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ABSTRACT

The genus Pseudomonas includes genetically diverse groups of species that do
not share a common evolutionary history. My research focused on analyzing the
genome sequences of different Pseudomonas species to robustly elucidate their
evolutionary relationships using multiple independent approaches, which include: (i)
Construction of phylogenetic trees based on several large data sets of conserved
proteins, and 16S rRNA gene sequences (ii) Determination of pairwise genomic
similarities based on AAI and POCP matrices, (iii) Identification of molecular markers
such as Conserved Signature Indels (CSIs) and Conserved Signature Proteins (CSPs),
specific for different Pseudomonas species clades supported by other methods. Our
Phylogenomic analyses revealed three major lineages/groups within Pseudomonas:
Aeruginosa, Fluorescens, and Pertucinogena. While the Aeruginosa and Fluorescens
lineages include multiple distinct clades, no molecular or biochemical traits were
previously known to differentiate them. Our analyses identified >160 CSIs specific to
these clades/groups, providing molecular means for their reliable demarcation. Based
on phylogenomic evidence, AAIl and POCP values, and clade-specific CSIs, we
proposed restricting the genus Pseudomonas only to the Aeruginosa clade of species.
Prior to this, based on our analyses, we reclassified the Pertucinogena lineage of species
as a novel genus, Halopseudomonas, and reclassified several misclassified species into
their related genera. Further analyses led to the reclassification of the Aeruginosa
lineage of species into 12 novel and emended genera. Ongoing studies on the
Fluorescens lineage, comprising 13 clades, have identified CSIs for several of them.
Additionally, our studies led to the discovery of a novel species, Pseudomonas

paraeruginosa. The resulting CSl-based phylogenetic framework offers a stable,

v



predictive system for classifying new or uncharacterized Pseudomonas species. Using
the predictive ability of CSIs, we predicted assigning ~300 uncharacterized strains into
14 Pseudomonadaceae genera. Besides systematic studies, these conserved markers
hold promise for diagnostic applications and deeper insights into microbial evolution

and function.
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PREFACE

This thesis follows a sandwich format. Chapter 1 provides an introduction,
including background information and research objectives. Chapters 2, 3, 4, and 5
consist of unaltered manuscripts published between 2021 and 2025. Chapter 6 is an
altered manuscript that will be submitted for publication in the coming months. Chapter
7 summarizes the findings, discusses their significance, and outlines future research
directions. References for Chapters 1, 6, and 7 are listed at the end of the thesis. Each
chapter includes a preface describing the details of the published and ongoing work and
my contributions to co-authored work. All chapters have been reproduced with the
consent of the co-authors. Additionally, an irrevocable, non-exclusive license has been
granted to McMaster University and the National Library of Canada. Copies of

permissions and licenses have been submitted to the School of Graduate Studies.
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GLOSSARY

16S ribosomal RNA or 16S rRNA: The small subunit of the 30S ribosomal complex
plays a vital role in protein synthesis. It is highly conserved across species and exhibits
strong resistance to lateral gene transfer.

Archaea or Archaebacteria: Prokaryotes belong to one of the three domains of life
and are distinct from bacteria based on genetic analysis. They lack peptidoglycan in
their cell walls and possess unique membrane lipids.

Ancestor: An organism, population, or species from which another organism,
population, or species has evolved or descended.

Average Amino Acid Identity: Assesses the degree of similarity in amino acid
sequences of proteins across different organisms, providing insight into their
evolutionary relationships and aiding in taxonomic classification.

Average Nucleotide Identity: The average percentage of identical nucleotides in gene
alignments between two organisms, used in microbiology to assess genome similarity,
define species boundaries, and confirm taxonomic identities, especially in prokaryotes.

Bacteria or Eubacteria: One of the three domains of life, consisting of prokaryotic
organisms, distinguishable from Archaea by genetic variations and the presence of
peptidoglycan in their cell walls.

Bergey's Manual: A commonly used resource in microbiology, particularly for the
classification and identification of bacteria and archaea.

Bootstrapping: A statistical method used to evaluate the reliability of a result (typically
a phylogenetic tree) by repeatedly sampling data with replacement from the original set.

Clade: A monophyletic group that includes an ancestor and all its descendants.

Comparative Genomics: A branch of biological research that examines genomic
features, including gene sequences, proteins, gene organization, and regulatory
elements, across different organisms to explore their evolutionary relationships and
differences.

Concatenation of Genes: Integrating genetic data into a sequence and analyzing it as
a single gene.

Conserved Signature Indel (CSI): An insertion or deletion of a specific size in a
particular region of gene or protein sequences unique to a group of interest and absent
in other bacterial groups. This molecular change (insertion/deletion) is flanked by
conserved residues on both sides, ensuring its reliability.
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Convergent Evolution: The process by which distantly related bacterial species
independently develop similar traits as a result of adapting to similar environmental
pressures.

Duplication: A process by which a molecular sequence is duplicated during evolution.

Core Genome: A term used to describe the essential sets of genes or proteins common
to all members of a defined group. These genes are involved in fundamental cellular
functions and are typically conserved across individuals within a group.

Degenerate Oligonucleotide Primers: Primers designed to amplify the same region in
related organisms. Their sequence covers a range that includes different nucleotide
sequences present in the amplification region across different organisms.

Genomic Distance: A measure of divergence between two genomes.

Hidden Markov Model: A statistical tool used to predict sequences of events based on
hidden factors. It helps make predictions when the influencing factors are not directly
observable.

Homologs or Homologous genes/proteins: Similar Genes or Proteins in different
organisms that are evolutionarily related by descent from a common ancestor.

Horizontal Gene Transfer: A process where an organism transfers genetic material to
another organism, bypassing the usual inheritance from parent to offspring. This can
occur between different species or organisms of the same species.

International Code of Nomenclature of Bacteria or Bacteriological Code: The
system or set of rules that governs the scientific naming of Bacteria and Archaea.

Likelihood Ratio Test or SH-Like Test: A test that compares the likelihood of a null
model (no specific relationship between organisms) with an alternative model
(organisms X and Y are more closely related than X and Z) to assess how well the
alternative model fits the data.

Lineage: A line of descent or ancestry, tracing the continuous path of organisms from a
common ancestor to its descendants over time.

Long branch attraction: A phenomenon in phylogenetic analysis, particularly in
maximum-parsimony methods, where rapidly evolving lineages are mistakenly
considered closely related, regardless of their actual evolutionary connections.

Maximum likelihood tree: A phylogenetic tree constructed using the maximum
likelihood method, which identifies the tree topology with the highest probability of
being generated from the given alignment.

Monophyletic clade: A group of organisms that includes a common ancestor and all of
its descendants, with no other organisms outside the group included.
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Multilocus Sequence Analysis: Analyzing multiple genes (loci) to understand the
phylogeny and evolutionary relationships among organisms.

Multilocus Sequence Typing: Analyzing multiple genes (loci) to identify and classify
microorganisms.

Neighbour-joining tree: A method for constructing a phylogenetic tree based on a
neighbor-joining approach that clusters organisms using their genetic distance.

Multiple Sequence Alignments (MSA): Used to align three or more sequences (DNA,
RNA, or protein) to identify similarities and differences among them, helping to
understand the evolutionary relationships.

Orthologs or Orthologous genes/proteins: Sequences from different species that
originated from a common ancestral sequence and have evolved separately due to
speciation events over time.

Outgroup: A species/group of species identified as the earliest to diverge in a
phylogenetic analysis. It is included to establish the root position of the tree.

Paralogs or Paralogous genes/proteins: Genes or proteins originating from a common
ancestor within the same organism through gene duplication and may evolve to perform
different functions.

Paraphyletic: A group consisting of the group’s last common ancestor and some, but
not all, of the descendants of that ancestor.

Phylogenetic tree: A branching diagram that illustrates the evolutionary relationships
among organisms based on their biological and molecular similarities and differences.

Polyphasic Taxonomy: An Approach incorporating different data types, including
phenotypic, genotypic, molecular, and biochemical characteristics, in taxonomy.

Polyphyletic: Refers to a group of organisms that are grouped together in a
phylogenetic tree based on similar traits but do not share a common ancestor exclusive
to that group.

Protein Family: A group of proteins with a shared evolutionary origin, characterized
by similar functions and sequence or structural similarities.

SILVA: A curated database of 16s rRNA gene sequences named "SILVA" after the Latin
word silva, meaning forest.

Supermatrix: A concatenated set of all genes/proteins found in the core genome.

Supertree: A consensus phylogenomic tree created by combining the phylogenetic
trees of all genes or proteins in the core genome.
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Single gene/protein phylogenetic tree: Constructing a phylogenetic tree by comparing
homologous sequences of a single gene or protein.

Synapomorphy: Characteristic or trait shared by two or more species and inherited
from a common ancestor. This trait helps to identify and define a group of organisms.

Systematics: A branch of biology that focuses on the diversity of organisms. It is
typically divided into two areas: phylogeny, the study of evolutionary relationships, and
taxonomy, the classification and naming of organisms.

Taxonomic Framework: The system and structure are used to classify and name a
group of organisms.

Taxonomic Ranks: The levels in the classification system used to organize and
categorize organisms. These ranks include domain, kingdom, phylum, class, order,
family, genus, and species, each representing a different level of relatedness and
specificity.

Tree topology: The branching pattern in a phylogenetic tree, representing the
evolutionary relationships between species or genes.

Valid Publication: A prokaryotic name is deemed validly published if it is included in
the Approved Lists of Bacterial Names or published in a Validation List within the
International Journal of Systematic and Evolutionary Microbiology or the International
Journal of Systematic Bacteriology.
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CHAPTER 1

INTRODUCTION AND BACKGROUND STUDY



1.1 A Brief History of Prokaryotic Systematics and Taxonomic Research

“... the sure and definite determination (of each species of bacteria)
requires so much time, so much acumen of eye and judgment, so

much perseverance and patience that there is hardly anything so

difficult”

(Miiller and Fabricius, 1786).

The history of life on Earth began approximately 3.8 billion years ago (Schopf,
1978; Schopf and Packer, 1987; Kasting, 1993; Farias-Rico and Mourra-Diaz, 2022).
Understanding the origins and complexities of simple microorganisms, such as
prokaryotes, has remained a profound enigma in modern science (Winslow et al., 1920;
Stanier and Van Niel, 1941; Sagan, 1967; Zotin et al., 1975; Woese and Fox, 1977;
Schwartz and Dayhoff, 1978; Gupta, 1998). To understand the evolutionary history of
living organisms, scientists have developed a hierarchical system (viz. Phylum, Class,
Order, Family, Genus, and Species) known as Systematics or Taxonomy, which
classifies organisms based on shared characteristics (Linnaeus, 1735; Darwin, 1859).
The term “Taxonomy” originates from Ancient Greek, where “taxis” means order or

arrangement, and “nomos” means law.

Establishing a reliable taxonomic framework for prokaryotes has been an
arduous challenge for taxonomists. In the 18™ century, Carl Linnaeus, who introduced
the framework of biological taxonomy (the organization of organisms into ranked
categories) and nomenclature (the guidelines for assigning names to diverse groups of
organisms), set the basis of modern taxonomy (Linnaeus, 1735). Through his seminal
work Systema Naturae, Carl Linnaeus grouped all microscopic forms as “Infusoria”

into a single species, which he named Chaos infusoria (Linnaeus, 1789). However, there



was minimal progress in microbial classification following Linnaeus’s system due to
the absence of advanced observational tools and a theoretical framework suited to
explaining life at the microscopic level (Ehrenberg, 1838; Haeckel, 1866; Gram, 1884).
In 1872, Ferdinand Cohn pioneered the prokaryotic classification by proposing six
bacterial genera and grouping them within the plant kingdom, mainly based on their
morphological features, growth conditions, and pathogenic potentials (Cohn, 1872;
Cohn, 1875). The first edition of Bergey’s Manual of Determinative Bacteriology (now
known as ‘Bergey’s Manual of Systematic Bacteriology’), published in 1923,
introduced a systematic method for classifying bacteria based on their phenotypic traits,
such as morphology, pathogenic characters, and culturing conditions. Bacteria were
organized in a hierarchy to show their levels of relatedness, starting from broader groups
like Class and Order to narrower ones like Families, Genera, and Species. This edition
classified bacteria as “typically unicellular plants™ or “Schizomycetes” (Orla-Jensen,

1909; Bergey DH, 1923).

In the late 19th and early 20th centuries, microbiologists began discovering an
increasing variety of prokaryotes that differed widely in shape, physiology, survival
strategies, and life cycles. This growing diversity led researchers to incorporate
biochemical, physiological, and morphological characteristics into the organism
descriptions and classification efforts (Migula, 1900; Orla-Jensen, 1909; Pringsheim,
1923; Buchanan, 1925; Kluyver and Van Niel, 1936; Stanier and Van Niel, 1941). These
efforts eventually led to the creation of a universal Code of Bacteriological
Nomenclature, which was officially adopted at the 4th International Congress for

Microbiology in 1947 (Huddleson, 1947).



However, the biochemical and phenotypic properties used in bacterial
classification were of limited use and found to exhibit a high degree of convergence
with unrelated organisms (Stanier and van Niel, 1962; Whittaker, 1969; Stanier et al.,
1976). Moreover, due to the high diversity in prokaryotic species, simple morphologies,
sizes, and sharing of characters through convergent evolution, it was difficult to
establish a reliable and clearly demarcating prokaryotic classification system based
solely on morphological characteristics (van Niel, 1946; Buchanan and Gibbons, 1974;
Sneath et al., 1986). These difficulties in bacterial classification based on phenotypic
criteria were discussed widely and acknowledged as “The Dark Age” (Kluyver and Van
Niel, 1936; Stanier and Van Niel, 1941; van Niel, 1946; Stanier and van Niel, 1962;
Woese, 1992; Gupta, 1998; Sapp, 2006; Oren, 2010). Stanier and Van Niel also
highlighted the challenges in defining and classifying bacteria during the 1940s to
1960s. They stated, “.... Any good biologist finds it intellectually distressing to devote
his life to the study of a group that cannot be readily and satisfactorily defined in
biological terms, and the abiding intellectual scandal of bacteriology has been the
absence of a clear concept of a bacterium....” (Stanier and van Niel, 1962). These
discussions highlighted the need for developing molecular sequence-based, more

reliable methods for differentiating and classifying prokaryotes.

1.2 The Genomics Era: Advancing Comparative Genomics and Evolutionary

Systematics Studies

The inadequacy of the bacterial classification system that relied on phenotypic

and biochemical traits during the mid-20th century gave rise to the emergence of



alternative approaches for prokaryotic classification. Concurrently, the middle of the
20th century witnessed the unveiling of the role of Deoxyribonucleic Acid (DNA) in
information transfer and its structural composition (Hershey and Chase, 1952; Watson
and Crick, 1953; Crick, 1958; Zuckerkandl and Pauling, 1965; Crick, 1970). This
revelation introduced a novel molecular target encompassing all the information
governing an organism's phenotypic, physiological, and biochemical characteristics.
Thus, one of the earliest nucleic acid-based methods used in the field of prokaryotic
taxonomy was DNA-DNA hybridization (DDH) (Hall and Spiegelman, 1961;
Schildkraut et al., 1961; McCarthy and Bolton, 1963). In the DDH method, denatured
DNA is immobilized in a solid phase (gel of agar), where it is unable to re-nature but
can hybridize with free complementary single-strand of DNA. The strength of
hybridization between two strands of the DNA duplex is proportional to the similarity
of DNA sequences between two organisms. This can be calculated by the dissociation
temperature (melting temperature) of the hybridized DNA molecule (McCarthy and
Bolton, 1963). The standardized definition of a species and strains that are closely
related to it is that they share > 70% DDH, correlated with a hybridized DNA melting
point of <5°C (Wayne et al., 1987; Stackebrandt and Goebel, 1994; Rossell6-Mora,
2006; Tindall et al., 2010). However, determining DDH values is an extremely laborious
process for which only a few laboratories are properly equipped (Grimont et al., 1980;
Huss et al., 1983; Rossello-Mora, 2006; Goris et al., 2007). Moreover, it is not an
accessible method for classifying non-culturable prokaryotes (Rossello-Mora, 2006;
Yarza et al., 2014). In addition, this method provides a rough estimate of genetic
relationships, distinguishing only closely related species or subspecies with over 90%

genome similarity (Goris et al., 2007; Schleifer, 2009). Lastly, because the DDH method



relies on an experimental approach that uses a specific threshold without producing
sequence data, it cannot support the creation of incremental databases that can identify
taxa of different ranks (Stackebrandt and Goebel, 1994; Schleifer, 2009; Oren and

Garrity, 2014).

In the late 1960s, a major revolution and advancement in the field of taxonomy
and systematics came with the advent of determining molecular sequences by the
development of experimental, computational, and mathematical methods, offering a
new approach for understanding the evolutionary history of genes and organisms
(Sanger, 1959; Zuckerkandl and Pauling, 1965; Eck and Dayhoff, 1966; Fitch and
Margoliash, 1967). Molecular data soon proved to be a more reliable and objective
means of classifying organisms than traditional morphological and biochemical
approaches. An important breakthrough came with the work of Zuckerkandl and
Pauling (1965), who introduced the idea that molecular sequences serve as historical
records of an organism’s evolutionary past, allowing for phylogenetic reconstruction.
Their insights greatly strengthened the concept of inferring evolutionary relationships
through molecular comparisons. Subsequently, Carl Woese and his coworkers
introduced the use of 16S ribosomal RNA (rRNA) gene sequence, a component of the
prokaryotic small ribosomal subunit or 30S subunit (SSU rRNA) and a universally
conserved component of the protein synthesis machinery, for understanding
evolutionary relationships (Fox et al., 1977; Woese and Fox, 1977; Woese, 1987). The
16S rRNA sequence contains three structural domains, which are designated as ‘U’
(Universally conserved), ‘S’ (semi-conserved), and ‘V’ (Variable or non-conserved).
The ‘U’ segment is highly conserved and interspersed with variable regions. PCR

primers targeting the conserved regions amplify the variable sequences. The ‘S’
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segment is less conserved than ‘V’ and more restricted in occurrence. ‘V’ segments
vary markedly in length, primary sequence, and secondary structure, even within a
given lineage, and may be recognizably similar only in very closely related species
(Gray et al., 1984). Thus, these conserved and variable regions facilitate the
classification of both closely related and highly divergent groups of organisms (Fox et
al., 1977; Woese and Fox, 1977; Gray et al., 1984; Woese, 1987; Tindall et al., 2010).
Besides these, 16S rRNA offers some notable advantages, making it well-suited for
taxonomic and systematic study. Beyond its ubiquity, the 16S rRNA gene is easy to
isolate. It is a part of the large ribosomal complex, functionally equivalent and
evolutionarily homologous in bacteria, archaea, mitochondria, plastids, and the nucleus,
which is unlikely to undergo lateral gene transfer (Olsen et al., 1994; Patel, 2001; Janda
and Abbott, 2007). Studies on prokaryotic classification based on 16S rRNA sequences
revolutionized bacterial taxonomy, and for the first time, prokaryotes were classified
based on their phylogenetic relatedness (Woese and Fox, 1977; Woese, 1987; Woese et
al., 1990). The studies by Woese and coworkers resulted in the proposal for the three-
domain classification, in which the three domains, Bacteria, Archaea, and Eukaryota,
are considered coequal and fundamental divisions of life on earth (Woese et al., 1990).
The three-domain model remains the dominant model for biological classification.
However, Woese expressed concern that the microbial phylogenetic framework relied
too heavily on a single molecule, which he felt was inadequate for accurately

representing the complexity of microbial relationships (Woese, 1991).

Over the last 25 to 30 years, 16S rRNA has become the foundation of modern
prokaryotic classification (Olsen and Woese, 1993; Garrity et al., 2005; Yarza et al.,
2008; Kampfer, 2012). Bergey’s Manual of Systematics of Archaea and Bacteria
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(Whitman et al., 2015), the updated version of Bergey’s Manual of Determinative
Bacteriology, also adopted the 16S rRNA sequence-based phylogenetic framework for
classifying prokaryotic microorganisms. The All-Species Living Tree, which has
become the de facto tree of life for systematic studies, is also based on the analyses of
16S rRNA gene sequences (Yarza et al., 2008; Yilmaz et al., 2014; Ludwig et al., 2021).
A 16S rRNA gene sequence similarity value of >97% is thought to correlate with the
70% DDH threshold for species demarcation (Stackebrandt and Goebel, 1994;
Stackebrandt, 2006; Tindall et al., 2010; Meier-Kolthoff et al., 2013). SILVA 16S rRNA
database has also suggested thresholds of 94.5%, 86.5%, 82%, 78.5%, and 75% 16S
rRNA gene sequence similarity for the demarcation of prokaryotic taxa at the level of
Genus, Family, Order, Class, and Phylum, respectively, providing novel guidance for

16S rRNA-based classification (Quast et al., 2013; Yarza et al., 2014).

Despite being considered the gold standard for prokaryotic phylogeny and
systematics, the 16S rRNA gene does have some limitations, which include: (a) 16S
rRNA is not distinctive at the species level. It has limited capacity to differentiate among
closely related species due to high sequence conservation (Fox et al., 1992; Tang et al.,
1998; Mignard and Flandrois, 2006; Janda and Abbott, 2007; Reller et al., 2007). (b) It
lacks specific biochemical, molecular, or physiological properties distinctive of
prokaryotic taxa and other groups (Gupta, 1998; Gao and Gupta, 2012a; Zhi et al.,
2012). (c) It also fails to define the branching order and inter-relationships among higher
prokaryotic taxa, which is core to understanding the origin of life and its diversification
(Gupta, 1998; Gupta and Griffiths, 2002; Yarza et al., 2008; Garrity, 2010; Gupta, 2016)
(d) Prokaryotic organisms often have multiple copies of the 16S rRNA gene, differing
by 1-2% or more in sequence, which can complicate the accurate inference of
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evolutionary relationships (Klappenbach et al., 2001; Boucher et al., 2004; Sun et al.,
2013). (e) Moreover, the structure of the 16S rRNA gene is fixed and cannot change
freely, causing sudden shifts rather than gradual changes. This can lead to misleading
conclusions about the relationships among prokaryotes (Gupta, 1998; Ludwig et al.,
1998; Griffiths and Gupta, 2001; Ludwig and Klenk, 2005). Therefore, there was
growing interest in identifying and using other genes or proteins to address evolutionary
questions that the 16S rRNA gene sequence analysis could not fully resolve (Gupta,

1998; Gupta and Griffiths, 2002).

Since 16S rRNA sequencing cannot reliably distinguish closely related bacterial
strains/species, another sequence-based method, Multilocus Sequence Typing (MLST),
was introduced to identify clonal relationships among bacteria (Maiden et al., 1998).
MLST analyzes DNA sequences from internal regions of multiple housekeeping genes
(viz., RNA polymerase B-subunit (rpoB), the P-subunit of DNA gyrase (gyrB),
recombinase A (recA), sigma 70 factor (rpoD), tRNA modification GTPase ThdF or
TrmE (thdF), B-subunit of ATP synthase (atpD), translation initiation factor IF-2 (infB),
and chaperonin GroEL (groEL) to classify and characterize microbial isolates (Kampfer
and Glaeser, 2011; Maiden et al., 2013; Glaeser and Kampfer, 2015; Gomila et al.,
2015). It provides greater resolution in characterizing and distinguishing closely related
species than 16S rRNA gene-based analysis (Rokas et al., 2003; Jolley et al., 2004;

Ciccarelli et al., 2006; Cody et al., 2014).



1.3 Impact of Whole Genome Sequencing in Prokaryotic Classification

Genome sequences provide a new platform in prokaryotic classification and
systematics using multiple independent approaches (Gupta, 1998; Danchin, 2003;
Coenye et al., 2005; Konstantinidis and Tiedje, 2005a; Klenk and Goker, 2010; Parks
et al., 2018). Before 2000, sequencing remained expensive, time-consuming, and
limited to a few sequencing centers. The first whole genome sequencing of
Haemophilus influenzae was done in 1995 (Fleischmann et al., 1995). After 2000, the
introduction of high-throughput next-generation sequencing (NGS) technologies, such
as 454 parallel pyrosequencing, sequencing by Oligonucleotide Ligation and Detection
(SOLiD), Ion Semiconductor sequencing, Illumina dye sequencing, Third-generation
(3G) methods, such as Pacific Biosciences (PacBio) single-molecule real-time (SMRT)
sequencing approach, (Schadt et al., 2010; van Dijk et al., 2018) and fourth-generation
(4G) methods, such as Oxford Nanopore Technologies (Ke et al., 2016; Jain et al., 2018)
substantially lowered the cost of sequencing. This development led to a vast increase in
the number of whole genome sequences of different organisms. As of December 2024,
the NCBI genome database consists of >2.40 M bacterial genomes, out of which

>2.03M are annotated (Sayers et al., 2019).

Over the last 15 years, several whole-genome-based methods have been utilized
in prokaryotic systematics studies. These methods include Average Nucleotide Identity
(ANI), which measures the sequence identity of shared genes and has an established 95-
96% sequence identity threshold for species-level demarcation (Konstantinidis and
Tiedje, 2005a). The ANI value of 95%-96% is found to be equivalent to 70% DDH or

98.65% 16S rRNA sequence similarity (Konstantinidis and Tiedje, 2005a; Goris et al.,
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2007; Richter and Rossello-Mora, 2009; Kim et al., 2014; Varghese et al., 2015).
Besides ANI, other approaches such as Maximum Unique Exact Match index (MUEM1)
(Deloger et al., 2009) and tetranucleotide regression (Richter and Rossello-Mora, 2009)
can also help evaluate a strain's species status. The MUEMIi measures genomic distance
based on core genome conservation and shared DNA. Tetranucleotide regression looks
at differences between observed and expected frequencies of all 256 tetranucleotide
combinations (A, T, G, C) (Konstantinidis and Tiedje, 2005b; Thompson et al., 2013;
Varghese et al., 2015). Genomes BLAST Distance Phylogeny (GBDP) (Henz et al.,
2005) uses BLAST to identify High-Scoring Segment Pairs (HSPs) between genomes,
which are then used to calculate distances for constructing phylogenetic trees. This
method generates distance matrices to assess genome relatedness and is used mainly for
creating evolutionary trees based on whole-genome comparisons. On the other hand,
the Genome-to-Genome Distance Calculator (GGDC) (Deloger et al., 2009) calculates
genomic distances by comparing whole genomes using BLAST-derived HSPs and
expresses genetic relatedness as pairwise percentages. This method is mainly used in
microbial taxonomy to assess genomic similarity. Several other methods include
Average Amino acid Identity (AAI) (Konstantinidis and Tiedje, 2005b) which measures
the amino acid in shared proteins and provides greater resolution for more distant
comparisons than ANI (Konstantinidis and Tiedje, 2005a; Thompson et al., 2013),
Percentage of Conserved Proteins (POCP) which measure the proportion of
proteins/genes shared by two genomes (Qin et al., 2014). Two species are considered
members of the same genus if they share >50% POCP values (Qin et al., 2014).
However, the AAI and POCP values are limited to defining the genus level and cannot

be used for species classification or demarcating higher taxonomic ranks. Additionally,
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their values often overlap between ingroup and outgroup species, making it difficult to
establish clear genus boundaries (Gupta, 2019; Barco et al., 2020; Rudra and Gupta,

2024).

1.4 Construction of Phylogenetic Trees for the Study of Systematics

Phylogenetic trees depict evolutionary relationships by comparing biological
and molecular characteristics, forming the basis of natural classification and guiding
systematic research for the past 25 years (Woese et al., 1990; Stackebrandt and Goebel,
1994; Doolittle, 1999; Yilmaz et al., 2014; Parks et al., 2022). Phylogenetic trees can be
constructed based on either nucleic acids or protein sequences. Trees based on non-
coding sequences, such as rRNA, tRNA, and introns, use only nucleic acid sequences,
while those based on coding sequences can use either nucleic acid or protein sequences
(Dayhoff et al., 1974; Hasegawa and Hashimoto, 1993; Olsen and Woese, 1993;
Hashimoto et al., 1994). However, nucleotide-based analyses are considered less
reliable than protein-based phylogenetic analyses, as nucleotide-based analyses can be
affected by several factors, including codon biases such as differences in G+C content
among lineages and the influence of genetic code degeneracy (Steel et al., 1993; Karlin

et al., 1995; Gupta, 1998).

The first step in constructing a sequence-based phylogenetic tree is aligning
genomic or proteomic sequences, which organize homologous sequences and serve as
the foundation for further analysis. As this is an important step in phylogenetic
reconstruction, several Multiple Sequence Alignment (MSA) algorithms have been

developed to enhance phylogenetic accuracy while balancing speed and precision.
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Notable examples include the Clustal series (e.g., ClustalX and Clustal Omega)
(Chenna et al., 2003; Sievers et al., 2011), MUSCLE (Edgar, 2004), MAFFT (Katoh et
al., 2005), and T-Coffee (Notredame et al., 2000). Subsequently, the aligned data are
processed with different clustering approaches (distance matrix or character-based)
such as Neighbor-Joining (NJ) method (Saitou and Nei, 1987), Maximum-Parsimony
(MP) (Fitch, 1971), Maximum-Likelihood (ML) (Felsenstein, 1981), and Bayesian
Inference (BI) (Rannala and Yang, 1996). In the NJ (Saitou and Nei, 1987), a distance
matrix-based method, similar organisms are grouped together based on genetic or
genomic distances. In contrast, character-based methods, i.e., MP, ML, and BI, focus
on optimizing tree scores. ML aims to identify the tree topology that best explains the
observed traits of tip species by maximizing their probability under a given evolutionary
model (Felsenstein, 1981). On the contrary, MP selects the tree requiring the fewest
evolutionary changes to account for the observed character states of tip species (Fitch
and Margoliash, 1967; Fitch, 1971). Bayesian Inference (BI) of phylogeny combines
prior knowledge with data likelihood to calculate the posterior probability of trees,
representing the probability that a tree is correct based on the data, prior assumptions,
and the chosen likelihood model (Yang and Rannala, 2012). The ML method offers
notable advantages over others i.e., distance-based or parsimony methods for inferring
sequence evolution. Unlike these approaches, ML incorporates a broader range of
information from the sequences, including positional variability, transition-to-
transversion ratios, and the probability of character states at each position, among other
factors (Felsenstein, 1981; 2004). However, one limitation of the ML method is its high
computational demand. The accuracy of the relationships shown in the tree is evaluated

using statistical tests such as bootstrap and jackknife resampling (Quenouille, 1949;
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Efron, 1992) or likelihood ratio tests (Shimodaira and Hasegawa, 1999; Anisimova and

Gascuel, 2006).

In the early period, for microbial phylogeny, scientists used ferredoxins and
cytochrome protein sequence-based phylogenetic trees (Hall et al., 1973; Saeki et al.,
1989). Later, 16S rRNA was used as a phylogenetic marker molecule to construct
phylogenetic trees (Woese and Fox, 1977; Woese, 1987). Subsequently, multiple
prokaryotic housekeeping genes were used to construct more robust phylogenetic trees,
called multi-locus sequence analysis or MLSA (Gupta, 2000; Maiden, 2006; Gao et al.,
2009a; Kampfer and Glaeser, 2011; Naushad and Gupta, 2013; Glaeser and Kampfer,
2015). Over the past decade, the availability of genome sequence data has allowed the
application of bacterial core genes in phylogenomic analysis extensively (Daubin et al.,
2002; Rokas et al., 2003; Ciccarelli et al., 2006; Wu et al., 2009; Gao and Gupta, 2012a;
Gao and Gupta, 2012b; Ankenbrand and Keller, 2016; Gupta et al., 2018; Na et al.,
2018). These core genes are conserved and present in many bacterial genomes. Studies
have demonstrated that phylogenomic analysis using core genes yields more accurate
and robust results than traditional methods, which typically rely on a single gene (e.g.,
16S rRNA) or a small group of genes (e.g., MLST/MLSA) (Rokas et al., 2003; Jeftroy
et al., 2006; Wu et al., 2009). Two main approaches are used to construct genome-based
phylogenetic trees. The first method creates individual trees for each gene or protein in
the core genome, which are combined into a consensus tree or supertree (Bininda-
Emonds, 2004; Puigbo et al., 2009; Lang et al., 2013). This approach is computationally
efficient and provides the supertree and individual gene trees for further analysis. The
second method aligns all shared genes into a supermatrix, which is used to build a more
robust phylogenetic tree (Brown et al., 2001; Snel et al., 2005; Segata et al., 2013; Hug
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et al., 2016). This method improves the resolution of relationships and allows statistical
techniques, like bootstrap resampling, to validate the tree’s structure. The supermatrix
method offers notable advantages over the supertree approach, such as enhanced
resolution of organismal relationships and the ability to apply statistical methods,
including bootstrap resampling and likelihood ratio analysis, for evaluating tree

topology (Gadagkar et al., 2005; Lang et al., 2013).

In the present age, the Genome Taxonomy Database (GTDB)
(http://gtdb.ecogenomic.org/) is a widely used valuable resource for taxonomic
inferences (Parks et al., 2022). It is based on phylogenetic analyses of 120 universally
conserved single-copy bacterial marker genes and 122 archaeal marker genes, providing
a robust framework for classifying microbial genomes. This online database is an
initiative to establish a standardized microbial taxonomy based on genome phylogeny.
The genomes utilized for constructing this phylogeny are sourced from RefSeq and
GenBank. GTDB utilizes Relative Evolutionary Divergence (RED) values to define
taxonomic ranks above the species level. The concept behind RED is that taxa of the
same rank should have originated at approximately the same point in evolutionary
history (Parks et al., 2022). It also uses the List of Prokaryotic Names with Standing in
Nomenclature (LPSN) (Ipsn.dsmz.de/) (Parte, 2018) as the primary reference resource
to ensure naming priorities and nomenclature consistency. To date (January 2025),
GTDB classified 584,382 bacterial genome sequences into 175 Phyla, 538 Classes,
4,870 Families, 23,112 Genera, and 107,235 Species, and 12,477 archaea sequences

into 19 Phyla, 64 Classes, 166 Orders, 564 Families, 1,847 Genera, and 5,869 Species.
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While widely used in prokaryotic systematics, phylogenetic analysis based on
either the 16S rRNA gene, conserved multiple genes, or core genome sequences has
several limitations. 1) Phylogenetic branching is influenced by several factors,
including Horizontal Gene Transfer (HGT) between/among divergent bacterial
species/lineages, which is a very common phenomenon in shaping bacterial genomes
(Gupta, 1998; Nelson et al., 1999; Philippe and Douady, 2003; Griffiths and Gupta,
2006a; Bapteste et al., 2009). Additionally, the long-branch attraction effect can result
in distantly related species being incorrectly inferred as closely related (Tateno et al.,
1994; Gupta, 1998; Philippe et al., 2005; Susko and Roger, 2021). 2) Branching of the
species in phylogenetic trees is a continuum,; it is often difficult to reliably delimit the
boundaries of different clades. Except for the branching of species in the phylogenetic
trees, the phylogenetic trees provide no information regarding any genetic, biochemical,
or molecular properties that are specific to different taxonomic clades of species (Gupta
and Griffiths, 2002; Ludwig, 2005; Gupta, 2016). 3) Phylogenetic trees based on 16S
rRNA and other gene or protein sequences often lack the resolution needed to clearly
determine the evolutionary relationships and branching order among higher-level
prokaryotic groups (Gupta, 2000; Ciccarelli et al., 2006; Wu et al., 2009; Yarza et al.,
2010; Segata et al., 2013; Adeolu et al., 2016; Gupta, 2016). Hence, to develop a more
informative and reliable prokaryotic classification system, it is important to identify
biochemical and molecular properties specific to different groups of organisms. The
distinguishing properties or characters inherited from a common parent/ancestor and
specific to a group of organisms are the most helpful information for classification

purposes and for establishing evolutionary relationships among different organisms
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(Woese, 1991; Baldauf and Palmer, 1993; Gupta, 1998; Rokas and Holland, 2000;

Gupta and Griffiths, 2002; Bhandari et al., 2012; Gao and Gupta, 2012a; Gupta, 2014).

1.5 Impact of Molecular Signatures in Evolutionary and Taxonomic Studies

The abundance of genomic data offers a valuable resource for identifying
molecular markers or synapomorphies shared by evolutionarily related groups of
organisms. Two important categories of these molecular markers for understanding
microbial phylogeny and systematics, whose discovery has been pioneered by our lab,
are Conserved Signature Insertions or Deletions (Indels) (CSIs) in molecular sequences
and Conserved Signature Proteins (CSPs) (Gupta, 1998; Griffiths and Gupta, 2006b;
Gupta, 2006; Naushad et al., 2014). These molecular markers provide novel and
powerful means for the definitive demarcation of different groups of species and aid in
understanding their branching order as well as interrelationships (Gupta, 1998; Griffiths
and Gupta, 2001; Gao et al., 2006; Bhandari et al., 2013; Gupta, 2016; Hu et al., 2018).
The CSIs are amino acid insertions or deletions of fixed lengths, present at a specific
position within a conserved sequence region in an evolutionarily related group of
organisms. These molecular characteristics result from highly specific genetic changes
confined to a monophyletic group of organisms. Because of the rare and highly specific
nature of these genetic changes, they are less likely to occur independently in different
organisms (Gupta, 1998; Rokas and Holland, 2000; Bhandari et al., 2012; Gao and
Gupta, 2012a; Gupta, 2016). The most parsimonious explanation for the occurrence of
CSIs that are specific for monophyletic groups of organisms is that the genetic changes

leading to the CSIs first occurred in a common ancestor of the group, followed by their
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vertical inheritance to all descendants (Adeolu and Gupta, 2013; Naushad and Gupta,
2013; Gupta, 2014; Hu et al., 2019). CSIs are important markers in evolutionary and
classification studies for the following reasons. First, they are discrete characters
specific to monophyletic groups of organisms, easily detected due to being flanked by
conserved regions (Griffiths and Gupta, 2002; Gao and Gupta, 2005). Second, these
markers are not influenced by factors, including evolutionary rate differences,
compositional biases, or long-branch attraction, that can affect phylogenetic tree
accuracy (Gupta, 1998; Rokas and Holland, 2000; Gupta, 2016), and hence they exhibit
high degree of predictive ability to be found in other related organisms (Gupta, 2014;
2016; Gupta and Kanter-Eivin, 2023). Finally, although CSIs in both nucleic acids and
proteins are informative, most research work on them has focused on protein sequences,
where even a single amino acid indel arises from a rare 3 bp insertion or deletion,
making these changes in conserved regions most suitable for evolutionary/taxonomy
studies (Gupta, 1998; Bhandari et al., 2012; Gao and Gupta, 2012a; Gao and Gupta,
2012b; Gupta, 2016; Hu et al., 2018). Additionally, examining the presence or absence
of CSlIs in outgroup species makes it possible to determine whether a given CSI is an
insertion or deletion in a given group or organisms. However, it is important to
acknowledge that the shared occurrence of a CSI within distant organisms in some cases
can also result from non-specific processes like HGT or convergent evolution, where
similar genetic changes have occurred independently in unrelated lineages (Griffiths
and Gupta, 2006a; Gao and Gupta, 2012b; Naushad and Gupta, 2013; Khadka et al.,

2020).

CSIs are unique to specific groups of organisms and are flanked by conserved

sequences, highlighting their functional importance and suggesting that they are
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maintained by strong selective pressure (Gao et al., 2009b; Gupta et al., 2015a; Khadka
et al., 2020). The functional importance of CSIs found in bacterial GroEL and DnaK
proteins was experimentally demonstrated by Singh and Gupta (Singh and Gupta,
2009). This study showed that CSIs present within the GroEL and DnaK proteins of
different bacteria are crucial for their growth, with their removal or alterations in their
sequences resulting in failure of cell growth (Singh and Gupta, 2009). Another notable
characteristic of the CSIs, which is of much importance for classification purposes, is
that they exhibit a high degree of predictive ability to be found in other (uncharacterized
or unidentified) members of a given group/taxon (Barbour et al., 2017; Gupta et al.,
2020; Gupta and Kanter-Eivin, 2023; Rudra and Gupta, 2024). The work from our lab
led by Dr. Gupta, over the past few decades has used CSlIs to address several critical
issues in microbial phylogeny and systematics (Griffiths and Gupta, 2006b; Naushad et
al., 2015; Adeolu et al., 2016; Bello et al., 2022a; Malhotra et al., 2024). Recently, this
work has also led to the development of a web-based tool/server (Applndels.com)
(Gupta and Kanter-Eivin, 2023) that uses the information for the presence/absence of
known taxon-specific CSIs in a genome sequence to predict the taxonomic affiliation
of any submitted genome. The utility of this server for taxonomic purposes was
demonstrated by its ability to correctly predict the taxonomic affiliation of 651
uncharacterized Bacillus spp. genomes into 29 different genera/families for which CSI
information was present in the Applndels.com database (Gupta and Kanter-Eivin,
2023). My thesis, Chapters 2, 3, 4, 5, and 6, presents the contribution of CSIs in
resolving important taxonomic and evolutionary questions within the family

Pseudomonadaceae.
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Another category of molecular markers that are useful for prokaryotic
systematics and taxonomic studies is Conserved Signature Proteins (CSPs). CSPs are a
group of proteins restricted to a phylogenetically well-defined group of organisms (i.e.
monophyletic group) and are introduced during speciation or strain divergence (Gao et
al., 2006; Griffiths et al., 2006; Dutilh et al., 2008a; Dutilh et al., 2008b; Bhandari et
al., 2012; Naushad et al., 2014; Gupta et al., 2015b). While the mechanisms behind the
origin and evolution of these clade/lineage-specific proteins remain unclear (Dutilh et
al., 2008b; Kuo and Ochman, 2008), their conserved presence across all or most
species/strains within a monophyletic clade and absence in other lineages, suggests that
these genes originated in a common ancestor. This ancestor likely passed the genes
down vertically to its descendants (Woese et al., 1984; Gao et al., 2006; Gupta, 2006;
Gupta and Griffiths, 2006; Dutilh et al., 2008b; Fang et al., 2008; Narra et al., 2008;
Gao and Gupta, 2012a). Similar to the CSIs, CSPs are present for species at different
phylogenetic/taxonomic depths (Gupta, 2006; Gupta and Mathews, 2010). Several
studies indicate that lineage-specific proteins are typically smaller and have a higher
prevalence of transmembrane domains than other proteins (Hemm et al., 2008; Knopp
et al., 2019). The presence of transmembrane helices and signal peptides indicates they
may function as membrane-associated or extracellular proteins, often involved in
transport or interactions with cells and the environment (Hassan and Gupta, 2018). In
specialized environments, such as those of halophiles, these proteins likely evolved to
address specific environmental challenges (Hemm et al., 2008; Hassan and Gupta,
2018; Knopp et al., 2019; Méheust et al., 2022). Due to the lineages/clade/species/strain
specificities of CSPs, extensive work has been conducted in our lab on identifying CSPs

specific for several taxa and using them to clarify evolutionary relationships and
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taxonomy of multiple groups of prokaryotic organisms (Griffiths et al., 2006; Gupta and
Griffiths, 2006; Gao et al., 2009b; Gupta and Mathews, 2010; Bhandari et al., 2012;
Naushad et al., 2014; Gupta et al., 2015b). In my thesis (Chapter 3), I have also used
the CSPs and CSIs to distinguish the strains of P. paraeruginosa from those of P.

aeruginosa.

2. My Research Focus

My graduate research focuses on analyzing the genome sequences of
Pseudomonas species to robustly elucidate their evolutionary relationships using
multiple independent approaches. The approaches that I will use include: (i)
Construction of phylogenetic trees based on several large data sets of conserved
proteins, and also based on 16S rRNA gene sequences, (ii) Determination of overall
genomic similarity between these species based on AAI and POCP matrices, (iii)
Comprehensive analyses of protein sequences from Pseudomonas species to identify
molecular markers such as CSIs and CSPs specific for different Pseudomonas species
clades supported by other methods. A robust phylogenetic framework for Pseudomonas
species developed using these approaches will then be used to reclassify Pseudomonas
into different novel taxa (genera) so that species from all proposed taxa are
evolutionarily related, sharing multiple unique molecular characteristics.

Although the focus of my thesis work is on Pseudomonas species, during my
Ph.D. work, I also used similar approaches to clarify the evolutionary relationships
amongst other groups of prokaryotic organisms. A listing of these studies (published) is

provided in Appendix A.
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3. Introduction to the Genus Pseudomonas

3.1. Background Information

Genus Pseudomonas (Migula, 1894), which is one of the earliest and best-
studied bacterial genera, consists of a large assemblage of motile, rod-shaped, aerobic,
non-spore-forming, Gram-negative bacteria (Palleroni, 2005; 2015). The term
Pseudomonas was first introduced by the German botanist Walter Migula, deriving from
the Greek words “pseudo” (false) and “monas” (unit). Although the exact reasoning
behind the name was not clarified, it is suggested that Migula chose it due to the
bacteria's resemblance in size and motility to the non-flagellate cells of Monas
(D'Agata, 2015; Parte et al., 2020). P. aeruginosa is the type species of the genus
Pseudomonas (Schroeter, 1872; Migula, 1894), which serves as the type genus of the
family Pseudomonadaceae, encompassing several other genera such as Atopomonas,
Azomonas, Azorhizophilus, Azotobacter, Entomomonas, Mesophilobacter, Oblitimonas,
Permianibacter, Rhizobacter, Rugamonas, Stutzerimonas, and Thiopseudomonas (Parte
et al., 2020). The phylum name Pseudomonadota has recently been derived from the

genus Pseudomonas (Parte et al., 2020; Oren and Garrity, 2022).

With over 300 validly published species, Pseudomonas exhibits remarkable
genetic and metabolic diversity (Parte et al., 2020). This diversity enables its species to
adapt to diverse environments, including soil, air, water, plants, and animal tissues
(Schroth et al., 2006; Morris et al., 2008; Lister et al., 2009; Peix et al., 2009; Kidd et
al., 2011; Silby et al., 2011; Scales et al., 2014; Palleroni, 2015). Some species from this
genus function as opportunistic pathogens in humans, animals, and plants, while others

play crucial roles in economic and ecological processes (Palleroni, 2005; Lund-Palau et
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al., 2016; Winsor et al., 2016; Xin et al., 2018; Rossi et al., 2021). P. aeruginosa is one
of the best-studied opportunistic human pathogens capable of causing a wide array of
life-threatening acute and chronic diseases, including cystic fibrosis, nosocomial
infections, eye and ear infections, and multiple sepsis syndromes (Stover et al., 2000;
Planquette et al., 2013; Lund-Palau et al., 2016; Freschi et al., 2018; Spagnolo et al.,
2021; Qin et al., 2022). Besides infecting humans, it is also known to cause diseases in
livestock and companion animals, such as urinary tract infections in dogs (Harada et al.,
2012; Haenni et al., 2015), mastitis in dairy cows (Osborne et al., 1981; Silby et al.,
2011; Banerjee et al., 2022), and endometritis in horses (Hughes et al., 1966; Kidd et
al., 2011). It exhibits intrinsic resistance to multiple antibiotics and has a strong ability
to develop new resistance mechanisms (Lister et al., 2009; Planquette et al., 2013;
Moradali et al., 2017; Pang et al., 2019; Qin et al., 2022). Although less virulent than P,
aeruginosa, another species, P. fluorescens, can cause opportunistic acute infections in
humans and has been identified in clinical samples from the mouth, stomach, lungs, and
bloodstream (Scales et al., 2014; Liu et al., 2021a; Wu and Jing, 2024). Another
important species, P. syringae, ranks first among the top 10 plant pathogenic bacteria
and is responsible for diseases like blast and black pit in diverse plants, including citrus
(Lelliott et al., 1966; Klingner et al., 1976; Preston, 2000; Xin et al., 2018). The species
comprises around 50 pathovars, many targeting different hosts (Gardan et al., 1992;
Schroth et al., 2006). P. syringae also plays a role in the water cycle by acting as an ice
nucleus in clouds and has been identified in rain, snow, lakes, and plants (Hirano and
Upper, 2000; Morris et al., 2008). Other phytopathogenic Pseudomonas species include

P. amygdali, P. avellanae, P. cannabina, P. caricapapayae, P. ficuserectae, P. meliae, P.

23



savastanoi, P. tremae, and P, viridiflava (Lelliott et al., 1966; Gardan et al., 2002; Lopez

et al., 2012; Beiki et al., 2016).

