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Abstract

A study of long term deflections in reinforced concrete beams is 

presented in this thesis. Two simply supported beams and four contin­

uous beams were tested under sustained loads for periods of about 1 i/2 

years. When the deflections were compiled it was observed that all 

beams had long term to short term deflection ratios that exceeded ACT 

and CAN3-A23.3 Code limits.

A finite element program was developed to model concrete 

behaviour for short term and long term loading. When compared with 

experimental data, the model predictions were almost always within the 

normal variability limits for deflections.

A parametric study using the Factorial Design Method was under­

taken to develop an accurate long term deflection prediction method 

using deflections generated by the finite element model. The ACT and 

CAN3-A23.3 Code approach of using a long term to short term 

deflection ratio was adopted in this study. The resulting relationship 

had mixed results which raises questions about the advisability of using 

the deflection ratio approach for predicting long term deflections.
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CHAPTER 1

INTRODUCTION

1’1 Introduction

Long term deflections in reinforced concrete beams are an impor­

tant serviceability consideration that has not yet received the atten­

tion it deserves. The introduction of Ultimate Strength Design methods 

has Increased the importance of deflection criteria because it has led 

to the use* of more slender members that are sensitive to deflections. 

Unfortunately the ability to predict the long term deflections of 

reinforced concrete beams has not kept pace with advances in predicting 

their ultimate strengths. This has led to the increased likelihood of 

deflection problems, and the possibility of serviceability failures.

The ability to accurately predict deflections is a difficult 

problem that has been Impeded in the past by many different factors. 

Among these were a general lack of concern about serviceability consi­

derations in general, the length of time required for long term testing, 

the large number of influencing variables, the effect of load history, 

and the variability of the material. Factors that are difficult to

- 1 -
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quantify like tension stiffening, bond breakdown, initial stresses due 

to shrinkage, and degree of cracking have also contributed to the 

problem. To make the task of deflection prediction even more formidable 

is the fact that test results on identical beams often produce 

deflections which vary significantly.

Currently accepted techniques for calculating long term deflec­

tions were derived from a limited supply of experimental data, and 

consequently their general applicability may be open to question. The 

recent and current ACI approaches for computing long term deflections 

(2), which were also used in the Canadian Code (12), was to apply the 

following multipliers to the instantaneous deflection.

kr - 2-1.2 Afs/As (1.1)

and now

. 2.0
(1 + 50p’)

(for loads sustained beyond 5 years)

These equations were formulated by Branson (8) and were based primarily 

on the data of Washa and Fluck (53) (54) and Yu and Winter (56), While 

these equations may provide a reasonable approximation for the deflec­

tions from these tests, it is difficult to assess their applicability 

for general use. The very simplicity of the approach is evidence of 

their approximate nature. Since the adoption of these approaches there 

have been very few concentrated attempts to verify their accuracy or to 

suggest alternatives. Through experimental work and the use of a finite 

element model, this thesis is dedicated to discovering whether the 

current approach is the best solution, or whether some alternative 

should be proposed.
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1.2 Obj ectlves

The major objectives of this thesis were threefold:

1) To provide long term deflection results from beams loaded 

for a substantial period.

2) To develop an accurate finite element model to simulate long 

term deflections in reinforced concrete beams.

3) To provide a long term deflection prediction method using an 

organized parametric study.

Each of these objectives alone could be the subject of a separate study, 

but it was felt that an exhaustive study addressing all three objectives 

would be more useful in contributing to the knowledge of long term 

deflections. The final objective is the ultimate goal of this thesis 

but it was necessary to fulfill the other two before this one could be 

addressed. To meet the objectives it was necessary to delve into the 

way concrete properties are treated and to assess the methods that are 

used to predict them. This effort may be considered a minor objective 

that complemented the others.

1.3 Literature Review

Research into long term deflections of reinforced concrete 

members is still in its infancy, and very little attention seems to have 

been focused on this subject. This may be due to the relatively recent 

interest in serviceability, which has only lately emerged as an impor-
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tant design consideration* [This may reflect increasing concern arising 

from more frequent serviceability problems*] The prime thrust of 

research work to date has been in estimating the effects of sustained 

loads on deflections. Previous investigations have provided useful 

insights into the magnitudes of long term deflections, but a relative 

scarcity of reliable experimental data has impeded a complete under­

standing of this phenomenon and has hindered the development of an 

accurate prediction method* This lack of complete data may explain the 

general lack of consensus on even a general technique for controlling 

long term deflections* A brief review of some of the important work 

that has been done in this area is now presented*

Washa and Pluck (54) provided the experimental data which has 

served as the basis for most of the empirical design methods currently 

available* In their first study, they observed the effect of compres­

sion reinforcement on time dependent deformations. Thirty-four full 

size beams with various dimensions and reinforcement details were tested 

for a period of two and a half years* Many of these specimens were more 

characteristic of slabs than they were of beams, so the collected data 

was really a mixture of both conditions* The main conclusion from this 

study was that compression reinforcement had a beneficial effect on 

reducing deflections because it decreased curvatures due to shrinkage*

In a second study, Washa and Pluck (53) furnished the only 

readily available data on long term deformations of statically indeter­

minant beams. Eighteen full scale beams, representing three different 

sizes and three different reinforcements patterns were tested for two
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and a half years. The inclusion of compression reinforcement reduced 

time dependent deformations for these beams, but the effect was not as 

pronounced as for the simply supported beams from their earlier study. 

Washa and Fluck concluded that although the plastic flow generally 

tended to relieve the maximum stresses, inelastic deformations in one 

region of a beam induced an increase in the maximum stresses elsewhere.

Miller (34) was one of the first researchers to investigate and 

report on the warping of concrete beams due to shrinkage. Shrinkage 

deflections were measured for sixteen small uncracked reinforced 

concrete beams. A major conclusion from this study was that shrinkage 

deflections were strictly a geometrical phenonomen and therefore the 

elastic properties of the materials were not governing factors. Using 

his experimental data. Miller suggested a prediction method whereby the 

shrinkage curvature was dependent on the shrinkage strain and on the 

depth of the section.

In 1960, Yu and Winter (56) presented experimental data on 

T-beams, and proposed prediction methods for instantaneous and long term 

deflections. Twelve T-beams were tested over a five to six month period 

to determine their deflections. From these and other tests, (53)(54) 

two simplified methods were developed to estimate time dependent deflec­

tions. In the first method, an effective modulus of elasticity was used 

in the usual elastic deflection formulas to account for the time depen­

dent effects. The long term deflection in the second method was found 

by multiplying the instantaneous deflection by a factor which depended 

on the duration of loading and on the reinforcement details, A compar
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ison of the two methods indicated that although they both showed fair 

agreement with test data, the deflection multiplier method produced the 

best results. In addition, the effective modulus method did not perform 

well for beams with both tension and compression reinforcement.

In 1962, Gesund (20) published one of the first theoretical 

studies on the effects of creep and shrinkage on deflections. His 

analysis showed that because of shrinkage, the plane of zero stress was 

not the plane of zero strain. He also derived a simple model from 

normal beam theory using an effective modulus of elasticity to account 

for the long term effects. Deflections for both statically determinant 

and indeterminant beams were calculated by evaluating separately the 

influence of the elastic, creep and shrinkage strains. Gesund concluded 

that, in a prediction method, the deflection should be divided into two 

parts, one part due to elastic and creep strains, dependent on the 

moment, and the other part due to shrinkage, dependent on the geometry.

In 1963, Hajnal-Konyi (23) conducted an experimental program to 

check the effects of concrete strengths, steel strengths, steel percen­

tages, and various span to depth ratios on long term deflections. Six 

pairs of small beams loaded under service load were observed for four 

and three quarter years. Probably the most striking result from Hajnal- 

Konyi’s tests was that even those beams with small span to depth ratios 

had high long term to short term deflection ratios. In fact, all of the 

twelve beams tested had deflection ratios which exceeded the upper limit 

of 2.0 specified in the ACI Code equations (Eq. 1.1). The average long 

term to short term deflection ratio for the beams reinforced with mild
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steel was 2.69, and 2.36 for those reinforced with high strength steel. 

Hajnal-Konyi's results also showed that although beams made with 

stronger concrete generally had lower time dependent deflections than 

those made with weaker concrete, the differences were relatively small.

Hajnal-Konyi compared his test data with deflections calculated 

by various analytical methods. The AGI method of factoring the initial 

deflection was compared with a method using an effective modulus. The 

method using an effective modulus of elasticity showed better agreement 

with the experimental results than the ACT method of using a factored 

initial deflection. (This is the reverse to what Yu and Winter found). 

Hajnal-Konyi also noted that methods which took into account the 

contribution of the concrete tensile strength performed better than 

those which did not.

Hajnal-Konyi examined the use of limiting span-to-depth ratios 

as a means of limiting long term deflections. He concluded that since 

reinforced concrete design is based on the assumption that there are no 

tensile stresses in the concrete, the slenderness of beams should be 

related to the effective depth and not to the overall depth. In 

addition, he suggested that the limiting slenderness ratios should 

depend on the stresses in the steel and the concrete.

Corley and Sozen (17) tested four beams for a two year period, 

and using this plus previous data (23)(53)(54)(56) proposed a simple 

method for estimating long term deflections. The variables in their 

tests were the amount of tension steel and the depth of the section.
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The six foot long and three inch wide test beams were smaller than those 

generally found in service so the results need to be viewed objectively. 

An interesting point which emerged during the test was that even though 

the total deflections of the beams were different, the ratio of the 

total to the instantaneous deflection was always about the same.

A simple method for calculating long term deflections was 

proposed by Corley and Sozen in which the curvatures due to creep and 

shrinkage were determined separately. The creep curvature was computed 

as a percentage of the instantaneous curvature, where the factor was 

dependent on the amount of steel and the depth to the neutral axis. The 

shrinkage curvature was estimated from the reinforcement details and the 

depth of the section. Good agreement was reported between the proposed 

equations and the experimental data. Finally, Corley and Sozen noted 

that the influence of the tension in the concrete was significant for 

lightly reinforced sections.

In 1972, Stevens (50) conducted a series of sustained loading 

tests on reinforced concrete beams and then discussed simple methods to 

predict strain and deflections. Twenty-nine full scale beams were 

subjected to sustained loads for a two year period. The concrete cover, 

amount of reinforcement, type of environment, type of concrete, and 

overall dimensions were varied to determine their Influences. A number 

of conclusions were reached from these sustained loading tests. One of 

these was that for cracked beams, the contribution of the concrete in 

tension decreased considerably with time. Another observation was that 

although beams made with lightweight concrete has larger initial
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deflections than those made with normal concrete, the subsequent changes 

were quite similar. Stevens also determined that for analysis purposes, 

using an average relative himidity gave a good analytical approximation 

for beams exposed to variable humidities.

Stevens proposed two different methods for predicting the total 

strains due to long term loading. In the first method a normal elastic 

analysis was used to calculate the elastic strains, and an effective 

modulus of elasticity was used to account for the creep effects. In the 

second method the curvature was calculated by assuming that the strain 

in the steel could be found from an elastic analysis, and the compres­

sive strain could be found in terms of the initial strain, the creep 

coefficient, and the shrinkage strain. In both cases the time dependent 

properties of the?concrete were needed as input variables.

An extensive examination of the long term properties of concrete 

and a comparison and discussion of available prediction methods was 

compiled by Branson (8) • In this study he stated that long term 

deflections were affected by the following effects:

a. Creep of concrete in compression and tension, including bond 

creep

b. Shrinkage of concrete

c. Formation of new cracks and the widening of earlier cracks

d. Relaxation of tensile stresses in concrete

e. Movement of the neutral axis
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f. Compression steel

g. Repeated load cycles

h. Moment redistribution in statically indeterminant elements

After examining the experimental work of previous investigators, 

Branson proposed a number of methods for predicting long term deflec­

tions* For calculating shrinkage curvatures alone, Branson suggested an 

empirical method based on a modification of Miller's method (34). They 

both assumed that the shrinkage curvature was a direct function of the 

free shrinkage and the steel content and an inverse function of the 

depth of the section. Using the full thickness rather than the 

effective depth was observed to give the best results. Branson also 

concluded that the effect of cracking could be ignored in a simple 

shrinkage analysis.

Branson also proposed a method for calculating creep deflec­

tions, where the Initial deflection was multiplied by a factor which 

depended on the compression steel ratio. Branson concluded that the 

compression steel ratio rather than the ratio of tension to compression 

steel gave the best representation of the effect of compression 

reinforcement• The same me thod was propos ed for combined creep plus 

shrinkage deflections, but the cons tants In the basic equation were 

modified. Branson preferred factoring the Initial deflection to using 

an effective mdoulus of elasticity, because he felt that it was easier 

to use, more adaptable, and seemed to give better results.
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In 1982, Hobbs (26) did a theoretical analysis of shrinkage 

curvatures using the Equivalent Tensile Force Method. This method was 

later expanded to include creep curvature, but a comparison with experi­

mental results showed only fair agreement.

It is obvious from the preceding review that although some 

research work has been done in the area of long term deflections of 

reinforced concrete beams, there is still no general agreement on the 

best method of prediction. Even though over 100 beams have been tested 

to date, there is no complete statistical sample of deflections 

available. This is probably due to a lack of coordination between 

researchers. This lack of coordination seems to have prevented the 

methodical development of a prediction method from all of the available 

collected data. Compared to most other areas of concrete research, the 

amount of experimental data which is available on this subject is not 

very large. This is perhaps understandable considering the amount of 

time which is required for testing and the high cost of full scale 

experiments. It is also unfortunate because there is a very high vari­

ability associated with long term deflections, and significant trends 

may not be readily apparent where the number of tests are limited. One 

problem with the long term deflection tests which have been conducted is 

that there is very little available data on the deflections of contin­

uous beams. This is surprising considering their prevalence in 

practice. In addition, information of the deflection characteristics of 

beams with compression reinforcement also seems lacking.
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The prediction methods and Building Code equations that are 

currently in use are very simple and therefore probably relatively 

inaccurate. Washa and Finck's data provided most of the experimental 

data which has been used to develop almost all of the currently avail­

able prediction methods. This is regrettable because the Influence of 

their particular material and storage parameters has tended to over­

shadow the results of other researchers.

Since long term deflection prediction methods are necessarily 

empirical in nature, an important issue must be raised. When the 

experimental data that was used to develop a prediction method Is also 

used to verify it, the results are favourably biased and the empirical 

equations may appear to be better than they actually are. In almost all 

cases this is what has been done with current prediction methods.

In the available literature, two major approaches have been 

proposed for predicting time dependent deflections. These have been 

identified as the Effective Modulus of Elasticity Method and the 

Factored Initial Deflection Approach. Very little attention seems to 

have been paid to any other approaches, so it may be advantageous for 

future researchers to examine alternatives. The one difficult require­

ment which all useful design equations must satisfy is that they can 

only make use of Information which is readily available to designers. 

The necessity for simplicity and accuracy are difficult requirements to 

deal with, and until an extensive parametric study is completed, or a 

fundamental analytical technique Is developed, the accurate prediction 

of long term deflections may be an elusive goal.
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1.4 Thesis Outline

An outline of the organization of this thesis is provided to aid 

the reader. Chapter 2 contains the experimental work which was done in 

this study. There is a lack of experimental data on long term deflec­

tions, and the six beams tested, four of which were continuous, should 

add to the current supply. These beams were also tested to provide some 

means for verifying the finite element model. In Chapter 3 the develop­

ment of the finite element model is discussed. First the constitutive 

relationships necessary for accurately specifying the material 

properties are chosen. Then the finite element modelling of reinforced 

concrete Is examined and the proposed model is derived. It is hoped 

that this model will provide a workable compromise between efficiency 

and accuracy. The short term and long term accuracy of the proposed 

model is also checked using available experimental data to ensure that 

the model may be used confidently to simulate reinforced concrete 

behaviour. In Chapter 4 a parametric study using the Factorial Design 

Method to develop a long term deflection prediction method is presented. 

Results generated by the proposed model are used to provide the 

necessary data. Finally, the general conclusions and recommendations 

are contained in Chapter 5.



CHAPTER 2

EXPERIMENTAL PROGRAM

2.1 Introduction

The examination of the existing literature reported in Section 

1.3 indicated that there was a serious shortage of varied experimental 

data on long term deflections. This was particularly the case for full 

size beams and continuous members. The number and range of parameters 

which have been tested seemed very limited, and this has very likely had 

a significant impact on the accuracy of current design equations. In 

most cases the available experimental data tends to be incomplete, and 

this makes it extremely difficult to develop empirical design methods, 

and to verify analytical models. Obviously the acquisition of more 

experimental information would greatly improve the situation. With 

these factors in mind an experimental program was undertaken with the 

dual purpose of assessing the accuracy of the proposed finite element 

model, and providing usable experimental data for future researchers. 

This information may also be useful for evaluating the design methods 

currently in use. The material properties, test set-up, beam specific­

ations, and results from the experimental program are presented in this 

chapter.

- 14 -
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2-2 Design of Experiment

Six simply supported beams, of which four were continuous, were 

designed, constructed, and tested under controlled conditions. The 

testing program was not intended to be a complete statistical study of 

the factors which influence long term deflections, but rather a brief 

exmaination of some of the more important parameters. The main elements 

of interest included the section depth, the tension steel ratio, the 

compression steel ratio, the age of loading, the level of sustained load 

as a percentage of ultimate load, and the existence of negative and 

positive moments. The experimental program was designed so that the 

beam sizes and test conditions were realistic. Problems such as scaling 

effects, unusual concrete properties, unusual support conditions, and 

uncommon span lengths were therefore eliminated. All of the beams were 

full sized, and had span-to-depth ratios which were large enough to 

minimize shear effects. The loads which were applied to the beams were 

well within the service load range, and the resulting bending moment 

diagrams resembled those of uniformly loaded beams. All of the beams 

were simply supported and determinant, which meant that the reactions, 

and therefore the bending moment diagrams, were always known* It was 

hoped that these considerations would ensure that the experimental 

program produced results that were both useful and reliable.

2.2.1 Concrete Mix Design

A concrete mix was designed to produce a 28 day compressive

strength of 4000 psi. This strength was chosen because it is represen-
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tative of concretes generally used in reinforced concrete structures. 

The mix proportions, given by weight, are shown in Table 2.1. The 

concrete produced by this mix is slightly ’’pasty”, and the subsequent 

creep and shrinkage strains, although well within normal limits, should 

be slightly higher than usual. The same carefully controlled concrete 

mix was used throughout the test so that differences due to changing mix 

parameters could be eliminated.

2.2.2 Batching and Curing

The experimental program was divided into three distinct series 

of two beams per series. This was done because of time limitations in 

the mixing and placing of the concrete in each set of beams. In addi­

tion, staggering the casting days made the scheduling of the preparation 

and loading of the beams easier. On each mixing day, before the first 

batch was prepared, the nine cubic foot horizontal drum concrete mixer 

was conditioned with a "butter batch" of approximately one quarter of 

the mixer capacity. This concrete was thrown out and the regular 

batches were then prepared. A slump test was taken after each batch was 

mixed to ensure that the concrete met the required specifications. A 

Standard 12 Inch High Slump Cone was used to measure the slump and in 

all cases the value was within 3/4 of an inch of the specified slump of 

2 1/2 inches. All of the aggregate was air dried, but in the third 

series it was observed that the sand on this day was slightly damp, and 

therefore it was necessary to make some minor adjustments in the mix to 

get the correct slump. Mixing and pouring proceeded quickly so that 

neither the mixer nor the concrete was allowed to dry out.
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The concrete for the beams was placed in wooden forms and 

vibrated internally using a poker type vibrator* Three 12 in* high 

cylinders were poured from every batch, and one 22 * 6 x 6 in. prism was 

poured from nearly every second batch. The cylinders were placed and 

vibrated in three layers, and the prisms were placed and vibrated in two 

layers. Nine batches was the maximum needed to make all of the beams, 

cylinders, and prisms required for any series.

When the concrete had begun to harden, approximately four to 

five hours after pouring, wet burlap was placed over the beams, 

cylinders and prisms. The burlap was' kept moist throughout the seven 

day curing period. When this period was over, the specimens were taken 

from the laboratory floor and placed in a humidity controlled environ" 

ment. Further details about the tent used to control the humidity are 

mentioned later in this chapter.

2.3 Concrete Properties

2.3.1 Compressive Strength

Cylinders from different batches for each beam series were 

tested at ages of 7 days, 28 days, and after the end of the test. The 

reason for determining the uniaxial compressive strength was to ensure 

that the concrete satisfied the specified strength of 4000 psi, and 

because information was needed for the prediction of other material 

properties which were not tested separately. The compressive strength
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test was conducted in accordance with ASTM specifications, and the 

results are shown in Table 2.2.

2.3.2 Stress-Strain Relationship

The modulus of elasticity is a very important material property, 

especially for a finite element analysis, and is found from the stress­

strain diagram. The concrete stress-strain relationship in this test 

was measured by one of two methods. In the first method, a compresso- 

meter was used in accordance with ASTM specifications to plot the 

stress-strain diagram until failure. In the second method, a mechanical 

strain indicator called a Demec gauge was used. This indicator has an 

8*' gauge length. To use the Demec gauge it was necessary to equip the 

cylinders with two sets of gauge points which were mounted on opposite 

sides of the cylinders. During the loading sequence, readings were 

taken with the Demec gauge at regular intervals until failure and the 

strains were calculated by averaging the results on both sides of the 

cylinders. The compressometer was used more often than the Demec setup 

because the compressometer was easier to use and it eliminated the need 

for halting the loading procedure to take readings. The results from 

the modulus of elasticity test for various concrete ages are shown in

Table 2.3.
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Cement:

Table 2.1 Concrete Mix Data

Component Percent by Weight in

Weight pcf

Portland Type 1 14.0 21.2

Water 9.1 13.8

Sand ’ 46.6 70.6

Gravel 30.3 45.9

Table 2.2 Compressive Strength 

(psi)

Series 1 Series 2 Series 3

7 days 3310 3336 3370

28 days 3966 4280 4433

761 days 4191

803 days 3866 4776

Table 2.3 Modulus of Elasticity (psi x 10°)

Series 2 Series 3

7 days -

28 days 3.375

3.292

3.957
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2.3.3 Shrinkage

The shrinkage properties of the concrete were determined from 

22 x 6 x 6 in. prisms which were cast at the same time as the beams and 

cylinders. One pair of Demec gauge points were mounted on each of the 

four sides of the prisms, near the middle of each side. Strains were 

measured with the Demec Strain Indicator and the total shrinkage was 

calculated by averaging the four results from each prism. All of the 

prisms were initially moist cured for seven days after which they were 

stored in the controlled environment. The relative humidity was main­

tained at 50Z ± 5Z and the temperature ranged between 70°F and 75°?* 

Shrinkage, results for all three series are presented in Figure 2.1. It 

should be noted that the age of the concrete when the initial readings 

were taken is different for each series.

2.3.4 . Creep

The creep properties of the concrete were evaluated with prisms 

which were identical to those used for shrinkage. The Demec gauge 

points were also the same, as were the conditions of storage, and the 

measurement of the strains. The creep specimens were subjected to 

different load levels and loading ages to provide a general represen­

tation of the creep properties of this concrete. Since the analysis was 

exclusively concerned with the service load state, where creep is nearly 

linear with stress (38), the prisms were subjected to constant loads of 

either 15Z, or 30Z, of f’c. It was felt that this range would give a 

good overall picture of the service load creep for this concrete.
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FIGURE 2.1 CONCRETE SHRINKAGE
MEASUREMENTS
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c

The creep specimens were tested using the setup illustrated in 

Figure 2.2. Before the prisms were loaded, 2" thick notched metal 

plates were plastered to the top and bottom of each specimen. A ball or 

roller was then placed between this plate and another identical plate. 

A compression load cell was then added to the top of this arrangement 

and the specimen was centered in the spring-loaded creep frame.

The load was applied with a hydraulic jack by jacking between 

the top plate of the frame and the plate above the springs. This force 

compressed the springs and loaded the specimen. When the specified load 

level was reached the nuts on top of the plate covering the springs were 

tightened, and the jack was released. The load level was monitored and 

adjusted at regular intervals throughout the test to ensure that the 

applied load remained constant. The springs were included in the 

apparatus to moderate the reduction in the load produced by the creep 

and shrinkage strains.

Creep results from all three concrete series are shown in Figure 

2.3. The creep strains in this figure were calculated by subtracting 

the shrinkage strains of Figure 2.1 from the total long term strains 

which were measured with the creep specimens. Any long term changes in 

the elastic strain were included as part of the creep.
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FIGURE 2.3 CONCRETE CREEP MEASUREMENTS
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2.4 Beam Tests

2.4.1 Description of Test Beams

The cross-sectional properties and reinforcement details of the 

four different beam designs are shown in Figures 2.4 to 2.7, A total of 

six beams were designed and all of the beams had a common width of 6 

inches, a concrete cover of 2 1/2 inches, and a side cover of 1 inch. 

There were two different lengths, two different depths, three different 

steel areas, and two different support conditions. Two 16 foot beams 

and four 24 foot beams were produced. Minimum shear reinforcement was 

provided for all of the beams even though they were not loaded to 

failure. Plain 1/4 inch diameter closed stirrups were used in all 

cases. All beams, had maximum stirrup spacings corresponding to the Code 

limitation of one half the depth of the section.

All of the beams contained either two or four vertical 1 1/2 

inch diameter hollow tubes through which threaded rods could be passed 

to apply the loads and to tie the beams together. This will be 

discussed further in the next section.

2.4.2 Beam Test Setup

One or two days before the beams were loaded, the two beams of 

each series were arranged as shown in Figure 2.8. The beams were placed 

back-to-back so that the two beams could be loaded at the same time 

using only one set of load cells, supports, and loading apparatus. It
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also reduced the amount of laboratory space needed for the testing 

period. The one drawback to this kind of setup is that the direction of 

the gravity load for the bottom beam is in the opposite direction to the 

applied loads. This is not usually observed in practice. Each pair of 

beams in the setup consisted of one 14 inch deep beam and one 11 1/2 

inch deep beam. The 14 inch beam was placed on the bottom because it 

had a lower ultimate load than the 11 1/2 inch beam. If the 14 inch 

beam had been placed on top, the additional gravity load would have 

caused the beam's total load to be outside of the service range.

To arrange the beams as shown in Figure 2.8, the 14 inch thick 

beam was placed upside down on blocks. Roller bearings were located at 

the support points and the 11 1/2 inch thick beam was placed on top. 

The position of the roller bearings coincided with the position of the 

blocks so that the weight of the top beam would not affect the load 

distribution of the bottom beam. The load points were positioned at the 

quarter points for all beams, and also at the ends of the continuous 

beams* It was thought that this loading arrangement would give moment 

distributions which were reasonably close to those for uniformly loaded 

beams, and would therefore give a more accurate representation of design 

loads. Threaded rods were passed through the hollow tubes which were 

embedded in both beams, and the load was applied at these locations by 

tightening the nuts located near the top of the threaded rods. Spreader 

beams were positioned along the center span to distribute the load from 

the threaded rod locations to the load points. Helical springs were 

placed on top of the spreader beams, and at the ends for the continuous 

beams, to moderate the changes in the load that occurred because of the
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time dependent deflections. A compression load cell was placed near the 

bottom of every threaded rod, and for the continuous beams a tension 

load cell was inserted near the top of the rods between threaded rod 

portions.

In most cases the applied loads were measured in more than one 

way. Compression load cells were the primary means of measuring the 

loads for the 16 foot beams, and the secondary method for measuring the 

loads for the 24 foot beams. The compression cells were compressed 

between two 6" x 6" x 1/2" plates and two 3" diameter x 2" thick plates. 

The thick plates were put in to decrease stress concentrations on the 

load cells. Unfortunately, difficulties were discovered with the 

accuracy of the compression load cells. The readings from these cells 

were not always repeatable and . seemed very sensitive to slight load 

eccentricities. For this reason, tension load cells were added to the 

instrumentation for the 24 foot beams. The tension load cells seemed to 

produce more reliable and repeatable readings. For the 24 foot beams, 

the tension load cells were considered as the primary means of measuring 

the applied loads, and the compression cells acted as a backup. The 

deformation of the springs acted as a further backup, but these results 

were not very reliable because the springs deflected slightly out of 

their vertical plane.

The main aim of the experimental work was to obtain deflection 

data and this was done with dial gauges. Deflection measurements were 

taken at the center of every beam and also at the ends of the continuous 

beams. A metal bar was glued to the bottom of the beams at. the
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designated locations, and the dial gauges were fixed against these. The 

dial gauges were marked in divisions of .001 inches, which was 

considered more than enough accuracy for the expected deflections.

When the beams, cylinders, and prisms were fully cured, they 

were placed in a humidity controlled tent. A 29 foot long, by 15.5 foot 

wide, by 8.5 foot high polyethelene covered frame was constructed to 

house the test specimens. A relative humidity of 50Z ± 5Z was main­

tained in this tent using a humidifier-dehumidifier tandem. A temper­

ature of 70°F to 75°F was maintained in the laboratory. Two oscillating 

fans were positioned at opposite ends of the tent to eliminate any air 

stratification.

2.4.3 Applied Loads

Two simply supported beams, designated A and B, were tested in 

Series 1. Beam A was the top beam and Beam B was the lower beam. 

Initially the loads applied to the quarter points of the two beams were 

set at 1400 pounds. This was well within the service load range for 

these beams. As mentioned earlier there was some difficulty with the 

load cells of this series, and towards the end of the test it became 

apparent that the loads had varied with time. Therefore the test was 

ended, the final deflection readings were taken, and the beam was 

unloaded. To determine what loads were actually present at the end of 

the test, accurate tension load cells were installed in the setup and 

the beam was immediately reloaded until the previously recorded final 

deflections were duplicated. The load at this point was 1050 pounds,
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which represented a drop of 27% from the initial load. This load was 

then assumed to represent the final load applied to the beams. This may 

not be exactly correct because the loads on the two load cells at the 

end of the test were not necessarily the same, but it was felt that this 

was probably a reasonably accurate representation of the true 

situation.

Series 2 and 3 both consisted of two continuous beams, desig­

nated C and D for the 8 day loading, and E and F for the 28 day loading. 

The loads initially applied to the quarter points of the interior spans 

were 1800 pounds and the loads at the ends were 2700 pounds. Unfor­

tunately as was the case for Series 1, there was some variance In the 

applied loads on these beams. At the end of the test period the load 

cells were recalibrated and it was discovered that while the loads at 

the ends of the beams of Series 2 and all of the loads of Series 3 had 

changed by less than 14%, and usually much less, the load measured by 

one of the interior load cells of series 2 had increased by 50%. Figure 

2.9 shows the initial and final loads applied to the continuous beams.

An inspection of the time-deflection curves that follow shows 

that there were no abrupt changes in their slopes. This suggests that 

the load changes were gradual rather than sudden. Through logic and 

further study of the deflection curves it was postulated that the change 

in load was probably logarithmic in nature, and this was the assumption 

that was made for the model verification described later in Section 

3.4.
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INITIAL 2700 3600 3600 2700

FINAL 2434 5283 2990 2540

SERIES 2

INITIAL 2700 3600 3600 2700

FINAL 2361 3620 3283 2657

SERIES 3

FIGURE 2.9 INITIAL AND FINAL LOADS ON BEAM C
AND BEAM D
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Series 1

The crack patterns for Beam A and Beam B are not contained in 

this Chapter but are shown later in Section 3.5, where they are compared 

with finite element simulations. The long term deflection curves for 

these two beams are presented in Figure 2.10 and Figure 2.11. The 

immediate deflection of Beam A was .220 inches and the additional long 

term deflection was .662 inches, which gave a ratio of long term to 

short term deflection of 3.0. The immediate deflection of Beam B was 

.166 inches, the additional long term deflection was .352 inches, and 

the ratio of long term deflection to short term deflection was 2.1. The 

deflection ratio of Beam B was not much higher than the Code (12)(58) 

approximation of 1.8, but the ratio for Beam A was much higher than the 

Code approximation of 1.9. Had the load not dropped with time the 

tested deflection ratios would have been even higher, which perhaps 

emphasizes the inadequacy of the current code approach.

Series 2

Beam C and Beam D were continuous beams loaded to an age of 

eight days. Beams C and D were loaded in stages so that all loads 

increased at the same rate. This meant that the final loads on the load 

cells at the ends of the beams were reached before the final loads on 

the load cells in the interior span. The midspan deflection of Beam C, 

the top beam, was .199 inches, while the deflection at the midspan of 

Beam D was .067 inches. The long term deflection curves for these beams 

are shown in Figures 2.12 and 2.13. The total long term deflection for
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Beam C was .670 inches, and .487 inches for Beam D. These values 

represented the combined effects of shrinkage, creep, and increased 

loads* Crack patterns for the two beams can be found in Figure 2.14.

Series 3

The results of Series 3 gave a much better picture of the 

behaviour of a beam under constant loads than did the other two series* 

Although there was some change in the applied loads with time, the 

mid-span moments of these beams changed very little. It is therefore 

reasonable to assume that the measured deflections represented the 

constant load condition very well. The load deflection curves for Beams 

E and F are presented in Section 3.5. The loading procedure used with 

Beams E and F was somewhat different from that used for Beams C and D. 

The loads of E and F were applied proportionally so that the final loads 

at all locations were reached at the same time. This meant that the 

loads on the load cells in the center span Increased at a faster rate 

than those at the ends. This scheme was easier to monitor and was 

easier to simulate in a finite element model than the previous scheme. 

Beam E had a short term deflection of .143 inches and Beam F had a short 

term deflection of .070 inches.

