEL, 1)=0. D0

SIG(IEL,2)=, 5DO*(SIG(IEL, 1)+SIG{IEL, 2)}~SIG(IEL, 3)#SI
$—. SDO*(SIG(IEL, 1)~-8IG(IEL, 2))#CO

SIG(IEL, 3)=0. DO

EXP=. SDO*(EPS(IEL, 1)+EPS(IEL, 2) )+, SDO#{EPS(IEL, 1)-EPS(IEL, 2))
$#CO+. SDO#EPS( IEL, 3) #S1 .

EYP=. 5D0# (EPS(IEL, 1)+EPS(IEL, 2))-. SDO#(EPS(IEL, 1)-EPS(IEL, 2))
$#C0-. SDO*EPS(IEL, 3)#S]
EXYP==(EPS(IEL, 1 }—EPS(IEL, 2) ) #*SI+EPS(IEL, 3)#CO
EPS(IEL, 1)=EXP

EPS(IEL, 2)=EYP

EPS(IEL, 3)=EXYP

ALL ELEMENT STRESSES AND STRAINS AT THE BEGINNING

OF A LOAD OR TIME INCREMENT ARE STORED

DQ 20 I=1,JJ :

STR(IEL, I)=SIG(IEL, I)

AINCIEL, I)=EPS(IEL, I) .
CONT INUE

IF (KR, NE. 1) 60 TO 719

DO 718 I=1,NNET

CC(IY=DU(I)

CONTINUE

IF(IC.EG.0) 6D TO 918

IF CRACKING OCCURS DURING A TIME INCREMENT THE TIME
INCREMENT IS ADJUSTED

FIME T TME-CORSDEL

DELT=DEL T*(1. DO-COR)

G0 _TO 719

TTT=TTT-COR¥(TTT-8E8)
XXX=TTT/ILOD

IF(IC.GT. Q) WRITE(&, 1351) DELT, TIME
IF(IC.EQ. 0) WRITE(&,373) XXX

DO 723 I=1,NNET

DUCI)=CCKI)

IF(IPR,EQ. 0) G0

SUBROUTINE EXPAND PRINTS THE NODAL DIJPLACEMENTS
CALL EXPAND(DD:NMAT.CC,JX.NNDD:NVA
CALL PSET (B, NNE

IF(KR. EQ, 2) KR=0

IF(XXX. GT. 2. ) GD TO 85

IF(IC. GT.0) GO 6046

IF(RATIO. GT. CHECK) GO TO 88

G0 TO 86

IF(JC, GT. IT) WRITE(&, 111) JC, IT
IF(JC.GT. IT) GO TO 85

DDET=DET

JC=JC+1

G0 TO 87

[
|

=
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IF(KR.EQ. 1) GO TO B7
IF(ABS(TTT-ILODY. LT. 1E-4) GO TO 606
S8S=TTT
TTT=TTT+1. DO
IF(TTT. GT. FLOAT(ILO)Y) TTT=ILD
IFCILIN. EQ. O) YYY=XXX
IF(ILD, GT. Q) XXX=TTT/ILD
6D TO 87

&06 IF(KV.EQ.0) GO TQ 85
IF(KR.EGQ. 1) GO TO 87
IC=IC+1
IF(IC.EQ. 1) GO TO 350
DELT=TIF#DELT1
IF(ABS(TIME-TL). LT. {E-6) GO TD 85
G0 TO 603

8BS WRITE(&, 112)
G0 TO 3

99 STOP
OUTPUT FORMATS

40 FORMAT{ ‘1, 10X, ' w#wwxaasatrnwennse 2-DIMENSIONAL FINITE ELEMENT ANA
1LYSIS ssmasdsmasamrnsstsr 7, //)

41 FGRHAT(?IS,SF 10.0 . . .

42 FORMAT(/,5X, ‘PROB. NO. 7, I5, 3X, ‘TOTAL UNKNDWNS’, IS, 3X, ‘BANDWIDTH", I
15, 3X, 'MATRIX SIZE”’, I18)

43 FDRMAT(5F10. 0)

45 FDRMAT(2513) .

45 FDRMAT(/,’ CONSTRAINTS ON‘, 20157

47 FDRMAT(11I3)

48 FORMAT(4F10. 0)

50 FORMAT(/, 5%, "DETERMINANT IS ',EEO 8:

92 FORMAT{//, 5%, ‘MODULUS OF ELASTICITY = i F12.1, 98X, 'POISSONS RATIO =
1 ", F&.4,//,5%, ‘"NUMBER DF CDNSTRAINT NCON = 7, 18&)