On the other hand, different Pseudomonas species, including P. fluorescens, P.
mendocina, P. putida, P. stutzeri, P. syringae, etc., play key roles in biotechnology,
contributing to plant growth promotion, bioremediation agents, detectors of food
spoilage agents in milk, and the production of valuable secondary metabolites (Scales
et al., 2014; Madhaiyan et al., 2017; Vasconcellos et al., 2017; Hassen et al., 2018; Lee
et al., 2022; Mora et al., 2022; Mehmood et al., 2023). P. fluorescens benefits plant
growth and is commonly used in agriculture to enhance sustainability and control plant
diseases (Panpatte et al., 2016; Garrido-Sanz et al., 2017; David et al., 2018; Raio,
2024). P. putida is widely used as an industrial biocatalyst (Loeschcke and Thies, 2015;
Nikel and de Lorenzo, 2018; Weimer et al., 2020). P. chlororaphis has demonstrated its
potential as a biocontrol agent for managing peanut stem rot disease (Johnsson et al.,
1998; Garrido-Sanz et al., 2017; Liu et al., 2022), P. pertucinogena and related species
contain genes for the production of enzymes, including esterases, dehalogenases, and
transaminases, as well as secondary metabolites (Bollinger et al., 2020; Kruse et al.,
2024). Their widespread presence and importance in ecology have resulted in a
consistent annual increase in identified Pseudomonas species. As many environments
remain unexplored, this trend is expected to continue, with new species and strains
being discovered rapidly. As a result, this genus has become one of the fastest-growing
bacterial groups (Girard et al., 2021; Saati-Santamaria et al., 2021; Lalucat et al., 2022;

Mulet et al., 2024).
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However, the inclusion of genetically and phenotypically unrelated species
makes the genus Pseudomonas highly complex and polyphyletic, as not all species share
a common evolutionary history (Hesse et al., 2018; Peix et al., 2018; Girard et al., 2021;
Saati-Santamaria et al., 2021; Lalucat et al., 2022). Although all these species bear the
genus name Pseudomonas, they exhibit substantial variation, which contradicts the
fundamental principles of microbial taxonomy. In prokaryotic taxonomy, the genus and
species are the primary classification units, and a genus name typically implies that
species within it are closely related, sharing common genetic, phenotypic, and
functional traits, such as pathogenic potential. These shared characteristics distinguish
them from species in other genera (Rossell6-Mora and Amann, 2001; Gupta et al., 2018;
Gupta et al., 2020; Gupta, 2021; Lalucat et al., 2022). In contrast, the current
Pseudomonas classification groups genetically unrelated species, many of which are
distantly related to the type species P. aeruginosa (Hesse et al., 2018; Peix et al., 2018;
Lalucat et al., 2020). This system lacks a clear phylogenetic framework for
understanding the relationships among species. It also fails to organize the species into
taxonomic units based on their evolutionary history and relationships. The absence of
a reliable and informative phylogenetic framework for Pseudomonas species hinders
understanding the roles of these species in disease causation in animals and plants, their
ecological importance, and the production of metabolites and enzymes, which are
helpful for diverse purposes. As a result, there is a growing consensus that the
Pseudomonas classification system should be revised to more accurately reflect the
evolutionary relationships among these species based on their shared history and other
commonly shared traits (Hesse et al., 2018; Saati-Santamaria et al., 2021; Lalucat et al.,

2022).
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3.2 Taxonomic History of the Genus Pseudomonas and Research Gaps:

Understanding the evolutionary relationships among Pseudomonas species and
developing a reliable taxonomic framework for this genus has been a persistent
challenge, primarily due to the absence of consistent phenotypic or genotypic traits
shared by all its species (Anzai et al., 1997; Mulet et al., 2010; Garrido-Sanz et al.,
2016; Peix et al., 2018; Lalucat et al., 2022). Initially described by Migula in 1894
(Migula, 1894), the genus includes some species distinguishable by specific features,
such as producing a green, fluorescent pigment and being polarly flagellated, strictly
oxidative, Gram-negative rods (Cowan and Liston, 1974). However, many
Pseudomonas species lack these traits, and similar characteristics are observed in other
genera, making classification difficult. By the 1960s, Pseudomonas taxonomy had
become highly disorganized, with nearly 800 species names in use (Stanier and van
Niel, 1962; Palleroni, 2010). To address this issue, Stanier and colleagues introduced a
systematic approach in 1966 (Stanier et al., 1966), utilizing biochemical and substrate
utilization tests initially developed by Den Dooren de Jong (1926). This extensive
analysis examined 165 phenotypic traits across 401 recognized Pseudomonas strains.
Building on this, Stanier, Doudoroff and Palleroni (Doudoroff, 1974) advanced
Pseudomonas taxonomy by incorporating polyphasic methods, including analyses of
G+C content and DNA-DNA hybridization. In addition, Palleroni et al. (Palleroni,
1984) divided Pseudomonads into five rRNA subgroups based on RNA-DNA
hybridization. They identified Group I, represented by P. aeruginosa, as the core of the
genus, while the remaining groups were reclassified into separate genera within the

same or related families.
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An important breakthrough in Pseudomonas taxonomy occurred in the 1980s when
Woese and colleagues introduced the use of 16S ribosomal RNA gene sequencing for
bacterial  classification. This work placed Pseudomonas  within the
Gammaproteobacteria (Woese et al., 1984). The most pointed changes impacting the
classification of the genus Pseudomonas emerged in the 2000s, starting with a study by
Anzai et al., (2000). This research analyzed the 16S rRNA gene sequences of 128
Pseudomonas species, revealing that many species fell outside the Pseudomonas sensu
stricto cluster, which corresponds to the rRNA group I defined by Palleroni (1984).
However, the limited resolution of 16S rRNA at the species level necessitated using
alternative markers, such as concatenated sequences of multiple housekeeping genes,
for more precise classification. Over the last two decades, phylogenomic techniques,
including MLSA based on multiple housekeeping genes, i.e., 16S rRNA, gyrB, rpoD,
and rpoB, and core genome comparisons, have become essential tools in studying
Pseudomonas taxonomy (Yamamoto et al., 2000; Hilario et al., 2004; Mulet et al., 2010;

Hesse et al., 2018; Lalucat et al., 2022).

Extensive research using MLSA and core genome analysis has been undertaken to
understand the evolutionary relationships among Pseudomonas species (Mulet et al.,
2010; Junetal., 2016; Hesse et al., 2018; Peix et al., 2018; Saati-Santamaria et al., 2021;
Lalucat et al., 2022; Passarelli-Araujo et al., 2022). The findings from these studies have
consistently identified several unresolved issues within the genus. 1) Pseudomonas
species do not form a monophyletic lineage and group into three unrelated lineages: the
Aeruginosa, Fluorescens, and Pertucinogena lineages (each based on representative
species names), suggesting they do not share a common ancestor. 2) The type species
of Pseudomonas, P. aeruginosa, along with a few others, form a clade known as the
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‘Aeruginosa clade,” which is distinct from the rest of the Pseudomonas species clades.
3) Within these two lineages (Aeruginosa and Fluorescens), several distinct genus-level
groups or clades were observed which includes Alcaligenes, Anguilliseptica, Flexibilis,
Fluorescens, Kuykendallii, Linyingensis, Lutea, Massiliensis, Oleovorans,
Oryzihabitans, Putida, Resinovorans, Rhizosphaerae, Straminea, Stutzeri, and Syringae
clades consisting different Pseudomonas species. Each clade is named after the
representative species name. 4) A deep-branching lineage, the Pertucinogena lineage
(named for P. pertucinogena), is observed, which branches outside of all Pseudomonas
species/clades. 5) Several studies also showed that species from other genera within the
Pseudomonadaceae family, such as Azotobacter, Azomonas, and Chryseomonas, branch
in between different Pseudomonas species clades, making the genus polyphyletic.
Furthermore, some Pseudomonas species, i.e., P. acidophila, P. cissicola, and P.
geniculata, are more closely related to several distant genera, including
Paraburkholderia, Xanthomonas, and Stenotrophomonas, respectively. 6) No
taxonomic, biochemical, or molecular markers that clearly distinguish all genus-level
clades within the genus Pseudomonas have been identified. For taxonomic markers to
be effective, they must be stable and shared by all members of the clades/genera. In
addition, the markers should possess strong predictive power, enabling the
determination of the taxonomic affiliation of uncharacterized strains based on their

presence or absence.

Thus, the challenges mentioned above highlight the need to revise the Pseudomonas
classification by developing a reliable, informative marker-based taxonomic framework
that reflects the evolutionary relationships among Pseudomonas species and resolves
the existing taxonomic issues within the genus Pseudomonas. In my thesis, I have used
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multiple genome sequence-based approaches, viz., construction of phylogenomic trees
based on large datasets of core proteins, identification of molecular markers such as
CSIs and CSPs, which are specific for different Pseudomonas species clades/genera and
other whole-genome-based approaches (viz., construction of AAI and POCP matrices)
to address the challenges related to understanding evolutionary relationships and re-

classification of Pseudomonas species in different thesis chapters.

In addition to genus-level reclassification, my research also focuses on species or
strain-level demarcation. I used molecular marker-based approaches to propose a new

species, P. paraeruginosa, distinct from P. aeruginosa strains.

P. aeruginosa, which is a part of the “ESKAPE” group of pathogens (Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter species), poses a serious threat to human
health and is prioritized for novel antimicrobial development (Pendleton et al., 2013;
Miller and Arias, 2024). P. aeruginosa drives its pathogenicity through numerous
virulence factors, either located on the cell surface or secreted into the surroundings
(Lyczak et al., 2000; Wolfgang et al., 2003; Hauser, 2009; Rutherford and Bassler, 2012;
Elsen et al., 2014; Garcia-Reyes et al., 2020). One of the key virulence factors is Type
IV pili (T4P) (Hood et al., 2010; Burrows, 2012; Basso et al., 2017), which are
responsible for twitching motility. This type of motility plays a crucial role in biofilm
formation and surface exploration (Burrows, 2012). Other key virulence factors in P,
aeruginosa include the Type I (T1SS) (Filloux, 2011; Qin et al., 2022), Type II (T2SS)
(Jyot et al., 2011), and Type III (T3SS) secretion systems (Yahr et al., 1996; Engel and

Balachandran, 2009; Nadal Jimenez et al., 2012; Elsen et al., 2014; Toska et al., 2014).
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T1SS secretes alkaline protease, which inhibits fibrin formation and aids bacterial
spread (Filloux, 2011; Qin et al., 2022). T2SS releases exotoxin A, phospholipase C,
protease IV, and elastase, which contribute to cytotoxicity, inflammation, and
colonization (Jyot et al., 2011; Wiener-Kronish and Pittet, 2011). The Type 3 secretion
system (T3SS) injects exotoxins directly into host cells. These include ExoU (a
phospholipase causing apoptosis and necrosis), ExoY (an adenylate cyclase disrupting
endothelial cell function), and ExoT and ExoS (bifunctional proteins that impair DNA
synthesis and alter cell morphology). While all strains carry T3SS genes, only some
secrete these effectors, and T3SS expression is linked to worse clinical outcomes (EI-
Solh et al., 2012; Ledizet et al., 2012; Elsen et al., 2014; Toska et al., 2014; Qin et al.,
2022). Several other virulence factors include quorum sensing (QS), which controls cell
communication and biofilm formation, and endotoxin (lipopolysaccharide), located on
the outer membrane, providing resistance to host defenses (Ramsey et al., 2005;

Rutherford and Bassler, 2012).

Studies using phylogenomic, computational, and experimental approaches have
shown that P. aeruginosa strains are pathogenically distinct, grouping into two clades
in the phylogenetic analysis. These clades are called “Classical clades” and “Outlier
clades”. Based on the presence/absence of the T3SS, the more pathogenic “Classical”
clade, containing T3SS, is represented by strain PAO1, while the less pathogenic
“Outlier” clade, which lacks T3SS, is represented by strain PA7 (Roy et al., 2010; Sood
et al,, 2019; Sood et al., 2020). We also performed extensive phylogenomic and
comparative genomic analyses to distinguish the strains of these two clades. Based on
our findings, we reclassified the strains from the “Outlier clade” as a new species,
Pseudomonas paraeruginosa. This work is detailed in Chapter 4 of this thesis.
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3.3 Thesis Chapters Overview

As previously mentioned, Pseudomonas species are categorized into three main
groups or lineages: Pertucinogena, Aeruginosa, and Fluorescens. My thesis is structured
into seven chapters, each addressing key aspects of my research to clarify the
evolutionary relationships among Pseudomonas species from these lineages using
phylogenomic and molecular signature-based approaches. Chapter 1 introduces the
genus Pseudomonas, highlights current research challenges, and lays the foundation for
the studies presented in subsequent chapters. Chapters 2-5 include my published
studies, presented in their original manuscript form. Chapter 2 focuses on the
Pertucinogena group of species, which branches outside of all Pseudomonas species
clades, underscoring that they are separate from them. Our analyses of these
Pseudomonas species have led to the reclassification of most of the species from the
Pertucinogena group into two new genera, Halopseudomonas and Atopomonas.
Furthermore, we have also merged the genus Oblitimonas with Thiopseudomonas and
reclassified several misclassified Pseudomonas species into their respective genera.
Chapter 3 focuses on the Aeruginosa lineage or group of species. Aeruginosa
lineage/group consists of over 13 distinct Pseudomonas species clades in addition to
Azomonas and Azotobacter species. This chapter highlights the delineation of these
clades through comprehensive phylogenomic analyses, the identification of CSIs, and
the application of additional comparative genomic methods such as AAI and POCP.
Based on the results from these analyses, the genus Pseudomonas was redefined to
include only species within the Aeruginosa clade, containing the type species P.
aeruginosa. Twelve novel and emended genera were described to represent the
remaining clades within the Aeruginosa lineage. Chapter 4 investigates many P,
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aeruginosa strains and identifies two distinct clades containing P. aeruginosa strains:
Classical and Outlier. Through phenotypic and genotypic analyses, we established that
the Outlier clade represents a new species, which we named P. paraeruginosa. Chapter
5 highlights the predictive potential of CSIs as a reliable tool for determining the
taxonomic affiliations of ~ 300 unclassified Pseudomonas strains. This chapter
underscores the utility of CSIs in refining microbial taxonomy. Chapter 6 presents the
results of phylogenomic studies to clarify the evolutionary relationships within species
from the Fluorescens lineage. It also reports the identification of CSls specific for some
of the observed clades. This study, after further work, will form the basis for
reclassifying species from the Fluorescens lineage into different novel genera. Finally,
Chapter 7 concludes by summarizing the overall significance of my research and
discussing potential future directions for advancing our understanding of prokaryotic

taxonomy, classification, and evolution.
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CHAPTER 2

Phylogenomic and Comparative Genomic Analyses of Species of the Family
Pseudomonadaceae: Proposals for the Genera Halopseudomonas gen. nov.
and Atopomonas gen. nov., Merger of the Genus Oblitimonas with the Genus
Thiopseudomonas, and Transfer of some Misclassified Species of the Genus

Pseudomonas into Other Genera.

This chapter describes phylogenomic and comparative genomics approaches to
clarify the evolutionary relationships of the Pertucinogena lineage of species, which
groups outside of all other Pseudomonas species clades. Comparative analysis of
protein sequences across Pseudomonas species led to the identification of CSIs unique
to the Pertucinogena group of species, along with other misclassified Pseudomonas
species clades. These CSIs, in conjunction with phylogenetic analyses, provide insights
into the evolutionary relationships among different Pseudomonas species, leading to the
establishment of two novel genera, Halopseudomonas and Atopomonas. Furthermore,
this study presents molecular evidence for the misclassification of several Pseudomonas
species, supporting their reassignment to more closely related genera. My contributions
to this chapter include the construction of phylogenetic trees, the identification of CSIs,
drafting and revising the manuscript, and producing all main and supplemental figures

and tables.

Due to space constraints, supplementary figures and tables are not included in this

chapter but are available alongside the entire manuscript at:

Rudra B., Gupta R. S. (2021). Int. J. Syst. Evol. Microbiol.71(9):005011.
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Phylogenomic and comparative genomic analyses of species
of the family Pseudomonadaceae: Proposals for the genera
Halopseudomonas gen. nov. and Atopomonas gen. nov., merger
of the genus Oblitimonas with the genus Thiopseudomonas,
and transfer of some misclassified species of the genus
Pseudomonas into other genera

Bashudev Rudra and Radhey S. Gupta*®

Abstract

The evolutionary relationships among species of the family Pseudomonadaceae were examined based on 255 available genomes
representing >85% of the species from this family. In a phylogenetic tree based on concatenated sequences of 118 core pro-
teins, most species of the genus Pseudomonas grouped within one large cluster which also included members of the genera
Azotobacter and Azomonas. Within this large cluster 18-30 clades/subclades of species of the genus Pseudomonas consisting
of between 1 and 36 species, were observed. However, a number of species of the genus Pseudomonas branched outside of
this main cluster and were interspersed among other genera of the family Pseudomonadaceae. This included a strongly sup-
ported clade (Pertucinogena clade) consisting of 19 mainly halotolerant species. The distinctness of this clade from all other
members of the family Pseudomonadaceae is strongly supported by 24 conserved signature indels (CSls) in diverse proteins
that are exclusively found in all members of this clade. Nine uncharacterized members of the genus Pseudomonas also shared
these CSls and they branched within the Pertucinogena clade, indicating their affiliation to this clade. On the basis of the strong
evidence supporting the distinctness of the Pertucinogena clade, we are proposing transfer of species from this clade into a
novel genus Halopseudomonas gen. nov. Pseudomonas caeni also branches outside of the main cluster and groups reliably with
Oblitimonas alkaliphila and Thiopseudomonas denitrificans. Six identified CSls are uniquely shared by these three species and
we are proposing their integration into the emended genus Thiopseudomonas, which has priority over the name Oblitimonas. We
are also proposing transfer of the deep-branching Pseudomonas hussainii, for which 22 exclusive CSls have been identified, into
the genus Atopomonas gen. nov. Lastly, we present strong evidence that the species Pseudomonas cissicola and Pseudomonas
geniculata are misclassified into the genus Pseudomonas and that they are specifically related to the genera Xanthomonas and
Stenotrophomonas, respectively. In addition, we are also reclassifying ‘Pseudomonas acidophila’ as Paraburkholderia acidicola sp.
nov. (Type strain: G-6302=ATCC 31363=BCRC 13035).

INTRODUCTION is the type genus of the family Pseudomonadaceae, which
The genus Pseudomonas first described by Migula in 1894 harbours several other genera, including Azomonas,
[1], consists of a group of rod-shaped, aerobic, non-spore Azorhizophilus, Azotobacter, Entomomonas, Mesophilobacter,
forming, Gram-negative bacteria generally possessing some Oblitimonas, Permianibacter, Rhizobacter, Rugamonas and
polar flagella that assist in their movement [2, 3]. Pseudomonas Thiopseudomonas [4-6]. The genus Pseudomonas, which
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contains more than 240 species with validly published names,
is the largest genus within the family Pseudomonadaceae and
its members span enormous genetic and metabolic diversity
and inhabit a wide variety of environments including soil,
water, animal and plant tissues [2, 3, 7, 8]. However, several
species of the genus Pseudomonas are opportunistic patho-
gens of humans, animals and plants and these are often the
most studied [2, 8]. The best studied species within this genus
include Pseudomonas aeruginosa, an opportunistic human
pathogen [9-11], Pseudomonas syringae, a plant pathogen
[12], Pseudomonas putida, a soil bacterium and Pseudomonas
fluorescens, a plant growth-promoting bacterium [2]. The
ubiquitous nature of these organisms is leading to a steady
increase in the number of species of the genus Pseudomonas
every year [8, 13, 14], and as many environments remain to
be explored, this trend is expected to continue [8, 15, 16].

Over the years, extensive work has been carried out on clari-
fying the classification and evolutionary relationships among
species of the genus Pseudomonas on the basis of different char-
acteristics [2, 3, 17, 18]. While the earlier studies in this regard
were based on physiological, biochemical and chemotaxonomic
features [3, 7, 19], subsequent studies have utilized phyloge-
netic analysis based on 16S rRNA gene sequences [17] and
multilocus sequence analysis (MLSA) based on concatenated
sequences of several conserved genes and/or proteins, such as
16S rRNA, gyrB, rpoD and rpoB (3, 8, 16, 20-22]. Although
these studies differ in terms of the number of species that were
analysed, and also have used different evolutionary models for
phylogenetic tree reconstructions, in most of these studies the
examined species of the genus Pseudomonas group into two or
three main clusters or lineages. The two main clusters observed
in these studies are referred to as the P. fluorescens lineage and
P aeruginosa lineage (3, 8, 16, 20]. Within these two main line-
ages, a number of phylogenetic groups or clades named after
the following species P, fluorescens, P. lutea, P. syringae, P. rhizos-
phaerae, P. putida, P. anguilliseptica, P. straminea, P. luteola, P.
oryzihabitans, P. stutzeri, P. oleovorans and P. aeruginosa have
been observed in different studies [3, 8, 16, 20-23]. However,
the numbers of these groups as well as their branching posi-
tions and species composition often vary in different studies
[3, 8,16,20-22]. Additionally, besides these two main lineages,
another deep-branching lineage, referred to as the Pertucino-
gena clade (based on its containing P. pertucinogena) is also
observed in most studies [8, 16]. In an important advancement
towards understanding the evolutionary relationships among
species of the genus Pseudomonas, Hesse et al. [24] have
sequenced the genomes of 118 type strains of species of the
genus Pseudomonas. Using these genomes and other available
genome sequences, these authors reconstructed a phylog-
enomic tree for 163 species of the genus Pseudomonas based
on concatenated sequences of 100 single-copy genes [24]. The
highly-resolved tree reconstructed in this study also confirmed
the existence of at least 13 distinct clades of species of the genus
Pseudomonas (generally similar to those identified by MLSA)
and their work also indicated that the known species of the
genus Pseudomonas do not adequately represent the overall
genetic diversity of this genus [24].

Most of the studies on examining the evolutionary relation-
ships among species of the family Pseudomonadaceae are
limited to members of the genus Pseudomonas and they
do not include species from other genera of the family
Pseudomonadaceae. However, it is known from earlier work
that the species from a number of genera of the family
Pseudomonadaceae, such as Azotobacter and Azomonas,
branch in between the species of the genus Pseudomonas
making this genus polyphyletic [23, 25-29]. Furthermore,
earlier work indicates that a number of other species of the
genus Pseudomonas such as ‘P. acidophila’, P. cissicola and P.
geniculata, are more closely related to other distantly related
genera (Paraburkholderia, Xanthomonas and Stenotropho-
monas) [17, 30-32] than to the genus Pseudomonas, but they
are still placed within the genus Pseudomonas [4, 6] due to
lack of reliable evidence to reclassify them. In view of the
aforementioned taxonomic anomalies, it is important to carry
out further detailed phylogenomic and comparative genomic
studies on species of the family Pseudomonadaceae to reliably
discern their evolutionary relationships.

Due to rapid advancements in genome sequencing tech-
nology, genome sequences are now available for more than
240 species of the genus Pseudomonas in the NCBI genome
sequence database [14] (https://www.ncbinlm.nih.gov/
genome/). In addition, genome sequences are also available
for a number of species from other genera of the family Pseu-
domonadaceae providing a valuable resource for undertaking
detailed studies to clarify the evolutionary relationships
among species of the genus Pseudomonas and the family
Pseudomonadaceae. Using these genome sequences, we have
reconstructed a highly-resolved phylogenetic tree based on
concatenated sequences of 118 conserved proteins. This tree
provides a phylogenetic framework for understanding the
evolutionary relationships among the members of the family
Pseudomonadaceae and the genus Pseudomonas. In addition,
we also describe the results of our comparative genomic
analysis of protein sequences which have identified multiple
molecular signatures, consisting of conserved signature indels
(CSIs), which are distinctive characteristics of a number of
clades of species of the family Pseudomonadaceae, enabling
their reliable demarcation in molecular terms. One of these
strongly supported clades, referred to in earlier work as the
Pertucinogena clade [8, 16, 20, 24], branches deeply in phylo-
genetic trees, and it is comprised of halophilic and/or halotol-
erant species. We are proposing the transfer of species from
this distinct clade into a novel genus Halopseudomonas gen.
nov. We also present reliable evidence that the species P. caeni,
Oblitimonas alkaliphila and Thiopseudomonas denitrificans
form a monophyletic grouping and they should be integrated
into the genus Thiopseudomonas. Evidence presented here
also supports the placement of deep branching P. hussainii
into a novel genus. Lastly, the results from our phylogenetic
studies and molecular signatures robustly establish that the
species P. cissicola, P. geniculata and ‘P. acidophila’ are specifi-
cally related to the species from the genera Xanthomonas,
Stenotrophomonas and Paraburkholderia, respectively, and
they should be reclassified into these genera.
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METHODS

Reconstruction of phylogenetic trees and genomic
analysis of the genus Pseudomonas

Genome sequences for different named species of the family
Pseudomonadaceae were downloaded from the NCBI genome
sequence database. These included 243 sequences for named
species of the genus Pseudomonas and 12 sequences for species
from other genera of the family Pseudomonadaceae including
the genera Azotobacter, Azomonas, Entomomonas, Obliti-
monas, Permianibacter, Rugamonas and Thiopseudomonas.
The genome sequences for Moraxella bovoculi and Moraxella
bovis were included in the dataset for rooting the trees. Each
species in our dataset is represented by a single genomic
sequence, generally of the type strain when available. On the
basis of these genome sequences, a rooted phylogenetic tree
was reconstructed based on concatenated sequences of 118
conserved proteins. The proteins used for this tree reconstruc-
tion are a part of the phyloeco set for the class Gammapro-
teobacteria and they are single-copy genes, which, based on
analyses of a limited number of genomes, were indicated as
being widely distributed within the class Gammaproteobac-
teria [33]. The names and accession numbers of the proteins
which were used for tree reconstruction are provided in Table
S1 (available in the online version of this article), Reconstruc-
tion of the phylogenetic trees was carried out as described in
our earlier work [34, 35]. Briefly, using the profile Hidden
Markov Models of different proteins from the phyloeco set,
the members of these protein families were identified in the
input genomes using HMMer 3.1 [36]. On the basis of the
results of these analyses only those protein families where
the proteins share a minimum of 50% in sequence identity
and sequence length and where the protein is found in at
least 80% of the input genomes were retained for phylogenetic
tree reconstruction. Multiple sequence alignments of these
protein families were generated using the Clustal Omega [37]
algorithm. TrimAl [38] was used to remove poorly aligned
regions from the sequence alignments before concatenation
of the sequences into a single file. The concatenated sequence
alignment used for phylogenetic analysis contained a total of
41417 aligned positions. A maximum likelihood (ML) tree
based on this alignment was reconstructed using the Whelan
and Goldman model [39] of protein sequence evolution in
FastTree 2 [40]. Optimization of the robustness of the trees
was completed by conducting SH tests [41] in RAXML 8 [42]
and the trees were drawn using MEGA X [43].

In addition to this comprehensive tree, another phylogenetic
tree was reconstructed based on concatenated sequences
(full-length) for five highly-conserved proteins (i.e. RpoA,
RpoB, RpoC, GyrA and GyrB), which are commonly used for
phylogenetic analyses [44]. This tree only included sequences
for representative species of the genus Pseudomonas from
different clades (except for the Pertucinogena clade for which
all species were included) but also included representative
sequences from some other prokaryotic genera including
Paraburkholderia, Xanthomonas and Stenotrophomonas as
well sequences for specific unnamed members of the genus

Pseudomonas that were found to share conserved signature
indels (CSIs) specific for the Pertucinogena clade. This tree
was based on 4705 aligned positions and reconstructed as
described above.

Identification of conserved signature indels (CSls)

Identification of conserved signature indels was carried out as
described in our earlier work [35, 45-47]. BLASTp searches
were carried out on all protein sequences from the genomes of
P, litoralis, P. caeni and P. hussainii, the species related to which
are studied in greater detail in the present work. On the basis
of the results of these BLAST searches, sequences from 12 to
15 diverse species of the genus Pseudomonas as well as 6-8
species from other genera of the family Pseudomonadaceae
were retrieved for each protein and their multiple sequence
alignments (MSA) were created using cLusTaLx [48]. The
alignments were visually inspected for inserts or deletions of
fixed lengths which were flanked on both sides by at least four
to five conserved amino acids (aa) in the neighbouring 40-50
amino acids and which were specific for particular clades of
species of the genus Pseudomonas. In the present study, our
work has focused mainly on identifying conserved indels that
are specific for the Pertucinogena clade of species and some
other species that branch outside of the main cluster of species
of the genus Pseudomonas. Query sequences encompassing
the potential indels and flanking regions (60-100 aa long)
were collected and a more detailed BLASTp search (500 or
more hits) was carried out to determine the group specificities
of the observed indels. Signature files for all CSIs of interest
were formatted by using SIG_CREATE and SIG_STYLE
programmes from the GLEANS software package (available
on Gleans.net) [46, 49]. Due to space constraints, sequence
information is shown for only a limited number of species
in the figures. However, unless otherwise indicated the CSIs
reported here are only found in all or most of the named
species of the genus Pseudomonas from the indicated groups.

RESULTS

Phylogenetic analysis of the family
Pseudomonadaceae

The family Pseudomonadaceae besides the genus Pseu-
domonas contains ten other genera with validly published
names including Azomonas, Azorhizophilus, Azotobacter,
Entomomonas, Mesophilobacter, Oblitimonas, Permiani-
bacter, Rhizobacter, Rugamonas and Thiopseudomonas
[4, 6, 50]. Unlike Pseudomonas, which is a very large and
genetically diverse genus harboring more than 240 species
with validly published names, the other genera within the
family Pseudomonadaceae contain only a limited number of
species (less than 20 in total) [4]. However, the interrelation-
ships of species from these genera to the species of the genus
Pseudomonas have not been thoroughly studied and remain
unclear. Genome sequences are now available for >85% of
the species with validly published names from the genus
Pseudomonas (210 out 240) as well representatives from all
other genera of the family Pseudomonadaceae except the
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genus Mesophilobacter. Thus, the evolutionary relationships
among species of the family Pseudomonadaceae can now be
comprehensively examined using genome sequence data.
In the present work, we have reconstructed a phylogenetic
tree based on 255 species of the family Pseudomonadaceae
whose genome sequences were available in NCBI genome
sequence database (https://www.ncbi.nlm.nih.gov/genome/
browse#!overview/Pseudomonadaceae) as of December 30,
2020. Using these genome sequences, we have reconstructed
a phylogenetic tree based on concatenated sequences for
118 conserved proteins, which are commonly shared by
members of the class Gammaproteobacteria [33]. The tree
shown in Fig. 1, which is based on 41417 aligned amino
acid positions, was rooted using sequences for species of
the genus Moraxella (a member of another family within
the order Pseudomonadales) and it will be referred to as the
phyloeco tree. The tree shown in Fig. 1 is robust and nearly
all of the observed nodes in it are supported with 100%
bootstrap scores (SH values). In this tree as well as in other
Figures, the names of species that are not validly published
are shown within double quotation marks.

In the tree shown in Fig. 1, species of the genus Pseu-
domonas grouped into a number of distinct clusters in
different parts of the trees. In addition, several species of the
genus Pseudomonas were not part of any observed clusters.
Importantly, a number of clusters of species of the genus
Pseudomonas, or individual species that are not part of any
clusters were interspersed with species from other genera
of the family Pseudomonadaceae indicating that the genus
Pseudomonas, as currently known, is highly divergent and
polyphyletic [16, 24]. In Fig. 1, for ease of presentation,
the clades corresponding to most of the species clusters
of the genus Pseudomonas, which are not the main focus
of the present work, are shown in compressed forms.
However, an uncompressed tree is provided as Fig. S1
and the species compositions of different clades that are
shown in compressed forms is provided in Table 1. The
Pseudomonas clusters observed in Fig. 1 (Fig. S1, Table 1)
are labelled as the Aeruginosa, Alcaligenes, Anguilliseptica,
Flexibilis, Fluorescens, Kuykendallii, Linyingensis, Lutea,
Massiliensis, Oleovorans, Oryzihabitans, Pertucinogena,
Putida, Resinovorans, Rhizosphaerae, Straminea, Stutzeri
and Syringae clusters, after specific species of the genus
Pseudomonas that are a part of these clades. Additionally,
within the Fluorescens clade, a number of subclades, similar
to those reported in earlier work [8, 15, 16, 22, 24], are also
observed and labelled. The grouping of species of the genus
Pseudomonas into different clades and subclades as seen in
Fig. 1 (Fig. S1 and Table 1) is very similar to that reported by
Hesse et al. [24]. However, as our phylogenetic tree includes
many additional species of the genus Pseudomonas, it also
reveals the existence of a number of smaller species clades,
namely Alcaligenes, Flexibilis, Kuykendallii, Massiliensis
and Rhizosphaerae, not identified previously [24]. All of
the main clades observed in our phylogenetic trees are
also indicated to be distinct according to the Genome
Taxonomy Database (GTDB (http://gtdb.ecogenomic.org/),

which is based on phylogenetic analysis of 120 ubiquitously
conserved proteins and provides an important resource
for phylogenetic-taxonomic inferences [29]. The GTDB
taxon names for different clades are also indicated in the
tree in Fig. 1 and Table 1. Similar branching patterns and
groupings of species of the genus Pseudomonas, with minor
differences (as indicated by [16]), have also been observed
in other studies, using MLSA trees based on 16S rDNA,
gyrB, rpoB and rpoD genes [8, 15, 16, 22].

Although phylogenetic relationships among species of
the genus Pseudomonas have been examined in a number
of studies [8, 15, 16, 22, 24], most of these studies have
not included members of other genera of the family Pseu-
domonadaceae. Hence, the tree shown in Fig. 1 reveals a
number of novel aspects of evolutionary relationships
among species of the family Pseudomonadaceae. In Fig. 1,
while a majority of the species of the genus Pseudomonas are
part of a large cluster (shown in blue and referred to as the
Pseudomonas main cluster), a number of species branched,
or formed distinct clades, in different parts of the phyloge-
netic tree and they were surrounded by species belonging
to other genera of the family Pseudomonadaceae. Some of
the anomalies observed in this regard are as follows: (i)
Species from two genera of the family Pseudomonadaceae,
Azotobacter and Azomonas, are deeply embedded within
the main Pseudomonas cluster highlighting the polyphyletic
nature of this genus and the difficulty in distinguishing it
from other genera [23, 26]. (ii) The Pertucinogena clade of
species branched deeply and outside of the main cluster
of species of the genus Pseudomonas. Species from several
other genera of the family Pseudomonadaceae, including
Azotobacter, Azomonas, Entomomonas, Oblitimonas and
Thiopseudomonas, were more closely related to the main
cluster of species of the genus Pseudomonas than the Pertu-
cinogena clade of species. The deep-branching of the Pertu-
cinogena clade has also been consistently observed in earlier
studies [8, 15, 16]. (iii) The species P. caeni grouped with
the species T. denitrificans in a cluster that also included
species from the genera Oblitimonas and Entomomonas. (iv)
The species P. hussainii also branched separately and deeply
from the main cluster of species of the genus Pseudomonas.
(v) Three other species of the genus Pseudomonas, namely
P. cissicola, P. geniculata and ‘P. acidophila’ branched very
deeply in the tree and they lay in between the species from
other genera of the family Pseudomonadaceae and outgroup
species.

Identification of molecular markers for some
clades of species of the family Pseudomonadaceae

The results of our phylogenomic studies demonstrate that
the genus Pseudomonas exhibits extensive polyphyly and
its members are interspersed among other genera of the
family Pseudomonadaceae. In the tree shown in Fig. 1, the
type species of the genus Pseudomonas i.e. P. aeruginosa
is a part of the Aeruginosa clade and does not seem to
share common evolutionary history with numerous other
clades of species of the genus Pseudomonas observed in
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Fig. 1. A bootstrapped maximum-likelihood tree for 255 genome-sequenced species of the family Pseudomonadaceae based on
concatenated sequences for 118 conserved proteins for members of the class Gammaproteobacteria. The statistical support values for
different branches are indicated on the nodes. This tree was rooted by using species from the genus Moraxella. To aid in visualization,
some of the clades of species of the genus Pseudomonas are shown in compressed forms. However, an uncompressed form of the
tree is provided in Fig. S1. The number of species that are part of each clade and subclade are noted in parenthesis alongside the
names of different clades. The Genome Taxonomy Database cluster names are also indicated for various clades (e.g. Pseudomonas_A
to Pseudomonas_0). The species of the genus Pseudomonas, which are the main focus of this study are highlighted in pink and marked
with * in the tree. Species with non-validly published names are shown within quotation (" “) marks in this and other Figures. The main
cluster of species of the genus Pseudomonas seen in the tree is highlighted in light blue.
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Table 1. Species composition of compressed clades of the genus Pseudomonas in Fig. 1

Clade name

Species name

Linyingensis (Pseudomonas_K)

Aeruginosa(Pseudomonas)

Oryzihabitans (Pseudomonas_B)

Stutzeri (Pseudomonas_A)

Ther | (Pseud _G)
Flexibilis (Pseudomonas_H)
Resinovorans (Pseudomonas_F)

Indica (Pseudomonas_M)

Kuykendallii (Pseudomonas_O)
Pseudomonas_E Subclade

Fluorescens

Gessardii
Yamanorum
Frederiksbergensis
Mandelii
Koreensis

Jessenii

Corrugata
Chlororaphis
Protegens
Asplenii

Fragi
Lutea

Syringae

Rhizosphaerae

Putida

Massiliensis
Straminea

Anguilliseptica

Pohangensis

Oleovorans

Alcaligenes

P linyingensis, P. sagittaria, ‘P. oryzae’, P. guangdongensis

P humi, P. citronellolis, P. delhiensis, P. knackmussii, P. panipatensis, P. nitritireducens, P. nitroreducens, P.
multiresinivorans, P. jinjuensis, P. aeruginosa, P. denitrificans

P. rhizoryzae, P. psych I , P. oryzihabil P, luteola, P. zeshuii, P. asuensis, P. duriflava.
P. chloritidi Pk ingensis, ‘P. song is’, P. stutzeri, P. balearica, P. xanthomarina, P.
haodongensis, P. nitrititol P, kirkiae, ‘P. saudiphocaensis’, P. ifigens, P. nosocomialis.

P. thermotolerans

P. flexibilis, P. tuomuerensis

P. resinovorans, P. furukawaii, P. otitidis
P indica

P. kuykendallii, P. matsuisoli.

P. reactans, P. azotoformans, P. canadensis, P. simiae, P. allii, P. lurida, P. ientalis, P. pall iana,

P. rhodesiae, P. poae, P. cedrina, P. kairouanensis, P. nabeulensis, P. tolaasii, P. trivialis, P. marginalis, P.
orientalis, P. libanensis, P. synxantha, P. carnis, P. lactis, P. paralactis, P. edaphica, P. salomonii, P. antarctica, P.
fluorescens, P. cremoris, P. ¢ inii, P. it is, P. ki iensis, P. h Iytica, P. grimontii, P. fildesensis,
P. veronii, P. panacis, P. extremaustralis

P. gessardii, P. proteolytica, P. brenneri, P. mucidolens,
P. yamanorum
P. frederiksbergensis.

P silesiensis, P. prosekii, P. mandelii, P. arsenicoxydans, P. migulae, P. lini.

‘P. atacamensis’, P. koreensis, P. iensis, P. g densis, P. baetica, P. helmanticensis, ‘P. kribbensis’

P laurylsulfatiphila, P. jessenii, P. laurylsulfatovorans, P. vancouverensis, P. moorei, P. mohnii, P. umsongensis,
P reinekei.

P. corrugata, P. mediterranea, P. kilonensis, P. thivervalensis, P. brassicacearum.
P. chlororaphis
‘P. aestus’, P. piscis, P. saponiphila, P. protegens.

P. asplenii, P. fuscovaginae, P. agarici, P. gingeri, ‘P. batumici’,

P. endophytica, P. helleri, P. lundensis, P. weik 2ph is, P. versuta, P. lens, P. fragi, P. bubulae, P.
psychrophila, P. deceptionensis, P. saxonica.

P. graminis, P. lutea, P. bohemica, P. abietaniphila.

P caspiana, P. ovata, P. cichorii, P. viridiflava, P. asturiensis, P. floridensis, P. coronafaciens, P. tremae, P.
avellanae, P. cannabina, P. syringae, P. congelans, P. cerasi, P. amygdali, P. meliae, P. savastanoi, P. ficuserectae,
P. caricapapayae,

P. coleopterorum, P. rhizosphaerae.

P. wad il is, P dongh is, P. vr is, P. alkylphenolica, P. brassicae, ‘P. gingdaonensis’, P.
mosselii, P. soli, P entomophila, P. sichuanensis, P. guariconensis, P. tai is, ‘P. h is’, P, ji di,
P. monteilii, P. plecoglossicida, P. shirazica, P. asiatica, P. pudica, P. inefficax, P. parafulva, P. putida, P.
capeferrum, P. cremoricolorata, P. reidholzensis, P. japonica, P. laurentiana.

‘P. typographi’, ‘P. massiliensis’.

P inea, P. fulva, P. argenti is, P. is, P. seleniipraecipitans, P. fl P d. iae, P. dryadis.

P P

P. segetis, P. marincola, P. benzenivorans, P. taeanensis, P. anguilliseptica, P. peli, P. leptonychotis, P. guineae, P.
cuatrocienegasensis, P. borbori.

P. pohangensis

Irol : Toalcali

P. khazarica, P. oleovorans, P. mendocina, P. Iytica, P. gug Py ig ‘P. indoloxydans’,
‘P. sediminis’, P. composti, ‘P. sihuiensis’, P. chengduensis, P. alcaliphila, P. toyotomiensis.

P. fluvialis, P. pharmafabricae, P. alcaligenes.
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the tree. However, the branching of species in phylogenetic
trees is influenced by large numbers of variables and it is
often not reliable [49, 51-53]. Furthermore, in the case of
species of the genus Pseudomonas, many of the observed
clades are separated by very short branches (as in the
Pseudomonas_E group), which makes it difficult to reliably
distinguish or demarcate species from these clades on the
basis of branching in the phylogenetic tree alone. Hence,
it is important to confirm the existence and genetic cohe-
siveness of the observed clades byindependent and robust
means that are not dependent upon phylogenetic analysis.
Genome sequences provide a powerful resource for iden-
tifying molecular markers which are uniquely shared by
an evolutionarily related group of organisms. There is now
extensive evidence showing that conserved signature inser-
tions and deletions (CSIs) in genes or proteins provide an
important class of molecular markers for evolutionary and
taxonomic studies [45-47, 49, 54]. When a conserved indel
of a specific length, which is present at a specific position,
is specifically shared by a monophyletic group of organ-
isms, the most parsimonious explanation is that the rare
genetic change giving rise to this CST occurred in a common
ancestor of this group of organisms and then was vertically
inherited by various descendants [45, 46, 49, 55]. Thus, CSIs
represent molecular synapomorphic characteristics that
provide reliable evidence, independent of the branching
patterns in phylogenetic trees, of the common ancestry and
relatedness of a given group of species. Hence, an impor-
tant aspect of the present study focused on the use of CSI
identification approach to reliably demarcate and clarify
the evolutionary relationships of certain deep-branching
lineages within the family Pseudomonadaceae. The specific
lineages or group of species which are the focus of this study
are marked with * in Fig. 1 and the results of our studies
on demarcating these lineages using the CSI-identification
approach are described below.

Molecular signatures specific for the Pertucinogena
clade of species

As seen from Fig. 1, the Pertucinogena clade of species
forms a distinct lineage outside of the main cluster of
species of the genus Pseudomonas. The distinctness of this
group of microorganisms from all other species of the genus
Pseudomonas as well as other genera within the family Pseu-
domonadaceae is strongly supported by our identification
of 24 CSIs in proteins involved in diverse functions that
are specific for all of the species from this clade. Sequence
information for one of these CSIs is presented in Fig. 2. In
this figure we show a segment of the sequence alignment for
the flagellar protein FIgN in which a two amino acid inser-
tion (boxed) in a conserved region is specifically present in
all 19 species from the Pertucinogena clade. However, this
insert is not found in any other named species from either
the family Pseudomonadaceae or other bacteria. The insert
shown is present within a conserved region, indicating that
it constitutes a reliable genetic/molecular characteristic.
The FIgN protein is a flagellar type III export chaperone

that plays an important role in controlling the motility of
the bacterial flagellum [56]. Similar to the CSI shown in
Fig. 2, our analyses have identified 23 other CSIs in diverse
proteins that are also distinctive characteristics of the Pertu-
cinogena clade of species. Sequence information for these
CSIs is presented in Figs S2-524 and a summary of some
of their characteristics is provided in Table 2. On the basis
of the exclusive presence of these CSIs in different species
from the Pertucinogena clade, the genetic changes respon-
sible for these CSIs are postulated to have occurred in a
common ancestor of this group of organisms and then been
vertically inherited by other members. It should be noted
that in addition to the known members of the Pertucino-
gena clade, the CSIs specific for this clade are also present
in nine uncharacterized strains of the genus Pseudomonas.
The significance of this observation is discussed later.

Molecular markers supporting grouping
of Pseudomonas caeni with the genera
Thiopseudomonas and Oblitimonas

The species P. caeni exhibits deep and distinct branching in
all of the reconstructed phylogenetic trees [8, 15, 16, 24]. In
the tree shown in Fig. 1, this species groups within a clade
with species from the genera Thiopseudomonas, Obliti-
monas and also Entomomonas. In the GTDB taxonomy, P
caeni along with species from the genera Oblitimonas and
Thiopseudomonas are indicated to be a part of the genus
Thiopseudomonas [29]. Furthermore, Hesse et al. [24] have
noted that P. caeni is unusual in having a much smaller
genome size and lower DNA G+C content in comparison
to most other species of the genus Pseudomonas and in
these regards it is more similar to the species of the genera
Thiopseudomonas and Oblitimonas [28, 57]. Our compara-
tive genomic analysis has identified six CSIs that support
a specific relationship of P. caeni to the species from the
genera Thiopseudomonas and Oblitimonas. In Fig. 3(a), we
present partial sequence alignment of an ABC transporter
ATP-binding protein, where a one aa insert in a conserved
region is specifically shared by P. caeni, O. alkaliphila and
T. denitrificans, but not present in any other species of
the genus Pseudomonas including those from the Pertu-
cinogena clade. Sequence information for five other CSIs
showing similar specificities is provided in Figs S25 -S29
and some characteristics are summarized in Table 3. The
results presented in Figs 3a and S25-529 also indicate that
in addition to P. caeni, O. alkaliphila and T. denitrificans,
the CSIs specific for this clade are also shared by another
member of the genus Pseudomonas, strain C27(2019),
indicating that this uncharacterized member of the genus
Pseudomonas may also be a member of this clade.

Molecular markers specific for other deep-
branching species of the genus Pseudomonas

In Fig. 1, the species P. hussainii [58] branches deeply
and outside of the main cluster of species of the genus
Pseudomonas as well as members of several other genera
of the family Pseudomonadaceae including Azotobacter,
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Fig. 2. Partial sequence alignment of the flagellar FIgN protein showing a two amino acid insertion within a conserved region
(boxed) that is commonly shared by all members of the. Pertucinogena clade, but not found in any other named species of the family
Pseudomonadaceae or other bacteria. The dashes (-) in the alignment indicate identity with the amino acids on the top line. Accession
numbers for different sequences are indicated in the second column and the numbers at the top indicate the position of this sequence
fragment within the protein sequences. In addition to the members of the Pertucinogena clade, this CSl is also present in nine other
members of the genus Pseudomonas, which are also indicated to be a part of this clade. Sequence information for 23 other CSls that are

also specific for the Pertucinogena clade is provided in Figs $2-S24.
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Table 2. Characteristics of conserved signature indels (CSls) specific for the Pertucinogena clade*

Protein name Accession no. Indel size Indel position Figure number
Flagellar protein FIgN WP_090273330 2aalns 103-139 Fig.2
RND family transporter ‘WP_188635687 laalns 532-576 Fig. 52
tRNA cyclic N6 threonylcarbamoyladenosine (37) synthase TedA WP_188634832 1aalns 169-223 Fig. S3
Protein BatD WP_090272452 1aalns 252-306 Fig. S4
RNA polymerase-associated protein RapA WP_188635120 1 aa Del 221-261 Fig. S5
Glyceraldehyde-3-phosphate dehydrogenase WP_188635402 1 aa Del 68-114 Fig. $6
Dephospho-CoA kinase WP_188636162 1 aa Ins 17-52 Fig. §7
SpoVR family protein WP_188636806 1aalns 05-50 Fig. S8
Serine/threonine protein kinase WP_090272375 3aalns 142-193 Fig. S9
Recombination-associated protein RdgC WP_090272025 1 aa Del 34-79 Fig. S10
OprD family porin SDR85642 laalns 125-163 Fig. S11
Bifunctional diguanylate cyclase/phosphodi ase SDS89372 1 aaIns 176-225 Fig. S12
NADPH-dependent 7-cyano-7-di reductase QueF WP_090272302 1aalns 213-257 Fig. S13
YcgN family cysteine cluster protein WP_090272373 1aalns 35-76 Fig. S14
SprT family zinc-dependent metalloprotease WP_090272415 1aa Del 104-149 Fig. S15
Universal Stress Protein WP_090272538 1 aa Del 61-107 Fig. S16
Glyceraldehyde-3-phosphate dehydrogenase WP_090273031 1 aa Del 110-160 Fig. S17
DUF4892 domain-containing protein WP_090273091 laalns 159-206 Fig. S18
Symmetrical bis (5"-nucleosyl)-tetraphosphatase WP_090274322 1 aa Del 193-244 Fig. S19
Yail/YqxD family protein WP_090274602 1aalns 105-143 Fig. S20
Diaminopimelate decarboxylase WP_090274749 1aalns 306-357 Fig. S21
YifB family Mg chelatase-like AAA ATPase WP_090274765 laa Ins 46-91 Fig. §22
Potassium transporter WP_090275387 laa Del 273-320 Fig. §23
LEA type 2 family protein WP_157718669 laa Del 91-137 Fig. S24

*Most of these CSls specific for this clade are also present in the following strains of members of the genus Pseudomonas: 16W4-4-3, MYb185, Y22, FMEST, OIL-1, gcc21,
5Ae-yellow, WNO33 and S-6-2, which branch with the members of the Pertucinogena clade.

Azomonas, Entomomonas, Oblitimonas and Thiopseu-
domonas. The GTDB taxonomy also places this species
into a separate clade Pseudomonas_L [29]. Our comparative
genomic analysis has identified 22 CSIs in different proteins
that are uniquely found in this species but absent in all
other organisms. One example of a CSI that is specific for
P. hussainii is presented in Fig. 3b. This figure shows partial
sequence alignment of the protein glutathione-disulfide
reductase in which a four amino acid insert (boxed) is
present only in P. hussainii but not in any other member
of the genus Pseudomonas or other bacteria. Sequence
information for 21 other CSIs that are also specific for P
hussainii is presented in Figs S30 -S50 and some of their
characteristics are summarized in Table 3. It is important
to note that the CSIs that are specific for P. hussainii are not
shared by any other member of the genus Pseudomonas or

uncharacterized species, indicating the distinctness of this
species from all others.