The long term deflection curve for Beam E is shown in Figure 

2.15* The time dependent deflection for this beam was .316 inches, 

which meant that the long term to short term deflection ratio was 2.2* 

Figure 2.16 shows the long term deflection curve for Beam F, where the 

time dependent deflection was .202 inches, and the ratio of long term to
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BEAM C

BEAM D

FIGURE 2.14 CRACK PATTERNS FOR BEAM 
C AND BEAM D
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short term deflection was 2.9. These ratios are again significantly 

higher than the Code predictions and would have been even higher had the 

test continued for a longer period of time.

2.4.4 Summary

The most significant fact which emerged from the long term test 

results was the evidence that the ACI Code approach for predicting long 

term deflections is not always very accurate. In addition, based on the 

values observed from these tests, there does not seem to be any conser­

vatism built into it. The long term deflections from Series 1 and 

Series 3, which represented constant and slightly dropping load 

conditions, were all higher than the Code predictions. In a deflection 

sensitive structure this could cause damage and inconvenience. The 

results also gave some indication that the Code approach of treating 

simply supported beams and continuous beams the same way may not be 

advisable. The continuous beams tested in this program had high 

compression steel ratios, and yet their deflection ratios were also very 

high. This may be due to the fact that the action in one high moment 

region of a beam may significantly affect the long term deflections in 

another. While recognizing that the Code equations need to be simple, 

there is obviously a need for a more accurate approach, or, falling that 

a more conservative approach. Unlike Series 1 and Series 3, Series 2 

did not provide much of an Insight into the performance of the Code 

equation, but it did show how deflections are affected by changing 

loads. Structural members are rarely subjected to constant loads 

throughout their design lives, and deflections may vary between high and
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low extremes. Designers must keep this fact in mind when assessing the 

influence of deflections. Another fact that surfaced during the test 

was the apparent long term sensitivity of the test equipment. Durabil- 

ity is a key element because equipment which appears to be perfectly 

acceptable in a short term test may fail over the long term.

The experimental data presented in this chapter served other 

purposes besides testing the accuracy of the present ACI Code prediction 

method. It was also used to check the accuracy of the finite element 

model detailed in Chapter 3, and will provide long term deflection data 

for future researchers. Hopefully the data will help further the know­

ledge of long term deflection behaviour and aid in the development of a 

successful method for treating deflections in design.



CHAPTER 3

FINITE ELEMENT MODEL

3«1 Constitutive Relationships

3.1.1 Strength and Elastic Relationships

Accurate constitutive stress and stress-strain relationships are 

very important for the overall accuracy of finite element solutions. 

This Is not a major problem when all of the necessary experimental data 

is readily available, but often this is not the case. When experimental 

values have not been provided It becomes necessary to use empirical 

prediction equations to fill in the missing information. Although these 

prediction methods may be very useful, it oust be remembered that they 

are really only approximations of the correct values. This section 

contains a review of the established prediction methods which have been 

developed for the tensile strength of concrete, the modulus of elas­

ticity of steel and concrete, the compressive strength of concrete, and 

the changes of these values with time. Also their proposed use in the 

finite element model presented later in this chapter will be examined.

- 47 -
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Modulus of Elasticity of Concrete

The modulus of elasticity is probably the most important 

material property used in a finite element analysis. It represents the 

stiffness of the material and is found from the stress-strain diagram. 

In the case of concrete, the calculation of the elastic modulus is comp­

licated by its nonlinear nature. Fortunately the concrete stress-strain 

relationship is approximately linear up to maximum stresses of about 75% 

of ultimate (38), and an average value, usually defined as a secant 

modulus, can acceptably represent the behaviour in this range. Since 

this study was mainly concerned with the service load state, it was 

possible to use the secant modulus exclusively to represent the 

stiffness of the concrete.

Predicting the modulus of elasticity of concrete is very 

difficult and has not yet reached a very high level of sophistication. 

It is generally accepted that the modulus of elasticity can be approxi­

mated by an equation which is a function of the compressive strength and 

the unit weight of concrete (8) • Most of the prediction methods now 

available relate the elastic modulus to these two quantities. Because 

the actual relationship is much more complicated than this, current 

equations are not very accurate (8). Other factors which influence the 

modulus of elasticity include, the condition of the specimen when 

tested, the properties of the aggregate, the mix proportions, the age of 

the specimen, and the curing conditions.
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The modulus of elasticity prediction method chosen for use with 

the proposed finite element model was suggested by Branson (8) and is as 

follows:

Ec - (39.0 - .0015 f’c) «’c (3.1)

where Ec - modulus of elasticity (psi) 

f’c ■ compressive strength (psi) 

w - unit weight (pcf)

Branson reported that in a comparison with 274 experimental values, 

about 62Z of the data fell within 10Z of the values calculated by this 

equation, 83Z fell within 20Z of the calculated results, and 95Z were 

within 30Z.

Most of the preceeding discussion was concerned with the stress­

strain relationship of conrete in compression, but concrete exhibits a 

different behaviour in tension. Houde (27) reported that the stress­

strain curve in tension was nearly linear up to 90Z of the ultimate 

strength, and a straight line could be used to represent its behaviour 

without any significant loss of accuracy. It was therefore assumed in 

this study that concrete was linearly elastic in tension until failure. 

Information on the tensile modulus of elasticity of concrete is very 

rare and there are no readily recognized prediction methods that can be 

used in the absence of experimental data. Therefore, it was necessary 

to assume that the modulus of elasticity in tension was the same as that 

in compression, although this is only approximately correct.
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Modulus of Elasticity of Steel

The modulus of elasticity for steel is a much easier property to 

predict than the corresponding value for concrete. When more exact 

information is not available, ACT Standard 318 (2) has suggested that a 

value of 29,000,000 psi can be used as the modulus of elasticity for 

reinforcing steel. Since steel is not a highly variable material, this 

value should always be reasonably close to the correct one. In the 

range of stresses which were considered in this study, steel is linearly 

elastic, and failure is not a factor. Therefore incorporating the rein­

forcement properties into the finite element model was relatively simple 

and accurate.

Tensile Strength

The tensile strength of concrete is not usually a very signifi­

cant design parameter, but in a finite analysis which must predict the 

onset and progression of cracking, this parameter is extremely impor­

tant. Unfortunately experimental tensile strength is rarely reported in 

the literature, and it is usually necessary to use a prediction formula 

to determine it. Towards this end, researchers have developed a few 

relatively simple equations which relate the tensile strength to the 

compressive strength. The tensile strength of concrete is an extremely 

difficult quantity to measure, but is is generally thought that the 

modulus of rupture gives a fair representation of the cracking behaviour 

in beams (38). Therefore, in this study, whenever a reference is made
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to the tensile strength of concrete, it will actually be the modulus of 

rupture that is being discussed.

Researchers have discovered that many of the factors which 

affect the compressive strength also affect the tensile strength (8), 

and prediction formulas have been designed to reflect this relationship. 

Unfortunately the relationship between tensile strength and compressive 

strength is very complex and is also affected by the age and strength of 

the concrete, the type of curing, the degree of compaction, and the 

methods used to measure the two strengths. This, and the fact that the 

tensile strength is normally a highly variable quantity makes its 

prediction extremely difficult.

In the finite element model of this study, the following predic­

tion equation suggested in the ACI Code (2) was used to represent the 

tensile strength when reliable experimental data was not available.

fr « 7.5/Fc (3.2)

where fr = modulus of rupture (psi)

f’c = compressive strength (psi)

It should be noted that this equation is very approximate, and values 

between /.S/fT and 12/f’c have been reported (8) for normal weight

concrete.
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Compressive Strength and Time

This study was primarily concerned with the service load state, 

so the compressive strength of concrete (f'c) was not itself an impor­

tant material property. However, f'c was one of the major variables in 

the prediction equations for the tensile strength of concrete, the 

modulus of elasticity of concrete, and the bond properties. Since these 

values were important, the compressive strength was needed for the 

analysis.

The compressive strength at the time of a test is usually speci­

fied so it is rarely necessary to use prediction equations to estimate 

it. However, equations may be necessary when a prediction of the change 

in compressive strength with time is required. In this study predic­

tions of changes in compressive strength with time were necessary 

because the tensile strength, modulus of elasticity, and bond properties 

were all time varient, and their prediction was dependent on f'c. 

Branson (8) proposed the following hyperbolic design equation which was 

used in this study to define the gain in the compressive strength with 

time. For moist cured, normal cement:

<£'c>t ‘ 4>T15E (f'c)28d (3’3)

where (fc)28d ■ 28 day compressive strength 

t time (days)

Similar equations were suggested for moist cured high-early strength 

cement, steam cured normal cement, and steam cured high-early strength
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cement. These equations imply that the development of strength is 

dependent on the type of cement and the curing conditions, but obviously 

there are also other factors. When testing his equations, Branson found 

that in a comparison with 253 test specimens, 62% of the data fell 

within 10% of the values calculated by his formulas, and 93% were within 

20% of the calculated values.

Discussion

The accurate prediction and representation of the elastic and 

strength properties of concrete and steel have significant effects on 

the ultimate accuracy of finite element solutions. Unfortunately, it is 

not always possible to rely on empirical prediction methods for missing 

information. Prediction methods have been developed for the tensile 

strength of concrete, the modulus of elasticity of steel and concrete, 

and the changes in the compressive strength with time. Some of these 

equations have been presented in this section. In nearly every case the 

compressive strength is the only unknown variable in the prediction 

equations. Unfortunately the material relationships are much more 

complicated than this, and the formulas are usually not very accurate. 

This situation may have arisen because researchers in the past seemed 

willing to sacrifice accuracy for simplicity. Although this may be 

acceptable for design purposes, it significantly limits the effective­

ness of analytical models which rely on these equations. More accurate 

relationships are required to improve the situation, but for now it is 

necessary to use the methods that are currently available. If the 

limitations of these prediction methods are properly understood, they
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can still be extremely useful because they usually give a fair 

estimation of otherwise unknown material properties*

3.1 *2 Shrinkage

Introduction

It is well known that concrete changes its volume when it is 

subjected to variations in moisture content* When it gains water it 

expands, and when it loses water it shrinks. Concrete is seldom contin­

uously saturated so shrinkage is the moisture change which is usually 

most important to engineers. This study is concerned with the time 

dependent behaviour of reinforced concrete, and therefore it is neces- 

.sary to accurately model concrete shrinkage. The fact that shrinkage is 

highly variable and not uniform throughout a specimen, means that it is 

difficult to simulate it analytically* When experimental data is not 

available, the problem is even more difficult because prediction methods 

are needed to determine shrinkage strains* Since these strains are 

often not reported in the literature, the prediction of shrinkage formed 

a necessary part of this study.

The currently accepted technique for predicting shrinkage is to 

relate it to material and storage parameters. This approach of predic­

ting shrinkage has been examined in many studies (3)(4)(8) and many 

empirical prediction methods have been proposed* Unfortunately there is 

no universal agreement on the identity of all of the important factors 

that influence the shrinkage behaviour, and the empirical methods which
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have been developed are very dissimilar in form and give widely differ­

ing solutions. Hence the objective of the following discussion is to 

examine the prediction of shrinkage strains and to select the prediction 

method best suited for inclusion in a finite element model.

Prediction Methods

The shrinkage mechanism, and thus the parameters affecting 

shrinkage are not completely understood. Since a rational theory for 

shrinkage Is not available, prediction methods have been developed 

empirically by studying the influencing parameters and assuming their 

effects. As mentioned earlier, researchers have attempted to Identify 

these factors experimentally, but there is little agreement on which 

factors should be included in an equation. Complicating the problem is 

the difficulty in identifying any interdependence between parameters. 

The cement paste parameters which have been identified include the 

water/cement ratio, cement content, cement composition, air content, and 

moisture content. The aggregate parameters have been reported to con­

sist of the aggregate stiffness, the total aggregate content, and the 

gradation. Other factors such as the relative humidity, temperature, 

time of drying, and member size have also been - identified (3)(4)(8) 

(37)(38). The quantitative effects of those parameters on the shrinkage 

curve are difficult to determine, and to properly develop an accurate 

empirical design method, it is necessary to use a very large and well 

organized statistical sample. This does not seem to have been done 

yet.
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Numerous prediction methods have been developed over the years. 

These vary from very simple equations to quite complex relationships. 

All of the methods can be separated into two main groups. In the first 

group, a shrinkage curve is defined for a set of standard conditions 

which can be modified for nonstandard conditions. In the second 

category, the entire shrinkage curve is derived from empirically based 

equations. It should be noted that these prediction methods have very 

little theoretical basis and are almost entirely empirical in nature. 

None are capable of predicting shrinkage strains exactly and they can 

never really replace the acquisition of reliable experimental data. In 

the next few paragraphs the available shrinkage prediction methods are 

examined, and the specific ways in which they predict shrinkage are 

detailed. From this review a method was selected for use with the 

finite element model.

Schorer, 1943 (8)

Schorer introduced one of the first shrinkage prediction 

equations, shown below. This simple relationship highlighted the 

importance of the relative humidity on the ultimate shrinkage strain. 

It did not however give the complete shrinkage curve.

Eshu - 12.4.kT6(90-H)

Naturally this equation is not very accurate because it depends 

exclusively on the relative humidity, and there are many more factors 

involved. It has been reported that the strains predicted by this
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equation are usually much less than the actual values (8), nevertheless, 

this equation did provide an important first step towards the develop­

ment of more accurate methods.

Jones, Hirsch, and Stephenson, 1959 (8)

Jones, Hirsch, and Stephenson proposed a method for predicting 

shrinkage of lightweight concrete using standard curves. A single curve 

was derived empirically for specific concrete mix and storage condi­

tions • When the cement content, slump, air content, percent fines, 

relative humidity, or size differed from the standard conditions, the 

shrinkage curve was modified with empirically derived correction curves. 

Although this method was developed specifically for lightweight 

concrete, it does not appear to be any less accurate for normal concrete 

(8).

Meyers, Branson, Schumann, and Christiason, 1970 (33)

Meyers, Branson, Schumann, and Christiason proposed a shrinkage 

prediction method that was very similar to the method suggested by Jones 

et al. A hyperbolic equation was used to characterize the time depen­

dence of concrete shrinkage, and a standard curve was introduced for a 

set of fixed mix and storage parameters. Correction factors were 

applied to the standard shrinkage curve when other conditions were 

present, and these factors were determined from test data for which the 

only variable was the parameter under consideration. This technique 

effectively eliminated the possibility of detecting any interdependence
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between the variables. The important parameters which were used in the 

analysis were the relative humidity, the age, the dimensions, the slump, 

the percent fines, the cement content, and the air content. These 

factors are essentially the same as those suggested by Jones et al. 

This method was later adopted in the ACI Code for the. prediction of 

concrete shrinkage in the absence of experimental data.

CEB 1978 (13)

The CEB adopted a simplified empirical prediction method for the 

calculation of shrinkage which used a standard shrinkage curve. This 

curve was related to the specimen dimensions and was modified for the 

effects of relative humidity, cement type, and temperature. The modifi­

cation factors were presented in tables and graphs, and although this is 

useful for design purposes, it is not directly applicable to computer 

programs. A potential weakness of the CEB procedure is the fact that 

there is no provision for the effect of mix parameters. It has been 

noted that this could have a serious impact on the accuracy of its 

solutions because these factors are actually very important (4). The 

method seems to be an updated version of the one introduced in 1970, but 

the 1970 CEB (8) method also included the effects of the water/cement 

ratio and the cement content. It is possible that simplifications may 

have been made in the current procedure to accommodate designers. 

Designers do not usually have access to mix properties and would not be 

able to use a more complex relationship.
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Bazant and Panula 1978 (3) (4)

Bazant and Panula proposed a square root hyperbolic prediction 

method for shrinkage in which the entire shrinkage curve was calculated 

from empirically based equations. This prediction method was developed 

exclusively for normal concrete and there is no provision for the treat­

ment of lightweight concrete. Although the formulas were empirically 

derived, there was a certain theoretical basis in their development. 

Diffusion theory was used to determine the effect of specimen size and 

shape on the shrinkage curve. The other parameters in the relationship, 

whose effects were found empirically, included relative humidity, 

temperature, water/cement ratio, cement content,' the aggregate/cement 

ratio, gravel/sand ratio, sand/cement ratio, modulus of elasticity, and 

28 day compressive strength. A wide range of experimental data was used 

to develop the empirical formulas, and computer optimization techniques 

were used to determine the constants and coefficients. In this way it 

was possible to include the interdependence that may have existed 

between variables. This capacity for including interdependence is this 

method's greatest advantage.

Summary

Bazant and Panula's method was chosen in this study as having 

the greatest potential for accurately predicting shrinkage strains in a 

finite element model. Shrinkage data from 11 different sources were 

used to develop these formulas, which seems to be more than was used for 

the other methods reviewed. It is also the most complicated method, and
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although complexity does not always improve accuracy, the added 

complexity allows for the inclusion of more effects. In assessing their 

approach, Bazant and Panula used all of the experimental data they could 

find to compare their equations with the CEB and ACI methods. This 

comparison Indicated that their equations performed best. This evidence

seems to support the selection of this method.

3.1.3 Creep

Introduction

The time dependent behaviour of concrete is Influenced by two 

main properties, shrinkage and creep. Both of these phenomenons have 

significant effects on the long term deflections of reinforced concrete 

beams and an accurate finite element model requires a good represent-* 

ation of both of them. Although there appears to be some interdepend­

ence between shrinkage and creep, it is normal to treat them separately. 

This section will examine the inclusion of creep.

Creep can be defined simply as the time dependent deformation of 

concrete due to applied stresses. Like shrinkage, the inclusion of 

creep strains In an analytical model is not a simple task, even when 

reliable experimental data is available. If data has not been provided, 

an empirically based prediction method is required to generate creep 

strains. Numerous studies have been devoted to creep prediction but 

none of them have so far been completely successful in developing a 

method that Is always reasonably accurate. It is the object of this
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section to review creep and creep prediction, and to provide the 

rationale for choosing a method for use with the finite element model.

Various hypotheses have been developed to explain creep but no 

agreement has yet been reached on which explanation is the correct one. 

Most of the creep mechanisms that have been proposed so far can be 

grouped into a few general theories. Viscous and visco-elastic flow, 

solid solution, thermodynamic, deferred elasticity, and seepage theories 

have all gained some acceptance (37). None of these theories completely 

explains the causes of creep, so the true mechanism may be some combin­

ation of them. There is some evidence (3) (37) that there are two dis- 

tlnct components of creep. One takes place in the absence of moisture 

movement between the concrete and the atmosphere and is called basic 

creep, and the other is affected by the drying process and is called 

drying creep. An accurate prediction method must consider both parts. 

The difficulty in measuring and separating creep and shrinkage, basic 

creep and drying creep, and the uncertainty surrounding the creep 

mechanism, may account for the relative Inaccuracy which is evident in 

current creep prediction methods.

Prediction Methods

Since there is no general theory for creep, researchers have had 

to rely on experimental data to identify and quantify the influencing 

parameters in a creep relationship. There is no overall agreement 

between researchers about which variables should be included in a creep 

relationship and this has led to the development of widely differing
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prediction methods. The prediction of creep from material and environ­

mental parameters has developed in much the same way as for shrinkage. 

More research work has been done with creep than with shrinkage, but 

this does not seem to have made its prediction any more accurate. All 

of the available prediction methods can again be separated into two main 

groups. The creep curve in the first group is specified for a certain 

set of standard conditions which can be modified for nonstandard 

conditions. In the second group the entire creep curve is calculated 

uniquely from empirical relationships. Unless otherwise specified, the 

prediction methods reviewed in this section have combined basic and 

drying creep together, implying that the time shapes of the two curves 

are the same. Care must be taken when using methods employing this 

simplification because there is some evidence that this assumption may 

not be exactly correct (3) • The following section will review the 

prediction of creep and explain the choice of the method used in the 

finite element model presented later.

Ross 1937 (37)

Ross provided some of the earliest work on creep and creep pre­

diction. He suggested that the creep time curve was best represented by 

a hyperbolic function, and this contention has generally been supported 

by subsequent researchers (33). Ross used an empirically based predic­

tion chart to estimate the effects of mix and storage parameters on the 

creep curve. He assumed that creep strains were dependent on the stress 

level, the water/cement ratio, the relative humidity, the age of 

loading, and the diameter of the specimen* Although this method is
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mainly of historical interest now, Ross’ work formed the foundation of

many subsequent investigations.

Wagner 1958 (8)

Wagner was one of the first researchers to use standard curves 

and correction factors for creep prediction. He suggested that the 

ultimate specific creep of a normal weight concrete was related to age 

of loading, type of cement, relative humidity, cement paste content, 

water/cement ratio, and the minimum dimension. A standard creep 

coefficient was presented for fixed mix and storage properties which was 

used as a reference point in the creep analysis. Empirically derived 

correction factors were used to modify the standard creep coefficient 

when nonstandard conditions were present. Unlike most current 

prediction methods, only the ultimate specific creep was calculated by 

this method. Since many researchers have found that the creep of 

lightweight concrete is not significantly different from the creep of 

normal concrete (8)(37), this method would probably be valid for both 

cases.

Jones, Hirsch, and Stephenson 1959 (8)

The procedure that was developed for creep by Jones, Hirsch, and

Stephenson is very similar to their method for shrinkage. A creep curve
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for lightweight concrete was presented for standard conditions of cement 

content, slump, air content, percent fines, stress level, size, relative 

humidity, and age of loading. The standard creep curve was modified 

with empirically developed correction factors when nonstandard condi­

tions existed. Apparently the authors thought that the factors that 

influence shrinkage were essentially the same as the factors which 

affected creep since the parameters they chose were the same for both 

relationships. This method was developed from data on lightweight 

concrete. As mentioned earlier, the creep of lightweight concrete is 

probably similar to the creep of normal concrete, so this method is 

probably applicable for both cases.

Meyers, Branson, Schumann, and Christiason 1970 (33)

Meyers, Branson, Schumann, and Christiason proposed a prediction 

method for creep which is also very similar to their method for shrink­

age. This method might be considered an updated version of Jones 

et al's creep method because the important parameters In both instances 

are essentially the same. The hyperbolic specific creep curve was used 

by the authors to represent the creep time curve for concrete. Standard 

conditions of relative humidity, size, age of loading, slump, air 

content, cement content, and percent fines, were defined for a partic­

ular concrete and a reference creep curve was presented. This curve was 

modified with empirical correction factors when any other conditions 

were present. The correction factors and the standard creep curve were 

developed from mixed experimental data for normal and lightweight 

concretes, and for Type I and Type III cements. This method was adopted 

by the ACI (1) as a suggested creep prediction approach.
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CEB 1978 (13)

The creep prediction method introduced by the CEB in 1978 is a 

major departure from the formulation they suggested in 1970 (8). In the 

1978 version, creep was divided into two parts consisting of a revers­

ible (delayed elastic) part and an irreversible part. The irreversible 

creep was also divided into two parts. The first represented the 

irreversible component of the deformation which develops during the 

first few days after loading, and the second represented the irrevers­

ible delayed deformation (flow) which is primarily affected by the age 

of the concrete when loaded. From this theoretical basis, an empirical 

prediction method was developed. The total creep coefficient was 

assumed to depend on relative humidity, composition of the concrete, 

dimensions of the specimen, temperature, and rate of hardening of the 

concrete. The creep curves for the reversible and irreversible compo­

nents were calculated separately and later combined to represent the 

total creep. The recoverable part of the delayed deformation was 

assumed to be Independent of aging in its development, and a single 

creep time curve applicable for all conditions was defined. The 

irreversible creep was calculated from the concrete strength, the 

relative humidity, the dimensions, the age of loading, and the temper­

ature. The fact that the composition of the concrete was not Included 

In the analysis may mean that this method was primarily Intended for 

designers • If this is the case, It may not be accurate enough for 

analytical models. The method is also not directly adaptable to 

computer modelling because the creep curves and coefficients are 

presented in charts and tables which do not readily lend themselves to 

computer programming.
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Bazant and Panula 1978 (3) (4)

Bazant and Panula proposed a unique creep prediction method that 

is more complex than any of the other methods which have been presented. 

In their formulation the total creep was separated into a basic creep 

component and a drying creep component, and both were evaluated separ­

ately. The authors * felt that this was necessary because the basic and 

drying creep time curves did not have the same shape. By examining a 

wide range of experimental data, Bazant and Panula developed an empiri­

cal creep prediction method by using computer optimization techniques. 

They related the basic creep to water/cement ratio, age when loaded, 

compressive strength, aggregate/cement ratio, sand/cement ratio, 

aggregate/gravel ratio, and type of cement. The drying creep was 

related to relative humidity, age when loaded, compressive strength, 

sand/aggregate ratio, water/cement ratio, gravel/sand ratio, final 

shrinkage strain, and member dimensions. The presence of a shrinkage- 

type function in the drying creep equations seems to indicate that 

Bazant and Panula did not simply assume that shrinkage and creep were 

additive. This agrees with experimental evidence. Although these 

prediction equations were almost entirely empirical, they did have some 

theoretical justification because diffusion theory was used to analyze 

the effect of member size and shape on the drying creep. The authors 

stated that their prediction method was applicable to all creep periods 

including very long time creep and very short time creep. Most other 

methods cannot make this claim.
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Summary

After careful consideration the creep prediction method chosen 

as the most appropriate for use with the finite element model presented 

later in this chapter was the one proposed by Bazant and Panula. Bazant 

and Panula used experimental data from 36 sources to derive their 

equations, and this appears to be more than was used to derive the other 

methods which were reviewed* Their method had some theoretical basis 

and their statistical analysis seemed reasonably detailed. In addition 

the equations used in their method were easily incorporated into a 

computer program. For these reasons the Bazant Panula method was 

selected for use In this study.

3.1.4 Creep Under Variable Stresses

Most research work on creep has been devoted to the effects of 

constant stresses, but since concrete structures are rarely subjected to 

constant stresses throughout their design lives, it is important to 

understand the influence of variable stresses on creep. Even when the 

applied loads on a member are kept constant there can be significant 

variations in stress due to indeterminacy or the movement of the neutral 

axis. A proper representation of creep must include some provision for 

this condition.

A number of theories have been proposed to treat the effect of 

variable stresses on creep, but all have problems with accuracy and 

adaptability. This is not surprising because there is a limited supply
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of experimental data available on this subject and researchers have had 

to draw their conclusions from small statistical samples. The analysis 

is further complicated by the high variability normally associated with 

long term properties*

Four main methods have been proposed for computing creep under 

varying stresses and these have been identified as the Effective Modulus 

Method, the Rate of Creep Method, the Method of Superposition, and the 

Rate of Flow Method. This section will examine the techniques which 

have been proposed for treating the effects of variable stresses on 

concrete creep and discuss how the phenomenon was considered in the 

finite element model to be presented later in Chapter 3*

Effective Modulus Method

The Effective Modulus Method is the least sophisticated proposal 

for considering the influence of variable stresses on creep. In this 

method a normal elastic analysis is used to determine the short term 

behaviour of concrete, but the modulus of elasticity is replaced by an 

effective modulus when the effect of creep is considered. The effective 

modulus is a reduced modulus of elasticity which represents the sum of 

elastic and creep strains. The effective modulus can be defined as:

E’c
Ec__ 

l+C1Ec
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where E*c = effective modulus

Ec = elastic modulus

C^ ■ specific creep (creep strain/unit of stress)

This method is the easiest one to apply to an analytical model because 

it only requires the replacement of the modulus of elasticity. In this 

regard it can be very useful in some cases.

Rate of Creep Method

The Rate of Creep Method is a little more theoretically complex 

than the Effective Modulus Method but it does seem to give better 

results. This method assumes that the rate of creep is independent of 

the age of loading and the previous stress history. The rate of creep 

for a certain stress in an interval of time is known, and by differen­

tiating the specific creep curve, the creep under a variable stress can 

be defined as:

de.
c “ 'o f(dT>dt

where c ■ creep

dCj
^- = rate of creep 

dt = time increment 

f = stress during time increment

The Rate of Creep Method is reasonably simple to apply and in many 

instances gives acceptable results. The method generally overestimates 

creep under a decreasing stress (18).
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Method of Superposition

The Method of Superposition is probably the most tedious method 

to apply numerically to a creep problem but it also has some significant 

theoretical advantages over the other methods mentioned. The principal 

advantage of this approach is that it allows for the consideration of 

stress history. Variable stresses are treated in this method by super­

imposing the creep curves for each applied stress, where stress decre­

ments are considered as increments of negative stress. Strains produced 

in the concrete by a stress increment at any time are considered to be 

independent of the effects of stresses applied at any other time.

Rate of Flow Method

The Rate of Flow Method is the latest creep formulation which 

allows for the consideration of the effect of variable stresses. In 

this method the total creep is divided into a reversible (delayed 

elastic) part and an irreversible (flow) part. The implication is that 

reversible and irreversible creep are caused by different mechanisms and 

variable stresses only affect the delayed elastic component. This 

assumption tends to contradict the superposition principle which assumes 

that creep is a single reversible phenomenon. The effect of stress 

history and creep recovery are implied in the Rate of Flow Method and 

there is some theoretical justification in its development. This method 

is not generally applicable to all creep problems because the separation 

of the reversible and irreversible components means that only the 1978
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CEB creep prediction method, or specific experimental data, can be used

to analyze creep.

Discussion

For this study it was anticipated that concrete would be 

subjected to some variations in stress and it was therefore necessary to 

account for this effect in the creep formulation* None of the methods 

which have been described are consistantly accurate for variable 

stresses and there is no general consensus as to which is the best one 

to use. It has been stated that all of the suggested methods give an 

adequate representation of creep for small or gradual changes of stress, 

and when this occurs the simplest method is probably the best (37). 

However, when large or sudden changes in stress are experienced, the 

methods can give very different solutions.

In this study the Bate of Creep Method was chosen to represent 

the creep for variable stresses because this method provided the best 

combination of generality, computational efficiency, and accuracy. 

Theoretically and numerically this may not be the most accurate method 

available, but the following examination of some of the practical 

difficulties associated with the other methods, and creep analysis in 

general, should explain the choice.

The Effective Modulus Method suffers from a number of serious 

weaknesses and is not usually appropriate for a creep analysis unless it 

is substantially modified (46). In its normal form this method predicts
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complete strain recovery when the stresses in the concrete are removed. 

In actual fact concrete does not exhibit this kind of behaviour. In 

addition, since the effective modulus does not have the same value as 

the modulus of elasticity, it does not give the correct solution for an 

instantaneous change of strain due to a changing stress. With 

decreasing stresses the strains are generally underestimated and with 

increasing stresses the strains are usually overestimated (18). These 

deficiencies combined with the omission of the effect of stress history, 

effectively eliminates this method for all but the simplest creep 

analyses.

The Rate of Flow Method has some theoretical justification but 

the validity of dividing the creep into reversible and irreversible 

components is still open to question (3). There is a major difficulty 

with applying this method to concrete creep because if the 1978 CEB 

creep prediction method is not used, specific experimental data is 

required to determine the reversible and irreversible strains. This 

Information is rarely available and the 1978 CEB prediction method seems 

overly simplified for a detailed analysis.

The superposition method also has some theoretical justification 

but the required computational effort is substantial because the creep 

equations need to be modified at each load level. Although this method 

is often fairly accurate for increasing stresses (18), researchers have 

found that the principle of superposition may give erroneous results, 

particularly where changes in load cause a decrease in the total 

concrete strain (44). In addition the superposition method cannot be
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applied to all creep analyses because a creep curve needs to be defined 

at the age of each load change. This is possible when prediction 

equations are used to determine the creep relationship but is usually 

unrealistic when experimental data is used. This is particularly true 

for a constantly changing load. Even when the use of the Method of 

Superposition is possible, the computational effort can be substantial.

It is generally recognized that Rate of Creep Method is not the 

most accurate one available for treating the effects of variable 

stresses but unavoidable sources of error tend to reduce the superiority 

of the more complex methods. Whether the creep strains are determined 

experimentally or with prediction equations, significant inaccuracies 

are inevitable. For example, the creep strains in the parametric study 

were generated with the Bazant-Panula prediction method and this method 

has an expected error range of about ± 20%. An error of this magnitude 

virtually eliminates the benefits of using a more exact and complex 

formulation for variable stresses. The increased costs cannot be 

justified. When experimental data is used to determine the creep 

strains, the high variability which is normally observed in long term 

tests reduces the accuracy of the results. In addition, the conditions 

under which creep tests are conducted are not exactly the same as those 

experienced in beams. It is therefore unrealistic to expect the creep 

curves to be the same. In particular the effect of size must be 

recognized as a factor that affects the curves for creep specimens and 

beams differently.
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There are some simplifications usually made for creep which also 

affect the accuracy of creep analyses and these may also limit the 

effectiveness of using a complex creep method. One simplification which 

has some effect on creep results Is the problem of using uniaxial creep 

data to represent multiaxial creep behaviour. Creep strains from 

experimental and prediction equations are usually derived from uniaxial 

stress states,' while concrete is usually subjected to multiaxial 

stresses. Jordaan and Illston (28) found that although there were 

strong similarities between uniaxial, biaxial, and trlaxial creep, there 

were also significant differences. Since the results from uniaxial 

tests are usually used to represent the three dimensional case, it is 

Inevitable that this factor will cause some error in the solution.

Another simplification affecting creep analysis to some degree 

is the assumption that creep in tension is the same as creep in 

compression. The range of tests on creep In tension is Inadequate for 

any systematic quantitative information to be derived (37), but 

experimental results tend to indicate that there can be significant 

differences between tensile and compressive creep. It is difficult to 

assess the importance of the difference between creep in tension and 

compression because the tensile stresses in beams are not very high, but 

it is important to recognize this as a possible source of error.

Another source of inaccuracy present In all of the methods 

dealing with variable stresses is the assumption that stresses are 

constant through each time increment, and that when changes do occur 

they occur in discrete steps. This is not really true for the class of 

structures which were examined in this study because the stresses in
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these members did not change In a stepwise fashion. A highly accurate 

solution would require the selection of very small time Increments which 

would drastically increase the computational costs. If this was not 

done the accuracy could be reduced.