23 FORMAT(8FL10. 0)

2?4 FORMAT(//,5X, 'BOUNDARY CONSTRAINED VALUES ARE’, /)

25 FORMAT(5X,BE1S5, 7)

101 FORMAT(//,5X, ‘SOLUTION AFTER THE NO. OF ITERATIONS = *, 15, 5X, 'AND
1RATID = ’,F10.5,//)

110 FORMAT(//, 5X, ‘GLOBAL LOAD VECTOR IS.

111 FORMAT(//, 5%, ‘TOTAL ITERATIDNS= 15, BX;'IS EQUAL TO THE TOTAL ALL
10WED NO. OF ITERATIONS = ,1I5,//)

112 FORMAT(/ /) LOX, 396t 33 53030 30 N M3 5 5 S5 0 36 6 20 3036 S B S BB F R R BRI H4E EN
iD **#********************************#*#***********')

135 FDRMAT(//:SX;’ILIN = /,12,5%, 'IT = /, 13, 5%, 'IGR = 19X, '1PG= ’,
112,/7/7,5X, 'IL0O = aIB.SX.’THICK = ', F7.3:5X, 'GR = DENSITY OF HATERI
2AL = ’,F10. 4, 5%, ‘CHECK = ;F7 3 /7))

375 FDRNAT(//,SX:'SDLUTIDN FOR _',FB. 4, 3X, 'OF TOTAL LDAD’, //)

710 FORMAT{(//,SX, "%%x% LINEAR ELASTICITY SOLUTION s*#%/, //)

716 FORMAT(//, 5X: '#*%x% RESIDUAL LOAD VECTOR IS #xxx’, //)

901 FORMAT(3I5,2F10.0)

1350 FORMAT(//, SX, ‘#%x%% SOLUTION AFTER CREEP INCREMENT’, IS5, ‘ ##%%‘,//)

1351 FORMAT(/, * TIME INCREMENT = ‘,F9,6 3, 5X, 'TOTAL TIME ELAPSED="’, F9. 3)

1500 FORMAT{10X, ! #*%##dxaeenrniiditsr LINEAR ELASTIC #HH##udtntttianxi®’, //)

15011FDRM?I§10X;'**************** SMALL DEFI.ECTION CREEP *********#****
xE’,

15021F0RM¢T5}?X,'**************** LARGE DEFLECTIDON ELASTIC ##w#isdddiuss

w7,

15031F9R7?¥(10x.’**************** LARGE CJEFLECTION CREEP #3353 5543 #3833 3

15041F0R|’/’|¢}'(10X: f iRt muwtw® PLANE STRESS ANALYSIS ##d###48amaiiss
*"
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FDRMAT(//.iEX.’********************** GOOD LUCHK 3616 #4503 33 2 3536 36 4 % 36 3646 364

1exw’, ////

END
SUERDUTINE PRESET INITIALIZES A 2 DIMENSIONAL

AY
SUBROUTINE PRESET(A.M,N)
DIM%NSI?NHA(M;i

;IALIZES A 1 DIMENSIONAL ARRAY

?VAR,ICD,JX-IEL)

=10 —]
~ |1k ff O
I e T

mar-od. coominar oo
o P>

ZMNCON=O=CZM~0r

SUBROUTINE UMAT DEFINES THE NODAL DISrI.ACEMENTS
FOR THE ELEMENT
SUBROUTINE UMAT(CC, LJ, U, NVEL)
DIMENSION CC(1),LJ(1),U(1)
DG 30 I=1,NVEL
J{I)
F K) 20,10,20
0. Do
CC(I
N