Three other species of the genus Pseudomonas namely P.
cissicola, P. geniculata and ‘P. acidophila’ branch very deeply
in the tree. Results from earlier studies indicate that these
species are more closely related to other prokaryotic genera
[17, 30, 31, 59] and they are misclassified as species of the
genus Pseudomonas. However, these species are still listed
as members of the genus Pseudomonas in the NCBI genome
sequence database and also in the LPSN [4] and Names
for Life servers [6]. In BLASTp searches with proteins
from P. cissicola, P. geniculata and ‘P. acidophila’, the top
50 BLAST hits observed were from the species from genera
Xanthomonas, Stenotrophomonas and Paraburkholderia
respectively (Figs S51-S53). In a phylogenetic tree based
on concatenated sequences for five conserved proteins
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Fig. 3. (a) Partial sequence alignment of a an ABC transporter ATP-binding protein showing a one amino acid CSI (boxed) that is
commonly and exclusively shared by, P. caeni, O. alkaliphila, T. denitrificans and an unnamed member of the genus Pseudomonas, C27
(2019), demarcating this group of species in molecular terms. Information for five other CSls specific for this clade is provided in Figs
$25-529 and summarized in Table 2. (b) Excerpts from the sequence alignment of glutathione-disulfide reductase protein showing
a four amino acid insert in a conserved region that is exclusively present in P hussainii. Sequence and information for 21 other CSls
specific for P hussainii is presented in Figs S30-S50 and some of their characteristics are summarized in Table 3. The dashes (-) in all

sequence alignment indicate identity with the amino acids on the top line.
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Table 3. Summary of CSls specific for members of the Caeni ~Thiopseudomonas clade and Pseudomonas hussainii

Protein name Accession number Indel size  Indel position Figure number Specificity

ABC transporter ATP-binding protein WP_022965796 1 aaIns 92-126 Fig. 3(a) Caeni-
Thiopseudomonas

Si-specific NAD(P)(+) transhydrogenase WP_022967548 1aa Del 117-156 8§25 clade

Esterase WP_022965206 laalns 18-54 826

Response regulator transcription factor WP_022965478 laa Ins 20-64 8§27

Phosphoribosylamine glycine ligase WP_022965180 1aaIns 42-82 $28

C40 family peptidase WP_051145790 1aalns 157-200 529

Glutathione-disulfide reductase WP_074867680 4aalns 106-145 Fig. 3(b) Pseudomonas

hussainii

Dihydrolipoyl dehydrogenase WP_071870339 Taalns 55-96 8§30

UDP-N-acetylmuramate:L-alanyl-g; gl 1 diaminopimelate ligase WP_071870788 1aalIns 37-80 $31

Phosphotransferase ‘WP_074867300 1 aa Del 153-192 S32

Citrate (Si)-synthase WP_071870346 2 aalns 187-232 $33

HugZ family protein WP_074867266 1 aa Del 166-204 $34

ATP-binding cassette domain-containing protein WP_074867615 2aa Del 92-135 8§35

DNA polymerase III subunit beta WP_071871523 2aalns 200-242 $36

Cupin domain-containing protein WP_071872405 laa Ins 185-224 §37

L,D-transpeptidase family protein WP_071872639 2aa Ins 161-200 $38

MBL fold metallo-hydrolase WP_083432004 1aa Ins 257-296 $39

Phosphate signalling complex protein PhoU WP_074864309 laa Ins 106-149 S40

Argini nithine succi fe subunit alpha WP_074864650 2aaIns 113-166 $41

Excinuclease ABC subunit A SEL53496 laa Del 635-672 $42

Sulfurtransferase complex subunit TusC WP_074869676 laa Del 30-68 $43

Potassium/proton antiporter WP_074865112 laa Del 156-196 S44

Metalloprotease PmbA WP_071872802 4aa Ins 171-214 §45

Hsp20 family protein WP_074865611 laa Del 9-51 $46

Serine hydrolase WP_074870128 laa Del 299-334 S47

Recombination-associated protein RdgC WP_074870192 laa Del 36-72 S48

Sulfite exporter TauE/SafE family protein WP_074866252 laa Del 51-95 S49

2-oxoglutarate dehydrogenase E1 WP_074866854 laa Ins 273-313 8§50

(RpoA, RpoB, RpoC, GyrA and GyrB), which included
representative species from different clades of the genus
Pseudomonas clades as well as limited numbers of species
from specific genera (Fig. 4), these three species of the genus
Pseudomonas branched reliably with members of the genera
Xanthomonas, Stenotrophomonas and Paraburkholderia,
respectively. The observed results confirm that these species
are more closely related to these other genera instead of the
genus Pseudomonas. On the basis of our earlier work and
the results of additional analysis conducted in this work,
we have also identified some CSIs that are specific for
members of the genera Xanthomonas, Stenotrophomonas
and Paraburkholderia [44, 54, 59]. One example each of
a CSI specific for each of these three genera is shown in
Fig. 5. As seen from this figure, the species P. cissicola, P.

geniculata and ‘P. acidophila’ are found to share CSIs that
are specific for the genera Xanthomonas, Stenotrophomonas
and Paraburkholderia, respectively. These results provide
further evidence indicating that these species are specifi-
cally related to these genera and should be reclassified
accordingly.

Predictive abilities of the CSls for identification and
classification of uncharacterized species

Extensive earlier work on CSIs provides evidence that these
molecular characteristics are highly specific for a given
group of organisms and they exhibit strong predictive
ability to be present in other members of a given group
[34, 35, 45, 49]. As noted earlier, the CSIs that are specific
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Fig. 4. Maximum likelihood phylogenetic tree based on concatenated sequences for the RpoA, RpoB, RpoC, GyrA and GyrB proteins.
This tree includes all of the species from the Pertucinogena and Caeni-Thiopseudomonas clades, along with the 10 uncharacterized
members of the genus Pseudomonas (names shown in bold type) sharing the CSls specific for these clades. The tree also includes
representative species from all of the main clades of the genus Pseudomonas . Additionally, this tree also includes sequences for three
species misclassified as members of the genus Pseudomonas (P. cissicola, P. geniculata and 'P. acidophila’ names shown in bold type) and
representative species from the genera Xanthomonas, Stenotrophomonas and Paraburkholderia. The names of the species are followed
by the strain number of the species whose sequences were used in this study.

for the Pertucinogena clade are also shared by nine other
uncharacterized members of the genus Pseudomonas
(strains 16W4-4-3, MYb185, Y22, FMES51, OIL-1, gcc21,
5Ae-yellow, WNO033, S-6-2). Likewise, the CSI that is
specific for the Caeni-Thiopseudomonas clade is also
shared by one uncharacterized member of the genus Pseu-
domonas i.e. C27 (2019). Thus, it was important to deter-
mine whether the shared presence of these CSIs in these
members of the genus Pseudomonas (strains) is fortuitous
or these uncharacterized strains are part of these specific

clades and that is why they are sharing these group-specific
CSIs. To examine this, we have reconstructed another
phylogenetic tree shown in Fig. 4 (based on RpoA, RpoB,
RpoC, GyrA and GyrB proteins) which included all of the
species from these two clades, along with the 10 unchar-
acterized members of the genus Pseudomonas sharing the
CSIs for these two clades, as well as representatives from
all of the main clades of species of the genus Pseudomonas.
In addition, as noted previously, this tree also included
sequences for P. cissicola, P. geniculata and ‘P. acidophila’
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Fig. 5. (a) Partial sequence alignment of the protein phosphoribosyl formylglycinamidine synthase showing a 27 amino acid insertion
(boxed) which is specific for members of clades of the genus Xanthomonas, but which is also shared by Pseudomonas cissicola. (b) Partial
sequence alignment of 3-deoxy-D-manno-octulosonic-acid transferase showing a one amino acid deletion (boxed) which is commonly
shared by all members of the genus Stenotrophomonas and also Pseudomonas geniculata. (c) Excerpts from sequence alignment of the
protein undecaprenyl-phosphate glucose phosphotransferase showing a one amino acid insertion (boxed) that is commonly shared by
‘P acidophila’ and members of the genus Paraburkholderia. The dashes (-) in all sequence alignments indicate identity with the amino
acids on the top line.
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and representative species from the genera Xanthomonas,
Stenotrophomonas and Paraburkholderia. As seen from
tree in Fig. 4, all nine members of the genus Pseudomonas
which shared the CSIs specific for the Pertucinogena clade
branched reliably within this clade with other members of
the clade. Likewise, Pseudomonas C27 (2019), which shared
the CSI specific for the Caeni-Thiopseudomonas clade also
grouped with other members of this clade. These results
provide strong evidence that the shared presence of CSIs
specific for a given group in an uncharacterized species or
strain is strongly indicative that the particular species or
strain sharing the CSI is evolutionary related to the group
for which the CSI is specific.

DISCUSSION

The genus Pseudomonas, which is a part of the family Pseu-
domonadaceae, constitutes one of the largest genera within
the prokaryotes, harboring more than 240 species with validly
published names. The members of this genus span enormous
genetic and metabolic diversity and the number of species in
this genus is growing at a rapid rate. In 2020 alone, more than
30 descriptions of novel species of the genus Pseudomonas
were published and indexed in PubMed [14]. However,
it is well known that the genus Pseudomonas as currently
known is not monophyletic and it exhibits polyphyly with
species from other genera of the family Pseudomonadaceae
[8, 16, 17, 24-26, 29]. As the genus Pseudomonas contains
many medically and agriculturally important species, as well
others members producing a variety of biologically active
metabolites that are useful for diverse applications including
plant growth promotion, biocontrol and bioremediation
agents etc. [2, 8, 9, 11, 12, 60, 61], it is of much interest to
develop a reliable understanding of the evolutionary relation-
ships among species of the genus Pseudomonas and family
Pseudomonadaceae.

Genome sequences are now available for 210 of the 240
species of the genus Pseudomonas with validly published
names as well as 33 other members of the genus Pseu-
domonas, for which the names are not validly published.
In addition, genome sequences are also available for a
majority of the species from other genera within the family
Pseudomonadaceae. This breadth of genomic data affords
excellent coverage of the genetic diversity that exists within
the genus Pseudomonas and the family Pseudomonadaceae
and provides an exclusive, previously unavailable, resource
for examining and clarifying the evolutionary relationships
amongst the species of the genus Pseudomonas and the
family Pseudomonadaceae. Using these genome sequences,
we have reconstructed a robust phylogenomic tree for
species of the family Pseudomonadaceae based on concat-
enated sequences for 118 conserved proteins for members
of the class Gammaproteobacteria [33]. In this tree, similar
to the results from earlier studies [8, 15, 16, 22, 24], species
of the genus Pseudomonas form a number of different
groups or clusters (Figs 1 and S1). The observed grouping
of species of the genus Pseudomonas into different clades

and subclades in our tree (Figs 1 and S1) is very similar to
that observed by Hesse et al. [24] based on their analysis
of 163 species of the genus Pseudomonas. However, as
the present study includes many additional species of the
genus Pseudomonas, it reveals the existence of a number
of smaller species clades (Alcaligenes, Flexibilis, Kuyken-
dallii, Massiliensis and Rhizosphaerae) not seen in earlier
work. Most of the main groups and clusters of species of
the genus Pseudomonas seen in these trees, with minor
differences (see [16]), are also observed in the MLSA trees
reconstructed by various investigators based on 16S rDNA,
gyrB, rpoB and rpoD genes [8, 15, 16, 22, 23]. Additionally,
most of the species clades seen in our tree are also observed
in GTDB taxonomy [26] as indicated in Fig. 1, Table 1.

An important aspect of the present work is that here we have
examined in detail the evolutionary relationships of species
of the genus Pseudomonas to members of other genera of
the family Pseudomonadaceae. Hence, the results from this
study more clearly depict the evolutionary relationships
among different species of the family Pseudomonadaceae
and the extensive polyphyletic nature of the genus Pseu-
domonas. In the tree shown in Fig. 1, a majority of the
species of the genus Pseudomonas are part of one large and
genetically highly diverse cluster (highlighted in blue). This
cluster also includes species from the genera Azotobacter
and Azomonas, indicating that these genera are currently
inseparable from the genus Pseudomonas [23, 25-27].
However, in addition to this main cluster of species of the
genera Pseudomonas-Azotobacter-Azomonas, a number of
other species or species clades of the genus Pseudomonas
are observed, which exhibit deeper branching in the tree
and their closest relatives are species from other genera
of the family Pseudomonadaceae. These species include a
large clade of species of the genus Pseudomonas referred to
as the Pertucinogena clade and several isolated species (P.
caeni, P. hussainii, ‘P. acidophila’, P. cissicola and P. genicu-
lata), which either branched as separate lineages in the tree
or grouped with species from other genera. On the basis of
their branching in the tree, these species are clearly distinct
from the main cluster of the genus Pseudomonas. In this
work, we have also conducted comprehensive analyses
on the protein sequences from these species to identify
multiple molecular markers that are specific for these
species. The results obtained and presented here provide
strong and independent evidence that these species, or
clusters of species, are distinct from the main cluster of
species of the genus Pseudomonas and that they should be
reclassified into either novel genera or other known genera.

Of the species of the genus Pseudomonas that are not part
of the main cluster, the Pertucinogena clade comprises the
largest group consisting of 19 named species, of which 16
names are validly published. These species form a strongly
supported clade in Fig. 1 as well as in earlier phylogenetic
studies [8, 15, 16, 22, 24]. In the GTDB webserver this
clade is referred to as the Pseudomonas_D taxon [29].
Although a deep branching of Pertucinogena clade has
been observed in earlier work [8, 15, 16, 22, 24], the present
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study shows clearly for the first time, to our knowledge,
that the members of this clade are more distantly related to
the main cluster of species of the genus Pseudomonas than
the members of several other genera of the family Pseu-
domonadaceae including Oblitimonas, Thiopseudomonas
and Entomomonas. Thus, the members of this clade should
be recognized as representing a novel genus within the
family Pseudomonadaceae. In the present work, we have
identified 24 CSIs in diverse proteins that are exclusively
shared by all members of this clade. It should be mentioned
that the proteins in which these CSIs are found were not
part of the 118 proteins used for the reconstruction of our
phylogenetic tree (Fig. 1). Hence, the specific grouping of
these species in the phylogenetic tree is not influenced by
the presence of these CSIs. Another interesting and distin-
guishing property of the Pertucinogena clade is that most
of these species have been isolated from marine environ-
ments [62-67] and they either require high concentration
of salt for growth or are able to grow in the presence of high
salt concentrations. In view of the salt-tolerant property of
this strongly supported clade, we are proposing transfer of
species from the Pertucinogena clade into a novel genus
Halopseudomonas gen. nov. within the family Pseudomona-
daceae. Extensive earlier works on CSIs attest that these
molecular features are highly specific characteristics of a
given group of organisms with strong predictive ability to
be found in other members of that group [35, 45-47]. In
the present work, the CSIs specific for the Pertucinogena
clade were also shared by nine unclassified strains of
members of the genus Pseudomonas. The results of our
phylogenetic analysis confirm that these nine uncharac-
terized isolates of the genus Pseudomonas branch reliably
with other members of the Pertucinogena clade. Thus, it
is expected that upon further characterization several of
these members of the genus Pseudomonas will represent
novel species within the genus Halopseudomonas. The
shared presence of CSIs specific for a given genus in now
increasingly used as a molecular characteristic for the
assignment of novel species into specific genera [31, 68].

Pseudomonas caeni is another species that branches outside
of the main cluster of species of the genus Pseudomonas
[69]. In our phylogenetic tree, P. caeni groups reliably
with members of the genera Thiopseudomonas and Obliti-
monas. The GTDB webserver also assigns P. caeni into
the genus Thiopseudomonas along with Oblitimonas [29].
In the present work, we have identified six CSIs that are
commonly shared by all three of these species, along with
an uncharacterized isolate Pseudomonas C27(2019), which
branches within this group in phylogenetic tree (Fig. 4).
Another unusual characteristic common to P. caeni, O.
alkaliphila and T. denitrificans [24], is that they all have
much smaller genome sizes (2.49 to 3.02 MB) and lower
DNA G+C contents (47.4-59.0 mol%) in comparison with
other species of the genus Pseudomonas. Thus, the results
based on phylogenetic branching and identified molecular
characteristics make a strong case for the combining of
these three species into a single genus. According to the

code governing the nomenclature of prokaryotic organisms
[70], of the genera Oblitimonas and Thiopseudomonas, the
genus Thiopseudomonas due to its earlier publication [57]
has priority over the name Oblitimonas [28]. Hence, we are
proposing to integrate Oblitimonas with Thiopseudomonas
and transfer P. caeni into this genus as a new name combi-
nation. P. hussainii is another deep-branching species
[58], which lies outside of the main cluster of species
of the genus Pseudomonas. This species is assigned into
Pseudomonas_L clade by the GTDB webserver [29]. The
distinctness of P. hussainii from all other members of the
family Pseudomonadaceae is strongly supported by 22 iden-
tified CSIs that are exclusively present in this species. On
the basis of these observations, we are proposing transfer
of P. hussainii into a novel genus, Atopomonas gen. nov.,
within the family Pseudomonadaceae.

The present study also clarifies that the species P. cissicola,
P. geniculata and ‘P. acidophila’, which are currently listed
as members of the genus Pseudomonas in various databases
[4, 6, 14], do not belong to this genus. Results of earlier
work have indicated that P. cissicola and P. geniculata are
related to the genera Xanthomonas and Stenotrophomonas,
respectively [17, 30-32]. In the present work, we provide
strong evidence based on the phylogenetic branching of
these species and the shared presence of CSIs specific for
the genera Xanthomonas, Stenotrophomonas and Parabur-
kholderia by P. cissicola, P. geniculata and ‘P. acidophila’,
respectively that these species are members of these other
genera and should thus be accordingly reclassified.

In the present work, although we are reclassifying some of
the deep-branching and misclassified species of the genus
Pseudomonas into other genera, the genus Pseudomonas
still remains a polyphyletic and genetically highly diverse
assemblage of microorganisms. In the phylogenetic tree
reconstructed in this work (Fig. 1) and earlier studies
[8, 15, 16, 22, 24], the remaining species of the genus Pseu-
domonas are comprised of minimally 13-18 main groups
(the exact number is difficult to ascertain as it is difficult to
reliably determine the boundaries of these clades), in addi-
tion to the genera Azotobacter and Azomonas and multiple
isolated species of the genus Pseudomonas branching in
between these clades (see Fig. 1, Table 1). Of these clades,
according to the code governing prokaryotic nomenclature
[70], the genus name Pseudomonas should be limited only
to the members of the Aeruginosa clade (Fig. 1), which
contains the type species of this genus, P. aeruginosa [1, 71].
However, before this can be accomplished, it will be neces-
sary to reliably delineate the boundaries of the remaining
‘Pseudomonas species clades’ and transfer species from
these clades into other novel genera. In phylogenetic
trees, these ‘Pseudomonas species clades’ are separated by
short branches (see Fig. 1), which indicates that it will be
difficult to reliably demarcate these clades based solely on
their branching in phylogenetic trees. In this context, it
should also be noted that the genetic diversity of species of
the genus Pseudomonas is far greater than indicated by the
currently known species. Hesse et al. [24] found that of the
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1224 uncharacterized genomes of members of the genus
Pseudomonas from public databases which they exam-
ined, 394 were distinct from all other type strains, thus
representing potential novel species. In view of this, any
proposed classification scheme for the species of the genus
Pseudomonas should be capable of reliably accommodating
other novel species that will continue to be assigned to this
genus. In this context, the approach described here, where
different monophyletic clades are robustly demarcated on
the basis of highly-specific molecular markers with high
degree of predictive ability should prove very useful in
developing a coherent and reliable classification of this
important group of organisms.

We provide below the descriptions of the two novel genera,
Halopseudomonas gen. nov. and Atopomonas gen. nov.,
proposed in this work as well as the emended description of
the genus Thiopseudomonas. The new name combinations
for species, which are part of these genera as well as some
other misclassified species P. cissicola and P. geniculata are
also presented below. Additionally, we are also describing
‘P. acidophila’ as a novel species within the genus Parabur-
kholderia. Three other species of the genus Pseudomonas,
which are indicated to be a part of the genus Halopseu-
domonas, ‘P. jilinensis’ [72], ‘P. saudimassiliensis’ [73] and
‘P. yangmingensis’ [74], are also not validly published and
type strains for them are not available in any culture collec-
tion. For two other species, Pseudomonas abyssi [75] and
Pseudomonas profundi [76], type strains are not readily
available from two culture collections. Hence, new name
combinations for these species are not proposed here.
However, once the strains for these species are deposited
in additional culture collections, these species could be
described as either novel species or new name combina-
tions in the genus Halopseudomonas.

DESCRIPTION OF THE GENUS
HALOPSEUDOMONAS GEN. NOV.

Halopseudomonas (Ha.lo.pseu.do.mo’nas. Gr. masc. n. hals
(gen. halos), salt; N.L. fem. n. Pseudomonas, a bacterial genus;
N.L. fem. n. Halopseudomonas, salt-loving or tolerating
Pseudomonas).

Gram-negative, aerobic or facultatively anaerobic, non-
spore forming rods. Most species are motile by means of
a single polar flagellum. Isolated from a variety of marine
sources as well as from desert sand, food waste, soil, air
sample, aquatic plants and algae. Members have been
reported to grow at temperatures ranging from 5 to 50 °C
with optimal growth occurring in the range of 25-37°C.
Optimal pH for growth is between 6 and 10. Most species
require between 1 and 10% (w/v) NaCl for optimal growth.
Most species are able to utilize Tween 40, Tween 80,
succinic acid, sebacic acid, and acetic acid as sole carbon
sources. Colonies are circular, convex and white to greyish
or pale yellow after 2-3 days of incubation in nutrient
agar or other growth media. Most species are positive for

alkaline phosphatase, acid phosphatase, esterase (C4),
leucine arylamidase, naphthol-AS-BI-phosphohydrolase,
catalase and oxidase. The predominant quinone system is
ubiquinone-9 (Q-9). Members of this genus form a mono-
phyletic clade in phylogenetic trees based on 16S rDNA
and concatenated sequences for several large datasets of
proteins. In addition, the members of this genus can be
reliably distinguished from all other species of the family
Pseudomonadaceae by 24 CSIs described in Table 2 found in
the following proteins, flagellar protein FIgN, RND family
transporter, tRNA cyclic N6 threonylcarbamoyladeno-
sine(37) synthase TcdA, protein BatD, RNA polymerase-
associated protein RapA, glyceraldehyde-3-phosphate
dehydrogenase (two different CSIs), dephospho-CoA
kinase, SpoVR family protein, serine/threonine protein
kinase, recombination-associated protein RdgC, OprD
family porin, bifunctional diguanylate cyclase/phospho-
diesterase, NADPH-dependent 7-cyano-7-deazaguanine
reductase QueF, YcgN family cysteine cluster protein, SprT
family zinc-dependent metalloprotease, universal stress
protein, DUF4892 domain-containing protein, symmet-
rical bis (5'-nucleosyl)-tetraphosphatase, Yail/YqxD family
protein, diaminopimelate decarboxylase, YifB family Mg
chelatase-like AAA ATPase, potassium transporter and
LEA type 2 family protein, which in most cases are exclu-
sively shared by either all or most members of this genus.
The DNA G+C content for known species is in the range of
57.5-63 mol% and genome sizes range from 3.0 to 4.6 Mbp.

The type species is Halopseudomonas pertucinogena.

DESCRIPTION OF HALOPSEUDOMONAS
PERTUCINOGENA COMB. NOV.

(per.tu.ci.no'.ge.na. N.L. neut. n. pertucinum, pertucin, a
bacteriocin active against Bordetella pertussis; L. suff. genus
-a -um, producing; from L. v. gigno, to produce, give birth
to, beget; N.L. fem. adj. pertucinogena, intended to mean
pertucin producing)

Basonym: Pseudomonas pertucinogena Kawai and Yabuuchi
1975 (Approved Lists 1980)

The description of this species is as given by Kawai and Yabu-
uchi [77] for Pseudomonas pertucinogena.

The type strain is ATCC 190= CUG 7832=CIP 106696=DSM
18268=IFO 14163=]JCM 11590=LMG 1874=NBRC 14163

DESCRIPTION OF HALOPSEUDOMONAS
LITORALIS COMB. NOV.

(li.to.ra'lis. L. fem. adj. litoralis of or belonging to the seashore).
Basonym: Pseudomonas litoralis Pascual et al. 2012,

The description of this species is as given by Pascual et al. [64]
for Pseudomonas litoralis.

The type strain is CECT 7670=DSM 26168=KCTC
23093=strain 2SM5
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DESCRIPTION OF HALOPSEUDOMONAS
SALEGENS COMB. NOV.

(sal.e'gens. L. masc. n. sal (gen. salis), salt; L. pres. part. egens,
being in need; N.L. part. adj. salegens, being in need of salt.)

Basonym: Pseudomonas salegens Amoozegar et al. 2014.

The description of this species is as given by Amoozegar et al.
[62] for Pseudomonas salegens.

Type strain: CECT 8338=GBPy5=IBRC-M 10762

DESCRIPTION OF HALOPSEUDOMONAS
FORMOSENSIS COMB. NOV.

(for.mo.sen’sis. N.L. fem. adj. formosensis of or pertaining to
Formosa (Taiwan), the beautiful island).

Basonym: Pseudomonas formosensis Lin et al. 2013.

The description of this species is as given by Lin et al. [78] for
Pseudomonas formosensis.

The type strain is BCRC 80437;=CC-CY503;=JCM 18415

DESCRIPTION OF HALOPSEUDOMONAS
BAUZANENSIS COMB. NOV.

(bau.za.nen’sis. N.L. fem. adj. bauzanensis of or belonging to
Bauzanum medieval Latin name of Bozen/Bolzano, a city in
South Tyrol, Italy, where the species was first isolated).

Basonym: Pseudomonas bauzanensis Zhang et al. 2011

The description of this species is as given by Zhang et al. [79]
for Pseudomonas bauzanensis.

The type strain is BZ93=CGMCC 1.9095=DSM 22558=LMG
26048

DESCRIPTION OF HALOPSEUDOMONAS
SABULINIGRI COMB. NOV.

(sa.bu.li.ni'gri. L. neut.n. sabulum sand; L. masc. adj. niger
black; N.L. gen. n. sabulinigri of black sand).

Basonym: Pseudomonas sabulinigri Kim et al. 2009

The description of this species is as given by Kim et al. [80]
for Pseudomonas sabulinigri.

The type strain is DSM 23971=]64=]JCM 14963=KCTC 22137.

DESCRIPTION OF HALOPSEUDOMONAS
PACHASTRELLAE COMB. NOV.

(pa.cha.strel'lae. N.L. gen. n. pachastrellae, of Pachastrella, the
generic name of a sponge)

Basonym: Pseudomonas pachastrellae Romanenko et al. 2005

The description of this species is as given by Romanenko et
al. [63] for Pseudomonas pachastrellae.

The type strain is CCUG 46540=DSM 17577=]JCM
12285=KMM 330=NRIC 583.

DESCRIPTION OF HALOPSEUDOMONAS
GALLAECIENSIS COMB. NOV.

(gal.lae.ci.ensis. L. fem. adj. gallaeciensis, pertaining to Galicia,
Spain, where the type strain was isolated)

Basonym: Pseudomonas gallaeciensis Mulet et al. 2018

'The description of this species is as given by Mulet et al. [81]
for Pseudomonas gallaeciensis.

The type strain is CCUG 67583=LMG 29038=V113.

DESCRIPTION OF HALOPSEUDOMONAS
OCEANI COMB. NOV.

(o.ce.a'ni. L. gen. n. oceani, of the ocean)
Basonym: Pseudomonas oceani Wang and Sun 2016

The description of this species is as given by Wang and Sun
[67] for Pseudomonas oceani.

The type strain is CGMCC 1.15195=DSM 100277=KX 20.

DESCRIPTION OF HALOPSEUDOMONAS
AESTUSNIGRI COMB. NOV.

(a.es.tus.nigri. L. masc. n. aestus, tide; L. masc. adj. niger
black; N.L. gen. n. aestusnigri, of black tide).

Basonym: Pseudomonas aestusnigri Sanchez et al. 2014.

The description of this species is as given by Sanchez et al.
[82] for Pseudomonas aestusnigri.

The type strain is CCUG 64165=CECT 8317=VGXO14.

DESCRIPTION OF HALOPSEUDOMONAS
XINJIANGENSIS COMB. NOV.

(xin.jiang.en’sis. N.L. fem. adj. xinjiangensis pertaining to
Xinjiang, in north-west PR China, where the type strain was
isolated).

Basonym: Pseudomonas xinjiangensis Liu et al. 2009

The description of this species is as given by Liu et al. [83] for
Pseudomonas xinjiangensis

The type strain is CCTCC AB 207151=DSM 23391=NRRL
B-51270=83-3.

DESCRIPTION OF HALOPSEUDOMONAS
PELAGIA COMB. NOV.
(pela'gi.a. L. fem. adj. pelagia of the sea).

Basonym: Pseudomonas pelagia Hwang et al. 2009.
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The description of this species is as given by Hwang et al. [66]
for Pseudomonas pelagia.

The type strain is DSM 25163=]JCM 15562=KCCM
90073=strain CL-AP6.

DESCRIPTION OF HALOPSEUDOMONAS
SALINA COMB. NOV.
(sa.li'na. N.L. fem. adj. salina, salty).

Basonym: Pseudomonas salina Zhong et al. 2015.

The description of this species is as given by Zhong et al. [65]
for Pseudomonas salina.

The type strain is CGMCC 1.12482=JCM 19469=XCD-X85.

DESCRIPTION OF HALOPSEUDOMONAS
XIAMENENSIS COMB. NOV.

(xia.men.en’sis N.L. fem. adj. xiamenensis, of Xiamen, a district
in Fujian, PR China, where the type strain was isolated)

Basonym: Pseudomonas xiamenensis Lai and Shao 2008.

The description of this species is as given by Lai and Shao [84]
for Pseudomonas xiamenensis.

Type strain: C10-2=CGMCC 1.6446=DSM 22326=]CM
13530=MCCC 1A00089

DESCRIPTION OF ATOPOMONAS GEN. NOV.

(A.to.po.monas. Gr. masc. adj. atopos, having no place,
strange; L. fem. n. monas, a unit, monad; N.L. fem. n. Atopo-
monas, strange monad)

Cells are Gram-stain negative, aerobic, motile by means
of a monopolar flagellum, non-spore-forming, chemo-
heterotrophic and mesophilic [58]. Growth occurs at
15-40°C (optimum, 30-37°C), at pH 6.0-8.0 (optimum,
pH 7.0) and on R2A agar supplemented with 0-5% NaCl
(optimum, 1%). Positive for catalase and oxidase activities.
Able to oxidize a variety of substrates including dextrin,
glycogen, Tweens 40 and 80, a-D-glucose, maltose, pyruvic
acid methyl ester, succinic acid monomethyl ester, acetic
acid, a-hydroxybutyric acid, a-ketobutyric acid, pr-lactic
acid and propionic acid. The predominant quinone is
ubiquinone (Q-9). The other characteristics of this genus
are the same as those described by Hameed et al. [58]
for Pseudomonas hussainii. The members of this genus
form a separate lineage in phylogenetic trees recon-
structed based on the basis of different protein sequences
and they are distinguished from all other genera of the
family Pseudomonadaceae on the basis of the presence
of distinctive conserved signature indels identified in
the present work that are found in the following proteins
(Table 3): glutathione-disulfide reductase, dihydrolipoyl
dehydrogenase, UDP-N-acetylmuramate:L-alanyl-gamma-
D-glutamyl-meso-diaminopimelate ligase, phospho-
transferase, citrate (Si)-synthase, HugZ family protein,

ATP-binding cassette domain-containing protein, DNA
polymerase III subunit beta, cupin domain-containing
protein, L,D-transpeptidase family protein, MBL fold
metallo-hydrolase, phosphate signalling complex protein
PhoU, arginine/ornithine succinyltransferase subunit
alpha, excinuclease ABC subunit A, sulfurtransferase
complex subunit TusC, potassium/proton antiporter,
metalloprotease PmbA, Hsp20 family protein, serine
hydrolase, recombination-associated protein RdgC, sulfite
exporter TauE/SafE family protein and 2-oxoglutarate
dehydrogenase E1.

The type species is Atopomonas hussainii

DESCRIPTION OF ATOPOMONAS HUSSAINII
COMB. NOV.

(hus.sai’ni.i. N.L. gen. masc. n. hussainii, named after S. A.
Hussain, an Indian ornithologist and avian gut biologist)

Basonym: Pseudomonas hussainii Hameed et al. 2014 [58]

The description of this species is the same as described
by Hameed et al. [58] for Pseudomonas hussainii and that
described above for the genus Atopomonas. The DNA G+C
content of the type strain is 58.8 mol%.

Type strain: BCRC 80696=CC-AMH-11=]CM 19513

EMENDED DESCRIPTION OF THE GENUS
THIOPSEUDOMONAS TAN ET AL. 2015

(Thi.o.pseu.do.mo’nas Gr. neut. n. theion, sulfur (Latin trans-
literation thium); N.L. fem. n. Pseudomonas, false monad;
from Gr. adj. pseudo, false; L. fem. n. monas, a unit, monad;
N.L. fem. n. Thiopseudomonas, an organism with a false single
unit and sulfur)

Cells are Gram-stain negative, rod-shaped and aerobic
or facultatively anaerobic. Includes both motile and
non-motile species. Most species require between 0.5
and 6% (w/v) NaCl for optimum growth. Growth occurs
at 10-42°C (optimum, 30-35°C). Positive for catalase,
oxidase, esterase lipase (C8) and leucine arylamidase.
The type species of this genus is able to oxidize sulfide
anaerobically with nitrate as an electron acceptor. Some
species are able to utilize malate as sole carbon source.
Indole is not produced. The genome size for the known
species is in the range of 2.5-3.10 Mbp and DNA G+C
contents range from 47.4 to 59.0 mol%. Members of this
genus form a monophyletic clade in phylogenetic trees
based on concatenated sequences for several large data-
sets of proteins. In addition, the members of this genus
can be reliably distinguished from all other genera of
the family Pseudomonadaceae by the shared presence of
six CSIs identified in the present work (Table 3) in the
following proteins: Si-specific NAD(P)(+) transhydro-
genase, esterase, response regulator transcription factor,
phosphoribosylamine glycine ligase, C40 family peptidase
and ABC transporter ATP-binding protein, which in most
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cases are exclusively shared by either all or most members
of this genus.

Type species is Thiopseudomonas denitrificans Tan et al. 2015
[57]

DESCRIPTION OF THIOPSEUDOMONAS
ALKALIPHILA COMB. NOV.

(al.ka.li'phi.la. N.L. neut. n. alkali, soda ash; N.L. adj. philus
-a -um, friend, loving; from Gr. adj. philos -é -on, loving; N.L.
fem. adj. alkaliphila, alkaline-loving)

Basonym: Oblitimonas alkaliphila Drobish et al. 2016 [28]

The description of this species is as provided by Drobish et al.
[28] for Oblitimonas alkaliphila.

Type strain: B4199=CCUG 67636=DSM 100830

DESCRIPTION OF THIOPSEUDOMONAS CAENI
COMB. NOV.

(cae’ni L. gen. neut. n. caeni, of sludge)
Basonym: Pseudomonas caeni Xiao et al. 2009 [69]

The description of this species is as provided by Xiao et al.
[69] for Pseudomonas caeni.

Type strain: CCTCC AB208156;=DSM 24390=CECT
7778=KCTC 22292=strain HY-14

DESCRIPTION OF XANTHOMONAS CISSICOLA
COMB. NOV.

(N.L. fem. n. Cissus, generic name of a flowering plant; L.
masc./fem. suff. -cola, dweller; from L. masc./fem. n. incola;
N.L. n. cissicola, Cissus dweller)

Basonym: Pseudomonas cissicola (Takimoto 1939) Burkholder
1948 (Approved Lists 1980)

The description of this species is the same as given by Taki-
moto (1939) Burkholder [85] for Pseudomonas cissicola.

The type strain is ATCC 33616=CCUG 18839=CFBP
2432=CIP 106723=DSM 21306=]CM 13362=NCPPB 2982.

DESCRIPTION OF STENOTROPHOMONAS
GENICULATA COMB. NOV.

(ge.ni.cu.lata. L. fem. adj. geniculata, jointed)

Basonym: Pseudomonas geniculata (Wright 1895) Chester
1901 (Approved Lists 1980).

The description of this species is the same as given by Chester
[86] Pseudomonas geniculata.

The typestrainis ATCC 19374=JCM 13324=LMG 2195=NCIB
9428=NCIMB 9428.

DESCRIPTION OF PARABURKHOLDERIA
ACIDICOLA SP. NOV.

(a.ci.dico.la. L. neut. adj. acidum, an acid; L. masc./fem. suff.
-cola, dweller; from L. masc./fem. n. incola, an inhabitant;
N.L. masc./fem. n. acidicola, an inhabitant of an acidic
environment)

The description of this species is the same as given by
Imada et al. [87] for ‘Pseudomonas acidophila’ Horsman
et al. [32], based on their sequencing of the type strain of
‘Pseudomonas acidophila’ (ATCC 31363), have suggested
that this species should be reclassified as ‘Paraburkholderia
acidophila’. However, as there is already a validly named
species Paraburkholderia acidiphila [88], we have chosen
to name this species as Paraburkholderia acidicola. Isolated
from soil in Japan. Cells are Gram-negative and rod-shaped,
strictly aerobic, motile with a polar flagellum or flagella
and catalase-positive and oxidase-negative. Optimal growth
is observed at 25-30°C and pH 4.5-6.0. This species is
best known for its production of beta lactam antibiotic
sulfazecin and bulgecins [89].

The accession numbers for the 16S rRNA gene sequence
and the draft genome sequence for the type strain G-6302 of
Paraburkholderia acidicola are MW 628182 and ASM236231v1
(GCF_002362315.1), respectively.

Type strain: G-6302=ATCC 31363=BCRC 13035=IFO:
13774=FERM-P No. 4344.
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CHAPTER 3

Phylogenomics Studies and Molecular Markers Reliably Demarcate Genus
Pseudomonas sensu stricto and Twelve other Pseudomonadaceae Species Clades

Representing Novel and Emended Genera.

This chapter describes comprehensive phylogenomic studies, consistently
identifying 13 major clades/groups containing different Pseudomonas species within
the Aeruginosa lineage. To support the distinctiveness of these observed clades, this
study presents the identification of 98 CSIs that are highly specific to these different
clades. These CSIs serve as unique molecular markers distinguishing different clades
and provide strong independent evidence for the genetic cohesiveness of these clades.
Based on the clade-specific CSls, robust phylogenetic analysis, and other genomic
similarity indices (AAI and POCP), this study reclassifies the distinct species clades
into seven novel genera and five emended genera. Additionally, the findings support
restricting the genus Pseudomonas only to the species within the Aeruginosa clade
containing the type species P. aeruginosa. My contributions to this chapter include
constructing phylogenetic trees, identifying CSIs, conducting genomic similarity
analyses, drafting the manuscript, and producing all main and supplemental figures and

tables.

Due to space constraints, supplementary figures and tables are not included in

this chapter but are available alongside the entire manuscript at:

Rudra, B., & Gupta, R. S. (2024). Front. Microbiol., 14, 1273665.
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Phylogenomics studies and
molecular markers reliably
demarcate genus Pseudomonas
sensu stricto and twelve other
Pseudomonadaceae species
clades representing novel and
emended genera

Bashudev Rudra and Radhey S. Gupta*

Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada

Genus Pseudomonas is a large assemblage of diverse microorganisms, not
sharing a common evolutionary history. To clarify their evolutionary relationships
and classification, we have conducted comprehensive phylogenomic and
comparative analyses on 388 Pseudomonadaceae genomes. In phylogenomic
trees, Pseudomonas species formed 12 main clusters, apart from the "Aeruginosa
clade” containing its type species, P. aeruginosa. In parallel, our detailed analyses
on protein sequences from Pseudomonadaceae genomes have identified
98 novel conserved signature indels (CSIs), which are uniquely shared by the
species from different observed clades/groups. Six CSls, which are exclusively
shared by species from the “Aeruginosa clade,” provide reliable demarcation of
this clade corresponding to the genus Pseudomonas sensu stricto in molecular
terms. The remaining 92 identified CSls are specific for nine other Pseudomonas
species clades and the genera Azomonas and Azotobacter which branch in
between them. The identified CSls provide strong independent evidence of the
genetic cohesiveness of these species clades and offer reliable means for their
demarcation/circumscription. Based on the robust phylogenetic and molecular
evidence presented here supporting the distinctness of the observed Pseudomonas
species clades, we are proposing the transfer of species from the following
clades into the indicated novel genera: Alcaligenes clade — Aquipseudomonas
gen. nov.; Fluvialis clade - Caenipseudomonas gen. nov.; Linyingensis clade
- Geopseudomonas gen. nov.; Oleovorans clade - Ectopseudomonas gen.
nov.; Resinovorans clade — Metapseudomonas gen. nov.; Straminea clade —
Phytopseudomonas gen. nov.; and Thermotolerans clade — Zestomonas gen. nov.
In addition, descriptions of the genera Azomonas, Azotobacter, Chryseomonas,
Serpens, and Stutzerimonas are emended to include information for the CSls
specific for them. The results presented here should aid in the development of a
more reliable classification scheme for Pseudomonas species.

KEYWORDS

Pseudomonas classification, phylogenomic and comparative genomic analyses,
conserved signature indels (CSls), molecular markers specific for Pseudomonas species
clades/groups, proposals for reclassification of Pseudomonas species into novel genera
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Introduction

Genus Pseudomonas (Migula, 1894) is a large assemblage of
motile, rod-shaped, aerobic, non-spore forming, Gram-negative
bacteria, generally containing one or more polar flagella that assist in
their movement (Palleroni, 2005, 2015). The members of this genus
presently contain >300 species with validly published names (Parte
etal, 2020), and they span enormous genetic and metabolic diversity,
inhabiting diverse niches and environments including soil, water,
plants and animal tissues (Peix et al., 2009; Palleroni, 2015). Tts
members include species which are opportunistic pathogens of
humans, animals, and plants, and other species of economic and
ecological significance (Palleroni, 2005; Lund-Palau et al.,, 2016;
Winsor et al., 2016; Xin et al., 2018; Rossi et al., 2021). The best studied
species from this genus, which is also its nomenclature type (Migula,
1894; Skerman et al., 1980), is Pseudomonas aeruginosa, which is an
opportunistic human pathogen capable of causing a wide array of life-
threatening acute and chronic diseases (Stover et al., 2000; Planquette
et al., 2013). Despite the clinical and environmental importance of
Pseudomonas species, evolutionary relationships among the members
of this genus are not clearly understood (Anzai et al., 2000; Peix et al.,
2009; Palleroni, 2015; Garcia-Valdés and Lalucat, 2016; Jun et al.,
2016; Passarelli-Araujo et al., 2022). In different phylogenetic and
genomic studies on Pseudomonas species, members of this genus
consistently form multiple clades, which are unrelated to each other
(i.e., not evolved from a common ancestor) (Peix et al., 2009; Gomila
et al., 2015; Jun et al., 2016; Hesse et al., 2018; Peix et al., 2018; Rudra
and Gupta, 2021; Saati-Santamaria et al., 2021; Lalucat et al., 2022).
Additionally, in these trees, species from several genera including
Azomonas, Azotobacter and Chryseomonas branch in between
Pseudomonas species, making this genus polyphyletic (Jun et al., 2016;
Hesse et al,, 2018; Rudra and Gupta, 2021; Saati-Santamaria et al.,
2021; Lalucat et al, 2022). In recent work, a large number of
Pseudomonas species, which generally branched outside the main
cluster of Pseudomonas species, have been reclassified into several
novel genera (viz. Atopomonas, Halopseudomonas and Stutzerimonas)
(Rudra and Gupta, 2021; Lalucat et al., 2022), or in other existing
genera (viz. Chryseomonas, Stenotrophomonas, Thiopseudomonas and
Xanthomonas) (Holmes et al., 1987; Rudra and Gupta, 2021; Saati-
Santamaria et al., 2021).

Importantly, in all constructed phylogenomic trees, the type
species P. aeruginosa, along with a limited number of other species,
forms a distinct clade referred to as the “Aeruginosa clade” (Jun et al.,
2016; Hesse et al., 2018; Peix et al., 2018; Rudra and Gupta, 2021;
Saati-Santamaria et al., 2021; Lalucat et al., 2022; Passarelli-Araujo
etal., 2022). The remainder (>95%) of the Pseudomonas species group
into 12-18 main clusters, some of which are referred to as the
Alcaligenes, Anguilliseptica, Flexibilis, Fluorescens, Kuykendallii,
Linyingensis, Lutea, Massiliensis, Oleovorans, Oryzihabitans,
Pertucinogena, Putida, Resinovorans, Rhizosphaerae, Straminea,
Stutzeri and Syringae clades, named after one of the species from each
of these clusters (Palleroni, 2015; Hesse et al., 2018; Peix et al., 2018;
Girard et al., 2021; Rudra and Gupta, 2021; Saati-Santamaria et al.,
2021; Lalucat et al., 2022). Species from the Pertucinogena and Stutzeri
clusters were recently reclassified into the genera Halopseudomonas
and Stutzerimonas, respectively (Rudra and Gupta, 2021; Lalucat et al.,
2022). Of these species’ clades, according to the Code governing the
nomenclature of Prokaryotes (Oren et al., 2023), the “Aeruginosa

10.3389/fmich.2023.1273665

clade,” which contains the type species P. aeruginosa, constitute the
genus Pseudomonas sensu stricto. It is generally recognized that the
species from clades other than the “Aeruginosa clade” should
be reclassified into novel genera (Hesse et al., 2018; Peix et al., 2018;
Girard et al.,, 2021; Rudra and Gupta, 2021; Lalucat et al., 2022;
Passarelli-Araujo et al., 2022). This task requires that the boundaries
of different Pseudomonas species clades, including the “Aeruginosa
clade;” are reliably demarcated so that any proposed reclassification is
stable. Different Pseudomonas species clades are presently identified
primarily based on the clustering of species in phylogenetic trees.
However, the numbers of observed species clusters as well as the
species grouping within them often vary in different phylogenetic
studies (Hesse et al., 2018; Girard et al.,, 2021; Rudra and Gupta, 2021;
Lalucat et al., 2022; Rudra et al., 2022), which makes it difficult to
reliably demarcate the boundaries of these clades.

The availability of whole genome sequences is enabling
construction of more reliable phylogenetic trees based on large dataset
of genes/proteins (Parks et al., 2018). Additionally, the genome
sequences also provide an important resource for identification of
novel molecular markers, such as conserved signature indels (CSIs),
which are uniquely shared characteristics of different monophyletic
clades of organisms. Due to their clade specificities, these novel
molecular synapomorphies are providing robust means for the
demarcation of different observed species clades/taxa in molecular
terms (Gupta et al,, 2013; Gupta, 2014; Adeolu et al., 2016; Gupta et al.,
2020). The use of these markers in conjunction with phylogenomic
analyses has recently led to the development of a reliable classification
scheme for members of the highly polyphyletic genus Bacillus (Gupta
et al, 2020). Genome sequences are now available for >300
Pseudomonas species in the NCBI genome database' (Sayers et al.,
2019). With the objective of clarifying evolutionary relationships and
classification of Pseudomonas species, we have conducted
comprehensive phylogenomic and molecular marker-based studies on
their genome sequences. In two genome scale phylogenetic trees
constructed in this study, Pseudomonas species formed approximately
13 main clades, like those seen in earlier work (Hesse et al., 2018;
Girard et al.,, 2021; Lalucat et al., 2022; Passarelli-Araujo et al., 2022).
In parallel, our detailed studies on protein sequences from
Pseudomonas genomes have identified 98 novel CSIs which are unique
characteristics of the species from different observed clades. Based on
these CSIs, species from the “Aeruginosa clade” (i.e., genus
Pseudomonas sensu stricto), 10 other Pseudomonas species clades, and
the genera Azomonas and Azotobacter, can now be reliably demarcated
based on multiple uniquely shared molecular characteristics. Based on
the strong evidence obtained from our phylogenomic studies and
identified molecular markers, we are proposing the reclassification of
Pseudomonas species from the following clades, viz. Alcaligenes,
Fluvialis, Linyingensis, Oleovorans, Resinovorans, Straminea, and
Thermotolerans, into seven novel genera. In addition, we are also
emending the descriptions of the genera Azomonas, Azotobacter,
Chryseomonas, Serpens and Stutzerimonas to include information for
the diagnostic CSIs for these genera.

