
A Novel Approach for Simulation-Based Power Estimation and Joint Modeling of
Microbiome Counts



A Novel Approach for Simulation-Based Power
Estimation and Joint Modeling of Microbiome Counts

By Michael Agronah,

A Thesis Submitted to the School of Graduate Studies in the Partial Fulfillment
of the Requirements for the Degree Doctor of Philosophy

McMaster University © Copyright by Michael Agronah May 30, 2025

http://www.mcmaster.ca/


McMaster University
Doctor of Philosophy (2025)
Hamilton, Ontario (School of Computational Science & Engineering)

TITLE: A Novel Approach for Simulation-Based Power Estimation and Joint Modeling
of Microbiome Counts
AUTHOR: Michael Agronah (McMaster University)
SUPERVISOR: Dr. Benjamin Bolker
NUMBER OF PAGES: xiv, 98

ii

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://www.mcmaster.ca/


Abstract
Advances in microbiome research have greatly enhanced our understanding of how mi-
crobial communities influence human health and disease. The advent of high-throughput
sequencing technologies such as 16S rRNA amplicon and shotgun metagenomic sequenc-
ing has enabled researchers to generate microbiome abundance data for statistical anal-
ysis. These technological developments, together with the development of statistical
methods have enabled researchers to detect differences in microbial composition across
experimental conditions.

Despite these advancements, challenges remain in the areas of statistical power and
sample size estimation, and the modeling of correlations between taxa in subject when
analyzing associations between microbiome data and covariates. This PhD thesis ad-
dresses these challenges by developing new methods for power and sample size determi-
nation, and proposing methods for joint analysis of microbiome data while accounting
for correlations among taxa in differential abundance studies.

We first developed two novel simulation methods (Chapter 2) designed to generate re-
alistic microbiome count data for power and sample size estimation, and for evaluating
the performance of the models we propose in this thesis. We then developed a new
method for estimating statistical power in differential abundance studies. We apply this
method to evaluate whether existing microbiome studies have sufficient power to detect
differences in microbiome abundance (Chapter 3). Our findings suggest that differen-
tial abundance studies have low power to detect biologically meaningful differences. We
extended our power estimation procedure to develop a novel method for sample size
estimation for differential abundance studies (Chapter 4). Applying our sample size
estimation procedure to real microbiome data sets suggests that the sample sizes seen
in differential abundance microbiome literature may be too small to detect meaningful
effects.

Most existing methods for differential abundance studies analyze individual taxa sep-
arately. We propose the Reduced Rank Multivariate Mixed Model (RRMM), which
jointly models all taxa while accounting for correlations within subjects (Chapter 5).
Due to the high dimensionality of microbiome data, modeling the correlations between
taxa through a full variance-covariance matrix requires estimating thousands or even mil-
lions of parameters, making it computationally infeasible. RRMM reduces the number
of parameters by applying rank reduction to the variance-covariance matrix. We show
through simulation and using real microbiome data that RRMM improves precision in
effect size estimates relative to standard methods such as the models implemented in the
DESeq2 and NBZIMM R packages. We extend RRMM to longitudinal microbiome design
and developed the Longitudinal Reduced Rank Mixed Model (LRRMM) (Chapter 6).
LRRMM jointly analyzes all taxa in a longitudinal study and models correlation and
changes over time. Analyses of real and simulated data demonstrate that LRRMM im-
proves precision in effect size (ie, a measure of the magnitude of the difference in taxon
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abundance between experimental conditions) estimates than the models implemented in
the NBZIMM package which model individual taxa separately.

Together, these contributions enhance the methodological foundation for microbiome
research, offering methods for simulation, power analysis, and modeling that accounts
for correlations between taxa within subjects in microbiome data.
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underpowered by developing a novel method for estimating statistical power at the
level of individual taxa. I analyzed real microbiome data sets to assess statistical
power in existing studies.

• Chapter 4: I introduced a new methodology for estimating sample size required
in differential abundance microbiome studies, incorporating effect size, statistical
power, and taxon mean abundance.

• Chapter 5: I developed the Reduced Rank Mixed Model (RRMM) to jointly model
microbiome taxa while accounting for within-subject correlations. I implemented
this modeling framework in R and used the RRSim simulator from Chapter 2 to
evaluate its effectiveness. I also applied RRMM to real microbiome data sets to
compare its performance with models that analyze individual taxa separately.
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by developing the Longitudinal Reduced Rank Mixed Model (LRRMM). I formu-
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pared LRRMM’s performance to models that assume independence of taxa across
time points.
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Chapter 1

Introduction

1.1 Background
The human microbiome is a community of microorganisms (bacteria, viruses, fungi, etc)
that reside throughout the body. While the term “microbiome” encompasses all these
microbial groups, most studies, particularly those using 16S rRNA gene sequencing,
focus specifically on bacterial communities (Xia et al. 2018; Kotthapalli and Archer
2024). The microbiome is vital for human health, contributing to metabolic regulation,
immune system support, and even neurological function (Lynch and Pedersen 2016).

High-throughput genomic sequencing technologies, such as 16S rRNA gene-targeted
amplicon sequencing and shotgun metagenomic sequencing, have made it easier to profile
and analyze microbiome composition (Kuczynski et al. 2012). Sequence reads are pro-
cessed through bioinformatic pipelines like DADA2 (Callahan et al. 2016) for 16S-targeted
sequencing or MetaPhlAn2 (Truong et al. 2015) for shotgun metagenomic data, resulting
in an abundance table (also known as Amplicon Sequence Variants (ASV) table that
records the frequencies of detected microbial taxa (Tab. 1.1 ). This abundance table,
combined with metadata capturing sample-level characteristics, serves as the founda-
tion for downstream statistical analyses. Advancements in sequencing technologies have
significantly accelerated progress in microbiome research (Fig. 1.1). The Nature Navi-
gator, for instance, reports that human microbiome studies have seen rapid growth with
118,970 publications and 298,117 researchers as of December 10, 2024.

Current microbiome studies focus on two main research goals (Xia et al. 2018): (1)
investigating connections between the microbiome and biological, genetic, clinical, or
experimental conditions of hosts, such as the relationship between dysbiosis and dis-
ease progression (Lewis et al. 2015), and (2) finding relationships between biological
and environmental factors and microbiome composition, such as the impact of dietary
interventions on the gut microbiota (Albenberg et al. 2012).

A common research goal of both kinds of analysis is identifying microbial taxa that dif-
fer in their abundance between experimental conditions, such as diseased versus healthy
individuals, treated versus untreated subjects, or different environmental conditions
(Hawinkel et al. 2019). Studies with such objectives, often referred to as differential
abundance (DA) analysis, could aid in identifying microbial biomarkers associated with
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Table 1.1: An example of Amplicon Sequence Variants (ASV) table
from 16S rRNA sequencing. Each row represents a taxon and each col-
umn indicates the read count for a corresponding sample. Data Source:
“Statistical Analysis of Microbiome Data with R”-page 32 (Xia et al. 2018;
Jin et al. 2015).

Species 5_15_drySt-
28F

20_12_CeSt-
28F

1_11_drySt-
28F

2_12_drySt-
28F

Tannerella sp. 474 66 543 569
Lactococcus lactis 326 737 2297 548

Lactobacillus
murinus

11 42 114 28

Lactobacillus
murinus::

1 12 25 5

Lactococcus lactis
Parasutterella

excrementihominis
1 0 1 4

Helicobacter
hepaticus

87 0 0 13

Prevotella sp. 116 5 237 59
Bacteroides sp. 174 31 945 353

Barnesiella
intestinihominis

8 1 0 2

Lactobacillus
murinus::

Lactobacillus sp.

1 9 7 4

health outcomes and environmental changes. Just as with microbiome research in gen-
eral, small sample sizes are also common in differential abundance (DA) microbiome
studies, raising concerns about low statistical power and the reproducibility of findings
(Kers and Saccenti 2021; Kelly et al. 2015). In addition, modeling correlations between
taxa is difficult due to the high dimensionality of microbiome data, making joint mod-
eling approaches challenging. This thesis addresses these two challenges in differential
abundance microbiome analysis.