Summary

Research into concrete creep Is usually related to constant 

stress states but since concrete structures are usually subjected to 

variable stresses it Is important to consider this fact In a creep 

analysis. The four techniques described in this section for treating 

variable stresses ranged from simple and inaccurate formulations to 

complex and fairly accurate formulations. Unanimous agreement between 

researchers about which is the best method for handling variable 

stresses does not exist. It seems that Europeans tend to favour the 

Rate of Flow Method while North Americans seem to prefer some form of 

the Method of Superposition. This is reflected in the literature on the 

subject. In this study it was determined that the Rate of Creep Method 

was probably the most suitable method for inclusion in the finite 

element model presented later in this chapter. It was fairly simple to 

apply and its accuracy was expected to be acceptable. Neville (37) 

concluded that the Rate of Creep Method was adequate for most creep 

analyses where exact results were not required, and this suggestion 

weighed heavily in the choice. Basic Inaccuracies not related to the 

methods themselves tended to reduce the advantages of the more complex 

and accurate methods, and thus their additional cost and effort were 

deemed unjustifiable.
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3.1.5 Bond Stress And Bond Slip

Introduction

The exact nature of the bonding between concrete and reinforce­

ment is both complex and largely unknown. This is unfortunate because a 

proper representation of reinforced concrete behaviour using the finite 

element method requires some understanding of the interaction between 

the concrete and the reinforcement. In an attempt to model the bond 

phenomenon, a few simple bond stress-slip relationships have been 

proposed. Unfortunately there is a limited amount of useful experi­

mental data available, and current relationships are probably only 

preliminary attempts in an ongoing search for an accurate constitutive 

law. The difficulty in accurately measuring and interpreting experi­

mental data on bond characteristics has seriously impeded a proper 

understanding of this subject, and this has led to problems in identi­

fying and quantifying the elements in a constitutive law. Despite the 

deficiencies in current bond stress-slip relationships, the following 

section will attempt to review the present status of this topic, and 

select.the most appropriate technique for modelling the phenomenon in a 

finite element model.

Mechanisms

Bond stress can be characterized as the shearing stress which 

acts parallel to the reinforcement along the steel-concrete interface. 

It is thought that bond is created by three main mechanisms. These are
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chemical adhesion, friction, and mechanical interlocking between 

concrete and steel (31). Chemical adhesion and friction are considered 

the primary reasons for the bond of plain reinforcing bars, while 

mechanical interlocking is thought to be the most prevalent for deformed 

bars (31)•

Bond slip is present in reinforced concrete when reinforcing 

steel moves in relation to the surrounding concrete* Before cracking 

concrete beams exhibit very low bond stresses and little or no slip* 

The rate of change of stress in the steel along the length of the bars 

is relatively small at this point. It is only after cracking that bond 

stress and bond slip become significant. There is no real consensus on 

the reason for bond slip* Lutz and Gergely (31) attributed bond slip to 

the crushing of the concrete paste In front of the ribs of the deformed 

bars. This conclusion was disputed by Mirza and Houde (35) on the basis 

of their observations of pullout tests. They suggested that bond slip 

was caused by the internal cracking of the concrete layer closest to the 

bar, and the cracking of the small concrete teeth near the bar lugs*

Test Methods

Before discussing the prediction of bond stress and bond slip, 

it may be Informative to examine the tests used to determine them* This 

will highlight the limitations and relative accuracy of any empirical 

formulas that were developed from them* The procedure which has been 

used most frequently to evaluate bond properties is the pullout test.
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In this test, an embedded reinforcing bar is pulled out of a concrete 

cylinder or prism. Depending on the type of test, the maximum axial 

stress in the concrete can be compression or tension, and the rein­

forcing bar can be pulled out from one of both ends.

Each variation possesses a number of fundamental weaknesses. 

Cracking has a profound effect on bond, but when the concrete is in 

triaxial compression there is no possibility for the formation of trans­

verse tension cracking. This does not reflect the behaviour in beams. 

This problem can be partially corrected by placing the concrete in 

tension, but when the reinforcement is concentrically located, the 

horizontal shearing stresses in the specimen may not be representative 

of the stresses that actually exist in beams (42). Eccentrically rein­

forced pullout specimens have been used occasionally to correct this 

problem, but even this does not eliminate all of the problems. In light 

of the many difficulties which are associated with the pullout test, 

there is some question about the validity of using it at all to simulate 

local bond behaviour (49).

A limited number of beams have been used to measure bond 

properties but these results alone are insufficient for developing 

empirical prediction equations. Extensive testing of full size beams 

would probably produce more useful and realistic data than is possible 

from pullout specimens, but the cost has so far been prohibitive. Even 

if these tests were done the results would still be flawed. The deter­

mination of local bond stress and slip is extremely difficult and very 

sensitive to experimental error (35). This may account for the
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disparity In the results which have been published on bond properties, 

and the subsequent differences in reported prediction methods.

Prediction Methods

An accurate finite element model requires a reliable represent­

ation of the interaction between steel and concrete. Bond in a finite 

element model is usually simulated with spring elements. The stiff­

nesses of these elements are defined by the bond stress-slip relation­

ship. A few simple empirical equations have been developed to relate 

local bond: stress to local bond slip, but in view of the limitations 

mentioned earlier it seems probable that these formulas really only 

approximate the correct behaviour.

Nilson 1968 (40)

Initially, a linear bond stress-slip law was proposed by Ngo and 

Scordells (39), but Nilson (40) recognized that the actual response was 

nonlinear. At that time the available experimental data was Insuffi­

cient for the derivation of a fundamental bond law, so Nilson devised an 

equation Indirectly from the results of Bresler and Bertero. Bresler 

and Bertero studied the distribution of steel strain in concentrically 

reinforced tensile pullout specimens. From measurements of steel strain 

along the reinforcing bars, Nilson was able to calculate the average 

local bond stresses. Bond slip was found indirectly by estimating the 

concrete displacements on the basis of the measured slips at the faces 

of the test specimens. Although there was considerable scatter, a
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definite trend was recognized. The following third degree polynomial 

was fitted to the data and an equation was obtained which related the 

local bond stress to the local bond slip.

u - 3606 x 103 d - 5356 x 106 d2 + 1986 x 109 d3

where u ■ local bond stress

d • local bond slip

No claim was made about the accuracy or generality of this 

equation, and it was really only intended as an example of a possible 

bond stress-slip law. A slip limit of 449 x 10 $ inches, corresponding 

to a local bond stress of 719 psi, was used as the termination point of 

the relationship. Nilson assumed that when the slip limit was exceeded 

the local bond stress became zero in the immediate vicinity of a crack. 

When the slip limit was exceeded elsewhere, Nilson assumed that the 

local bond stress remained essentially constant. Even though this 

equation was not practical as a universal prediction formula, it was an 

important preliminary step in the development of a realistic bond-slip 

relationship.

Nilson 1972 (41)

Further research by Nilson in 1972 resulted in a more generally 

applicable bond stress-slip relationship. Nilson performed pullout 

tests on concentrically reinforced tension specimens* He measured steel 

strains with strain gauges mounted in the reinforcement, and concrete
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strains with embedded strain gauges. The bond slip was found indirectly 

from the differences between the concrete and steel strains. Using 

curve fitting techniques, the following bond stress-slip law was 

proposed which was a function of the concrete strength and the distance 

from the loaded end.

u - 3100 (1.43c + 1.5)d f*c

where u ■ local bond stress (psi) < (1.43c + 1.5) f’c

c ■ * distance from the loaded end (inches) 

f’c - compressive strength (psi) 

d ■ local bond slip (inches)

The most unique feature of this relationship was the dependence 

of the bond stress on the distance from the loaded end. In a beam this , 

represents the distance from a crack face. Unfortunately this conclu­

sion has not been supported by subsequent research. Edwards and 

Yannopoulos (19) tested a large number of pullout specimens and conclu­

ded from their results that the distance from the loaded end had no 

effect on bond stress or slip. This was also the finding of Mirza and 

Houde (35).

Venkateswarlu and Gesund 1972 (52)

Venkateswarlu and Gesund (52) approached the formulation of a 

bond stress-slip relationship from an entirely different direction.
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They used a slip modulus to relate bond stress to bond slip. This slip 

modulus was derived indirectly from a crack width prediction equation. 

The crack width formula was obtained from experimental beam crack width 

data reported by other researchers. The two authors found that their 

slip modulus depended on the steel stress, the modulus of rupture of the 

concrete, the tension steel ratio, and the modular ratio. The idea of 

using crack' widths to calculate bond slip is an interesting one, and one 

that probably deserves further study.

Mirza and Houde 1979 (27) (35)

Mirza and Houde tested 62 tension specimens to determine the 

bond properties of reinforced concrete. From these test results they 

developed an empirical bond slip prediction equation. This equation 

related the bond slip to the steel stress and the ratio of concrete to 

steel areas. The authors recognized that their equation was only an 

approximation, but in view of the high experimental variability usually 

experienced in tension tests, this was not considered a serious problem. 

To develop the bond stress-slip relationship, tension specimens with 

internally Instrumented bars were employed. Using this data to find the 

bond stress, and the slip prediction equation to calculate the bond 

slip, an empirical nonlinear bond law was proposed. This equation was 

normalized to a common concrete strength and cover as follows:

u - 1.95xlO6 - 2.35xl09d2 + 1.35xl012d3 - ,33xl015d4 (3.4)
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where u - local bond stress (psi) 

d ■ local bond slip (inches)

The maximum local bond stress for all concrete strengths and covers was 

reached at a local slip of about .0012 inches. After this point the 

bond stress was assumed to depend upon the distance from a crack face. 

Mirza and Houde observed from their test data that the bond stress 

beyond a distance of 3 to 4 inches from a cracked surface remained 

relatively constant after the slip limit was exceeded. When the slip 

limit was exceeded within 3 to 4 inches from a crack face, the bond 

stress was found to decrease progressively to zero. This finding agreed 

with Nilson's earlier comments about bond behaviour past the slip 

limit.

The accuracy of Mirza and Houde's bond stress-slip equation is 

difficult to assess because bond slip was calculated by what was 

admittedly an approximate equation. When the variability of this slip 

equation is combined with the errors which usually accumulate in pullout 

test results, it seems reasonable to assume that this empirically 

derived stress-slip formula would not give an exact representation of 

the bond relationship. Realistically it may only provide a rough 

estimation of the correct behaviour. On the postitive side, the fact 

that some of Mirza and Houde's findings were also supported by other 

researchers (19)(40), and none have been seriously refuted, tends to 

give credence to the validity of their results. One very attractive 

feature of this relationship is the ease with which it can be incorp­

orated into a finite element model.
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All of the bond relationships reported in this section were 

developed from short term results. The main purpose of this study's 

analytical model however was aimed at long term behaviour. It should be 

recognized that the bond relationships may not be strictly applicable 

for this application. However until research work is done in this area 

it is necessary to assume that the bond behaviour of reinforced concrete 

for long term loading is the same as for short term loading.

Summary

It is obvious from the preceeding review that there is still a 

great deal of confusion surrounding the subject of bond in reinforced 

concrete. There is no real consensus on the true relationship between 

bond stress and bond slip, and researchers are still attempting to 

identify the parameters that affect them. The uncertainty surrounding 

this subject is quite understandable because of the difficulty in 

measuring and interpreting experimental bond data. The development of 

usable bond stress-slip relationships is therefore still in a prelim­

inary stage, and current equations are simple and relatively Inaccurate. 

Despite the weaknesses in current prediction methods, some represen­

tation of bond was required for the finite element model that was 

developed in this study. The equation developed by Mirza and Houde was 

chosen for this. Their equation was readily adaptable to a computer 

program, and some of their findings have also been supported by other 

researchers. Their equation is therefore probably as accurate as any 

other. More research in this area would help in clearing up the 

uncertainties about bond behaviour, and might aid in the development of
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a more accurate bond stress-slip relationship. Until this is done, 

modelling of bond will always be very approximate.

3*2 Finite Element Modelling

3.2.1 . Literature Review

The finite element method is a very powerful analytical tool 

which has only recently gained wide acceptance in the analysis of 

reinforced concrete. With the advent of modem high speed computers, 

this tool has become a practical and cost effective way to simulate the 

behaviour of concrete members. However, a number of material and 

geometric problems make the application of this method to reinforced 

concrete very difficult. For instance, reinforced concrete is a highly 

variable three-dimensional material that is composed of both steel and 

concrete. These materials have very different properties and the inter­

action between them is not well understood. The stress and stress­

strain relationships for concrete are nonlinear which makes their 

analysis very complicated. Another significant nonlinearity is caused 

by progressive cracking which not only changes the geometry, but also 

introduces the effects of dowel action, aggregate interlocking, and 

tension stiffening. Concrete in also influenced by the nonlinear time 

dependent effects of creep and shrinkage. Modelling all of these 

factors with the finite element method is a significant numerical 

problem, that is further complicated by the fact that many of the

effects are not well understood.
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To date, researchers using the finite element method for 

reinforced concrete have focused most of their attention on developing 

numerical techniques which can simulate the behaviour of some *of the 

more important factors that influence reinforced concrete behaviour. 

The purpose of this section is to examine some of the developments that 

have been made in finite element modelling of reinforced concrete, and 

hopefully shed some light on the possibilities and limitations that 

currently exist with this approach.

Ngo and Scordelis 1967 (37)

Ngo and Scordelis were among the first in 1967 to use the finite 

element method for reinforced concrete. In their model, the steel and 

concrete were both represented with two-dimensional triangular elements 

of unit width. Transformed section concepts were used to formulate the 

properties of the elements at the level of the reinforcement. The steel 

and concrete were both considered as linearly elastic materials. This 

was a significant simplification because concrete is actually highly 

nonlinear. The Interaction between the steel and the concrete was 

modelled with special linkage elements. Horizontal springs connecting 

the steel and concrete nodes were used to represent the bond behaviour, 

and vertical springs were used to represent the dowel action. There was 

insufficient data available for the derivation of stiffnesses for the 

vertical springs and they were not included in the analysis. However

the horizontal springs were included.
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One discovery made by Ngo and Scordelis was that the horizontal 

linkage elements were not very sensitive to errors, since substantial 

variations in the stiffness of the horizontal springs did not affect the 

results very much. Five beams with predefined crack patterns were 

analyzed to illustrate the proposed model. Cracking was simulated by 

separating the nodes at the crack locations. This model was one of the 

first attempts at modelling reinforced concrete with the finite element 

method and although Ngo and Scordelis' model was not very practical, it 

did demonstrate the potential of the finite element method as an 

analytical tool for studying reinforced concrete.

Nilson 1968 (38)

In 1968, Nilson extended the work of Ngo and Scordelis by 

including nonlinear effects and progressive cracking. Plane stress 

triangular elements were again used to model the steel and concrete, but 

Nilson added the effect of concrete's nonlinear stress-strain relation­

ship. A nonlinear bond stress-slip law was used to define the hori­

zontal stiffness of the spring linkage elements. Instead of using 

transformed section concepts to evaluate the elements at the level of 

the reinforcement, the two materials were considered separately. To 

facilitate the analysis, the round reinforcing bars were replaced by an 

equivalent square bar. The thickness of the concrete at the level of 

the reinforcement was also reduced to account for the concrete material 

that was displaced by the steel. An incremental loading procedure was 

used to incorporate nonlinear effects and progressive cracking. When 

the principal tensile stress in two adjacent elements exceeded the
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tensile strength, a crack was simulated by separating the nodes along 

the common edge of the two elements. This restricted the crack orien­

tation because cracks were forced to form along element boundaries. 

Unfortunately this could result in incorrect crack patterns. When a 

crack formed the element grid was modified, and the load on the 

structure was released completely. Then the load was reapplied 

incrementally until the next crack formed. This model was much more 

practical than Ngo and Scordelis' model, but there was still some need 

for improvement.

Will, Uzumerl, and Sinha 1972 (53)

Will, Uzumerl, and Sinha analyzed the behaviour of reinforced 

concrete joints using plane stress rectangular elements. Cracks were 

assumed to form when the maximum principal tensile stress exceeded the 

tensile strength, but in this analysis the proper orientation of cracks 

was cons idered • The orientation of cracks was assumed to form in a 

direction perpendicular to the principal tensile stress. Instead of 

separating the nodes along cracked element boundaries, cracks were 

simulated by modifying the properties of elements which had failed. 

This was done by eliminating the stiffness of an element in the 

direction normal to a crack. Essentially when a normally Isotropic 

element cracked, it became an orthotropic element. This technique is 

often called the smeared crack concept and has subsequently been used by 

most researchers to simulate cracks in reinforced concrete structures.
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Spokowski 1972 and Houde 1973 (47) (25)

At McGill University, Spokowski (47) and Houde (25) were also 

studying the application of the finite element method to reinforced 

concrete. They added stirrups to their models by representing them as 

four degree of freedom bar elements. They assumed that for stirrups 

there was no significant displacement between the steel and concrete, 

and therefore it was reasonable to ignore the slip between them. Both 

researchers used the Ngo and Scordelis spring linkages for steel­

concrete interaction, but this time the dowel action was also 

considered. The stiffnesses of the vertical springs used to simulate 

dowel action were estimated from empirically derived prediction 

equations. Houde (25) also used spring linkage elements to model 

aggregate interlock along cracks. When this was done it was necessary 

to use a predefined crack pattern. An incremental loading procedure was 

used by both researchers and the maximum principal tensile stress was 

used to define the failure criteria. At the end of each load increment 

all of the elements were checked for failure, and the elements that had 

cracked during that increment were identified. The nodal forces of 

these elements were reapplied to adjacent elements and redistributed in 

the following load increment. Spokowski and Houde both assumed that 

cracked elements were incapable of carrying any stresses, and the stiff­

nesses of these elements were completely deleted from the system. This 

assumption is not really correct because cracked elements actually have 

some load carrying capacity. The smeared crack approach would probably 

have given a more exact answer.
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Scanlon and Murray 1972 (46)

Scanlon and Murray used layered plate bending elements to 

simulate the behaviour of reinforced concrete slabs. Each layer of an 

element was permitted to have different properties and in this way it 

was possible to Include the effects of reinforcement and progressive 

cracking. The stiffness of the layer at the level of the reinforcement 

was calculated by superimposing the individual stiffness of the steel 

and the concrete. Unfortunately, this technique made it impossible to 

consider bond slip because it was necessary to assume that there was 

perfect bond between the concrete and the steel. This requirement may 

have seriously affected the observed crack patterns because the progres- 

sion of cracking is highly Influenced by bond slip. The smeared crack 

concept was used to simulate cracks, and when the maximum principal 

tensile stress exceeded the tensile strength, the modulus of elasticity 

and the Poisson's ratio were reduced. In cracked elements the shear 

modulus was retained and although it was not stated explicitly, this may 

have been done to account for aggregate interlock. Tension stiffening 

was another feature included in Scanlon and Murray's model. Instead of 

immediately releasing the tensile stresses in cracked layers, Scanlon 

and Murray simulated tension stiffening by slowly reducing the tensile 

stresses. There was still some stiffness retained in cracked elements 

in the direction perpendicular to the cracks. Scanlon and Murray 

reported that this modification did not affect the prediction of the 

failure load, but did have an influence on the load-deflection curve.
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Hand, Pecknold, and Schnobrick 1973 (23)

Hand, Pecknold, and Schnobrick used 20 degree of freedom shallow 

shell layered elements Co investigate the load deflection history of 

reinforced concrete plates and shells. Cracked layers were represented 

by the smeared crack concept, and aggregate interlocking and dowel 

action were simulated by retaining a fraction of the shear modulus. 

This fraction was defined as a shear retention factor, and it was 

assumed that this factor was constant. The authors recognized that a 

variable shear retention factor that depended on the crack width would 

probably give a better representation of the correct behaviour, but they 

did not include this in their analysis.

Phillips and Zienklewicz 1976 (41)

In 1976 Phillips and Zienklewicz presented a model which used 12 

node isoparametric elements to analyze reinforced concrete structures. 

Special axial elements lying inside the boundaries of the concrete 

isoparametric elements were used to simulate the reinforcement. It was 

necessary to assume that there was perfect bond between the steel and 

the concrete because the strains in the steel elements had to be the 

same as those in the surrounding concrete elements. Smeared cracks were 

assumed to form across part of an isoparametric element when the maximum 

principal tensile stress or strain at an integration point exceeded a 

limiting value. Crack closure was included in the model. Phillips and 

Zienklewicz concluded that cracks would close when the direct strain 

across a cracked region became compressive, and when this occurred the
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cracked elements took on the properties of uncracked elements. Since 

the authors recognized that a plane of weakness still existed along the 

crack, the shear resistance of a previously cracked region was assumed 

to be less than that for a region that had never been cracked.

Cedolin and Dei Poli 1977 (14)

Cedolin and Dei Poli analyzed shear critical reinforced concrete 

beams with plane strain triangular elements. A limiting tensile strain 

was used as the failure criterion, and the smeared crack approach was 

used to represent the cracked elements. The shear retention factor that 

was suggested by Hand et al (23) was used to simulate aggregate inter­

locking and dowel action. Instead of using a constant shear retention 

factor, Cedolin and Dei Poli Introduced a variable factor which 

decreased linearly with increasing crack widths. As mentioned earlier 

this Improvement would probably give a better representation of the 

actual behaviour of concrete because it is well known that aggregate 

interlocking is very dependent on crack widths (23).

Sallam 1978 (45)

Sallam investigated the behaviour of reinforced concrete joints 

with the finite element method. He used the four node Goodman joint 

(21) in place of the normal { Ngo and Scordelis linkages to model the 

Interaction between the steel and the concrete. The stiffness of the 

joint elements were evaluated by averaging the displacements between the 

steel and concrete nodes. This meant that the stiffness of each joint
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was constant all along its length, which is really only an approximation 

because the stiffness actually varies nonlinearly.

Bazant and Cedolin 1979 (5)

Bazant and Cedolin investigated the treatment of crack propaga­

tion in finite element analyses of reinforced concrete and suggested 

some improvements to them* They suggested that models which used a 

limiting tensile stress or strain as the failure criterion were not 

always accurate. This conclusion was based on the observation that 

crack propagation could be significantly influenced by the element grid. 

They suggested that fracture mechanics criteria should be used to deter­

mine crack initiation and propagation, and the failure in an element 

should be expressed in terms of the energy required for crack 

extension.

Conclusion 

/

Although the preceeding review is by no means complete, it does 

show that significant progress has been made in the area of reinforced 

concrete modelling by the finite element method. With varying degrees 

of success, numerical techniques have been developed to simulate the 

effects of aggregate interlocking, dowel action, tension stiffening, 

bond slip, and progressive cracking. Despite this progress there are 

still many areas requiring further study. Examples of these areas 

include concrete-steel interaction, failure criteria, three-dimensional 

action, and the effects of time dependent behaviour. Researchers who
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wish to improve the finite element modelling of reinforced concrete must 

also deal with the fact that many of the factors which still need to be 

simulated are not very well understood to start with. This will 

continue to cause problems with accuracy. Another consideration that 

has not yet been mentioned is the cost of a finite element analysis. 

The improved accuracy which may be achieved through the use of complex 

numerical techniques, must be balanced against the cost. Finite element 

modelling of reinforced concrete has made considerable progress in the 

time since it was first introduced, but there are still many areas where 

significant advancements can still be made*

3.2.2 Concrete Elements

The concrete in the finite element model was represented with 

constant stress triangular elements. An option for the inclusion of 

geometric nonlinearity was incorporated into the analysis even though 

this was not really necessary. Service loaded beams rarely have large- 

deflection effects and small deflection theory is usually applicable. 

However this option was included for possible later applications. The 

elements in this analysis were assumed to be in a state of plane stress, 

and an iterative, incremental solution scheme was used to deal with the 

many nonlinearities. In this section the derivation and solution of the 

finite element equations which were used to model the concrete will be 

explained.
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Stiffness Matrix and Load Vector

The derivation of the stiffness matrix and load vector for 

constant stress triangular elements with geometric nonlinearities is 

available in many finite element textbooks (34)(55), but is briefly 

presented here for completeness • The 3 node, 6 degree of freedom 

element is shown in Figure 3*1. The principle of virtual work was used 

to formulate the problem and define the element properties.

The displacement functions u and v In the x and y directions for 

the triangular element were given by:

“ - 4 «! + h u2 * L3 u3

(3.5)

v - 4 Vj + L2 v2 + Lj v3

These equations gave a linear approximation for u and v within the 

element.

The principle of virtual work was used to derive a function 

which represented the sum of Internal and external generalized forces.

f B T o dV - R » 0 (3.6)
J n n n 
v

Where R is the nodal load vector, and B is the kinematic large dis- 
n n

placement matrix which relates incremental displacements to incremental 

strains. The definition for B^ is characterized as:



FIGURE 3.1 3 NODE CONCRETE ELEMENT

FIGURE 3.2 CRACKED CONCRETE ELEMENT
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FIGURE 3.1 3 NODE CONCRETE ELEMENT

FIGURE 3.2 CRACKED CONCRETE ELEMENT
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A e - B Au (3.7)
n n n

where u^ 3 nodel displacements.

For small strains, the stresses were written as a function of 

the elasticity matrix D, the Initial strains, cq, and the Initial 

stresses, cr , so that:

a - D(e - e) + a (3.8)
o o

The solution of Equation (3.6) required an iterative solution 

procedure for which the Newton Raphson method was used. To do this it 

was necessary to find a relationship between Equation (3.6) and A u^. 

This was accomplished by first writing Equation (3.6) in an incremental 

form.

f B? A a dV+f A B T o dV-AR - 0 (3.9)
J n n J n n n 7
v v

where A R ■ 0 if there is no change in the external loads

Then Equations (3.7) and (3.8) were combined to give:

A o - D B A u (3.10)
n n n

The stiffness matrices where then defined by using Equation 

(3.10) and writing Equation (3.9) as:
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Ka Au +K Au = 0 
n n n n (3.11)

where Ka Au = J AB a dV 
a n J n n

v

and K * f B T D B dV 
n J n n 

v

When cracking occurs during loading. Equation (3.6) may not be 

completely satisfied in one iteration. If this is the case, it may be 

necessary to correct the error through an iterative process. Iteration 

continues until the error is reduced to a value small enough not to 

affect the results.

Summary

The nonlinear analysis presented in this section was used to 

define the properties of the concrete in the finite element model and an 

iterative incremental solution procedure was employed to solve the 

required equations. It was assumed that the two-dimensional triangular 

element gave an acceptable representation of the states of stress and 

strain in the concrete. Although it may be possible to increase the 

accuracy of the analysis by using more complex elements, it was decided 

that the Increased cost, the extra memory requirements, and the 

complexity were not justified.
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3.2.3 Cracked Concrete Elements

When the maximum principal tensile stress in a concrete element 

exceeded the tensile strength, that element was assumed to crack. 

Cracking is very difficult to simulate in a finite element model because 

of problems with computer storage limitations, confusion about 

concrete's proper failure criterion, and uncertainty about the true 

material response. Various techniques have been suggested to deal with 

concrete cracking but there are inherent weaknesses in all of them. 

This section contains a review of the methods which have been suggested 

for treating cracking in a finite element analysis, and the modifi­

cations which were made to the concrete elements to simulate this 

effect.

Probably the best way to model cracking 'is to redefine the 

element mesh by introducing new nodes along crack boundaries. Unfor­

tunately this creates irregularly shaped elements and substantially 

Increases the required memory storage. A related alternative is to 

separate the nodes along the closest element boundary to a crack. 

Unfortunately this modification usually creates incorrect crack 

patterns, and may also substantially Increase the computational effort 

and required memory storage. A simpler modelling technique is to 

completely delete the stiffness of elements which exceed the cracking 

criteria. This means that cracking does not change the element grid and 

causes no increases in memory requirements. Realistically however, 

cracked elements actually retain much of their stiffness after cracking, 

and completely eliminating their stiffness may introduce a considerable
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loss of accuracy. However this idea of cracked regions rather than 

discrete cracks leads to a more accurate technique called the smeared 

crack approach. Cracks are simulated in this method by reducing the 

stiffness of cracked elements according to a technique reported by 

Zienkiewicz (55) for anistropic materials. Bazant and Cedolin (5) 

reported that the smeared crack assumption of cracked regions may 

actually be closer to reality than the assumption of discrete cracks 

because of material inhomogeneity and the stabilizing effect of the 

reinf orcement.

In this study the smeared crack approach was used to simulate 

cracks in the finite element model. According to this technique, an 

infinite number of finely spaced cracks form in an element when the 

failure criteria for that element is exceeded. For this model, failure 

took place when the maximum principal tensile stress . exceeded the 

tensile strength* Cracks were assumed to form normal to the direction 

of the maximum principal tensile stress. Some disagreement exists among 

researchers about whether cracking should be controlled by the maximum 

stresses, the maximum strains, or some other failure criteria, but since 

tests for tensile capacity are usually related to stress, the maximum 

stresses were used in this study.

The following assumptions were made concerning cracked elements:

1) No stiffness was retained in the direction normal to a 

crack

2) Poisson's effect was neglected

3) Shear stiffness was omitted
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These assumptions meant that no provision was made for the effects of

aggregate interlocking and tension stiffening.

Cracked elements were analyzed by rotating their x and y axes to 

coincide with the crack direction. The idealization and orientation of 

cracked concrete elements is shown in Figure 3.2. To comply with the 

assumptions about cracking, the elasticity matrix, [D], in the global 

coordinate system was changed for cracked elements to [D'J in the local 

coordinate system x1, yf.

[D1] =• E
0 0 0
0 1 0
0 0 0

(3.12)

The local stiffness matrix and load vector of the cracked 

elements In the local coordinate system were derived from virtual work 

In the same way as for uncracked elements. To form the global stiffness 

matrix and load vector in the x, y system, appropriate transformations 

were necessary. Displacements In the x, y system were converted to the 

x’» y’ system with the following transformations.

u1 « u cos 0 + v sin 0

v’ “ -u sin 0 + v cos 0 (3.13)

where the prime denotes the local coordinate system. Nodal displace­

ments in local coordinates were related to nodal displacements in global 

coordinates with the following transformation matrix.
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{6*} - IT] [8}
" cos 3 sin? 0 0 0 0 “
-sin0 cos £ 0 0 0 0

0 0 cos 0 sin? 0 0
where [T] « -sin? cos 0 0 0 (3.14)

0 0 0 0 cos 0 sin 0
0 0 0 0 -sin 0 cos 0_

This leads to the transformation of the stiffness matrix and load vector

to the global system.

From the potential energy theorem.

U - y {«'}T [K'J {6’}
(3.15)

W a {p' }T [JI] (3.16)

Where K’ is the cracked element stiffness matrix in the local coordinate 

system, U is the strain energy, P is the local load vector, and W is the 

potential energy of loading.

By combining Equations (3.15) and (3.16) with Equation (3.14), 

the strain energy and potential energy for the element in the global 

system were defined as:
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U«{ {S}T [T] IK'] [T] {6} (3.17)

W - (P'}T [T] {«} (3.18)

The stiffness matrix can be extracted from Equation (3.17) and 

defined as:

K - [T]T [K'J [T] (3.19)

The load vector comes from Equation (3.18) and is written as:

P - {P1}T [T] (3.20)

This formulation was expected to provide a relatively simple and 

accurate way to simulate cracks in concrete. Even though such factors 

as aggregate interlocking and tension stiffening were omitted, the 

results should realistically reflect the initiation and progression of 

cracks.

3.2.4 Steel Elements

The steel in the finite element model was represented with four 

degree of freedom bar elements. It was assumed that the transverse 

stiffness of the reinforcement was negligible compared to the concrete. 

Therefore only the axial stiffness of the steel was included. This 

assumption seemed to be reasonable and it substantially reduced the size 

and cost of the analysis. Geometric nonlinearity was not incorporated
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into the analysis of the reinforcement because large deflections were 

not expected to be present in the beams studied. However provision was 

made so that this refinement could be added later if necessary.

Stiffness Matrix

The stiffness matrix of the bar element is available in any 

finite element textbook (34)(55), but a brief derivation is provided 

here for completeness. The bar element used in the analysis is shown in 

Figure 3.3. Since geometric nonlinearities were not considered in the 

derivation, the displacements in the transverse direction were omitted. 

The linear displacement function of the bar element was thus given by:

“ “ (1 - "1 + 7 “2

The stiffness matrix was developed from the strain energy

expression for an axial element where:

„ EA / , ,.2 , 
V - — j (« ) dx

o
(3.23)

and:

K

10-10
0 0 0 0
-10 10
0 0 0 0

Transformation matrices can be used if the direction of the steel is not

parallel to the x-axis. The solution procedure outlined in the section
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FIGURE 3.3 2 NODE BAR ELEMENT

FIGURE 3.4 4 NODE GOODMAN JOINT ELEMENT
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on the concrete elements was also followed for the steel elements. Even 

though there were no nonlinearities in the behaviour of the steel 

elements, it was necessary to follow an incremental solution procedure 

because of nonlinearities elsewhere in the analysis. It was felt that 

the bar element gave a good approximation of the stress and strain 

states in the reinforcement and that this simple element gave the best 

combination of accuracy and computational efficiency.

3.2.5 Bond Elements

The interaction between steel and concrete is very important to 

the overall response of concrete members. It is therefore essential to 

model this phenomenon as accurately as possible in a finite element 

mod'el even though there is still a great deal of uncertainty surrounding 

it. Ngo and Scordelis (37) suggested using special spring linkage 

elements to represent the bond characteristics. However, since these 

elements only satisfy compatibility at the nodes they may not be very 

accurate when a nonlinear bond relationship is used. A different kind 

of element was proposed by Goodman, Taylor, and Brekke (21) to study 

jointed rock masses. This element can be made to ensure compatibility 

along the interface between constant stress elements and is therefore 

more suited for concrete bond representations. For this reason the 

Goodman joint element was chosen to represent the bond behaviour in the 

finite element model of this study. The derivation presented by Goodman 

et al, with a few modifications is presented in this section.