1 https://www.ncbi.nim.nih.gov/genome/
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Methods
Construction of phylogenetic trees

Genome sequences were downloaded from the NCBI for 342
named Pseudomonas species and 46 sequences from other
Pseudomonadaceae genera available as of December 16, 2022, in the
database. Each species is represented in the tree by a single genomic
sequence, which is generally of the type strain, when available. Based
on these genome sequences, a rooted phylogenetic tree was
constructed based on concatenated sequences of 118 conserved
proteins that are a part of the phyloeco set for the class
Gammaproteobacteria Wu, 2013) (listed in
Supplementary Table S1). Genome sequences for Moraxella bovoculi
and M. bovis were included in this dataset for rooting purposes.
Another comprehensive phylogenetic tree was constructed based on
the core proteins from the genomes of Pseudomonadaceae species.
This latter tree was based on genome sequences for 174 species, which
included most of the species from the other main clades of
Pseudomonas species, but only 41 divergent species from the
Fluorescens superclade (lineage). Trees were constructed using an
internally developed pipeline described in earlier work (Adeolu et al.,
2016; Gupta et al., 2020; Rudra and Gupta, 2021; Saini and Gupta,
2021). Briefly, the CD-HIT program (Li and Godzik, 2006; Fu et al.,
2012) was used to identify protein families (or homologs of different
proteins) where the proteins were present in at least 80% of the
genomes in the dataset and they shared at least 50% of sequence
length and identity. The Clustal Omega program (Sievers et al.,, 2011)
was then used to generate multiple sequence alignments (MSA) of the
proteins. These MSAs were converted into profile Hidden Markov
Models (HMMs) using HMMer 3-1b2 (Eddy, 2011), which were then
used to search for other members of the protein families in the input
genomes. These analyses identified 1,503 protein families meeting the
stated criteria (also listed in Supplementary Table S1). The sequence
alignments of these proteins were trimmed using TrimAl program
(Capella-Gutiérrez et al., 2009) to remove poorly aligned sections
prior to their concatenation. The concatenated sequence alignment for
the phyloeco set of proteins for Gammaproteobacteria was created
similarly using the published profile HMMs for these proteins (Wang
and Wu, 2013). The concatenated sequence alignments used for the
construction of phyloeco and the core genome trees consisted of
42,362 and 494,143 amino acid (aa) positions, respectively. Using
these alignments, maximum likelihood (ML) trees were initially
constructed using FastTree 2 (Price et al., 2010) with the Whelan and
Goldman (2001) model of protein sequence evolution. The resulting
trees were optimized with RAXML 8 (Stamatakis, 2014) and to obtain
the Shimodaira-Hasegawa (SH) statistical support values, which are
similar to the bootstrap scores, for different nodes. The trees were
labeled and formatted using MEGA X (Kumar et al,, 2018). The
percentage of conserved proteins (POCP) and average amino acid
identity (AAI) for different pairs of genomes were calculated as
described by Thompson et al. (2013) and Qin et al. (2014).

(Wang  and

Identification of conserved signature indels

Identification of CSIs was carried out by similar procedures as
described in earlier work (Gupta, 2014, 2016; Gupta et al., 2020).

10.3389/fmicb.2023.1273665

Briefly, local BLASTp searches were carried out on protein sequences
from the genomes of several Pseudomonas species representing
different clades of interest and other outgroup species. Based on these
BLAST searches, sequences of high scoring homologs (E value <1e-20)
of different proteins were retrieved for several species (generally
between 4 to 12) from the group of interest, and 10-15 species from
other Pseudomonas clades or other Pseudomonadaceae genera.
Multiple sequence alignments for the proteins were created using
Clustal X 2.1 program (Jeanmougin et al., 1998). Alignments were
visually examined for insertions or deletions of fixed length that were
present in conserved regions (i.e., flanked on both sides by minimally
5-6 conserved aa residues in the neighboring 40-50 aa), and which
were only found in the Pseudomonas species from the clade of interest.
The indels which were not present in conserved regions were not
further considered. The query sequences consisting of the conserved
indels and their flanking 30-40 aa on each side were subjected to a
second BLASTp search against the NCBI nr database and the
top 250-500 hits were evaluated to determine the group specificities
of the CSIs. Based on these results, indels which were specific for
different clades of Pseudomonas were formatted using the SIG_
CREATE and SIG_STYLE programs (Gupta, 2014, 2016). Due to
space constraints, sequence information is shown for only a limited
number of species in the main figures. However, unless otherwise
indicated the CSIs reported here are specifically found in different
named Pseudomonas species from the indicated groups. More detailed
different CSIs is provided in the
Supplemental Data files.

information  for

Results

Phylogenomic analyses of Pseudomonas
and related species

To understand the interspecies relationships among different
Pseudomonadaceae species whose genomes were available in the NCBI
as of December 16, 2022, two genome-scale phylogenetic trees were
constructed. The first of these trees shown in Figure 1
(Supplementary Figure S1), which will be referred to as the phyloeco
tree, is based on concatenated sequences for 118 conserved proteins,
which comprise the phyloeco set for the class Gammaproteobacteria
(Wang and Wu, 2013). Another comprehensive tree constructed is a
core genome (protein) tree based on 1,503 proteins which are shared
by at least 80% of the input Pseudomonadaceae species. This latter tree
included only representative species (41) from the Fluorescens
superclade (lineage), which is not the focus of this study. In both
constructed trees, most observed nodes are supported with 100% SH
values (like bootstrap scores) indicating that the observed evolutionary
relationships are reliable.

The overall branching and grouping of Pseudomonadaceae species
in different clusters in both the phyloeco (Figure 1) and the core
protein tree (Supplementary Figure S2) is nearly identical, and it is
similar to that observed in our earlier work (Rudra and Gupta, 2021),
and other phylogenetic studies (Gomila et al., 2015; Hesse et al., 2018;
Peix et al., 2018; Lalucat et al., 2020; Girard et al., 2021; Lalucat et al.,
2022; Passarelli-Araujo et al,, 2022). In both these trees, Pseudomonas
species formed several distinct clades/groups, and species from the
genera Azomonas and Azotobacter consistently branched between
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FIGURE 1

A maximum-likelihood tree for 388 genome-sequenced Pseudomonadaceae species based on concatenated sequences for 118 conserved proteins.

The tree is shown into two halves, and species from the Fluorescens superclade (lineage) are

compressed, so that the species compositions of other

clades of interest can be seen. The species clades of interest are demarcated and labeled with the commonly used names and in some cases with the

GTDB taxon assignment for the clade.
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them (Hesse et al., 2018; Rudra and Gupta, 2021; Lalucat et al., 2022;
Passarelli-Araujo et al., 2022). Additionally, species from the two
recently proposed genera Stutzerimonas and Chryseomonas also
branched within other Pseudomonas species, thus further contributing
to the polyphyly of this genus. We have labeled different Pseudomonas
species clades in Figure 1 and Supplementary Figure S2 by their
commonly used clade/group names (Hesse et al., 2018; Girard et al,,
2021; Lalucat et al, 2022). One distinct clade observed in all
constructed trees is the “Aeruginosa clade,” which contains the type
species P. aeruginosa and 13 other Pseudomonas species. As this clade
contains the type species of the genus Pseudomonas, we have labeled
it as the “Genus Pseudomonas sensu stricto” Other species’ clades
observed and labeled in Figure 1 (Supplementary Figure S2) include:
the Alcaligenes, Anguilliseptica, Azomonas, Azotobacter, Flexibilis,
Fluvialis, Linyingensis, Oleovorans, Oryzihabitans, Resinovorans,
Straminea, Stutzeri (Stutzerimonas), Thermotolerans, and Fluorescens
superclade (lineage).The Genome Taxonomy Database (GTDB),?
based on phylogenetic analysis of 120 ubiquitously conserved proteins,
now provides an important resource for taxonomic inferences (Parks
etal, 2018). The GTDB refers to the “Aeruginosa clade” as the genus
Pseudomonas whereas most of the other observed species clades are
referred to as distinct genera denoted by designations such as
g_Pseudomonas_B, g_Pseudomonas_K, etc., which are also indicated
in the tree in Figure 1.

Of these observed clades, the Fluorescens superclade (lineage) is
the largest harboring 245 Pseudomonas species. It is separated from all
other Pseudomonas species by a long branch in both constructed trees
(Figure 1; Supplementary Figure S2). Due to the large number of
species present in this clade, it is shown in a compressed form in
Figure 1. However, detailed information for species comprising this
clade is provided in Supplementary Figure S1. The Fluorescens
superclade (lineage) is made up of multiple distinct clades and
subclades (see Supplementary Figure S1) (Hesse et al., 2018; Peix et al.,
2018; Lalucat et al., 2020; Rudra and Gupta, 2021; Lalucat et al., 2022).
However, all species grouping within the Fluorescens superclade
(lineage) are part of the GTDB taxon “g_Pseudomonas_E” Although
the Pseudomonas_E cluster in GTDB also encompasses the
Alcaligenes, Anguilliseptica, Oleovorans and Thermotolerans clades,
these clades in our phylogenomic trees (Figure 1;
Supplementary Figure S1), and in several other published studies
(Hesse et al., 2018; Girard et al., 2021; Lalucat et al., 2022; Passarelli-
Araujo et al, 2022), branch separately from the Fluorescens
superclade. This discrepancy in the branching positions of the
Alcaligenes, Anguilliseptica, Oleovorans and Thermotolerans clades
between the GTDB taxonomy and other phylogenomic trees, was also
noted by Lalucat et al. (2022). However, in the present work, we will
not be examining the evolutionary relationships of different species
within the Fluorescens superclade. Besides the “Aeruginosa clade” and
the Fluorescens superclade (lineage), the other clades marked in
Figure 1 (Supplementary Figure S2) contain between 2-18 species.
Except for the Anguilliseptica clade, which shows poor resolution and
weak statistical support, all other clades in our phylogenetic trees are
statistically strongly supported. Besides these species’ clades, a limited
number of Pseudomonas species (viz. P indica, P. kuykendallii,

2 http://gtdb.ecogenomic.org/
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P. mangiferae, P. mangrovi, P. matsuisoli and P. pohangensis) are not
part of any of the observed clades.

The analyzed genome sequences were also used for determination
of percentage of conserved proteins (POCP) and average amino acid
identity (AAI) between different pairs of genomes. The results of
pairwise AAI and POCP values, for different Pseudomonadaceae
genomes are presented in Supplementary Tables S2 and S3,
respectively. Genome pairs exhibiting higher AAT or POCP values are
shown by a darker shade of green/red, and different clades observed
in our phylogenetic trees (Figure 1; Supplementary Figure S2) are
outlined. In Table 1, we present a summary of the ranges of the AAT
and POCP values for different Pseudomonas species clades for the
ingroup and outgroup species. Based on the results in Table 1, the AAT
and POCP values for species within different clades are higher (AAI
values range: 0.70-1.00; POCP values range: 0.66-1.00) in comparison
to these values for species from the other clades (AAI values range:
0.67-0.81; POCP values range: 0.42-0.77), which is an expected result.
However, based on the AAI and POCP values (Table 1), only species
from the Alcaligenes, Azotobacter, Flexibilis, Fluvialis, Lingyingensis,
Oleovorans and Thermotolerans clades show no overlap with species
from the other clades. In contrast, these values for several other clades
(viz. “Aeruginosa” Anguiliiseptica, Azomonas, Oryzihabitans,
Resinovorans, Straminea, Stutzeri) either show significant overlap or
are very close to those from the outgroup species. Thus, based on these
genome similarity indices, species from different observed
Pseudomonadaceae clades cannot be reliably demarcated. In Table 1,
the highest overlap in the AAT and POCP values between the ingroup
versus outgroup species is observed for the species from
Anguilliseptica clade, which also shows poor resolution and weak
statistical support in the phylogenetic trees.

Identification of molecular markers
demarcating/distinguishing different
Pseudomonas species clades

Although Pseudomonadaceae species form similar clades in
different genome scale trees (Hesse et al., 2018; Parks et al., 2018;
2021; 2022;
Supplementary Figure S2), branching of species in phylogenetic trees
is influenced by large numbers of variables (Gupta, 1998; Baldauf,
2003; Felsenstein, 2004). Moreover, in phylogenetic trees for
Pseudomonas, species from several clades are separated from each
other by short branches (Figure 1; Supplementary Figure S2), which
makes it difficult to reliably determine their boundaries. The POCP
and AATI values for several clades also overlap or are very close to the
other species (Table 1), thus they do not permit reliable determination
of the boundaries of these clades. Hence, it was important to discover
other reliable means for the demarcation of these clades. Molecular
synapomorphies consisting of CSIs in genes/proteins sequences,
which are uniquely shared characteristics of species from different
clades, provide important means for the demarcation of taxa of
different ranks in molecular terms (Gupta, 2014; Adeolu et al., 2016;
Gupta et al., 2020; Patel and Gupta, 2020; Rudra and Gupta, 2021).
Hence, detailed studies were conducted on protein sequences from
Pseudomonadaceae species to identify CSIs which are specific for
different observed clades. These analyses have identified 98 novel CSIs
which are specific for different Pseudomonadaceae clades, providing

Girard et al, Lalucat et al, Figure 1;
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TABLE 1 Range of AAl and POCP values among different Pseudomonadaceae species clades.

Clades AAl values POCP values
Ingroup Qutgroup Ingroup Outgroup

“Aeruginosa clade” (Pseudomonas sensu stricto) 0.75-1.00 0.67-0.75 0.66-1.00 0.42-0.73 ‘
Alcaligenes clade (Aquipseud gen. nov.) 0.83-1.00 0.69-0.79 0.79-1.00 0.49-0.75 ‘
Anguilliseptica clade 0.77-1.00 0.68-0.81 0.68-1.00 0.45-0.75 ‘
Genus Azomonas 0.73-1.00 0.68-0.74 0.68-1.00 0.42-0.67 ‘
Genus Azotobacter 0.86-1.00 0.68-0.76 0.80-1.00 0.49-0.67 ‘
Flexibilis clade (Genus Serpens emend.) 0.79-1.00 0.69-0.76 0.83-1.00 B 0.51-0.69 7‘
Fluvialis clade (Caenipseudomonas gen. nov.) 1.00 0.70-0.77 1.00 0.48-0.71 ‘
Linyingensis clade (Geopseudomonas gen. nov.) 0.82-1.00 0.69-0.75 0.69-1.00 0.49-0.67
Oleovorans clade (Ectopseudomonas gen. nov.) 0.88-1.00 0.67-0.81 0.75-1.00 0.43-0.77
Oryzihabitans clade (Genus Chryseomonas emend.) 0.71-1.00 0.67-0.72 0.70-1.00 0.47-0.67
Resinovorans clade (Metapseudomonas gen. nov.) 0.79-1.00 0.68-0.77 0.70-1.00 0.44-0.74

Straminea clade (Phytopseudomonas gen. nov.) 0.76-1.00 0.67-0.81 0.69-1.00 0.47-0.76

Stutzeri clade (Genus Stutzerimonas) 0.77-1.00 0.68-0.76 0.72-1.00 0.49-0.66
Thermotolerans clade (Zestomonas gen. nov.) 0.81-1.00 0.70-0.79 0.75-1.00 0.48-0.74

Detailed information regarding the pairwise AAT and POCP values for species from different clades is provided in Supplementary Tables S2 and S3.

independent evidence for the genetic distinctness of these clades and
affording reliable means for their demarcation. Brief descriptions of
the characteristics of these CSIs are given below.

CSls specific for the “"Aeruginosa clade”

The “Aeruginosa clade” representing the genus Pseudomonas sensu
stricto, encompasses 14 named species (viz., P aeruginosa,
P. paraeruginosa, P. citronellolis, P. delhiensis, P. humi, P. jinjuensis,
P knackmussii, P multiresinivorans, P.  nicosulfuronedens,
P nitritireducens, P nitroreducens, P panipatensis,
“P. pseudonitroreducens” and P. schmalbachii) (Figure 1). Our analyses
have identified six CSIs in proteins involved in different functions
(Table 2), which are commonly and, in most cases, uniquely shared by
different species from the “Aeruginosa clade” Sequence information
for one of these is presented in Figure 2. In the example shown, a two
aa insertion (highlighted) in a conserved region of the HugZ family
protein is commonly shared by all 14 species from the “Aeruginosa
clade” but absent in all other Pseudomonadaceae species. Sequence
information is shown in Figure 2 for only a limited number of species.
However, more detailed information for this CSI is presented in
Supplementary Figure S3. Like the CSI shown in Figure 2, we have
identified five additional CSIs in other proteins which, except for an
isolated occurrence, are uniquely shared by different species from the
“Aeruginosa clade” Sequence information for these CSIs is provided
in Supplementary Figures $4-58 and some of their characteristics are
summarized in Table 2. Due to their unique shared presence in species
from the “Aeruginosa clade,” genetic changes responsible for these
CSIs likely occurred in a common ancestor of this clade and
subsequently inherited by all members. Due to their specificities for
the species from the “Aeruginosa clade” these molecular
synapomorphies provide robust means for the demarcation of this
clade in molecular terms.

CSls specific for the Alcaligenes clade

P. alcaligenes was indicated to branch separately from other clades
in earlier studies (Hesse et al., 2018; Girard et al., 2021; Lalucat et al.,
2022). In our phylogenetic trees (Figure 1; Supplementary Figure S2),
three recently identified species (viz., P campi, P. guryensis,
P. ullengensis) also reliably grouped with P. alcaligenes. Our analysis
has identified six novel CSIs, which in most cases are exclusively
shared by all four species from the Alcaligenes clade. Sequence
information for one of these CSIs is presented in Figure 3A, where a
two aa insertion in the protein ferric iron uptake transcriptional
regulator is exclusively present in all four species from the Alcaligenes
clade. Five additional CSIs in other proteins are also generally specific
for the species from this clade. Detailed sequence information for
these six CSIs is provided in Supplementary Figures $9-S14, and some
of their characteristics are listed in Table 2. The identified CSIs provide
reliable means for the demarcation of species from the Alcaligenes
clade in molecular terms and we are proposing their transfer into
Aquipseudomonas gen. nov.

CSls specific for the Oleovorans clade

Oleovorans clade is a strongly supported clade consisting of 15
Pseudomonas species (viz., P alcaliphila, P. chengduensis,
P. composti, P. guguanensis, P. hydrolytica, “P. indoloxydans,
P. khazarica, P. mendocina, P. oleovorans, P. pseudoalcaligenes,
“P. sediminis,” “P. sihuiensis,” P. toyotomiensis, “P. wenzhouensis,”
P. yangonensis), which reliably group together in the constructed
phylogenetic trees (Figure 1; Supplementary Figure S2). The genetic
distinctness of this clade is also independently supported by five
novel identified CSIs which, excepting an isolated occurrence, are
uniquely shared by all species from this clade. Sequence information
for one of these CSIs is provided in Figure 3B, where a one aa
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TABLE 2 Summary of CSls specific for the “Aeruginosa,” Alcaligenes, and Oleovorans clades.

Protein name Accession Figure number Indel Specificity
no location

HugZ family protein WP_058144759 Figure 2; Supplementary 2aalns 126-156 “Aeruginosa clade”

Figure 3 (Pseudomonas sensu stricto)
TetR family transcriptional regulator . ‘WP_162953821 [ Supplementary Figure $4 1aalns 68-104 |
Transglutaminase family protein® WP_ ) ppl y Figure §5 laa Ins 39-83
Multidrug efflux RND transporter permease subunit | WP_038803172 Supplementary Figure S6 2aalns 233-269
Alginate O-acetyltransferase” PXC05278 Supplementary Figure S7 1 aa Del 24-61
23S rRNA (cytidine(2498)-2"-O)-methyltransferase OVZ41066 Supplementary Figure S8 laalns 54-98
RlmM*
Ferric iron uptake transcriptional regulator . WP_110680887 Figure 3A; Supplementary : 2aalns 6-52 . Alcaligenes clade

Figure §9 (Aquipseudomonas gen. nov.)
DUF1853 family protein ‘WP_061903990 Supplementary Figure S10 1aa Del 55-93
SCP2 sterol-binding domain-containing protein | WP_076424264 Supplementary Figure S11 » 1 aa Del 55-98
Hypothetical protein® GI766354 Supplementary Figure $12 4 aa Del 125-167
Zinc ABC transporter substrate-binding protein WP_061902889 Supplementary Figure $13 4aa Del 261-297
Hybrid sensor histidine kinase/response regulator WP_203791762 Supplementary Figure S14 2aa Del 130-170
Cysteine synthase A . WP_150609166 ‘ Figure 3B; Supplementary ' 1 aa Del 119-160 . Oleovorans clade

Figure S15 (Ectopseudomonas gen. nov.)
Lipopolysaccharide export system permease protein® | NYF64131 Supplementary Figure $16 1aalns 19-61
Succinylglutamate desuccinylase® . ‘WP_125875007 Supplementary Figure §17 ' 1aalns 121-164
Fe2 + —dependent dioxygenase ‘WP_206407640 Supplementary Figure $18 4 aa Del 124-155
Osmoprotectant NAGGN system M42 family . ‘WP_206408901 V Supplementary Figure $19 - 3aalns 46-85
peptidase”

“The CSIs listed here are specific for the indicated clades of bacteria, apart from an isolated exception present in some CSIs (#; see Supplementary Figures for details). *The protein homologs

were not found in some species.

deletion (highlighted), within a conserved region of the protein
cysteine synthase A, is exclusively shared by all species from the
Oleovorans clade. More detailed sequence information for this CSI
and four additional CSIs specific for the Oleovorans clade is
provided in Supplementary Figures S15-S19 and some of their
characteristics are listed in Table 2. Based on the strong evidence
presented here demonstrating the distinctness of species from the
Oleovorans clade, we are proposing the transfer of these species into
Ectopseudomonas gen. nov.

In addition to the species with validly published names,
Oleovorans clade also encompasses four species [viz.,
“P. indoloxydans” (Manickam et al., 2008), “P. sediminis” (Behera
et al,, 2018), “P. sihuiensis” (Wu et al., 2014) and “P. wenzhouensis”
(Zhang et al., 2021)], whose names have not been validly published.
Because of their non-validly published status, new name combinations
for these species are not proposed. However, in view of their reliable
grouping with the Oleovorans clade, it is suggested that these species
should also be recognized as members of the genus Ectopseudomonas
with the names “E. indoloxydans,” “E. sediminis,” “E. sihuiensis” and
“E. wenzhouensis,” respectively.

CSils specific for the Straminea clade

The Straminea clade is a strongly supported cluster encompassing
seven Pseudomonas species (P. argentinensis, P. daroniae, P. dryadis,

P. flavescens, P. punonensis, P. iipraecipitans, P. straminea)
(Figure 1; Supplementary Figure S2). Species from this clade have also
been found to group together in earlier studies (Hesse et al., 2018;
Girard et al., 2021; Lalucat et al., 2022; Passarelli-Araujo et al., 2022).
The members of this clade can be reliably distinguished from all other
Pseudomonadaceae species by 12 novel CSIs identified in this study,
which in most cases are exclusively shared by the species from this
clade. Sequence information for one of these CSIs consisting of a three
aa insertion in the protein Di-trans, poly-cis-decaprenylcistransferase
is presented in Figure 3C. Detailed sequence information for this CSI
and the 11 other CSIs specific for this clade are presented in
Supplementary Figures S20-S31 and some of their characteristics are
listed in Table 3. Based on the presented results showing the
distinctness of this clade, we are proposing the transfer of species from
this clade into Phytopseudomonas gen. nov.

CSls specific for the genus Stutzerimonas

The genus Stutzerimonas was recently described by Lalucat et al.
(2022) by the transfer of several Pseudomonas species which
branched distinctly in their phylogenetic tree. The clade labeled as
Stutzerimonas in our phylogenetic tree (Figure 1) encompasses all
13 named Stutzerimonas species, whose genome sequences were
available in the NCBI database at the time of analysis, as well as five
non-validly published Pseudomonas species. Apart from their
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FIGURE 2

Partial sequence alignment of the HugZ family protein showing a two aa insertion (highlighted) that is exclusively present in all members of the
"Aeruginosa clade.” The dashes () in this and all other sequence alignments indicate identity with the amino acids on the top line. Accession numbers
for different sequences are indicated in the second column and the numbers at the top indicate the position of this sequence in the protein sequences
Detailed sequence information for this CSI and five other CSls specific for this clade is provided in Supplementary Figures S3-58

clustering in phylogenetic trees, there is no known reliable  most cases are uniquely shared by all/most species from this clade.
characteristic which is specific for the members of this genus. Our  Sequence information for one of these CSIs is shown in Figure 4A. In
analyses have identified seven CSIs in different proteins, which in  this instance, a one aa insertion in a conserved region of the PAS
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(0/>50) < Stutzerimonas stutzeri AZ0B6364
Thiopseudomonas caeni WP_205342580
|Acinetobacter baumannii SCY97818
FIGURE 3

Partial sequence alignments of (A) Ferric iron uptake protein showing a two aa insertion within a conserved region that is a distinctive characteristic of
all members of the Alcaligenes clade. (B) A one aa deletion in a conserved region of the protein Cysteine synthase A which is specific for the species
from Oleovorans clade. (C) A three aa insertion within a conserved region in the protein Di-trans, poly-cis-decaprenylcistransferase, specific for the
species from the Straminea clade. Detailed sequence information for these CSls along with other CSls specific for these clades are provided in

Supplementary Figures S9-S31.
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TABLE 3 Summary of CSls specific for members of the Straminea, Stutzeri, and Linyingensis clades.

Protein name Accessionno  Figure number Indel Indel Specificity
size location
Di-trans, poly-cis-decaprenylcistransferase WP_070884112 Figure 3C; Supplementary 3aalns 110-150 Straminea clade
Figure $20 (Phytopseudomonas
Efflux RND transporter periplasmic adaptor subunit WP_074886159 Supplementary Figure 521 2aa Del 203-245 gen. nov.)
Beta-ketoacyl-ACP synthase 111 . WP_093501944 ‘ Supplementary Figure 522 1aalIns 233-273
Sugar ABC transporter ATPase® WP_093502557 Supplementary Figure $23 2 aa Del 26-65
DNA polymerase T1T subunit alpha* ‘WP_093503860 Supplementary Figure 524 4aalIns 818-855
Polyprenyl diphosphate synthase® ‘WP_093503878 Supplementary Figure $25 3aalns 110-153
Ubiquinol-cytochrome c* reductase cytochrome b SFD97069 Supplementary Figure $26 5aalns 65-102
subunit
GTP diphosphokinase® . WP_093502677 [ Supplementary Figure $27 laalns 108-150
tRNA (ad 37)-N6)-dimethylallyl MiaA% | WP_093506440 Supplementary Figure 528 5aa Del 167-203
Transporter substrate-binding domain-containing WP_093500877 Supplementary Figure $29 1 aaIns 112-152
protein”
YIP1 family protein® WP_074882567 Supplementary Figure $30 1 aa Del 48-87
Methyltransferase® WP_(074882425 Supplementary Figure S31 1aalns 55-85
PAS domain- ining methyl-accepting ch, . ‘WP_084903134 . Figure 4A; Supplementary 1 aaIns 83-127 Stutzeri clade
protein Figure $32 (Genus Stutzerimonas)
DUF1329 domain-containing protein ‘WP_049338638 Supplementary Figure $33 1 aa Del 115-121
Autotransporter assembly complex protein TamA* . ‘WP_084904442 . Supplementary Figure $34 1aa Del 112-147
2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinol WP_014818653 Supplementary Figure S35 laalns 105-149
hydroxylase*
Rhomboid family intr b serine p s ‘WP_218422476 Supplementary Figure S36 2aalns 237-265
RnfABCDGE type electron transport complex subunit | WP_106442915 Supplementary Figure $37 1 aa Del 165-212
D’
168 rRNA (uracil(1498)-N(3))-methyltransferase® WP_221292728 Supplementary Figure $38 1 aa Del 142-170
UDP-N-acetyl 1-L-alanine--D-gli ligase . ‘WP_090305970 ' Figure 4B; Supplementary 5aalns 372-421 Linyingensis clade
Figure $39 (Geapseudomonas gen.
Septal ring lytic transglycosylase RIpA family protein | WP_090305376 Supplementary Figure $40 1aalns 272-311 nov.)
Dephospho-CoA kinase ‘ ‘WP_090305710 ' Supplementary Figure $41 laalns 107-142
ATP-dependent zinc metalloprotease FtsH WP_090308457 Supplementary Figure $42 1 aa Del 413-445
I Penicillin-binding protein 1A . ‘WP_090307056 [ Supplementary Figure $43 1aalns 232-282
7 bifunctional [gl i ia ligase]-adenylyl-L- . WP_090307131 [ Su;plememm;y Fiéure S44 laalns 672-718
tyrosine phosphorylase/[glutamate--ammonia-ligase]
adenylyltransferase
Repressor LexA WP_090307764 Supplementary Figure 545 2aalns 166-201
Malate dehydrogenase . ‘WP_090312804 ' Supplementary Figure $46 1 aaIns 131-162
Uridylyltransferase ‘WP_090313706 Supplementary Figure $47 laalns 629-676
CHAD domain-containing protein® . ‘WP_090307991 . Supplementary Figure $48 3 aa Del 166-203
P huate 3,4-dioxyg subunit alpha* WP_090309801 Supplementary Figure $49 4 aa Del; 1 109-141
aa Del
Secretin WP_090310373 Supplementary Figure S50 1aa Del 194-231
CDP-6-deoxy-delta-3,4-glucoseen reductase WP_090312664 Supplementary Figure 51 3aalns 236-276
YkgJ family cysteine cluster protein WP_090306967 Supplementary Figure 52 1 aalns 9-45
tRNA preQ1(34) S-adenosylmethionine . ‘WP_090305582 | Supplementary Figure S53 2aalns 145-182
ribosyltransferase-isomerase QueA*®

“Isolated exception present in some CSIs (#; see Supplementary Figures for details). *The protein homologs were not found in some species. *CSI is not found in P. dryadis, which is the deepest

branching member of the clade.
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FIGURE 4

Thiopseudomnas alkaliphila

WP_053102138

Partial sequence alignment of the protein (A) PAS domain containing Methyl-accepting chemotaxis protein showing a one aa insertion within a
conserved region (highlighted) that is uniquely present in all members of the Stutzeri clade. (B) A five aa insertion within a conserved region of the
protein UDP-N-acetylmuramoyl-L-alanine, which is specific for the species from Linyingensis clade. Detailed sequence information for these CSls and
other CSls specific for Stutzeri and Linyingensis clades are provided in Supplementary Figures S32-S53
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domain-containing methyl-accepting chemotaxis protein is
uniquely shared by all species from the Stutzerimonas clade.
Detailed sequence information for this CSI and the six
other CSIs specific for this clade/genus is provided in
Supplementary Figures $32-538 and some of their characteristics
are summarized in Table 3. The identified CSIs provide reliable
means for distinguishing Stutzerimonas species from all other
Pseudomonadaceae species. Hence, we are emending the description
of this genus to include these diagnostic characteristics.

Five species with non-validly published names [viz. “P. lopnurensis”
(Mamtimin et al., 2021), “P. phenolilytica” (Kujur and Das, 2022),
“P. oligotrophica” (Zhang et al., 2022), “P. saudiphocaensis” (Azhar et al.,
2017) and “P. songnenensis” (Zhang et al., 2015)], also group reliably
within the Stutzerimonas clade and share CSIs specific for this clade.
These species should also be recognized as members of this genus with
the names “S. lopnurensis,” “S. phenolilytica,” “S. oligotrophica,”
“S. saudiphocaensis” and “S. songnenensis” respectively.

CSls specific for the Linyingensis clade

'The Linyingensis clade consists of six Pseudomonas species viz.,
P. aromaticivorans, P. guangdongensis, P. linyingensis, P. oryzagri,
“P. oryzae” and P. sagittaria, which form a strongly supported clade
in our phylogenetic trees (Figure 1; Supplementary Figure S2). This
clade is also denoted as g_Pseudomonas_K in the GTDB taxonomy
(Parks et al.,, 2018). A specific evolutionary relationship among
these species is supported by 15 CSIs (Table 3), which in most cases
are uniquely shared by all species from this clade. In Figure 4B,
we present one example of a CSI specific for this clade, where a five
aa insertion in UDP-N-acetylmuramoyl-L-alanine--D-glutamate
ligase protein is uniquely shared by all members of this clade.
Detailed sequence information for this CSI and 14 other CSIs
specific for this clade is presented in Supplementary Figures $39-853.
Based on these results, which robustly demarcate this species clade,
we are proposing the transfer of these species into Geopseudomonas
gen. nov.

CSls specific for the Resinovorans clade

The Resinovorans clade (Figure 1; Supplementary Figure S2),
which is denoted as the taxon g_Pseudomonas_F in GTDB taxonomy
(Parks et al, 2018), consists of six species viz. P. boanensis,
P. furukawaii, P. lalkuanensis, P. otitidis, P. resinovorans and P. tohonis.
Species from this clade also formed a distinct clade in earlier studies
(Girard et al., 2021; Lalucat et al., 2022; Passarelli-Araujo et al,,
2022). The members of this clade can be reliably distinguished from
all other Pseudomonadaceae species by five identified CSIs, which in
most cases are exclusively shared by all/most species from this clade.
One example of a CSI specific for this clade is presented in Figure 5A,
where in the Murein L, D-transpeptidase catalytic domain family
protein, a two aa insertion is exclusively present in all species from
the Resinovorans clade. Detailed sequence information for this CSI
and four other identified CSIs, specific for this clade, is presented in
Supplementary Figures $54-S58 and some of their characteristics
are listed in Table 4. Based on these results, we are proposing the

10.3389/fmicb.2023.1273665

transfer of species from Resinovorans clade into Metapseudomonas
gen. nov.

CSils specific for the Oryzihabitans clade
(genus Chryseomonas)

Oryzihabitans clade (denoted as the taxon g_Pseudomonas_B in
GTDB taxonomy) consists of seven named Pseudomonas species viz.
P. asuensis, P. duriflava, P. luteola, P. oryzihabitans, P. psychrotolerans,
P rhizoryzae and P. zeshuii, which form a strongly supported clade in
our phylogenetic trees (Figure 1; Supplementary Figure S2). These
species also formed a distinct clade in earlier phylogenetic studies
(Hesse et al., 2018; Girard et al., 2021; Saati-Santamaria et al., 2021;
Passarelli-Araujo et al,, 2022). The best-studied species from this clade
is P. luteola, which was originally a member of the genus Chryseomonas
(Holmes et al., 1986). However, in 1997, based on 16S rRNA gene
sequence similarity, this species was transferred into the genus
Pseudomonas (Anzai et al., 1997). More recently, based on genomic
studies, this species along with two other Pseudomonas species
(P. asuensis and P. duriflava) were transferred into the genus
Chryseomonas. It should be noted that C. luteola is a synonym of
C. polytricha (Holmes et al., 1986), which is the type species of genus
Chryseomonas (Parte et al., 2020). The genetic distinctness of the clade
formed by these seven species is strongly supported by 11 novel
identified CSIs which are uniquely shared by these species. One
example of a CSIs specific for this clade is shown in Figure 5B. In this
case, a one aa insertion in the protein cytochrome d ubiquinol oxidase
subunit IT is exclusively shared by all members of this clade. Detailed
sequence information for this CSI and 10 other CSIs specific for this
clade are presented in Supplementary Figures $59-569 and some of
their characteristics are listed in Table 4. In addition to the three
species which are presently assigned to the genus Chryseomonas, four
additional Pseudomonas species viz. P. oryzihabitans, P. psychrotolerans,
P, rhizoryzae and P. zeshuii reliably group within this clade and share
different CSIs specific for this genus. Hence, we are proposing new
name combinations of these species to transfer them into the
genus Chryseomonas.

CSils specific for the Thermotolerans clade

The Thermotolerans clade includes the species P. carbonaria,
P. cavernae, P. insulae and P. thermotolerans, which form a distinct
clade in our phylogenomic trees (Figure 1; Supplementary Figure S2).
Species from this clade also formed a distinct cluster in earlier
studies (Girard et al,, 2021; Lalucat et al, 2022). A specific
evolutionary relationship among these species is strongly supported
by five CSIs, which are exclusively shared by all members of this
clade. One example of a CSI specific for this clade is shown in
Figure 6A, where a six aa insertion in the TerB family tellurite
resistance protein is exclusively found in all four species from this
clade. Detailed sequence information for the five CSIs specific for
this clade are presented in Supplementary Figures $70-S74 and
some of their characteristics are listed in Table 4. Based on these
results, we are proposing the transfer of species from this clade into
Zestomonas gen. nov.
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FIGURE 5

Partial sequence alignment of the protein (A) Murein L, D-transpeptidase catalytic domain family protein showing a two aa insertion within a conserved
region that is commonly shared by all members of the Resinovorans clade. (B) A one aa insertion in the protein Cytochrome d ubiquinol oxidase
subunit Il which is specific for the species from the Oryzihabitans clade. Detailed sequence information for these CSls and other CSls specific for

Resinovorans and Oryzihabitans clades are provided in Supplementary Figures S54—-S69.
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TABLE 4 Summary of CSls specific for members of the Resinovorans, Oryzif

1s, Ther L

1s, and Flexibilis clades.

10.3389/fmicb.2023.1273665

Protein name Accession no Figure number Indel Indel location  Specificity
size

Murein L, D-transpeptidase ‘WP_016492426 Figure 5A; Supplementary 2aalns 89-128 Resinovorans clade

catalytic domain family protein® Figure S54 (Metapseudomonas gen. nov.)

Leucine--tRNA ligase* WP_016490742 Supplementary Figure $55 5aalns 260-304

Alginate biosynthesis protein ‘WP_028628607 Supplementary Figure $56 1aa Del 17-49

Algd4

YggL family protein WP_051246415 Supplementary Figure 857 laalns 61-93

Glycine--tRNA ligase subunit WP_016489954 Supplementary Figure $58 3aaDel 597-641

beta

Cytochrome d ubiquinol WP_241809250 Figure 5B; Supplementary laalns 236-279 Oryzihabitans clade

oxidase subunit IT Figure S59 (Genus Chryseomonas)

Phosphoenolpyruvate WP_059316469 Supplementary Figure S60 1aalns 485-513

carboxykinase

GTPase HfIX WP_059316391 Supplementary Figure S61 laalns 317-385

ATP-binding protein WP_059313194 Supplementary Figure $62 laalns 192-230

16S rRNA (adenine(1518)-N(6)/ | WP_059313310 Supplementary Figure $63 1 aa Del 77-115

adenine(1519)-N(6))-

dimethyltransferase RsmA

PTS fructose transporter HJE68896 Supplementary Figure S64 1 aa Del 36-75

subunit IIBC

Glucokinase ‘WP_007158679 Supplementary Figure $65 laalns 164-201

Dienelactone hydrolase family WP_160922865 Supplementary Figure $66 laalns 40-77

protein

Bifunctional D-glycero-beta-D- | WP_059313726 Supplementary Figure S67 1aalns 415-457

manno-heptose-7-phosphate

kinase/D-glycero-beta-D-

manno-heptose 1-phosphate

adenylyltransferase HIdE

Zinc transporter ZntB WP_197850824 Supplementary Figure S68 laalns 209-245

NADH-dependent 7-cyano-7- WP_208691271 Supplementary Figure 69 1aalns 180-220

deazaguanine

TerB family tellurite resistance ‘WP_017939833 Figure 6A; Supplementary 6aalns 27-75 Thermotolerans clade

protein Figure S70 (Zestomonas gen. nov.)

TIGR02099 family protein WP_119894903 Supplementary Figure $71 1aa Del 175-206

HAMP domain-containing ‘WP_187671317 Supplementary Figure $72 1aalns 359-390

histidine kinase

23S rRNA (adenine(2030)- WP_119895222 Supplementary Figure $73 1aa Del 47-87

N(6))-methyltransferase Rlm]

Esterase-like activity of phytase | WP_119895183 Supplementary Figure $74 1aalns 261-299

family protein

GTP diphosphokinase WP_039562945 Figure 6B; Supplementary laains 464-500 Flexibilis clade
Figure S75 (Genus Serpens emend.)

Zinc ABC transporter permease | WP_039607122 Supplementary Figure $76 1aa Del 85-120

subunit ZnuB

LutB/LIdF family L-lactate WP_039560866 Supplementary Figure $77 1aaDel 433-469

oxidation iron-sulfur protein

"Isolated exception present in some CSIs (#; see Supplementary Figures for details).
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FIGURE 6

Partial sequence alignment of the protein (A) TerB family tellurite resistance protein showing a six aa insertion within a conserved region (highlighted)
that is uniquely shared by members of the Thermotolerans clade. (B) A one aa insertion in a conserved region of the protein GTP diphosphokinase
which is specific for the species from Flexibilis clade. Detailed sequence information for these CSIs and other CSls specific for the Thermotolerans and
Flexibilis clades are provided in Supplementary Figures S70-S77.
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CSls specific for the Flexibilis clade (genus
Serpens)

Pseudomonas flexibilis, formerly known as Serpens flexibilis
(Hespell, 1977) was recently transferred into the genus Pseudomonas
based on 168 rRNA similarity with P. pseudoalcaligenes (Shin et al.,
2015). In our phylogenomic tree (Figure 1), this species branches
separately from other Pseudomonas species and forms a distinct clade
together with a newly described non-validly published species “Serpens
gallinarum” (Gilroy et al,, 2021) and another species P. tuomuerensis,
which according to Shin et al. (2015) is a heterotypic synonym of
P, flexibilis. This clade is identified as the taxon g_Pseudomonas_H in
the GTDB taxonomy (Parks et al, 2018). A close and specific
relationship of P. flexibilis (P. tuomuerensis) to “S. gallinarum” is
independently supported by three CSIs identified in this study, which
are exclusively shared by these species. One example of a CSI specific
for this clade is shown in Figure 6B, where a one aa insertion in the
protein GTP diphosphokinase is specifically shared by these three
species. Detailed sequence information for this CSI and the two other
CSlsspecificfor this cladeis presented in Supplementary Figures S75-577
and some of their characteristics are summarized in Table 4. Based on
these results we are presenting an emended description of the genus
Serpens with S. flexibilis as its type species.

CSls specific for the Fluvialis clade

The Fluvialis clade consists of the species P. fluvialis and
P. pharmacofabricae, which formed a strongly supported clade in
different phylogenetic trees (Figure 1; Supplementary Figure S2). Our
analyses have identified eight CSIs in different proteins that are
uniquely shared by these two species. Figure 7A depicts an example of
a CSI, consisting of a seven aa deletion within a conserved region of
an ATP binding protein, which is exclusively shared by these two
species. Detailed sequence information for this and the six other CSIs
specific  for  the presented  in
Supplementary Figures $78-585 and a summary of some of their
sequence characteristics is presented in Table 5. Based on the results
presented here, we are proposing the transfer of species from this clade
into Caenipseudomonas gen. nov.

Fluvalis  clade is

Identification of CSls specific for the
Azotobacter and Azomonas genera

The genus Azotobacter was described by Beijerinck (1901) and
its members are known to branch in between Pseudomonas species
(Young and Park, 2007; Ozen and Ussery, 2012; Lalucat et al., 2022).
Four Azotobacter species whose genome sequences were analyzed
in this study (viz. A. beijerinckii, A. chroococcum, A. salinestris, and
A. vinelandii), formed a distinct clade branching in the proximity
of  Stutzeri and  Linyingensis  clades  (Figure 1;
Supplementary Figure S2). Similar branching of Azotobacter species
has been reported in earlier work (Jun et al., 2016; Hesse et al., 2018;
Lalucat et al., 2022). Our analyses have identified 10 CSIs which are
exclusively found in all four Azotobacter species providing reliable
means for the demarcation of this clade. Partial sequence
information for one of the CSIs specific for this genus, found in the
alginate export family protein, is shown in Figure 7B. Detailed
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sequence information for this CSI and nine other CSIs specific for
this genus is provided in Supplementary Figures $86-595, and some
of their sequence characteristics are listed in Table 5.

Azomonas is another genus whose members branch in between
Pseudomonas species (Figure 1; Supplementary Figure S2; Young and
Park, 2007; Kennedy and Rudnick, 2015; Rudra and Gupta, 2021;
Lalucat et al., 2022). The two Azomonas species included in our
analyses (viz., A. agilis and A. macrocytogenes) formed a distinct
cluster in our phylogenomic trees (Figure 1; Supplementary Figure S2).
The distinctness of this clade is also supported by five CSIs identified
in this work, which are exclusively shared by these two species.
Sequence information for one of these CSIs, containing a five aa
insertion within the protein succinate dehydrogenase flavoprotein, is
shown in Figure 7C. Detailed sequence information for this CSI and
the other four CSIs specific for this genus are provided in the
Supplementary Figures $96-S100, and a summary of some of their
sequence characteristics is listed in Table 5.

Discussion

The genus Pseudomonas is one of the earliest known and largest
prokaryotic genera encompassing a large assemblage of organisms
exhibiting enormous genetic and metabolic diversity (Palleroni,
2005;Peix et al., 2009; Silby et al., 2011; Palleroni, 2015). The
nomenclature type of this genus, P. aeruginosa, is an important human
pathogen capable of causing a wide array of life-threatening acute and
chronic diseases (Lund-Palau et al., 2016; Rossi et al., 2021). However,
this genus also includes some animals and plant pathogenic species,
as well as other economically and ecologically significant species
(Desnoues et al., 2003; Silby et al., 2011; Xin et al., 2018). According
to the LPSN (Parte et al,, 2020), the genus Pseudomonas presently
contains ~310 species with validly published names. However, this
number is increasing at a rapid pace (Girard et al,, 2021), and in 2022
alone, more than 50 novel Pseudomonas species were listed in the
LPSN server (Parte et al., 2020). As indicated in the introduction, and
reviewed by others (Palleroni, 2010; Peix et al., 2018; Lalucat et al.,
2022), evolutionary studies on the genus Pseudomonas have
consistently shown that these species form multiple distinct clusters/
clades, which are not specifically related to each other (Gomila et al,,
2015; Hesse et al., 2018; Girard et al., 2021; Rudra and Gupta, 2021;
Saati-Santamaria et al., 2021). Furthermore, it is generally recognized
that of these species’ clades, circumscription of the genus Pseudomonas
should be limited to the “Aeruginosa clade” harboring its type species,
whereas species from the other observed clades should be reclassified
into either novel or existing genera. In recent years, although several
Pseudomonas species from deep branching clusters have been
reclassified into novel genera (viz. Atopomonas, Chryseomonas,
Halopseudomonas and Stutzerimonas) (Rudra and Gupta, 2021; Saati-
Santamaria et al.,, 2021; Lalucat et al., 2022), the task of reliably
reclassifying majority (>90%) of the Pseudomonas species into well-
demarcated genera has proven challenging.

With the aim of reliably demarcating some of the observed
Pseudomonas species clades, we have conducted here comprehensive
phylogenomic and comparative analyses on the genome sequences
of Pseudomonadaceae species. In our phylogenomic trees,
Pseudomonas species formed multiple distinct clades (Figure 1;
Supplementary Figure S2), which are similar to those reported in
earlier studies (Gomila et al., 2015; Peix et al., 2018; Girard et al., 2021;
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FIGURE 7

Partial sequence alignment of (A) ATP binding protein showing seven aa deletion within a conserved region (highlighted) that is uniquely shared by
species from the Fluvialis clade. (B) A two aa insertion in a conserved region of the Alginate export family protein showing that is exclusively shared by

species from the genus Azotobacter. (C) A five aa insertion in the protein Succinate dehydrogenase flavoprotein subunit which is specific for the

species from genus Azomonas. Detailed sequence information for these CSIs and other CSls specific for the Fluvialis clade and the Azotobacter and

Azomonas genera are provided in Supplementary Figures S78-5100
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TABLE 5 Summary of CSls specific for members of the Fluvialis clade, and the genera Azotobacter and Azomonas.
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Protein name Accession no Figure number Indel Specificity
location
ATP-binding protein WP_101192990 Figure 7A; Supplementary 7 aa Del 226-267 Fluvialis clade
Figure S78 (Caenipseudomonas gen. nov.)
Hypothetical protein WP_101193738 Supplementary Figure $79 5aa Del, 146-197
1 aa Del
DUF2868 domain-containing WP_101193981 Supplementary Figure S80 5aa Del 415-452
protein
Hypothetical protein WP_093984635 Supplementary Figure S81 2aaDel 101-143
Putative chorismate pyruvate-lyase GGH90722 Supplementary Figure $82 2 aa Del 72-119
Bifunctional aminoglycoside WP_093984289 Supplementary Figure $83 2aalns 77-117
phosphotr ATP-binding
protein
RDD family protein WP_101192354 Supplementary Figure $84 1 aa Ins 160-200
Translocation/assembly module WP_093986880 Supplementary Figure S85 2aalns 493-539
TamB
Alginate export family protein WP_012699745 Figure 7B; Supplementary 2aalns 138-176 Genus Azotobacter
Figure $86
DNA polymerase III subunit alpha WP_012702399 Supplementary Figure $87 1aalns 88-132
Pyrroloquinoline quinone WP_152387189 Supplementary Figure $88 1 aa Del 238-276
biosynthesis protein
Protein-export chaperone SecB WP_012699152 Supplementary Figure $89 1aa Ins 33-71
Protein Ion transporter WP_012701585 Supplementary Figure S90 1 aa Del 25-70
Cysteine synthase A WP_012701826 Supplementary Figure $91 1aalns 268-309
DUF2066 domain-containing WP_012702209 Supplementary Figure $92 2 aa Del 156-195
protein
GGDEF domain-containing WP_012702302 Supplementary Figure $93 1aa Del 389-431
phosphodiesterase
Flagellar hook-associated protein WP_012700992 Supplementary Figure $94 1aalns 131-167
FlgL
LLM class flavin-dependent WP_012699059 Supplementary Figure $95 3 aa Del 87-130
oxidoreductase
Succinate dehydrogenase WP_144570020 Figure 7C; Supplementary Saalns 555-595 Genus Azomonas
flavoprotein subunit Figure $96
Mechanosensitive channel MscK WP_183165886 Supplementary Figure $97 4 aa Del 790-819
SPOR domain-containing protein WP_144571310 Supplementary Figure $98 2 aadel 73-110
Bifunctional [glutamate--ammonia | WP_183165719 Supplementary Figure $99 1 aa Del 153-185
ligase]-adenylyl-L-tyrosine
phosphorylase adenylyltransferase
Alkyl hydroperoxide reductase WP_144571471 Supplementary Figure S100 1 aa Del 366-398
subunit F

Lalucat et al,, 2022) excepting some differences resulting from the
inclusion of several new species in our analysis. However, while
similar species clusters are observed in different studies, based on
their branching in phylogenetic trees (see Figure 1;
Supplementary Figure S2), which is dynamic in nature and influenced
by multiple variables including addition of new species (Gupta, 1998;
Baldauf, 2003; Felsenstein, 2004), it is difficult to reliably demarcate
the boundaries of different clades. Thus, a major focus of this study
was to identify robust molecular markers, which independent of

phylogenetic analyses, can confirm the existence of observed species
clades and can provide reliable means for their demarcation.
Although genome sequence based indices such as average
nucleotide identity (ANIb) and genome to genome DNA
hybridization (GGDC) are now widely used for the delimitation of
species level taxa (Goris et al., 2007; Kim et al., 2014; Yarza et al,,
2014), such methods including AAI (Konstantinidis and Tiedje,
2007) or POCP (Qin et al., 2014) have shown limited usefulness for
the delineation of genus level taxa (Parks et al., 2018; Gupta, 2019;
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Gupta and Kanter-Eivin, 2023). In the present work, while based on
POCP and AAI values, some Pseudomonas species clades appear to
be distinct (Table 1 and Supplementary Tables S2 and S3), for most
of the observed clades these values generally show some overlap
between the ingroup and outgroup species. Thus, based on these
indices, it is difficult to reliably demarcate the boundaries of most of
the clades. However, genome sequences are also enabling
identification of highly specific molecular markers such as CSIs
which are uniquely shared by different groups of organisms and
provide dependable means for taxonomic and diagnostic studies
(Gupta, 2014; Adeolu et al., 2016; Gupta, 2016; Gupta et al., 2020).
As the CSIs in genes/proteins sequences result from rare genetic
changes, their presence or absence in different species is generally
not affected by most factors which can confound inferences from
phylogenetic analyses (Baldauf and Palmer, 1993; Gupta, 1998;
Rokas and Holland, 2000; Gupta, 2014, 2016). Furthermore, as the
CSIs in different genes/proteins result from unrelated genetic
changes, each of them provides independent evidence of a close and
specific evolutionary relationship among a given group of species. In
the present work, detailed analyses conducted on protein sequences
from Pseudomonadaceae species, have identified 98 CSIs, which are
specific for the species from 13 different Pseudomonadaceae species
clades including the genera Azomonas and Azotobacter. Table 6
shows a summary of the CSIs that were identified for different
Pseudomonadaceae clades along with the species that currently
comprise these clades.