1.2 Motivation and Thesis Objectives
The objectives of this thesis are as follows:

• Statistical power and sample size determination: Microbiome research is
often faced with low sample sizes due to the lack of resources and constraints
which could lead to low statistical power. Many microbiome studies have argued
that microbiome research, in general, lacks sufficient power to detect meaningful
biological differences (Brüssow 2020; Kers and Saccenti 2021). However, this claim
has not been specifically investigated for differential abundance (DA) microbiome
studies. Existing methods for power calculation in microbiome studies are limited.
To our knowledge, no methods exist to estimate statistical power in DA studies.
Since the goal of DA analysis is to identify taxa with significant difference between
experimental conditions, methods for sample size calculation tailored to differential
abundance analysis need to account for the range of effect size and statistical
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Figure 1.1: Growth in Human Microbiome Research. Data source:
Nature Navigators (118,970 publications and 298,117 researchers as of
December 10, 2024.)

power of individual taxa. This thesis will develop methods for statistical power
and sample size determination for DA microbiome studies.

• Correlation structures in microbiome data: In microbiome data, abundances
of taxa within a subject are often correlated (Hawinkel et al. 2019). Ignoring these
correlations when modeling microbiome data could lead to imprecise effect size es-
timates. Most existing methods that analyze the association between taxa counts
and covariates treat each taxon separately, assuming no correlations between taxa
within subjects (Hawinkel et al. 2019). A major challenge in modelling these corre-
lations is the large number of parameter estimates required for the correlation ma-
trix caused by the high dimensionality of microbiome data. A typical microbiome
data set with hundreds or thousands of taxa may require thousands or millions of
correlation parameters. Fitting such correlations is neither computationally nor
statistically feasible. This thesis will develop statistical models to jointly analyze
the relationship between the count abundances of all taxa and covariates, while
accounting for correlations among taxa. To address the challenge of estimating an
excessive number of parameters in the correlation matrix, the model will incorpo-
rate a latent variable approach that significantly reduces the number of required
parameter estimates.

1.3 Thesis Contributions
The main contributions of this thesis are as follows:
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• a novel simulation framework (MixGaussSim) that improves power estimation in
microbiome DA studies by explicitly modeling the relationship between taxon
abundance and effect size.

• a novel method for estimating statistical power at the level of individual taxa,
addressing a key gap in DA studies.

• a novel sample size determination method that accounts for taxon-specific effect
sizes and statistical power.

• a statistical model; the Reduced Rank Mixed Model (RRMM), for jointly analyzing
microbiome count data while accounting for correlations among taxa.

• an extension of RRMM to longitudinal data (LRRMM) that models correlation and
changes over time and improves precision of estimates in longitudinal microbiome
studies.

1.4 Thesis Structure
The remainder of this thesis is organized as follows:

Chapter 2: Statistical power calculation for microbiome studies cannot be performed
analytically using theoretical distributions of test statistics (e.g., non-central t or chi-
squared distributions), due to the complexity of microbiome data (Arnold et al. 2011).
Instead, it requires simulating data that closely resemble real microbiomes to estimate
statistical power. For differential abundance studies, statistical power should be calcu-
lated at the level of individual taxa since each taxon has its own effect size, leading to
variations in power to detect these effects. Effect size of taxa are also related to by the
mean abundances of taxa. A simulator that flexibly models the distribution of effect
sizes and their relationship with abundances of taxa can facilitate the calculation of
statistical power for individual taxa. Chapter 2 presents a novel simulation approach to
model the effect size and mean abundance distributions of taxa and their relationships
(MixGaussSim).

In order to demonstrate the value of accounting for correlations between taxa within
subjects when modeling microbiome data, Chapter 2 also presents a simulator that
allows the joint simulation of microbiome count while including correlations between
taxa within subjects (RRSim). Unlike other models for simulating microbiome data,
which simulate individual taxa separately, RRSim simulates counts of taxa jointly. The
simulator RRSim is used in chapter 6 and 7 to account for correlations between taxa in
differential abundance microbiome studies.

Chapter 3: In this chapter, we introduce a novel approach for estimating statistical
power for individual taxa in differential abundance analyses. Using this power calculation
framework, we investigate whether existing DA studies are underpowered. Our findings
suggest that differential abundance studies may have low power to detect biologically
meaningful differences.
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Chapter 4: A key application of power analysis is determining the sample size re-
quired to detect an effect of a given size at a specified statistical power. Sample size
determination depends on both effect size and statistical power. In differential abun-
dance studies, these factors vary across taxa, as each taxon has its own effect size and
corresponding statistical power. Effect sizes in differential abundance studies are also
influenced by the mean abundances of taxa. Therefore, sample size estimation for differ-
ential abundance studies must account for taxon-specific effect sizes, statistical power,
and mean abundances.

In this chapter, we introduce a novel method for determining sample size in differential
abundance microbiome studies. Our approach estimates sample size as a function of
effect size, statistical power, and the mean abundance of a given taxon. Using our
sample size calculation framework along with the MixGaussSim simulator from Chapter
2, we demonstrate that differential abundance microbiome studies may require larger
sample sizes than those commonly reported in the microbiome literature to achieve high
statistical power (80% or greater).

Chapter 5: This chapter introduces the Reduced Rank Mixed Model (RRMM), a
framework that jointly analyzes all taxa while accounting for correlations within sub-
jects. Due to the high dimensionality of microbiome data, the correlation matrix can
involve thousands or even millions of parameters, especially in data sets with hundreds or
thousands of taxa. RRMM uses a latent variable model, specifically the rank reduction,
to reduce the number of parameter estimates required for the correlation matrix.

Using the RRSim simulator introduced in Chapter 2, we generate simulated microbiome
data to investigate whether incorporating taxon correlations leads to more precise effect
size estimates compared to models that analyze individual taxa independently. We
extend our analysis to real microbiome data sets.

Chapter 6: Longitudinal microbiome studies involve repeated sampling of subjects
over time, allowing researchers to examine changes in microbial communities and their
associations with covariates such as treatment effects, disease progression, and environ-
mental factors.

This chapter extends the Reduced Rank Mixed Model (RRMM) introduced in Chap-
ter 5 to a longitudinal microbiome study design. Our proposed Longitudinal Reduced
Rank Mixed Model (LRRMM) jointly models all taxa across multiple time points while
accounting for correlations within subjects over time. This extension addresses the
complexity introduced by repeated measures and the need to model interactions be-
tween taxa and time-dependent effects. By using the reduced-rank approximation of the
variance-covariance structure, LRRMM provides a computationally efficient approach to
modeling high-dimensional microbiome data in a longitudinal framework.

We estimate how the rates of change in taxon abundance differ between groups (e.g.,
control vs. treatment or healthy vs. diseased subjects). Our approach is evaluated
using simulated data generated by the RRSim simulator from Chapter 2 as well as with
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real microbiome data sets. We investigated whether LRRMM leads to improvement in
estimates in comparison to models that assume independence.

1.5 Summary
Differential abundance analysis are common in microbiome research, yet existing sta-
tistical methods face challenges related to power estimation, sample size determination,
and taxon correlation structures. This thesis addresses these challenges by develop-
ing novel simulation methods, statistical power estimation frameworks, and correlation-
aware modeling approaches. This work contributes methodological advancements that
improve the reliability and reproducibility of microbiome DA studies.

1.6 Glossary of Terms
This section provides definitions for key terms and abbreviations used throughout the
thesis.

Table 1.2: Glossary of Key Terms Used in the Thesis

Term Definition
Power The probability that a statistical test correctly detects a true

effect (e.g., a truly differentially abundant taxon).
Average power The arithmetic mean of the power estimates for all taxa
FDR (False Discovery
Rate)

The expected proportion of false positives among the de-
clared significant results, controlled using procedures like
the Benjamini–Hochberg method.

fold change A measure of effect size used in this thesis
ASV (Amplicon
Sequence Variant)

A high-resolution method for distinguishing microbial taxa
based on unique DNA sequences derived from marker gene
sequencing, typically the 16S rRNA gene.

Differential Abundance The process of identifying taxa whose abundance signifi-
cantly differs across conditions, such as disease vs. healthy
states.

Taxon (plural: taxa) A classification unit in biological taxonomy, such as species,
genus, or family.

count (used within
glmmTMB syntax)

Denotes a long vector (ie; a concatenation of counts of all
taxa across all subjects (and across all time points in the
case of longitudinal data))

taxon (used within
glmmTMB syntax)

refers to a factor label for a given taxa
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1.7 Code Availability
The R code used for the analysis presented in this thesis can be found in the repository:
https://doi.org/10.5281/zenodo.15556323
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Chapter 2

Two Approaches for Simulating
Microbiome Data

2.1 Abstract
Simulating microbiome count data offers significant advantages for microbiome research,
including evaluating statistical methods, estimating statistical power, and studying the
effects of parameters in controlled settings where true values are known. Most micro-
biome simulation approaches generate synthetic data, which are valuable for benchmark-
ing statistical methods, testing computational tools, and exploring hypothetical scenar-
ios. However, synthetic data often fail to fully capture the complex structure of real
microbiome data sets, particularly taxon-taxon correlations, the relationship between
mean abundance and effect sizes, zero inflation, and compositionality.