107

The Goodman joint, shown in Figure 3.4, is a 4 node element 

which has a finite length but no width. Initially, the adjacent nodal 

pairs (1,4) and (2,3) seen in Figure 3.4 have the same coordinates, but 

when forces are applied to the joint, these pairs separate. The proper­

ties of the element are dependent on the relative movement between the 

top and bottom faces, and are defined with empirical relationships. 

Dowel action was neglected in this study, so the relative displacements 

in the vertical direction were restrained. Only horizontal displace­

ments were allowed. The following paragraphs contain details on the 

derivation of the stiffness matrix and load vector for the joint 

element.

Stiffness Matrix

The displacement at the top and bottom of the joint element were 

defined in terms of a nondimensional coordinate a, where:

"I ■ "7 + T "5

(3.24)

°B ’ “1 + —“3

where u^ ■ displacement of top of element 

Ug * displacement of bottom of element 

u^, Up u^, Uy ■ nodal displacements

The relative displacement between the top and bottom of the element were 

then defined at any point along the length by:
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u - u = - (-y) u.. - u + (—) u5 + u_ (3.25)

The stiffness of the element was found by making use of the 

Potential Energy Theorem, the relative displacements, and Mirza and 

Houde’s nonlinear bond relationships (25)(33) as:

k^ '1/ £N, } k {N,} da
ij 2 i s j

(3.26)

where {N} ■

The stiffness, k , comes from the local bond stress-slip 

equation developed by Mirza and Houde. It was expressed by the 

following polynomial:

ubg * 1.95xl06d - 2.35xW9d2 + 1.39xl012d3 - .33xl015d4 (3.27)

where lu^ • local bond stress (psi) 

d * local bond slip (in)

Differentiation of Equation (3.27) with respect to slip gave the bond 

stiffness per unit length as:
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du.
k “ " D N (3.28)
s ad

where D ■ diameter of reinforcing bar

N ■ number of bars in the cross-section

The variation of displacements along the boundaries of the 

constant stress triangular elements and the axial bar elements was 

linear. However, since the bond stress-slip law was nonlinear, the 

variation in stiffness along the interface was also nonlinear. There­

fore the stiffness at the nodes was defined using three point Gauss 

Quadrature Numerical Integration. In this way the nonlinear nature of 

the bond behaviour could be represented. This modification seemed to 

represent a significant improvement over previous methods which have 

assumed that the bond stiffness between nodes is linear.

Load Vector

Like the stiffness matrix, the load vector, shown below, was 

also defined in terms of the relative displacement, the nondimensional 

coordinate, a, and the bond relationship.

F. " 4 / {N.} Ida (3.29)

The shape factor, {N}, is the same as that given in Equation (3.26), and 

the bond stress, T , came from the local bond stress-slip law of 

Equation (3.27). The bond stress given by Mirza and Houde’s equation 

leads to the bond stress per unit length as shown in Equation (3.30)

below:
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T = u, it D N 
s DS (3.30)

The terms in this equation are the same as those in Equation

(3.28). Since the bond stress equation was a nonlinear function, three

point Gauss Quadrature Numerical Integration was used to solve Equation 

(3.30).

This formulation appears to be a significant improvement over 

the Ngo and Scordelis spring linkages because compatibility can be 

provided all along the steel-concrete interface. Unfortunately the 

accuracy of the solution generated with this approach is also dependent 

on the accuracy of the bond relationship. Improvements in the modelling 

of bond are therfore very dependent on improvements in the accuracy of 

this relationship.

3.2.6 Creep and Shrinkage Formulation

The technique adopted for treating the effect of time dependent 

strains on the finite element model was first proposed by Ranch!, 

Zienklewicz, and Owen (27). They developed an implicit visco—plastic 

model which incorporated material and geometric nonlinearities. This 

model was used in the finite element model of this study to treat creep 

and shrinkage strains. In the analysis, an incremental solution 

procedure was used to determine the cumulative effects of the changing 

inelastic strains. The basic formulation of this procedure can be found 

in the paper by Kanci et al, but since concrete does not exactly follow
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this formulation the equations were redefined to reflect the 

differences.

Creep Strain Increments

The explicit form of the concrete creep strain rate is dependent 

on the applied stresses and the time under load. It can be written as:

£C - f (o,t) (3.31)

A creep strain increment A e^, was defined for a time interval 

At - tQ+j - t^, by using the following formulation.

A £ - At [(W) en + ♦ ^J (3.32)

In this case p 0, is the Euler scheme or “fully explicit"

$ ■• 1, is "fully implicit”

4> ■ y, is the Implicit trapezoidal scheme, or Crank- 

Nicolson rule, which is used for linear equations

A truncated Taylor series expansion was used to define e^j.

•c
Cn+1

■ £C + H A 
n n

0 
n

(3.33)

where Hn3 (fr5 - H 
n

(an) (3.34)

The matrix H 
n

depends on the stress level at the nth creep increment.
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This formulation is very good for linear creep laws > but since 

concrete has a nonlinear creep law, Equation (3.33) is not always very 

accurate. This has an adverse effect on the convergence rate. To

ensure proper convergence either an iterative scheme or a residual load

vector may be used. In both cases an accurate prediction of e^^ is

preferable. To accelerate the rate of convergence and to improve the

accuracy of e ., the Taylor series was modified. With the addition of 

an extra term. Equation (3.33) can now be written as:

(3.35)

Equation (3.35) is no longer a proper Taylor series, but, for 

the given creep curve, the additional term provided a much better 

•c
prediction of Ea+^. The creep strain increment could now be redefined 

as:

2
A £c - eC A t + <1 EC + <t> H A CT A t * (3.36)
nn n 2 n n

Shrinkage Strain Increments

The explicit' form of the shrinkage strain rate can be written 

as:

?h - f(t) (3.37)

s h
The shrinkage strain increment Aeq , for time increment 

A t * t ,. - t , was defined as: 
n+1 n’
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A e “£..-£ (3.38)
n n+1 n

A limited Taylor series expansion was used to define e^^ implicitly.

2
sh sh x »sh . t L "sh A t

" Sn + en A t + £ -- 5“ (3.39)
n+1 n n n z

The shrinkage strain increment was then written as:

2
A £ * e A t + £ —=— (3.40)

n n n Z

Stress Increments

The stress increments were obtained from the elasticity matrix.

the total strain increment, and the inelastic strains as:

Ao ■ D (A e - A £C - A £8h) 
n n ti n

(3.41)

- D (B Au - A EC - A ESh) 
n n n n

In this case, A u^ is the incremental nodal displacement vector, and Bq 

is the kinematic large displacement matrix which relates displacement 

increments to strain increments. The Bq matrix is composed of two 

parts, corresponding to the linear and nonlinear terms used in the 

Lagrangian formulation for'geometric nonlinearities.

Substituting A e^ and A £® from Equations (3.36) and (3.40), 

into Equation (3.41), gave the stress increment implicitly as:
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2 2
A a « F D[B Au - ( e A t + 6 e —r-) - ( e A t + e —]

n n n n n T n 2 n n 2

(3.42)

where F • [I + $ A t D H^] (3.43)

and I ■ the identity matrix.

Equations of Equilibrium

The equilibrium equation which must be satisfied for any time 

was:

f BT o dV - R - 0 (3.44)
n n n 

v

The R^ term is the equivalent nodal load vector due to the external 

loading.

The incremental form of this equation was written as:

f BT A a dV + K Au - AR = 0 (3.45)
; n n a n n n
v

where K^ ^ is the initial stress matrix which is dependent on the stress 

level, and A R^ is the change in the external loads during the time 

increment. The matrix A R^ is equal to zero if the external load 

remains constant throughout the time increment, or is applied in 

discrete steps.
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The incremental nodal displacements were determined by combining 

Equations (3.42) and (3.43) with Equation (3.45). The total displace­

ments, stresses, and strains where then found.

The incremental stresses obtained from Equation (3.45) may not 

satisfy the total equilibrium condition of Equation (3.44). This is due 

to the fact that the strain rates calculated by Equations (3.35) and 

(3.39) are not exactly the same as those given by the creep and shrink­

age laws. An iterative solution procedure is often used to reduce the 

error to an acceptable level. Another suggestion, which was adopted in 

this model, is to correct the error in the next time increment with the 

residual load vector:

dV (3.46)
n+1 n+1 J n+1 n+1

a
where R is the residual load vector which is calculated from the 

n+1

total load vector, R^^, the updated kinematic large displacement 

matrix, B and the updated stress vector, o n+1 ’ r ’ n+1

3.3 Sensitivity

No discussion about the proposed finite element model would be 

complete without providing some analysis of its sensitivity* This is 

especially important for an Investigation involving reinforced concrete 

because of concrete's complex nature and Inherent variability. It is 

unrealistic to expect a theoretical tool like the finite element method 

to precisely model the behaviour of a reinforced concrete beam, but as
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long as there is a proper appreciation of the limitations and relative 

accuracy of the model, it can be used successfully with some confidence.

The performance of the model is affected to varying degrees by 

numerical and material factors. Its overall accuracy can only be 

assessed after a complete examination of each individual contributing 

factor. Some insights into some of the factors which influence the 

model were presented in previous sections dealing with modelling and 

material properties. These included discussions about the accuracy of 

the creep, shrinkage, and bond equations, and the expected accuracy of 

finite element models in general. However at that time there was no 

attempt to quantify their effects on results from the analytical model. 

The objective of the following section is to provide this information 

and to give some indication of the probable accuracy that might be 

expected from the proposed finite element model.

In a sensitivity study, it is only possible to examine factors 

which can be varied within the program or changed through input vari­

ables. Any source of Inaccuracy which cannot be quantified within the 

program cannot be tested for sensitivity. For this reason the effects 

of dowel action, tension stiffening, aggregate interlocking, crack 

modelling, two-dimensional plane stress modelling, material nonhomogene­

ity, and other similar factors were not studied. No alternatives to the 

way the model simulated reinforced concrete were compared. Instead, the 

investigation was limited to those. influences which were supplied as 

Independent variables such as the modulus of elasticity, tensile



117

strength, bond stiffness, creep, shrinkage, and the finite element mesh

size.

The standard beam used in the sensitivity study was Corley and 

Sozen's Beam Cl (17), details of which can be found in Section 3.42. By 

varying some of the parameters of this beam and comparing the results 

with those obtained from the standard beam, it was hoped that some 

indication of the sensitivity of the model would become apparent. It 

should be recognized that this sensitivity study is only concerned with 

the response of a representative beam, and changes in geometry or 

boundary conditions may also have an effect on the results.

The sensitivity study was divided into two main sections. The 

first one contained an examination of a beam stressed well beyond its 

cracking load. The second was concerned with a beam stressed to approx­

imately its cracking load. It was felt that the behaviour of the two 

extremes would give a more complete picture of the behaviour of all load 

levels. These two main sections were each divided into two subsections 

so that short term and long term deflections could be investigated 

separately. In each case only one variable was varied at a time and all 

other variables were kept constant. The results of the sensitivity 

study are shown in Figures 3.5 through 3.22.

3.3.1 Higher Stress Case

The immediate and long term deflections of the sample beam under

relatively high stresses (47% of ultimate using fy a 40 ksi) are shown
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in Figure 3.5 to Figure 3.12. Each material variable was varied by 20%, 

and the number of elements along the length was doubled. In this 

section very little discussion will be centered on the beam's behaviour 

at low load levels since this will be examined later in more detail. A 

general examination of the deflections seems to indicate that no single 

variable had an undue effect on the final beam deflections. Under short 

term loading, the maximum difference between the standard case and the 

varied cases was only about 8%. For the long term loading the largest 

discrepancy at the end of the loading period was about 9%. It should be 

noted that the discrepancies at the end of the loading period included 

both short term and long term effects.

Tensile Strength

The effect of decreasing the tensile strength by 20% from the 

standard value is shown in Figure 3.5 and Figure 3.6. The main influ­

ence on the short term load-deflection curve (Figure 3.5) of changing 

this parameter was observed in the early stages of loading near the 

cracking load. In this range, the load level of crack initiation has a 

significant effect on the deflections. The curve for the lower tensile 

strength deflections began to diverge from the standard curve at about 

40% of the total load. This was due to earlier cracking. When the load 

was increased further however, the curves began to converge again as the 

degree of cracking in the two cases became more similar. In fact, the 

difference between the two curves at the end of the loading period was 

only 2%, which certainly indicated that the tensile strength was not as
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significant a factor when the loads were much higher than the cracking 

load.

This conclusion also seemed valid for long term deflections. It 

can be seen in Figure 3.6 that for the two cases there was very little 

difference between the variations in deflection at the beginning and end 

of the loading period. This behaviour was not totally unexpected 

because the main effect of cracking had already been felt. After 

cracking the tensile strength is no longer as important a parameter.

Modulus of Elasticity

The modulus of elasticity of the concrete was also decreased by 

20Z and the results are shown in Figures 3.7 and 3.8. All other proper­

ties of the concrete remained unchanged. The results from Figure 3.7, 

the short term data, were similar to the varied tensile strength results 

in that the influence of the modulus of elasticity was more pronounced 

at the lower end of the load deflection curve. The final deflection was 

about 8Z greater than the corresponding deflection in the standard beam. 

This was considerably better than the 20 Z difference that one might 

expect for a normal ‘elastic solid. The improvement may be attributed 

directly to the effect of cracking. Factors which influence the stiff­

ness of a beam, such as cracking and bond deterioration, probably over­

shadowed the effect of the modulus of elasticity in the highly cracked

beam.
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The influence of the modulus of elasticity on the long term 

deflections is shown in Figure 3.8. The modulus of elasticity had no 

apparent effect on the long term behaviour of this beam. The difference 

in deflections between the standard beam and the reduced modulus beam 

was the same at the end of 705 days as it was at the beginning of the 

loading period. This result was not really surprising because the 

modulus of elasticity has little effect on the factors relating to the 

prediction of long term deflections.

Bond Stiffness

Very little needs to be said about the effect of increasing the 

bond stiffness by 20% because this change seemed to have no real effect 

on any of the deflections. The deflections for this case represented a 

highly cracked beam where the effect of bond properties should have been 

most visible, and yet the standard deflections were almost the same as 

for the varied bond stiffness. Since significant variations were not 

apparent, it seems safe to say that the results were not very sensitive 

to changes in bond stiffness. These results support the conclusions of 

Ngo and Scordelis (39) who also contended that the actual value of the 

bond stiffness was not critical for a finite element analysis.

Shrinkage

The effect of increasing the shrinkage strains by 20% is shown 

in Figure 3.9. The influence of this change was observed almost immed­

iately, but the deflections never varied from the standard deflections
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by more than a reasonably constant 5%. This indicated that for this 

particular beam, significant changes in shrinkage strains had a lesser 

effect on deflections. This is a reasonable conclusion because shrink­

age is only one factor in time dependent deflections. In a highly 

stressed beam like the one represented here, the creep effect would be 

more likely to dominate.

Creep

The effect on long term deflections of increasing the creep by 

20 Z is shown in Figure 3.10, and, as just predicted, the effect was more 

pronounced than for shrinkage. Creep is a load dependent phenomenon. 

Therefore, when the concrete stresses are high, it plays a significant 

role in determining the long term deflection. By increasing the creep 

by 20%, the total deflection at the end of the loading period increased 

by about 8Z. Unlike the shrinkage results, this percentage difference 

was not constant throughout the loading period but Increased with time 

at a decreasing rate.

Element Mesh Size

The accuracy of a finite element solution can be significantly 

affected by the finite element mesh. To get some idea of the influence 

of this factor the number of elements along the length of the beam was 

doubled. The results are shown in Figure 3.11 and Figure 3.12. From 

the nature of the finite element method, it would be expected that 

increasing the number of elements would increase the deflection and this



127

D
EF

LE
C

TI
O

N
 ( IN

FIGURE 3.10 INFLUENCE OF CREEP ON LONG TERM
DEFLECTIONS AT HIGH LOADS



128

AP
PL

IE
D

/T
O

TA
L LO

AD

FIGURE3.il INFLUENCE OF DOUBLE THE NUMBER 
OF ELEMENTS ALONG THE LENGTH ON 
SHORT TERM DEFLECTIONS AT HIGH 
LOADS

FIGURE3.il


129

D
EF

LE
C

TI
O

N
 (IN

FIGURE 3.12 INFLUENCE OF DOUBLE THE NUMBER 
OF ELEMENTS ALONG THE LENGTH ON 
LONG TERM DEFLECTIONS AT HIGH 
LOADS



130

is indeed what happened. Doubling the number of elements increased the 

deflection by 5% for the short term case, and slightly less for the long 

term case. Since the convergence of a finite element solution is not 

linear, further doubling of the number of elements would probably have a 

lesser effect on the deflections. This means that the results shown in 

Figures 3.11 and 3.12 really only illustrate the relative influence on 

the meshes used in these examples.

3.3.2 Lower Stress Case

In Figure 3.13 to Figure 3.22, the sensitivity results for a 

reinforced concrete beam loaded to very close to the cracking load (242 

of ultimate using fy = 40 ksi) are shown. As was the case for the 

higher stressed examples, each material variable was varied by 20%. The 

finite element mesh size was tested by doubling the number of elements 

along the length of the beam and by doubling the number of elements 

along the height of the beam. An inspection of the short term results 

Indicated that the model did not perform as well for this level of 

loading as it did for the previous one. This was primarily due to the 

fact that some variable changes caused the beam to crack while others 

did not. The difference in deflections between a cracked beam and an 

uncracked beam can be substantial. Under the given loading, cracking 

was not observed in the finite element analysis of the standard beam. 

However, a simple stress check of this beam indicated that the beam 

should have cracked. The fact that it did not, emphasises the fact that 

a finite element solution underestimates the exact solution. An 

inspection of the long term deflection results showed that the short
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term variations decreased considerably with time. This occurred because 

those beams which did not crack under short term loads, did so when the 

load was sustained. The largest difference in the results for the short 

term case was approximately 82%, while the largest final difference in 

the long term results was only about 7%. The following paragraphs will 

discuss these results in more detail.

Tensile Strength

Tensile strength has a significant effect on the lower end of 

the load-deflection curve, and Figure 3.13 confirms this. Lowering the 

tensile strength of this beam by 20% caused a crack to form, whereas 

this was not the case for the standard beam. Obviously a beam with a 

single crack in it has a much lower stiffness than an uncracked beam. 

In this case the increase in deflection was 63%. When the long term 

deflection was included in the analysis, Figure 3.14, the difference in 

deflections dropped dramatically. This occurred because the standard 

beam cracked with time, and the final stiffnesses of the two beams 

became very similar. At the end of the loading period the difference 

between the two curves was less than 2%. Therefore, in this case a 

lowering of the tensile strength accelerated the initiation of cracking. 

It also had a significant effect on the individual magnitudes of the 

short and long term deflections, but had little effect on the total

deflection.
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Modulus of Elasticity

The modulus of elasticity is another variable which has a 

significant influence on the stiffness of a beam loaded to around its 

cracking load. In an uncracked beam, the modulus of elasticity is the 

major material property affecting the stiffness of the beam. Decreasing 

the modulus of elasticity by 20% affected the entire load-deflection 

curve, as shown in Figure 3.15. At the end of the short term loading 

period the standard deflection was 20% less than the deflection for the 

low modulus of elasticity. The inclusion of time dependent effects 

reduced this discrepancy significantly. The difference between the two 

curves at the end of the sustained loading period, shown in Figure 3.16, 

was only about 2%. The modulus of elasticity had little effect on creep 

and shrinkage, and after the beam cracked, its Influence was not very 

strong. As was the case for the tensile strength results, the short 

term and long term deflections from this comparison were different, but 

the total deflections were almost the same.

Bond Stiffness

The bond stiffness was decreased by 20% to test the sensitivity 

of this variable. The results of this comparison were not plotted 

because there was no appreciable difference between this case and the 

standard one. This fact was not really surprising because bond stiff­

ness is not much of a factor in a lowly stressed, lightly cracked beam. 

Until cracking, the steel stresses are low and there is no slip between

the steel and the concrete.
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Shrinkage

The effect of increasing the shrinkage strains by 20% is shown 

in Figure 3.17. At the end of the loading period an increase of 7Z was 

observed in the deflections. The magnitude of the deflection difference 

between this case and the standard one is almost the same as for the 

highly stressed beam. This is not very surprising because shrinkage is 

not a load-dependent property.

Creep

Increasing the creep strains by 20 Z did not have as significant 

an effect on the lower stressed beam as it did on the higher stressed 

beam. Unlike shrinkage, creep is a load dependent property. When 

stresses are low, variations in creep strains have less effect on the 

deflections. As shown in Figure 3.18, the final difference between the 

standard beam and the beam with the higher creep strains was about 4%. 

The notable aspect of this variation was the fact that the beam with the 

higher creep strains had a lower deflection. This may seem contradic­

tory at first, but creep in a simply supported beam relieves some of the 

stresses in the tensile zone. This means that cracks initiate later and 

do not progress as far into the beam as when creep is less. Creep also 

tends to close up existing cracks. Figure 3.18 supports these conclu­

sions because it shows that the first crack initiated later than the 

crack in the standard beam. Also, the crack did not progress as far

into the beam.
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Finite Element Mesh Size

The effect of doubling the number of elements along the length 

of the lower stressed beam had a significant effect on the instantaneous 

results. Unlike the standard beam, this beam cracked during the appli­

cation of the load. For this reason the deflection shown in Figure 3.19 

was 50Z higher than the standard case. Earlier it was stated that 

Increasing the number of elements increases the displacements. This 

causes an increase in stresses, which speeds up the cracking process. 

With time, the standard beam also cracked and this brought the standard 

beam deflection more in line with the variable beam deflection, shown in 

Figure 3.20. At the end of 705 days, the difference in deflections was 

only about 2Z. The effect of cracking on the beam stiffness was 

obviously more important that the effect of increasing the number of 

elements. In a beam that does not crack however, the number of elements 

can make a significant difference. To eliminate the effect of this 

variable the number of elements should be as high as is economically 

feasible.

For the lower stressed beam, the number of elements through the 

height of the beam was also doubled. This particular variation had the 

greatest effect on the instantaneous results. The deflections are shown 

in Figure 3.21. The standard beam had a deflection which was 45Z less 

than the deflection of the larger mesh beam. The main reason for the 

difference was the fact that this beam cracked, whereas the standard 

beam did not. The deflection of this beam was also higher than the 

deflections of the other cracked beams, probably because the first crack
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progressed further Into this beam. Until cracking took place, the 

deflections of the standard and variable beams were similar. It seems 

likely that the variable beam cracked first because the centroids of the 

lowest elements in this beam were closer to the extreme tension fibre 

than the corresponding elements in the standard beam. Since the 

stresses in an element were calculated at the centroid, the variable 

mesh beam reached its cracking load first. It is also possible that the 

crack progressed further into this beam because the centroids of the 

elements above the crack were also closer to the crack tip. Stresses 

around a crack tip are high and this may have influenced the growth of 

the crack.

The long term deflections of this example are shown in Figure 

3.22. The standard beam cracked with time and at the end of the loading 

period the variable beam deflection was about 5Z higher than the 

deflection of the standard beam. Once again the effect of cracking 

overshadowed other effects. Since the crack in the standard beam never 

progressed as deep as for the finer mesh beam, the relative deflections 

for this case were not as close as for some of the other examples.

Summary

In this sensitivity study the effects of changing many of the 

finite element model input variables were examined. It is important to 

understand the effects of these changes because concrete itself is a 

highly variable material. The main conclusion which may be drawn from 

this study was that cracking had the greatest influence on the stiffness
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of the reinforced concrete beam. It tended to overshadow the effects of 

all other influences. Since the accuracy of the crack modelling 

technique could not be tested directly, its effect on the results is 

unknown.

For the beam stressed well beyond its cracking load there was no 

single variable that had more than an 8Z effect on the instantaneous 

deflections for a 20Z difference. When long term effects were varied by 

20Z, only creep and shrinkage strains had differences as large as 8%. 

In all cases the influence on deflection was not nearly as great as the 

variation of the parameter.

The beam loaded to around its cracking load was influenced 

mostly by variables which hastened or delayed the onset of cracking. 

When the beam was uncracked, the material and mesh size parameters had a 

much larger influence than for a cracked beam. When even a single crack 

was formed there was no other single parameter which changed the deflec­

tions by more than a few percent. The ratio of long term to short term 

deflections in the lower stressed beam was greatly affected by whether 

major cracking took place during loading or with time. Obviously the 

model is much more sensitive to variations when the stresses in the 

concrete are near failure.

One factor that has not been addressed yet is the fact that even 

when one parameter does not affect the results very much on it own, the 

combined effects of a few parameters can influence the results substan­

tially. Obviously the proposed finite element model will not duplicate
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experimental results exactly. There are far too many possible vari­

ations in the input parameters, and the prediction methods that were 

used can only approximate the correct results. However the preceding 

sensitivity study showed that small variations in the parameters did not 

usually have a significant effect on deflections. Therefore the model 

can be used with some confidence in this regard.

3.4 Evaluation of Model for Short Term Loads

The short term behaviour predicted by the proposed finite 

element model was evaluated by comparing its results with experimental 

data obtained from a number of different sources. It was important for 

the model to accurately predict the immediate deflection of concrete 

beams so that the emphasis of this study could be focussed on the long 

term effects. Not all of the information required for a complete finite 

element analysis was provided in the literature, and It was usually 

necessary to estimate some of the material properties. Experimentally 

observed crack patterns, concrete strains, and mid-span deflections from 

the literature were used to check all aspects of the accuracy of the 

finite element model. It should be noted that concrete is a highly 

variable material and an exact duplication between the finite element 

model and experimental data is never possible. In general however, the 

following examples will show that the model performed very well in most 

cases, and, considering the number of assumptions that were made, was 

able to simulate the short term behaviour of reinforced concrete beams.
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The short term test deflections reported in the literature did 

not include self-weight deflections. Since self weight influences 

cracking behaviour, the deflections from the finite element model were 

determined by subtracting self weight deflections from the total 

deflections. The results and conclusions from the Sensitivity section 

should be kept in mind when reviewing this chapter.

Beam 7/1

The first beam used to verify the accuracy of the analytical 

model was tested by Leonhardt and Walther (30) in 1962. They studied 

the moment-shear relationship of reinforced concrete beams. Since not 

all of the required Information was available, it was necessary to 

estimate those values using the empirical relationships reported in 

section 3.11. The compressive strength of the concrete in this test was 

specified as a cube strength. To convert this quantity to a comparable 

cylinder strength, an equation developed by L*Hermite and reported by 

Neville (38) was used.

The properties of Leonhardt and Walthers Beam 7/1 as well as the 

finite element discretization used is shown in Figure 3.23. The tensile 

strength of the concrete was estimated using Equation (3.2), and the 

concrete modulus of elasticity was estimated using Equation (3.1). The 

ultimate load of this beam was 13.5 kips, so the ratio of applied load 

to ultimate load was .433.
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BEAM 7/1

f'o = 4300 p sI 

ft=490 psI 

Ec-3727 ksl 
Es=28450 k s1

b=7.48 In

d=10.6 In

h=12.6 In

L=12 In.

As = 1.65 s 4. I n

FIGURE 3.23 DETAILS FOR BEAM 7/1
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The experimental load-deflection curve for Beam 7/1 is compared 

in Figure 3.24 with the finite element predictions. The correlation 

between the experimental and finite element results is almost unbeliev­

able considering the number of approximations which were made. At no 

time was there a variation of more than a few percent between the two 

curves. It was probably coincidence that the results were this good 

since experimental variability and the sensitivity of the model would be 

expected to create greater differences. However the excellent agreement 

between the experimental and finite element deflections Indicates that 

the model accurately simulated each stage of the loading and cracking 

process.

Beam OA-2

Testing the accuracy of a finite element model with one set of 

experimental data does not in itself prove the validity of the model. A 

model must demonstrate consistency in simulating correct behaviour. To 

achieve this goal the results from a beam tested by Bresler and 

Scordelis (10) were compared with the results from the finite element 

model. Bresler and Scordelis tested a number of different beams to 

determine their shear strength properties. The beam they designated as 

OA-2 was chosen for the verification. The authors reported crack 

patterns as well as midspan deflections for this beam, so a more 

detailed comparison between experimental and finite element results was 

possible.
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Pertinent information about the test beam and the finite element 

discretization are presented in Figure 3.25. The modulus of elasticity 

of the concrete was estimated using Equation (3.1). The ultimate load 

of this beam was 80 kips, and the ratio of applied to ultimate load was 

0.45.

The experimental and finite element generated deflections are 

presented in Figure 3.26. Loading for this beam was high enough to 

cause significant cracking. The correlation between the two deflection 

curves was again excellent* The difference between the finite element 

predictions and experimental results at 452 of the ultimate load was 

only about 82. The behaviour of the finite element curve was almost 

Identical to the behaviour of the experimental curve. This indicated 

that the loss of stiffness in the two beams took place at almost the 

same rate.

Since cracking Is the most significant factor contributing to 

the Instantaneous deflection of a reinforced concrete beam, it was vital 

that the finite element model simulate it correctly. Bresler and 

Scordelis supplied the crack pattern for Beam OA-2 and this Is compared 

in Figure 3.27 with the finite element solution. It is Important to 

remember that since cracking is influenced by many different factors, it 

is unrealistic to expect the model to duplicate the experimental results 

exactly. Rather, it is the general behaviour which is important. 

Although the crack patterns in Figure 3.27 were not identical, there 

were many similarities. A common feature of both beams was the tendency 

for some of the cracks to form at the level of the reinforcement rather
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h
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f1c-3440 p s i 
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Ec—3465 ksl

b=12-0 in

d=18.0 In

As = 5.0 s q • I n •

Es=31600 ksl h=21.75 In

FIGURE 3.25 DETAILS FOR BEAM OA-2
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•BEAM OA-2

FIGURE 3.27 EXPERIMENTAL AND FINITE ELEMENT
CRACK PATTERNS FOR BEAM OA-2
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than at the extreme tension fibre. This common feature gave a good 

indication that the steel-concrete interaction was realistically 

simulated by the finite element model. The crack spacings were also 

similar. The major difference between the beams was the fact that more 

cracks were observed in the experimental beam than were predicted by the 

model. They were also initiated at lower loads and progressed further 

into the beam. This may have been due to the size of the elements, a 

lower tensile strength, or a slightly different stress distribution. 

The difference in cracking was reflected to some degree in the deflec­

tions, since the experimental deflections were always slightly greater 

than the finite element ones. However the effect was not very large and 

it decreased as the load increased.

Beam DR10

In the course of an investigation into steel fibre concrete, 

Swamy and Al-Ta'an (51) reported on the deflection characteristics of a 

simply supported beam with tension and compression steel. Beam DR10 was 

selected for the comparison with the finite element model. This beam 

was made from normal concrete without steel fibres and most of its 

material properties were reported. The details for this test are 

presented in Figure 3.28. The ratio of applied load to ultimate load 

was about 0.47 in this comparison. Since the cube test was used to 

define the concrete compressive strength, L’Hermite’s equation was used 

to find a comparable cylinder strength.
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BEAM DR 10

f'c-4371 p »1 

f t = 505 p sI 

Ec-4079 ksl

b —5 -12 In

d=6.93 In

d'=1.14 In

L-98.42 In-

As-.351 s q . I n .
A's-.243 s q - In <

Es=29000 ksl h=8- 0 In

FIGURE 3.28 DETAILS FOR BEAM DR10
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The load-deflection curves comparing the experimental results 

with the analytical results are shown in Figure 3.29; The correlation 

between the two curves is reasonable, but not as good as for the 

previous examples. This was the case even though more material proper­

ties were given. The apparent anomaly is not remarkable in itself 

because the standard tests which were used to dermine the material 

properties do not exactly represent the conditions that actually exist 

in beams. In addition, the significant effect of normal experimental 

variability must also be recognized. It is evident from Figure 3.29 

that the model predicted a stiffer beam than was actually observed. The 

largest difference between the two curves occurred towards the lower end 

of the load-deflection diagram where the modulus of elasticity and the 

tensile strength are important parameters. After about 40% of the load 

had been applied, the slopes of the two curves became very similar. The 

percentage variation between the finite element and experimental curves 

decreased considerably after the cracking load was exceeded. This is 

the same behaviour observed during the Sensitivity Study. The final 

difference between the finite element generated curve and the 

experimental curve was about 25%.

Experimental variability seems to be the most likely reason for 

the finite element model predicting a stiffer beam than was observed 

experimentally. The evidence for this conclusion comes from further 

data in Swamy and Al-Ta'an’s test (51). They tested another beam which 

was almost identical in every way to Beam DR10 except for the strength 

of the tension steel. In the lower region of the load-deflection curve 

this other beam should have had nearly the same deflections as Beam
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DR10. Any differences would be mainly caused by experimental vari­

ability. In fact, this beam had deflections which were almost identical 

to the finite element model predictions. This strongly suggests that 

the variation between the finite element predictions and the experi­

mental results from Beam DR10 fell within the bounds of experimental 

variability. No model can do better than this.

Beam E3A1

Rodriguez, Bianchini, Viest, and Kesler (44) tested fifty two 

two-span continuous beams to determine various shear strength proper­

ties. One of their test beams, Beam E3A1, was chosen for the compari­

son. This was the first beam that tested the accuracy of the finite 

element model in simulating the behaviour of a reinforced concrete beam 

with positive and negative moments. All material properties except for 

the concrete modulus of elasticity were provided by the authors. 

Equation (3.1) was used to determine this value. The Information that 

was used in this analysis is presented in Figure 3*30. An applied load 

to ultimate load ratio of 0.4 was employed in this example to represent 

the service load condition.