10.3389/fmicb.2023.1273665

The results presented in Table 6 show that most of the
Pseudomonas species clades, which are observed in our phylogenomic
trees (Figure 1; Supplementary Figure S2), can now be robustly
demarcated based on multiple identified CSIs, which are exclusively
shared by the species from these clades. The genetic relatedness of the
species from several of these clades is also supported by the results
from AAI and POCP indices (Table 1). However, one clade for which
CSIs were not identified is the Anguilliseptica clade. Species from this
clade do not also form a well-resolved and strongly supported lineage
in our phylogenetic trees (Figure 1; Supplementary Figure S2), and
in earlier studies (Hesse et al., 2018; Busquets et al., 2021; Lalucat
et al,, 2022). In some phylogenetic trees [Supplementary Figure S2,
unpublished results, and (Hesse et al., 2018)], one or more species
from this clade (viz. P. cuatrocienegasensis) branch outside this clade.
The results from AAI and POCP analyses (Table 1) also do not
support the distinctness of this clade. All these observations indicate
that the Anguilliseptica clade is not a trustworthy lineage and the
cladistic relationships of species from this clade need to be further
investigated. Of the CSIs identified by our analysis, six are uniquely
shared by different species from the “Aeruginosa clade,” providing
reliable molecular means for the demarcation/circumscription of this
clade representing the genus Pseudomonas sensu stricto. Our analyses
have also identified multiple CSIs reliably demarcating the species
from Alcaligenes, Fluvialis, Linyingensis, Oleovorans, Resinovorans,
Straminea, and Thermotolerans clades. Based on the strong and
consistent evidence provided by phylogenomic analyses and

TABLE 6 Summary of different Pseudomonadaceae species clades reliably demarcated based on phylogenomic analyses and identified CSls specific for

these clades.

Clade name (Genus name) Number of  Species composition of the clades
CSls
“Aeruginosoa clade” (Pseudomonas sensu stricto) 6 P. aeruginosa, P. i llolis, P. delhiensis, P. humi, P. jinj is, P knack i, P
nultiresini P nicosulft lens, P. nitritireducens, P. nitroreducens, P.

paraeruginosa, P. panip is, “P. pseudoni di " P. schmalbachii.

Alcaligenes clade (Aquipseuds gen. nov.) 6 P alcaligenes, P. campi, P. guryensis, P. ullengensis

Genus Azomonas 5 A. agilis A. macrocytogenes

Genus Azotobacter 10 A. chroococcum, A. beijerinckii, A. salinestris, A. vinelandii.

Flexibilis clade (Genus Serpens emend.) 3 P flexibilis, “Serpens gallinarum,” P. tuomuerensis.

Fluvialis clade (Caenipseudomonas gen. nov.) 8 P fluvialis, P. pharmacofabricae

Linyingensis clade (Geopseud gen. nov.) 15 P. guangdongensis, P. aromaticivorans, P. linyingensis, “P. oryzae,” P. oryzagri, P.
sagittaria

Oleovorans clade (Ectopseudomonas gen. nov.) 5 P alcaliphila, P. chengduensis, P. composti, P. gug is, P. hydrolytica, “P.
indoloxydans,” P. khazarica, P. mendocina, P. oleovorans, P. pseudoalcaligenes, “P.

diminis” “P sihuiensis” P iensis, “P " is” P. yang

Oryzihabitans clade (Genus Chryseomonas emend.) 11 C. asuensis, C. duriflava, C. luteola, P. oryzihabitans, P. psychrotolerans, P. rhizoryzae, P.
zeshuii

Resinovorans clade (Metapseudomonas gen. nov.) 5 P, boanensis, P. furukawaii, P. lalk is, P, otitidis, P. P, tohonis

Straminea clade (Phytopseudomonas gen. nov.) 12 P argentinensis, P. daroniae, P. dryadis, P. flavescens, P. punonensis, P.
seleniipraecipitans, P. straminea.

Stutzeri clade (Genus Stutzerimonas) 7 S. azotifigens, S. balearica, S. chloritidi: S. de S. degradans, S.
frequens, S. kirkiae, . k is, S. nitrititol S. S. perfectomarina,
S. stutzeri, S. tarimensis, S. H ina, S. zhaod is, S. urumgiensis, “P.
lopnurensis,” “P. phenolilytica,” “P. oligotrophica,” “P. saudiph " “P. song 3

Thermotolerans clade (Zestomonas gen. nov.)

w

P carbonaria, P. cavernae, P. insulae, P. thermotolerans
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identified molecular signatures supporting the distinctness of these
clades, we are proposing that the species from the above noted clades

should be reclassified into the following novel genera
Aquipseudomonas gen. nov., Caenipseudomonas gen. nov.,
Geopseudomonas ~ gen. nov., Ectopseudomonas gen. nov.,

Metapseudomonas gen. nov., Phytopseudomonas gen. nov., and
Zestomonas gen. nov., respectively (Table 6). Our work has also
identified 11 CSIs which are shared by all species from the
Oryzihabitans clade providing robust means for the demarcation of
species from this clade. Previously, only three species, which form a
subclade of the Oryzihabitans clade, were reclassified into the genus
Chryseomonas (Saati-Santamaria et al.,, 2021). Based on the results
presented, we are proposing that the other species from this clade
should also be transferred into the emended genus Chryseomonas.
Species from the Flexibilis clade containing P. flexibilis are also
transferred into the emended genus Serpens. Seven identified CSIs
are commonly shared by all 13 species from the Stutzerimonas clade
(Lalucat et al.,, 2022) providing robust molecular means for the
demarcation of this genus. Lastly, multiple CSIs identified by our
analyses are specific for the genera Azomonas and Azotobacter
providing trustworthy means for the demarcation of these genera in
molecular terms. As the identified CSIs provide important diagnostic
characteristics of the above noted genera, we are also providing
emended descriptions of these genera to include this information.

Although the present work represents a significant step toward
clarifying the evolutionary relationships and classification scheme for
Pseudomonas species, a vast majority of Pseudomonas species
representing more than two thirds of the known species (see
Supplementary Figure S1), are part of the Fluorescens superclade. As
seen from Supplementary Figure S1, this large lineage is comprised of
multiple clades and subclades (Palleroni, 2015; Hesse et al., 2018; Peix
et al., 2018; Lalucat et al., 2020; Girard et al., 2021). To develop a
reliable classification scheme for all Pseudomonas species, it will
be necessary to reliably distinguish and demarcate different species
clades within the Fluorescens superclade and reclassify them
appropriately. In view of this consideration, despite our reliable
demarcation of the genus Pseudomonas sensu stricto, an emended
description of this genus is not proposed, until most other
Pseudomonas species are reliably classified.

All newly proposed genera and other studied genera/clades in this
work have been circumscribed based on their harboring multiple
uniquely shared CSIs. One notable characteristic of the CSIs, which is
of much importance for classification purposes, is that these markers
exhibit high degree of predictive ability to be found in other
(uncharacterized or unidentified) members of a given group/taxon
(Bhandari et al., 2013; Gupta, 2014, 2016; Dobritsa and Samadpour,
2019; Patel and Gupta, 2020; Montecillo and Bae, 2022). Thus, the
CSls specific for the genus Halopseudomonas identified in our earlier
work (Rudra and Gupta, 2021) are also present in all newly described
species from this genus (Supplementary Figure S2). Similarly, the CSIs
specific for the genus Atopomonas were also present in a newly
described species from this genus (Li et al,, 2023). Due to the
demonstrated predictive abilities of the CSIs to be found in other
members of specific taxa, we have recently developed a web-based
tool/server,® which can predict taxonomic affiliation based on the
presence of known taxon-specific CSIs in a genome sequence (Gupta

3 Applindels.com

10.3389/fmicb.2023.1273665

and Kanter-Eivin, 2023). Therefore, upon the addition of information
for these newly identified CSIs to the ApplIndels server, it should
greatly facilitate the classification of both cultured and uncultured
isolates related to the described taxa (Gupta and Patel, 2019). The CSIs
specific for different taxa also provide useful means for the
development of sensitive and specific diagnostic tests using in silico
and experimental methods (Ahmod et al,, 2011; Wong et al., 2014).
Lastly, the earlier work on CSIs show that these molecular
characteristics are functionally important for the group of organisms
for which they are specific (Singh and Gupta, 2009; Khadka et al,,
2020). Hence, genetic, and biochemical studies on the identified CSIs
could lead to the discovery of novel biochemical and/or other
characteristics of different groups of organisms.

The descriptions of different novel genera proposed and other
emended genera are given below. The new name combinations for
different species resulting from the proposed taxonomic changes are
provided in Tables 7, 8. The names for the newly proposed genera are
generally based on some characteristics of the proposed group
of species.

Description of the genus
Aquipseudomonas gen. nov.

Aquipseudomonas (A.qui.pseu.do.monas. L. fem. n. aqua, water;
N.L. fem. n. Pseudomonas, a bacterial genus; N.L. fem. n. Aquipseudomonas,
Pseudomonas-like species isolated from water).

Cells are Gram-stain negative, motile and rod shaped. The species
are aerobic in respiration and have been isolated from soil and
swimming pool water. Optimum temperature for growth ranges from
30 - 37°C with <2% (w/v) NaCl and pH range from 4-10. Genome
sizes for the species vary from 4.3 Mb to 4.6 Mb and the GC content
ranges from 63.3 to 65.5%. Of the species from this genus, the type
species A. alcaligenes can degrade polycyclic aromatic hydrocarbons
and has been proven useful for bioremediation of oil pollution,
pesticide substances, and certain chemical substances. Species from
this genus form a strongly supported clade in phylogenomic tree
based on large datasets of concatenated proteins. Additionally, species
from this genus can be reliably distinguished from all other
Pseudomonadaceae genera based on six CSIs (Table 2) which are
exclusively found in the species from this genus. New name
combinations for the species that are part of this genus are provided
in Table 7.

The type species of this genus is Aqui]

i

1

was ale

Description of the genus
Caenipseudomonas gen. nov.

Caenipseudomonas (Cae.ni.pseu.do.monas. L. neut. n. caenum,
mud; N.L. fem. n. Pseudomonas, a bacterial genus; N.L. fem. n.
Caenipseudomonas, Pseudomonas-like organism(s) isolated from
river sediments).

Cells are strictly aerobic, Gram-stain-negative, non-fluorescent
and occur mostly as short rods. Cells are motile and contain a single
polar flagellum. Chemoorganotrophic growth. Species have been
isolated from river sediment, and wastewater sample from a
pharmaceutical company. Growth occurs in the temperature range
from 4-22°C with optimum growth occurring between 25-35° C at
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TABLE 7 Descriptions of the new name combinations for different proposed genera.

New name combination and etymology

Aquipseudomonas gen. nov.

Basonym

Description

10.3389/fmicb.2023.1273665

Type strain

Aquipseudomonas alcaligenes comb. nov.

(type species)

(al.calige.nes. N.L. n. alcali, alkali; from Arabic article al, the; from
Arabic masc. n. galy, ashes of saltwort; Gr. suff. -genes, producing;
from Gr. ind. v. gennad, to produce; N.L. part. adj. alcaligenes, alkali-

producing)

Pseudomonas alcaligenes
Monias, 1928 (Approved
Lists 1980).

‘The description of this species
is the same as provided by

Monias (1928).

ATCC 14909; CCUG 1425;
CCUG 1425 A; CFBP 2437;
CIP 101034; DSM 50342; [FO
14159; JCM 5967; LMG 1224;
NBRC 14159; NCCB 76044;
NCTC 10367; VKM B-2171.

Aquipseudomonas campi comb. nov.

(cam’pi. L. gen. n. campi, of a field, of grassland)

Aquipseudomonas guryensis comb. nov.

(gu.ryensis. N.L. fem. adj. guryensis, pertaining to Gurye, a
geographic location where the type strain was isolated)
Agquipseudomonas ullengensis comb. nov.

(ull.eng.en’sis. N.L. fem. adj. ullengensis, pertaining to Ulleng Island, a

geographic location where the type strain was isolated)

Pseudomonas campi Timsy et
al,, 2021

Pseudomonas guryensis Kim

etal, 2021.

Pseudomonas ullengensis Kim

etal, 2021.

The description of this species
is the same as provided by

Timsy et al. (2021).

‘The description of this species

is the same as provided by

Kim et al. (2021).

The description of this species
is the same as provided by

Kim et al. (2021).

31,521; DSM 110222; LMG 315215
§1-A32-2

JCM 34509; KCTC 82228; SR9.

JCM 34510; KCTC 82229; UL070.

Caenipseudomonas gen. nov.

Caenipseudomonas fluvialis comb. nov.

(type species)

(fluvialis. L. fem. adj. fluvialis, belonging to a river, the source of the

isolate)

Pseudomonas fluvialis Sudan

etal, 2018.

‘The description of this species
is the same as provided by

Sudan et al. (2018).

ASS-1; CCM 8778; KCTC 52437.

Caenipseudomonas pharmacofabricae
comb. nov.
(phar.ma.co.fabri.cae. N.L gen. n. pharmacofabricae from a

pharmaceutical factory)

Pseudomonas pharmafabricae

Yu etal, 2018.

‘The description of this species
is the same as provided by Yu
etal. (2018).

CGMCC 1.15498; JCM 31306;
ZYSR67-Z.

Ectopseudomonas gen. nov.

Ectopseudomonas oleovorans comb. nov.
(type species)
(ole.o.vo.rans. L. neut. n. oleun, oil; L. pres. part. vorans, eating,

devouring; N.L. part. adj. oleovorans, oil devouring)

Pseudomonas oleovorans Lee
and Chandler, 1941
(Approved Lists 1980).

The description of this species
is the same as provided by
Lee and Chandler (1941).

ATCC 8062; CCUG 2087;

CFBP 5589; CIP 59.11; DSM 1045;
TFO 13583; JCM 11598; LMG
2229; NBRC 13583; NCIB 6576;
NCIMB 6576; NCTC 10692;
NRRL B-778; VKM B-1522.

Ectopseudomonas alcaliphila comb. nov.

(al.cali.phi’la. N.L. n. alcali, alcali (from Arabic article al, the; Arabic
n. qaliy, ashes of saltwort); N.L. fem. adj. suff. -phila, friend, loving;
from Gr. fem. adj. philé, loving; N.L. fem. adj. alcaliphila, liking

alkaline environments)

Pseudomonas alcaliphila
Yumoto et al., 2001.

‘The description of this species
is the same as provided by

Yumoto et al. (2001).

AL15-21; DSM 17744; IAM
14884; JCM 10630; NBRC 102411.

Ectopseudomonas chengduensis comb. nov.
(cheng.du.en’sis. N.L. fem. adj. chengduensis, pertaining to Chengdu,

where the type strain was isolated)

Pseudomonas chengduensis

Tao et al., 2014.

Pseudomonas composti

The description of this species
is the same as provided by

Tao etal. (2014).

CGMCC 2318; DSM 26382; MBR.

C2; CCUG 59231; CECT 75165

(hy.dro.ly’ti.ca. Gr. neut. n. hydor, water; Gr. masc. adj. Iytikos,
dissolving, splitting; N.L. fem. adj. hydrolytica, splitting with water,

referring to the hydrolytic enzymatic activity of the bacterium).

Zhou et al., 2020.

is the same as provided by

Zhou et al. (2020).

Ectopseudomonas composti comb. nov. ‘The description of this species

(com.pos'ti. N.L. gen. n. composli, of compost, from which strains Gibello et al., 2011. is the same as provided by DSM 25648.

were first isolated) Gibello et al. (2011).

Ectopseudomonas guguanensis comb. nov. Pseudomonas guguanensis The description of this species = BCRC 80438; CC-G9A; JCM
(gu.guan.ensis. N.L. fem. adj. guguanensis, of or pertaining to Liu etal., 2013. is the same as provided by Liu = 18416.

Guguan, the location of a favorite hot spring attraction in Taiwan) etal. (2013).

Ectopseudomonas hydrolytica comb. nov. Pseudomonas hydrolytica The description of this species = CCTCC AB 2018053; DSM

106702; DSWYO01.

(Continued)
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TABLE 7 (Continued)

New name combination and etymology

Ectopseudomonas khazarica comb. nov.
(kha.zari.ca. N.L. fem. adj. khazarica, pertaining to Khazar, a lake in
the north of Iran as the largest lake in the world, from where the

organism was isolated)

Bas

Pseudomonas khazarica
Tarhriz et al., 2020.

scription
The description of this species
is the same as provided by

Tarhriz et al. (2020).

10.3389/fmicb.2023.1273665

KCTC 52410; LMG 29674; Tbz2.

Ectopseudomonas mendocina comb. nov.

(men.do.ci.na. N.L. fem. adj. mendocina, pertaining to Mendoza

(Argentina))
Ectopseud pseudoalcaligenes comb. nov.

(pseu.do.al.ca.lige.nes. Gr. masc. adj. pseudes, false; N.L. n. alcali,
alkali; from Arabic article al, the; from Arabic masc. n. galy, ashes of
saltwort; Gr. suff. -genes, producing; from Gr. ind. v. gennaé, to
produce; N.L. pres. part. alcaligenes, alkali-producing; N.L. part. adj.
pseudoalcaligenes, false alkali producing)

Ectopseudomonas toyotomiensis comb. nov.

(to.yo.to.mi.en’sis. N.L. fem. adj. toyotomiensis, pertaining to
Toyotomi, where the type strain was isolated)

Ectopseudomonas yangonensis comb. nov.

(yan.gon.en'sis. N.L. fem. adj. yangonensis, from or originating from

Yangon, Myanmar, where the type strain was isolated)

Pseudomonas mendocina
Palleroni et al., 1970
(Approved Lists 1980).

Pseudomonas
pseudoalcaligenes Stanier
etal., 1966 (Approved Lists
1980).

Pseudomonas toyotomiensis

Hirota et al., 2011.

Pseudomonas yangonensis
Tohya et al., 2020.

The description of this species
is the same as provided by

Palleroni et al. (1970).

The description of this species

is the same as provided by

Stanier et al. (1966).

The description of this species

is the same as provided by

Hirota et al. (2011).

The description of this species
is the same as provided by

Tohya et al. (2020).

ATCC 25411; CCUG 1781;
CFBP 2434; CIP 75.21; DSM
50017; TFO 14162; JCM 5966;
LMG 1223; NBRC 14162; NCCB

76043; NCTC 10897; VKM B-972.

ATCC 17440; CCUG 51525;
CFBP 2435; CIP 66.14; DSM
50188; IFO 14167; JCM 5968;
LMG 1225; NBRC 14167; NCCB
76045; NCTC 10860.

DSM 26169; HT-3; JCM 15604;

NCIMB 14511.

JCM 33396; LMG 31602; MY50.

Geopseudomonas gen. nov.

Geopseudomonas sagittaria comb. nov.

(type species)

(sa.git.taria. L. fem. adj. sagittaria, pertaining to the constellation
Sagittarius as the novel species was isolated during the month of
November, the birthday of first author (Shih-Yao Lin) of the paper
describing this species; from L. masc. adj. sagittarius, the

constellation Sagittarius)

Pseudomonas sagittaria Lin
etal., 2013.

The description of this species
is the same as provided by Lin

etal. (2013).

BCRC 80399; CC-OPY-1; DSM
27945; JCM 18195.

Geopseudomonas aromaticivorans comb. nov.

(a.ro.ma.ti.ci.vorans. L. masc. adj. aromaticus, fragrant; L. pres. part.
vorans, devouring; N.L. part. adj. aromaticivorans, devouring
aromatic compounds)

Geopseudomonas linyingensis comb. nov.

(lin.ying.en’sis. N.L. fem. adj. linyingensis, pertaining to Linying, in

Henan province, China, where the type strain was isolated).

Pseudomonas
aromaticivorans Banerjee

etal., 2022.

Pseudomonas linyingensis He

etal, 2012.

The description of this species
is the same as provided by

Banerjee et al. (2022).

The description of this species

is the same as provided by He

etal. (2012).

LMG 32466; MAP12; NCATM
B.02668.

CGMCC 1.10701; LMG 25967;

LYBRD3-7

Geopseudomonas guangdongensis comb. nov.

(guang.dong.ensis. N.L. fem. adj. guangdongensis, of or pertaining to
Guangdong, a province in south-east China, from where the type
strain was isolated).

Geopseudomonas oryzagri comb. nov.

(o.ryz.agri. L. fem. n. oryza, rice; L. n. ager, a field; N.L. gen. n.

oryzagri, of a rice field)

Pseudomonas guangdongensis

Yang et al., 2013.

Pseudomonas oryzagri Huq
etal., 2022.

The description of this species
is the same as provided by

Yang et al. (2013).

‘The description of this species

is the same as provided by

Hugq et al. (2022).

CCTCC AB 2012022; DSM
100318; KACC 16606; SgZ-6.

CGMCC 1.18518; KACC 22005;

MAHUQ-58

pH between 7-8 in presence of 0-2% (w/v) NaCl concentration.
Genome size range is from 3.3-3.4 Mb and the GC content is 62.6%.
Species from this genus form a distinct lineage in phylogenomic trees
based on large datasets of proteins, as well as in trees based on rpoD
gene, or concatenated partial sequences for the 16S rDNA, gyrB,

rpoB, and rpoD genes. In addition, species from this genus can
be reliably distinguished based on eight exclusively shared CSIs listed
in Table 5. The new name combinations for species from this genus
are provided in Table 7.

The type species is Caenipseudomonas fluvialis.
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TABLE 8 Descriptions of the new name combinations for different proposed and emended genera.

New na

C

ination and etymology

Metapseudomonas gen. nov.

Basony

Description

10.3389/fmicb.2023.1273665

pe strain

Metapseudomonas resinovorans comb. nov.
(type species)
(re.si.no.vorans. L. fem. n. resina, resin; L. pres. part. vorans, eating,

devouring; N.L. part. adj. resinovorans, resin devouring)

Pseudomonas resinovorans
Delaporte et al., 1961
(Approved Lists 1980).

The description of this species is
the same as provided by Delaporte
etal. (1961).

ATCC 14235; CCUG 2473;
CCUG 4439; CFBP 5590;
CIP 61.9; DSM 21078; LMG
2274; NRRL B-2649.

Metapseudomonas boanensis comb. nov.
(bo.a.nen’sis. N.L. fem. adj. boanensis, pertaining to the Boane District

in Mozambique)

Metapseudomonas furukawaii comb. nov.
(fu.ruka.wa’ii. N.L. gen. masc. n. furukawaii, of Furukawa named
after Kensuke Furukawa, a Japanese microbiologist who notably

contributed to the understanding of bial and molecul.

biological mechanisms involved in biphenyl/PCB degradation)

Pseudomonas boanensis

Nicklasson et al., 2022.

Pseudomonas furukawaii
Kimura et al., 2018.

The description of this species is

the same as provided by

Nicklasson et al. (2022).

The description of this species is
the same as provided by Kimura

etal. (2018).

CCUG 62977; CECT 30359;
DBI.

DSM 10086; KF707; NBRC
110670.

Metapseudomonas lalkuanensis comb. nov.

(lal.ku.an.en’sis. N.L. fem. adj. lalkuanensis, pertaining to Lalkuan, a
town in the Nainital district of Uttarakhand, India, where the type
strain was isolated)

Metapseudomonas otitidis comb. nov.

(o.titi.dis. Gr. neut. n. otis (gen. 6tos), ear; N.L. suff. -itis -idis, used in names

of inflammations; N.L. gen. Fem. n. otitidis, of inflammation of the ear)

Pseudomonas lalkuanensis

Thorat et al., 2020.

Pseudomonas otitidis Clark

etal,, 2006.

The description of this species is
the same as provided by Thorat

et al. (2020).

The description of this species is
the same as provided by Clark
et al. (2006).

CCUG 73691; KCTC 72454;
MCC 3792; PE08.

ATCC BAA-1130; DSM
17224; MCC 10330.

Metapseudomonas tohonis comb. nov.

Pseudomonas tohonis

The description of this species is

GTC 22698; NCTC 14580;

(type species)

(stra.mi.n€’a. L. fem. adj. straminea, made of straw)

corrig. lizuka and Ki

1963 (Approved Lists 1980).

the same as provided by lizuka

and Komagata (1963).

(to.ho'nis. N.L. gen. n. tohonis, of Toho University, where the type Yamada et al,, 2021 the same as provided by Yamada TUM18999

strain was first isolated and analyzed) etal. (2021)

Phytopseudomonas gen. nov.

Phytopseudomonas straminea comb. nov. Pseudomonas straminea ‘The description of this species is ATCC 33636; CCUG 12539;

CIP 106745; DSM 17727; IAM
1598; IFO 16665; JCM 2783;
NBRC 16665; NRIC 164.

Phytopseudomonas argentinensis comb. nov.

(ar.gen.ti.nensis. N.L. fem. adj. argentinensis, pertaining to the
Argentine, of the Argentine)

Phytopseudomonas daroniae comb. nov.

(da.ron.iae. N.L. gen. fem. n. daroniae, from Daron, the Celtic goddess
of oak).

Phytopseudomonas dryadis comb. nov.

(dry.adis. L. gen. fem. n. dryadis, of a Dryad, of an oak tree nymph)

Pseudomonas argentinensis

Peix et al., 2005.

Pseudomonas daroniae

Bueno-Gonzalez et al., 2019.

Pseudomonas dryadis

Bueno-Gonzalez et al., 2019.

The description of this species is
the same as provided by Peix et al.
(2005).

The description of this species is
the same as provided by Bueno-
Gonzalez et al. (2019).

‘The description of this species is
the same as provided by Bueno-

Gonzalez et al. (2019).

CECT 7010; CHO1; DSM
17259; LMG 22563.

FRB228; LMG 31088;
NCPPB 4672.

FRB230; LMG 31087;
NCPPB 4673.

Phytopseudomonas flavescens comb. nov.

(fla.vescens. L. part. adj. flavescens, becoming golden yellow)

Phylopseudomonas punonensis comb. nov.

Pseudomonas flavescens
Hildebrand et al., 1994.

Pseudomonas punonensis

The description of this species is
the same as provided by
Hildebrand et al. (1994).

The description of this species is

ATCC 51555; B62; CCUG
49622; CFBP 5586;

CIP 104204; DSM 12071;
JCM 21586; LMG 18387;
NBRC 103044; NCPPB 3063.

CECT 8089; DSM 27507;

(se.le.ni.iprae.cipi.tans. N.L. neut. n. selenium, selenium; L. part. adj.
praecipitans, precipitating; N.L. part. adj. seleniipraecipitans, selenium
precipitating, referring to the organism’ ability to remove the

selenium oxyanion selenite from aqueous solution)

Hunter and Manter, 2011.

and Manter (2011).

(pu.no.nen’sis. N.L. fem. adj. punonensis, of or belonging to Puno, a Ramos et al.,, 2013. the same as provided by Ramos LMG 26839; LMTO03.
region of Peru where the type strain was isolated) etal. (2013).

Phytopseud leniipraecipii Pseudomonas ‘The description of this species is CAS5; DSM 25106; LMG
comb. nov. seleniipraecipitans corrig. the same as provided by Hunter 25475; NRRL B-51283.

(Continued)
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TABLE 8 (Continued)

New name combination and etymology

Zestomonas gen nov.

Basonym

Description

10.3389/fmicb.2023.1273665

Type strain

Zestomonas thermotolerans comb. nov.

(type species)

(ther.mo.tole.rans. Gr. masc. adj. thermos, hot; N.L. part. adj.
thermotolerans, able to tolerate high temperatures)

Zestomonas carbonaria comb. nov.

(carbo.na'ri.a. L. fem. adj. carbonaria, of or relating to charcoal, the
source of isolation)

Zestomonas insulae comb. nov.

(in'su.lae. L. gen. fem. n. insulae, of an island, referring to the source of

isolation of the type strain)

Zestomonas cavernae comb. nov.

(ca.ver'nae. L. gen. n. cavernae, of a cave)

Genus Chryseomonas

Pseudomonas thermotolerans

Manaia and Moore, 2002.

Pseudomonas carbonaria

Kéampfer et al., 2021.

Pseudomonas insulae Lee

etal, 2022.

Pseudomonas cavernae Zhu
etal, 2021

The description of this species is
the same as provided by Manaia

and Moore (2002).

The description of this species is

the same as provided by Kampfer

etal. (2021).

‘The description of this species is
the same as provided by Lee et al.

(2022).

The description of this species is

the same as provided by Zhu et al.

(2021)

CM3; DSM 14292; LMG
21284,

CCM 9017; CIP 111764;
DSM 110367; Wesi-4.

JCM 34511; KCTC 82407;
UL073.

CGMCC 1.13586;
K2W31S-8; KCTC 82191

Chryseomonas oryzihabitans comb. nov.
(o.ry.zihabi.tans. L. fem. n. oryza, rice; L. pres. part. habitans,

inhabiting; N.L. part. adj. oryzihabitans, rice inhabiting)

Chryseomonas psychrotolerans comb. nov.
(psy.chro.tole.rans. Gr. masc. adj. psychros, cold; L. pres. part. tolerans,

tolerating; N.L. part. adj. psychrotolerans, cold-tolerating)

Pseudomonas oryzihabitans

Kodama et al., 1985.

Pseudomonas psychrotolerans

Hauser et al., 2004

The description of this species is
the same as provided by Kodama

etal. (1985).

The description of this species is
the same as provided by Hauser

etal. (2004).

A] 2197; ATCC 43272;
CCUG 12540; CIP 102996;
DSM 6835; TAM 1568; JCM
2952; KS0036; L-1; LMG
7040; NBRC 102199.

€36; CCUG 51516; DSM
15758; LMG 21977.

Chryseomonas rhizoryzae comb. nov.
(rhiz.o.ry’zae. Gr. fem. n. rhiza, root; L. fem. n. oryza, rice; N.L. gen. n.

rhizoryzae, of rice root).

Chryseomonas zeshuii comb. nov.

(ze.shu’i.i. N.L. gen. masc. n. zeshuii, of Ze-Shu, in honor of Ze-Shu

Pseudomonas rhizoryzae

Wang et al., 2020.

Pseudomonas zeshuii Feng
etal, 2012

The description of this species is

the same as provided by Wang

etal. (2020)

The description of this species is

the same as provided by Feng et al.

ACCC 61555; JCM 332015
RY24.

ACCC 5688; BY; BY-1; DSM
27927; KACC 15471.

Qian, a respected microbiologist, for his enormous contributions to (2012).
p ing the develop of soil biology in China)
Genus Serpens

Serpens flexibilis comb. nov.

(type species)

(fle.xi’bi.lis. L. fem. adj. flexibilis, flexible, pliant)

Serpens tuomuerensis comb. nov.

(tuo.muer.en’sis. N.L. fem. adj. tuomuerensis, pertaining to the region
of Tuomuer Peak of Tianshan Mountain, where the type strain was

isolated)

Pseudomonas flexibilis
Hespell, 1977; Shin et al.,
2015.

Pseudomonas tuomuerensis

Xin et al., 2009.

The description of this species is

the same as provided by Shin et al.

(2015).

‘Lhe description of this species is
the same as provided by Xin et al.
(2009).

ATCC 29606; LMG 29034.

78-123; CGMCC 1.1365;
DSM 25351; JCM 14085.

Genus Stutzerimonas
Stutzerimonas marianensis comb. nov.
(ma.ri.an.en’sis. N.L. fem. adj. marianensis, pertaining to the Mariana

Trench, the source of the type strain)

Pseudomonas marianensis

Yang et al., 2022

‘The description of this species is

the same as provided by Yang et al.

(2022)

DSM 112238; MCCC
1K05112; P S1

Description of the genus
Ectopseudomonas gen. nov.

Ectopseudomonas (Ec.to.pseu.do.mo’nas. Gr. prep. Ecto, outside;
N.L. fem. n. Pseudomonas, a bacterial genus; N.L. fem. n.

Ectopseudomonas, a genus outside of Pseudomonas).

Cells are Gram-stain negative, motile and rod shaped. Excepting
E. chengduensis, all other species from this genus are motile due to the

presence of a polar flagellum. Species have been isolated from diverse
sources including sea water, soil, hot spring, compost, and lake
sediments, etc. Chemoorganotrophic life cycle. Most species grow

aerobically; however, some are indicated to be facultatively anerobic.
Colonies are generally brownish yellow. Growth can occur from 4°-

42°C with optimum growth temperature between 30-37°C, with or

without NaCl, in the pH range from 3.0-10.5 (optimum between pH
6-8). Genome sizes for known species vary from 4.5 Mb to 5.6 Mb and
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the GC content ranges from 62.2 to 65.0%. Of the species from this
genus, E. mendocina can degrade toluene and it is indicated to cause
opportunistic nosocomial infections. Members of this genus form a
monophyletic clade in phylogenetic trees based on concatenated
sequences of several large datasets of core genome proteins.
Additionally, species from this genus also generally cluster together in
phylogenetic trees based on rpoD gene, or concatenated partial
sequences for the 16S rDNA, gyrB, rpoB, and rpoD genes. In addition
of their distinct branching in phylogenetic trees, members of this
genus can be reliably distinguished from other Pseudomonadaceae
species based on five CSIs (Table 2) which in most cases are exclusively
shared by the members of this genus. The new name combinations for
species that are part of this genus are provided in Table 7.
The type species of this genus is Ectopseudomonas oleovorans.

Description of the genus Geopseudomonas
gen. nov.

Geopseudomonas (Ge.o.pseu.do.monas. Gr. fem. n. gé, the Earth;
N.L. fem. n. Pseudomonas, a bacterial genus; N.L. fem. n.
Geopseudomonas, Pseudomonas like organisms isolated from soil).

Strictly aerobic to facultatively anaerobic, rod-shaped bacteria.
Motile due to the presence of one or more polar or peritrichous
flagella. Chemoorganotrophs, with cells exhibiting Gram-stain
negative staining response. Cells generally do not produce fluorescent
pigments. Members have been isolated from diverse sources including
paddy soil, electroactive biofilm, herbicide applied wheat field and oil
contaminated soil. Optimum growth occurs in the range of 30-37°C,
between pH 7-8, in medium containing 1-2% NaCl (w/v). Genome
lengths of the species vary from 3.2 to 4.7 Mb, and GC contents vary
from 66.4 to 68.3%. Members of this genus form a monophyletic clade
in phylogenetic tree based on concatenated sequences for several large
datasets of proteins. Species from this genus also cluster together in
phylogenetic trees based on rpoD gene, or concatenated partial
sequences for the 16S rDNA, gyrB, ropB, and rpoD genes. In addition,
the members of this genus can be reliably distinguished from all other
Pseudomonadaceae genera by the 15 CSIs described in Table 3, which
in most cases are exclusively shared by either all or most species from
this genus. The new name combinations for species which are part of
this genus are provided in Table 7.

The type species is Geopseudomonas sagittaria.

Description of the genus
Metapseudomonas gen. nov.

Metapseudomonas (Me.ta.pseu.do.mo’nas. Gr. adv. Meta, besides;
N.L. fem. n. Pseudomonas, a bacterial genus; N.L. fem. n.
Metapseudomonas, a genus beside Pseudomonas).

Species of this genus are Gram-negative, motile, aerobic and rod
shaped. Chemoorganotrophic growth, cells do not produce
fluorescent pigments. Members have been isolated from different
sources such as clinical samples, soil or oil of wood mills and biphenyl
contaminated soil. Optimum growth temperature is in the range of
30-37°C. Genome sizes for known species are in the range of 6.1 Mb
to 6.8 Mb and GC content varies from 64.2 to 66.80%. Species from
this genus form a strongly supported clade in phylogenomic trees
based on large datasets of proteins. In addition, most of the species
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from this genus also cluster together in phylogenetic trees based on
rpoD gene, or concatenated partial sequences for the 16S rDNA, gyrB,
ropB, and rpoD genes. Importantly, the species from this genus can
also be reliably distinguished from all other Pseudomonadaceae
genera by the shared presence of five CSIs listed in Table 4. The new
name combinations for the species of this genus are provided in
Table 8.
The type species of this genus is Metapseudomonas resinovorans.

Description of the genus
Phytopseudomonas gen. nov.

Phytopseudomonas (Phy.to.pseu.do.monas. Gr. neut. n. phyton,
plant; N.L. fem. n. Pseudomonas, a bacterial genus; N.L. fem. n.
Phytopseudomonas, Pseudomonas-like species isolated from plants).

Cells are Gram-stain negative, motile due to the presence of a
polar flagellum, aerobic, and rod shaped. Chemoorganotrophs. Most
species have been isolated from different plant sources such as
Quercus robur stem tissues, straw grass, rice paddy, walnut blight
cankers etc. All species produce a diffusible fluorescent pigment.
Optimum temperature for growth is between 25-30°C, with <4%
(w/v) or without NaCl in the pH range from 6-8. Genome sizes for
the species vary from 4.5 Mb to 5.9 Mb and the GC content ranges
from 61.5 to 65.0%. Members of this genus form a monophyletic
clade in phylogenetic trees based on concatenated sequences of
several large datasets of core genome proteins. Additionally, species
from this genus also generally cluster together in phylogenetic trees
based on rpoD gene, or concatenated partial sequences for the 16S
rDNA, gyrB, ropB, and rpoD genes. Additionally, members of this
genus can be reliably distinguished from other Pseudomonadaceae
genera based on the presence of 12 CSIs summarized in Table 3.
which in most cases are exclusively present in the species from this
genus. The new name combinations for species that are part of this
genus are provided in Table 8.

The type species of this genus is Phytopseudomonas straminea.

Description of the genus Zestomonas gen.
nov.

Zestomonas (Zes.to.monas. Gr. masc. Adj. zestos, hot, boiling;
L. fem. n. monas, a unit, monad; N.L. fem. n. Zestomonas, a monad
that can grow at high temperature).

Aerobic, motile rods exhibiting Gram-negative staining response.
Chemoorganotrophs. Species have been cultivated from different
sources such as cooking water, forest soil, charcoal, and cave sediment.
Temperature range for growth for species from this genus differs
considerably. While the optimum growth of the type species
Zestomonas thermotolerans occurs at 47°C (growth range 25-56°C),
other species from this genus grow optimally at 28-30°C. Genome
length ranges from 3.8 to 5.5 Mb and the GC content varies from 64.5
to 66.8%. Members of this genus form a monophyletic clade in
phylogenomic tree based on concatenated sequences for several large
datasets of proteins. In addition, members of this genus can be reliably
distinguished from other Pseudomonadaceae genera by their uniquely
sharing five CSIs listed in Table 4. New name combinations for the
species from this genus are provided in Table 8.

The type species is Zestomonas thermotolerans.
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Emended description of the genus
Azomonas Winogradsky, 1938 (Approved
lists 1980)

Azomonas (A.zo.mo.nas. N.L. pref. Azo-, pertaining to nitrogen;
L. fem. n. monas, a unit, monad; N.L. fem. n. Azomonas,
nitrogen monad).

Description of this genus is in large part based on that provided by
Kennedy and Rudnick (2015) in the Bergey’s Manual of Systematics of
Archaea and Bacteria. Cells are Gram-stain variable or sometimes Gram-
stain negative depending on the culture age, aerobic, ellipsoidal to rod
shaped. Species are motile with peritrichous or lophotrichous polar
flagella. Cells may occur singly, in pairs, or in clumps. All species fix
atmospheric nitrogen under aerobic conditions. Alternative nitrogenases
containing vanadium (nitrogenase-2) or iron (nitrogenase-3) may only
be synthesized in Mo-deficient media. Cultures can grow both aerobically
and microaerobically. Chemoorganotrophic. Sugars, alcohols, and
organic acids are used as carbon sources. Ammonium salts and
sometimes nitrate (A. insignis only) are used as nitrogen sources; amino
acids are not used. Water-soluble and fluorescent pigments are produced
by nearly all strains. Species are catalase positive. The optimum pH for
nitrogen fixation is close to neutrality, but certain strains can also fix
nitrogen at a pH of 4.6-4.8. Species isolated from water or soil. The G+C
content of DNA from known species varies from 52.0-58.6% and their
genome size ranges from 3.3 to 4.1 MB. Species belonging to this genus
form a distinct clade in phylogenomic trees based on concatenated
sequences of large number of proteins and in the tree based on 165 rRNA
gene sequences. In addition, members of this genus can be reliably
distinguished from Azotobacter as well as all other Pseudomonadaceae
genera based on their exclusive sharing five CSIs described in this work
(Table 5).

Type species is Azomonas agilis (Beijerinck, 1901) Winogradsky,
1938 (Approved Lists 1980).

Emended description of the genus
Azotobacter Beijerinck, 1901 (Approved
lists 1980)

Azotobacter (A.zo.to.bac.ter. N.L. neut. n. azotum, nitrogen;
N.L. masc. n. bacter, a rod; N.L. masc. n. Azotobacter, a nitrogen rod).

Description of this genus is in large part based on that provided
by Kennedy et al. (2015) in the 2015 Bergey’s Manual of Systematics
of Archaea and Bacteria. Cells range from straight rods with
rounded ends to more ellipsoidal or coccoid. Motile with
peritrichous flagella or nonmotile. Aerobic, having a strictly
respiratory type of metabolism with oxygen as the terminal electron
acceptor. Nitrogen is fixed under microaerobic conditions (2%
oxygen), under full aerobiosis, or after adaptation in hyperbaric
oxygen. N, fixation uses Mo-, V-, or Fe-containing nitrogenase
enzymes, depending on the environmental metal supply. Water-
soluble and water-insoluble pigments are produced by some strains.
Growth is heterotrophic; sugars, alcohols, and salts of organic acids
are used as carbon sources. Ammonium salts, nitrate, and urea are
used as sources of fixed nitrogen. The pH range for growth is from
4.8 to 8.5, with optimum pH for diazotrophic growth between
7.0-7.5. Most isolates are from soil, but a few are from water. The
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GC content of the DNA varies from 65.5-67.5%. Genome size
ranges from 4.9-5.4 Mb. Species belonging to this genus group
together in phylogenetic trees based on 16S rRNA gene sequences,
and in phylogenomic trees based on concatenated sequences of
large number of proteins. In addition, members of this genus can
be reliably distinguished from all other Pseudomonadaceae genera
by 10 uniquely shared CSIs listed in Table 5.

Type species is Azotobacter chroococcum Beijerinck, 1901
(Approved Lists 1980).

Emended description of the genus
Chryseomonas Holmes et al., 1986

Chryseomonas (Chry.se.o.mo’nas. Gr. masc. Adj. chryseos, golden;
L. fem. n. monas, a unit, monad; N.L. fem. n. Chryseomonas, a
yellow unit).

'The description of this genus is partially based on that given by
Holmes et al. (1986) for the type species (C. polytricha) of this genus.
The cells are rod-shaped, Gram-negative, aerobic, and exhibit
chemoorganotrophic growth. Except for C. duriflava (and its
synonym C. zeshuii), which do not exhibit motility, cells from the
other species are motile by either a single or several polar or trichous
flagella. Known species have been isolated from diverse sources
including rice seeds and paddy, desert soil, herbicide-contaminated
soil, grass rhizosphere, clinical specimens, and medical clinic for
small animals. C. oryzihabitans has been reported as pathogenic to
plants and animals. Some species (C. luteola) can reduce nitrate.
Growth can occur in the temperature range from 4-42°C with
optimum growth occurring between 30 to 37°C at pH 7.0 (pH range
6-8) in medium supplemented with 1-2% (w/v) NaCl. The cells are
catalase positive but oxidase negative. The GC content of species
varies from 53.6 to 66.2% and their genome lengths range from 4.3
to 5.4Mb. Species from this genus form a distinct clade in the
phylogenomic trees based on a large number of proteins. Additionally,
these species also cluster together in phylogenetic trees based on
rpoD gene, or concatenated partial sequences for the 16S rDNA, gyrB,
ropB, and rpoD genes. Apart from their grouping together in
phylogenetic trees, species from this genus can be reliably
distinguished from all other Pseudomonadaceae genera by their 11
CSIs listed in Table 4, which in most cases are exclusively present in
the species from this genus. New name combinations for four
Pseudomonas species, which are transferred to this genus, are
provided in Table 8,

Type species of this genus is Chryseomonas polytrichia (Holmes
etal., 1986).

Emended description of the genus Serpens
Hespell, 1977 (Approved lists 1980)

Description of this genus is modified from that given by Hespell
(1977). Gram-negative, aerobic, rod-shaped, non-spore forming,
bacterial cells. Cells from the type species, S. flexibilis, are very flexible,
and motile due to containing a flagellum, and exhibit serpentine-like
movement in agar gels. Metabolism is respiratory, and molecular
oxygen serves as the terminal electron acceptor. S. flexibilis mainly
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uses lactate as the energy and carbon source. Catalase and oxidase are
produced. Temperature range for optimal growth is from 28 to
37°C. The G +C content of DNA ranges from 61.0-65.8 mol% and
genome size varies from 3.8-3.9 Mb. Species from this genus form a
monophyletic clade in the phylogenetic tree based on large dataset of
proteins. The type species also forms a distinct lineage in phylogenetic
trees based on rpoD gene, or concatenated partial sequences for the
16S rDNA, gyrB, ropB, and rpoD genes. Additionally, species from this
genus can be reliably distinguished from other Pseudomonadaceae
genera by the presence of three exclusively shared CSIs (Table 4). New
name combinations for the two species which are part of this genus
are provided in Table 8.

Type species of this genus is Serpens flexibilis Hespell, 1977
(Approved lists).

Emended description of the genus
Stutzerimonas Lalucat et al., 2022

Stutzerimonas (Stut.ze.ri.mo’nas. L. fem. n. monas, a unit, monad;
N.L. fem. n. Stutzerimonas, monad of Stutzer, named in honor of
Albert Stutzer, who in 1895 described the bacterium today known).

The description of this genus, especially in terms of its
morphological, chemotaxonomic and growth characteristics, remains
the same as provided by Lalucat et al. (2022). In addition to the
genomic characteristics described by Lalucat et al. (2022), members
of this genus can be reliably distinguished from other
Pseudomonadaceae genera by seven novel CSIs identified in this study
(listed in Table 3), which in most cases are exclusively found in the
species from this genus. New name combination for P. marianensis
(Table 8) is based on its branching in the 16S rRNA gene tree (Yang
etal, 2022).

The type species is Stutzerimonas stutzeri (Lehmann and
Neumann 1896) Lalucat et al. 2022.
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CHAPTER 4

Phylogenomic and Comparative Genomic Studies Robustly Demarcate Two
Distinct Clades of Pseudomonas aeruginosa Strains: Proposal to Transfer the
Strains from an QOutlier Clade to a Novel Species Pseudomonas paraeruginosa sp.

nov.

This chapter presents a comprehensive phylogenomic analysis of different
Pseudomonas aeruginosa strains, revealing the existence of two clades (Classical and
Outlier). The distinctness of these clades is supported by identifying molecular markers
(CSIs and CSPs) that are highly specific for the strain of these two clades. Using CSIs
and CSPs, phylogenetic analysis, species demarcation criteria (16S similarity, ANI,
AAI, and dDDH), and additional phenotypic tests, this study concludes with a proposal
to reclassify the strains from the Outlier clade as a new species, Pseudomonas
paraeruginosa. My contributions to this chapter include identifying CSIs, conducting
genomic similarity analyses, drafting the manuscript, and finalizing all main and
supplemental figures and tables. This was a collaborative project with King’s College
London, UK, where the co-first author, Louise Duncan, conducted all biochemical
assays, including growth, morphology, motility, carbon utilization, enzyme production,
chemical tolerance, and antibiotic resistance, on the type strains or representative strains

from both clades/species.