We introduce two novel simulation approaches: MixGaussSim and RRSim. Mix-
GaussSim models the distribution of mean abundances and effect sizes of taxa as well
as the relationship between mean abundance and effect size of taxa using a mixture
of gaussian distributions. In contrast, RRSim jointly models all taxa and models the
mean abundance of taxa with a mixed-effects model while accounting for correlations
between taxa within subjects. RRSim uses the reduced-rank method to reduce the num-
ber of estimates required for the variance-covariance structure and provides flexibility in
modeling zero inflation at both the taxon and group levels.

We compared MixGaussSim and RRSim against two existing simulators in the HMP
and metaSPARSim R pacakges, using Kolmogorov-Smirnov (KS) goodness-of-fit tests.
Results indicate that metaSPARSim best replicated the distribution of mean abundance
of taxa, while MixGaussSim and RRSim ranked second or third across data sets. RRSim
is the best simulator in terms of replicating the distributions of the proportions of zero
counts across samples for most data sets we considered. RRSim and MixGaussSim are
also effective in replicating the distribution of variance of taxa for most data sets.
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2.2 Introduction
Data simulation approaches provide significant advantages for scientific research. Sim-
ulation studies help researchers gain insights about systems that may be difficult to
obtain through observation and experiments alone. Across disciplines, data simulation
is widely used to benchmark and validate statistical methods in controlled settings where
the true parameter values are known. Simulation methods enable researchers to assess
the reliability, accuracy and robustness of statistical methods before applying them to
empirical data.

In microbiome research, simulations are particularly valuable for evaluating statistical
power, as analytical power calculations based on distributional assumptions are rarely
feasible (Arnold et al. 2011; Agronah and Bolker 2025). For example, Kelly et al. 2015
developed a simulation framework to aid the estimation of power for a community-wide
microbiome analysis. Simulation studies also facilitate the evaluation of key study design
factors, such as sequencing depth, sample size and differences in microbial communities
between groups (e.g., control vs. treatment groups), helping researchers optimize exper-
imental designs (Johnson et al. 2015).

Most microbiome simulation approaches generate synthetic data, which are useful for
benchmarking statistical methods, testing computational tools, and exploring hypothet-
ical scenarios (Kelly et al. 2015; Patuzzi et al. 2024). However, synthetic data often fail
to capture the structure of real microbiome data sets, including correlations among taxa,
the relationship between mean abundance and effect sizes, zero inflation, and composi-
tionality. Simulating data that closely resemble real microbiome data is challenging for
several reasons. First, microbiome data sets are high-dimensional, containing many taxa
but relatively few samples (Xia et al. 2018). Moreover, taxa within individual subjects
are correlated (Hawinkel et al. 2019). Modeling these correlations is computationally
demanding and requires statistical methods to reduce the dimensionality of these cor-
relations. Second, microbiome data sets are sparse, with many zero counts arising from
taxa being absent or falling below detection thresholds (Hu et al. 2018; Fang et al. 2016).
Standard count models may not fully capture this zero structure, requiring specialized
approaches to model excess zeros appropriately. Third, microbiome data are typically
compositional, meaning relative abundances are constrained to a fixed total, necessitat-
ing statistical models that account for these constraints (Xia et al. 2018; Chen and Li
2016). Overdispersion is also a key issue, with variance often exceeding the mean due
to biological variability and technical noise (Xia et al. 2018).

In addition to the challenges posed by the properties of microbiome data, estimat-
ing the distribution of effect sizes (ie, a measure of the magnitude of the difference in
taxon abundance between experimental conditions) for simulation is also challenging,
as published microbiome studies often fail to report effect sizes, and those that do may
present inflated values due to small sample sizes—a phenomenon known as the winner’s
curse (Button et al. 2013). Addressing these challenges is crucial for developing realistic
microbiome simulations.
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Several simulation approaches have been developed to generate microbiome data,
each addressing different challenges in modeling community structure and sequencing
biases. Synthetic data simulators (Patuzzi et al. 2024; Kelly et al. 2015) use predefined
statistical distributions to create artificial data sets, allowing controlled benchmarking
of statistical methods. Empirical data-driven simulators (Hawinkel et al. 2019) modify
or resample real microbiome data sets to better capture key characteristics such as
zero inflation, overdispersion, and compositionality. Mechanistic and ecological models
incorporate ecological interactions and evolutionary dynamics to simulate microbiome
communities (Pasqualini et al. 2024).

We propose two novel approaches for simulating microbiome data: a discrete mixture
of Gaussians simulation method (MixGaussSim) and a Reduced Rank simulation method
(RRSim). An advantage of MixGaussSim is its ability to model the distribution of mean
abundance and effect size of taxa as well as modeling the relationship between effect size
and mean abundance of taxa. This enables researchers to quantify the distribution of
effect sizes given the mean abundance of taxa based on existing data. In contrast, RRSim
jointly models all taxa and uses a dimension reduction technique to model correlations
between taxa. RRSim can also model zero inflation in microbiome data.

2.3 Data Collection and Processing
In order to determine realistic parameter values for the simulation models, we estimated
these parameters from real microbiome data sets for use in subsequent data simula-
tions. We obtained seven microbiome data sets from the European Nucleotide Archive
(EBA) (Leinonen et al. 2010) and the National Center for Biotechnology Information
(NCBI) (Sayers et al. 2021). The selection of autism-related microbiome data sets
was motivated by prior experience working with children with autism spectrum, which
provided motivation and contextual insight. We performed a search using the query
terms “autism[All Fields] AND 16S[All Fields]” and “autism[All Fields] AND 16S[All
Fields] AND Fecal[All Fields]” on November 6, 2021. The search resulted in 10 data sets
with accession numbers PRJNA168470, PRJNA355023, PRJNA453621, PRJEB45948,
PRJNA644763, PRJNA589343, PRJNA687773, PRJNA578223, PRJNA624252 and PR-
JNA642975. Each data included a “treatment” group of children with autism spectrum
disorder and a “control” group of neurotypical children.

To prepare the data sets for downstream analysis, we removed adaptors and primer
sequences using the cutadapt function. We then processed the trimmed sequences into
Amplicon Sequence Variant (ASV) data using the Dada2 (Callahan et al. 2016) pipeline,
which involved various steps such as filtering and trimming, error estimation, denoising,
merging paired reads, and removing chimeras (Chen et al. 2020). Three of the data sets
(PRJNA578223, PRJNA624252, and PRJNA642975) had very low count abundances.
Pre-filtering performed to remove low mean abundances resulted in the exclusion of the
majority of taxa from these data sets. Consequently, these data sets were excluded,
leaving seven data sets for our analysis.
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2.3.1 Pre-filtering low abundant taxa

Taxa with low abundance exhibit high variability, which can pose challenges in detecting
significant differences between groups. As is routinely done in differential abundance
analysis, we filtered rare taxa in each of the seven autism data sets, retaining only those
taxa that had an abundance of five or more reads in at least three samples (Xia et al.
2018; Love et al. 2014). Table 2.1 provides a summary of the seven autism data sets
used in this study.

Table 2.1: Summary of autism microbiome data sets used in the analyses
presented in Chapter 2 -4. The data sets were obtained from the European
Nucleotide Archive (EBA) and the National Center for Biotechnology
Information (NCBI) repositories and consists of fecal samples. For all
data sets, rare taxa were filtered out by retaining only those with an
abundance of at least five reads in three or more samples.

Accession
Number

DNA Re-
gion

Platform # Samples # ASV
after pro-
cessing

# ASV
after pre-
filtering

PRJNA168470 V2-V3 454 GS FLX
Titanium

40 (20 ASD,
20 NT)

3264 680

PRJNA355023 V3 NextSeq 500 54 (30 ASD,
24 NT)

4401 1208

PRJNA453621 V4 Illumina HiSeq
2500

286 (143
ASD, 143
NT)

2522 1233

PRJEB45948 V3-V4 Illumina MiSeq 92 (54 ASD,
38 NT)

20356 5039

PRJNA644763 V3-V4 Illumina MiSeq 123 (76 NT,
47 ASD)

8477 1053

PRJNA589343 V4 Illumina HiSeq
4000

127 (77 ASD,
50 NT)

1656 599

PRJNA687773 V4-V5 Illumina MiSeq 83 (44 ASD,
39 NT)

4864 897

2.4 The Mixture of Gaussian Simulation Approach (Mix-
GaussSim)

The descriptions presented in this method section are adapted from a published paper
with the PLOS ONE journal, as cited in (Agronah and Bolker 2025).