=HIO X

1
D
0
¢
E

~HZr AR
B R sl LA

1
I
U
G
U
c
R

R
<
g
{
0
END

SUSROUTINE STIFF PLACES THE BAR ELEMENT STIFFNESS
INTO THE STIFFNESS MATRIX FOR STEEL ELEMEN
gaacurrns 8T R)

A

5

i

;

¢

¢

(

¢

¢

¢

¢

L PRESET(
OR ) =C
ORY%#S

. 87,

W NN~~

Ce =~ v~~~ (O

DLW BN~

E
SUBRDUTINE XYGRID(X, Y. XL, XW, D, DP, NELW, MELL, IX, NVAR, NN, I8, IT, IB)
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AND NUMBERS THE DEGREES OF FREEDOM

SUBROUTINE LAYOUT{(X:Y, s IX, JX, AREA, NE, NN, NVAR, NMAT, NDEG, NNODEL.,
*NNSEL, XLEN, NNSP, INEL, JNEL, KNEL, LNEL, JSR: COVER)

DIMENSION X(1),Y(1}, ICO{1), IX(1).JX(1). AREA{1), XLEN(1)

NNN=NNODEL.+2
NNS=NNSEL+2

NNP=NNSP+2 )
IF(JGR. EQ. 1) READ(S5,49) NELL,NELW, IT,IB, IS, XL, XW,D,DP
IF(JGR.EQ. 1) CALL XYGRID(X.Y, XL, XW: &, DP, NELW., NELL,
#I1X, NVAR, NN, IS, IT, IB)

DD 10 I=1,NN

IQ=NVAR*I

11=12-=NVA

IF(JGR, EG Q) READ(5, 43) X{I),Y(I), (IX(J),J=I1,12)
CONTINUE

IF(JGR. EG. 0) READ(5S, 43) XW.D

COVER=XW-

IF(JGR,. EQ. 1) CAL{. ICOGR{NELL,NELW,IT,IB)

REWIND 1

REWIND 2

DG 11 I=1,NE

IF(JGR. EQ. O) READ(S5,45) (ICO(J}, J=1, NNN)
IF(JGR.EQ. 1) READ(1) (ICO(J), J=1, NNN)

WRITE(4) (ICO(J),J=1,NNN)}

Ni=IC0(1)

N2=IC0O(2)

N3=IC0(3)

X1=X{N1)

X2=X(N2)

X3=X (N3)

Yi=Y(NI1)

Y2=Y (N2)

Y3=Y (N3)
AREA(I}=(X1#Y2+X2#YI+X3¥YLI-Y1#X2-Y2+X3~-Y3%%1)/2. DO
CONTINUE

ITI=NE+]

JJJ=INEL+1

CALL SGEOM(III, INEL. ICO, NNS, XLEN, X, NE, JGR)
IF(INEL. NE JNEL) CALL SGEOM(JJJ, JNEL, IZ0, NNS, XLEN.: X, NE, JGR}
KKK=JNEL

DO 1% J KKK:LNEL

IF(JGR. EQ O) READ(3,45) (ICO(J), J=1, NNF)
IF(JGR. EQ. 1) READ(2) (ICO(J),J=1, NNP)

WRITE(4) (ICO(J), J=1,NNP)

CONTINUE N

NMAT=NVAR*NN

NDEG=0

DO 12 I={, NMAT

IFC(IX(I)) 1,2,3

3 IF(IX(I)=-1) 80,80, 8%
NDEG=NDEG+IX(I)
G0 TO 82

B0 NDEG=NDEG+1

82 JX(I)=NDEG
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[ATN]
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cZmMo~oorrrr

ON ESHR(TIME, TCREEP, TDRY. DELT, SHCDEF, TSH)
TIM=TIME-DELT

AA-226+TIM**1 334

ONE=. 12846 #DELT*#T IM## (. 335) / (AA#%2)