Due to space limitations, supplementary materials for this study are not included

in this chapter but are available along with the entire manuscript at:

Rudra, B., et. al., (2022). Int. J. Syst. Evol. Microbiol., 72(11), 005542.
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Phylogenomic and comparative genomic studies robustly
demarcate two distinct clades of Pseudomonas aeruginosa
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Abstract

The strains of Pseudomonas aeruginosa exhibit considerable differences in their genotypic and pathogenic properties. To clarify
their evolutionary/taxonomic relationships, comprehensive phylogenomic and comparative genomic studies were conducted
on the genome sequences of 212 P. aeruginosa strains covering their genetic diversity. In a phylogenomic tree based on 118
conserved proteins, the analysed strains formed two distinct clades. One of these clades, Clade-1, encompassing >70% of the
strains including the type strain DSM 500717, represents the species P, aeruginosa sensu stricto. Clade-2, referred to in earlier
work as the outlier group, with NCTC 136287 as its type strain, constitutes a novel species level lineage. The average nucleotide
identity, average amino acid identity and digital DNA-DNA hybridization values between the strains from Clade-1 and Clade-2
are in the range of 93.4-93.7, 95.1-95.3 and 52-53%, respectively. The 16S rRNA gene of P aeruginosa DSM 500717 also shows
98.3% similarity to that of NCTC 13628". These values are lower than the suggested cut-off values for species distinction, indi-
cating that the Clade-2 strains (NCTC 13628) constitute a new species. We also report the identification of 12 conserved sig-
nature indels in different proteins and 24 conserved signature proteins that are exclusively found in either Clade-1 or Clade-2,
providing a reliable means for distinguishing these clades. Additionally, in contrast to swimming motility, twitching motility is
only present in Clade-1 strains. Based on earlier work, the strains from these two clades also differ in their pathogenic mecha-
nisms (presence/absence of Type Ill secretion system), production of biosurfactants, phenazines and siderophores, and several
other genomic characteristics. Based on the evidence from different studies, we propose that the Clade-2 strains constitute a
novel species for which the name Pseudomonas paraeruginosa is proposed. The type strain is NCTC 13628" (=PA7"=ATCC 90277).
The description of Pseudomonas aeruginosa is also emended to include information for different molecular markers specific
for this species.

DATA SUMMARY

All supporting data have been provided within the article or through supplementary data files, Figshare - 10.6084/
m9.figshare.20277480 [1]. The GenBank accession number for the 16S rRNA gene sequence of strain NCTC 13628" is ON359917
and the accession number for its genome sequence is GCA_900706985 [1].
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INTRODUCTION

Pseudomonas aeruginosa is a Gram-negative bacterium inhabiting a wide range of niches from plants to animals [2, 3]. This
bacterium, originally described in 1872 as ‘Bacterium aeruginosum’ by Schroter et al. [4], constitutes one of the earliest known
micro-organisms, which in 1894 was reclassified by Migula [5, 6] as Pseudomonas aeruginosa. P. aeruginosa is an opportunistic
human pathogen capable of causing a wide array of life-threatening acute and chronic diseases including nosocomial infections
(ventilator-associated pneumonia), cystic fibrosis and various sepsis syndromes [7, 8]. This bacterium is intrinsically resistant to
many drugs, which makes it difficult to treat with available antibiotics [9].

The strains of P. aeruginosa with variable genotypic and phenotypic properties are increasing rapidly worldwide [10, 11] and
whole genome sequences are now available for large numbers of these strains in public databases [12, 13]. In the NCBI Genome
sequence database [13], as of 20 March 2021, genome sequences of 6593 P. aeruginosa strains were available. Several studies based
on genomic and biochemical properties of P. aeruginosa strains indicate that these strains form multiple clades in phylogenetic
analysis [14-22]. Among these clades, one major clade which includes the type strain of P. aeruginosa DSM 50071 (represented
in several studies by the strain PAO1) is commonly referred to as the ‘classical’ clade [20, 21, 23, 24]. Besides this main clade,
another clade of P. aeruginosa observed in most studies includes strains NCTC 13628, ATCC 9027, PA7 and CR1, and it is often
referred to as the ‘outlier’ clade or group [20, 21, 25, 26]. Although the virulence pattern and pathogenicity of P. aeruginosa is
multifactorial [14, 27, 28], several studies indicate that the strains from these two clades differ in terms of how they exert their
cytolytic activity on human cells [14, 28].

The degree of pathogenicity of the majority of strains from the classical clade depends on the presence of type III secretion system
(T3SS), which enables the injection of four main effector proteins (ExoS, ExoT, ExoY and ExoU) and several virulence factors
(viz. proteases, exotoxin A, pili, flagella, quorum-sensing proteins) directly into the host cell cytoplasm [29-33]. In contrast, the
strains from the outlier clade not only lack the entire T3SS-encoding locus but also genes encoding type III secreted exoenzymes
[24, 28]. In addition, Basso et al. [16] have identified a novel virulence mechanism using exolysin toxins A and B (viz. ExIA and
ExIB), which is present in strains from the outlier clade that lack the T3SS. Although differences in the pathogenic properties and
some genomic characteristics between the studied strains from these two clades have been indicated in several studies [18-21],
due to difficulties in reliably distinguishing between the members of these two clades, currently there is no distinction made
between different strains of P. aeruginosa. Hence, it is of great interest to reliably establish the existence of two distinct lineages
of P. aeruginosa strains and develop robust means for clearly demarcating and distinguishing members of these two lineages
from each other.

We report here detailed phylogenomic and comparative genomic analyses on P. aeruginosa strains to clearly elucidate their
evolutionary relationship and our work on identifying novel molecular markers that can reliably demarcate/distinguish the
strains from its two main clades. Using genome sequences for 212 strains of P. aeruginosa covering their genetic diversity, we
have reconstructed a robust phylogenetic tree using concatenated genome sequences of 118 conserved proteins. In this tree, the
analysed P. aeruginosa strains formed two distinct clades referred to as Clade-1 and Clade-2. Clade-1 harbours the type strain DSM
50071", and the well-studied strain PAO1, and it corresponds to the classical clade, which represents P. aeruginosa sensu stricto.
Clade-2, which comprises the outlier clade, harbours the well-studied strains ATCC 9027, PA7 and NCTC 13628 [20, 21, 25, 34].
Comparisons of the average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization
(dDDH) values, as well as the 16S rRNA gene sequence similarity, for the reference strains from Clade-1 and Clade-2 show
that these values for the two clades are lower than the suggested cut-off values for species boundaries. Some differences are also
observed in the morphological characteristics of the reference strains from the two clades. Lastly, and most importantly, our
comparative analyses of protein sequences from the genomes of these strains have identified multiple highly specific molecular
signatures consisting of conserved signature indels (CSIs) in proteins and conserved signature proteins (CSPs), which are exclusive
characteristics of the members of either Clade-1 or Clade-2. These molecular markers provide a novel and reliable means for
the demarcation of the strains from these two clades and distinguishing them from each other and other bacteria. Based on the
compelling evidence presented here, we propose that the P. aeruginosa strains from Clade-2 should be recognized as a novel
species for which the name Pseudomonas paraeruginosa sp. nov. is proposed.

METHODS
Phylogenomic analysis of the P. aeruginosa strains

Genome sequences were available for >6500 P. aeruginosa strains in the NCBI database (www.ncbi.nlm.nih.gov/genome/; accessed
on 20 March 2021) [13]. Based on earlier studies on these genomes [15, 20, 22, 35], we downloaded genome sequences for 212
P. aeruginosa strains covering their phylogenetic/genetic diversity. The downloaded genomes included all 39 strains that the
Genome Taxonomy Database (GTDB) [35] server places into a separate group called ‘Pseudomonas aeruginosa_A; as well as >100
strains from the main P. aeruginosa clade, containing all other sequenced strains [35]. The ‘Pseudomonas aeruginosa_A’ strains
encompass all strains referred to as the outlier strains by Sood et al. [20]. In addition, Ozer et al. [22] based on their analysis of 739
P. aeruginosa strains from diverse sources have grouped these strains into three lineages A, B and C. The downloaded genomes
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include several genomes representatives of each of these three lineages [22]. Besides these, genomes of several Pseudomonas
species (P, citronellolis, P. delhiensis, P. knackmussii, P. humi, P. jinjuensis, P. multiresinivorans, P. nitroreducens and P. panipatensis)
belonging to the ‘Aeruginosa clade’ [36, 37] were included to serve as an outgroup. Initial phylogenetic analysis indicated that
about two-thirds of the downloaded/analysed strains were identical and hence they were removed from the dataset and further
analysis was carried out on 57 strains covering the genetic diversity of available strains. Based on these genome sequences, a
rooted phylogenetic tree was reconstructed based on concatenated sequences of 118 conserved proteins. The proteins used for tree
reconstruction represent the phyloeco set for the class Gammaproteobacteria [38]. The tree was reconstructed using an internally
developed pipeline described in our earlier work [36, 39, 40]. Briefly, using the profile hidden Markov models [41] of different
proteins from the phyloeco set, the members of these protein families were identified in the input genomes using HMMer 3.1
[42]. Based on these results, only those protein families where the proteins shared a minimum of 50% in sequence identity and
sequence length, and where the protein was found in at least 80% of the input genomes, were retained for phylogenetic analysis.
Multiple sequence alignments of these protein families were generated using the Clustal Omega algorithm [43], and TrimAl [44]
was used to remove poorly aligned regions before their concatenation into a single file. The final concatenated sequence alignment
used for phylogenetic analysis contained a total of 39224 aligned positions. A maximum-likelihood (ML) tree based on this was
reconstructed using the Whelan and Goldman model [45] of protein sequence evolution in FastTree 2 [46]. Optimization of the
robustness of the trees was completed by conducting SH tests [47] in RAXML 8 [48] and the tree was drawn using MEGA X [49].

Genome sequences for the type and some well-studied strains from the two clades were used to calculate the pairwise average
amino acid identity (AAI) and pairwise average nucleotide identity (ANI) between different strains. The AAI values were calcu-
lated using the AAI calculator available online (http://enve-omics.ce.gatech.edu/aai/) [50, 51], whereas OrthoANT values were
determined using the EzBioCloud.net webserver [52, 53]. The digital DNA-DNA hybridization values (IDDH) values for the
same genomes were determined using the Genome to Genome Distance Calculator, available at https://ggdc.dsmz.de/home.
php [54]. The 16S rRNA gene sequences for the type and some other strains of P. aeruginosa strains were retrieved from siLva
ribosomal RNA database and the NCBI database. Pairwise similarity between the 16S rRNA gene sequences was determined
using the ‘Align two sequences option’ from the BLASTN program [55].

Identification of CSls specific for P. aeruginosa clades

Identification of CSIs was carried out by similar procedures as described in our earlier work [36, 56, 57]. A local database was
created for the downloaded P. aeruginosa genomes and genomes for >500 other bacteria that included various Pseudomonadaceae
species. Local BLASTp searches [55] were carried out on this database using different protein sequences from the genomes of P
aeruginosa DSM 50071. Based on these BLASTp searches, sequences for 6-8 strains each from Clade-1 and Clade-2, and 8-10
other species, were retrieved for each protein [56]. Multiple sequence alignments of different proteins were created using ClustalX
[58] and these alignments were visually inspected for inserts or deletions of fixed lengths which were flanked on both sides by
minimally 4-5 conserved amino acids (aa) in the neighbouring 40-50 aa, and which were specific for either the Clade-1 or
Clade-2 P. aeruginosa strains. Query sequences encompassing the potential indels and flanking regions (60-100 aa long) were
collected and more detailed BLASTP searches were performed on them against the entire local database to determine the group
specificities of the observed indels. Signature files for all CSIs of interest were formatted using the s1G_CREATE and SIG_STYLE
programs from the GLEANS software package described in our earlier workne [57, 59].

Identification of CSPs specific for the two clades

Identification of CSPs was carried out as described in earlier work [60, 61]. To identify CSPs specific for either Clade-1 or Clade-2
strains, local BLASTp searches were carried out on different proteins from the genomes of P. aeruginosa NCTC 13628" and DSM
50071". Results of BLASTP searches were examined to identify those proteins where all significant hits (i.e. E value <10-3 was used
as the cutoff) were limited to either the Clade-1 or Clade-2 P. aeruginosa strains. Additional BLASTp searches on the sequences of
these proteins were carried out against the NCBI nr database to confirm that the identified proteins are specific for the indicated
clades.

Bacterial strains and morphological, biochemical and physiological tests

P. aeruginosa strains PAO1 and DSM 50071, which are representative strains for Clade-1, were purchased from the German
Culture Collection of Microorganisms (DSMZ). Strains NCTC 13628" and NCTC 12924, representatives for Clade-2, were
purchased from the National Collection of Type Cultures, Public Health England. Colony morphotype was assessed on Luria—
Bertani (LB) agar and compared with the morphology descriptions by Phillips [62]. Pyocyanin and pyoverdine pigment produc-
tion was visually observed on Kings A and B agar (Sigma-Aldrich), respectively. Fluorescent pyoverdine production was also
confirmed under UV light. Swimming assays performed on tryptone swim plates (1% tryptone (w/v), 0.5% NaCl (w/v), 0.3%
agarose (w/v)) dried overnight as described by Rashid and Kornberg [63]. Twitching assays were performed on LB agar with
1% granulated agar (w/v). Plates were incubated at 37 °C for 24h and the halo diameter was measured. Twitching diameter was
confirmed by removing the agar and staining the halo with 1% crystal violet on the surface of the plate.
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Elastase activity was assessed on cells grown in LB broth by the elastase Congo-red assay described by Pearson et al. [64]. Gelatin
hydrolysis assay was carried out as described by Cruz and Torres [65]. Casein hydrolytic activity was measured by plating
100 pl of 1x10°c.f.u. ml™ of cells on LB agar plated with 1% (v/v) skimmed milk and measuring the zones of clearance after 24h
incubation at 37 °C. Biolog GEN III MicroPlates were used to assess single carbon source use and chemical tolerance profiles.
Susceptibilities of the strains to antibiotics were tested by using the Kirby-Bauer disc diffusion assay by measuring the zone of
inhibition in presence of antibiotics.

RESULTS
Phylogenetic analysis and comparative studies on P. aeruginosa strains

P. aeruginosa strains in earlier phylogenetic studies have been reported to form several clades [20, 22, 35, 66]. With the aim of
reliably delineating the branching pattern of P. aeruginosa strains, a phylogenomic tree was reconstructed for 212 P. aeruginosa
strains covering the genetic diversity of available strains. Of these strains >150 corresponded to the two clades referred to as
Pseudomonas aeruginosa and ‘Pseudomonas aeruginosa_A’ clades in the GTDB database [35], and >50 strains covering the four
lineages A, B and C1 and C2, described by Ozer et al. based on their analysis of 739 P. aeruginosa strains [22]. A maximum-
likelihood phylogenetic tree for these strains was initially reconstructed based on concatenated sequences of 118 conserved
proteins comprising the phyloeco set for the class Gammaproteobacteria [38]. The resulting tree, which is presented in Fig. S1
(available in the online version of this article) [1], shows the grouping of strains into two main clades. In this tree, the strains from
the P, aeruginosa main clade and the ‘P. aeruginosa_A clade from the GTDB are marked by (1) and (2), whereas the numbers (A),
(B) and (C1) and (C2) after the strain numbers denote the strains from these specific lineages from the work of Ozer et al. [22].
However, the initial analysis of genome sequences in our dataset indicated that the protein sequences for many of these strains
were identical, and hence these genomes were omitted from further analysis. A phylogenetic tree based on a smaller subset of 57
P. aeruginosa strains covering their genetic diversity is presented in Fig. 1. The analysed P. aeruginosa strains in this tree formed
two distinct clades. The first clade containing >70% of the analysed strains including strain DSM 500717 is labelled as Clade-1 (or
classical clade). This clade encompasses all strains identified as P. aeruginosa (sensu stricto) in the GTDB taxonomy [35], as well
as all examined strains from lineages (A), (B) and (C1) of Ozer et al. [22]. On the other hand, Clade-2 consists solely of different
P, aeruginosa strains that are assigned to the group ‘P. aeruginosa_A in the GTDB taxonomy [35], or in the lineage C2 by Ozer et
al. [22]. Clade-2 includes the well-studied strains ATCC 9027, PA7 and NCTC 13628" [20, 21, 25, 34]. We have designated strain
NCTC 13628" (=ATCC 9027=PA7) as the type strain of this clade. Phylogenetic distinctness of the strains from these two clades
is also supported by earlier studies [16, 17, 20, 21, 28, 67]. We also reconstructed a phylogenetic tree based on 16S rRNA gene
sequences for selected P. aeruginosa strains. However, in contrast to the phylogenetic trees based on concatenated sequences for
core proteins, the strains from these two clades are not resolved in the tree based on 16S rRNA gene sequences (Fig. S2).

In view of the grouping of P. aeruginosa strains into two distinct clades, further studies were carried out on genome sequences
of selected strains from these clades to determine similarities/differences based on whole genome sequence-based criteria.
The ANI, AAI and dDDH values provide three genome-sequence based criteria with established threshold values for bacteria
species delineation [52, 54, 68-70]. The results for pairwise ANI, AAT and dDDH similarities between the reference and some
other well-studied strains from Clade-1 and Clade-2 are summarized in Table 1. As can be seen from this table, the intragroup
OrthoANT and AAI values for the strains from these two clades are >98.8%, while the intergroup OrthoANI and AAI values
for these two clades are in the range of 93.4-93.7% and 95.0-95.3%, respectively. Previously, Sood et al. [20] reported an ANI
matrix for multiple strains from Clade-1 (classical strains) and Clade-2 (outlier clade). Their results also showed that the ANI
values within the clades were in the range of 98-99%, whereas interclade ANI values were around 94% [20]. In addition to the
information presented in Table 1, we have also constructed a pairwise AAI comparison matrix for several other strains from
Clade-1 and -2. Based on the results presented in Table 1, Fig. S3 and by Sood et al. [20], the ANT and AAI values between the
Clade -1 and Clade -2 strains are consistently lower than the threshold values of <95.0% (ANI) and <95.5% (AAI) for species
boundaries [52, 68, 69]. Similarly, while the intragroup dDDH similarity between the strains from these two clades is very high
(>89.7%), the interclade dDDH values for all studied strains were in the range of 52-53%, which is again much lower than the
threshold value of 70% for species demarcation [54]. We have also determined sequence similarity between the 16S rRNA gene
sequences from the reference strains and some other strains (Table 1). As can be seen from Table 1, the 16S rRNA gene from the
type strain of P. aeruginosa DSM 50071" exhibited <98.3% sequence similarity to the reference strain NCTC 13628" of Clade-2.
However, the sequence similarity of another strain PAO1 from Clade-1 to the strains from Clade-2 was high, indicating that the
16S rRNA similarity does not provide a reliable means for distinguishing the strains from these clades, which is in accordance
with the tree reconstructed based on 16S rRNA gene sequences (Fig. S2).

We have also examined reference strains from Clade-1 and Clade-2 for differences in morphological, biochemical and physi-
ological characteristics (Table 2). The strains from the two clades are very similar in terms of colony morphology, pigmentation
and enzyme production. They also do not show any consistent differences in their ability to utilize different carbon sources or
other properties such as chemical tolerance or antibiotic resistance profile (Table S1). However, one important difference seen
between the strains from these two clades is in their motility pattern. While members of both clades exhibited swimming motility,
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Fig. 1. A bootstrapped maximum likelihood tree for 57 genome-sequenced P, aeruginosa strains covering the genetic diversity of available strains,
based on concatenated sequences for 118 conserved proteins. A more detailed tree for 212 P. aeruginosa strains is presented in Fig. S1. The two main
clades of P, aeruginosa strains observed in this tree are marked. Clade-1, which contains the type strain DSM 500717, corresponds to P. aeruginosa
sensu stricto. Clade-2 labelled as the P, aeruginosa outlier group, represents a new species level lineage. These two clades have also been referred to
in earlier work as the ‘classical’ and ‘outlier’ groups.
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Table 1. Comparison of P aeruginosa strains from Clade-1 and Clade-2 based on average nucleotide identity (ANI), average amino acid identity (AAI),
digital DNA-DNA hybridization (dDDH) and 16S rRNA gene sequence similarity

Clade-1 Clade-2
(P. aeruginosa sensu stricto) (P. aeruginosa outlier group)
Properties Strain no. DSM 50071T PAO1 Strain B PA7 CR1 NCTC 13628T
DSM 500717 100
Clade-1 PAO1 99.40 100
OrthoANI values (%)* Strain B 98.82 98.81 100
PA7 93.70 93.60 93.62 100
Clade-2 CR1 93.49 93.44 93.41 99.10 100
NCTC 13628" 93.50 93.40 93.49 98.98 99.48 100
DSM 500717 100
Clade-1 PAO1 99.20 100
AAT values (%)* Strain B 99.14 99.16 100
PA7 95.20 95.30 95.10 100
Clade-2 CR1 95.13 95.09 95.08 99.36 100
NCTC 13628" 95.10 95.20 95.03 98.80 99.47 100
DSM 500717 100
Clade-1 PAO1 94.90 100
ADDH values (%)* Strain B 89.90 89.70 100
PA7 53.10 52.60 52.90 100
Clade-2 CR1 52.40 52.00 52.00 92.20 100%
NCTC 13628" 52.50 52.00 52.30 91.40 95.90 100
DSM 500717 100
Clade-1 PAO1 98.50 100
168 rRNA gene sequence Strain B 99.47 98.14 100
similarity (%)% PA7 98.20 9973 98.19 100
Clade-2 CR1 98.31 99.79 97.87 99.99 100
NCTC 13628" 98.17 99.66 97.82 99.80 99.93 100

*The accession numbers of genome sequence used for these comparisons are as follows: DSM 500717, GCA_001045685; PAO1, GCA_000006765: strain B, GCA_900148065; PA7,
GCA_000017205; CR1, GCA_003025345.2; NCTC 136287, GCA_900706985,

1The accession numbers of 16S rRNA gene sequences used for these studies are: DSM 500717, NR_026078; PAO1, DQ777865; strain B, MW190086; PA7, CP000744; CR1, KC522362; NCTC
13628, ON359917

twitching motility, which plays an important role in bacterial pathogenesis [71], was only seen for the Clade-1 strains and not
observed in the strains from Clade-2.

Identification of molecular markers distinguishing the two P. aeruginosa clades

To further investigate the differences between the strains from Clade-1 and Clade-2, we performed detailed comparative studies
on protein sequences from their genomes to identify reliable molecular markers that are specific for the members of these two
clades. Based on genome sequences, one important class of molecular markers which have proven very useful for evolutionary
and taxonomic studies consists of conserved signature indels (inserts or deletions) referred to as CSIs in gene/protein sequences,
which are specifically shared by the members of a given clade [57, 59, 72, 73]. Due to the exclusive presence of these molecular
signatures in the members of a given clade, these synapomorphic characteristics provide reliable means for the demarcation of
prokaryotic taxa in molecular terms [39, 74]. We have recently used CSIs to reclassify >20 Pseudomonas species into two novel
genera (viz. Halopseudomonas and Atopomonas) and some other genera [36]. Another important category of molecular marker
consists of CSPs, which are uniquely found in a specific group of organisms [61, 75-77]. Hence, detailed studies were conducted
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Table 2. Selected morphological and biochemical properties for representative Clade-1 and Clade-2 strains

Strains: 1, P. aeruginosa PAO1; 2, P. aeruginosa DSM 500717; 3, P. aeruginosa NCTC 13628T; 4, P. aeruginosa NCTC 12924. +, Positive; -, negative; ND, no
data.

Clade-1 Clade-2
(P. aeruginosa sensu stricto) (P. aeruginosa outlier group)

Characteristics 1 2 3 4
Isolation source ‘Wound Hospital in Japan Outer ear infection ND
Motility:

Swimming + + + +

Twitching + + - -
Colony morphology Type 1 typical Type 1 typical Type 1 typical Type 1 typical
Pigments:

Pyoverdine + + + +

Pyocyanin + + & +
Protease and enzyme production:

Elastase + + + +

Gelatinase ¥ ¥ ¥ +

Casein hydrolysis + + + +

Arginine dihydrolase + + + +
Carbon utilization sources:

Trehalose - + - —

Turanose = + - -

Lactose = + = =

D-Arabitol + + + 4

p-Glucose-6-PO4 - + + =]

Gelatin + + + -

Glycyl-L-proline + + + *

Pectin = + = -

Mucic acid - + + -

p-Lactic acid methyl ester - + - -

p-Malic acid - " + =
Chemical tolerance:

Sodium bromate + + + +

8% NaCl + + E -

Information for antibiotic resistance profiles of the strains is presented in Table S1.

on genome sequences of P. aeruginosa strains to identify CSIs and CSPs that are distinctive characteristics of their two clades.
These studies have identified multiple CSIs that are exclusively shared by either the members of Clade-1 or Clade-2.

In Fig. 2, we show partial sequence information for two CSIs that are specifically shared by different strains from Clade-1. In the
example shown in Fig. 2a two amino acid (aa) insertion (highlighted in pink) is present in a conserved region of the fimbrial
biogenesis outer membrane usher protein that is commonly shared by all strains from clade one but is not found in strains from
Clade-2 and other Pseudomonas species. Likewise, in Fig. 2b in the partial sequence alignment of the Type II secretion system F
family protein, a one aa deletion is present which is specific for the Clade-1 strains. In Fig. 2A and B (and also in Fig. 3), sequence
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Fig. 2. Partial sequence alignments of (a) fimbrial biogenesis outer membrane usher protein containing a two aa insertion (boxed), and (b) Type Il
secretion system F family protein containing a one aa deletion (highlighted), which are commonly and exclusively shared by different strains which are
a part of the P. aeruginosa sensu stricto clade (Clade-1) but not found in any of the strains from Clade-2 or the outgroup species. More detailed sequence
information for these two CSls and five other CSls specific for Clade-1 is provided in Figs S4-S10 and some of their characteristics are summarized
in Table 3. The dashes (-) in this and other sequence alignments indicate identity with the amino acids on the top line. Accession numbers for different
sequences are indicated in the second column and the numbers on the top of the sequence indicate the position of this sequence fragment within the
indicated protein.
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Fig. 3. Partial sequence alignments of (a) dimethylglycine demethylation protein (DgcB) containing a five aa insertion (boxed), and (b) chaperone protein
FocC containing a one aa deletion (highlighted), which are commonly and exclusively shared by different P aeruginosa strains from Clade-2, but not
found in strains from Clade-1 or outgroup species. More detailed sequence information for these two CSls and three other CSls specific for the Clade-2
strains is provided in Figs S11-515 and some of their characteristics are summarized in Table 3. The dashes (-) in these sequence alignments indicate
identity with the amino acids on the top line.
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Table 3. Conserved signature indels (CSls) specific for P aeruginosa strains from Clade-1 and Clade-2

Protein name Accession no: Figure no. Indel size Indel location Specificity
(aa)
Fimbrial biogenesis outer membrane usher protein WP_003123214.1 Tig. 2a; 2aalns 239-271 Clade-1
Fig. S4 (P aeruginosa sensu stricto)

Type IT secretion system F family protein WP_023132666.1 Fig. 2b;Fig. §5 12a Del 30-74
Major facilitator superfamily (MFS) transporter protein WP_003106206.1 Fig. $6 1aalns 155-212
LysR family transcriptional regulator WP_048520948.1 Fig. §7 1aaTns 251-293
Fe(3+)-pyochelin receptor FptA protein WP_003118950.1 Fig. 8 Laalns 493-518
MEFS family transporter WP_017002609 Fig. $9 1aa Del 216-257
Putative oxidoreductase E0Q77226 Fig. 10 2aa Del 109-149
Dimethylglycine demethylation protein DgcB VTL98846.1 Fig. 3a; 5aalns 191-230 Clade-2

Fig. S11 (P aeruginosa outlier group)
Molecular chaperon WP_034079403.1 Fig. 3b; 12a Del 127-160

Fig. $12
Adenylate cyclase WP_053817914.1 Fig. S13 7aa Del 163-191
TolC family protein WP_053816642.1 Fig. $14 12a Del 251-283
Type one fimbrial protein WP_079384945 .1 Fig. S15 Laalns 96-144

information is presented for only a limited number of representative P. aeruginosa strains. However, more detailed information
for the presence/absence of these CSIs in different P. aeruginosa that are a part of our study is presented in Figs S4 and S5. As
both these CSIs are absent in all Clade-2 strains and other Pseudomonas species, they represent genetic changes which were likely
introduced in a common ancestor of the Clade-1 strains. In addition to these two CSIs, our analyses have identified five CSIs in
other proteins, which are also exclusively shared by the strains from Clade-1. Detailed sequence information for these five CSIs
is presented in Figs S6-S10 and some of their characteristics are summarized in Table 3. Besides the CSIs that are specific for the
Clade-1 strains, our analyses have also identified five CSIs that are only found in the strains from Clade-2. Fig. 3 shows partial
sequence information for two CSIs those are specific for the Clade-2 strains. In the first of these CSIs (Fig. 3a), a five aa insertion
is present in the dimethylglycine demethylation protein (DgcB), which is specifically present in all strains from Clade-2, but not
found in any of the strains from Clade-1. Similarly, in the CSI shown in Fig. 3b one aa deletion is present in the chaperon protein
FocC, which is exclusively shared by the Clade-2 strains. More detailed sequence information for these two CSIs and three CSIs
in other proteins, which are also specific for the Clade-2 strains, is presented in Figs S11-S15 and some of their characteristics are
summarized in Table 3. Because of the clade specificity and highly specific nature of the genetic changes that are responsible for
these molecular markers, the identified CSIs provide novel and reliable means for the demarcation of these clades in molecular
terms and distinguishing them from each and all other bacteria.

In addition to these CSIs, our comparative genomic studies have also identified multiple CSPs that are exclusively found in the
members of these two clades. In contrast to the CSIs, where the homologues of the proteins containing the identified CSIs are
present in different strains, the homologues of the identified CSPs are only found in a given clade/group of organisms [61, 75-77].
Our analyses have identified nine CSPs for which all significant BLASTP hits are limited to the Clade-1 strains, and 15 CSPs for
whom homologues showing significantly sequence similarity are only found in Clade-2 strains. In Table 4, we have summarized
information regarding the accession numbers and some other characteristics of the identified CSPs for the Clade-1 and Clade-2
strains. Most of the identified CSPs represent proteins whose functions are not known (annotated as hypothetical proteins).
However, two of the CSPs specific for Clade-1 are related to type III secretion system (viz. Acrl family type IIT secretion system
gatekeeper subunit Pcrl and Type III secretion system needle filament protein PscF), which is only found in Clade-1 strains.
The identified CSIs and CSPs, due to their specificity and exclusive presence in P. aeruginosa strains from either Clade-1 or
Clade-2, again provide strong evidence for the genetic distinctness of these two clades and provide novel and reliable means for
distinguishing/identifying them from each other.

DISCUSSION

Results presented here provide compelling evidence that the existing P. aeruginosa strains form two phylogenetic distinct clades
differing from each other in numerous regards. In addition to their distinct branching in a phylogenomic tree based on core
genomic proteins, the grouping of these strains into clades similar to those observed here, has been demonstrated in several
earlier studies [16, 17, 20, 21, 28, 35, 67]. Of the two observed clades, Clade-1, which encompasses >99% of the sequenced strains
including the type strain DSM 500717 (based on GTDB grouping/classification) [35], corresponds to the species P. aeruginosa
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Table 4. Some characteristics of the conserved signature proteins (CSPs) that are uniquely found in the Clade-1 and Clade-2 strains*

Protein name Accession no. Length (aa) Specificity

Hypothetical protein WP_003091936.1 39 Clade-1
(P. aeruginosa sensu stricto)

Hypothetical protein WP_003093484.1 99

Hypothetical protein WP_003083536.1 131

Hypothetical protein ‘WP_003082890.1 120

Acrl family type III secretion system WP_003087693.1 92

gatekeeper subunit Pcrl

Type I secretion system needle filament ‘WP_003087729.1 85

protein PscF

Alpha/beta hydrolase ‘WP_003082501.1 211

TauD/TfdA family dioxygenase ‘WP_003082503.1 319

phytanoyl-CoA dioxygenase family protein ‘WP_003082507.1 292

Hypothetical protein WP_033996971.1 542 Clade-2
(P. aeruginosa outlier group)

Hypothetical protein WP_034080176.1 105

DUF3277 family protein ‘WP_034080180.1 143

Hypothetical protein ‘WP_034080540.1 370

Hypothetical protein WP_034080541.1 269

NUDIX hydrolase ‘WP_034080754.1 191

Hypothetical protein WP_034080756.1 222

Hypothetical protein WP_034081197.1 107

Hypothetical protein WP_034081220.1 217

Hypothetical protein WP_043099652.1 251

Hypothetical protein WP_043101353.1 92

Hypothetical protein WP_043103086.1 305

Esterase-like activity of phytase family WP_052151135.1 318

protein

Glycosyltransferase family 39 protein ‘WP_053814840.1 559

Fatty acid desaturase family protein WP_053816651.1 339

*For the proteins listed in this table, homologues showing significant sequence similarity are only limited to the members of the indicated clades.

sensu stricto, whereas the strains from Clade-2, which is referred to in earlier work as the outlier group [20, 21, 25, 26], or as
‘Pseudomonas aeruginosa_A’ in the GTDB classification [35], constitutes a novel species level lineage. Results presented here for
OrthoANI, AAT and dDDH similarity values, which are established genome sequence-based criteria for species demarcation, show
that these values between the members of Clade-1 and Clade-2 are lower than the accepted cut-off values for species boundaries,
thus indicating that the strains from Clade-2 constitute a novel species. Although the 16S rRNA sequence similarity values vary
for different strains from these two clades and often fails to distinguish among closely related species [37, 78, 79], the type strain
DSM 500717 of P. aeruginosa also shows <98.3% sequence similarity to the reference (type strain) NCTC 13628" from Clade-2,
supporting the inference that the Clade-2 constitutes a novel species.

In addition to the distinctness of these two clades based on phylogenetic and whole-genome sequence-based criteria, the present
work has identified multiple molecular markers consisting of CSIs and CSPs that are uniquely shared characteristics of either the
members of Clade-1 or Clade-2. These molecular markers provide strong independent evidence that the species/strains from
these two clades are distinct from each other. The identified CSIs and CSPs, which are specific for these two clades, provide very
useful and reliable means for the circumscription of these two clades in molecular terms and for distinguishing the members of
this clade from each other and all other bacteria based upon the presence or absence of the identified molecular characteristics.
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Based on earlier work, these molecular markers possess high degree of predictive ability to be found in other members of these
clades [36, 80, 81]. Thus, based on BLASTp searches with the sequences of these molecular markers, the strains belonging to
Clade-1 and Clade-2 can be readily identified and distinguished from each other. Furthermore, based on earlier work on CSIs
and CSPs, these molecular markers are predicted to play functionally important roles in the organisms for which these are specific
[82, 83]. It is of interest in this regard that some of the identified CSIs and CSPs are present in proteins that are related to the Type
I1I secretion system (Tables 3 and 4). Thus, functional studies on the identified CSIs and CSPs could provide useful information
regarding novel genetic, biochemical or pathogenic properties of these two groups of species/strains, of which the P. aeruginosa
sensu stricto (Clade-1) represents an important pathogen [7, 8, 84].

Besides the differences in phylogenetic, genomic and molecular characteristics differentiating the Clade-1 or Clade-2 strains, the
strains from these two clades also differ from each other in their pathogenic mechanisms [15, 20, 25], in their ability to produce
biosurfactants, phenazines and siderophores (mainly limited to strains from clade 2) [23, 34], presence or absence of gene clusters
required for survival in stress conditions [20], and the differences in major protein-protein interaction hubs between strains
from these two groups [18, 20, 26]. Additionally, the results presented here show that in contrast to the swimming motility,
which is found in strains from both Clade-1 and Clade-2, the twitching motility is only present in Clade-1 strains. Results from
different lines of evidence discussed and presented here, make a strong case that the strains from Clade-2, which is distinct from
the P. aeruginosa sensu stricto clade (Clade-1), constitute a novel species for which we are proposing the name Pseudomonas
paraeruginosa with the strain NCTC 136287, as its type strain.

DESCRIPTION OF PSEUDOMONAS PARAERUGINOSA SP. NOV.

Pseudomonas paraeruginosa (par.ae.ru.gi.nosa. Gr. pref. para, beside, alongside, near, like; L. fem. adj. aeruginosa, copper-rust
coloured, specific epithet of a Pseudomonas species. N.L. fem. adj. paraeruginosa, next to or near aeruginosa).

Gram-reaction-negative, aerobic, rod-shaped bacteria. Exhibit swimming motility but lack twitching motility. Growth occurs in
medium containing 0-6.5% (w/v) NaCl at 15-42°C, whereas no growth occurs at 4 or 45°C. Produce the pigments pyocyanin
and pyoverdine and are positive in casein hydrolysis, arginine dihydrolase, elastase and gelatinase tests. Strains differ in their
ability but can utilize p-glucose-6-PO,, gelatin, p-arabitol, glycyl-L-proline, mucic acid and p-malic acid as a carbon source.
Strains lack type III secretion system (T3SS) but contain exolysin (exIBA). Generally, less virulent than the P. aeruginosa strains.
Currently sensitive to tobramycin, piperacillin and meropenem, but show intermediate resistance to several other antibiotics
(ceftazidime, aztreonam, ciprofloxacin, levofloxacin, ticarcillin and cefepime). Several strains produce siderophores, phenazines,
biofilm-inhibiting pyocyanin and a biosurfactant (mono-rhamnolipids). Contain fused phzA1 with phzBI genes. The strains from
this species form a monophyletic clade distinct from P. aeruginosa strains in phylogenetic trees based on concatenated sequences
for large datasets of conserved proteins. Can also be differentiated from P. aeruginosa strains based on ANI, AAI and dDDH
analyses. The strains of this species can be reliably distinguished from P. aeruginosa strains and other Pseudomonas species based
upon the presence of five CSIs (Table 3), which are uniquely shared by the strains from this species. The proteins containing these
CSIs are: dimethylglycine demethylation protein DgcB, Chaperone protein FocC, Adenylate cyclase, TolC family protein and
Type 1 fimbrial protein. Additionally, homologues of 15 CSPs described in Table 4 are also uniquely found in the strains of this
species and provide reliable means for their identification.

The accession numbers for the 16S rRNA gene sequence and genome sequence for the type strain NCTC 13628 of Pseudomonas
paraeruginosa are ON359917 and GCA_900706985, respectively.

The type strain is NCTC 13628" (=PA7"=ATCC 9027").

EMENDED DESCRIPTION OF THE SPECIES PSEUDOMONAS AERUGINOSA (SCHROETER 1872)
MIGULA 1900 (APPROVED LISTS 1980)

The description of this species is modified from that given by Doudoroff andPalleroni in Bergey’s Manual of Determinative Bacteri-
ology [85], and also by Palleroni[86], and Diggle and Whiteley [87]]. The cells are rod-shaped, about 1-5um long and 0.5-1.0 um
wide. Gram-stain-negative. Generally, strictly aerobic, chemoorganotrophs using respiratory metabolism with molecular oxygen
as the electron acceptor. Exhibits both swimming and twitching mobility. Growth occurs in medium containing 0-6.5% (w/v)
NaCl at 15-42°C, whereas no growth occurs at 4 or 45°C. Strains of this species generally possess a type III secretion system
(T3SS), which enables the injection of four main P. aeruginosa eftectors (ExoS, ExoT, ExoY and ExoU) directly into the host
cell cytoplasm. Opportunistic pathogen, associated with diseases such as cystic fibrosis, ventilator-associated pneumonia and
various sepsis syndromes. The type strain of this species can utilize different carbon sources including D-trehalose, D-turanose,
D-lactose, p-glucose-6-PO,, pectin, gelatin, p-arabitol, glycyl-L-Proline, mucic acid and p-malic acid. Shows positive results for
casein hydrolysis, arginine dihydrolase, elastase and gelatinase assays. Strains are sensitive to tobramycin and meropenem but
show intrinsic resistance to many antibiotics through multiple mechanisms, viz., reduced membrane permeability, drug efflux
systems and production of antibiotic-inactivating enzymes. Strains of this species form a monophyletic clade in phylogenetic
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trees based on concatenated sequences for several large datasets of proteins. P. aeruginosa strains can also be differentiated from
P, paraeruginosa based on ANI, AAI and dDDH analyses. In addition, these strains can be reliably distinguished from all other
strains/species by the presence of seven CSIs described in Table 3, found in the following proteins: Fimbrial biogenesis outer
membrane usher protein, Type II secretion system F family protein, major facilitator superfamily (MFS) transporter protein, LysR
family transcriptional regulator, Fe(3+)-pyochelin receptor FptA protein, another CSI in an MFS family transporter protein, and
a CSIin putative oxidoreductase. Additionally, homologs of nine CSPs described in Table 4 are also uniquely found in the strains
of species and provide reliable means for their identification.

The accession numbers for the 16S rRNA gene sequence and genome sequence for the type strain DSM 500717 of Pseudomonas
aeruginosa are NR_026078 and GCA_001045685, respectively.

The type strain is DSM 50071" (=ATCC 10145"=ATCC 10145 UT=CCEB 481"=CCUG 28447"=CCUG 29297"=CCUG 551"=CFBP
2466"=CIP 100.720"=DSM 50071"=IBCS 277"=IFO 12689"=]JCM 5962"=LMG 1242"=NBRC 12689"=NCCB 76039"=NCIB
8295"=NCIMB 8295"'=NCTC 10332"=NRRL B-771"=RH 815"=VKM B-588").
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CHAPTER 5

Molecular Markers Specific for the Pseudomonadaceae Genera Provide Novel and
Reliable Means for the Identification of Other Pseudomonas Strains/spp. Related

to These Genera

This chapter highlights the application of CSIs for predicting the taxonomic
affiliation of uncharacterized Pseudomonas species or strains. Using CSI information
specific to different Pseudomonadaceae genera, this study assigns ~300
uncharacterized Pseudomonas strains to 14 Pseudomonadaceae genera. The proposed
taxonomic placements are further validated through robust phylogenetic analysis. My
contributions to this chapter include analyzing results from the CSI-based server
(Appindels.com), conducting phylogenetic analyses to confirm taxonomic assignments,
formatting and finalizing all main and supplemental figures and tables, and revising the

manuscript.

Due to space limitations, supplementary materials for this study are not included in this

chapter but are available along with the entire manuscript at:

Rudra, B., & Gupta, R. S. (2025). Genes, 16(2), 183.
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Abstract: Background/Objectives: Taxon-specific conserved signature indels (CSIs) ex-
hibit a strong predictive ability of being found in other members of specific taxa/genera.
Recently, multiple exclusively shared CSIs were identified for several newly described Pseu-
domonadaceae genera (viz. Aquipseudomonas, Atopomonas, Caenipseudomonas, Chryseomonas
Ectopseudomonas, Geopseudomonas, Halopseudomonas, Metapseudomonas, Phytopseudomonas,
Serpens, Stutzerimonas, Thiopseudomonas, and Zestomonas). This study examines the potential
applications of these CSIs for identifying other Pseudomonas spp. (strains) related to these
genera. Methods: This work utilized the AppIndels.com server, which uses informa-
tion regarding the presence of known taxon-specific CSIs in a genome for predicting its
taxonomic affiliation. For this purpose, sequence information for different CSIs specific
for the Pseudomonadaceae species/genera were added to the server’s database. Results:
The ApplIndels server was used to predict the taxonomic affiliation of 1972 genomes of
unclassified Pseudomonas spp. (strains/isolates). Based upon finding a significant number
of CSIs matching a specific taxon, the AppIndels server made positive predictions regard-
ing the taxonomic affiliation of 299 examined genomes into the following clades/genera:
Pseudomonas sensu stricto clade (46), Pseudomonas aeruginosa (64), Ectopseudomonas (46),
Chryseomonas (32), Stutzerimonas (31), Metapseudomonas (22), Aquipseudomonas (21), Phy-
topseudomonas (17), Halopseudomonas (9), Geopseudomonas (4), Thiopseudomonas (3), Serpens
(2), and Caenipseudomonas and Zestomonas (1 each). Phylogenetic studies confirmed that
the taxonomic predictions by the server were 100% accurate. Conclusions: Our results
demonstrate that the CSIs specific for Pseudomonadaceae species/genera, in conjunction with
the ApplIndels server, provides a novel and useful tool for identifying other species/strains
affiliated with these species/genera. Phylogenetic studies suggest that many examined
Pseudomonas strains constitute novel species in the indicated genera.

Keywords: taxon-specific molecular markers; genomic sequences; phylogenetic analysis;
Appindels.com server: prediction of taxonomic affiliation; unclassified Pseudomonas spp./
strains; Pseudomonadaceae genera; Pseudomonas aeruginosa

1. Introduction

The family Pseudomonadaceae harbors several genera of which the genus Pseudomonas
is one of the largest and earliest known prokaryotic genera [1,2]. The genus Pseudomonas
encompasses >300 species representing more than 2/3rd of the Pseudomonadaceae species.
Extensive earlier work on Pseudomonas species, using phylogenetic trees constructed based
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on multiple different sets of genes/proteins, including core genomic proteins, has reli-
ably established that the species from this genus do not form a monophyletic lineage. In
phylogenetic trees, Pseudomonas species generally form three main groupings or lineages,
referred to as the Pertucinogena, the Aeruginosa, and the Fluorescens lineages [3-10].
Additionally, species from both the Aeruginosa and Fluorescens lineages form multiple
distinct genus-level clades, which are not specifically (i.e., evolutionarily) related to each
other [5,9,11]. Species from other genera, including Azomonas, Azotobacter, Chryseomonas,
Entomomonas, and Thiopseudomonas, branch in between these clades/lineages, demonstrat-
ing the polyphyletic nature of Pseudomonas species [3-7]. It is widely recognized that in
accordance with the code governing the nomenclature of Prokaryotes [12], of the observed
Pseudomonas species clades, only the species from the “Aeruginosa clade”, which contains
the type species P. aeruginosa of the genus Pseudononas, should be recognized as the genus
Pseudomonas [4,6,9,11,13-16].

It is important to note that the nomenclature type of the genus Pseudomonas, P. aerugi-
nosa, is an important human pathogen capable of causing a wide array of life-threatening
acute and chronic diseases [17,18]. However, this genus also includes some animals
and plant pathogenic species, as well as other economically and ecologically significant
species [19-23]. Additionally, species from this genus also produce several medically and
agriculturally important compounds and a multitude of biologically active secondary
metabolites [24-26]. Thus, it is of much importance to develop a reliable and informative
classification scheme for Pseudomonas species, where different monophyletic groups of
organisms are reliably demarcated and suitably named to distinguish them from each
other. Naming different groups of organisms by distinct names indicates (implies) that
all species bearing a specific genus name are more closely related to each other, and they
commonly share several genotypic, phenotypic, and other properties (e.g., pathogenic-
ity profile or potential), which differentiate them from other genera [15,27-30]. Distinct
genus names also convey useful information about organisms, including their involvement
in disease causation (i.e., risk group category), outbreaks, and diagnostic and treatment
strategies [29,30]. Thus, taxonomy provides the central framework regarding our current
understanding of microorganisms.

With the availability of genome sequences, extensive work has been carried out in the
past few years to clarify the evolutionary relationships and classification of Pseudomonas
species using multiple genome sequence-based approaches. The approaches used include
the construction of phylogenetic trees based upon different large datasets of core genomic
proteins [4-7,11,13,16,31] and an assessment of the overall relatedness of species from
different clades based on genomic similarity matrices such as average nucleotide identity
(ANIb) [4,16], average amino acid identity (AAI) [4,11], and the percentage of conserved
proteins (POCP) [4,11,31]. In addition, analyses of genome sequences have also proven
instrumental in the identification of highly specific molecular markers, such as conserved
signature indels (CSIs) in genes/proteins, which are uniquely shared characteristics of
species from different clades and afford unambiguous means for both distinguishing and
the demarcation of different specific clades [5,11,32-34]. Based upon the consistent ev-
idence acquired using different genomic approaches, most of the Pseudomonas species
from the Pertucinogena and Aeruginosa lineages have now been reclassified into sev-
eral novel genera (viz. Aquipseudomonas, Atopomonas, Caenipseudomonas, Ectopseudomonas,
Geopseudomonas, Halopseudomonas, Metapseudomonas, Phytopseudomonas, Stutzerimonas, and
Zestomonas) [4-6,11] and some preexisting genera (Chryseomonas, Paraburkholderia, Serpens,
Stenotrophomonas, Thiopseudomonas, and Xanthomonas) [35,36]. Importantly, these studies
have led to the identification of multiple highly specific molecular markers (i.e., CSIs)
that are uniquely shared characteristics of the species noted above. Additionally, several
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molecular markers have also been identified, which are exclusively found in the species
from the genus Pseudomonas sensu stricto, Azotobacter, and Azomonas and for the species
P. aeruginosa.

Due to the presence of Pseudomonas-related species in diverse niches and environ-
ments, including soil, water, and plant and animal tissues [10,37], and as its type species,
P. aeruginosa, is an important human pathogen [17,18], species related to this genus are
subjects of extensive studies and novel species and strains related to this genus are con-
tinually being discovered at a rapid pace [38]. Since 2022 alone, more than 100 novel
species related to Pseudomonas are listed in the List of Prokaryotic Names with Standing
in Nomenclature (LPSN) server [38]. However, in addition to the species with validly
published names, the NCBI server holds genome sequences for >2000 uncharacterized
Pseudomonas spp. (strains or isolates). Several of these uncharacterized strains/isolates will
likely be identified as novel species. However, there is no information available at present
regarding their taxonomic affiliation. In our earlier work on Bacillus related and other
genera we have provided convincing evidence that the CSIs specific for different genera
exhibit a high degree of predictive ability to be found in other members of these genera,
and the presence of known taxon-specific CSIs in a genome sequence can be used to predict
its taxonomic affiliation. The predictive abilities of the CSIs to be found in other related
species form the basis of the recently developed AppIndels.com server, which based upon
the presence of known taxon-specific CSIs in a submitted genome sequence can predict its
taxonomic affiliation [39].