The deflection results from the comparison between the experi­

mental data and the finite element solution Is presented in Figure 3.31. 

For most of the diagram these results were almost as good as for the 

Leonhardt and Walther beam. The only appreciable difference between the 

two curves was observed during the latter loading stages. Normally the



161

BEAM E3A1

*------b------- *

d’l

h

A' 5
d

As
• •

f’c=3500 p s1 

f1=503 p sI 

Ec=3230 ks!
Es=29500 ksl

b = 6.0 In 

d=12-25 in 

d’=2.5 In 
h=14.0 In

L=88-95 In-

As= 1 - 2 s q • I n •
A' s = 1 •2 s q • I n •

FIGURE 3.30 DETAILS FOR BEAM E3A1
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experimental and finite element curves converged when the load was 

increased, but for Beam E3A1 the opposite was true. The final differ­

ence between the finite element deflections and the experimental deflec­

tions were about 24Z. This value was not representative of the entire 

curve however. Extensive cracking took place in both the top and the 

bottom of the beam and the good results indicate that the model was very 

successful in handling the effects of the changing moment directions.

Beam E5A

The second continuous beam compared with the finite element 

model was tested by Bryant, Bianchini, Rodriguez, and Kesler (11). They 

were interested in the shear strength of two-span continuous beams with 

multiple point loading. Beam E5A had five equal point loads in each 

span. The beam and material properties reported for this beam are 

presented in Figure 3.32. The applied load to ultimate load ratio used 

in the analysis was 0.38.

The finite element and experimental load-deflection profiles for 

Beam E5A are shown in Figure 3.33. The correlation between the two 

curves was reasonably good, and at the end of loading the difference 

between them was about 17%. At low load levels the model predicted a 

stiffer beam than was observed experimentally, but as cracking took 

place the two curves began to converge. As mentioned in the Sensitivity 

Section this behaviour may take place when the modulus of elasticity or 

the tensile strength are overestimated.
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FIGURE 3.32 DETAILS FOR BEAM E5A
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Beam A,B,C,D

The deflection results from the experimental beams presented in 

Chapter 2 were also used to validate the finite element model* The 

first beams that were compared with the instantaneous results from the 

model were Beams A,B,C and D. Beam A and Beam B were full size, simply 

supported members which had both tension and compression steel* Beams C 

and D were full size, simply supported continuous members. Complete 

details about these beams were presented earlier and will not be 

repeated here* Relevant information needed for the finite element 

simulations are shown in Figures 3*34 through 3.37* The tensile 

strength and the modulus of elasticity of the steel were determined from 

the relationships in Section 3.11. For Beam A and Beam B the modulus of 

elasticity of the concrete was also calculated as in Section 3.11.

The load-deflection results comparing the finite element model 

deflections with the experimental deflections are shown in Table 3*1* A 

short explanation is provided here about why the full curves were not 

presented. The load-deflection curves for Beam A and Beam B were not 

used because both beams were loaded twice* When the beams were first 

loaded there was a problem with the equipment and the load had to be 

released. On reloading, the resulting load-deflection curves repre­

sented an already partially cracked beam and were not really comparable 

with the curves generated by the model. When loading Beam C and Beam D 

the load was applied in stages so that the final loads at the ends of 

the beams were reached before the final loads in the interior span* The 

load application in the finite element simulation was arranged so that
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BEAM A
1338.0 1338.0

f’c = 3650 p oI 

ft=330 p s1

E c — 3 3 55 k s1

b = 6-0 In As=1.2 sq.ln.

d = 9.0 In A's=.1O sq-ln

d’=2-5 In

Es=29000 ks! h=11.5 in

.MIX 1 .0i3.33i2.17 w/c=.65 R-H.=.5O

FIGURE 3.34 DETAILS FOR BEAM A
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BEAM B

I----b----- *

f’c=3650 p 3i
f t=330 p s1 

Ec=3355 k sI 

Es=29000 ksl

MIX 1.0:3.3312.17
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d = 11.5 In 
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h=14.0 In 

w/c-•65

As-- 62 sq.In-

A's= - 1 0 $ q • 1 n •

R.H-=.50

FIGURE 3.35 DETAILS FOR BEAM B
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Es=29000 ksI h=11.5 in

MIX 1.0*3.33>2.17 w/c=.65 R.H.=.50

FIGURE 3.36 DETAILS FOR BEAM C
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BEAM D
1800.0 1800.02700.0

Q

i----b----- 1

f1c=3336 p s1

ft-433 psI 

Ec-3607 ksl 
Es=29000 ksl

MIX 1.053.33s2.17

b-6 - 0 In

d = 11.5 In

d'=2.5 in
h=14-0 In

w/c=.65

L=144 In.

As-•40 sq*In.

A's =.62 s q.In*

R.H*=*50

FIGURE 3.37 DETAILS FOR BEAM D
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the final loads were reached simultaneously. Thus only the final

conditions were comparable.

Generally the results presented in Table 3.1 were very good and 

the only appreciable difference between the experimental and analytical 

results was observed for Beam A. The variation from the experimental 

deflections was 58% for Beam A, 15% for Beam B, 15% for Beam C, and 12% 

for Beam D. It was mentioned in Chapter 2 that there were some problems 

with the loading for Beams A and B so the significance of the variation 

in the Beam A results is difficult to assess.

The deflection results of Beam D also need further explanation. 

No cracks were predicted by the model, yet cracks were observed experi­

mentally. When a stress analysis was performed it became obvious that 

the model should have predicted cracking. The reason cracks were not 

predicted by the model was explained in the Sensitivity Study of Section 

3.3, and had to do with the natural underestimation which is inherent 

with finite element models. The finite element deflections were still 

reasonably close to the experimental ones because cracking had only 

begun experimentally. The good results that were obtained for Beam B 

and Beam D were encouraging because they showed that the model was 

capable of accurately simulating the behaviour of lightly cracked beams. 

Most of the other beams in this verification section were highly

cracked.
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BEAM EXPERIMENT FINITE ELEMENT

DEFLECTION DEFLECTION

(in.) (in.)

A .220 .349

B .166 .141

C .199 .229

D .067 .059

TABLE 3.1 Short Term Deflection Results for Series 1 and Series 2

Beams From Experimental Program
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Beam E

Beam E was one of the continuous beams reported In Chapter 2, 

and the results from this beam were used to validate the model. Beam E 

was identical in every way to Beam C except for the age at which it was 

loaded. The information which was used to generate the finite element 

results is presented in Figure 3.38.

The deflection results from the experiment and the finite 

element model are shown in Figure 3*39. The finite element curve 

followed the experimental curve very closely until about 70% of the 

total load. After this point the curves diverged slightly.

Beam F

The last beam from the experimental section. Beam F, was the 

final beam used in the short term verification. This beam was identical 

to Beam D except for the age of loading. Pertinent information needed 

for running the finite element program is provided in Figure 3.40.

The behaviour of Beam F was very similar to Beam D except that 

the results were not quite as good. The finite element model again did 

not predict cracking even though cracking was observed experimentally. 

In the uncracked region of the load-deflection curve, the finite element 

and experimental curves were very nearly the same. When cracking 

started experimentally, the curves began to diverge. The difference
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between the experimental and finite element deflections at the end of

the loading was about 28%.

To get some idea about what accuracy could have been achieved if 

the effect of the finite element mesh size was removed, the tensile 

strength for Beam F was reduced by 50%. This change was implemented to 

ensure that extensive cracking would be produced in the finite element 

beam. Reducing the tensile strength by 50% should have had a meh 

larger counterbalancing effect on the deflections than were initially 

caused by the mesh size considerations. The two finite element curves 

should have provided an upper and lower bound on the experimental curve. 

The results in Figure 3.41 show that this was precisely what happened. 

Therefore, if the mesh size had been reduced enough to allow for crack 

initiation, the variation between experimental and analytical deflec­

tions would have been much less. The results also showed that reducing 

the tensile strength may be a practical way to reduce the number of 

elements in the analysis while retaining realistic crack initiations.

Summary

The short term behaviour of 11 reinforced concrete beams were 

compared in this section with results generated by the finite element 

model. The finite element deflections for five of the beams were within 

15% of the experimental ones, and nine were within 25%. Considering the 

fact that normal experimental variability often varies within this 

range, it seems safe to say that the model simulated the Instantaneous 

behaviour of simply supported and continuous beams very well. The beams
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that were used in the comparison represented many different conditions 

and the model was reasonably successful in modelling all of them. The 

effect of cracking was successfully represented, as evidenced by the 

good agreement observed between the experimental and finite element 

load-deflection curves. The model was not exact in its predictions but 

exact predictions were never expected. Experimental variability in 

reinforced concrete and the complex interaction between its constituent 

parts precluded the possibility of an exact duplication between 

experimental and finite element results.

The question of experimental variability In reinforced concrete 

beam deflections is an important one. It is impossible to assess the 

accuracy of a finite element model without knowing something about the 

natural variability of the material. A brief examination of pertinent 

literature (6) showed that there can be significant variations in the 

tested deflections of identical beams. Of twenty six pairs of compar­

able beam deflections from this literature, about 50% of the pairs had 

variations in deflections less than 10%, and 90% of the pairs had vari­

ations less than 20%. This would indicate that 20% variability in 

laboratory tested beam deflections would not be uncommon. However vari­

ations much larger than this are still quite possible. This range of 

variability was also reported by Branson (8). Since most of the results 

in this section were very close to the 20% range, it seems safe to say 

that the proposed model was successful in simulating short term 

deflections.
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3.5 Evaluation of Model for Long Term Loads

It was with particular interest that the proposed finite element 

model was evaluated for long term behaviour because this was the whole 

point of its development. Experimental results from a number of differ­

ent sources were collected to test the accuracy of the finite element 

model. Although several references with experimental data were avail­

able, most did not provide information on the concrete creep and shrink­

age characteristics. Fortunately there were a few references which gave 

either the creep and shrinkage strains, or sufficient concrete mix 

details for the use of prediction equations.

The results in this section generally combined the short term 

behaviour with the long term behaviour, but the long term behaviour 

alone was also examined. Since there seems to be more factors at work 

in the behaviour and testing of reinforced concrete beams over the long 

term, it seems reasonable that there should be a higher relative experi­

mental variability associated with these deflections than there would be 

with short term deflections. The performance of the model must be 

judged accordingly. In this section the deflections, strain profiles, 

and crack patterns, from the reported experiments are compared with the 

results generated by the finite element model.

Beam Cl

In 1966 Corley and Sozen (17) reported on the results of a two 

year study Into the deflections of three reinforced concrete beams.
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These beams were smaller than beams in service usually are, and it is 

possible that this may have influenced the results to some degree. 

However it was hoped that these small scale effects would be minimal. 

Beam Cl was the first of these beams which was compared with the results 

from the finite element model. Since the midspan deflections, crack 

patterns, and strain profiles were provided by the authors, an extensive 

comparison between the experimental and finite element results was 

possible. The relevant information used to generate the finite element 

results is presented in Figure 3.42. The tensile strength, concrete 

modulus of elasticity, and steel modulus of elasticity were estimated 

using the relationships presented in Section 3.11. Time dependent 

strains due to creep and shrinkage were calculated using Bazant and 

Panula’s prediction method. Two values needed for this method, namely 

the concrete density and the cement content, were not reported by the 

authors. The density was estimated using an average value for concrete 

with a 3/8" maximum aggregate size. The cement content was approximated 

by proportioning the density according to the mix proportions.

The load-deflection profiles observed both experimentally and 

from the finite element model are shown in Figure 3.43. The correlation 

between these two curves was reasonable for total as well as long term 

deflections. The total difference between the deflections at the end of 

the 705 day loading period was about 23%. For the long term deflections 

alone, the difference was around 20%.

The crack pattern in the flexure span of Beam Cl was provided by

Corley and Sozen and this was compared in Figure 3.44 with the finite
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element solution. Since cracking is such a highly variable phenomenon 

the importance of this comparison was not in exactly reproducing the 

experimental crack pattern, but rather in properly reflecting the 

general cracking behaviour. An examination of this figure showed that 

the experimental crack spacing was a little smaller than that predicted 

by the model. This difference may have arisen because the model 

predicted no additional cracking after the load was applied, whereas one 

or two additional cracks were observed experimentally.

Small scale effects may also have been responsible for the 

smaller crack spacing in the experimental beam. The constitutive bond 

law used in the model was based on results obtained with # 8 bars, while 

Beam Cl contained # 3 bars. When testing the bond properties of # 4 

bars, Mirza and Houde (35) determined that such small bars exhibited 

lower bond slip than did the larger bars. This would reduce the amount 

of bond deterioration and allow cracks to form closer together. Since 

the model did not include this characteristic it was not surprising that 

the crack spacings were somewhat different. Aside from the difference 

in spacings, the model predicted the height and orientation of the 

cracks quite well.

The experimental strain profile for this beam was also supplied 

by Corley and Sozen, and a comparison between these results and the 

finite element predictions is shown in Figure 3.45. The values plotted 

for the finite element strains are shown at the centroids of the 

elements. It is apparent from this figure that the correlation between 

the analytical and experimental short term strains was very good. Both 

strain profiles were linear and the curvatures were almost exactly the
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same. The correlation for the long term strains was also very good. 

The long term strains were slightly overestimated, but the slope of the 

strain profiles, and thus the curvatures, were almost identical.

A note may be necessary here to explain why the deflection 

predictions were not as accurate as the strain predictions. With plane 

stress elements the strain is constant throughout each element. There­

fore the strain changes at discrete intervals through the depth of the 

modelled beam. This Is not the way strain is distributed in a real 

beam. In a real beam the strain changes continuously through the depth. 

The correspondence between strain distribution or curvature, and deflec­

tions, is therefore not as strong in the modelled beam as might be 

expected. This however does not take away from the importance of the 

model accurately predicting strains.

Beam C3

A second beam tested by Corley and Sozen, Beam C3, was used to 

check the consistency of the finite element model. Beam C3 was tested 

at the same time and under the same conditions as Beam Cl. The only 

difference between them was their cross-sectional dimensions. The 

stresses in Beam C3 were much higher than the corresponding stresses in 

Beam Cl, but it was assumed in the analysis that linear behaviour was 

still predominant. The conditions and properties reported for this beam 

are shown in Figure 3.46.
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The experimental and finite element model deflections for Beam 

C3 are presented in Figure 3.47. These results were much better than 

the results for Beam Cl. The variation in the deflection profiles for 

Beam C3 was about 17% for the total deflections, and less than 9% for 

the long term deflections. Reasons for the difference between the 

experimental and analytical results were discussed for Beam Cl. Experi­

mental variability is the most likely explanation for the improvement 

between the results for Beam C3 and the results from Beam Cl. Another 

possibility for the improvement is the inelastic behaviour that was not 

predicted by the model. The effect of Inelastic behaviour is an 

increase in short term strains and deflections, and a decrease In 

stresses. Inclusion of this behaviour would improve the short term and 

total deflection predictions, but since the creep law is stress 

dependent, it might slightly worsen the predictions of the long term 

deflections. In either case the results would still be excellent.

The crack patterns observed experimentally and from the finite 

element model are shown in Figure 3.44. The crack spacings obtained 

from the model were again somewhat larger than the experimental crack 

spacings. The most likely reasons for these differences are the same as 

for Beam Cl.

The strain diagram comparing the results from the finite element 

model with the results from the experiment is shown In Figure 3.48. The 

short term strains in the flexure span predicted by the model were very 

close to the experimental values. In fact the strain predictions at

centre span were much better than the deflection predictions. The
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FIGURE 3.48 SHORT TERM AND LONG TERM STRAIN
PROFILES FOR BEAM C3
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predicted long term strain profile was not quite as close to the experi­

mental values as the short term results were but they were still reason­

ably similar* There are a few possible reasons for this difference. 

One reason may be the effect of the inelastic behaviour described 

earlier. Since the model used a linear approximation for the stress­

strain diagram, it would tend to overestimate the stresses. It would 

also underestimate short term strains, and because of the higher 

stresses, overestimate creep strains. This is precisely the behaviour 

which appears in the long term strain profile, but not exactly what was 

seen in the short term strain profile. Experimental variability may 

have disguised the short term effect. Another possibility is that 

normal experimental variability alone may have been the major contri­

buting factor in the difference between the long term experimental and 

analytical strains.

Beam C4

Corley and Sozen also supplied the results for a third beam. 

This beam, designated C4, was identical to Beam C3 except for the amount 

of tension steel it contained. Figure 3.49 provides the necessary 

information for the finite element model.

The predicted and observed deflection curves for Beam C4 are 

shown in Figure 3.50. Like Beam C3, the concrete stresses in Beam C4 

were outside the service load range, and this undoubtedly had some 

effect on the results. The total and long term correlation between the
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experimental and analytical curves was again reasonably good, and well 

within the normal variability limits associated with deflections in 

reinforced concrete beams• The total variation between the curves at 

the end of the 705 day loading period was about 17%, while the 

difference in the long term deflection alone was about 12%.

The experimental and finite element model crack patterns, shown 

in Figure 3.51, displayed the same general behaviour as observed for 

Beam C3. The model again predicted fewer cracks in the flexure span 

than were detected experimentally, but this was probably caused by the 

small scale effects mentioned earlier. The finite element mesh size was 

also not fine enough to allow cracks to form as close together as was 

observed experimentally. The heights of the cracks predicted by the 

model were somewhat higher than those observed in the experiment• A 

contributing factor in this discrepancy may have been the fact that the 

state of stress in the finite element beam was not exactly the same as 

in the experimental beam because the service load range was exceeded, 

and the model used constant stress elements. Another possibility is the 

accuracy with which Equation (3.2) estimated the tensile strength. 

Despite the differences the predicted crack pattern was still 

realistic.

The short and long term strain diagrams for Beam C4 are 

presented in Figure 3.52. The model predicted short term strains that 

were almost identical to the experimental values. The long term strains 

were also very similar, and in both cases the curvatures were almost
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EXPERIMENTAL

FIGURE 3.51 EXPERIMENTAL AND FINITE ELEMENT
CRACK PATTERN FOR BEAM C4
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FIGURE 3.52 SHORT TERM AND LONG TERM STRAIN
PROFILES FOR BEAM C4
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identical. Considering the approximations that were made the results 

were excellent.

The deflection results for all three Corley and Sozen beams were 

remarkably consistent. The short term deflections were all under­

estimated by the model, but the strain profiles and long term deflec­

tions were predicted very accurately. The fact that the short term 

deflections were not predicted as accurately as the short term strains 

was surprising, but this may have been due to the discrete strain 

changes from element to element that occurred in the model. Cracking 

away from midspan may also have been a factor.

Beam Ghall et al.

Ghall, Dllger, and Neville (21) measured the long term deflec­

tion of a reinforced concrete beam during an investigation into the time 

dependent settlement of beam supports. Although this beam was loaded 

for less than a year, it was still useful in providing a check on the 

accuracy of the model. The compression and tension steel contents of 

this beam were identical, and this significantly limited the effect of 

shrinkage. The information provided by the authors and estimated from 

empirical relationships are presented in Figure 3.53. The tensile 

strength, concrete modulus of elasticity, and steel modulus of elast­

icity were all calculated using the recommendations of Section 3.11. 

The relative humidity during the course of the test varied between 50% 

and 65%, so an average value of 58% was used in the analysis. The
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density of the concrete and the cement content were estimated in the

same way as for Beam Cl.

The deflections reported for this beam were plotted in Figure 

3.54 with the finite element predictions. The model accurately predic­

ted the instantaneous deflection but underestimated the long term 

deflection. At the end of the 240 day loading period the variation 

between the experimental and finite element deflections was only about 

12%. The long term variation alone was about 28Z. The discrepancy in 

the long term deflections for this beam were larger than the previous 

examples and this fact may raise some questions about either the experi­

ment or the model. Either the load on the beam actually increased with 

time, or the long term strains were significantly underestimated. This 

case highlights the difficulty in determing whether differences between 

the model and test data were caused by experimental error, experimental 

variability, inexact material properties, or problems with the model. 

Since good results were obtained for many of the other comparisons the 

problem was probably not with the model.

Beam A

Information about Beams A, B, E and F were provided earlier in 

Chapter 2 and Section 3.41, and most will not be repeated in this 

section. Briefly, Beam A was a full size, simply supported beam, with 

tension steel and nominal compression steel. The finite element 

discretization and the material properties from Beam A were presented in 

Figure 3.34. Since experimental creep and shrinkage strains were
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available it was not necessary to use Bazant and Panula’s prediction 

equations. The experimental creep and shrinkage curves reported in 

Chapter 2 were reduced to usable mathematical equations by assuming that 

they followed a hyperbolic function similar to that of Meyers et al. 

(33).

At the end of the loading period, the applied load on Beam A had 

evidently dropped by about 22%. This decrease was approximated in the 

finite element representation with a simple logarthmic function where 

the load dropped with the log of time. Since the applied load varied 

with time the long term deflections were actually a combination of 

instantaneous and time dependent effects.

The long term deflection results for 'Beam A are shown in Figure 

3.55. It is apparent from this figure that although the experimental 

and finite element short term deflections were not very close to each 

other, the total deflections were. The difference between the curves at 

the end of the loading period was less than 2% whereas the difference at 

the beginning was about 582. The two curves converged in the first few 

days of loading, so delayed cracking in the experimental beam may have 

been the cause of the Initial difference. If it was, it points out a 

weakness in using the ratio of long term to short term deflections as a 

prediction criterion. Even though the difference in initial deflections 

was significant, the actual difference in the long term deflections of 

the experimental and finite element beams was only about 172.
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The Beam A crack patterns from the experiment and the finite 

element model are shown in Figure 3.56. It can be seen that the heights 

of the cracks for both beams were practically the same, and the average 

crack spacings were very similar. However, the model prediction of 

crack branching near the reinforcement was not observed experimentally, 

and the experimental cracking near the support was not seen in the 

model. Some similarities and some differences in crack patterns must be 

expected, but the degree of cracking in the tension zones were 

reasonably similar.

Beam B

Beam B was a simply supported beam with tension reinforcement 

and nominal compression reinforcement. It was subjected to the same 

external loads as was Beam A. The tension steel ratio of Beam B was 

lower than Beam A and the section depth was greater, but all other 

details were the same. The material properties, load reductions, and 

finite element discretization were also the same for Beam B as they were 

for Beam A. Further details about this beam can be found in Chapter 2, 

Section 3*41, and Figure 3.35.

The time-deflection curves for Beam B comparing experimental and 

finite element results can be found in Figure 3.57. From this figure it 

can be seen that the model underestimated the short term and long term 

deflections. The model underestimated the total deflections by about 

32% and the long term deflections by about 41%. The probable reason for 

the underestimation of deflections may be answered by looking at the
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crack patterns contained in Figure 3.56. Although the crack heights 

were predicted well by the model, the degree of cracking was not. Eight 

cracks were observed experimentally and only two were predicted by the 

model. It was shown in the Sensitivity Section, and will be shown again 

in the Beam F comparison, that the amount of cracking may have a signif­

icant effect on both short and long term deflections. This is 

especially true when cracking is not very extensive. The root of the 

problem may have been the fact that finite element models underestimate 

displacements, stresses, and strains. When the stresses in the 

uncracked region of the finite element beam were examined it was 

observed that in many places they were almost as large as the tensile 

strength. In a more accurate formulation these elements would have 

cracked and the resulting deflections generated by the model may have 

been much closer to the experimental ones. Increasing the number of 

elements may have improved the results. This problem was discussed in 

the section on sensitivity.

Beam E

The results for Beam E, a 24 foot continuous beam, were reported 

in Chapter 2, and these results were used to verify the accuracy of the 

model. Information on the loading, material properties, dimensions, and 

finite element discretization were given in Chapter 2, Section 3.41, and 

Figure 3.38, and will not be repeated here. Loads on the beam were 

nearly constant throughout the loading period and no modifications to 

them were deemed necessary.
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The experimental and finite element generated midspan long term 

deflection curves for Beam E are shown in Figure 3.58. For this beam 

there was excellent agreement between the total deflections from the 

finite element model and the test beam. At the end of the test the 

variation between them was only 3%. The variation in the long term 

deflections alone was also very good and was less than 16%. Cracking in 

this beam was extensive and if the deflection results are taken as an 

indicator, the model seemed capable of accurately simulating both 

cracking and the effect of changing moment directions.

The crack patterns from the experimental beam and the finite 

element beam are shown in Figure 3.59. It is shown in this figure that 

more cracks were observed in the test beam than were predicted by the 

model, especially in the negative moment region over the support. The 

model predicted one crack in this area while nine cracks were detected 

experimentally. In the middle of the beam the model predicted three 

cracks instead of the six observed in the test beam. Despite having 

fewer cracks, the model predicted a larger deflection, which might seem 

to be contradictory. However the number of cracks in a beam do not 

always relate to its stiffness. Crack heights, orientations, locations, 

as well as other factors, also have a bearing on the stiffness and thus 

the deflection of a beam. There were many similarities between the 

experimental and analytical crack patterns. The height of the first 

midspan crack nearest the support was almost the same in both beams, and 

in both cases this was the largest crack. The other cracks near the 

midspans were also very similar in heights and orientations. Therefore 

the predicted loss of stiffness due to cracking in the midspan of the
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finite element beam may have been very similar to the test beam, even

though there were fewer cracks.

Beam F

Beam F was tested in the same apparatus as Beam E, and had the 

same external loads and material properties. The details needed for the 

finite element analysis were reported earlier in Section 3.41 and Figure 

3.39. The midspan deflections for Beam F are presented in Figure 3.60. 

It is obvious from this figure that the finite element model signifi­

cantly underestimated the long term deflections. As mentioned in 

Section 3.41, the model did not predict any cracks in this beam even 

though theoretically it should have. It didn't predict cracking because 

of the underestimation that is inherent in the finite element method. 

To test the effect that cracking would have had on the long term deflec­

tion of this beam the tensile strength in the model was reduced by 50% • 

Loading was stopped after a period of about a hundred days because of 

the cost of the analysis. The resulting deflections are also shown in 

Figure 3.60. This time the finite, element model overestimated the 

deflections. Since the true conditions were really somewhere between 

the two cases it seems apparent that the model prediction would have 

been much better had the accuracy of the solution been improved by 

increasing the number of elements.
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Summary

In this section the experimental results from eight reinforced 

concrete beams were compared with results generated by the finite 

element model* Of the eight, five beams had experimental long term 

deflections that were within 20Z of the finite element model predic­

tions* This was also the case for the total deflections, where five of 

the eight finite element simulations were within 20% of the experimental 

deflections.

Branson (8) reported that the coefficient of variation for long 

term deflections was 15 to 20 percent or even higher* The model must 

therefore be considered successful in modelling long term behaviour 

because this is the approximate range of the finite element results. 

Beyond natural variability however, the model Is also subject to the 

sensitivity of the material and mesh parameters. Also, the model was 

based on a number of simplifications that were necessary to convert 

concrete behaviour to a mathematical model* These factors would 

obviously have some effect on the results, but the relatively good 

agreement observed indicates that their importance was not usually very 

significant.

Where differences did occur between the test data and the finite 

element results, the model generally underestimated the deflections. 

This fact is not really surprising because the finite element method 

theoretically provides a lower bound solution anyway. Judging by the 

deflections and strain profiles, the creep and shrinkage prediction
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methods that were used with four of the beams also performed adequately. 

Cracking also seemed to have beem simulated well. Experimental crack 

patterns were supplied for most of the beams and when these were 

compared with the finite element model solutions, the same general 

behaviour was usually observed. Usually the model did not predict as 

many cracks as were observed experimentally, but the loss of stiffness 

due to cracking seemed well represented. The model predicted strain 

profiles and curvatures even more accurately than it did deflections, so 

it can be said that the model was correctly simulating most aspects of 

beam behaviour. Both simply supported and continuous beams were 

examined in this comparison, and except for Beam F, the results were all 

reasonably consistent. Based on the results from this section, the 

finite element model which was described earlier in Chapter 3 has proven 

to be a reasonable method of simulating long term deflections in

reinforced concrete beams.



CHAPTER 4

PARAMETRIC STUDY

4*1 Introduction

The major reason for the development of the finite element model 

presented in Chapter 3 was to use it to investigate the effect of 

various parameters on long term deflections, and to suggest possible 

improvements to current Building Code prediction methods. The Factorial 

Design Method was used to set up and analyze a parametric study designed 

to accomplish this goal. The deflection data needed for the parametric 

study was generated with the finite element model. A full parametric 

study using real life concrete beams would obviously have been prefer­

able to one using the analytical model, but since this was not possible 

the analytical model provided the best alternative. ~ The Factorial 

Design Method that was used in the parametric study is a well known, 

statistical, systematic, step-by-step approach, which identifies the 

influence and interaction of various independent variables on a depen­

dent variable. In this case, the dependent variable was the long term- 

to-short term deflection ratio. If it is assumed that the finite 

element model gave good results, and the major parameters were properly 

identified, the relationship derived in this chapter with the Factorial 

Design Method should be realistic and accurate.

- 215 -
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The maj or drawback of using an analytical model to derive an 

empirical relationship is that it cannot provide any measure of experi­

mental variability. In reinforced concrete this is an important consid­

eration. The range of ± 20% on experimental deflections reported by 

Branson (8), and the sensitivity results from Section 3.3, must be kept 

in mind while reviewing the results from this chapter.

From the beginning it mst be stated that it was never the 

object of this study to provide an in depth statistical analysis of all 

aspects of the design of a deflection experiment nor was it intended to 

use all of the capabilities of Factorial Designs. Instead, this study 

was centered on the development of a simple yet realistic approximation 

of the effect of long term loading on deflections using some statistical 

techniques. For this reason the number of variables was kept to a 

minimum, and no real "screening” was done with the variables. A 

description of the theory and application of Factorial Design will not 

be included here, but an excellent treatment of this subject can be 

found in the text by Box and Hunter (7).

4.2 Design of Experiment

The first stage in the parametric study was the identification 

of the influencing variables. These variables had to meet one main 

requirement. All of the variables had to be readily available to 

designers. A design equation containing variables which are not gener­

ally available to designers would not be useful. This requirement 

considerably limited the number of usable parameters.
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In the Canadian Code (12), long term deflections were considered 

to be a function of the tension and compression steel areas and are now 

only a function of compression steel. However in this study, five 

parameters were chosen for study because it was felt that one or two 

parameters were not sufficient for a truly accurate relationship. The-- 

five parameters chosen for study included the tension steel ratio, the 

compression steel ratio, the span-to-depth ratio, the applied moment to 

ultimate moment ratio, and the concrete compressive strength. All of 

these values except for the concrete compressive strength have been 

identified in earlier studies (8)(9)(23)(54) as being important factors 

for long term deflections. The compressive strength was included in the 

parametric study because it was felt that this value might reflect the 

influence of the concrete mix parameters. Designers do not usually know 

much about the concrete mix, and the compressive strength is an 

available material value which, might show its effect.

The ranges over which the identified parameters were assumed to 

act were fixed at the beginning of the parametric study. In a detailed 

experimental program this simplification would normally not be recom­

mended because it might limit the flexibility of the analysis. However, 

since the variables for reinforced concrete beams have very definite 

ranges it was felt that this simplification would not adversely affect 

the analysis.

At the beginning of the design there was no real indication 

whether the effects of the parameters would be linear or nonlinear. 

This factor usually determines whether a two level Factorial Design is
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used or whether a three level design is necessary. The two level design 

is used when the effect of the parameters is known to be linear, and the 

three level design is used whenever nonlinearities are present. Since 

the two level design is more economical to perform than the three level 

design, it is preferable to use it whenever possible. There is also a 

third alternative called a Star Design. This approach combines the 

economy of the two level design with the capabilities of the three level 

design. The Star Design is especially suited for studies where it is 

not clear at the beginning whether nonlinearities exist or not. When 

this alternative is used a normal two level design is performed, and the 

resulting relationship is checked for any nonlinearities. If nonlinear­

ities are detected the nonlinear effects can be quantified by performing 

additional experiments on values outside the two level design limits. 

This means that care must be taken when choosing the ranges of the para­

meters during the initial two level design, since the expanded limits of 

the Star Design also need to represent realistic values.

It Is possible to further increase the economy of a Factorial 

Design by using "Fractional Factorials". In this application a major 

variable Is deliberately "confounded" or confused with one or more of 

the interaction effects. If they are confounded, the effect of an 

interaction term and the effect of a major variable will be indisting­

uishable from each other. However if the interaction effect is known to 

be very small, the effect of the major variable may be easily observed. 

For its economic benefits, Fractional Factorials were used in this para­

metric study and the compressive strength was confounded with the four 

factor interaction term. Four factor interaction terms are rarely
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important so the results should not be adversely affected by this 

action.

The high and low levels of the five major variables examined in 

the initial two level design are listed below.

f’c (psi): 3235 - 4560

Variable Range

p: .72 - 1.78

p’: .29 - 1.71

Mapp/Mult: .24 - .46

£/d: 17 - 28

Where p * tension steel ratio

p' 3 compression steel ratio

Mapp 3 applied moment 

Mult 3 ultimate moment 

£ 3 length of beam

d 3 depth of beam 

f’c 3 compressive strength

(The ultimate moment should be calculated using 60 ksi reinforcing 

steel).

The confounding pattern used in the parametric study is shown

below.
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Resolution IV Design 2

I » ± 12345

1 + 2345 12 + 345 24 + 135

2 + 1345 13 + 245 25 + 134

3 + 1245 14 + 235 34 + 125

4 + 1235 15 + 123 35 + 124

5 + 1234 23 + 145 45 123

It can be seen from this table that the major variables and the 

two factor interactions were all confounded with three factor inter­

actions and higher. The possibility that these higher order inter­

actions were important was very remote and the Fractional Factorial 

Design detailed here should be as accurate as a Full Factorial Design.