BB=(2246+TIM## (1. 334) )#. 336#TIM*% (= £53) .
TND=.1286*.S*DELT*DELT*(BB-Q.672*TIM*4(.672))/(AA**3)
RETURN

SUBRDUTINE CSRATE CALCULATES THE CREEP STRAIN RATE

IgggEMENTS BAZANT AND PANULA'S EGUATION FORM IS

SUBRDUTINE CSRATE (EQSIG, BCOEF, DCOEF, PDUWER, AN, TSH, CSR, DT, DCSR)
WD=32. 93+DT##(.9144)

CSR-S S9E=5%DT#% (-, 08546) 7/ (TWO%#2) *EQSIG

ONE=(32, 93+DT*#(.9144) )% (—. OB5H) #DT#*(~1.

DCSS§3 39E-5% (ONE-1. 8288#DT#% (-, i71?)l/(TNO**J)*EQbIG
D

SUBROUTINE EXPAND PRINTS THE NODAL DISPLACEMENTS

SUBROUTINE EXPAND(AMODE, NAM, VV, JX, NDS, NVAR)

DIMENSION WW/(1), AMDDE({), JX(1),DD(1)

DO S I=1,NAM

AMODE(I)=0.0

IF(JX(I).EQ.0) GO TO 5

AMDODE( I }=UV(JUX(I})}

CONTINUE

WRITE(&, 40)

DO 10 I=1, NDS

I2=NVAR*1I

I11=12-NVAR+1

WRITE(&, 41) I, (AMODE(J),J=I1,12)

CONT INUE '

FORMAT(///, 5X, 'NODE’, 9X:'U~DISPL ‘s ¥X, *V=-DISPL. ‘. /)

Sg$83£(17a8X4512 &, 5X, E12. 6

END
SUBROUTINE SETUP PLACES THE ELEMENT STIFFNESS MATRIX
AND LOAD VECTOR INTO THE GLOBAL STIFFNZSS MATRIX

AND LOAD VECTOR

SUBROUT INE SETUP(A:B.S.FL:NVEL;LJ:NVAu LBAND)
DIMENSION A(1),B(1),S5(8,8),FL(1),LJ
D 12 I=1, NVEL

0 TO 12
FL(I)

-mc i ome—
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% K

&4
65

b&

o

RETURN
END

SUBROUTINE BAND SOLVES THE SIMULTANEZOUS LIMEAR
EQUATIONS AND CALCULATES THE NODAL DISPLACEMENTS
SUBROUTINE BAND(A, B, N, M, LT:DET)

DIMENSION A(1),B(1)

NM=N*M

NM1=NM=MM

IF (LT.NE. 1) GO TD 55

MP=M+1

>
J:
]

=P D NWDT
TNMAAIT—~D>
| ~~ XN Q0

P+M
DO &2 J=MP, NM1i,
JP=J=—=MM

=0
IF(KK. GE. M) GO TO 1
KK+1

DD 63 I=KK, J
IF(A(I). EG. O )GO TO 64
GO TO k6

JC=JC+M
MZC=MZC+1

1
MMZC=MM*MZIC
II=II+MZC
KM=KK+MMZC
A(KM)=A{KM)=#A(JC)
IF(KM. GE. JP)GO TO &

N+MH

I=KJ, JP, MM
MM
I+
I+MMZC
K=KM, IM, MM
%:QSUH2+A(KI)*A(K)
=(A(I)-ASUM2)*A{KI)
INUE .
i
1
o

0.
KM, JP,

=HNPOUDODPRIURHD TR
MNHRONO~=NO-H-INOC
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BPX(2), PY{(R2), PX{3), PY(D)
TINE BLMAT SETS THE KINEMATIC LARGE DISPLACEMENT

(X(2)=X{1) ) ##2)+ (Y (2)~-Y (1} )%%2))

R#H#GR/3. DO
Q. 0) GO TO 1000

RAV
RAV
RAY

A
G
G
G
E
T
H
E
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BCOEF., DCOEF: POWER, AN, TSH, TCREEP, E, SHCOEF, TDRY