In this study, we have used the AppIndels.com server to determine whether based
upon the information for the CSIs specific to different Pseudomonadaceae genera it can predict
the phylogenetic/taxonomic affiliations of several of the unclassified Pseudomonas spp.
(strains). The results of these studies presented here show that based upon the information
for identified Pseudomonadaceae CSls, the server was able to predict the taxonomic affiliation
of 299 unclassified Pseudomonas strains/isolates into 14 Pseudomonadaceae clades/genera.
Phylogenetic studies conducted on these strains show that the predictions made by the
server regarding the taxonomic affiliations of these 299 strains were 100% accurate. Thus,
the identified CSIs specific for the Pseudomonadaceae genera provide a novel and useful
means for the identification of other novel or unclassified Pseudomonas species/strains
related to these genera.

2. Materials and Methods
Analysis of Pseudomonas spp. Using the AppIndels Server

Sequence information for the CSIs specific to different Pseudomonadaceae clades/ genera
was added to the database of the AppIndels server (https://appindels.com/, accessed on
11 March 2024) [39]. Genome sequences for 2000 unclassified strains/isolates of Pseu-
domonas spp. were downloaded (in .faa format) from the NCBI Genome Database
(https:/ /www.ncbi.nlm.nih.gov/datasets /genome/, accessed on 1 June 2024) [39]) [40].
Details of these downloaded genomes, including their strain numbers, accession numbers,
GC content, and genome sizes, are given in Supplementary Tables S1-53. Of these genomes,
some genomes that contained either <100 Kb sequence information or were indicated as
contaminated were excluded from analyses. The remaining 1972 genomes were analyzed
using the AppIndels server one at a time as indicated in earlier work and on the server’s
main page. The predictions made by the server regarding the taxonomic affiliation of the
submitted sequence and the number of CSIs identified in it specific for the predicted genus
were recorded.

A maximum-likelihood phylogenetic tree for the Pseudomonas spp. strains for which
taxonomic assignments were made by the server, along with sequences of representative
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species from different examined Pseudomonadaceae genera, was constructed based on the
concatenated sequences for 118 conserved proteins comprising the phyloeco set for the
class Gammaproteobacteria [41]. The tree was constructed using an internally developed
pipeline, as described in our recent work [5,34]. The tree was labeled and formatted using
MEGA X [42].

3. Results
3.1. Predictive Ability of a CSI Specific for the Genus Halopseudomonas

Earlier work on CSIs specific for multiple prokaryotic taxa provides compelling evi-
dence that these molecular characteristics exhibit a high degree of predictive ability to be
found in other species related to a specific taxon. To illustrate, in Figure 1, we show the
results for a CSI specific for the genus Halopseudomonas [5]. This genus was created in 2021
by the reclassification of Pseudomonas species, which corresponded to the Pertucinogena
lineage. More than 20 CSIs specific to the genus Halopseudomonas were identified in this
earlier study, and the example depicted in Figure 1 shows the results for one of these
CSIs, where a 2 aa insert in a conserved region of the flagellar protein FIgN was present
exclusively in all 19 Pseudomonas species that corresponded to the genus Halopseudomonas.

103 139
[Halopseudomonas pertucinogena WP_188635142 NLRNARLIRHSQHINSHLLDLLR NQ GEASLDVYDRQG
Halopseudomonas aestusnigri WP_088276710 -- == --PGSGI--QL-
Halopseudomonas bauzanensis WP_074780435
Halopseudomonas formosensis WP_090537917
Halopseudomonas gallaeciensis WP_096004249
Halopseudomonas litoralis WP_090273330
Genus Halopseudomonas oceani WP_104739781 - --P-SGI--QL-
alopseud Halop pachastrellae HI052819 - --P-AG---QL-
(19/19) Halopseudomonas pelagia WP_022963251 -~ --S-QNI--S--
- Halopseudomonas sabulinigri WP_157719404
Halopseudomonas salegens WP_092386864
Halopseudomonas salina WP_150277463
Halopseudomonas xiamenensis WP_185265596
Halopseudomonas xinjiangensis HDZ57775
'Ha. ¥ s” WP_093471917
Pseudomonas abyssi’ WP_096004249
Pseudomonas profundi’ WP_150300399
“Pseudomonas jilinensis"” * WP_119700935
L 7 iliensis™" WP_044500573
Halopseudomonas phragmitis WP_080049995
“Ha. i} is” WP_149330996
New J“Halopseudomonas maritima” VIP_238872204 -~ --PGSGI--QL-
Hal de “Halopseudomonas nanhaiensis” WP_223651813 -- --8-08-
IOPSERGONIONES ID. neustonica’ WP_158611269 -~ --SGON
(6/6) L Halopseudomonas saliphila” WP_150303534  -------VenceoAeomacaasn BB ooea 0A
[Pseudomonas oleovorans WP_104728582 ----G----AN-ASVGSV-GI-- -AETPGL--SR-
Pseudomonas anguilliseptica WP_090387968 ----G----5--ASAHSM-GI- - -NETPSL--SR-
Pseudomonas aeruginosa WP_033966386 ----G-I--AN-ASTGS--NI-- -QDAPNL - -SR-
Pseudomonas fluorescens WP_053257588 --L-GOS-QLQ-ATTANQ-RI-H -GEPPAL-NA- -
Pseudomonas mendocina WP_147809984 ----G----AN-ASVRSV-GI-- -GETPGL--SR-
Pseudomonas alcaligenes WP_076578327 G----AN-ASLKSV-GI-- -GETPGL--SR-
Pseudomonas putida WP_021785147 -ET-G-I-QVQ--VTNNQIRI-Q -GD-PSL--SR-
Pseudomonas corrugata WP_024779775 -A--GOS-QIQ-AATANQ-RI-N -GEIPTL--AR-
Pseudomonas koreensis WP_041479278 -VK-GOS-QIQ-ATTANQ-KI-T -GEPPAL - -AS-
Pseudomonas mandelii WP_010457166 -VN-GOS-LVQ-AATANQ-KI-T -GEPPAL--AR-
Pseudomonas jessenii WP_057713628 -AN-GOS-LTQ-AATATQ-KI-N -GETPAL--AS-
Pseudomonas protegens WP_011062748 -EL-G-S-QIQ-ATTANQ-KI-N -GEPPAL--AR-
Pseudomonas asplenii WP_090205739 -EL-G-N-QVQ-ATTANQ-KI-T -GEPPAL--AR-
Pseudomonas citronellolis WP_061560962 G-I--NN--ATGR- -QDTPSL---R-
Pseudomonas guguanensis WP_090432678 G----A--ASVGSV-GI-- -GETPGL--SR-
Other Pseudomonas peli WP_090248446 G----8--ASAHSM-GI--  -NETPSL--SR-
Pseud, d spp. )¢ alcaliphila WP_074681308 G----AN-ASVGSV-GI--  -GETPGL--SR-
(0/>250) Pseudomonas chengduensis WP_064495609 G----AN-ASVGSV-GI--  -GETPGL--SR-
Pseudomonas borbori WP_090499545 G----SN-ATT-NM-GI-- -GETPSL--SR-
Pseudomonas sihuiensis WP_092376341 G----AN-ASVRSV-GI-- -GETPGL--SR-
Pseudomonas seleniipraecipitan WP_092367845 G-I--S--KSTESM-GI-- -NETPSL--8§-
Pseudomonas fulva WP_013792202 G-I--T--NSTASM-GI-- -SETPSL--ST-
Pseudomonas daroniae WP_131190928 -I--8--KSTESM-GI-- -NETPSL--8S-
Pseudomonas jinjuensis WP_084311373 -V--AG-VSTGR- -QDTPSL---H-
Pseudomonas fluvialis WP_093985762 G- - -NAN-ASVGS- -GI-- -AETPSL--SR-
Pseudomonas thermotolerans WP_017937755 G-IV-TG-ASVRSV-GI-- -GDTPTL--SR-
Pseudomonas caeni WP_022967143 G----SN-ISINSM-NII- -TDTPSL - -KK-
Azotobacter vinelandii WP_012700979 -RL-GDT--TRLGH-QRI -NF-H EA-GHSL-GPD-
Azotobacter salinestris WP_152385854 -RL-GDT- - TRLGH-QRI -NF-H EA-GHSL-GPD-
Thiopseudomonas denitrificans WP_101496293 --=--G----TN-VSVGSA-NII- -NDGPTL--SS-
Permianibacter aggregans WP_13358975 -EV-G-I-AG-RRSVERS-N--- -QNPDM- LYNAK
Azomonas agilis WP_144571641 -D--G-F-YYN-IAI-DT-QI-- -TPDSANLYN-R

Figure 1. Partial sequence alignment showing a two amino acid insertion (CSI) in the flagellar FIgN
protein (highlighted in pink color) described in our earlier work [5], which is specific for the genus
Halopseudomonas. Sequences for six new Halopseudomonas-related species have since become available,
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and all of them share this CSI, demonstrating the predictive ability of this CSI. The species marked
with the symbol * have not yet been reclassified as Halopseudomonas due to the lack of availability of
type strains in two different culture collections, or some species are listed in the LPSN under the genus
Neopseudomonas, which is a synonym of Halopseudomonas [38]. Quotation marks “ ” surrounding a
species name indicates that this name is not yet validly published. The dashes (-) in the alignment
indicate identity with the amino acids on the top line. Accession numbers for different sequences are
indicated in the second column, and the numbers at the top indicate the position of this sequence
fragment within the protein sequences.

Two of these species in this figure are listed as “Pseudomonas” as they have not yet
been reclassified as Halopseudomonas due to the lack of availability of the type strains in two
different culture collections. Since the publication of this work, six other species related to
Halopseudomonas have been described [4,6,43,44]. Some of these species presently are either
not validly published (indicated by their placement within “ ”) or they are misclassified
into the genus Neopseudomonas [6], which is a homotypic synonym of Halopseudomonas [38].
Nonetheless, as shown in Figure 1, the 2 aa CSI specific for the Halopseudomonas is commonly
and uniquely shared by all six newly described species related to Halopseudomonas, but it
is not found in any other Pseudomonadaceae species. In a phylogenetic tree that we have
constructed, all species share this CSI group reliably within a clade corresponding to the
genus Halopseudomonas (Figure S1). These results provide further evidence supporting the
predictive ability of taxon-specific CSIs to be found in other species/strains that are related
to them.

3.2. Examining the Usefulness of the CSIs Specific for the Pseudomonadaceae Genera for
Determining the Taxonomic Affiliation of Unclassified Pseudomonas spp. Using the
Applndels.com Server

As indicated earlier, in addition to the genomes for >300 Pseudomonas species
with validly published names, the NCBI database also holds genome sequences for
>2000 unclassified strains/isolates of Pseudomonas spp. An earlier study by Hess et al. [7]
provides evidence that these unclassified strains encompass enormous genetic diversity,
which remains to be understood. Thus, it is important to develop novel means or tools by
which the genetic diversity and taxonomic affiliation of these unclassified strains could be
assessed. In this work, we have investigated whether the identified CSIs specific to several
Pseudomonadaceae genera can be used for identifying unclassified Pseudomonas spp./strains
that are related to these genera. These analyses were carried out using the AppIndels.com
server, which has been specifically created to take advantage of the predictive abilities
of the known taxon-specific CSIs, to identify other species/strains related to them. The
working of the AppIndels.com server has been described in detail elsewhere [39], but it is
briefly explained below.

The AppIndels.com server is a web-based tool that uses sequence information for vali-
dated CSIs specific for known prokaryotic taxa for determining the presence of these molec-
ular characteristics in any input genome sequence [39]. Based on the taxon-specificities of
the CSIs in the server’s database and their predictive ability to be found in other members of
these taxa, if the server identifies that the input genome sequence contains significant num-
bers of CSIs matching a specific taxon, it predicts that the analyzed genome (strain/species)
is affiliated with that taxon. The AppIndels server database presently contains sequence
information for >1000 previously identified CSIs specific to different (>100) prokaryotic
genera [39]. We have now added to this database the sequence information for different
identified CSIs specific to the Pseudomonadaceae genera [5,11]. In Table 1, we have pro-
vided information regarding the Pseudomonadaceae genera/taxa for which the CSIs have
been identified and the numbers of CSIs, which are specific for each of these genera or
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taxa. This list also includes several CSIs that are specific for the species P. aeruginosa and
P. paraeruginosa [45].

Table 1. List of Pseudomonadaceae Genera for which CSIs have been identified.

: No. of Weight Value
Genera/Species Name Identified CSTs of Fach CSI
Aquipseudomonas 6 0.4
Atopomonas 22 0.2
Azomonas 5 0.4
Azotobacter 10 0.4
Caenipseudomonas 8 0.4
Chryseomonas 11 0.3
Ectopseudomonas 5 0.4
Geopseudomonas 15 0.3
Halopseudomonas 24 0.2
Metapseudomonas 5 0.4
Phytopseudomonas 12 0.3
Pseudomonas sensu stricto 6 0.4
Serpens 3 0.5
Stutzerimonas 7 0.4
Thiopseudomonas 6 0.3
Zestomonas 5 0.4
P. aeruginosa 7 0.3
P. paraeruginosa 5 0.4

The last column in Table 1 indicates the weight values given to individual CSIs from
different taxa. The rationale of giving weight values to different CSIs is discussed in detail
in earlier work [39]. However, its main purpose is to increase the specificity of taxon
prediction by the AppIndels server by requiring that multiple CSIs specific to a given taxon
be present before a positive identification is made. When a genome sequence is uploaded
or submitted to the AppIndels.com server, it conducts BLASTp searches on the submitted
genome against the sequences of all CSIs in its database. Based on these searches, the
server identifies matching sequences in the submitted genome where the indels of specific
lengths are present in protein sequences in the exact location as present in the protein
sequences in the CSI database. The server then gathers information regarding the taxon
specificities of different matching CSIs. If the combined weight of all CSIs matching a
specific taxon exceeds the threshold value of 1.0, the server makes a positive prediction
that the submitted genome is affiliated with the indicated taxon. As all CSIs specific for
the Pseudomonadaceae genera/clades have a weight value of 0.4 or less (Table 1), the server
will make a positive identification for any Pseudomonadaceae genus/clade only when three
or more CSIs matching that taxon are found in the submitted genome. As all described
CSIs for the Pseudomonadaceae species/genera exhibit a high degree of specificity for the
indicated taxon (barring an isolated exception) [5,11,45], the possibility of finding three
CSIs matching a specific genus/taxon in the genome of an unrelated species/strain is
considered highly unlikely.

To test the usefulness of identified CSIs using the AppIndels server, genome sequences
were downloaded for 2000 stains/isolates of Pseudomonas spp. from the NCBI genome
database. Of these, 28 genomes, where the genome sequence consisted of <100 Kb, or was
indicated as contaminated, were not further analyzed. Of the remaining 1972 genomes,
266 genomes were chromosomes or complete (Table S1), 1197 consisted of contigs (Table S52),
and 509 were scaffolds (Table S3). Some information regarding these genomes, including
their strain numbers, accession numbers, assembly stage, G-C content (mol%), and genome
sizes, is provided in the Supplementary Material (Tables S1-53). The analyses on these
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A.

genomes were conducted using the AppIndels server by uploading the sequences of these
genomes, one at a time, onto the server. The server checks the uploaded genome sequence
for the presence of CSIs matching different taxa in its database. If the server identifies
significant numbers of CSIs matching any specific taxon, then the result from the server
shows a positive match to that taxon. In such cases, the server also provides information
regarding the number of CSIs matching the predicted taxon. However, if the submitted
genome corresponds to a taxon/genus for which no CSIs are present in the server or if the
total weight of the identified CSlIs is less than the threshold value of 1.0, then the server
shows a negative “None” result.

In Figure 2, we show the results obtained from the server for two Pseudomonas
strains/isolates. The server indicates that the strain ZM24 is related to the Pseudomonas
sensu stricto clade, and its genome contained five CSIs specific for this clade (Figure 2A).
On the other hand, the server predicted that the genome of strain ABC1 is related to the
genus Stutzerimonas, and its genome contained six CSIs specific for this genus (Figure 2B).
In addition to indicating the numbers of CSIs specific to the predicted taxon, the server also
provides sequence information for all matching CSIs, which can be viewed upon clicking
the down arrow beside the number of CSIs.

B.

Query Result: Pseudomonas sp ZM24 Query Result: Pseudomonas sp ABC1

CSl Present For:

Pseudomonas sensu stricto

Pseudomonadales
Pseudomonadaceae

CSl Present For:
e Genus Stutzerimonas

Pseudomonadales

[ Pseudomonas sensu stricto (5) A ] [ Genus Stutzerimonas (6) a ]
2 aa insertion in HugZ family protein 1 aa insertion in PAS domai ining Methyl- pting is protein
Query:  PVQWRFIGGFGAIHWL|GA|ERVPLANPF Query:  GDHYWVNAYVTPILDRQR|QVTGYESVRTKPTREQ
Subject: PVQWRFIGGFGDIHWL|GA|DSVPLANPF Subject: GDHYWVNAYVTPILDNRRIE|IIGYESVRTKPTEEQ
1 aa insertion in TetR family transcriptional regulator protein 1 aa deletion in DUF1329 domain-containing protein

Query:  KELDRRQAKPEAQHA|T|LEDLLHLLVSQAMAVKPRS
Subject: KELDRRQAKPDSPRA|S|LEELLELLVWQAMAVKPRS

Query:  ISGRYIAIGMSNEEK| |PHEYGYRASARDFTPAALRNA
Subject: ISGRYIAIGMNNEEK| [PQEFGHRASARDFTPAALRNA

2 aainsertion in Multidrug efflux RND transporter permease subunit protein 1 aa deletion in Autotransporter assembly complex protein TamA
Query:  EGPAAEFSGFRVAQR| |[SLRQGDVLNHGRYEDVK
Query:  RKASEYAPLIVHYN|AE|[TGAAVRLKDVATVTDSV Subject: DGEAADIPTFRVPRRI |LLKEGEVLNHGHYEDAK
Subject: RKASEYAPLIVHYN|AE[TGAAVRLKDVARVSDSV
1 aainsertion in 2 prenyl-3-methyl-6- y-1,4-benzoquinol hydroxylase
1 aa deletion in Alginate O-acetyltransferase protein Query:  LGHIVENRVVQDSLLDAMQR|R|GGLQLIGDARVEQLARTPDGWQLT

Query:  DEEFKPAPSGQQLED| |[NWALVRGVQRELNRRGVKL
Subiject: DEEFKPEPSASQLED| INWALVRGVQQELERRGVKL 1 aa deletion in RnfABCDGE type electron transport complex subunit D

Subject: LGHIVENSLVQDGLLEAVRR|R|GEIELLGDARVERLQRSGLDWQLS

1aainsertion in 23S rRNA

Query:  ATALDVLKVNKSLTIDELW| IRNPAFGHFGGIGSEVVNLAFLA

Query:  RRLRFADLIFPRQWARG|P|GFIELPESQRIEVLLAELASYPVC
Subject: RQLRFGELIFARQWARGI|A|GFAALPEQDRIGALLAVLAGFPVC

S IaRaat S
& (2498)2+0) nsterase RiiM Subject: ATALNALQHNDRLTLEELW| |QAPIFGQFAAAGSEWVNLAFLA

1 aa deletion in 16S rRNA (uracil(1498)-N(3))-methyltransferase
Query:  GRSVLPIIHAPVTLRDWL| |DVEADLKLVLH

Subject: GRSVVPKINSPQPLAQWL]| [TLAAELKLVLH

Figure 2. The results from the AppIndels server for the genome sequences of two representative
unclassified Pseudomonas spp./strains. (A) The genome of Pseudomonas strain ZM24 is predicted by
the server as affiliated with the Pseudomonas sensu stricto clade, and it contained five CSIs specific for
this clade. (B) The Pseudomonas strain ABC1 was identified by the server as belonging to the genus
Stutzerimonas, and it contained six CSIs specific to this genus.

Based on the analysis of genome sequences for 1972 examined Pseudomonas strains/
isolates, the server made specific predictions regarding the taxonomic affiliations of 299 of
the examined genomes to specific Pseudomonadaceae genera. The results from the server

109



Genes 2025, 16, 183

8of 17

for the genomes of all 299 Pseudomonas strains/isolates for which specific predictions were

made are shown in Table S4, and a summary of these results is presented in Table 2. In

Table 2, we have organized the results from the server for different strains according to
their predicted affiliation for the Pseudomonadaceae genera. Table 2 also shows the numbers
of CSIs (range) specific for the indicated genus/species, which were identified in the
analyzed genomes.

Table 2. The results from the AppIndels Server regarding the taxonomic affiliations of the genome
sequences of 299 unclassified Pseudomonas spp.

Genera/Species

No. of
Strains

Range of

CSIs

Pseudomonas spp. Strain Nos.

Pseudomonas sensu stricto

46

5-6

21,273, 30_B, AAC, ADPe, ATCC 13867, AU11447,
AU12215, BJa5, EGD-AKNS5, GCEP-101, GD03691,
GD03903, GD04087, HMSC75E02, HS-18, LA21, M1,
NBRC 111135, NBRC100443, PDM17, PDM18, PDM19,
PDM20, PDM21, PDM22, PDM23, PDM33, PDNCO002,
PI1, PSE14, R3.Fl, RW407, SCB32, UMA601, UMA603,
UMA643, UMC3103, UMC3106, UMC3129, UMC631,
UMC76, UMES83, ZM23, ZM24, ZM25.

P. aeruginosa

64

5-7

203-8, 17023526, 17023671, 17033095, 17053182, 17053418,
17053703, 17063399, 17072548, 17073326, 17102422, 17103552,
17104299, 18073667, 18082547, 18081308, 18082551, 18082574,
18083194, 18083202, 18083259, 18083286, 18084127,
18092229, 18093371, 18101001-2, 18102011, 18103014,
18113298, 19062259, 19064969, 19072337-2, 19082381, 2VD,
3PA37B6, AF1, AFW1, AK6U, B111, BDPW, BIS, BIS1, CP-1,
FDAARGOS_761, HMSC057H01, HMSC072F09,
HMSC16B01, HMSC076A11, HMSC060F12, HMSC065H01,
HMSC066A08, HMSC065H02, HMSC067G02,
HMSC063H08, HMSC058CO05, P179, P20, P22, PAH14,
Pseudomonas_assembly, PS1(2021), RGIG3665, S33, S68.

Aquipseudomonas

21

4-6

8AS, BLCC-B13, BMS12, F(2018), GD03869, GD03875,
GD03985, GD04015, GD04019, GD04042, GD04045, GOMS,
J452, L-22-45-12, ML96, PDM15, PDM16, R-28-1W-6,
UBA6718, SO81,WS 5013.

Caenipseudomonas

Go_SIPrim_bin_81

Chryseomonas

32

6-11

313, AS2.8, BAV 2493, BAV 4579, GM_Psu_1,
GM_Psu_2, HUK17, LTJR-52, MAG002Y, PS02302,
RIT 411, S1C77_SP397, 52C3242, SP152, SP29, SP3,
SP403, SP421, WAC2, HPB0071, Snoq117.2, MS15,
JUb52, EpSL25, PLB05, HR1, CBMAI 2609,UBA6549,
UBA?7233, UBA3149, UBA4102.

Ectopseudomonas

46

297, 07-Jan, 905_Psudmol, AA-38, ALS1131, ALS1279,
AOB-7, B11D7D, BMW13, DS1.001, EGD-AK9, EggHat1,
GD03721, GD03722, GD03919, GD04158, GOM?7,
GV_Bin_12, Gw_UH_bin_155, HS-2, KB-10, KHPS1, LPH1,
Leaf83, MDMC17, MDMC216, MDMC224, MSPm1,
Marseille-Q0931, NCCP-436, NFACC19-2, NFPP33, 096,
OA3, P818, 80, 8Z, REST10, RGIG627, THAF187a, THAF42,
WS 5019, YY-1, Z8(2022), ZH-FAD, phDV1.

Geopseudomonas

4-15

A-1, OF001, R2F_R2FSRR_metabat.60, Gw_Prim_bin_4.

Halopseudomonas

20-24

5Ae-yellow, FME51, MYb185, NORP239, NORP330, OIL-1,
SSM44, WNO033, gec21.
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Table 2. Cont.

Genera/Species

No. of Range of

Strains CSIs Pseudomonas spp. Strain Nos.

Metapseudomonas

57B-090624, 1D4, A46, BN102, BN411, BN414,

BN415, BN417, BN515, BN606, D(2018), DY-1, ENNP23,
FeS53a, JG-B, JM0905a, LEM046, PDM13, Pc102, Q1-7,
SLBN-26, TCU-HLLI.

22 3-5

Phytopseudomonas

AG1028, Bi70, BIGb0408, CrR14, CNPSo 3701, MEJ086,
MM211, PDM11, PDM12, S2C11432_SP223,

17 9-12 S52C78296_SP133, sia0905, SP200_1_metabat2_
genome_mining.44, SP236_1_metabat2_genome_mining.8,
PA1, PA15, PA27.

Serpens

2 3 N24CT, RL.

Stutzerimonas

10B238, 9Ag, A192_concoct.bin.7, ABC1, ALOHA_A2.5_105,
BAY1663, BRH_c35, C42_metabat.bin.8, Choline-3u-10,
DF_1_3.23, DNDY-54, IC_126,

31 4-7 JI-2, KSR10, M30B71, MCMED-G45, MT-1, MT4, MTM4,
N17CT, NP21570, Q2-TVG4-2, RS261_metabat.bin.8,
55(2021), SCT, SST3, TTU2014-066ASC,
TTU2014-096BSC, TTU2014-105ASC, WS 5018, s199.

Thiopseudomonas

3 4-5 AS08sgBPME_395, C27(2019), SO_2017_LW2 bin 68.

Zestomonas

3 LS44

As seen from Table 2, in all cases, the predicted affiliation of any genome to a specific
Pseudomonadaceae species/genera is based on the shared presence of a minimum of three
CSls specific to that taxon. The numbers of CSIs identified for different genera (or species)
in the analyzed genomes varied from a low of 3 for the genus Serpens to more than 20 for
Halopseudomonas. This variation is solely due to the differences in the number of CSIs that
have been identified for different genera (see Table 1) [5,11,45]. The results presented in
Table 2 show that of the genomes for which the server made specific predictions, about 20%
corresponded to the species P. aeruginosa. Other Pseudomonadaceae genera to which large
numbers of analyzed strains (genomes) belonged included the Pseudomonas sensu stricto
clade (46 strains), Ectopseudomonas (46 strains), Chryseomonas (32 strains), Stutzerimonas
(31 strains), Metapseudomonas (22 strains), Aquipseudomonas (21 strains), Phytopseudomonas
(17 strains), Halopseudomonas (9 strains), and Geopseudomonas (4 strains). The server also
predicted that a limited number of strains are affiliated with the genera Caenipseudomonas,
Serpens, Thiopseudomonas, and Zestomonas, which consist of only a few species [5,11].

We have examined the reliability of taxon predictions by the server by constructing a
phylogenomic tree based on genome sequences of different Pseudomonas strains for which
the server made taxonomic predictions. This tree was constructed based on concatenated
sequences of 118 conserved proteins (corresponding to the phyloeco set for the class
Gammaproteobacteria), and it also included the sequences of representative species from
relevant Pseudomonadaceae genera. We show the results from this tree in Figure 3. Due to
the considerable number of strains in this tree, we have compressed the clades for some
Pseudomonadaceae genera in Figure 3. However, the uncompressed results for these clades
are presented in Figure 4. In the phylogenetic trees shown in Figures 3 and 4, all Pseudomonas
strains/isolates for which the server made taxonomic predictions grouped reliably (100%
concordance) with the other species from the indicated genera (Figures 3, 4 and S2). Based
upon the branching of different Pseudomonas strains/isolates in Figures 3 and 4, while many
unclassified strains are closely related to the known species, several other strains branched
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distinctly from the known species. Thus, many of these strains may constitute novel species
within the indicated genera.

(A) ®),, .
2 Halopseudomonas salegens CECT 8338 T 10 E Zestomonas cavemae K2w31S-8
,:PU:JMWIFWW N 100 Pseudomonas sp. LS4 Genus
1 . Zestomonas
100[— Halopseudomonas sabulinigri JCM 14263 Zestomonas insulge ULO73
Pseudomonas sp. 5Ae-yellow 100 Zestomonas carbonaria CIP 111764,
100' Pseudomonas sp. SSM44 Pseudomonas p. Go
10 100 Halopseudomanas pachastreliae JCM 12285 0 ; g o Genus
Halopseudomonas gallaeciensis V113 Caenipseudomonas flwvialis CCM 8778 Caenipseudomonas
s abyssTMTS 100 100! Caenipseudomonas phamafabricae ZYSR67-
Halopseudomonas aestusnign VGXO14 < z -
100~ Halopseudomonas oceani DSM 100277 A s PLAS
100 Halopseudomonas fitoralls 2M5 Aquipseudomonas guryensis SRS
2 Pseudomonas sp. FMES1 Genus nl Pseudomonas sp. J452
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“Halopseudomonas saudimassiliensis 12M76_air Aquipseudomonas campi $1-432:2
Pseudomonas sp. Myb185 L Pseudomonas p. 8AS
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13 Halopseudomonas pelagia PL-APS LY 1% Pseudomons . R2B1W6
Halopseudomonas salina CGMCC1.12 100] | 100 m_[mdomonng:. BMS12
Pseudomonas sp. NORP239
Pseudomonas sp. GOM6
— s Pseudomonas p. NORP30 Genus
Halopseudomonas xinjiangensis NRRL B-5127 Pseudomonas sp. UBA6718 Aquipseudomonas
Pasdomooss 1. o521 100} Pseudomonas sp. BLCC-B13
1001 | Halopseudomonas profundi” M5 E . N
100! Pseudomonas sp. OIL-1 o 10| Aquipseudomones alcaligenes
- Thiopseudomonas alkaliphila B4188 Pseudomonas sp. WS 5013
. e Pseudomonas sp. GDI3869
n Pseudomonas sp. C27(2019) Genus 0
5| — Peoudomonas p. SO 2017 LW2bin 88 | Thiopseudomonas | Pomomnes . GO0K15
4|y Thiopseudomonas caeni DSM 24390 100| 100l Pseudomonas sp. GD04042
100 - Pseudomonas sp. AS08sgBPME 395
100 | Geopseudomonas guangdongensis CCTCC AB 201 >
Psaudomonas sp. Gw Prim bin 4 0! Pseudomonas sp. GD03985
Geopseudomonas uumatmum MAP12 o Pseudomonas sp. SO81
(Geopseudomonas sagittaria JCM 181957 - 10
™ 0] Geopseudomonas linyingensis LMG 25967 - Genus %) 100 Peudomonas sp. F 2018
Pssudomonas sp. R2F R2FSRR metabat 60 RSO Pseudomonas sp. PDM15
00| Pseudomonas sp. A-1
Pseudomonas sp. OF001 o Prencmgoat . SO0
Geopseudomonas oryzagi MAHUQ-58 100{00 Pseudomonas sp. GDO4045
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Figure 3. A phylogenetic tree based on genome sequences for the representative species, includ-
ing type species of different Pseudomonadaceae genera and genomes of different Pseudomonas spp.
(strains/isolates) for which positive predictions were made by the server regarding affiliation with
specific clades/genera (Tables 2 and S4). For the ease of visualization of information for different strains,
the clades for some genera, viz. Chryseomonas, Ectopseudomonas, Metapseudomonas, Phytopseudomonas,
Pseudomonas sensu stricto, and Stutzerimonas, are compressed in this figure. The figure is shown in two
parts (A,B), and part B is a continuation of (A). All Pseudomonas strains for which the server made
taxonomic predictions branched with 100% accuracy with the indicated genera in these trees.
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Figure 4. Phylogenetic branching of Pseudonionas spp. (strains/isolates), which based upon the results
obtained from AppIndels server (Tables 2 and S4) were predicted to be related to the genera (A) Pseu-
domonas sensu stricto, (B) Phytopseudomonas, (C) Stutzerimonas, (D) Chryseomonas, (E) Ectopseudomonas,
and (F) Metapseudomonas. All strains for which the server made taxonomic predictions branched with
100% accuracy with the indicated genera in this tree.
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4. Discussion

Members of the genus Pseudomonas, which are genetically and evolutionarily highly
diverse, are widely distributed in different environments. This group includes species
that are opportunistic pathogens of humans, animals, and plants and other species of eco-
nomic and ecological significance [17-19,46,47]. For example, the type species of this genus,
P. aeruginosa, which is one of the most researched species, is an opportunistic multidrug-
resistant human pathogen capable of infecting multiple tissues, especially in individuals
with weakened immune systems, and is often responsible for serious illnesses, such as
ventilator-associated pneumonia and several sepsis syndromes [48-50]. P. aeruginosa infec-
tions in patients with cystic fibrosis cause significant economic burden in the health care
industry [18]. Due to its resistance to different antibiotics, the World Health Organization
recognizes P. aeruginosa as one of the six important pathogens posing greatest threats to
humans in terms of antibiotic resistance [50,51]. On the other hand, some Pseudomonas
species, such as P. syringae, are pathogenic to plants [19], whereas other species, such as
P. fluorescens, are beneficial to plants and have been used in the agriculture industry for
sustainable plant growth as well as disease management [24]. Several other Pseudomonas
species have found significant roles as biocontrol agents, as bioremediation agents, as
detectors of food spoilage agents in milk [25], and in the degradation of anthropogenic
pollutants [26].

In view of the importance of these species from clinical and other perspectives, this
group of species is extensively studied, and it constitutes one of the fastest growing groups
of bacteria [4]. In recent years, extensive work using genomic approaches has been carried
out to more reliably delineate the evolutionary relationships and classification scheme
for Pseudomonas and related species. These studies have led to the reclassification of
>150 Pseudomonas species into 14 novel genera [5,11]. Members of all these newly described
genera can be reliably distinguished from each other based upon multiple highly specific
molecular markers (i.e., CSIs) that are uniquely shared characteristics of the species from
these genera. Similarly, the clade corresponding to the genus Pseudomonas sensu stricto,
which harbors P. aeruginosa, can also be reliably distinguished from all other Pseudomonas
based on multiple exclusively shared CSIs [11]. However, the genetic diversity of Pseu-
domonas extends far beyond the known species (>300) with validly published names. The
NCBI [40] harbors genomes for >2000 uncharacterized strains/isolates of Pseudomonas
species, for which no information is available regarding their phylogenetic affiliation. As
these uncharacterized strains are likely to harbor many novel species related to both the
known Pseudomonadaceae genera as well as other novel taxa related to these bacteria [6], it
is important to characterize them. However, there is no easy-to-use methods available for
dependably identifying strains that are related to the existing Pseudomonadaceae genera.

Therefore, the objective of this study was to determine whether the CSIs specific
for different Pseudomonadaceae genera, due to their known predictive ability to be found
in other group members, can be used to identify other unclassified Pseudomonas (spp.)
strains that are related to these genera. These investigations were greatly facilitated
by the recent development of AppIndels.com server, which based upon the presence
of known taxon-specific CSIs in a genome sequence, can predict its taxonomic affilia-
tion [39]. In this work, the AppIndels server was used after supplementing its database
with the sequence information for different CSIs specific to the Pseudomonadaceae gen-
era for predicting the taxonomic affiliations of genome sequences for 1972 unclassified
Pseudomonas strains/isolates. The results presented here show that based upon the iden-
tified CSIs for the Pseudomonadaceae genera, the server was able to predict the taxonomic
affiliation of 299 of these unclassified Pseudomonas strains into 14 distinct clades of Pseu-
domonadaceae species/genera. The genera or species groups into which these unclassi-
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fied Pseudomonas strains/isolates were assigned included the Pseudomonas sensu stricto
clade (46 strains), Ectopseudomonas (46 strains), Chryseomonas (32 strains), Stutzerimonas
(31 strains), Metapseudomonas (22 strains), Aquipseudomonas (21 strains), Phytopseudomonas
(17 strains), Halopseudomonas (9 strains), Geopseudomonas (4 strains), Thiopseudomonas
(3 strains), Serpens (2 strains), Caenipseudomonas (1 strain), and Zestomonas (1 strain). In
addition, 64 Pseudomonas strains/isolates were identified as P. aeruginosa. In all cases, the
assignment of Pseudomonas strains to different Pseudomonadaceae genera (or to P. aeruginosa)
was based on the shared presence of multiple (minimum 3) CSIs, which are exclusive
characteristics of the indicated genera. The results of phylogenetic studies conducted here
confirm that the taxonomic predictions made by the server were 100% in agreement with
the branching of these strains with the species from the indicated genera. These results
provide further strong evidence regarding (i) the predictive abilities of the taxon-specific
CSIs to be found in other (unclassified) members of these taxa and (ii) the conclusion
that the use of these molecular markers provides a novel and trustworthy means for the
identification of other species/strains related to these genera [39].

Although the ApplIndels server accurately predicted the taxonomic affiliations of
299 Pseudomonas strains, it provided no results for the remainder of the strains. This is
not surprising because the AppIndels server can make taxonomic predictions for only
those strains that are related to the taxa for which CSIs are known and present in the
server’s database [39]. As noted previously, the genus Pseudomonas is a very large and
diverse grouping of microorganisms, harboring >300 validly named species that form
multiple distinct clades/lineages [4,6-9,11,16]. Thus far, CSIs have been identified for only
a limited number of these groupings, consisting mainly of the genus Halopseudomonas
and some clades/genera within the Aeruginosa lineage. However, a vast majority of
the Pseudomonas species, representing more than two-thirds of named species, are part of
the Fluorescens lineage, which is composed of multiple distinct genus-level clades and
subclades [7,9,13,16,31,37]. No CSIs are known at present for the species from different
clades and subclades of the Fluorescens lineage. In addition, no CSIs have been identified
for the Anguilliseptica clade of species and many other species within the Aeruginosa
lineage (viz. P. benzenivorans, P. cuatrocienegasensis, P. indica, P. kuykendallii, P. lalucatii,
P. mangiferae, P. mangrovi, P. matsuisoli, and P. pohangensis), which branch distinctly from
the described clades/genera. In view of the paucity of CSIs for these other groups/clades
of Pseudomonas species, if an examined strain (genome) is affiliated with these species
clades/genera, the server will not be able to make any taxonomic predictions for those
strains. Therefore, as indicated on the server’s website, while the absence of any taxonomic
prediction by the server is not very informative, a specific prediction by the server regarding
taxonomic affiliation is a highly trustworthy result.

It should be noted that the genomes of Pseudonionas spp./strains for which the server
was able to make correct taxonomic predictions consisted of different assembly stages rang-
ing from chromosome and complete to contigs and scaffolds (see Tables S1-S3). Previously,
we have also shown that based on genome sequence information, the server can also predict
the taxonomic affiliation of uncultured strains/isolates [52]. These results and observations
indicate that the AppIndels server provides a valuable and easy-to-use tool for the iden-
tification and taxonomic characterization of cultured and uncultured strains/isolates for
the species/genera for which CSIs are known. Based upon the phylogenetic branching of
Pseudomonas spp./strains for which taxonomic predictions were made by the server, several
of these strains branched distinctly from the other known species within these genera (Fig-
ures 3 and 4). Thus, upon further characterization, a number of these strains would likely
constitute novel species within these genera. This should lead to a considerable increase in
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the genetic diversity of species within these genera advancing our understanding of the
Pseudomonas-related species/genera.

It should be noted that the AppIndels server, in addition to its demonstrated utility for
predicting the taxonomic affiliation of any genome-sequenced strains/isolate, also provides
a novel and useful diagnostic tool. Amongst the Pseudomonas species, P. aeruginosa is of
particular significance, as it can cause numerous life-threatening diseases in humans [17,18].
Hence, an accurate identification of this species from other closely related species is of
considerable importance in clinical settings. The results presented here show that based
upon the identified CSIs, the server can reliably distinguish P. aeruginosa from all other
Pseudomonas-related species, including other species from the Pseudomonas sensu stricto
clade. Of particular importance is the fact that the server can also reliably distinguish P.
aeruginosa from P. paraeruginosa. The latter species was recently created from P. aeruginosa by
the transfer of several strains, which lacked the Type III secretion system (i.e., differing in
terms of pathogenicity) and produced various biosurfactants [53], into this new species [45].
However, P. paraeruginosa is genetically closely related to P. aeruginosa, and it is difficult to
distinguish between these two species with the most available diagnostic methods [45].
However, the ApplIndels server provides a rapid and easy-to-use method to reliably detect
the presence of P. aeruginosa based on genome sequence information. Additionally, based on
genome sequence information, the server can also rapidly and reliably detect the presence
of any species/strains related to the Pseudomonas sensu stricto clade, which due to being part
of this monophyletic clade may share its pathogenicity traits for humans [29]. Similarly,
based upon the CSIs specific for other species/genera, the server can also reliably detect
the presence of other related species based on genome sequence information.

Lastly, based upon earlier work on CSIs in genes/proteins sequences, these molecular
characteristics, in addition to their specificity and predictive abilities for reliable identifica-
tion of species from different clades, also play important/essential functions in the group of
organisms for which they are specific [11,33,54-57]. Hence, genetic, biochemical, and func-
tional studies on the CSIs specific for different genera provide means for the identification
of novel biochemical and other characteristics that are specific to these organisms.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ genes16020183/s1, Table S1. List of 266 downloaded Pseudomonas spp.
genomes (chromosome and complete) for analysis in this study. Table S2. List of 1197 downloaded
Pseudomonas spp. genomes (contigs) to analyze in this study. Table S3. List of 510 downloaded
Pseudomonas spp. genomes (scaffold) to analyze in this study. Table S4. Information on the genome
sequences of 299 uncharacterized Pseudomonas spp. whose taxonomic affiliations were predicted by
the AppIndels web server. Figure S1. A maximum-likelihood tree, constructed using concatenated
sequences of 118 conserved proteins, depicts the branching of all newly identified species or species
with new name combinations that share the CSIs specific to the genus Halopseudomonas. Newly
described species are highlighted in bold, and non-validly published species are shown within “ .
Figure S2. A maximume-likelihood tree based on concatenated sequences of 118 conserved proteins
showing all strains from the Aeruginosa clade (Genus Pseudomonas sensu stricto).
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CHAPTER 6

Phylogenomics and Molecular Marker-Based Studies to Clarify Evolutionary

Relationships Among Species from The Fluorescens Lineage.

This chapter provides a comprehensive phylogenetic analysis of Pseudomonas
species within the Fluorescens lineage, revealing 13 distinct genus-level clades. This
chapter also highlights the use of CSIs for reliably distinguishing some of these clades
and outlines a future objective to identify CSIs for the remaining clades. My
contributions to this work include constructing the phylogenetic trees, performing
comparative genomic analyses to identify CSls, and contributing to the writing of this

chapter.

This Chapter is an altered manuscript that will be submitted for publication in the

coming months.
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Abstract

The genus Pseudomonas includes large assemblages of bacteria with diverse
properties. In addition to infecting humans, animals, insects, and plants, species play
vital roles in biocontrol, bioremediation, and plant-microbe interactions. Phylogenetic
studies have shown that the genus Pseudomonas is polyphyletic, and species form three
major lineages: Aeruginosa, Fluorescens, and Pertucinogena. While recent taxonomic
revisions have reassigned distinct clades of species from the Aeruginosa and
Pertucinogena lineages into several novel and emended genera, the classification of the
Fluorescens lineage, accounting for ~70% of Pseudomonas species, remains
unresolved. To address this, we conducted a comprehensive phylogenomic and
comparative genomic analysis on the Fluorescens lineage of species. Our genome-scale
phylogenetic tree identified 13 distinct genus-level clades, such as Asplenii,
Chlororaphis, Corrugata, Fluorescens, Fragi, Jessenii, Koreensis, Lutea, Mandelii,
Massiliensis, Putida, Rhizosphaerae, and Syringae. To confirm their distinctiveness and
reliable demarcation, we identified multiple Conserved Signature Indels (CSIs)
uniquely shared by the species from the Massiliensis, Putida, and Rhizosphaerae clades.
Future studies will identify CSIs for the remaining clades serving as independent

molecular markers for their reliable demarcation.
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Introduction

The genus Pseudomonas comprises over 350 species with validly published
names (LPSN, accessed on February 2025) (Parte, 2018), exhibiting immense genetic
and metabolic diversity (Palleroni, 2005; Peix et al., 2009; Lund-Palau et al., 2016;
Winsor et al., 2016; Pang et al., 2021; Rossi et al., 2021). Due to their clinical, economic,
and ecological importance, Pseudomonas species have been extensively studied (Hesse
et al., 2018; Peix et al., 2018; Rudra and Gupta, 2021; Saati-Santamaria et al., 2021;
Lalucat et al., 2022). Phylogenetic analyses reported in these studies establish that this
genus is highly polyphyletic, and the large assemblages of species that are currently part
of the genus Pseudomonas form three main lineages in phylogenetic trees: Aeruginosa,
Fluorescens, and Pertucinogena. Of these three lineages, the Aeruginosa and
Fluorescens lineages consist of multiple distinct clades, which are phenotypically and
genotypically distinct from a specific species clade, viz. the Aeruginosa clade, which
contains the type species (P. aeruginosa) of this genus. Additionally, species from other
genera have been found to cluster in between different Pseudomonas species, making
this genus highly polyphyletic (Hesse et al., 2018; Peix et al., 2018; Rudra and Gupta,
2021). To address these taxonomic inconsistencies and establish a reliable classification
framework for the genus Pseudomonas, several taxonomic revisions were carried out
using comparative genomics-based approaches on the Pertucinogena and Aeruginosa
lineages of species (Rudra and Gupta, 2021; Saati-Santamaria et al., 2021; Lalucat et
al., 2022; Rudra and Gupta, 2024). These studies have led to the reclassification of over
150 Pseudomonas species into several novel and emended genera, including
Aquipseudomonas, Atopomonas, Caenipseudomonas, Chryseomonas,

Ectopseudomonas,  Geopseudomonas,  Halopseudomonas,  Metapseudomonas,
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Paraburkholderia, Phytopseudomonas, Serpens, Stenotrophomonas, Stutzerimonas,
Thiopseudomonas, Xanthomonas, and Zestomonas. Moreover, according to the Code
governing the nomenclature of Prokaryotes (Oren et al., 2023), only species from the
Aeruginosa clade should constitute the genus Pseudomonas. Despite these
advancements, the taxonomic status of ~70% of Pseudomonas species forming the

Fluorescens lineage remains unresolved.

Species within the Fluorescens lineage show remarkable diversity and have been
isolated from a wide range of environments, including water (Miranda and Zemelman,
2002), soil (Andersen et al., 2000), plant tissues (Brown et al., 2012), fungi (Rainey et
al., 1993), animals (Vela et al., 2006), and humans (Scales et al., 2015). These bacteria
play essential agricultural and ecological roles, contributing to biocontrol, siderophore
production, denitrification, toxin synthesis, bioremediation, and plant-microbe
interactions (Silby et al., 2011; Scales et al., 2014; Garrido-Sanz et al., 2016). Among
them, P. fluorescens, P. corrugata, P. chlororaphis, and P. protegens are extensively
studied for their effectiveness as biocontrol agents. They employ diverse mechanisms,
such as competitive colonization in plant tissues, antibiosis, siderophore production,
and secretion of lytic enzymes (Silby et al., 2011; Scales et al., 2014; Raio, 2024). In
contrast, P. syringae is recognized as one of the most studied plant pathogens, ranked
among the top 10 plant-pathogenic bacteria (Mansfield et al., 2012). It primarily infects
the phyllosphere, where it exists as an epiphyte on plant surfaces (Xin et al., 2018).
Another notable species, P. putida, is a metabolically versatile soil bacterium capable
of degrading a wide range of organic compounds, including xenobiotics, making it a

key player in bioremediation efforts (Iyer and Damania, 2016; Papadopoulou et al.,
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2018). P, jessenii is also suited for bioremediation and rhizoremediation applications

(Garrido-Sanz et al., 2016; Raio, 2024).

Given the ecological and agricultural impact of the species from the Fluorescens
lineage, several phylogenomic studies have explored the evolutionary relationships
among these species (Mulet et al., 2010; Beiki et al., 2016; Garrido-Sanz et al., 2016;
Garrido-Sanz et al., 2017; Girard et al., 2020; Lalucat et al., 2020; Passarelli-Araujo et
al., 2022). These studies have grouped the species from the Fluorescens lineages into
five phylogenetic groups: Asplenii, Fluorescens, Lutea, Syringae, and Putida. Of these
groups, the Fluorescens group is further subdivided into nine subgroups. However, the
species composition of these subgroups often varies in different studies due to the
inclusion of new species over time (Gomila et al., 2015; Garrido-Sanz et al., 2016;
Gomila et al., 2017; Lalucat et al., 2020; Mulet et al., 2024). These different
phylogroups exhibit pronounced phenotypic and genetic diversity, making it difficult to
establish a phylogeny that accurately reflects their genetic cohesiveness and shared
evolutionary history (Mulet et al., 2010;Garrido-Sanz et al., 2017). This complexity is
further compounded by the frequent discovery of new species and the inclusion of
unrelated strains within this lineage (Lalucat et al., 2020; Girard et al., 2021; Lalucat et
al., 2022). Whole-genome-based studies reveal that strains of several species, including
P. fluorescens, P. putida, etc., are often misclassified, resulting in their dispersed
placement within the Fluorescens lineage (Nikolaidis et al., 2020; Passarelli-Araujo et
al., 2022). Since the genus Pseudomonas has been proposed and needs to be restricted
to the species within the Aeruginosa clade, and most of the species from the
Pertucinogena and Aeruginosa lineages have already been reliably reclassified into

distinct monophyletic genera (Saati-Santamaria et al., 2021; Lalucat et al., 2022; Rudra
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and Gupta, 2024), it is of great interest to conduct a comprehensive study on the species
from the Fluorescens lineage to identify distinct monophyletic groups/subgroups that

are robustly supported using multiple genome sequence-based approaches.