MixGaussSim uses the negative binomial model, a standard approach for analyzing
microbiome count data. For example, the negative binomial model is implemented in
the DEseq2 (Love et al. 2014) and edgeR (Robinson et al. 2010) R packages, both orig-
inally developed for transcriptomics data and now widely used in microbiome analysis.
MixGaussSim uses a mixture of Gaussian distributions to model distributions of fold
change and mean abundance of taxa and generates microbiome data from the negative
binomial model.
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2.4.1 The Negative Binomial Model

Let Kij denote the count data for the ith taxon in the jth sample. Then Kij follows a
negative binomial distribution:

Kij ∼ NB(mean = µij , dispersion = αij),
µij = sjqij (2.1)

log qij =
∑

r

xjrβir,

where µij and sj are the mean abundance and normalization constants is a sample-
specific scaling factor that accounts for differences in sequencing depth or other techni-
cal variation across samples respectively. qij is the expected mean abundance of a given
taxon in a sample prior to normalization. We assume the dispersion parameter is con-
stant for a given taxon. Thus, αij = αi. The coefficients β̂ir are estimates of the effect
sizes and xjr are the covariates. The relationship between the variance of counts and the
dispersion is defined by var(Kij) = µi + αiµ

2
i . In this study, the estimating procedure

implemented in the DESeq2 package (Love et al. 2014; Anders and Huber 2010) in R is
used for estimating β̂ir and α̂i.

In order to simulate microbiome data using MixGaussSim, we need to estimate re-
alistic distributions for effect size and mean abundance of taxa. We estimate these
distributions from the seven autism data sets presented in Section 2.3.

The following sections describe our methods for fitting distributions to the mean
abundance and fold change, and for simulating microbiome count data.

2.4.2 Effect size shrinkage

Rare taxa also often lead to implausibly large fold change estimates which can distort
the accuracy of estimating the true distribution of effect sizes. To tackle the problem of
exaggerated effect sizes from rare taxa, we used a shrinkage functionality (ie, shrinkage
type = normal) in the DESeq2 package, which shrinks large fold change estimates for
low-abundance taxa towards zero.

2.4.3 Estimating Distributions for Mean Abundance and Effect Size

We modeled log mean abundance (that is, log of the arithmetic mean abundance from
both control and treatment groups) as a finite mixture of Gaussian distributions. To
determine the optimal number of components (that is, number of distinct Gaussian
distributions), we used a parametric bootstrap approach to sequentially test mixtures
with 1 to 5 components. We used the implementation of the parametric bootstrap in the
mixtool R package (Benaglia et al. 2010) For each successive pair of components (k and
k + 1 components), we conducted a parametric bootstrap by generating 100 bootstrap
samples from the null model (the model with k components) and fitted both the null and

12

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Michael Agronah; McMaster University– School of
Computational Science & Engineering

alternate model (i.e., the model with k + 1 components) for each bootstrap sample to
calculate a distribution of the likelihood ratio statistic under the null hypothesis. This
statistic is used to test the null hypothesis of a k component fit against the alternative
hypothesis of a k + 1 component fit across different mixture models. A p-value (with a
5% significance threshold) is used as a decision rule for selecting the optimal number of
components. Once the p-value exceeds the significance threshold, the testing terminates
and the null model for the test where the procedure terminates is chosen as the number
of components (Benaglia et al. 2010).

We also modelled log fold change; representing our measure of effect size, as a finite
mixture of Gaussian distributions. Because fold change is typically related to mean
abundance (Love et al. 2014), we model the dependency of mean abundance and ef-
fect sizes. We modelled the mean and standard deviation parameters of the individual
Gaussian components as functions of log mean abundance. In order to determine an
appropriate way to model log fold change as a function of log mean abundance, we ex-
amined the relationship between log mean abundance and log fold change for each data.
Fig 2.1 shows the relationship between log mean abundance and log fold change for three
of the microbiome data sets.

The smooth line representing the mean of log fold change as a function of log mean
abundance (a loess curve, i.e. a locally quadratic regression) appears to follow a linear
trend in some cases, such as in the rightmost panel of Fig 2.1. To allow for this possibility
(even though it may be relevant only in some cases), we modelled the mean parameter for
each Gaussian component as a linear function of log mean abundance. Consequently, the
overall mean of the mixture distribution is also a linear function of log mean abundance.

Figure 2.1: Relationship between log fold changes and log mean abun-
dance for three typical data sets. The unusual features in the plot (con-
centrations of points along symmetric curves above and below zero) in the
first two panels correspond to taxa with zero counts across all subjects in
either the control or the treatment group.

Upon examining variations of log fold change around the smooth line, we observed
either a linear or quadratic trend (refer to Fig. 2.8 in the scale-location plot (see Sup.
2.9). We therefore modelled the variance of each Gaussian component as both linear
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and quadratic functions of log mean abundance. We compared Gaussian mixtures with
1-5 components. For a given model (Gaussian mixture model with a specified number of
components), we modelled the variance parameter of all components either by a linear or
quadratic function. We selected the model that yielded the minimum Akaike Information
Criteria (AIC) value across all the fitted components. The model of log fold change as
a function of log mean abundance is:

yj ∼
K∑

i=1
πiN (yj | µi(xj), σi(xj))

µi(xj) = m0
i + m1

i xj

σi(xj) = exp(f(xj)) (2.2)

πi = exp(λi)
1 + ∑

i exp(λi)
;

K∑
i

πi = 1, λ1 = 0,

where K is the number of Gaussian components. µi and σi are the mean and standard
deviation of the ith component, conditional on the log mean abundance of the jth taxa
(xj). yj is the log fold change of the jth taxa. The function f denotes a linear or quadratic
function of log mean abundance used to model the standard deviation parameter and πi

is the mixture probability with parameter λi.

2.4.4 Modelling Dispersion

We used the DESeq2 package to estimate dispersion for the negative binomial model.
Dispersion typically varies based on count abundance, with rarer taxa exhibiting higher
dispersion (Love et al. 2014). To accommodate this variability and to simulate dispersion
for subsequent power analyses, we used a nonlinear function of mean abundance to model
the dispersion estimates, as implemented in the DESeq2 package:

d = c0 + c1
m

, (2.3)

where d and m denote the dispersion and mean abundance respectively. The term c0
represents the asymptotic dispersion level for high abundance taxa, and c1 captures
additional dispersion variability.

The dispersion estimates from the DESeq2 package were unrealistically high, for ex-
ample, ranging from 150 to 200 (see Fig. 2.9 under Supplementary Materials- Sup. 2.9).
Using these dispersion estimates, we simulated count data from a negative binomial
model with mean abundance from the microbiome data set and log fold change esti-
mates from the DESeq2 package. The variability in the coefficients of variation of taxa
abundance computed from the dispersion estimate was notably greater than observed in
the actual data set (see Fig 2.10 under supplementary materials). We therefore scaled
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the dispersion to align the coefficients of variation from the simulated data more closely
with those from the observed data sets. We experimented with different scaling values
in the interval (0, 1) to make the distribution of the coefficient of variation from the
observed data roughly match those of the simulated data. We found that a scale param-
eter of 0.3 made the coefficient of variation align much better with the true coefficient
of variation. With a scale factor of 0.3, the observed distribution of mean counts and
variances from the simulations closely matched the true distributions of mean counts
and taxa variances (refer to Figs 2.11 and 2.12 under Supplementary Materials- Sup.
2.9)).

2.4.5 Procedure for Simulating Microbiome Count Data

We simulated count data to assess how well MixGaussSim replicates each of the autism
data sets described in Section 2.3. The simulation parameters for each data set were
estimated by fitting the MixGaussSim model to the corresponding real autism data.

The following steps outline our procedure for simulating microbiome count data.

• Simulate overall log mean abundance: For each data set, we simulated log
mean abundance from the fitted Gaussian mixture distributions.

• Simulate log fold changes: Using the simulated log mean abundance, we
simulated log fold change from the fitted Gaussian mixture distributions (equa-
tion (2.2)).