D PANULA’S CREEP AND SHRINKAGE
» AC, AG, SC, WC, C, VS, RH, TDRY, TCREEP

SUBROUTINE CONST CALCULATES THE CONSTANTS FOR

USE WITH BAZANT &N
PREDICTION METHOD
SUBROUTINE CONST(
#, FC1, DENS)

READ+#, FC, DENS

SA=8C/AC
GS=AC/ (SC#*AG)

3
*
*




*

W

Z1=. 00005#DENS#DENS#FC

I2=1 _7#Z1%Z1

EO=Z2/(Z2#_09+1.0)#1. OE4

X=2, 1#AC7(5C*%1. 4)+. 1% (FCe®l, 5)#(WCs# 333)%(AGRR2, 2) -4
IF(X. GT. 4.0) AN=. 12%, 07#X##&57(5130+X#%5)

IF(X,LE. 4.0) AN=.12

AM=. 2B8+1/(FC#FC)

ALPHA=. 025 /uC

AN3=10%% (—3%AN)

PHI1=. 5/ (AN3#*(28#% (-~AM)+ALPHA))

Z=(1. D5%5GRT (AC)+, 5%GS#GS) #{ ( 1+8C) /WC i %%, 333#SART(FC)-12
IF(Z.LT. 0.0) ESU=330 _

IF(Z.GT.0.0) ESU=1210-880/(390%Z#%(-4)+1)

C7=, 125¥WC#C-12

C1=C7%(. 05+8QRT (4. 3/TDRY))

TEH=1. 6667#VS#VS/C1

E507=1+ANS*PHI 1% (507%% (—=AM) +ALPHA) ,
ETSH=1+AN3#PHI 1% ( ( TDRY+TSH) #%{—AM) +ALPHA)
ESHU=ESU*ETSH/ELO07

RHSH=1-RH##3

R—SbOOO*(SA*FC)** ‘3% (GS*#1. ) #(WC/EGUI##1, 5= B5
IF(R.GT.0.0) PHIID=. 00B+. 027/(1+. 7#R#%i-1, 4))
IF(R.LE. 0.0) PHIiD=, 008

PHID= PH%!g/iGRT(1+(TCREEP -TODRY)/(10=TSH) }

N
RHCR=, 98%#1. S—RH##1. 5
COEF=PHI1#AN#(TCREEP#%*(-AM)
DCOEF=10#PHID*TCREEP ##+ {—AM/2.

ow

+ALPHA) /
)} %RHC R#E:HU*CD*AN*TSH/EO

SHCOEF=ESHU#RHSH*1. OE-&

POWER=CD*AN

FC1=1000. *FC

SUBROUTINE NONLINC CALCULAT ES THE ELEMENT STIFFNESS
MATRIX FOR CRACKED CUNCRETE EMEMTS

SUBROUTINE NONLINC(S.SIG, A, iaAR H-Ia.IEL:ILIN:BL;ANG.NEL)
DIMENSION S(E:B).SIG(BOOaI) A(3) BL(3. 1}, ANG(1), T(k, &
IF(IS.EQ. Q) GO TO 100

EE=H#AR

DO 2 J=1,6

DO 2 I=Lé

T(I, J)=CR1#BL (2, J)#BL(2, 1)

TCJ, I)=2T(I,J)

CONTINUE

IF (ILIN.EQ.0) GO TO 4

DO 3 I=1,5,2

DQ 3 J=1,5,2

II=, SDO#(I+1)

JJ=. SDO#* {J+1)

AR=A{II)*#A(JJIXSIG(IEL, 2) /(4. DO*AR)

T{J: I)=T(J) I)+AK

T(J+1, I+1)=T(J+1, I+1)+AK

T(I, )=T(J, 1)

TCI+1, JELI=T (J+1, T+1) ,
CONTINUE

CO=COS (2#ANG(IEL))

SI=SIN(2*ANG(IEL))

DO 5 J=1,5,2

DO S I=U, 3.2

S(I, J)=(. SDO*{T(I, J)+T(I+1,J+1) )+, SDO*(T(I, J)~T{I+1, J+1))%CD

ard
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