With the aim of establishing a reliable phylogenetic framework for the
classification of the Fluorescens lineage of species, in the present work, we have
conducted detailed phylogenomic and comparative genomic studies on the genome
sequences of 245 species from the Fluorescens lineage. Based on their genome
sequences, we have constructed a robust genome-scale phylogenomic tree based on
large datasets of conserved proteins from these species. In the phylogenomic tree that
we have constructed, the Fluorescens lineage of species forms 13 distinct
clades/subclades (viz., Asplenii, Chlororaphis, Corrugata, Fluorescens, Fragi, Jessenii,
Koreensis, Lutea, Mandelii, Massiliensis, Putida, Rhizosphaerae and Syringae), similar
to those reported in earlier studies (Garrido-Sanz et al., 2017; Hesse et al., 2018; Lalucat
et al., 2020; Passarelli-Araujo et al., 2022). In addition to the phylogenetic studies
showing the distinctness of these species clades, we also report here the results of
detailed comparative genomic studies on protein sequences from these species to
identify novel molecular markers, consisting of Conserved Signature Indels (CSIs) in
protein sequences, which are exclusively found in the species from several clades
including Massiliensis, Putida, and Rhizosphaerae. The molecular markers that are
uniquely found in different monophyletic groups of species provide strong evidence
supporting the distinctness of different species clades independently of the phylogenetic
trees and provide robust means for their demarcation in molecular terms (Gupta, 1998;
Sawana et al., 2014; Hu et al., 2019; Bello et al., 2022b). More CSIs will be identified,

exclusively shared by the species from the remaining 10 clades, in the coming months.
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Using these CSIs, all 13 main clades within the Fluorescens lineage can be reliably
demarcated and distinguished from each other based upon multiple exclusively shared

molecular characteristics.

Methods

Construction of Phylogenetic Tree

Genome sequences for 388 named Pseudomonadaceae species were obtained
from the NCBI database, using type strains where available. A phylogenetic tree for
these species was constructed based on concatenated sequences of 118 conserved
proteins, similar to our recent study (Rudra and Gupta, 2024). Moraxella bovoculi and
M. bovis were used as outgroup species to root the tree. A maximum-likelihood (ML)
tree was generated using an internally developed pipeline, as described in other studies
(Adeolu et al., 2016; Rudra and Gupta, 2021; Rudra and Gupta, 2024). Protein families
with at least 50% sequence identity and present in 80% of the input genomes were
identified using the CD-HIT program (Li and Godzik, 2006; Fu et al., 2012), and
multiple sequence alignments were performed with Clustal Omega (Sievers et al.,
2011). TrimAl (Capella-Gutiérrez et al., 2009) was used to remove poorly aligned
regions before concatenation. The alignment contained 42,362 amino acid positions.
FastTree 2 (Price et al., 2010) was used for initial tree construction, using the Whelan
and Goldman model (Whelan and Goldman, 2001), followed by refinement in RAXML
8 (Stamatakis, 2014) with the Le and Gascuel model (Le and Gascuel, 2008). The
resulting phylogenetic tree was formatted and labeled using MEGA X (Kumar et al.,

2018).
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Identification of Conserved Signature Indels (CSls)

Identification of CSIs was carried out using procedures similar to those
described in our earlier work (Gupta, 2014; Rudra and Gupta, 2021; Rudra and Gupta,
2024). Briefly, local BLASTp searches were carried out on protein sequences from the
genomes of several Pseudomonas species representing diverse clades/lineages of
interest, as well as other outgroup species. Based on these BLAST searches, sequences
of high-scoring homologs (E value <le-20) of different proteins were retrieved for
several species (generally between 2 to 10) from the group of interest and 10-15 species
from other Pseudomonas clades or other Pseudomonadaceae genera. Multiple sequence
alignments were created using the ClustalX 2.1 program (Jeanmougin et al., 1998). The
alignments were visually analyzed for fixed-length insertions or deletions found in
conserved regions (i.e., flanked on both sides by minimally 5-6 conserved aa residues
in the neighboring 40-50 aa) and which were only found in the Pseudomonas species
from the clade of interest. The indels, not present in conserved regions, were not further
considered. The query sequences consisting of the conserved indels and their flanking
30-40 aa on each side (generally beginning and ending with a stretch of conserved
amino acids) were selected for a second BLASTp search. This latter BLASTp search
was conducted against the NCBI nr database, and the resultant 250-500 hits were
evaluated to determine the group specificities of the observed indels (CSIs). Based on
these BLASTp results, the indels that were only present in different species from a
specific clade of Pseudomonas were further formatted using the SIG_ CREATE and

SIG_STYLE programs (Gupta, 2014;2016).
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Results

Phylogenetic Studies on the Species from the Fluorescens Lineage

To understand the cladistic relationships among species within the Fluorescens
lineage, we have reconstructed a phylogenomic tree for all named Pseudomonadaceae
species (Sayers et al., 2019; Parte et al., 2020), similar to our recent work (Rudra and
Gupta, 2024). The tree, shown in Fig. 1, is based on concatenated sequences of 118
conserved proteins comprising the phyloeco set for the class Gammaproteobacteria
(Wang and Wu, 2013). Moraxella species (M. bovis and M. bovoculi) from the family
Moraxellaceae were used to root the tree. This tree will be referred to as the “phyloeco
tree” in this study. In this tree, nearly all nodes were supported with 100% bootstrap
values (SH scores), confirming the robustness of the inferred evolutionary relationships

among different Pseudomonadaceae species clades.

The overall clustering of Pseudomonadaceae species in the tree shown in Fig.
1A is consistent with our previous studies (Rudra and Gupta, 2021; Rudra and Gupta,
2024). In this tree, all Pseudomonas species are grouped into three major lineages
(compressed and labeled as Pertucinogena, Aeruginosa, and Fluorescens). Within the
Aeruginosa and Fluorescens lineages, multiple distinct genus-level clades are observed.
The species from most of the clades within the Pertucinogena and Aeruginosa lineages
have now been reclassified into other genera. These clades are shown in the tree in
compressed form and labeled with their new genera names. However, the present study
focuses on the Fluorescens lineage of species, which is compressed in Fig. 1A, and the
uncompressed form of this large species lineage, showing its different clades, is

presented in Fig. 1 (B) and 2 (A-E). As seen in these Figs., species from the Fluorescens
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lineage group into 13 distinct clades, each labeled according to commonly used
clade/subclade names based on representative species from them. These clades include
Asplenii, Chlororaphis, Corrugata, Fluorescens, Fragi, Jessenii, Koreensis, Lutea,
Mandelii, Massiliensis, Putida, Rhizosphaerae, and Syringae. Two species, P.
frederiksbergensis and P. akappageensis, do not group with any observed clades and
form separate lineages. These different clade structures, branching, and naming are
consistent with other studies on Fluorescens lineage, except for some variations in
species composition within some clades/subclades (Garrido-Sanz et al., 2017; Hesse et
al., 2018; Nikolaidis et al., 2020; Girard et al., 2021; Lalucat et al., 2022). To facilitate
the visualization of species composition, the uncompressed forms of Asplenii,
Chlororaphis, Corrugata, Fragi, Jessenii, Lutea, Massiliensis, and Rhizosphaerae clades
are shown in Fig. 1B, while those of the species from the Koreensis, Mandelii, Putida,

Fluorescens, and Syringae clades are depicted in Fig. 2A-E, respectively.
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Figure 1. (A) Maximum-likelihood tree of 388 genome-sequenced Pseudomonadaceae
species, constructed using concatenated sequences of 118 conserved proteins. All
clades/ genera within the Pertucinogena and Aeruginosa lineages have been compressed
and labeled with the recently described new and existing genera names. (B) Expanded
view of all clades within the Fluorescens lineage. For clarity and ease of presentation,
some clades/subclades, including Koreensis, Mandelii, Putida, Fluorescens, and
Syringae, are compressed, with their uncompressed versions shown in Fig. 2 (A-E).
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Figure 2. Expanded view of the clades (A) Koreensis, (B) Mandelii, (C) Putida, (D)

Fluorescens, and (E) Syringae.
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As seen from the tree shown in Fig. 1B, the Massiliensis clade of species forms
a distinct, deepest-branching clade within the Fluorescens species lineage. Of the
remaining groups/clades, species belonging to eight distinct genus-level clades, viz.,
Koreensis, Jessenii, Mandelii, Corrugata, Fluorescens, Chlororaphis, Asplenii, and
Fragi, are commonly referred to as the subclades of the Fluorescens clade (Garrido-
Sanz et al., 2016; Garrido-Sanz et al., 2017; Hesse et al., 2018; Girard et al., 2021;
Lalucat et al., 2022), where in some of these studies, these clades were classified as part
of the P. fluorescens complex, constituting one of the most diverse groups within the
genus Pseudomonas (Garrido-Sanz et al., 2016, Garrido-Sanz et al., 2017). Based on
their distinctness in phylogenetic analysis, our study labeled all these groups as distinct
clades. In earlier studies, two additional subgroups, i.e., P. gessardii and P. protegens
subclades, are also indicated as distinct lineages within the P. fluorescens complex.
However, based on short branches in our phylogenomic tree shown in Figs. 1 and 2, and
in earlier studies (Garrido-Sanz et al., 2017; Lalucat et al., 2020; Lalucat et al., 2022),
as well as molecular evidence (will be discussed later), these subgroups cannot be
reliably distinguished from the species in neighboring clades. Hence, in the present
study, we consider the Gessardii and Protegens subclades as part of the Fluorescens
clade (shown in Fig. 2D) and the Chlororaphis clade (Fig. 1B), respectively. Further
evidence supporting the grouping of these subclades with the Fluorescens and
Chlororaphis clades will be discussed later. The distinctness of the 13 distinct species
clades observed in the tree shown in Figs. 1 and 2 are also strongly supported by the

results of our comparative genomics analyses presented below.

132



Identification of Molecular Markers for Different Clades Within the Fluorescens

Lineage:

As previously mentioned, Pseudomonas species from the Fluorescens lineage
consistently form distinct genus-level clades and subclades across different genome-
scale phylogenies. However, the branching patterns in these trees are influenced by
multiple factors such as the number and type of chosen gene sets, the algorithm used
for sequences alignment and tree construction, selection of outgroups, long branch
attraction effects, horizontal gene transfer (HGT) events, etc. (Gupta, 1998; Gupta and
Griffiths, 2002; Baldauf, 2003; Felsenstein, 2004). Moreover, the branching of different
clades/subclades in the phylogenetic trees forms a continuum, with some nodes being
separated by short branch lengths, making it difficult to define their boundaries
precisely. Given these challenges, it is important to identify other definitive markers for
distinguishing these clades/subclades. Molecular synapomorphies in the form of CSIs
in gene and protein sequences serve as unique, clade-specific features, and they have
proven useful for taxonomic classification at different levels (Gao and Gupta, 2005;
Griffiths and Gupta, 2006b; Gupta, 2014; Adeolu et al., 2016). In our earlier work, based
on the presence or absence of CSls, we clarified the taxonomic position of a large
number of Pseudomonas species clades from both the Aeruginosa and Pertucinogena
lineages by transferring them into different novel genera (Rudra and Gupta, 2021; Rudra
and Gupta, 2024). Hence, as a continuation of my earlier work on the genus
Pseudomonas, 1 have also identified several CSls, which are specific to different clades
within the Fluorescens lineage. These clade-specific CSIs provide strong genetic
evidence for the distinctiveness of these species’ clades and offer a more reliable method
for their taxonomic demarcation. We provide below some examples of the identified
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CSIs, which are specific for some of the Fluorescens lineage of species clades noted
above. More detailed and comprehensive information regarding the CSIs specific to
different observed clades will be provided in a manuscript that will be submitted in the

coming months.

Identification of CSls for the Massiliensis clade of species:

The Massiliensis clade consists of three species: “P. massiliensis”, P. quercus,
and P. typographi. Species from this clade have been isolated from diverse sources,
including fecal flora (stool) (Bardet et al., 2018), leaf spot disease (Li et al., 2021b), and
bark beetles (Peral-Aranega et al., 2020). In the phylogenetic tree, they form a well-
supported, distinct clade that is separated from other clades within the Fluorescens
lineage by a long branch. Our comparative genomic analysis identified six CSIs that are
exclusively shared by all three species within the Massiliensis clade but are absent in
all other Pseudomonadaceae species or other bacteria. One of these CSIs, shown in Fig.
3A, is a four aa insertion in the mannitol dehydrogenase family protein, uniquely present
in all three species. This is an important metabolic enzyme that facilitates the reversible
oxidation of D-mannitol to D-fructose, D-arabinitol to D-xylulose, and D-sorbitol to L-
sorbose by transferring the C2 hydride to the pro-S position on the nicotinamide
(Kavanagh et al., 2002). Thus, based on the molecular markers (CSlIs), the Massiliensis
clade of species can be reliably demarcated from the rest of the Pseudomonasaceae
species clades. Due to space constraints, sequence information for limited
Pseudomonadaceae species (outgroups) is presented here. Additionally, as the results
for the CSls identified in this study have not yet been published, I am presenting only

limited information here for the CSIs specific to different clades.
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Identification of CSlIs for the Rhizosphaerae and Putida clades of species:

Another distinct clade, the Rhizosphaerae clade, consists of four species: P.
baltica, P. coleopterorum, “P. eucalypticola”, and P. rhizosphaerae. These species were
isolated from diverse sources, including grass (Peix et al., 2003), insects (Menendez et
al., 2015), plant leaves (Liu et al., 2021b), and raw milk (Gieschler et al., 2021).
Notably, this clade consists of species known to produce antifungal agents (Liu et al.,
2021b), whereas the neighboring Putida clade is primarily recognized for its role in
bioremediation (Papadopoulou et al., 2018). In the phylogenetic tree, species from the
Rhizosphaerae clade form a well-supported clade distinct from the neighboring Putida
clade and other Pseudomonadaceae species clades. Our comparative genomic analysis
identified four CSIs that are exclusively present in all species of this clade but absent in
other Pseudomonadaceae species or other bacteria. One example, shown in Fig. 3B,
highlights a three-amino-acid deletion within the thioesterase family protein, which is
shared explicitly by species of the Rhizosphaerae clade but not found in other bacteria.
Thus, based on the phylogenomic distinctiveness and presence of shared CSlIs, species

from this clade (Rhizosphaerae) should be reclassified as a distinct genus.
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Figure 3: Partial sequence alignment of (A)-the mannitol dehydrogenase family protein
showing a four aa insertion (highlighted) that is exclusively present in all members of
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Within the Fluorescens lineage, the Putida clade forms the second-largest clade,
encompassing 54 species (Fig. 1E). These species are widely studied for their
biotechnological potential, particularly in environmental and industrial applications
(Poblete-Castro et al., 2012; Keshavarz-Tohid et al., 2019). Strains within this group play
a crucial role in carbon cycling due to their remarkable metabolic adaptability and ability
to degrade a broad range of natural organic compounds and xenobiotics, including
plastics, pesticides, lubricants, and other industrial pollutants (Udaondo et al., 2024). In
our phylogenetic analysis (Figs. 1 and 2), this group of bacteria forms a strongly
supported clade. However, some smaller subgroups are observed within the Putida clade,
which are separated by short branches, indicating their close evolutionary relationships
to the Putida clade. Similar observations are also reported in other studies (Girard et al.,
2021). The results of our comparative genomic analyses have identified nine CSIs, which
are exclusively shared by all 54 species from the Putida clade, providing a reliable means
for the demarcation of this species clade. One example of a CSI specific to the Putida
clade of species is presented in Fig. 4, where a one aa insertion in the protein Leucyl
aminopeptidase is found explicitly in all species from this clade but not in any other
Pseudomonadaceae species or other bacteria, providing strong evidence for the

distinctiveness of this clade.

Like the examples of CSIs shown in Figs. 3 and 4, which are specific to the
species from the Massiliensis, Rhizosphaerae, and Putida clades, in the coming months,
our future work aims to identify CSIs specific to the remaining species clades within the
Fluorescens lineage, as shown in Fig. 5. Using these CSIs, different species clades within
the Fluorescens lineage can be reliably demarcated based on multiple exclusively shared
molecular characteristics.
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clade but not shared by any other Pseudomonadaceae species. Due to space constraints,

this figure displays a limited number of ingroup and outgroup species.
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P. rhodesiae, P. salmasensis, P. salomonii, P. shahriarae, P. simiae, P. sivasensis, P. spelaei, P.
synxantha, P. tolaasii, P. tritici, P. trivialis, P. veronii, P. yamanorum.
Chlororaphis
Clade P. chlororaphis, "P. aestus", P. morbosilactucae, P. piscis, P. protegens, P. saponiphila,
P. sesami, P. sessilinigenes.
Asplenii Clade (P asplenii, P agarici, "P. batumici", P. fuscovaginae, "P. gingeri", P. vanderleydeniana.
P. fragi, P. bubulae, P. deceptionensis, P. endophytica, P. helleri, P. lundensis,
Fragi Clade P, paraversuta, P. psychrophila, P. saxonica, P. taetrolens, P. versuta, P. weihenstephanensis.
Lutea clade P. lutea, P. abietaniphila, P. bohemica, P. graminis.
P. syringae, P. alliivorans, P. amygdali, P. asturiensis, P. avellanae, P. californiensis, P. cannabina,
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quasic P sa P. coryli, P. tremae, "P. triticumensis", P. viridiflava.
CSIs Rhizosphaerae |p rhizosphaerae, P baltica, P. coleopterorum, "P. eucalypticola”.
Clade
P. putida, P. aegrilactucae, P. alkylphenolica, P. alloputida, P. anuradhapurensis,
P, arcuscaelestis, P. asiatica, P. brassicae, "P. capeferrum", "P. ceruminis", P. cremoricolorata, P.
9 defluvii, P. donghuensis, P. entomophila, P. fakonensis, P. farsensis, P. fulva, P. guariconensis, P.
CSIs huaxiensis, "P. hunanensis”, P. inefficax, P. japonica, P. j di, P. ker hahensis,
Putida clade |2 kurunegalensis, P. laurentiana, P. maumuensis, P. monteilii, P. mosselii,P. muyukensis,
P, oryzicola, "P. oryziphila", P. palmensis, P. parafulva, P. peradeniyensis, P. plecoglossicida,
P, promysalinigenes, "P. pudica”, "P. gingdaonensis", P. reidholzensis, P. shirazensis,
P, shirazica, P. sichi is, P. soli, P. tai is, P. tructae, "P. urethralis”, P. urmiensis,
P, viassakiae, P. vranovensis, P. wadenswilerensis, P. wayambapalatensis, P. xantholysinigenes,
P. xanthosomae.

Figure 5: A conceptual diagram illustrating the branching pattern of all clades,
highlighting representative species and showing the number and positions of CSIs

specific to different clades within the Fluorescens lineage.
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Discussion

Establishing a reliable and informative taxonomic framework for the genus
Pseudomonas has been a long-standing challenge in the field of microbial taxonomy
(Anzai et al., 2000; Peix et al., 2009; Peix et al., 2018; Lalucat et al., 2022). As indicated
in the Introduction, this genus consists of species that are highly diverse and
polyphyletic. Phylogenetic analyses reveal that Pseudomonas species cluster into three
major lineages/groups: Pertucinogena, Aeruginosa, and Fluorescens. Earlier studies
clarified the evolutionary relationships among species from the Aeruginosa and
Pertucinogena lineages using phylogenomic and comparative genomics-based
polyphasic approaches (Rudra and Gupta, 2021; Saati-Santamaria et al., 2021; Lalucat
et al., 2022; Rudra and Gupta, 2024). However, these efforts have not reliably resolved
the evolutionary relationships among species from the Fluorescens lineage, which
comprises approximately two-thirds of Pseudomonas species. These large assemblages
of diverse species are ecologically important, with valuable agricultural and
environmental roles and different biotechnological applications (Vanparys et al., 2006;

Silby et al., 2011; Scales et al., 2014; Raio, 2024).

With the aim of clarifying evolutionary relationships among species from the
Fluorescens lineage, several phylogenomic-based studies were conducted. These
studies demonstrated that the Fluorescens lineage consists of multiple genus-level
clades/subclades in the phylogenetic trees with distinct phenotypic features (Mulet et
al., 2010; Gomila et al., 2015; Garrido-Sanz et al., 2016; Garrido-Sanz et al., 2017).
However, the distinguishing properties identified for several clades/subclades often

overlap, making them unreliable for taxonomic classification. For example,
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bioremediation or rhizoremediation traits are observed in both the Jesseni and Putida
clades (Furmanczyk et al., 2018; Papadopoulou et al., 2018). Similarly, species with
biocontrol or insecticidal properties are dispersed across the Fluorescens, Corrugata,
and Chlororaphis clades (Scales et al., 2014; Garrido-Sanz et al., 2017; Raio, 2024).
While the Syringae clade predominantly comprises plant pathogens (Gomila et al.,
2017; Dutta et al., 2018; Mulet et al., 2024), pathogenic species also exist in the
Koreensis clade (Kwon et al., 2003; Garrido-Sanz et al., 2016). A group of
microbiologists who conducted extensive studies on the genus Pseudomonas
highlighted the challenge of identifying clade- or subclade-specific traits, stating, ““...we
attempted to find specific phenotypic traits that could be characteristic of and
differentiate between groups, but our attempt was not successful...” (Mulet et al., 2010).
Therefore, it is of great interest to identify clade-specific biochemical or molecular
taxonomic markers that can support the taxonomic reorganization of the Fluorescens
lineage of species to be consistent with taxonomic principles, as species within the same
genus should share similar biochemical or molecular properties (Gupta, 2021;
Hugenholtz et al., 2021; Saati-Santamaria et al., 2021; Lalucat et al., 2022; Malhotra et

al., 2024).

To address this gap, we conducted comprehensive phylogenomic and
comparative genomic analyses on all named Pseudomonas species from LPSN (Parte
et al., 2020) whose genome sequences are available in the NCBI genome database
(https://www.ncbi.nlm.nih.gov/datasets/genome/). These analyses aim to revisit the
phylogenetic relationships among different clades within the Fluorescens lineage and
identify reliable molecular markers for defining distinct groups. The use of
phylogenomic trees alongside conserved traits is instrumental in defining genera and
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higher taxonomic ranks, helps to resolve ambiguities in poorly classified taxa, and
promotes a more standardized and balanced classification across different phyla (Chun

etal., 2018).

As our first attempt, we conducted a comprehensive phylogenetic analysis based
on 118 conserved proteins, providing a robust overview of the cladistic relationships
among different Fluorescens lineage of species. The phylogenomic trees constructed
based on core genes or a large number of genes yield more accurate and robust results
than a single gene (e.g., 16S rRNA) or a small group of genes (e.g., MLSA) (Rokas et
al., 2003; Wu et al., 2009; Gao and Gupta, 2012b). In our phylogenetic analysis, 13
distinct clades/subclades (viz., Asplenii, Chlororaphis, Corrugata, Fluorescens, Fragi,
Jessenii, Koreensis, Lutea, Mandelii, Massiliensis, Putida, Rhizosphaerae and Syringae)
were observed within the Fluorescens lineage, which are consistent with the findings
from the earlier studies (Gomila et al., 2015; Garrido-Sanz et al., 2016; Hesse et al.,
2018; Girard et al., 2021). Since these clades are distinct, their uniqueness is further
supported by a large number of clade-specific molecular markers in the form of CSIs,
with our major focus of this study being to define the boundaries of different clades
using stable and reliable molecular markers. Our comparative genomics studies
identified several CSIs, which are highly specific for different clades, including
Massiliensis, Putida, and Rhizosphaerae. However, we will also identify CSIs for the
remaining clades within the Fluorescens lineage in the coming months for their reliable
demarcation by molecular means. The cladistic relationships of different clades, their
species composition, along with their position and number of identified clade-specific
CSlIs, are shown in the conceptual Fig. 5. CSIs, found in gene/protein sequences and
uniquely shared by different groups of organisms, offer reliable tools for taxonomic and
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diagnostic studies (Gupta, 1998; Ahmod et al., 2011; Gupta and Kanter-Eivin, 2023).
Since CSIs arise from rare genetic changes, their presence or absence in species is
generally unaffected by most factors that could influence phylogenetic analyses
(Baldauf and Palmer, 1993; Gupta, 1998; Rokas and Holland, 2000; Gupta, 2016).
Additionally, because CSIs in different genes/proteins result from independent genetic
events, each provides distinct evidence of a close and specific evolutionary relationship
within a species group (Gao et al., 2006; Bhandari et al., 2013; Gupta, 2016; Hu et al.,
2018). Thus, based on the shared molecular markers and phylogenomic distinctiveness,
the species from the Fluorescens lineage could be reliably demarcated into 13 distinct

genus-level clades, shown in Fig. 5.

One of the key features of this CSI-based classification is its predictive ability.
Highly specific CSIs for different clades or genera can be used to determine the
taxonomic affiliation of uncharacterized species or strains (Barbour et al., 2017; Gupta
et al., 2020; Gupta and Kanter-Eivin, 2023). To harness this potential, the web server
Applndels.com was developed to predict the taxonomic placement of unclassified
strains and species (Gupta and Kanter-Eivin, 2023). Our recent analysis of
approximately 2,000 strains reassigned ~300 uncharacterized Pseudomonas species to
their respective genera using the Applndels server (Rudra and Gupta, 2025). However,
a substantial number of Pseudomonas strains remain uncharacterized in the NCBI
database, many of which are misclassified. Previous studies have reported that 25.65%
of Pseudomonas genomes are misclassified (Passarelli-Araujo et al., 2022). By
identifying CSIs specific to distinct clades within the Fluorescens lineage, we aim to
provide a valuable resource for accurately classifying uncharacterized strains, thereby
improving the overall accuracy of Pseudomonas taxonomy.
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CHAPTER 7

DISCUSSION AND CONCLUSIONS
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Discussion

Microbial systematics and taxonomy provide the foundational framework
for organizing and understanding the diverse microbial world (Buchanan, 1955;
Woese et al., 1990; Gupta, 1998; Garrity, 2016; Hugenholtz et al., 2021). It
systematically organizes microbial strains into taxonomic ranks (species to phyla)
based on shared characteristics while reconstructing their phylogenetic and
evolutionary history (Woese et al., 1990; Gupta, 1998; Sutcliffe et al., 2012; Yarza et
al., 2014; Parks et al., 2018; Gupta et al., 2020). Beyond evolutionary and systematic
studies, a stable and informative taxonomic framework is essential across numerous
scientific and applied fields, including medicine, biotechnology, environmental
science, food production, and agriculture (Ward, 2002; Gevers et al., 2006;
Bourdichon et al., 2012; Fan and Smith, 2021; Li et al., 2021a). Accurate taxonomy is
crucial in medicine for identifying pathogens, selecting appropriate antibiotics, and
analyzing antimicrobial resistance (Qin et al., 2022; Miller and Arias, 2024). In
biotechnology, it facilitates strain selection for novel enzyme discovery and
bioprospecting for antibiotics and other bioactive compounds (Saati-Santamaria et al.,
2018; Nouioui and Sangal, 2022; Kruse et al., 2024). It also plays a key role in food
production by supporting the selection of fermentation starter cultures and identifying
spoilage organisms to ensure food safety (Bourdichon et al., 2012; Zheng et al., 2020).
In agriculture, it aids in identifying nitrogen-fixing bacteria such as Rhizobia,
characterizing plant growth-promoting bacteria, assessing soil microbial
communities, and developing biofertilizers to enhance crop productivity (Majeed et

al., 2015; David et al., 2018; Fan and Smith, 2021; Mora et al., 2022). Overall,

145



microbial taxonomy serves as a cornerstone across multiple disciplines, advancing
microbial research and supporting critical applications in health, industry, and
environmental sustainability.

The genomic era has revolutionized prokaryotic taxonomy, offering more
profound insights into microbial evolution, diversity, and relationships. As discussed
in Chapter 1 (Introduction), advances in whole-genome sequencing have revealed a
hidden world of microbial life, challenged traditional classification methods, and
driven the need for new tools and approaches to better understand microbial evolution
(Woese et al., 1990; Gupta, 1998; Konstantinidis and Tiedje, 2005b; Thompson et al.,
2013; Gupta, 2016; Parks et al., 2018; Barco et al., 2020). The availability of genomic
data has enabled the identification of two important classes of novel molecular
markers: Conserved Signature Indels (CSIs) and Conserved Signature Proteins
(CSPs), uniquely shared by evolutionarily related groups of organisms (Gupta, 1998;
Griffiths and Gupta, 2001; Gao et al., 2006; Bhandari et al., 2013; Gupta, 2016; Hu et
al., 2019). Building on these advancements, my PhD research applied phylogenomic
and molecular marker-based polyphasic approaches to clarify evolutionary
relationships among Pseudomonas species, a longstanding challenge in prokaryotic
taxonomy.

The genus Pseudomonas, belonging to the family Pseudomonadaceae
within the class Gammaproteobacteria, is estimated to have evolved from
Hydrobacteria approximately 1.75 billion years ago (Battistuzzi and Hedges, 2009).
With over 350 recognized species listed in LPSN (accessed on March 1, 2025) (Parte
et al., 2020), Pseudomonas is among the most diverse bacterial genera. While P,

aeruginosa 1s one of the most extensively studied pathogenic species, known to cause
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different diseases in humans and animals (Burrows, 2012; Huber et al., 2016; Garcia-
Reyes et al., 2020; Miller and Arias, 2024), other species thrive in diverse
environments, including the soil (Weller et al., 2012), water (Bollinger et al., 2020)
plant surfaces (Hirano and Upper, 2000), and insect guts (Vodovar et al., 2005).
Beyond its ecological diversity, Pseudomonas spp. have important applications in
biotechnology, plant growth promotion, bioremediation, and biological control (Kwon
etal., 2003; Hultberg et al., 2010b; Girard et al., 2021). However, despite the extensive
phenotypic and genotypic diversity, all Pseudomonas species are classified within a
single genus, a classification that does not accurately reflect their evolutionary
relationships.

To explore the evolutionary relationships among different Pseudomonas
species, extensive studies were conducted (Gomila et al., 2015; Garrido-Sanz et al.,
2016; Hesse et al., 2018; Peix et al., 2018; Lalucat et al., 2020; Girard et al., 2021;
Lalucat et al., 2022). Phylogenetic analyses from these studies consistently
demonstrate that Pseudomonas is highly polyphyletic, comprising unrelated bacterial
groups clustering into three evolutionary lineages: Pertucinogena, Aeruginosa, and
Fluorescens. The Aeruginosa and Fluorescens lineages contain multiple genus-level
clades and subclades, with species from other genera (e.g., Azomonas, Azotobacter)
interspersed among them. Additionally, several species (e.g., P. cissicola, P.
geniculate, etc.) have been misclassified within the genus Pseudomonas (Hu et al.,
1997; Anzai et al., 2000; Cutino-Jimenez et al., 2020). Based on the observed
taxonomic inconsistencies, the prevailing perspective is that only members of the
Aeruginosa clade (which includes the type species P. aeruginosa) should remain

within the genus Pseudomonas, while other clades should be reassigned to distinct
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genera (Hesse et al., 2018; Lalucat et al., 2022). This perspective is also aligned with
the Code governing the Nomenclature of Prokaryotes (Parker et al., 2019) and the
GTDB taxonomy (Parks et al., 2022). However, due to a lack of definitive evidence
for reclassification, these diverse species remain within the genus Pseudomonas (Parte
et al., 2020). A major challenge in the reclassification effort is precisely defining the
boundaries between different clades, as phylogenetic analyses reveal a continuum of
species branching in the trees. Also, the branching of species in the phylogenetic trees
is constrained by several factors, such as the choice of tree-building algorithms,
alignment quality, evolutionary rate models, species composition, and outgroup
selection (Gupta, 1998; Gupta and Griffiths, 2002; Ludwig, 2005; Philippe et al.,
2005; Gupta, 2016). Furthermore, traditional taxonomic methods have failed to
provide reliable markers/properties for distinguishing closely related species or clades.

Therefore, intending to demarcate the observed Pseudomonas species
clades reliably, we conducted comprehensive phylogenomic and comparative analyses
on the available genome sequences of Pseudomonadaceae species from the NCBI
genome database (https://www.ncbi.nlm.nih.gov/datasets/genome/). As our first
approach, we constructed comprehensive phylogenetic trees using large sets of
conserved genes and proteins, where Pseudomonas species consistently clustered into
three major lineages: Pertucinogena, Aeruginosa, and Fluorescens. Multiple genus-
level distinct clades are observed within the Aeruginosa and Fluorescens lineages,
similar to those reported in other studies (Gomila et al., 2015; Garrido-Sanz et al.,
2016; Hesse et al., 2018; Peix et al., 2018; Lalucat et al., 2020), excepting some
differences resulting from including several new species in our analysis. To define the

boundaries of different observed clades, our major focus (second approach) was to
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conduct comparative genomics analysis on available genomic sequences of different
Pseudomonas species for the identification of CSIs and CSPs (Gupta, 1998; Gupta,
2006; Naushad et al., 2014). Independent of the phylogenetic analyses, these markers
can confirm the existence of observed clades and provide reliable means for their
demarcation. As discussed in different chapters of this thesis, CSIs and CSPs originate
from rare genetic changes that arose in common ancestors and were subsequently
inherited by all descendants. Due to their clade-specific nature, these markers provide
strong evidence of evolutionary relationships and species relatedness within a clade
(Bhandari et al., 2012; Adeolu and Gupta, 2013; Naushad and Gupta, 2013; Gupta,
2014; Hu et al., 2019). Their exclusive presence within specific groups has made them
a reliable tool for taxonomic classification and evolutionary studies (Gupta, 1998;
Griftiths and Gupta, 2002; Gao and Gupta, 2012b; Adeolu et al., 2016; Hu et al., 2018).
In addition to evolutionary and systematics studies, these signatures can also be used
for biochemical and functional studies of the groups of organisms in which they are
specific. Previous studies on CSIs have demonstrated their crucial roles in the
organisms where they are present (Singh and Gupta, 2009). Research also indicates
that CSIs are located in surface loops of the proteins, key regions involved in protein-
protein or protein-ligand interactions. These interactions are often essential for the
survival and functionality of CSI-containing organisms (Khadka and Gupta, 2017;
Hassan and Gupta, 2018; Khadka et al., 2020).

Hence, to identify molecular markers specific to observed distinct clades
within the Pertucinogena, Aeruginosa, and Fluorescens lineages, we conducted
detailed comparative genomics analyses on the protein sequences from different

Pseudomonadaceae species, which led to the identification of a large number of CSIs.
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We first focused on the Pertucinogena lineage of species (presented in Chapter 2),
which is distinct from all other Pseudomonas species groups. Our analysis identified
24 CSIs exclusively shared by all species in this clade. Based on their distinct
phylogenetic positioning, shared CSIs, and salt tolerance properties, we reclassified
the Pertucinogena clade as a novel genus, Halopseudomonas. Additionally, we
identified 22 CSIs specific to P. hussainii, which formed a separate lineage in the
phylogenetic trees. These findings (phylogenomic distinctness and shared CSls)
supported its reclassification as a new genus, Afopomonas. The reliability of this
classification was further supported when Atopomonas sediminilitoris (Li et al., 2023)
was described, sharing all Atopomonas-specific CSls. Furthermore, based on the
evidence from our studies, we reassigned several misclassified species, P. acidophila,
P caeni, P cissicola, and P geniculate, to the genera Paraburkholderia,
Thiopseudomonas, Xanthomonas, and Stenotrophomonas, respectively. This study,
presented in Chapter 2, provides a foundation for classifying Pseudomonas clades
from the Aeruginosa lineage (presented in Chapter 3) and the Fluorescens lineage
(described in Chapter 6).

In the study discussed in Chapter 3, I explored the evolutionary
relationships within the Aeruginosa lineage of species. Phylogenomic analysis
revealed the existence of 12 distinct clades within the Aeruginosa lineage: Aeruginosa,
Alcaligenes, Anguilliseptica, Flexibilis, Fluvialis, Linyingensis, Oleovorans,
Oryzihabitans, Resinovorans, Straminea, Stutzeri, and Thermotolerans clades, along
with the genera Azotobacter and Azomonas, branching in-between different
Pseudomonas species clades. These distinct clades are widely recognized as requiring

reclassification into separate genera, as demonstrated by the reclassification of species
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from the Oryzihabitans and Stutzeri clades into the genera Chryseomonas (Saati-
Santamaria et al., 2021) and Stutzerimonas (Lalucat et al., 2022), respectively. Hence,
to reclassify the rest of the clades and define their boundaries, we identified 98 CSIs
uniquely shared by different clades within the Aeruginosa lineage, including the
genera Azomonas and Azotobacter. Of the CSlIs, six are identified by our analysis,
uniquely shared by all species from the Aeruginosa clade, providing reliable molecular
means for the demarcation/circumscription of this clade, representing the genus
Pseudomonas sensu stricto. The rest of the CSls are specific for distinct clades, which
provide a reliable basis for delineating these clades into novel genera. We also
conducted genomic similarity studies (AAI and POCP) to assess genomic relatedness,
but in most cases, these values overlapped between ingroup and outgroup species,
making them unreliable for genus-level demarcation. Similar limitations of AAI and
POCP for genus-level demarcation have been noted in other studies (Gupta, 2019;
Barco et al., 2020). Thus, based on the strong and consistent evidence provided by
phylogenomic analyses and identified molecular signatures, we reclassified the
species from the Alcaligenes, Fluvialis, Linyingensis, Oleovorans, Resinovorans,
Straminea, and Thermotolerans clades into following novel genera Aquipseudomonas
gen. nov., Caenipseudomonas gen. nov., Geopseudomonas gen. nov.,
Ectopseudomonas gen. nov., Metapseudomonas gen. nov., Phytopseudomonas gen.
nov., and Zestomonas gen. nov., respectively. In addition, we also identified CSIs for
the emended genera Chryseomonas (Oryzihabitans clade), Serpens (Flexibilis clade),
Stutzerimonas (Stutzeri clade), Azotobacter, and Azomonas, providing robust
molecular means for the demarcation of these genera. Notably, we did not reclassify

the species from the Anguilliseptica clade for which no CSIs were identified. The
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Anguilliseptica clade of species does not form a single cohesive group but instead
consists of multiple distinct lineages, and further work is needed to clarify their
evolutionary relationship. While reclassifying the Aeruginosa linecage greatly
improves our understanding of the evolution and taxonomy of different Pseudomonas
spp., a fully comprehensive classification system requires precise delineation of
species clades within the Fluorescens lineage, as presented in Chapter 6.

The Fluorescens lineage includes over two-thirds of known Pseudomonas
species. Phylogenomic analyses consistently reveal 13 distinct genus-level clades
within this lineage: Asplenii, Chlororaphis, Corrugata, Fluorescens, Fragi, Jessenii,
Koreensis, Lutea, Mandelii, Massiliensis, Putida, Rhizosphaerae, and Syringae.
Classifying these clades as distinct genera has proven difficult due to a lack of well-
defined, clade-specific characteristics (Mulet et al., 2010). Therefore, similar to other
studies on Pertucinogena and Aeruginosa lineages, we identified 19 CSIs uniquely
shared by species of three clades (viz., Massiliensis, Putida, and Rhizosphaerae). Our
ongoing comparative genomics-based studies will identify more CSIs for demarcating
the remaining 10 clades. This large number of molecular markers will offer a reliable
and independent means for distinguishing and delineating these clades, supporting
their potential reclassification as distinct novel genera. Besides, some single-
branching species within the Aeruginosa and Fluorescens lineages (viz., P
cavernicola, P. indica, P. kuykendallii, P. mangiferae, P. mangrovi, P. matsuisoli, and
P. pohangensis) will temporarily be classified as “Pseudomonadaceae incertae sedis”.
Future reclassification into novel genera will occur as more related strains or species

are discovered.
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While our reclassification efforts primarily focused on the genus level, as
outlined in Chapters 2, 3, and 6, our findings revealed that molecular markers are also
specific at the species or strain level, as discussed in Chapter 4. In this chapter, I
presented the phylogenomic and comparative genomic analyses of numerous P.
aeruginosa strains. The phylogenetic analysis identified two distinct clades: the
Classical clade, which contains the Type III secretion system, and the Outlier clade,
which lacks this system (Sood et al., 2019). We identified CSIs and CSPs that were
exclusively shared by the strains from these two clades. Based on the markers or
synapomorphies uniquely shared by these clades, widely accepted species
demarcation criteria, including 16S rRNA similarity, dDDH, ANI, and key phenotypic
traits, we reclassified the subset of P. aeruginosa strains (Outlier clade) as a new
species, P. paraeruginosa, distinct from P. aeruginosa (Classical clade).

This reclassification of the genus Pseudomonas (into >25 distinct genera,
along with one new species, P. paraeruginosa) aligns with other taxonomists'
expectations, as Palleroni described phylogenomic-based taxonomy as a
transformative “big bang” that extensively reorganizes existing genera and facilitates
the reclassification into numerous new genera (Lalucat et al., 2020). Lalucat and
colleagues, a leading research group on Pseudomonas, emphasized the importance of
reclassification of the genus Pseudomonas into numerous novel genera by asserting
that the reclassification of this genus will serve as a model in modern bacterial
taxonomy, aiding in the clarification and reorganization of other bacterial genera
(Lalucat et al., 2020).

A key aspect of prokaryotic classification is the preference for a stable,

broadly applicable system with strong predictive capabilities (Vandamme et al., 1996;
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Rossell6-Mora and Amann, 2001; Barbour et al., 2017). Based on molecular markers,
our proposed classification framework meets these criteria by providing a reliable and
stable taxonomic structure. The CSIs used to define different Pseudomonas spp.
clades/genera demonstrate high predictive accuracy, consistently appearing in newly
identified or sequenced members of the same clade (Dobritsa and Samadpour, 2019;
Gupta et al., 2020; Gupta and Kanter-Eivin, 2023). Recently, a CSI-based tool,
Applndels.com, was developed to predict the taxonomic affiliation of uncharacterized
bacterial strains (Gupta and Kanter-Eivin, 2023). Using the AppIndels web server, we
explored the application of CSIs for predicting the taxonomic affiliation of ~300
uncharacterized Pseudomonas strains, successfully reassigning them to their
respective genera. This study on the predictive ability of CSlIs is presented in Chapter
5 of my thesis. One limitation of this server is that it can only determine the taxonomic
affiliation of strains or species for which CSIs have been identified and uploaded in
the ApplIndels.com database (Gupta and Kanter-Eivin, 2023). Since we have not yet
uploaded CSI information specific to different clades/genera within the Fluorescens
lineage, the server cannot assign taxonomic affiliation to uncharacterized species or
strains related to those groups. However, once CSIs are identified and published, we
will update the server with the relevant CSI information, enabling it to predict their
taxonomic placement.

The molecular signature-based classification framework we established for
Pseudomonas provides greater reliability and stability for several key points. First, it
not only accurately identifies and classifies species and strains, which is critical for
clinical diagnostics and environmental monitoring, but it also effectively illustrates

evolutionary relationships among different Pseudomonas species. Modern bacterial
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taxonomy is best determined by evolutionary lineage, as phenotypic traits often fail to
reflect common ancestry (Stanier and van Niel, 1962; Woese, 1992; Gupta, 1998;
Sapp, 2006). Second, the molecular markers we use to distinguish different
clades/genera are highly reliable, informative, and valuable in taxonomic,
biochemical, and evolutionary studies (Adeolu et al., 2016; Gupta, 2016; Hu et al.,
2018; Patel and Gupta, 2020; Bello et al., 2022a). Third, defining species and genus
boundaries is fundamental to prokaryotic classification and systematics (Kauffmann,
1963; Konstantinidis and Tiedje, 2005a; Richter and Rossello-Mora, 2009; Qin et al.,
2014; Barbour et al., 2017; Barco et al., 2020; Patel and Gupta, 2020). While species-
level classification is established relying on criteria such as 16S rRNA gene similarity
(98.65%), ANI (95-96%), and dDDH (70%) (Stackebrandt and Goebel, 1994; Goris
et al., 2007; Kim et al., 2014), the genus-level classification remains challenging due
to the lack of universally reliable methods. The limitations of existing genus
demarcation approaches, such as AAI (Konstantinidis and Tiedje, 2005b) and POCP
(Qin et al., 2014), have been discussed in chapters 1 and 3. In contrast, the CSI-based
approach provides a more reliable and precise framework for demarcating the
boundaries based on shared markers at the genus level and other higher taxonomic
ranks (Gao et al., 2009a; Hu et al., 2019; Gupta et al., 2020; Patel and Gupta, 2020;
Chen et al., 2021). Finally, the molecular markers we have identified offer high
predictive power for classifying uncharacterized strains into their appropriate genera,
further enhancing their accuracy and applicability (Gupta and Kanter-Eivin, 2023).
Thus, the classification scheme developed in my work, utilizing molecular markers,
provides a highly reliable, informative, and stable classification for the genus

Pseudomonas and other Pseudomonadaceae genera. Figure 7.1 (Markmap) provides
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a summary of the Pseudomonas reclassification, highlighting its overall importance
as discussed in the different chapters of this thesis.

While our genome-based taxonomic revisions provide a more accurate
reflection of evolutionary relationships, the implementation can have some
implications across several fields, including clinical microbiology, epidemiology,
laboratory diagnostics, and education (Baron and Allen, 1993; Janda, 2018; Gajdacs
and Urbén, 2019; Munson and Carroll, 2019; Hugenholtz et al., 2021). However, the
taxonomic reclassification proposed in my study does not impact -clinical
microbiologists, as no taxonomic changes were made to clinically important species
such as P. aeruginosa, the type species of the genus. Instead, we reclassified unrelated
species into distinct genera based on phenotypic and genomic distinctions. This
revision provides clarity, facilitating the identification of pathogenic species, species
with biotechnological potential, plant pathogenicity, plant growth-promoting
properties, or bioremediation capabilities. It is important to note that while validly
published names hold nomenclatural standing, their adoption depends on acceptance
by the scientific community. Although the taxonomic changes we made may present
short-term challenges, they ultimately enhance taxonomic accuracy and improve

microbiological research and applications in the long run (Gupta, 2021).
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The genus Pseudomonas included species that did not share a common ancestor, leading to artificial
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Future Directions

My thesis presents a comprehensive approach to the taxonomic revision of the
genus Pseudomonas using phylogenomic, molecular signatures-based polyphasic
approaches. A substantial number of molecular markers in the form of CSIs and CSPs
were identified, which are shared explicitly by different Pseudomonas species
clades/genera. These taxonomic synapomorphies can be efficiently utilized through the

CSlI-based web server Applndels.com to classify uncharacterized strains/species.

Beyond their role in evolutionary and systematic studies, these markers have
valuable diagnostic applications. Their high sequence conservation enables the design
of polymerase chain reaction (PCR) primers, allowing for precise and reliable
amplification of CSI and CSP-containing DNA regions (Griffiths and Gupta, 2002; Gao
and Gupta, 2005). Previously, molecular assays utilizing these markers have been
successfully used to differentiate Bacillus anthracis from Bacillus cereus (Ahmod et al.,
2011) and to identify enterohemorrhagic E. coli O157:H7 (Wong et al., 2014).
Additionally, a CSPs-based assay was developed to improve the monitoring of
recreational water quality, providing enhanced detection of E. coli strains that are
otherwise challenging to distinguish using conventional methods (Saleem et al., 2024).
In addition to taxonomic and diagnostic applications, these markers represent promising
targets for functional studies. Previous research has demonstrated that CSIs play
essential roles in protein function within the bacterial groups in which they are found.
Disruptions or deletions in these regions have been shown to impair protein activity,
leading to loss of cellular function (Singh and Gupta, 2009). Structural analyses further

indicate that CSIs are predominantly located within surface loops of proteins, away
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from active sites, where they are likely involved in mediating specific interactions with
other proteins (Akiva et al., 2008; Gupta et al., 2017; Hassan and Gupta, 2018; Khadka
et al., 2020; Miton and Tokuriki, 2022). Investigating the functional relevance of CSIs
and CSPs identified in this study could lead to the discovery of novel biological
mechanisms and provide deeper insights into bacterial physiology, evolution, and

adaptation strategies.
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Conclusions

The rapid expansion of genomic sequencing data has revolutionized our
understanding of evolutionary relationships among organisms. My graduate research
focuses on analyzing the available genome sequences of Pseudomonas species to
robustly elucidate their evolutionary relationships using multiple independent
approaches such as phylogenetic analysis based on several large data sets of conserved
proteins, overall genomic similarity studies using AAI and POCP matrices and the
identification of molecular markers such as CSIs and CSPs specific for different
Pseudomonas species clades supported by other methods. Using these approaches, a
robust phylogenetic framework for Pseudomonas species has been established. Under
this framework, the genus Pseudomonas is now proposed to restrict only to species
within the Aeruginosa clade, while other Pseudomonas species have been reclassified
into >25 distinct genera, accurately reflecting their evolutionary relationships.
Furthermore, the molecular markers used in this reclassification serve as predictive
tools for determining the taxonomic placement of uncharacterized strains or species.
Beyond their significance in evolutionary studies, these conserved signatures hold great
potential as diagnostic markers for identifying specific groups of organisms. Further
exploration of these molecular features may uncover novel biological functions and
adaptations, providing deeper insights into microbial physiology and evolutionary

history.
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