The Design Matrix used in the parametric study is shown in 

Table 4.1. The minus signs in this table represent the low levels of 

each variable, and the plus signs represent the high levels. Each row 

represents an experiment, or in this case a computer run of an 

individual reinforced concrete beam under long term loads.

4.3 Test Conditions

Once the levels of each variable were chosen they were included 

in the properties of a realistic reinforced concrete beam. The depth, 

thickness, concrete cover, relative humidity, yield stress of steel, age
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RUN I 1 2 3 4 5 12 13 14 15 23 24 25 34 35 45
At At

Ai, 
fem Ai i calc

1 +1 -1 -1 -1 -1 +1 +1 +1 +1 -1 +1 +1 -1 +1 -1 -1 3.59 2.79

2 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1 1.38 1.07

3 +1 -1 +1 -1 -1 -1 -1 +1 +1 +1 -1 -1 -1 +1 +1 +1 1.18 .80

4 +1 +1 +1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 -1 -1 1.01 .73

5 +1 -1 -1 +1 -1 -1 +1 -1 +1 +1 -1 +1 +1 -1 -1 +1 .85 .79

6 +1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 -1 +1 -1 1.40 1.25

7 +1 -1 +1 +1 -1 +1 -1 -1 +1 -1 +1 -1 +1 -1 +1 -1 .61 .54

8 +1 +1 +1 +1 -1 -1 +1 +1 -1 .-1 +1 -1 -1 -1 -1 +1 .45 .43

9 +1 -1 -1 -1 '+1 -1 +1 +1 -1 +1 +1 -1 +1 -1 +1 -1 2.54 1.95

10 +1 +1 -1 -1 +1 4-1 -1 -1 +1 +1 +1 -1 -1 -1 -1 +1 2.91 1.82

11 +1 -1 +1 -1 +1 +1 -1 +1 -1 -1 -1 +1 +1 -1 -1 +1 .58 .37

12 +1 +1 +1 -1 +1 -1 +1 -1 +1 -1 -1 +1 -1 -1 +1 -1 .70 .51

13 +1 -1 -1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 +1 +1 +1 1.78 1.27

14 +1 +1 -1 +1 +1 -1 -1 +1 +1 -1 -1 -1 +1 +1 -1 -1 .97 .87

15 +1 -1 +1 +1 +1 -1 -1 -1 -1 +1 +1 +1 -1 +1 -1 -1 .39 .34

16 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 .62 .57

17 +1 0 0 0 0 .15 0 0 0 0 0 0 0 0 0 0 .68 .54

TABLE 4.1 Design Matrix and Deflection Ratios 

for First 17 Computer Runs
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of loading (7 days), and age when drying started (7 days), were all 

fixed at reasonable values as shown in Figure 4.1, Although the depth 

was part of the span-to-depth ratio, it was fixed so that the span 

length could be varied independently. Figure 4.1 shows the finite 

element discretization, dimensions, and properties of the beam which was 

used. The finite element discretization was chosen for its balance 

between accuracy and economy. Enough elements were provided to allow 

for realistic crack spacings and for a reasonable minimization of the 

potential energy.

The creep and shrinkage prediction methods developed by Bazant 

and Panula (3)(4) were used to calculate the long term strains. The mix 

details for the 3235 psi and 4560 psi concretes are shown in Table 4.2. 

These concrete mixes were taken from the literature (16)(25) and repre­

sent realistic values. The tensile strength, modulus of elasticity of 

concrete, and modulus of elasticity of steel were all estimated using 

the equations specified in Section 3.1.

It should be noted that the concrete tensile strengths used in 

the parametric study were not the same as those calculated by Equation 

(3.2). The tensile strengths were reduced from the calculated values to 

account for the underestimation of displacements and stresses which 

occurs in beams modelled with plane stress elements. It was observed in 

the sensitivity and verification sections that the level of crack initi­

ation can have a profound effect on the deflections of beams loaded to 

around their cracking loads. Since the underestimation of stresses 

artificially raises the cracking load, the resulting deflections may not 

be realistic. Therefore the tensile strengths of the beams in the
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BEAM

i-----b------ 1

f*c=VARIABLE b=8-0 In L=VARIABLE

Ec=VARIABLE d=12.0 in As=VARIABLE
Es=29000 ksl d’=2.0 In A’s=VARIABLE

h=!4-0 In

MIX-VARIABLE w/c=VARIABLE R-H-=-5

FIGURE 4.1 DETAILS FOR BEAM USED IN 
PARAMETRIC STUDY
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MIX # fTc MIX PROPORTIONS w/c

1 3235 1.0:3.91:2.50 .699

2 4560 1.0:3.26:3.69 .656

4000 1.0:3.33:2.17 .65

4 2990 1.0:3.64:4.44 .700

5 4820 1.0:3.24:3.67 .596

TABLE 4.2 Details of Concrete Mixes Used In

Parametric Study
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study were reduced by the amount of this underestimation. An elastic 

beam with the finite element grid of Figure 4.1 was loaded under uniform 

loads and the immediate deflection was compared with that calculated 

from elastic beam theory. The tensile strengths for the parametric 

study were then reduced by the same percentage difference as the 

underestimation. This difference was less than 10%.

In this study the dependent variable used for predicting long 

term deflections was the ratio of long term deflection to short term 

deflection. Two different long term-to-short term deflection ratios 

were investigated. In the first case, the ratio was defined using both 

the short term and long term deflections generated by the finite element 

program. In the second case the long term deflections were generated by 

the program, but the short term deflections were calculated using the 

Code (2)(12) equation. The main reason for looking at this second ratio 

was the recognition that in real life the long term deflection of a 

reinforced concrete beam would be predicted by multiplying the Code 

short term deflection by the long term-to-short term deflection ratio. 

The actual short term deflection would not be known at the design stage. 

It seems logical therefore to use the Code short term deflection to 

develop the deflection ratio. In this way it may be possible to reduce 

the effect of any errors in the Code short term deflection prediction. 

When the Code short term deflection is multiplied by the long term-to- 

Code short term deflection ratio, the Code short term deflection may be

cancelled.
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4.4 Results

The sixteen computer runs which made up the parametric study 

were completed according to the scheme detailed in Table 4.1, and the 

ratios of long term deflect ion-1o-short term deflection for both cases 

were also recorded in this table* These values give a measure of the 

average effect of each variable over all conditions of the other vari­

ables. Combining these terms in a linear equation gives a relationship 

which relates all major and interaction variables with the deflection 

ratio. The notation in the design matrix of Table 4.1 assigns a level 

of +1 or -1 to each variable numbered 1 to 5. These nondimensional 

variables can be related to the actual variables through the ratios 

listed below.

Variable 1 ■ a^ a (,^y)

Variable 2 ■ c^ a (^—y—)

- 35
Variable 3 = Oj “ (®^---- )

7 ~22-5
Variable 4 s a, 3 (“-=—) 

4 5.5

Variable 5 3
f *c - 3897.5

662.5
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Using the main and interaction effects from Table 4.1, and the 

variable ratio a^, an equation relating the long term-to-short deflec­

tion ratio to the variables can be written. For the first equation the 

short term deflections generated by the finite element analysis were 

used to provide the denominator of the ratio. The full equation can be 

written as follows:

At
Ai FEM

- 1.310 - .130 ^ - .618 0^ - .426 dj + .001 (^ + .252 t

+ .133 a^ a^ + .106 a. % + .119 “1 + .053

+ .251 0^ ctj - .121 <\ - .240 CL CL + .055

- .033 a, ^ - .091 a4 (4.1)

In the second case, where the short term deflection was

calculated using the design code, the relationship can be written:

Ai CALC “ ’893 " a°° “1 " -470 “2 ' *249 ^ ~ ’°44 % + 461 ^

+ .183 «2 05 - *045 c^ a^ - .145 <^ c^ + .049

- .011 5 c^ - .116 a. (4.2)

Obviously these equations are very cumbersome, and some of the 

terms have very little effect on the deflection ratio. The main vari­

able, £/d, obviously has little influence on either relationship, and 

some of the Interaction effects are also not very significant. Elimin­

ating the less significant terms by dropping those with values less than 

0.100, results in the more simplified equations shown below.
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71 FEM “ ^^ ' 430 “1 " -618 “2 “ -426 “3 + -252 % + 433 “1 ^ 

+ .106 ^ Oj + .119 c^ c^ + .251 c^ c^ - .121 c^ c^ 

- .240 c^ c^ (4.3)

I CALC “ -893 - -10° “1 " -47° “2 - *249 + -161 % + ’124 “1

+ .12 3 c^ 0$ + .18 3 02 c^ - .14 5 c^ q. - .116 c^ q. (4.4)

These equations are still reasonably long, but all of the terms 

are important. The high degree of interaction present in the two 

deflection equations is interesting and unexpected. This high inter­

action may explain past difficulty in developing an accurate prediction 

equation.

The relationships in Equation (4.3) and Equation (4.4) are based 

on the assumption that the parameters vary linearly within their ranges. 

This is not necessarily true. The assumption must be verified before it 

can be accepted. Checking for nonlinearity involves performing an 

additional experiment with the variables set at the midpoint of their 

ranges. If the relationship is truly linear the deflection ratios for 

this run should correspond to the constants in Equation (4.3) or 

Equation (4.4). The results from this extra run are shown in Table 4.1 

as Run 17. The compressive strength used in the additional run was not 

exactly at the midpoint of its range, but was close enough for compari­

son purposes. The concrete mix for this compressive strength is shown

in Table 4.2.
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For Equation (4.3) to be considered a linear relationship, the 

deflection ratio from the additional run should have been close to 1.31. 

The actual value was only 0.68, which is 48% less than expected. The 

expected value from Equation (4.4) was 0.89, but the actual value turned 

out to be 0.54. The error in this equation was 65%. Obviously high 

nonlinearity was present in both relationships. It was less evident for 

the long term-to-calculated short term deflection ratio equation, but 

neither relationship could be considered linear. The Star Design option 

was required to quantify the nonlinearities.

Choosing which of the variables contained nonlinear effects was 

not very straightforward and involved some guesswork. It seems likely 

that the variables which were most important to the linear relationship, 

were the one whose nonlinearities were most likely to be significant in 

the nonlinear relationship. However this assumption was not necessarily 

the case. Through some "screening” of the variables, the compression 

s teel ratio, the applied moment to ultimate moment ratio, and the 

concrete compressive strength, were selected as having the most 

important nonlinear effects. The expanded high and low levels defining 

the new ranges for these parameters are shown below.

Variable

p’:

Mapp/Multi: 

f’c (psi):

Range

0 - 2.00

.19 - .51

2990 - 4820
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The concrete mix designs for these compressive strengths are shown in

Table 4.2,

The twenty three computer runs which made up the total Star 

Design were completed according to the scheme detailed in Table 4.3. 

The notation used in this table was the same as in Table 4.1. The 

relationship between the nondimensional variables otp and the actual 

variables were also the same as mentioned earlier.

The short term deflections from the finite element program, the 

long term deflections from the finite element program, the calculated 

short term deflections, and the deflection ratios from the twenty three 

computer runs are shown in Table -4.4 All deflections in Table 4.4 are 

in inches. The equation from the Star Design for the long term-to-short 

term deflection ratio is written below where all main and interaction 

effects with coefficients less than 0.100 have been eliminated.

Ai FEM = “519 ' -130 al ’ *549 “2 ‘ “425 °5 + -212 + ,133 °i ^

+ .106 0^0^+ .119 ^ a^ + *251 ^ ^ “ *121 o^ c^ 

2 2 2
- .240 c^ c^ + .151 + .310 + .319 c^ (4.5)

For the long term-to-calculated short term deflection ratio the

equation is:

3 .366 - .100 a^ - .424 c^ - .231 c^ + .134 q. + .124 c^ c^

+ .123 “| o^ + .183 <^ o^ - .145 a^ q. - .116 c^ q. 

2 2 2+ .161 «2 + *167 % + *297 c^* (4.6)
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RIJN I 1 2 3 4 5 12 13 14 15 23 24 25 34 35 45 22 33 55
At At

Ai 
fem calc

1 +1 -1 -1 -1 -1 4-1 4-1 4-1 4-1 -1 4-1 4-1 -1 4-1 -1 -1 4-1 4-1 4-1 3.59 2.79

2 +1 4-1 -1 -1 -1 -1 -1 -1 -1 -1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 1.38 1.07

3 +1 -1 4-1 -1 -1 -1 -1 4-1 4-1 4-1 -1 -1 -1 4-1 4-1 4-1 4-1 4-1 4-1 1.18 .80

4 +1 4-1 4-1 -1 -1 4-1 4-1 -1 -1 4-1 -1 -1 4-1 4-1 -1 -1 4-1 4-1 4-1 1.01 .73

5 4-1 -1 -1 4-1 -1 -1 4-1 -1 4-1 4-1 -1 4-1 4-1 -1 -1 4-1 4-1 4-1 4-1 .85 .79

6 4-1 4-1 -1 4-1 -1 4-1 -1 4-1 -1 4-1 -1 4-1 -1 -1 4-1 -1 4-1 4-1 4-1 1.40 1.25

7 4-1 -1 4-1 4-1 -1 4-1 -1 -1 4-1 -1 4-1 -1 4-1 -1 4-1 -1 4-1 4-1 4-1 .61 .54

8 4-1 4-1 4-1 4-1 -1 -1 4-1 4-1 -1 -1 4-1 -1 -1 -1 -1 4-1 4-1 4-1 4-1 .45 .43

9 4-1 -1 -1 -1 4-1 -1 4-1 4-1 -1 4-1 4-1 -1 +1 -1 4-1 -1 4-1 4-1 4-1 2.54 1.95

10 4-1 4-1 -1 -1 4-1 4-1 -1 -1 4-1 4-1 4-1 -1 -1 -1 -1 4-1 4-1 4-1 4-1 2.91 1.82

11 4-1 -1 4-1 -1 4-1 4-1 -1 4-1 -1 -1 -1 4-1 +1 -1 -1 4-1 4-1 4-1 4-1 .58 .37

12 4-1 4-1 4-1 -1 4-1 -1 4-1 -1 4-1 -1 -1 4-1 -1 -1 4-1 -1 4-1 4-1 4-1 .70 .51

13 4-1 -1 "I 4-1 4-1 4-1 4-1 -1 -1 -1 -1 -1 -1 4-1 4-1 4-1 4-1 4-1 4-1 1.78 1.27

14 4-1 4-1 -1 4-1 4-1 -1 -1 4-1 4-1 -1 -1 -1 4-1 4-1 -1 -1 4-1 4-1 4-1 .97 .87

15 4-1 -1 4-1 4-1 4-1 -1 -1 -1 -1 4-1 4-1 4-1 -1 4-1 -1 -1 4-1 4-1 4-1 .39 .34

.6 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 4-1 .62 .57

TABLE 4.3

7 4-1 0 0 0 0 .15 0 0 0 0 0 0 0 0 0 0 0 0 .02 .68 .54

8 4-1 0 -/ 2 0 0 .15 0 0 0 0 0 0 0 0 0 0 2 0 .02 1.22 1.00

) 4-1 0 4/2 0 0 .15 0 0 0 0 0 0 0 0 0 0 2 0 .02 .44 .33

) 4-1 0 0 +/2 0 .15 0 0 0 0 0 0 0 0 0 0 0 2 .02 .55 .45

4-1 0 0 -/2 0 .15 0 0 0 0 0 0 0 0 0 0 0 2 .02 1.74 .90

4-1 0 0 0 0 1.26 0 0 0 0 0 0 0 0 0 0 0 0 1.58 .98 .76

4-1 0 0 0 0 -1.37 0 0 0 0 0 0 0 0 0 0 0 0 1.88 1.02 .84

Design Matrix and Deflection Ratios For All 23 Computer Runs
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TABLE 4.4 Deflections and Deflection Ratios From Computer Runs

RUN Ai i (in) 
calc

Al. (in) 
fem

M_(in) 
tot

At(in)
A t A t

fem Ai , calc

1 .0746 .0579 .2657 .2078 3.59 2.79

2 .2853 .2212 .5273 .3061 1.38 1.07

3 .0850 .0547 .1254 .0680 1.18 .80

4 .2697 .1951 .3921 .1970 1.01 .73

5 .3812 .3529 .6524 .2995 .85 .79

6 .5793 .5187 1.2438 .7251 1.40 1.25

7 .3071 .2727 .4387 .1660 .61 .54

8 .5532 .5290 .7662 .2372 .45 .43

9 .2222 .1705 .6028 .4323 2.54 1.95

10 .7523 .4708 1.8395 1.3687 2.91 1.82

11 .2020 .1267 .2004 .0737 .58 .37

12 .7622 .5554 .9418 .3864 .70 .51

13 .8642 .6135 1.7073 1.0938 1.78 1.27

14 1.5246 1.3805 2.7141 1.3336 .97 .87

15 .9975 .8836 1.2268 .3432 .39 .34

16 1.4834 1.3588 2.2024 .8436 .62 .57

17 .6666 .5325 .8923 .3598 .68 .54

18 .6691 .5479 1.2151 .6672 1.22 1.00

19 .6893 .5055 .7298 .2243 .44 .33

20 1.0515 .8758 1.3534 .4776 .55 .45

21 .2455 .1270 .3483 .2213 1.74 .90

22 .6170 .4799 .9511 .4712 .98 .76

23 .6898 .5716 1.1531 .5815 1.02 .84
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It can be seen in both equations that the midpoint value was 

predicted better with these equations than the linear ones. For 

Equation (4.5) the error was 23%, and for Equation (4.6) the error was 

31%. These errors seem high and may indicate that higher order non­

linearity exists, or more likely, that there are more influences present 

in the deflection relationship than can be quantified with the five 

maj or variables • When the deflection relationship is limited to vari­

ables which are available to designers, it must be expected that the 

resulting relationship will not be exact. In the remainder of this 

chapter, Equation (4.5) will usually be referred to as the model short 

term equation, and Equation (4.6) will usually be referred to as the 

Code based short term equation. Hopefully this will prevent confusion.

The coefficients in the. deflection relationships represent a 

best fit between the given equations and the computer generated deflec­

tion ratios. Despite the reliability of the Factorial Design Method, 

these relationships are only as accurate as the chosen major variables 

and equation form allow them to be. The only way to check the accuracy 

with which Equation (4.5) and Equation (4.6) represent the deflection 

ratios was to compare results with the original twenty-three deflection 

ratios. The comparisons between the results from the model short term 

equation and the twenty-three original deflection ratios are shown in 

Table 4.5, and the comparison for the Code based short term equation is 

shown in Table 4.6.

As shown in Table 4*5 the average error in the deflection ratios 

calculated with the model short term equation was 0.16. The standard
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tA- ERROR
Afem Afem

(Equation 4,5) (Actual)

1 3.35 3.59 .24

2 1.46 1.38 .08

3 1.30 1.18 .12

4 .80 1.01 .21

5 .88 .85 .03

6 1.23 1.40 .17

7 .68 .61 .07

8 .72 .45 .27

9 2.45 2.54 .09

10 2.85 2.91 .06

11 .76 .58 .18

12 .85 .70 .15

13 1.79 1.78 *01

14 .80 .97 .17

15 .26 .39 .13

16 .66 .62 .04

17 .56 .68 .12

18 1.69 1.22 .47

19 .03 .44 .41

20 .58 .55 .03

21 1.78 1.74 .04

22 1.29 .98 .31

23 .83 1.02 .19

average error =• .16

E(x-x) 
n-1

- .12

TABLE 4.5 Deflection Ratios From Computer Results

and Equation 4.5 Predictions
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RUN At At ERRORAfem

(Equation 4.6) (Actual)

1 2.57 2.79 .22

2 1.09 1.07 .02

3 .61 .80 .19

4 .62 .73 .11

5 .71 .79 .08

6 1.30 1.25 .05

7 .48 .54 .06

8 .56 .43 .13

9 2.01 1.95 .06

10 1.65 1.82 .17

11 .59 .37 .22

12 .64 .51 .13

13 1.27 1.27 0

14 .74 .87 .13

15 .50 t -34 .16

16 .54 .57 .03

17 .39 .54 .15

18 1.35 1.00 .35

19 .08 .33 .25

20 .40 .45 .05

21 1.05 .90 .15

22 1.01 .76 .25

23 .74 .84 .10

average error *13

c Z(x-x)
b n-1 09

TABLE 4.6 Deflection Ratios From Computer Results

and Equation 4.6 Predictions
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deviation in this error was 0.12. The results for the Code based short 

term equation, shown in Table 4.6, were even better than this• The 

average error in the deflection ratio was 0.13, and the standard 

deviation was 0.09. Therefore it may be concluded that the relation­

ships developed here accurately reflect the computer data.

The deflection relationships calculated with the two equations 

matched the finite element generated data quite well. However, since 

these equations were intended as prediction equations, they would only 

be useful if they could predict real life deflections. Comparing the 

results from the equations with the data that was used to derive them 

did not necessarily show how well they could predict other deflections. 

The only way to truly evaluate the equations was to compare them with 

Independent experimental data.

Washa and Fluck' s (54) long term deflection data was used to 

verify the accuracy of the two deflection relationships. Only the 

members of Series A and Series B were selected for comparison. These 

were the members that most resembled real beams. Washa and Fluck paired 

their Series B beams and only provided average deflections for each 

pair. The difference between each beam in a pair was the compressive 

strength. The £/d ratio for the Series B beams exceeded the range for 

which either of the deflection equations applied, but the effect should 

have been minimal.

The results from the comparison are shown in Table 4.7. In this 

comparison the long term deflections for the model short term equation
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Beams Equation 4.5 Equation 4.6 Experimental

(in) (in) (in)

B1,B4 .42 .52 1.18

B2,B5 1.13 .75 1.58

B3,B6 2.25 1.30 2.36

A4 .21 .13 .40

A5 .74 .41 .65

A6 1.39 .86 1.09

TABLE 4.7 Deflections From Equation 4.5,

Equation 4.6, and Experiment
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were calculated by multiplying the experimental short term deflections 

by the deflection ratio. For the Code based short term equation, the 

Code calculated short term deflections were multiplied by the deflection 

ratios.

It seems from the results of Table 4.7 that the model short term 

equation performed better than the Code based short term equation. The 

average error for the model short term equation was 0.31", ranging from 

a low of 0.09" to a high of 0.76". The average error for the Code based 

short term equation was 0.55" with a range of 0.23" to 1.06". The 

recent Canadian Concrete Code (12) had an imposed lower limit of 0.6 on 

the long term-to short term deflection ratio. If this limit was also 

imposed on Equation (4.5) and Equation (4.6), the deflection results 

would have been better. In this case the average error would have been 

0,27" for the model short term equation and 0.49" for the Code based 

short term equation.

Equation.(4,5) and Equation (4.6) were both intended as possible 

replacements for the ACI (2) and CSA (12) prediction equations. This 

recommendation could only be made if the equations proved to be more 

accurate than the current approaches. Therefore a comparison between 

the equations derived in this chapter and the CAN3-A23.3 (12) equations 

was required. The comparison showed how well the Code equations 

predicted the twenty-three deflection results from the parametric study. 

The results from this comparison are shown in Table 4.8. The long term 

deflections in this table were calculated by multiplying the model 

generated short term deflections by the deflection ratios for each case.
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TABLE 4,8 Deflection Predictions Using Equation 4.5

RUN A Actual A Code (1977) A Code (1984) 

(in)

A Equation 4.5 

(in)(in) (in)

1 .2078 .0874 .1001 .1940

2 .3061 .4004 .3849 .3230

3 .0680 .0344 .0619 .0746

4 .1970 .1658 .2107 .1561

5 .2995 .5329 .6100 .3106

6 .7251 .9388 .9025 .6380

7 .1660 .1636 .2945 .1854

8 .2372 .4497 .5714 .3809

9 .4323 .2575 .2948 .4177

10 1.3687 .8521 .8191 1.3418

11 .0737 .0760 .1368 .0963

12 .3864 .4721 .5998 .4721

13 1.0938 .9264 1.0605 1.0982

14 1.3336 2.4987 2.4021 1.1044

15 .3432 .5302 .9544 .2297

16 .8436 1.1550 1.4675 .8968

17 .3598 .5538 .7083 .2982

18 .6672 1.0958 1.0958 .9260

19 .2243 .3033 .5055 .0152

20 .4776 .9108 1.0772 .5080

21 .2213 .1321 .1562 .2261

22 .4712 .4991 .5903 .6191

23 .5815 .5945 .7031 .4744

average error .2182 .2792 .0743

and the Code Equations
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It is obvious from the results in Table 4.8 that the model short 

term equation performed far better than the Code equations. The average 

errors for the 1977 and 1984 Code equations was 0.218" and .279" 

respectively, while the average error for the model short term equation 

was only 0.074".

A comparison between the Code based short term equation and the 

CAN3-A23.3 (12) equations for the twenty-three computer generated 

deflections is presented in Table 4.9. In this example the long term 

deflections were calculated by niutiplying the predicted Code short term 

deflections by the deflection ratios. Since the calculated short term 

deflections were used, this example is probably a more realistic evalua­

tion of the prediction accuracy of the Code equations. The average 

error of the 1977 and 1984 Code equations in predicting the twenty-three 

deflections was 0.264" and .373" respectively. The average error for 

the Code based short term equation was only 0.075".

Probably the most significant observation that can be made from 

the results in Tables 4.8 and 4.9 was the lack of accuracy in the Code 

prediction equations. The good results from Equations (4.5) and (4,6) 

were not unexpected since this is the same data which was used to derive 

them. Conversely, if the Code equations were compared with Equations 

(4.5) and (4.6) using data which had been used to derive the Code 

equation, it might be expected that the Code equations would appear to 

be relatively more accurate. What is really important in the 

comparisons with the computer generated data, is first the accuracy of 

the Code equations themselves, and second, the order of the difference
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TABLE 4.9 Deflection Predictions Using Equation 4.6

RUN A Actual 

(in)

A Code (1977) 

(in)

A Code (1984) 

(in)

A Equation 4.6 

(in)

1 .2078 .1126 .1289 .1917

2 .3061 .5164 .4964 .3110

3 .0680 .0510 .0918 .0519

4 .1970 .2292 .2912 .1672

5 .2995 .5756 .6589 .2707

6 .7251 1.0485 1.0080 .7531

7 .1660 .1843 .3317 .1474

8 .2372 .4702 .5974 .3098

9 .4323 .3355 .3841 .4466

10 1.3687 1.3617 1.3090 1.2413

11 .0737 .1212 .2182 .1192

12 .3864 .6479 .8232 .4878

13 1.0938 1.3049 1.4938 1.0975

14 1.3336 2.7595 2.6528 1.1282

15 .3432 .5985 1.0773 .4988

16 .8436 1.2609 1.6021 .8010

17 .3598 .6933 .8866 .2600

18 .6672 1.3382 1.3382 .9033

19 .2243 .4136 .6893 .0551

20 .4776 1.0936 1.2934 .4206

21 .2213 .2553 .3019 .2578

22 .4712 .6417 .7589 .6232

23 .5815 .7174 .8485 .5104

average error .2643 .3726 .0747

and the Code Equations
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between the accuracy of the Code equations and the equations developed 

in this chapter.

A comparison between Washa and Pluck’s experimental data and the

predictions from the equations presented in this chapter was shown in 

Table 4,7. A natural extension of this comparison is to contrast those 

results with predictions using the Code equations. Before presenting 

the results from this comparison, it is necessary to point out that 

Washa and Flunk’s data was used to derive the Code equations. As was 

mentioned earlier it is not always very informative to judge a 

prediction equation by comparing it with the data that was used to 

derive it. Therefore it might be expected that the Code equations 

should predict Washa and Pluck’s data very well. What may be 

interesting is to see how closely the predictions using Equation (4.5) 

and Equation (4.6) compare with the predictions of the Code equations.

In the first comparison, shown in Table 4.10, the deflections 

predicted by the model short term equation and the Code equations were 

compared with Washa and Pluck’s experimental data. The long term 

deflections in this table were calculated by multiplying the experi­

mental short term deflections by the deflection ratios. The average 

error for the 1977 and 1984 Code equations were 0.24“ and .22". This 

compared with an average error of 0.31" for the model short term 

equation, or 0.27" if the minimum deflection ratios were limited to 0.6. 

The Code equations therefore performed better than the model short term 

equation, but the difference was not very significant. Considering the
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TABLE 4.10 Deflection Predictions Using Equation 4.5 

and the Code Equations

Beams Equation 4.5 

(in)

Code (1977) 

(in)

Code (1984) 

(in)

Experimental 

(in)

B1,B4 .42 .74 1.03 1.18

B2,B5 1.13 1.37 1.40 1.58

B3,B6 2.25 2.08 2.08 2.36

A4 .21 .42 .59 .40

A5 .74 .87 .89 .65

A6 1.39 1.34 1.34 1.09

TABLE 4.11 Deflection Predictions Using Equation 4.6 

and the Code Equations

Beams Equation 4.6 

(In)

Code (1977) 

(in)

Code (1984) 

(in)

Experimental 

(in)

B1,B4 .52 .66 .92 1.18

B2,B5 .75 1.20 1.23 1.58

B3,B6 1.30 1.76 1.76 2.36

A4 .13 .42 .59 .40

A5 .41 .76 .78 .65

A6 .86 t 1.12 1.12 1.09
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fact that Washa and Fluck’s data was used to derive the Code equations, 

the results seem encouraging for the model short term equation.

A comparison between Washa and Fluck's experimental data, 

predictions from the Code based short term equation, and predictions 

from the Code equations, are shown in Table 4.11. This time the long 

term deflections were calculated by multiplying the Code predicted short 

term deflections by the deflection ratios. The average errors for the 

1977 and 1984 Code predictions was 0.28” and .26". The average error 

for the Code based short term equation, Equation (3,6), was 0.55" with 

no lower limit, and 0.49" with an imposed minimum deflection ratio of 

0.6. In this case the performance of the Code based short term equation 

was not very good which may mean that this equation is not an 

appropriate prediction equation. However an interesting observation 

that may be made from the results in Tables 4.10 and 4.11 is that the 

Code equations do not even very accurately predict the data from which 

they were derived.

The results from the comparisons with Washa and Fluck1 s data 

indicates that neither Equation (4.5) nor Equation (4.6) were highly 

accurate for these examples. On the other hand the equations did give 

reasonable estimates of the long term deflections. The inaccuracy that 

did exist may have been caused by a number of different factors. One 

reason which was mentioned earlier was the supposition that there are 

other parameters not included in the equations which also influence long 

term deflections. Another possibility is the effect of the compressive 

strength. Different mixes with the same compressive strengths may have
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different creep and shrinkage characteristics. A third possibility is 

experimental variability.

A fourth possibility, and one which may require further thought, 

is whether the long term-to-short term deflection ratio is really the 

best value to use in predicting long term deflections. If it is diffi­

cult to get highly accurate results using this ratio, it may be advis­

able to use some other criteria for dealing with these deflections.

It may be informative to examine some of the factors which will 

affect any prediction equation using a long term-to-short term deflec­

tion ratio. Delayed cracking Is one of these factors. It is possible 

for significant cracking to occur in a beam at the end of its loading, 

however it is equally likely for an identical beam to experience this 

cracking in the first few days after loading. These two Identical beams 

could have very different time dependent deflections, and quite differ­

ent deflection ratios. Another factor is the accuracy of the short term 

deflection prediction. It was observed that Equation (4.5), Equation 

(4.6), and the results from these equations were quite different, even 

though the only real difference between them was whether the Code short 

term deflection was used or the finite element short term deflection was 

used. Perhaps In future it may be advisable to develop a prediction 

method that calculates the actual long term deflection and not a

deflection ratio.
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From the results in this chapter it seems more and more apparent 

that any equation predicting' the actual long term deflection alone may 

never be highly accurate under every circumstance. If this is the case 

it should either be recognized that a prediction equation only gives an 

approximate value, or some other criteria must be suggested. Perhaps 

this could take the form of general guidelines about when, and under 

what conditions, long term deflections may be a problem. Another 

possibility is to calculate the total deflections rather than long term 

deflections. This would also reinforce the idea that it is sometimes 

difficult to separate long term deflections from short term 

deflections.

4*5 Summary

In this chapter a parametric study was conducted to develop an 

equation for predicting long term deflections of reinforced concrete 

beams. Two equations were presented since there may be some question 

about whether a deflection ratio should be derived using actual short 

term deflections or calculated deflections. The first equation was 

developed using short term deflections generated by the finite element 

model. The second used Code calculated short term deflections. Of the 

two equations presented, the one that was derived using the finite 

element generated short term deflections seemed superior to the one 

derived from calculated deflections. Comparisons with more independent 

experimental evidence may be necesary to finalize this conclusion. The 

CAN3-A23.3-M77 suggestion of a lower limit of 0*6 on the deflection 

ratio seems advisable for the equations developed in this chapter. In
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comparisons with twenty-three deflection results generated with the 

finite element model, the equations developed in this chapter proved to 

be far superior to the Code predictions. When compared with the experi­

mental data of Washa and Fluck, one of the equations was almost as 

accurate as the Code equations. When more experimental data becomes 

available it should be possible to further verify these results. It 

should be strongly stated at this point that the equations presented in 

this chapter are only applicable for the ranges that were set during 

their derivation. Values lying outside these boundaries may produce 

inaccurate results and should be used with discretion.

In the future it may be advisable to study alternatives to 

predicting long term deflections with a long term-to-short term deflec­

tion ratio. General guidelines about when long term deflections may be 

a problem, a prediction equation calculating actual long term deflec­

tions, or the prediction of total deflections, may be preferable to the 

deflection ratio approach. However at this stage it seems apparent that 

the past and current Code prediction equations are not very accurate and 

the equation developed in this chapter should be seriously considered as 

a replacement.