• Predict dispersion values: Next, we predicted dispersion values as a function of
the simulated mean abundance from the fitted non-linear function (equation (2.3)).

• Calculate per-group mean abundance: We then calculated mean abundance
for control and treatment groups using the simulated mean abundances and the
simulated log fold changes.

• Simulate count data: Using the calculated mean abundance for control and
treatment groups and the predicted dispersion values, we simulated count abun-
dances from the negative binomial distribution (equation (2.1)).

2.5 The Reduced Rank Simulation Approach (RRSim)

2.5.1 General Model Description

The Negative Binomial Mixed Model

Let Y denote a m × n ASV table, with rows i = 1, . . . , m and columns j = 1, . . . , n,
where m and n represent number of subjects and taxa respectively. Let xi denote a
d-dimensional vector of covariates for each subject, and yi = (yi1, . . . , yin)′ represent a
1 × n vector of count abundance for subject i. Define ȳ = (y1, y2, . . . , yn)′ as the long-
format concatenation of all the individual count vectors across the m subjects. Then
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ȳk ∈ ȳ, {k = 1, ..., mn} follows a negative binomial distribution:

ȳk ∼ NegBin(µk, θk),

where µk and θk are the expected mean counts and dispersion for ȳk, respectively.

We model µ = (µ1, ..., µmn), the vector of expected mean counts, by a mixed model
defined as follows:

g(µ) = Xβ + Zb,

b ∼ N (0, Σ),

where X ∈ Rmn×d and Z ∈ Rmn×q are the fixed and random effect model matrices re-
spectively, and β is a d-dimensional vector of fixed effect coefficients. b is a q-dimensional
random effect vector. The unconditional distribution of b is assumed to come from a
multivariate normal distribution with variance-covariance matrix Σ ∈ Rmn×mn. g is the
log link function.

2.5.2 Specific Model Description

The Reduced Rank Mixed Effect Model (RRMM)

In microbiome data, taxa exhibit varying levels of abundance. We account for this
variation by including a taxon-specific random intercept, which captures differences in
baseline counts across taxa. The effect of group conditions (e.g., treatment vs. control)
on abundance varies across taxa. For example, one taxon may show a significant increase
in counts in the treatment group compared to the control, while another taxon might
exhibit a smaller increase or even a decrease. We therefore included a taxon-specific
random slope for the group effect to capture differences in how each taxon responds to
the group condition. We allow the random intercept and the random group effect terms
to be correlated to account for potential correlations between random intercept (baseline
count) and group (treatment) effects.

While incorporating all taxa into a single mixed model increases computational de-
mands, it enables the modeling of correlations and information sharing between taxa.
Including the random intercept and slope terms allows the model to shrink estimates for
individual taxa towards the overall population trends, balancing individual variability
with shared patterns across the taxa. To account for correlations between taxa within
subjects, we include a taxon-specific random effect that varies within subjects. This
formulation allows each taxon to have a subject-specific deviation, capturing within-
subject variability while also modeling potential correlations between taxa within the
same subject.

We do not include fixed effect terms for taxon or group (control vs. treatment). Esti-
mating taxon-specific fixed effects could lead to overfitting, especially when the number
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of taxa is large. Instead, we model the effect of taxon on count as a random effect,
which captures variability across taxa while avoiding the need to estimate an excessive
number of parameters. Including a fixed effect for group (that is, a main effect for
group) would measure the degree to which all taxa consistently increase or decrease
across all subjects in one group compared to another group. However, this assumption
does not accurately reflect the nature of microbiome data. Researchers typically treat
microbiome data as compositional, meaning the changes in abundance of each taxon are
measured in relation to the abundance of others. If one taxon increases, others must
decrease. In practice, this compositionality is typically handled by normalizing the data
to adjust for differences in overall abundance, as caused for example by differences in
sequencing depth between samples. Thus, the normalization and compositional nature
of microbiome data make the assumption of a consistent increase or decrease in all taxa
abundance across all subjects in a group inappropriate for microbiome data.

Consider a study involving two groups, in this case “control” and “treatment”. We
model µ as follows:


log(µ) = o + Z1b1 + Z2b2

b1 ∼ N (0, Σ1),
b2 ∼ N (0, Σ2)

(2.4)

where o is the offset term to account for differences in sequencing depth (read depth)
between samples. Z1 ∈ Rmn×2n and Z2 ∈ Rmn×mn are the model matrices for the
random effects. The variance-covariance matrices Σ1 ∈ R2n×2n and Σ2 ∈ Rmn×mn

are block diagonal matrices. Each block matrix in Σ1 models correlation between the
random intercept and random group effect for each taxon as well as the variances of
intercept and slope. The block matrices of Σ2 model correlations among taxa within
each subject. Consequently, we define the variance-covariance matrices Σ1 and Σ2 as
follows:

{
Σ1 = σ∗

1 ⊗ I2n,

Σ2 = σ∗
2 ⊗ Imn,

(2.5)

where σ∗
1 ∈ R2×2 models correlations between the random intercept and group effects

for each taxon, σ∗
2 ∈ Rn×n models correlations between taxa within each subject, and

⊗ denotes the Kronecker product. I2n and Imn are identity matrices. From equation
(2.5), Σ1 and Σ2 are block-diagonal covariance matrices with homogeneous blocks.

Since microbiome data sets typically contain hundreds or thousands of taxa, esti-
mating σ∗

2 is impractical as it requires estimating n(n + 1)/2 parameters—potentially
hundreds or even millions of parameters, unless we impose constraints. To overcome
this challenge, we apply a rank reduction approach (also known as the factor analytic
method) (McGillycuddy et al. 2025), which reduces the rank of σ∗

2 to d ≪ n. The
vectors b1 and b2 are random effects with unconditional distributions assumed to be
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multivariate Gaussian with zero mean and variance covariance matrices defined by Σ1
and Σ2, respectively. b1 and b2 are block vectors, each block representing the random
effects associated with a specific grouping level. Thus, we define b1 and b2 as follows:


b1 =


α1
α2
...

αn

 , b2 =


β1
β2
...

βm


αj ∼ N (0, σ∗

1), βi ∼ N (0, σ∗
2),

(2.6)

where αj (for j = 1, . . . , n) is a vector of length 2 whose entries are the random intercept
and random group effect for taxon j, and βi (for i = 1, . . . , m) is a vector of length n
whose entries are the taxon-specific effects for subject j. Both αj and βi are assumed to
follow the standard normal distributions with variance-covariance matrices σ∗

1 and σ∗
2

respectively.

The Reduced Rank Method

The reduced rank model of dimension d expresses βi as a linear combination of latent
variables:

βi = Λui (2.7)

where ui is a vector of d latent variables, and Λ is an n×d matrix of factor loadings. The
latent variables, also referred to as spherical latent variables (Bates 2014), are assumed
to come from a multivariate standard normal distribution:

ui ∼ N (0, Id), (2.8)

where Id is the identity matrix. Thus, we have:

βi ∼ N (0, ΛΛ⊤) (2.9)

ΛΛ⊤ is the reduced rank approximation of σ∗
2. The estimation procedure for both Λ and

ui, as implemented in the glmmTMB R package, is described in detail by McGillycuddy
et al. 2025.

Thus the specific model used in this paper is defined as follows:
log(µ) = o + 1 + Z1b1 + Z2b2

b1 ∼ N (0, Σ1), b2 ∼ N (0, Σ2)
Σ1 = σ∗

1 ⊗ I2n,

Σ2 = ΛΛ⊤ ⊗ Imn,

(2.10)
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where o is an offset accounting for library size normalization, and 1 represents an
intercept-only fixed effect. The term Z1b1 includes taxon-specific random intercepts
and slopes for the group-level covariate (e.g., treatment vs. control), with Z1 indicating
the design matrix linking observations to these random effects. The term Z2b2 mod-
els subject-specific latent effects with a low-rank covariance structure. The Kronecker
product Σ2 = ΛΛ⊤ ⊗ In captures correlation among taxa within each subject.

Since microbiome data exhibits zero-inflation (Xia et al. 2018; Zhang et al. 2020),
we incorporate a zero-inflation component in our model to account for excess zeros in
each taxon. Zero-inflation could be modelled by incorporating both an overall zero-
inflation term and taxon-specific deviations to account for varying excess zeros across
taxa. However, we assume a single zero-inflation probability shared across all taxa for
simplicity.

2.5.3 Microbiome count simulation procedure

To simulate count data from the model described in equation (2.10), we used the
simulate_new function in the glmmTMB R package. The simulate_new function allows
us to set up a simulation directly, specifying the right hand side of the model formula
described in Listing 2.1, a data frame describing the experimental setup (e.g., number of
taxa, number of subjects, group names of subjects), and a list of simulation parameters.
The function requires input values for the standard deviations and correlations of each
random effect, as well as intercept terms (that is, the overall average count, specific-
taxon effect and average zero-inflation probability). To ensure that the input parameter
values are realistic for microbiome data, we estimated them using actual microbiome
data sets described in Section 2.3.

The simulation model (equation (2.10)) is specified in glmmTMB as follows:
simulate_new( ~ 1 + us(1 + group | taxon) +

rr(0 + taxon | subject , d),
ziformula = ~1,
data = data ,
f a m i l y = nbinom2 )

Listing 2.1: Example code for glmmTMB

where us() and rr() are functions for the unstructured and reduced-rank variance-
covariance matrices for the random effects respectively, and d specifies the rank of the
reduced rank matrix. nbinom2 denotes a negative binomial conditional distribution.

2.6 Goodness of Fit Test
We assess the performance of MixGaussSim, RRSim, and two simulation models: metaSPARSim
(Patuzzi et al. 2024) and HMP (La Rosa et al. 2012), by examining how well these sim-
ulation models reproduce the distribution of mean abundance of taxa, the distribution
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of variance of taxa, and the distribution of the proportion of zero counts across sam-
ples for the microbiome data sets described in Section 2.3. For each of these criteria
we conducted a Kolmogorov-Smirnov (KS) goodness-of-fit test (Lopes et al. 2007; Kotz
et al. 2005) to identify the best simulation method. The Kolmogorov-Smirnov (KS) test
is a non-parametric method that compares empirical cumulative distribution functions
(ECDFs). The KS test measures the maximum absolute difference between two ECDFs:

Dn = sup
x

|F1(x) − F2(x)| (2.11)

where F1(x) and F2(x) are the ECDFs of the real and simulated data sets, respectively.
The KS statistic (Dn) quantifies this difference, and is associated with a p-value for
determining whether the observed divergence is statistically significant.

A small KS statistic and a high p-value suggest that the simulated and real distri-
butions match closely, while a large KS statistic and a low p-value indicate significant
differences. This approach allows us to systematically compare simulation methods and
determine which best reproduces real microbiome data.

2.7 Results and Discussion
We compare our simulation approaches (MixGaussSim described in Section 2.4 and
RRSim described in section 2.5) with two existing simulation approaches implemented
in the metaSPARSim (Patuzzi et al. 2024) and HMP (La Rosa et al. 2012) R packages.

The HMP package simulates microbiome data from a Dirichlet multinomial model and
the metaSPARSim package simulates microbiome data from a Multivariate hypergeomet-
ric model. metaSPARSim models variation in taxa abundances between biological samples
using a Gamma distribution and models technical variability introduced by the sequenc-
ing process using a multivariate hypergeometric model. The HMP and metaSPARSim pack-
ages both model taxa jointly, capturing correlations between them. The HMP package
introduces negative correlations and accounts for compositionality through the Dirichlet
distribution. In contrast, metaSPARSim accounts for the compositional nature of micro-
biome data using the multivariate hypergeometric distribution and includes a parameter
specifically designed to introduce sparsity into the data. Both models also capture
overdispersion in microbiome data.

We show results of the comparison for four of the autism microbiome data sets de-
scribed in Section 2.3. To ensure a fair comparison, the simulation parameters for each
model were estimated from the corresponding real microbiome data set before data gen-
eration.

For each simulation method, we generated count data using parameters estimated
from the real microbiome data sets described in Section 2.3. The simulations were per-
formed using the same number of taxa and sample sizes as in the corresponding real
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data sets. Figures 2.4 and 2.3 present comparisons of the distributions of mean abun-
dance and variance of taxa from four of the microbiome data sets against those obtained
from simulations using HMP, metaSPARSim, and our proposed methods, MixGaussSim and
RRSim.

The distribution of mean abundance of taxa from simulations using metaSPARSim,
MixGaussSim, and RRSim matches that of actual microbiome data sets (Fig. 2.4).
In contrast, simulations generated with the HMP package fail to accurately replicate
the distribution of mean abundance of taxa. Goodness-of-fit test results indicate that
metaSPARSim is the most effective simulator, consistently yielding the lowest KS statistics
and highest p-values for all four data sets (Fig. 2.5). MixGaussSim ranks as the second
best simulator for all data sets except for data set PRJNA589343, where RRSim ranks as
the second best simulator having the second lowest KS statistic and the second highest
p-value. In contrast, HMP is the worst performing simulator, showing the highest KS
statistics and the lowest p values in all data sets.

A comparison of the distribution of variance of taxa shows that RRSim has the best
performance in replicating the distribution of variance of taxa for two of the data sets
(ie. PRJNA589343, PRJNA687773), with the lowest KS statistics and highest p-value
for these data sets (Fig. 2.6). On the other hand, the KS goodness of test shows
that MixGaussSim and metaSPARSim are the best performing simulators in replicating
the distribution of variance of taxa for data sets PRJNA168470 and PRJNA355023
respectively (Fig. 2.6). In contrast, the HMP simulator fails to replicate the distribution
of the variance of taxa compared with the other simulators (Fig. 2.3).

A comparison of the distribution of the proportion of zeros across samples indicates
that RRSim performs best in replicating this distribution across all data sets, except for
the PRJNA589343 data set, where HMP achieves the lowest KS statistic and highest p-
value (Fig. 2.7). Across all data sets, HMP consistently ranks as the second-best simulator,
as evidenced by its second-lowest KS statistic and second-highest p-value (Fig. 2.7). In
contrast, metaSPARSim has the worst performance across all four data sets (Figs. 4.4
and 2.7).
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Figure 2.2: Comparison of distributions of mean abundance of taxa
between observed data and simulations generated from HMP, metaSPARSim,
MixGaussSim and RRSim. Black dashed lines represent the distribution of
mean abundance of taxa for the microbiome data set.

Figure 2.3: Comparison of the distributions of variance of taxa be-
tween observed data and simulation generated from HMP, metaSPARSim,
MixGaussSim and RRSim. Black dashed lines represent the distribution of
variance of taxa for the microbiome data set.
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Figure 2.4: Comparison of distribution of proportion of zeros across
samples between observed data and simulations generated from HMP,
metaSPARSim, MixGaussSim and RRSim. Black dashed lines represent the
distribution of proportion of zeros across sample for the microbiome data
set.

Figure 2.5: Comparison of KS Statistics and p-values estimates from
goodness of fit test performed on the distribution of mean abundances of
taxa for four data sets. metaSPARSim is the best model (with the owest
KS statistic and the largest p-value)
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Figure 2.6: Comparison of KS Statistics and p-value estimates from
goodness of fit test performed on the distribution of variance of taxa
across four data sets.

Figure 2.7: Comparison of KS Statistics and p-value from goodness
of fit test performed on the distribution of the proportion of zero counts
across samples for four data sets.
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2.8 Conclusion
This chapter introduces two novel simulation approaches for microbiome count data:
MixGaussSim and RRSim. MixGaussSim simulates microbiome data using a negative
binomial distribution and captures both the distribution of mean abundances and effect
sizes of taxa. A key advantage of this approach is its ability to estimate effect size dis-
tributions, which are crucial for statistical power calculations at the taxon level. Since
microbiome studies rarely report effect sizes, MixGaussSim provides a practical frame-
work for inferring these distributions using parameter estimates from real microbiome
data.

In contrast, RRSim generates microbiome count data using a negative binomial distri-
bution while modeling taxa mean abundances as a mixed-effects model. RRSim jointly
models all taxa and accounts for correlations between taxa within individuals. It achieves
this by using reduced-rank dimension reduction, which decreases the number of param-
eters required to quantify the variance-covariance matrix. RRSim offers flexibility in
modeling zero inflation, allowing for more complex structures. For example, it can esti-
mate zero inflation at the level of individual taxa as a random effect or account for zero
inflation within specific groups of taxa.