CHAPTER 5

CONCLUSIONS

5’1 General

Long term deflections in reinforced concrete beams have become 

increasingly important in the last few years, and this investigation was 

launched to further the understanding of this subject- The three main 

objectives of this study were to provide experimental data on long term 

deflections of reinforced concrete beams, to develop an accurate finite 

element model to simulate reinforced concrete beam behaviour, and to 

develop an empirical long term deflection prediction equation using the 

finite element model. The results from this work provided interesting 

insights into the time dependent behaviour of reinforced concrete and 

the modelling of this complex material.

5.2 Experimental Work

In the experimental program, six reinforced concrete beams, of 

which four were continuous, were subjected to sustained load for a 

period of 1 1/2 years. The resulting deflections were reported in 

Chapter 2. These results were used to evaluate the CAN3-A23.3 (12) Code 

prediction equation and later to evaluate the finite element model.

- 248 -
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The most striking fact observed from the long term deflection 

results was the evident Inaccuracy-of the CAN3—A23.3 (12) Code long term 

deflection prediction equation. In every case, the prediction equation 

significantly underestimated the experimental deflections, even for 

those beams which had decreasing loads. In a deflection sensitive 

structure this lack of conservatism could have serious consequences.

Another detail that only became apparent at the end of the test 

program was the long term sensitivity of the instrumentation. The 

readings from the load cells drifted with time even though the cells 

tested perfectly at the beginning of the test. The durability of the 

equipment in a long term test is at least as important as its initial 

accuracy, and this fact must be kept in mind by future researchers.

The results from the continuous beams indicated that their 

deflection behaviour may not be the same as that for simple beams. Even 

though these beams had more compression steel than tension steel in 

their positive moment regions, their long term to short term deflection 

ratios were comparable to the deflection ratios of a simple beam with no 

compression steel. This may indicate that the effects of high moments 

in one region of a reinforced concrete beam may significantly affect the 

long term deflections in another. If this is true an accurate long tern 

deflection prediction equation must include this factor. Not much 

experimental long term deflection data for beams with changing moment 

directions exists, and more data is needed before the deflections of 

these beams can be predicted confidently.
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5.3 Finite Element Model

A great deal of time and effort went into the development of a 

finite element model that would accurately simulate the long term behav­

iour of reinforced concrete beams. Since complete material property 

data is rarely available, a number of empirical prediction methods were 

investigated to determine which ones should be used when the true values 

were not available. Judging by the deflection results, the chosen 

methods were reasonably good for predicting the required values. The 

finite element model itself was a combination of plane stress triangular 

elements for concrete, bar elements for steel, and Goodman Joint 

Elements for bond. An implicit visco-plastic model was used for the 

creep formulation.

From the results presented in Chapter 3 it is possible to say 

that the model performed reasonably well for both short term and long 

term loadings, and was generally successful in simulating the behaviour 

of reinforced concrete beams. Probably the most important factor 

affecting the finite element results was cracking. For beams stressed 

near the cracking load, the finite element model was sensitive to any 

factor which might accelerate or delay the onset of cracking. Although 

the model was sometimes sensitive to variations in the material proper­

ties and the finite element mesh, especially at low loads, it usually 

generated deflections which were very close to experimental data. When 

differences did occur, the model almost always underestimated the 

correct deflections. This was not unexpected because underestimation is 

an Inherent characteris tic of the finite element method. Since the
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model was usually very successful in simulating reinforced concrete beam 

deflections it was used confidently in the parametric study,

5*4 Parametric Study

The goal of the parametric study was to produce an accurate long 

term deflection design equation using the finite element program from 

Chapter 3, and the Factorial Design Method, A Fractional Factorial 

Design using Star Design capabilities was initiated to study the effect 

of the tension steel ratio, compression steel ratio, applied moment to 

ultimate moment ratio, span-to-depth ratio, and compressive strength, on 

the long term-to-short term deflection ratio. Two equations were ulti­

mately developed. In the first equation the deflection ratio was 

derived from computer generated short term and long term deflections• 

In the second equation the deflection ratio represented long term 

deflections from the program, and short term deflections calculated 

using the Code equation. Of the two equations the one that appeared 

most successful was the one derived from computer generated short term 

and long term deflections. This equation proved to be very accurate in 

predicting the long term deflections generated with the finite element 

model, and was reasonably successful in predicting experimental long 

term deflections.

A number of observations were made during the work in the para­

metric study. One such observation was that designers probably do not 

have access to enough parameters for a highly accurate prediction 

equation. It seems that reasonable estimates may be the best that can
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be hoped for. It also seems that the deflection ratio approach for 

predicting long term deflections may have some weaknesses. Delayed 

cracking and other influences may adversely affect predictions using the 

deflection ratio approach for both long term deflections and total 

deflections. In addition, the accuracy of deflection predictions using 

this approach is very dependent on predictions of short term 

deflections.

In light of these observations it may be advisable in future to 

investigate other approaches besides the deflection ratio concept for 

dealing with long term deflections. A few suggestions were discussed in 

Chapter 4. However unless some other approach proves to be superior, it 

appears that the prediction equation presented in Chapter 4, may provide 

an excellent replacement for current prediction equations.

5.5 Recommendations for Future Research

The objectives laid out at the beginning of this thesis led to 

an interesting study of many different aspects of long term deflections 

in reinforced concrete beams. It is hoped that the work presented here 

will be useful for future researchers. Throughout this thesis many 

areas which require future research attention have been identified. A 

general overview is provided here.
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1) The acquisition of more experimental long term deflec­

tion data, particularly for continuous or restrained 

beams, is required. The data in this study indicated that 

there may be significant differences between the long term 

deflection behaviour of continuous beams and simple beams. 

This possibility should be investigated further.

2) More research into material properties and their 

modelling in a finite element model is necessary. The 

modelling of cracking, tension stiffening, bond, aggregate 

interlocking, failure criteria, and other properties, 

still needs work. In part, improvements in these subjects 

may depend on researchers learning more about their 

physical behaviour.

3) Designers and researchers must decide whether deflec­

tion prediction equations should be concentrated on long 

term deflections or total deflections. The best approach 

may be different depending on which is required.

4) An enquiry into alternative methods for treating long 

term deflections may be warranted. As an example it may 

now be preferable to use a simple computer program for 

deflections instead of prediction equations.
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APPENDIX A

COMPUTER PROGRAM LISTING

The finite element computer program listing for the program used 

in this thesis is presented here. This program is an extended version 

of an existing program developed by F.A. Mirza at McMaster University. 

The program listed here is most efficient for continuous beams, where 

bond slip may be present in both top and bottom steel. For simple beams 

where the top steel is entirely in compression, it is most efficient to 

consider the top steel as being fixed to the concrete which enables the 

use of common nodes. This reduces the number of degrees of freedom.

The input variables needed for running the finite element 

program are listed below.

Input Variables

NPROB Problem number

IGR » 0 For no self weight

3 1 For self weight inclusion

ILIN = 1

IT = Maximum Number of Newton-Raphson iterations allowed

- 259 -
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JGR

ILO

ITYPE

THICK

GR

CHECK

KV

IDM

TIE

TL

NEL

NNOD

NVAR

NNODEL

NBSE

NTSE

NNSP

NNSEL

MB AR

- 0 For manual element data input

- 1 For automatic element data generation

Number of load increments (sets the size of the load 

increments)

* 0 For simply supported at ends

- 1 For continuous beams

Thickness of beam

Self weight of beam

Tolerance for Newton-Raphson. iterations (percentage)

■ 0 For elastic solution

■ 1 For creep solution

Printout required after IDM creep increments

Multiplier on each successive creep increment

Total time of loading

Number of concrete elements

Total number of nodes

Number of variables per node (a2)

Number of nodes per concrete element (=3)

Number of bottom steel elements

Number of top steel elements

Number of nodes per Goodman Joint Element (=4)

Number of nodes per steel element (*2)

Number of reinforcement bars in tension zone
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BDIA Diameter of bottom reinforcing bars

TDIA Diameter of top reinforcing bars

ABOT Cross-sectional area of bottom steel

ATOP Cross-sectional area of top steel

X X-Coordinate of nodes

Y Y-Coordinate of nodes

XW Height of beam

D Depth of reinforcement

ICO Element node numbers

E Modulus of elasticity for concrete

ANU Poisson’s ratio for concrete

ES Modulus of elasticity for steel

FT Tensile strength of concrete

FC Compressive strength of concrete

NCON Number of boundary constraints

ICON Identification of constrained degrees of freedom

CON Constrained boundary conditions
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PROGRAM TST IS A FINITE ELEMENT PROGRAM FOR THE 
ANALYSIS OF REINFORCED CONCRETE. THIS PROGRAM 
USES PLANE STRESS TRIANGULAR ELEMENTS FOR CONCRETE, 
AXIAL BAR ELEMENTS FOR REINFORCEMENT, AND GOODMAN 
JOINT ELEMENTS FOR BOND. PROGRAM TST IS CAPABLE OF 
HANDLING PROGRESSIVE CRACKING, BOND SLIP, SHRINKAGE 
AND CREEP.
PROGRAM TST(INPUT,OUTPUT, TAPE5=INPUT, TAPE6=0UTPUT,TAPE!,TAPES, 

♦TAPES,TAPE4,TAPE7)
DIMENSION LJ(8),X(3),Y(3),S(B,8),FL(8?, AT(3).BT(3), U(8), V(B), 

1A(17000),B(1100),BB(1100),CC(1100), DD(1100), XX(1100), YY(1100), 
2IX(1100), JX( 1100), CON (50), ICON (50), 7. C 3, 6 ), BL (3, 6) , CS (3), DU (1100), 
3IC0(6), AREA(BOO),SIG(B00, 3), EPS(800. 3),STR(800,3),AIN(B00,3) 
4, ICR(BOO),ANG(BOO), XLEN(200), IBF(2,200) 

WRITER, 40) 
INPUT OF PROGRAM VARIABLES

3 READ(5,41) NPROB, IGR, ILIN, IT,JGR, ILD, 1TYP,THICK,GR,CHECK 
IF(E0F(5>. EG. 1. 0) GO TO 999 
READ(5,901) KV,NPT,IDM,TIF,TL
IF(NPT. EQ. 0) NPT=1
IF( ILIN. EQ. 0. AND. KV. EQ. 0) WRITE(6, 1500) 
IF( ILIN. EQ. 0. AND. KV. GT. 0) WRITE(6, 1501 ) 
IF( ILIN. GT. 0. AND. KV. EQ. 0) WRITE46, 1502) 
IF( ILIN. GT. 0. AND. KV. GT. 0) WRITE(6, 1503)
IFUPS. EQ. 0) WRITE(6,1504) 
WRITE(6, 1506) 
WRITE(6, 135) ILIN, IT, IGR, IPS,ILO,THICK,GR, CHECK 
READ(5,47) NEL.NNOD,NVAR,NNODEL, NBSE, MTSE, NNSP* NNSEL. NEAR 
READ(5,48) BDIA,TDIA,ABOT, ATOP 
NVEL=NVAR*NNDDEL 
NVELS=NVAR*NNSEL 
NVSEL=NVAR*NNSP 
NSP4=NBSE*4 
INEL=NEL+NBSE 
JNEL=INEL+NTSE 
KNEL=JNEL+NBSE 
LNEL-KNEL+1TYP *NTSE 
REWIND 1
REWIND 2
REWIND 4
SUBROUTINE LAYOUT SETS THE GEOMETRY OF THE 
PROBLEM AND NUMBERS THE DEGREES OF FREEDOM 
CALL LAYOUT(XX,YY, ICO, IX,JX,AREA,NEL,NNOD,NVAR,NMAT,NNET. NNODEL, 

SNNSEL,XLEN,NNSP, INEL,JNEL,KNEL,LNEL, JGR, COVER)
REWIND 4 
SUBROUTINE BANDWH CALCULATES THE HALF BANDWIDTH 
CALL BANDWH(ICO, JX, LJ, NEL, NVAR, LBAND, NNODEL) 
LBAND=LBAND+2 
NB3=LBAND+1 
NVA-NB3»NNET
WRITE(6,42) NPROB,NNET, LBAND, NVA 
INITIALIZATION OF ARRAYS AND VARIABLES
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL

PRESET(BL, 3, 6) 
PRESETCZ, 3, 6) 
PRESET(SIG, 800, 4) 
PRESET(EPS, 800, 3) 
PRESET(STR, BOO, 3) 
PRESET(AIN, BOO, 3) 
PRESET<IBF, 2, 200) 
PSET(CS, 3)
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CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
IC=O

PSETtA,NVA) 
PSET(BB, NNET) 
PSETCDU, NNET) 
PSETCCC,NNET) 
PSETCDD, NNET) 
PSETCICR, JNEL) 
PSETCANG,JNEL)

381

JJJ=O 
IFCILIN. EQ. 0) JJJ=1 
DDET=1. DO 
CR1=O. DO 
C1=O. DO 
C2=0. DO 
C3=0. DO 
AL=O. DO 
BE=O. DO 
GA=O.DO 
DE=O. DO 
IIII=O 
IM=1 
KR=0 
DELT=1. DO 
TIME=O. IDO 
COR=O. DO 
YYY=O. DO 
SSS=O. DO 
EQSIG=O. DO 
INPUT OF MATERIAL PROPERTIES 
READ (5, 43) E, ANU, ES, FT, FC 
READ (5,47) NCON 
WRITEC6, 92) E,ANU, NCON 
CF=SQRTCFC/5000. )*(.04*2*C0VER*THICK)**. 3333 
IFCKV. EQ. 0) GO TO 381 ' 
SUBROUTINE CONST CALCULATES THE CONSTANTS FOR 
USE WITH BAZANT AND RANULA'S CREEP AND SHRINKAGE 
PREDICTION METHOD
CALL CONSTCBCOEF,DCOEF,POWER,AN, TSH, TCREEP,E,SHCOEF,TDRY 

*FC1,DENS)
CALCULATION OF ELASTICITY MATRIX FOR CONCRETE 
El=E/(1. D0-(ANU**2)) 
EA=E1 
E2=ANU 
E3=C 1. DO-ANU)/2. DO 
CR1=E 

: IFCNCON. EQ. 0) GO TO 350332
READCS, 45) 
WRITEC6, 46) 
READ(5, 93) 
WRITEC6, 94) 
WRITEC6, 95) 
IFCIC. EQ. 0) 
IF(IC. GT. 1) 
DELT». 05 
ILO-1. DO 
GO TO 603

(ICDN(I), 1 = 1, NCON) 
CICONCI), 1 = 1,NCON) 

(CONCI),I=1,NCON)

350

600

(CONCI), 1 = 1,NCON)
GO TO 600
GO TO 603

JC=-1
IFCILIN. EQ. 0) JC=0
GO TO 661
TIME INCREMENTING
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360

721

722

WRITE(3) (LJ( I ),1=1,6)
HRITE(2) (AT(I),1=1,3), (BT(I),1=1,3) 
IFCILIN. EQ, 0) GO TO 725 
GO TO 722
READ(2) (ATCI), 1 = 1,3), (BTC I), 1 = 1, 3) 
IFCILIN. EQ. 0) READC2) ((BL(I,J>,J-l,6), I=1,3) 
IF(CJC-JJJ), GE. 0) READC3) <LJ( I), 1 = 1.. 6)
IFC ILIN. EQ. 0) GO TO 602 
SUBROUTINE UMAT DEFINES 
FOR THE ELEMENT
CALL UMAT(CC,LJ, U, NVEL) 
IFCICRCIEL). EQ. 0) GO TO 
LOOP TRANSFORMS ELEMENT 
SYSTEM TO LOCAL SYSTEM 
DO 371 M.NVEL2 
U1=U(I)*COT+U(I+1)*SIT 
U2=U(1+1)*COT-U(I)*SIT

THE NODAL DISPLACEMENTS

725 
DISPLACEMENTS FROM GLOBAL

371
■UCI)=U1 
U(I+1)=U2 
SUBROUTINE BLMAT SETS THE KINEMATIC LARGE .DISPLACEMENT 
MATRIX
CALL BLMATCBL, AT, BT, U, AL, BE, GA, DE, ILIN, JC)
IFCILIN. EG. 0. AND. IC. EQ. 0) WRITE(2) ( (BL(I, J), J=1,6), 1 = 1, 3)
IFCILIN. EG. 0. AND. KR. EQ. 1. AND. IC. GT. 0) WRITE(2) ((BL(I,J),J=1,6)

*, 1 = 1, 3)
602 IFCIC.EQ. 0) GO TO 821

CALL CREEP (SIG, CS, ANU, E, EA, El, E2, E3, EGSIG, CSR, DELT, IEL, MM, BCOEF, 
*DCOEF, POWER, AN, TSH, DT, NEL, ICR, ANG, CRD

821 IFCJC. LT. JJJ. AND. IC. EQ. 0) GO TO 822

S22

* *
 ♦

 
* *

 * 
* ♦

S23

713

91

IFCILIN. EQ. 0. AND. IC. EQ. 0) GO TO 822
CALL DLOADCBL, FL, CS, SIG, AR, THICK, El, E2, E3, NEL, IEL, IC, ILIN, 

*Z, DESH, ICR, ANG, CRD 
: IFC JC. GT.-1. AND. ILIN. GT. 0) ISM

IFC IC. GT. 0. AND. ILIN. EG. 0) IS=1 
IFCICRCIEL). EG. 0) GO TO B23 
SUBROUTINE NONLINC AND NDNLIN CALCULATE THE ELEMENT 
AND UNCRACKED ELEMENTS RESPECTIVELY
CALL NONLINC(S,SIG,AT, CR1,AR,THICK, IS, IEL, ILIN, BL,ANG, NEL) 
GO TO 713 
SUBROUTINE NDNLIN CALCULATES THE ELEMENT STIFFNESS 
MATRIX FOR UNCRACKED CONCRETE ELEMENTS

I CALL NONLINCS, SIG, AT, BT, El, E2, E3, AR, THICK, AL, BE, GA, DE, IS, NEL, 
♦IEL,ILIN) 

SUBROUTINE SETUP PLACES THE ELEMENT STIFFNESS MATRIX 
AND LOAD VECTOR INTO THE GLOBAL STIFFNESS MATRIX 
AND LOAD VECTOR

I CALL SETUPCA,B,S, FL, NVEL, LJ, NVAR, LBAND) 
WRITE(1) (CSC I), 1 = 1,3),CSR,El,E2,E3, EQSIG,CR1 
IFCILIN. GT. 0) WRITE(l) ( CBLC I, J), JM, 6 J, 1 = 1, 3) 
CONTINUE 
CALL PSET(FL, 8) 
KKK=NEL+1 
LOOP FOR THE CALCULATION OF THE STIFFNESS MATRICES 
AND LOAD VECTORS OF THE STEEL ELEMENTS AND THEIR 
INSERTION INTO THE GLOBAL MATRICES 
DO 191 IEL=KKK,JNEL 
ARST=ABOT 
IFCIEL. GT. INEL) ARST=ATOP 
IFCILIN. EQ. 0. AND. JC. GT. 0) GO TO 181 
IFCILIN. GT. 0. AND. JC. GT. -1 > GO TO 181
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180

181
184
182

183
191

281
282

201

202
285

284
291

READ(4) (ICO(J), J=L 4)
CALL LJMATCLJi NNSEL. NVAR, ICO,JX, IEL) 
WRITE(3) (LJdh 1 = 1, 4) 
ST=ES*ARST/XLEN(IEL-NEL)
SUBROUTINE STIFF PLACES THE BAR ELEMENT STIFFNESS 
INTO THE STIFFNESS MATRIX FOR STEEL ELEMENTS
CALL STIFFEST, 0. 0) 
DO 180 1 = 1,8
WRITE(7) (8(1,J),J=l,8)
GO TO 182
READ(3) (LJ(I), 1 = 1, 4) 
DO 184 1 = 1,8
READC7) (S(I, J), J=l, 8)
IF(JC. LT. JJJ. AND. IC. EG. 0) GO TO 183
IFtlLIN. EG. 0) GO TO 183
FL(1)=-ARST*SIG(IEL, 1) 
FL(3)=-FL(1)
CALL SETUP(A,B,S, FL,NVELS, LJ, NVAR, LBAND) 
CONTINUE
KKK=JNEL+1
LOOP FOR THE CALCULATION OF THE STIFFNESS MATRICES 
AND LOAD VECTORS OF THE 4 NODE GOODMAN JOINT 
ELEMENT
DO 291 IEL=KKK, LNEL
CALL PSET(FL, 8)
IFCILIN. EQ. 0. AND. JC. GT. 0) GO TO 281
IFdLIN. GT. 0. AND. JC. GT. -1) GO TO 281
READ(4) (ICO(J),J=i, 6)
CALL LJMAT(LJ,NNSP, NVAR, ICO,JX,IEL)
WRITE(3) (LJ£I),1=1,8)
GO TO 282
READO) (LJ(J), J=l, 8)
CALL UMAT(CC,LJ, U, NVSEL)
MEL=IEL-NBSE-NTSE
IF(SIG(MEL,1). GE. 0) GO TO 285
CALL PRESET(S, 8, 8) 
DO 201 1=1,7,2 
S(I,I)=1E1O 
CONTINUE
S(1,3)=5E9 i
SCI,5)=-5E9
S(l,7)=-lE10
S(3,5)=-lE10
S(3,7)=-5E9
S(5,7)«5E9
DO 202 1=1,7,2
DO 202 J=I, 7, 2
S(J,I)=SCI,J)
CONTINUE. 
GO TO 284 
KEL=IEL-JNEL 
IFCIEL. GT. KNEL) KEL=IEL—KNEL 
SDIA=BDIA
IFCIEL. GT. JNEL) SDIA=TDIA
SUBROUTINE BONDEL CALCULATES THE STIFFNESS MATRIX 
AND LOAD VECTOR FOR THE GOODMAN JOINT ELEMENT
CALL BONDEL(S, U, XLEN, SDIA, NBAR, KEL, FL. ILIN, JC, IBF, CF) 
CALL SETUP(A,B, S, FL, NVSEL, LJ, NVAR, LBAND) 
CONTINUE 
IFdLIN. EQ. 0. AND. IC. GT. 0) GO TO 132
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372

20
21

713

918
719

*NEL, LJ,AT,BT/ILIN, IC, IPR,DELT,DESH,CDR,NVEL, ICR,ANG,CR1,KR,RATIO
*,CHECK,STR,AIN,JNEL,XLEN,ES,FT,CC,IBF,KNEL,LNEL)

IFCRATIO. GT. CHECK. AND. IC. EQ. 0) GO TO 724
DO 20 IEL-1, JNEL
JJ=3
IF(IEL. GT. NEL) JJ=1
IF(ICRdEL). NE. 1) GO TO 372
TRANSLATION OF CRACKED ELEMENT COORDINATE AXES 
TO LOCAL AXES
COCCOS(2*ANG(IEL))
SI=SIN(2*ANGdEL))
SIGdEL,l>=0.DO
SIG(IEL,2)=. 5D0*(SIG(IEL, 1)+SIG(IEL, 2)> —SIGCIEL, 3)*SI 

5D0*(SIGdEL, D-SIGtIEL, 2) )*C0
SIG(IEL,3)=0. DO
EXP=. 5D0*(EPS(IEL, 1)+EPS(IEL,2))+. 5D0*(EPS(IEL, 1>-EPS(IEL,2)) 

$*C0+. 5D0*EPSdEL, 3)*SI
EYP=. 5D0*(EPS(IEL, 1 )+EPSdEL,2))-. 5D0*CEPS(IEL, 1)-EPS(IEL.2)) 

$#CD-. 5D0*EPSdEL, 3)*SI
EXYP*=-(EPS( IEL, 1 )-EPS( IEL, 2) ) »SI+EPS(IEL, 3 ) *C0
EPS(IEL,1)=EXP
EPS(IEL, 2)=EYP
EPSCIEL,3)=EXYP
ALL ELEMENT STRESSES AND STRAINS AT THE BEGINNING 
OF A LOAD OR TIME INCREMENT ARE STORED

: DO 20 I«l,JJ
STRdEL, I)=SIG(IEL I)
AINdEL, I)=EPSdEL, I)

• CONTINUE 
IF(KR. NE. 1) GO TO 719 
DO 718 I = 1,NNET 
CCd)=DUd)

I CONTINUE 
IF(IC. EQ. 0) GO TO 918 
IF CRACKING OCCURS DURING A TIME INCREMENT THE TIME 
INCREMENT IS ADJUSTED 
TIME=TIME-COR*DELT 
DELT-DELT*(1. DO-COR) 
GO TO 719

I TTT=TTT-COR*(TTT-S£S) 
XXX=TTT/ILO

' IFCIC. GT. 0) WRITE(6, 1351) DELT,TIME 
IFCIC. EQ. 0) WRITE(6>375) XXX
DO 723 I=1,NNET

I DUd)=CCd) 
■ IFCIPR. EQ. 0) GO TO 717

SUBROUTINE EXPAND PRINTS THE NODAL DISPLACEMENTS 
CALL EXPANDtDD, NMAT, CC, JX, NNOD, NVAR)

’ CALL PSET(B,NNET)
IFCKR. EQ. 2) 
IFCXXX. GT. 2. 
IF(IC. GT. 0) 
IFCRATIO. GT. 
GO TO 86

KR=O 
) GO TO 85 
GO TO 606 
CHECK) GO TO 88

88

86

IFCJC. GT. IT) WRITE(6,111) JC, IT
IFCJC. GT. IT) GO TO 85
DDET=DET
JC=JC+1
GO TO B7 
JOI
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606

35
999

40
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IFCKR. EQ. 1) GO TO 07 
IFCABSCTTT-ILO). LT. IE-6) GO TO 606
SSS=TTT
TTT=TTT+1. DO
IFCTTT. GT. FLOAT<ILO)) TTT=ILO
IFdLIN. EQ. 0) YYY=XXX
IFCILO. GT. 0) XXX=TTTZILO 
GO TO 87
IFCKV. EQ. 0) GO
IF(KR. EQ. 1) GO
IC-IC+1
IFtIC. EQ. 1 ) GO
DELT=TIF*DELT1

TO 
TO

85
87

TO 350
IFCABSCTIME-TL). LT. IE-6) GO TO 85
GO TO 603
WRITEC6, 112) 
GO TO 3
STOP
OUTPUT FORMATS
FORMATC '1', IOXi ' »*##*####«•*#**** 

1LYSIS *#*##*##*«*##«#* ',ZZ)
2-DIMENSIONAL FINITE ELEMENT ANA

41 F0RMATC7I5. 3F10. 0)
42 FORMATCZ. 5X. 'PROB. NO. 15. 3X. 'TOTAL UNKNOWNS'. 15. 3X, 'BANDWIDTH', I

15. 3X. 'MATRIX SIZE', 18)
43 
45
46 
47 
48 
50 
92

FORMATC5F10. 0)
FDRMATC25I3)
FORMATCZ, .' CONSTRAINTS ON',2015)
FDRMATC11I5)
F0RMATC4F10. 0)
FORMATCZ, 5X, 'DETERMINANT IS ',E20. B)
FORMATCZZ. 5X» 'MODULUS OF ELASTICITY

93
1 '. F6. 4, ZZ, 5X, 'NUMBER OF CONSTRAINTS NCON = ',16) 
F0RMATC8F10. 0)

', F12. 1. 5X, 'POISSONS RATIO

94 FORMATCZZ, 5X, 'BOUNDARY CONSTRAINED VALUES ARE'.Z) 
95

101
F0RMATC5X,8E15. 7)
FORMATCZZ, 5X

1RATI0
SOLUTION AFTER THE NO. OF ITERATIONS

* F10. 5. ZZ)
, 15) 5X, 'AND

110 FORMATCZZ,5X,'GLOBAL LOAD VECTOR IS. '.Z)
111 FORMATCZZ,5X,'TOTAL ITERATIONS^ ',IS,3X,'IS EQUAL TO THE TOTAL ALL 

1OWED NO. OF ITERATIONS = ',15,ZZ)
112 FORMATCZZ, 10X, '«#****##*#»**###«*«###»**#«##«■####«##**#*#«»#♦## EN

135 FORMATC/Z, 5X. 'ILIN 
112. ZZ. 5X, 'ILO = ',

375 
710 
716 
901

1350 
1351 
1500 
1501

2AL । F10. 4/5X
I = '. 12. 5X, 'IT 
13.5X» 'THICK = 
HECK = ', F7. 3,

= ', 13. 5X, 'IGR » ', 12. 5X, 'IPS®
', F7. 3, 5X. 'GR - DENSITY OF MATERI

FORMATCZZ, 5X, 'SOLUTION FOR ', F8. 4,3X, 'OF TOTAL LOAD'.ZZ) 
FORMATCZZ, 5X, '**»» LINEAR ELASTICITY SOLUTION ***»',ZZ) 
FORMATCZZ, 5X, '**#* RESIDUAL LOAD VECTOR IS ****', ZZ) 
F0RMATC3I5, 2F10. 0)
FORMATCZZ, 5X, '**** SOLUTION AFTER CREEP INCREMENT',15, ' ****', ZZ) 
FORMATCZ,' TIME INCREMENT = ', F9. 3, 5X, 'TOTAL TIME ELAPSED=', F9. 3) 
FORMATCIOX, ' ------------ “---------
FORMATCIOX, 

1**', ZZ)
####*#»*»»#»***# LINEAR ELASTIC it**#***#********')//)

SMALL DEFLECTION
1502 FORMAT(1OX ' #*###**##*»«»»«* LARGE DEFLECTION

CREEP, **************
ELASTIC «■*»*«■*******

1503 FORMATCIOX. LARGE DEFLECTION
1504 FORMAT(10X PLANE STRESS ANALYSIS ♦♦»***#»»«*****
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1506 FORMAT!//* 15X* '##**#**«■»«■**#««#***»*« GOOD LUCK »*#**«•*•»■«"»■*#**#*»*

2 
1

1

72

10

30

1#*** S////) 
END
SUBROUTINE PRESET INITIALIZES A 2 DIMENSIONAL 
ARRAY 
SUBROUTINE PRESET!A,M* N) 
DIMENSION AIM*1) 
DO 1 I-liM 
DO 2 J=1*N 
ACI* J)=0. DO 
CONTINUE 
RETURN 
END 
SUBROUTINE PSET INITIALIZES A 1 DIMENSIONAL ARRAY 
SUBROUTINE PSET(A*M) 
DIMENSION All) 
DO 1 1 = 1. M 
ACI)=O.DO 
RETURN 
END 
SUBROUTINE LJMATCLJ* NNODEL* NVAR* ICO* JX< IEL) 
DIMENSION LJC1).IC0C1).JXC1) 
DO 72 J=i*NNODEL 
J1=(J-1)*NVAR 
J2=NVAR*(IC0(J)-l> 
DO 72 1=1.NVAR 
LJtI+Jl)=JX(J2+I) 
RETURN 
END 
SUBROUTINE UMAT DEFINES THE NODAL DISPLACEMENTS 
FOR THE ELEMENT 
SUBROUTINE UMATCCC*LJ.U*NVEL) 
DIMENSION CCCD.LJCD.UCl) 
DO 30 1=1*NVEL 
IKK=LJCI) 
IF(IKK) 20* 10* 20 
UCI)=O. DO 
GO TO 30 
UCI)=CC(IKK) 
CONTINUE 
RETURN 
END 
SUBROUTINE STIFF PLACES THE BAR ELEMENT STIFFNESS 
INTO THE STIFFNESS MATRIX FOR STEEL ELEMENTS 
SUBROUTINE STIFF(S, ST*OR) 
DIMENSION SC8* 8) 
CALL PRESETCS*8*8) 
CO-CDS C OR)*COS C OR)*ST 
SI=SINCOR)*SINCOR)*ST 
SCI* 1)=CO 
SC3*1)=-C0 
SCI* 3)=-C0 
SC2*2)=SI 
SC2* 4)=-SI 
SC4* 2)=-SI 
SC3* 3)=C0 
SC4*4)=SI 
RETURN 
END 
SUBROUTINE XYGRIDCX* Y, XL* XW, D* DP* NELW* NELL* IX* NVAR* NN* IS. IT* IB)
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170

DIMENSION XCD, Y(l), IXd) 
CON=(D-DP)/(IB-IT) 
NL=NELL+1 
L=NELW+3 
Xl=0
DO 200 1=1,NL 
M=(I-1)*L+1 
N=M-1
DO 170 J=1,L 
X(N+J)=X1 
CONTINUE 
X1=X1+XI 
Y(M)=XW 
Y(M+1)=XW-DP 
YCM+2)=YCM+1)
N=M+3
K=NELW-3+N
IFCIT. EQ. 0) N=N-1 
DO 190 J=N, K 
Y(J)=XW-DP-(J-N+l)*CON 
IFCJ.NE. K) GO TO 190

190
200

300

CONTINUE
Y(K+2)=Y<K)-CXW-D) 
CONTINUE
DO 300 1 = 1, NN 
I2=NVAR*I 
I1=I2-NVAR+1 
IX(I1)=1 
IXCI2)=1
IF(I. GE. (NN-L+1)) 
M2=I+NELW-IB 
M3=I+NELW-IT+1
IF(MOD(M2> L). EG. 0) 
IF (MOD (M3, L). EQ. 0) 
CONTINUE

IX(I1)=O

IXCI2)=0 
IXCI2)=0

I2=L*2*CIS+1)
IXCI2)=0
RETURN
END
SUBROUTINE ICOGRCNELL, NELW, IT, IB)
L=3
IB1=IB+1
DO 100 1=1,NELL 
DO 100 J=1,NELW 
I1=I*(NELW+L)+J
IF(J. GT. IT1) 
IF( J. GT. IB1) 
I2=I1-NELW-L

11=11+1

13=12+1 
IF(J. EQ. 
IFCJ. EQ. 
JB=O 
WRITE(l) 
12=13 
13=11+1 
IF (J. EQ. 
IF (J. EQ. 
WRITEC1)

IT1) 
IB 1 >
II,

13=13+1 
13=13+1

12, 13, 1, JB

IT1)13=13+1
IB1) 13=13+1
II, 12, 13, 1, 0
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100

200

14
45

4

5

20 
10

30 
2

3

CONTINUE 
N=2 
I2=NELW+N 
IFCIT. EG. 0) N=1 
DO 200 J=l, N 
DO 200 1=1.NELL 
11 = 12 
I2=I1+NELW+L 
URITE(l) 11,12,1, 0 
13=12-1 
14=11-1 
WRITEC2) 11, 12, 13, 14, 1, 0 
IFC I. EQ. NELL) I2=IT+2 
CONTINUE 
RETURN 
END 
SUBROUTINE SGEOMCM,N,ICO,NNS,XLEN, X, NE, JGR) 
DIMENSION ICO(l),XLENC1), XC1) 
DO 14 II=M,N 
JJ=I.I-NE 
IFCJGR. EQ. 0) READC5, 45) <ICO<J), J»l, NNS) 
IF(JGR.EQ. 1) READC 1) (ICDCJ),J=l» NNS) 
WRITEC4) (ICOCJ),J=1,NNS) 
XLEN(JJ)=ABSCX(IC0(2))—XCIC0C1))) 
CONTINUE 
F0RMATC4I3, F20. 6) 
RETURN 
END
SUBROUTINE DLOAD(BL, FL, CS, SIG, AR, H, El. E2, E3, NEL, IEL, IC, ILIN, 

*Z, DESK, ICR,ANG, CR1)
DIMENSION BLC3,1), FL(l),ZC3,6),CS(1),SIG(800, 1). ICR(1), ANGC1) 
IF(IC. EG. 0) GO TO 10 
IFCICRCIEL).EG.0) GO TO 5 
DO 4 11 = 1,6 
ZC1, II)=O. DO 
ZC2, II)=CR1*BLC2, II) 
ZC3, II)=O. DO 
GO TO 10 

' XA=E1*E2
XB=E1*E3 
DO 20 J=l, 6 
Z(1,J)=E1*BL(1, J)+XA*BLC2, J) 
ZC2, J)=E1*BLC2, J)+XA*BLC1,J) 

। ZC3,J)=XB*BL(3,J) 
' EE=AR*H

DO 1 1=1,6 
XX=O. DO 
YY=O. DO 
DO 2 J=l,3 
IFCILIN. EQ. 0) GO TO 30 
YY=YY+BL(J,I)*SIG(IEL, J) 
IFCIC. EQ. 0) GO TO 2 

i XX=XX+Z(J, I)*CS(J) 
! CONTINUE

FLCI)=EE*(YY-XX) 
IFC IC. EQ. 0) GO TO 3 
FL(I)=FL(I)+EE*DESH*(Z(1, I)+Z(2, I)) 

I IFCILIN. GT.0) GO TO 1
FLCI)»-FL(I) 
CONTINUE1
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50
40

IF(ICR(IEL). EQ. 0) GO TO 40 
DO 50 J=l. 5, 2
A=FL(J)*COS(ANG(IEL))-FL(J+l)*SIN(ANG(IEL)) 
B=FL(J)*SIN(ANG(IEL))+FL(J+l)*COS(ANG(IEL)) 
FL(J)=A

। FL(J+1)=B
> RETURN 

END 
SUBROUTINE CEPSIG CALCULATES AND PRINTS THE STRESSES 
AND STRAINS DUE TO ELASTIC AND TIME DEPENDENT 
EFFECTS FOR ALL ELEMENTS. CONCRETE ELEMENTS ARE 
CHECKED FOR FAILURE
SUBROUTINE CEPSIG(BL, CS, SIG, EPS, DD, V, Z, EQSIG, ANU, E, El, E2,

*E3,CSR.NEL,LJ, AT,BT, ILIN, IC, IPR,DELT,OESH.COR.NVEL, ICR,ANQ,
*CR1,KR,RATIO,CHECK,STR, AIN, JNEL,XLEN,ES. FT,CC, IBF,KNEL,LNEL) 

DIMENSION BL(3,1),CS(1),SIG(SOO,1),EPS(BOO,1),DD(1),
1V(1),2(3, 1), DSIG<4), DEPS(3), DSIGC(4), LJ(1),AT<1), BT<1)
2,DSIGSH(3).DEPSH(3), ICR(1),ANGC1),STR(800, 1).AIN(SOO, 1),DS<600,3) 
3, DE (BOO, 3). XLENd ), CC(1), IBF (2. 1)

SIGMX=O. DO
URELM=O. DO
URELi=O. DO
IF(KR. EQ. 1. AND. RATIO. LT. CHECK) KR=2 
IF(KR. EQ. 1. AND. IC. GT. 0) KR=2 
COR=O. DO
DO 4 IEL=1,NEL
READ(l) (CS(I), 1 = 1, 3), CSR, E1.E2, E3, EQSIG. CR1

((BLtLJ).^!^), 1 = 1.3)IF( ILIN. GT. 0) READ(l)

21

49

41

50

1 
51

7

6

READ(2) (ATU). 1 = 1, 3),(BT(I).1=1.3)
READ(3) (LUU),1=1.6)
IFCILIN. EQ. 0) READ(2) ((BL(I.J).J=1.6). 1 = 1, 3) 
CALL UMATCDD.LJ, V, NVEL) 
IFUCR(IEL). EQ. 0) GO TO 50
DO 49 1 = 1.NVEL. 2
V1=VU)*COS(ANG(IEL))+V(I+i)#SIN(ANO(IEL))
V2=V( I +1)*COS(ANG(IEL))-V(I)*SIN(ANQ(IEL)) 
VU)=V1
V(I+1)=V2
DO 41 J=l, 6 
2(1, J)=0. DO
Z(2,U)»CR1*BL(2,J)
ZC3. J)=0. DO
GO TO 51
XA=E1*E2
XB=E1*E3
DO 1 J=l,6
2(1. J)=E1*BL(1,J)+XA*BL(2, J)
Z(2» J)=E1*BL(2, J)+XA*BL(1.J)
Z<3.J)=XB*BL(3,J) 
DO 6 1=1.3 
ZZ=O.DO
XX=O.DO 
DO 7 J=l,6 
ZZ=ZZ+BL(I, J)*V(J) 
XX=XX+Z(I. J)*VCJ) 
DSIGCI)=XX
SIGCIEL. I)=SIG(IEL. I)+DSIG(I) 
DEPSCI)«ZZ
EPSCIEL, I)=EPS(IEL. D+DEPSCI) 
IF(IC. EQ. 0) GO TO 24
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26
24

42

XA=E1*E2
DSIGCC1)=E1*CSC1>+XA*CS<2)
DSIGC(2)=E1*CS(2)+XA*CS(1>
DSIGCC3)=E1*CSC3)*E3
DSIGSHC1)=CE1+XA)*DESH
DSIGSHC2)=DSIGSH<1)
DSIGSH(3)=0.0
DO 26 J=l.3
DSIQCJ)=DSIG(J 5-DSIGCCJ)+DSIGSHCJ)
SIGCIEL#J)=SIG(IEL# J)-DSIGC(J)+DSIGSH(J)
IFCRATIO. GT. CHECK. AND. IC. EG. 0) GO TO 22
DO 42 1 = 1.3
DSC IEL, I)=SIQCIEL# 
DEC I EL# D-EPSCIEL, 
CONTINUE 
IFCICRCIEL). EQ. 15

I)-STR(IEL,I) 
I)-AIN(IEL I)
GO TO 32

SIGM=. SDO*CSIGCIEL, 1)+SIGCIEL# 2) )+SQR“ ( (. 5* (SIG (IEL# 1) 
i-SIGCIEL. 2)))**2+SIG(IEL. 3)**2)

IFCSIGM.LT. SIGMX) GO TO 22
SIGMX=SIGM
IANQ=IEL
GO TO 22

32 C0=C0SC2*ANGCIEL))
SI=SINC2*ANG(IEL))
SYY=SIGCIEL, 2)

. DSY=DS(IEL#2)
SIGCIEL# 1)=. 5D0*SYY—. 5D0*SYY*C0
SIGCIEL# 2)=. 5D0*SYY+. 5D0*SYY*C0
SIGCIEL.3)=-. 5D0*SYY*SI

DS(IEL# 1)=. 5D0*DSY-. 5D0*DSY*C0
DSCIEL#2) = 5D0*DSY+.5D0*DSY*CQ
DSCIEL.3)=-. 5D0*DSY*SI

EPX=EPSCIEL#1)
EPY=EPSCIEL# 2)
EPXY«EPSCIEL#3)
EDX=DECIEL#1)
EDY=DE(IEL#2)
EDXY=DECIEL#3)
EPS(IEL#D = 5D0*CEPX+EPY)+. 5D0*CEPX-EPY)*C0-. 5D0*EPXY*SI 

EPSC IEL# 2)=. 5D0*CEPX+EPY)-. 5D0*CEPX-EPY)*C0+. 5D0*EPXY*SI 
EPSCIEL# 3)=CEPX-EPY)*SI+EPXY*C0
DECIEL#1)=.5D0*CEDX+EDY)+. 5D0*(EDX-EDY)*C0-. 5D0*EDXY*SI
DE(IEL#2)=.5D0*CEDX+EDY>-. 5D0*(EDX-EDY)*C0+. 5D0«EDXY*SI
DE(IEL# 3) = (EDX-EDY)*SI+EDXY*CO
IFCIPR. EG. 0) GO TO 4
IFCIEL. EQ. 1) WRITEC6. 12)
CONTINUE
KKK=NEL+1
DO 60 IEL=KKK#JNEL
READC3) CLJCJ). J=l# 4)
CALL UMATCDD#LJ#V#4)
UREL=V(3)-V(1)
DEPS C1)=UREL/XLEN(IEL-NEL)
DSIG(1)=ES*DEPS(1)
SIGCIEL# 1)=SIGCIEL# D+DSIGCl)
EPSC IEL# 1)=EPSCIEL, D+DEPSC1)
DSC IEL# 1)=SIG(IEL# D-STRCIEL# 1)
DECIEL#1)=EPSCIEL#1>-AIN(IEL#1) 
CONTINUE
IFCRATIO. GT. CHECK. AND. IC. EQ. 0) GO TO 27

22

4

60

IFCSIGM.LT
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IF<SIGMX.LT. FT) GO TO 28
ICR <IANG > = 1
ANQ(IANG)=. 5D0*ATAN(2*SIG(IANG, 3) /(SIG<IANG, 1)-SIG(IANG, 2)))
AN=2*ANG(IANG)
SX=. 5*(SIG(IANG, D+SIGC IANG, 2) )+. 5*(SIG(IANG, 1 )-SIG( IANG, 2) ) 

4*COS(AN)+SIG(IANG, 3)*SIN(AN)
IF(SIGMX. GT. (SX-. 1). AND. SIGMX. LT. (SX+. 1) ) GO TO 70
ANG(IANG)=ANG(IANG)-ASIN(1. 0)

70 AI 1=90. O*ANG(IANG)/ASIN(1. 0)+90.0
WRITECA,38) IANG,All
DSIGM=. 5D0*(DS(IANG, 1)+DS(IANG,2))+8QRT((. 5*(DS(IANG, 1 )- 

*DS(IANG, 2)))**2+DS(IANG, 3)**2)
COR-£ SIGMX-FT)/DSIGM
IFCCOR. GT. 1. 0) COR=1. 0
IF(KR. EQ. 2) C0R=0.
KR=1

28

29

33

34

27

IPR=O 
GO TO 27 
KKK=JNEL+1 
DO 33 IEL=KKK, LNEL 
READ<3) (LJ(J),J=l, 8) 
CALL UMAT<CC, LJ, V, 8)
IF( IEL. NE. KKK. AND. IEL. NE. (KNEL+1 ) ) GO TO 29 
IF(IBF(li 1). EQ. 1) GO TO 29 
UREL=ABS(V(7)-V(1))
IFtUREL. GT. . 0012) UREL1=UREL
IF(IBF(2, IEL-JNEL). EQ. 1) GO TO 33 
UREL=ABS(V(5)-V(3)) 
IFtUREL. LT. URELM) GO TO 33 
URELM=UREL 
MAX—IEL-UNEL 
CONTINUE 
IF(UREL1. LE. URELM) GO TO 34 
IBF(1,1)=1 
KR=1 
IPR=O 
GO TO 27 
IFCURELM. LE. . 0012) GO TO 27 
IBF(1,MAX+1)=1 
IBF(2, MAX)=1 
KR=1 
IPR=O 
PRINT*,' FAILURE IN ELEMENT ',MAX 
IF(RATIO. GT. CHECK. AND. IC. EQ. 0) GO TO 25 
DO 100 IEL=1,JNEL 
MM=3 
IFUEL. GT. NEL) MM=1 
IF(KR. NE. 1) GO TO 201
DO 200 1=1,MM 
SIGCIEL, I)-STR(IEL, I)

200
201

EPSCIEL,I)=AIN(IELI)
CONTINUE 
IF< IPR. EQ. 0) GO TO 100

100 
38
12

WRITER 13) IEL, (SIGCIEL, J), J=l, MM) 
WRITE(6, 14) (EPSCIEL, J), J=l, MM)
CONTINUE 
FORMAT(/,' ELEMENT

: FORMAT C//, 2X 
19X, 'DYYS 9X, 
2, 9X, 'EYY', 9X

,14, ' IS CRACKED AT AN ANGLE SF10. 4)
'ELEM. ',7X, 'TXX',9X, 'TYYS9X, 'TXYS9X, 'DTSS9X, 'DXX S 
DXYS9X, 'DES',AX, 'EQSTRESS',4X, 'EQSTRAIN',/, 14X, 'EXX ' 
'EXY',8X, 'CEXX'.BX, 'CEYY',8X, 'CEXY',7X, 'DCEXXS7X, 'DC

SIGMX.LT
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3EYY', 7X, 'DCEXYS //)
13 F0RMATt2X, 15, 10E12. 3)
14 F0RMATt7X, 9E12. 3)
25 RETURN

END
SUBROUTINE LAYOUT SETS OUT THE GEOMETRY OF THE PROBLEM
AND NUMBERS THE DEGREES OF FREEDOM
SUBROUTINE LAY0UT(X,Y, ICO, IX, JX, AREA, NE, NN,NVAR, NMAT,NDEG, NNODEL,

♦NNSEL,XLEN,NNSP, INEL,JNEL, KNEL, LNEL, JGR, COVER)
DIMENSION Xtl),Ytl),ICOtl),IX11),JX(1). AREAt1), XLEN(l) 
NNN=NN0DEL+2 
NNS=NNSEL+2 
NNP=NNSP+2
IFtJGR. EG. 1) READt5, 49) NELL, NELW, IT, IB, IS, XL, XW, D, DP
IFtJGR. EG. 1) CALL XYGRIDtX, Y, XL, XW, D, DP, NELW, NELL, 

♦ IX, NVAR, NN, IS, IT, IB)
DO 10 1=1,NN 
I2=NVAR*I 
I1=I2-NVAR+1 
IFtJGR. EQ. 0) 
CONTINUE 
IFtJGR. EG. 0) 
C0VER=XW-D 
IFtJGR. EQ. 1) 
REWIND 1 
REWIND 2
DO 11 1=1,NE 
IFtJGR. EQ. 0) 
IFtJGR. EG. 1)

10

15

3
81

80
82

READ(5,43) XtI), Y(I), tIXtJ),J=I1, 12)
READ (5, 43) XW, D

CALL ICOGRCNELLiNELW, IT, IS)

READ(5,45) fICOtJ), J=1*NNN) 
READtl) (ICD(J)( J=LNNN)

WRITEt4) tICOtJ),J=l,NNN)
Nl=ICOtl) 
N2=IC0C2) 
N3=IC0t3) 
Xl=XtNl) 
X2=XtN2> 
X3=X(N3) 
Y1=Y(N1) 
Y2=YtN2) 
Y3=Y(N3) 
AREAtI)=(X1*Y2+X2*Y3+X3*Y1-Y1«X2-Y2*X3-Y3*X1)/2. DO 
CONTINUE 
III=NE+1 
JJJ=INEL+1 
CALL SGEOMtIII, INEL, ICO, NNS, XLEN, X, NE, JGR) 
IFfINEL. NE. JNEL) CALL SGEOMfJJJ,JNEL, ICO,NNS,XLEN, X,NE, JGR) 
KKK=JNEL+1 
DO 15 JJ=KKK,LNEL 
IFtJGR. EQ. 0) READt5, 45) tICO(J),J=1,NNP) 
IFtJGR.EQ. 1) READ(2) tICOtJ),J=1,NNP) 
WRITEt4) tICOtJ), J=l, NNP) 
CONTINUE 
NMAT=NVAR*NN 
NDEG=O 
DO 12 1=1, NMAT 
IF(IXtl)) 1,2,3 
IFtIXtD-l) SO,80,81 
NDEG=NDEG+IX(I) 
GO TO 82 
NDEG=NDEG+1 
JXtI)=NDEG
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1

2 
12 
43 
45 
49

GO TO 12
NDEG=NDEG+IX(I)+1 
JXCI)=NDEG 
GO TO 12 
JXCD-0 
CONTINUE
F0RMATC2F10. 0. 613)
F0RMATC16I3)
F0RMATC5I5, 4F10. 0)
RETURN 
END
SUBROUTINE BONDEL .CALCULATES THE STIFFNESS MATRIX 
AND LOAD VECTOR FOR THE GOODMAN JOINT ELEMENT
SUBROUTINE BDNDELCS.U.XLEN.DIA. NBAR. IEL,FL. ILIN,JC. IBF.CF) 
DIMENSION SCS. 8),U(1),XLENC1).R(3), Q(3), FL(1), IBFC2. 1)
DATA RC1), RC2), RC3)/-. 774 597,0. , . 774 597/ 
GC1)=.555556 
GC2)=. 888889 
Q(3)=. 555556 
Si 1=0.
S31=0.
S33=0.
T1=O.
T2=0. 
IFCIEL.EQ. 1) Q(1)=1E1O 
PD=ASINC1. 0)*DIA*NBAR*XLENCIEL)*CF 
U1=U(7)-UC1)
U2=UC5)-UC3)
CALL PRESETCS. B, S) 
DO 10 1 = 1, 3 
21=. 5*C1-R(D) 
B2-. 5*(R(I) + 1) 
VREL=B1*U1+B2*U2 
UREL=ABSCVREL)
IFCUREL. GT. . 0012) VREL=VREL/UREL*. 0012
IFCUREL. GT. . 0012) UREL=. 0012
SK=PD*(1. 95E6-4. 7E9*UREL+4. 19E12*UREL*UREL-1. 32E15*(UREL)**3) 
S11=S11+GCI)*B1*B1*SK
S31=S31+G(I)*B1*B2*SK
S33=S33+QCI)«B2*B2*SK
IFCILIN. EQ. 0) GO TO 10
IFCILIN. GT. 0. AND. JC. EG.-1) GO TO 10
IFCVREL. EG. 0) GO TO 10
TS=VREL/UREL*C1. 95E6*UREL-2. 35E9*UREL**2+1. 39E12*UREL**3- 

$. 33E15»UREL**4)
T1=T1+GCI)*B1*TS
T2=T2+QCI)*B2*TS

10 CONTINUE
SCI. 
SC3.
S(5, 
SC7,

1)=S11
1)=S31 
1)=-S31 
1)—Sil

SC3.3)=S33
SC5. 3>—S33
SC7,3)=-S31
SC5,5)=S33
SC7.5)=S31
SC7.7)=S11
IFCILIN. EG. 0) GO TO 15
IFCILIN. GT. 0. AND. JC. EG.-1) GO TO 15
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«

15

20
30

5

10
40
41

FL(7)=T1*PD •
FL(5)=T2*PD
FL(3)=-FL(5)
FL(1)=-FL(7)
DO 20 1 = 1, 7, 2
DO 20 J®I, 7, 2
S(I, J)=S(J, I) .
CONTINUE
RETURN 
END
FUNCTION ESHRCTIME,TCREEP,TDRY,DELT, SHCOEF,TSH) 
TIM=TIME-DELT
AA=226+TIM**1.336
ONE®. 1286*DELT*TIM**(. 336)/(AA*«2)
BB=(226+TIM**(1. 336))*. 336*TIM**(-. 664)
TWO®. 1286*. 5*DELT*DELT*(BB-2. 672*TIM**(. 672))/(AA**3)
ESHR=ONE+TWO 
RETURN 
END
SUBROUTINE CSRATE CALCULATES THE CREEP STRAIN RATE 
INCREMENTS. ----------- - ------------ -- ---------------- -------
USED

BAZANT AND PANULA'S EQUATION FORM IS
SUBROUTINE CSRATE(EQSIG, BCOEF, DCOEF, POWER,AN,TSH,CSR,DT, DCSR) 
TW0®32. 93+DT**(. 9144)
CSR®3. 39E-5*DT**(-. 0856)/(TW0**2)*EQSIG
ONE®(32. 93+DT**(. 9144))*(-. 0856)*DT*«(-l. 0856)
DCSR=3. 39E-5*(DNE-i.828B*DT**(-. 1712))/(TW0**3)*EQSIG 
RETURN 
END
SUBROUTINE EXPAND PRINTS THE NODAL DISPLACEMENTS 
SUBROUTINE EXPANDCAMODE,NAM, VV, JX,NDS, NVAR) 
DIMENSION VV(1), AMODE(i),JX(1),DD(1) 
DO 5 I®1, NAM 
AM0DECI)®0. 0 
IF(JX(I).EQ.0) GO TO 5 
AMODE(I)=VV(JX(I)) 
CONTINUE 
WRITEC6,40) 
DO 10 I®1,NDS 
I2=NVAR*I 
I1®I2-NVAR+1 
WRITE(6,41) I, (AMODE(J),J=I1, 12) 
CONTINUE •
FORMATC///, 5X, 'N0DE',9X, 'U-DISPL. S9X, 'V-DISPL. ',/) 
FORMAT( 17, 8X, E12. 6, 5X, E12. 6) 
RETURN 
END
SUBROUTINE SETUP PLACES THE ELEMENT STIFFNESS MATRIX
MS WW VECTOR INT0 THE GLOBAL STIFFNESS MATRIX 
AND LOAD VECTOR
§ygSP.yUNE SETUP (A, B, S, FL, NVEL, LJ, NVAR.- LBAND)
D0M12SI=l A 1 ' S(11' S(8' 8*’FL(1’'LJ(1’
LJR=LJ(I) N
IF(LJR. EQ. 0) GO TO 12 •
BCLJR)®B(LJR)+FL(I) 
DO 11 J=I,NVEL 
LJC=LJ(J) 
IF(LJC. EQ. 0) GO TO 11 
IFCLJR-LJC) 9,10,10
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10

9 
13 
11 
12

4

5 
&
7 
8

25

K=(LJC-1)*LBAND+LJR 
GO TO 13 
K=(LJR-1)*LBAND+LJC 
A(K)=A(K)+9(bJ) 
CONTINUE 
CONTINUE 
RETURN 
END 
SUBROUTINE BANDWH CALCULATES THE HALF BANDWIDTH 
SUBROUTINE BANDWH' ICO, JX. LJ, NE, NVAR, LBAND, NNOD) 
DIMENSION ICO(l), JX(1),LJ(1) 
LBAND=O 
NV2“2*NVAR 
DO 3 1=1,NE 
READC4) (ICO(M),M=l, NNOD) 
DO 4 J=i,NVAR 
DO 4 K=l,NNOD 
K1=(K-1)*NVAR 
LU(J+Ki)=JX(NVAR*ICO(K)-NVAR+J) 
CONTINUE 
MAX=O 
MIN=2000.
NV3=NVAR*NN0D 
DO S J=1,NV3 
IFCLJ(J). EQ. 0) GO TO 8 
IFCLJ(J)-MAX) 6, 6,5 
MAX=LJ(J) 
IF(LJ(J)-MIN) 7,8,8 
MIN=LJ(J) 
CONTINUE 
NB1=MAX-MIN 
IFCNB1. GT. LBAND) LBAND=NB1 
CONTINUE 
RETURN 
END 
SUBROUTINE PLACEZ TAKES CARE OF THE CONSTRAINED 
BOUNDARY CONDITIONS 
SUBROUTINE PLACEZ(PF,C,CON,ICON, NCON, NN, LBAND) 
DIMENSION C(1),CON(1),PP(1), ICDN(l) 
DO IS 1=1,NCON 
I1=ICON(I) 
I2=LBAND*(11-1)+Il 
LC1=11—LBAND 
IF CLC1. LE. 0) LC1 = 1 
LC2=I1+LBAND 
IFCLC2. GT. NN) LC2=NN 
DO 17 J=LC1,LC2 
IF(Il-J) 9,10, 10 
IJ=LBAND*(J-1)+I1 
GO TO 16 
IJ»LBAND#(I!-1)+J 
PPCJ)=PP(J)-C(IJ)*CON(I) 
C(IJ)=O. DO 
CONTINUE 
DO 25 1=1,NCON 
I1=ICON(I) 
I2=LBAND*(I1-1)+I1 
C(I2) = l. EOS 
PP(I1)=1.EOB*CONCI) 
CONTINUE
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* 
#

1

2

64
65

66

7 
5
6

4
61

RETURN 
END
SUBROUTINE BAND SOLVES THE SIMULTANEOUS LINEAR 
EQUATIONS AND CALCULATES THE NODAL DISPLACEMENTS 
SUBROUTINE BAND (A, B. N, M. LT. DET ) 
DIMENSION A(i)fB(l) 
MM-M-1 
NM=N»M 
NM1=NM-MM 
IF (LT. NE. 1) GO TO 55
MP=M+1 
KK=2 
FAC=DET 
A(1> =1. /SQRT(A(1)) 
BIGL=A(1> 
SML=A(1)
A(2)=A(2)»A(1)
A(MP)=1./SQRT(A(MP)-A(2)*A(2)) 
IF(ACMP). GT. BIGL)BIGL=A(MP) 
IF(A(MP). LT. SML)SML=A(MP) 
MP=MP+M
DO 62 J=MP,NM1,M 
JP=J-MM
MZC=O 
IFCKK. GE. M) GO TO 1 
KK=KK+i 
11 = 1
JC=1
GO TO 2 
KK=KK+M 
II=KK-MM 
JC=KK-MM 
DO 65 I^K.JP.MM 
IF(A(I). EQ. 0. )G0 TO 64 
GO TO 66 
JC=JC+M '
MZC=MZC+1 
ASUMI=0. 
GO TO 61 
MMZC=MM*MZC 
II=II+MZC 
KM=KK+MMZC 
A(KM)=A(KM>*A(JC) 
IF (KM. GE. UP) GO TO 6 
KJ=KM+MM
DO 5 I=KJ,JP.MM 
ASUM2=0. 
IM=I—MM 
11=11+1 
KI=II+MMZC
DO 7 K=KM, IM/ MM
ASUM2=ASUM2+A(KI)*A(K) 
KI=KI+MM
A(I)=(A(I)-ASUM2)*A(KI) 
CONTINUE 
ASUM1=O.
DO 4 K=KM/JP,MM 
ASUMI=ASUM1+A(K)*A(K) 
S=A(J>-ASUM1 
IF(S. LT. 0. )DET=S
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GRAV=-AR*H*GR/3. DO
FLC2)=GRAV
FL(4)=GRAV
FLC6)=GRAV
IF(IB. EQ. 0) GO TO 1000
XL=SQRTC((XC2)-XC1))**2)+CCY(2)-YC1J)**2)) 
XL=XL*H
READC 5,5) PXC1),PY(1h PXC2), PYC2), PXC3), PYC3)
IFCIB. EG. 2) GO TO 12
FL(1)= FL(1)+XL*(2. DO*PX(2)+PX(1))/£. DO
FL(2)= FL(2)+XL*C2. D0*PY(2)+PY(1))/£. DC 
FL(3)= FL(3)+XL*(2. DO*PXC2)+PX(3))/6. DO 
FLC4)= FLC4)+XL*(2. D0*PY(2)+PY(3))/6. DO

FLC2)

GO TO 1OOO
12 

5 
1000

2

1

CONTINUE
FORMATC6F10. 0)
RETURN
END
SUBROUTINE BLMAT SETS THE KINEMATIC LARGE DISPLACEMENT 
MATRIX
SUBROUTINE BLMAT(BL, A, B, U, AL, BE, GA, DE, ILIN, JC)
DIMENSION BLC3, 1), A(1),B(1),UC1)
IFCILIN. EG. 0) GO TO 1
AL=BC1)*U(1)+B(2)*U(3)+B(3)*UC5)
BE=B<1)*U(2)+B(2)*U(4)+B(3)*U(A)
GA=A(1)*U C1> +A(2)*U C 3)+A(3)*U(5)
DE=A(1)*U(2)+A(2)*U(4)+A(3)*U(A)
IF( JC) 1, 2, 1

: AL=AL/2. DO
BE=BE/2. DO
GA=GA/2. DO
DE=DE/2. DO 
sue 1*1)*AL*B(1)+B(1)
BLCl, 2)=BE*B(1)
BL(1,3)=AL*BC2)+B(2)
BLCl,4)=BE*B(2)
BLCl,5)=AL*B(3)+B<3>
BLCl,6)=BE*B(3)
BLC2,i)=GA*A(l)
BL(2,2)=DE*AC1)+A(1)
BLC2,3)=GA*A(2)
BLC2,4)=DE*A(2)+AC2)
BLC2, 5)=GA*A(3)
BLC2,6)=DE*AC3)+A(3)
BL(3, 1)=GA*B C1)+AL*A <1)+A C1)
BLC3, 3)=GA*B(2)+AL*A(2)+A(2)
BLC3,5)=GA*BC3)+AL*AC3)+A(3)
BLC3, 2)=DE*BC1)+BE*AC1)+D<1)
BLC3, 4)=DE*B(2)+BE*A(2)+BC2)
BL (3,6)=DE*B(3)+BE*AC3)+B(3)
RETURN
END
SUBROUTINE CONST CALCULATES THE CONSTANTS FOR
USE WITH BAZANT AND PANULA'S CREEP AND SHRINKAGE
PREDICTION METHOD
SS?°yiI1^ CONSTCBCOEF, DCDEF, POWER, AN, TSH, TCREEP, E, SHCOEF, TDRY

*iFCL DENS)
READ*, FC,DENS,AC, AG, SC, WC, C, VS, RH, TDRY, TCREEP 
SA=SC/AC
GS=AC/CSC*AQ)
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Z1—.00005*DENS*DENS*FC
Z2=l.7*Z1#Z1
E0=Z2/(Z2*. 09+1. 0)«l. 0E6
X=2. 1#AC/(SC*#1. 4)+. 1*(FC**1. 5)*(WC*». 333)#(AG**2.2)-4
IF(X. GT. 4. 0) AN=. 12+. 07*X**6/(5130+X**6)
IF(X. L£. 4. 0) AN®. 12
AM®. 28+l/(FC*FC)
ALPHA®. 025/UC
AN3=10**(-3*AN)
PHI1®. 5/(AN3*(2B**(-AM)+ALPHA))
Z=(1. 25*SGRT(AC)+. 5*GS*GS)*((1+SC)/WC)**. 333*SQRT(FC)-12
IF(Z. LT. 0. 0) ESU=330
IF(Z. GT. 0. 0) ESU=1210-880/(390*Z**(-4)+l)
C7®.125*WC*C-12
C1=C7*(.05+SQRT(6. 3/TDRY))
TSH=1. 6667*VS*VS/C1
E607®1+AN3*PHI1*(507*#(-AM)+ALPHA)
ETSH®1+AN3*PHI1»((TDRY+TSH)**(-AM)+ALPHA)
ESHU=ESU*ETSH/E607
PHSHs1—RH**3

CONTINUE
C0=C0S(2*ANQ(IEL))
SI=SIN(2#ANG(IEL))
DO 5 J=l, 5, 2
DO 5 I=J, 5,2
SCI, J)-(. 5DO*(T(I, J)+T(I+1,J+l))+. 5DO*(T(I,J)-T(1 + 1, J+l))*CO

R®56000*(SA*FC)**.'3*(GS**l. 3) * (WC/ESU ) **1. 5-. 8 5
IF(R. GT. 0. 0) PHI ID®. 008+. 027/(1+. 7*R«*r-l. 4) )
IF(R.LE. 0. 0) PHI ID®. 008
PHID=PHI1D/SGRT(1+(TCREEP-TDRY)/(1O»TSH))
CD=2. 8-7. 5*AN
RHCR®. 98**1. 5-RH**l. 5
BCOEF=PHI1*AN*(TCREEP**(-AM)+ALPHA)/EO
DC0EF=10*PHID*TCREEP**(-AM/2. )*RHCR*EBHU*CD*AN*TSH/EO
SHCOEF«ESHU*RHSH*1. OE-6
POWER®CD*AN
FC1 = 1000. *FC
RETURN 
END 
SUBROUTINE 
MATRIX FOR 
SUBROUTINE

NONLINC CALCULATES THE ELEMENT STIFFNESS
CRACKED CONCRETE ELEMENTS
NONLINC (S, SIG, A, CRbAR.H. IS, IEL, ILIN, BL,ANG, NEL)

2

3 
&

DIMENSION S(S,8),SIG(SOO, 1),A(3),BLC3. 1),ANG(I), T(6, 6)
IF(IS. EQ. 0) GO TO 100
EE=H*AR
DO 2 J®1,6
DO 2 I=J, 6
T(I, J)»CR1*BL(2, J)*BL(2, I)
T( J, I )®T( I, J)
CONTINUE 
IF (ILIN. EG. 0) GO TO 6
DO 3 1 = 1, 5, 2
DO 3 J=L 5,2
II®. 5D0*(I+l)
JJ®. 5DO«(J+1)
AK®A(II)*ACJJ)*SIG(IEL, 2)/(4. DO*AR)
T(J, I)=T(J, D+AK
T(J+1, I+1)®T(J+1, I + D+AK 
TCI,J)®T(J, I)