We evaluated the performance of MixGaussSim and RRSim against two existing
simulators from the HMP and metaSPARSim R packages. Results from the Kolmogorov-
Smirnov (KS) goodness-of-fit test showed that metaSPARSim best captured the distribu-
tion of mean abundance of taxa, while MixGaussSim and RRSim ranked second or third
across data sets. However, RRSim outperformed all other methods in replicating the
variance distribution for two out of four data sets, while MixGaussSim and metaSPARSim
were best for the remaining two. RRSim ranked as the best simulator in replicating the
distribution of proportions of zeros counts across samples for three of four microbiome
data sets. In contrast, HMP consistently failed to accurately reproduce both mean abun-
dance and variance distributions but is effective in reproducing the distributions of the
proportions of zero counts across samples. Overall, MixGaussSim and RRSim provide
researchers with flexible and effective tools for simulating microbiome count data, each
offering distinct advantages.
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2.9 Supplementary Materials

Figure 2.8: Scale-location plots to determine functions to model the
standard deviation parameter
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Figure 2.9: Distribution of dispersion estimates from DESeq2 R package

Figure 2.10: Coefficient of variation of taxa abundance using dispersion
estimates from DESeq2 R package
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Figure 2.11: Comparison of mean abundance distributions between sim-
ulated and observed taxa data. The distribution of observed data is shown
with a black dashed line. Simulation parameters: 1000 OTUs, 100 sam-
ples per group, and a dispersion scale value of 0.3.
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Figure 2.12: Comparison of distributions of variance of taxa between
simulated and observed taxa data. The distribution of observed data is
shown with a black dashed line. Simulation parameters: 1000 OTUs, 100
samples per group, and a dispersion scale value of 0.3.
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Chapter 3

Investigating Statistical Power of
Differential Abundance Studies

The descriptions in this chapter are adapted from a paper published in the PLOS ONE
journal (Agronah and Bolker 2025) based on the research presented in this chapter.

3.1 Abstract
Identifying microbial taxa that differ in abundance between groups (control/treatment,
healthy/diseased, etc.) is important for both basic and applied science. As in all scien-
tific research, microbiome studies must have good statistical power to detect taxa with
substantially different abundance between treatments; low power leads to poor precision
and biased effect size estimates (Hawinkel et al. 2019). Several studies have raised con-
cerns about low power in microbiome studies (Kers and Saccenti 2021). In this study,
we investigate statistical power in differential abundance analysis. In particular, we
present a novel approach for estimating the statistical power to detect effects at the
level of individual taxa as a function of effect size (fold change) and mean abundance.
We illustrate how power varies with effect size and mean abundance; our results suggest
that typical differential abundance studies are underpowered for detecting changes in
individual taxa.

3.2 Introduction
Identifying taxa that show differential abundance between groups holds great potential
for clinical applications (Nearing et al. 2022). For example, a study aimed at assessing the
effects of a dietary intervention on microbial composition might analyze the abundance
of different microbial taxa between a control group on a standard diet and a treatment
group on a gut-health-promoting regimen.

Power analysis allows researchers to determine whether they have a sufficient sample
size to detect meaningful effects in their studies. The power of a statistical test is the
probability of successfully rejecting the null hypothesis given a particular effect size
(Cohen 2013). Power is determined by the sample size, effect size and the significance
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threshold (or “alpha level”), as well as methodological factors such as experimental
design, number of groups, statistical procedure and model, type of response variable,
fraction of missing data and the number of hypotheses tested.

Power analysis enables researchers to detect meaningful effects and allocate resources
efficiently; it aids the reliability and reproducibility of research findings. The primary
goal of power analysis is to ensure that a research study has the sensitivity required
to detect meaningful effects (Cohen 2013). Underpowered studies are likely to miss
biologically meaningful effects and are more prone to type II errors, which can lead
researchers to neglect differences that could be biologically interesting (Goodman and
Berlin 1994). Even if a low-powered study finds statistically significant results, the
estimated effect size will be imprecise (Goodman and Berlin 1994). Low power together
with a statistical significance filter (for example, only reporting effects with a p-value
< 0.05 ) can lead to overestimation of the true effect (“magnitude”, or type M, error)
or an incorrect estimate of the direction of an effect (“sign”, or type S, error) (Gelman
and Carlin 2014).

Microbiome researchers typically focus on three main types of analysis: (1) analysis of
univariate summaries: reducing the data from each microbiome sample to a single value,
such as alpha diversity, and comparing the distribution of these values between groups
(Kers and Saccenti 2021), (2) community-wide analyses using tests such as Permuta-
tional Multivariate Analysis of Variance (PERMANOVA) or the Dirichlet-multinomial
model to distinguish overall differences in communities (Kelly et al. 2015; La Rosa et al.
2012), and (3) taxon-by-taxon or differential abundance analyses: identifying taxa with
biological meaningfully differences between groups (Liu et al. 2021). Existing studies
on power analysis have focused either on studies comparing univariate (alpha diver-
sity) measures or studies comparing changes in overall microbiome composition between
groups (Xia et al. 2018). For example, La Rosa et al. 2012 developed a reparameterized
Dirichlet Multinomial model and a method for estimating the power to detect changes in
overall microbial composition between groups. Kelly et al. 2015 proposed a framework
for estimating power in PERMANOVA.

To our knowledge, no methods exist for power analysis for differential abundance
studies. In practice, every taxon in a microbial community has a different mean abun-
dance and a different effect size (as is typical, we use fold change between groups as effect
size in this paper), leading to a different statistical power to detect differences in every
taxon. Except for relatively simple analyses, conducting power analysis requires data
simulation. Simulating an entire microbial community is challenging because it requires
estimating appropriate community-wide distributions for mean abundances and effect
sizes of taxa.

Power estimates in a differential abundance study depends on the abundance of indi-
vidual taxa. For example, effect sizes of taxa with high abundance in both control and
treatment groups are more likely to be detected compared to effect sizes of taxa that are
rare in both groups. Unlike univariate power analysis (that is, power analysis involving
univariate quantities) where one can specify a single value for effect size and power, in
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a taxon-by-taxon power analysis there are multiple values of effect size and power; one
for each taxon. This typically means hundreds or thousands of effect sizes and power
values.

Several studies have raised concerns about low power in microbiome studies (Brüssow
2020; Kers and Saccenti 2021). For example, Kers and Saccenti 2021 showed that mi-
crobiome studies comparing alpha and beta diversities (PERMANOVA) between groups
might be underpowered. The goal of this study is to investigate the issue of potential
low power to detect effect size of individual taxa within a differential microbiome study.
We developed a novel method for estimating the statistical power of individual taxa.
Our framework estimates statistical power for each taxon as a function of effect size and
mean abundance of individual taxa. Using our framework, researchers can estimate the
range of statistical power for their studies, estimate statistical power for specific taxa,
and determine the expected number of taxa that differ significantly between groups in
their studies. Our power estimation method is based on the negative binomial model
described in Section 2.4.1.

3.3 Method
Due to the complexity of microbiome data, statistical power for individual taxa cannot
be reliably calculated analytically using properties of count distributions. To estimate
reliable power for each taxon, we need to simulate data that mimics actual microbiome
data (Arnold et al. 2011). We used the MixGaussSim simulation approach described in
Section 2.4 under Chapter 2. The MixGaussSim simulation method provides a frame-
work for estimating appropriate distributions for effect size and mean abundance, which
are useful for estimating the statistical power of individual taxa. We simulated data sets
resembling each of the autism data sets described in Section 2.3 using the same number
of taxa and sample sizes as the original data sets (refer to Table 2.1). We estimated the
parameters for MixGaussSim from each corresponding autism data set.

3.3.1 A Novel Method for Estimating Statistical Power for Differential
Abundance Microbiome Studies

In a taxon-by-taxon analysis, the power associated with a specific taxon is influenced
not only by the group sample size but also by its effect size and mean abundance. Effect
size and mean abundance of taxa as well as the sample size are positively correlated with
statistical power. In practice, the effect size, mean abundance for a given taxon, and
the sample size of the group are not independent of each other. For example, all else
being equal, the effect size estimate for a taxon tends to be more precise with a larger
sample size. Therefore, it is important to account for the interactions between these
variables when evaluating statistical power. We model the interactions between each
pair of these determinants of power using a smoothing spline, which allows for flexible
modeling of the non-linearity in these interactions. Additionally, these interactions must
be structured in a way that preserves the positive relationship between effect size, mean
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abundance, and power. To ensure this, we impose a constraint that allows the smooth of
each interaction term to be monotonically increasing as a function of statistical power.

We fitted a Generalized Additive Model (GAM) because it is well-suited for modeling
nonlinear relationships between variables, which is critical in this context where the
interactions between effect size, mean abundance, and statistical power are not expected
to follow simple linear patterns. GAMs can incorporate smooth terms with constraints,
such as ensuring that the relationship between effect size, mean abundance, and power
is monotonically increasing.

We estimate statistical power as the probability of rejecting the null hypothesis (that
the mean abundance in control and treatment group are the same for a given taxon).
We used the DESeq2 package to compute p-values for each taxon, using the Benjamini
and Hochberg method for false discovery rate (FDR) correction. The event that a given
taxa is significantly different between groups is a Bernoulli trial. To estimate statistical
power for various combinations of log mean abundance and log fold change, we fitted a
shape-constrained generalized additive model (GAM) (Pya and Wood 2015). The model
predicting fold change as a function of log mean abundance is as follows:

y ∼ Bernoulli(pi)

pi = 1
1 + e−η

η = β0 + f1(x1, x2) + ϵ,

where y is a binary value (with 1 indicating that the p-value was below a critical value and
0 otherwise). We used the default critical value of 0.1 in the DESeq2 package. pi is the
statistical power for taxon i. β0 and ϵ are the intercept and error terms respectively and
the predictors x1 and x2 are the log mean abundance and log fold change respectively.
The function f1 is a two-dimensional smoothing surface with basis generated by the
tensor product smooth of log mean abundance and log fold change.

Power and fold change are positively correlated (Cohen 2013). Additionally, effect
sizes of taxa with high abundance are more likely to be detected, hence having higher
power, than rare taxa (Love et al. 2014). To account for these relationships, we con-
strained the function f1 to be a monotonically increasing function of both log mean
abundance and log fold change.

3.3.2 Expected number of taxa with significant difference between
groups

Consider a differential abundance study involving n taxa, each associated with power
(probability of being significantly different between groups) pi. Whether we can detect
that taxon i differs significantly between groups or not in a particular analysis is a
Bernoulli random variable with a success probability pi. Therefore, the expected number
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of significant taxa can be computed as the sum of the expected number of successes in
n Bernoulli trials:

γ =
n∑

i=1
pi. (3.1)

Equation (3.1) can be divided and multiplied by n to obtain

γ = np̂, (3.2)

where p̂ is the average statistical power across all taxa. Equation (3.2) states that
the expected number of taxa that differ significantly between groups in a differential
abundance study is the product of the number of taxa (n) and the average statistical
power for all taxa (p̂).

3.4 Result and Discussion
Fig 3.1 shows the statistical power for all combinations of log mean abundance and log
fold change for each data set. Red points indicate simulated taxa with significant log
fold change (that is, adjusted p-value < 0.1); black points show simulated taxa where
we failed to reject the null hypothesis (adjusted p-value > 0.1). Contour lines show the
predicted statistical power for various combinations of overall log mean abundance and
log fold change. Fig 3.1 shows a strong positive relationship between statistical power
and fold change, as well as a weak positive relationship between mean abundance and
statistical power, as anticipated. Few simulated taxa are in regions of high power (80%
is the usual target for power in most scientific fields (Cohen 2013; Descôteaux 2007)),
making it unlikely to attain high power in practical scenarios. Most individual taxa, in
most data sets, have power less that 80%.

Our simulation studies were conducted with a relatively large sample sizes (for the
field of microbiome studies in health sciences) of 100 samples per group. However,
most microbiome studies are often constrained by practical limitations that restrict the
available sample size. For example, Kers and Saccenti 2021 examined 100 publications
and found a median sample size of 39 samples per group, with a mode of 8 samples. Given
the prevalence of low sample sizes in the microbiome literature, differential abundance
microbiome studies might have even lower power to detect biologically meaningful effects
for individual taxa than those suggested by Fig 3.1.

Fig 3.2 shows the relationship between statistical power and the number of samples
per group (30, 50, 70, 90, 110, 130, 150, 170 and 190 samples per group) for different
log fold changes (2, 3 and 4). As expected, statistical power increases with increasing
number of samples per group and increasing log fold change, although the power levels
vary hugely across data set.

Fig 3.3 shows the expected number of taxa per experiment that differ significantly
between groups. Increasing sample size increases the expected number of taxa that
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Figure 3.1: Contour plot showing statistical power for various combi-
nations of overall log mean abundance and log fold change. 1000 taxa,
100 samples per group and 100 simulations. Red points indicate sim-
ulated taxa with significant log fold change (that is, FDR threshold of
0.1); black points show simulated taxa where we failed to reject the null
hypothesis (adjusted p-value > 0.1). Contour lines show the predicted
statistical power for various combinations of log mean abundance and log
fold change

differ significantly between groups. For each experiment, smaller sample sizes result in
much lower expected number of taxa with significant differences between groups. This
implies that studies with low sample sizes stand the risk of missing taxa with biologically
significant effects. Differential abundance microbiome studies might therefore require
higher sample sizes than those prevalent in the literature in order to identify majority
of the taxa with biologically significant effects. Low statistical power has significant
impacts on the reliability of research results. Not only does it lead to type II errors
(false negatives) but also causes strong upward bias in the magnitude of estimated effect
sizes, via the “winner’s curse” (a term describing the phenomenon where significant
biological differences detected in studies with small sample sizes and low power are often
associated with exaggerated effect size estimates) when a statistical significance filter
(i.e., taxa with p-values below a threshold) is applied (Button et al. 2013).

Fig 3.4 compares the average power (defined by the arithmetic mean of the power es-
timates for all taxa) with the quantiles of power estimates for individual taxa. The
figure also shows quantiles of power estimates for taxa in each sample size. Although
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Figure 3.2: Relationship between statistical power, sample size and log
fold change. 1000 taxa, 100 samples per group and 100 simulations. log
mean abundance = 5.

Figure 3.3: Expected number of significant taxa (out of 1000) for 30,
50, 70, 90, 110, 130, 150, 170 and 190 samples per group.
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average statistical power is useful for determining the expected number of taxa that dif-
fer significantly between groups, the average statistical power does not provide accurate
understanding of the statistical power of the individual taxa in a differential abundance
study. For each microbiome data set shown in Fig 3.4, the average statistical power
is consistently higher than the 50th quantile of the individual taxon-by-taxon power
estimates. In most cases, the average power surpasses the 60th quantile of the individ-
ual power estimates, indicating that the average power overestimates the power for the
majority of taxa. This highlights the need to consider statistical power at the level of
individual taxa in a differential abundance study. Average power might overstate the
power for most taxa and may lead researchers to underestimate the required sample sizes
for their studies.

Figure 3.4: Comparison of average statistical power across all taxa and
quantiles of taxon-by-taxon power estimates. Average power often overes-
timates the statistical power for most taxa and might not be a good metric
for understanding the power to detect effects in a differential abundance
study, hence the need to estimate power at the level of individual taxa.
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3.5 Conclusion
Our study sheds light on potentially low statistical power to detect effect size of individ-
ual taxa in differential abundance microbiome studies. We introduced a novel method to
estimate statistical power for individual taxa. Our method estimates power as a function
of fold change and mean abundance of individual taxa.

Contour plots showing power for individual taxa suggest potentially low power to de-
tect effect size of individual taxa in a differential abundance microbiome study (Fig 3.1).
Low statistical power for individual taxa suggests that differential abundance studies
might be missing many taxa with meaningful biological effects (Fig 3.3). Our findings
also show that differential abundance studies may require larger sample sizes than are
currently prevalent in microbiome research in order to achieve adequate statistical power
(Fig 3.2).

The power estimation method presented in this study will enable researchers to es-
timate power at the level of individual taxa, quantify the range of power across all
taxa, and estimate the expected number of significant taxa for their study. Our frame-
work and simulation-based evidence contribute to enhancing understanding in the field,
promoting accurate result interpretation. The provided framework and code facilitate
reproducibility and empower researchers to make informed decisions about study design.
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Chapter 4

Sample Size Calculation for
Differential Abundance Studies

This chapter is a draft of a manuscript intended for submission for publication

4.1 Abstract
Determining an appropriate sample size for a study is a crucial step in planning scientific
research. Appropriate sample sizes avoid both inflated and inadequate sample sizes. Col-
lecting too many samples wastes resources, time and effort of human subjects, and lives
of experimental animals. Collecting too few samples, a much more common problem,
wastes even more resources through the inability to detect biologically meaningful differ-
ences and encourages questionable research practices like p-hacking. Microbiome studies
are particularly challenged by sample size, particularly in studies of human subjects or
expensive animal models. In practice, the statistical power of taxa within a differential
abundance study is influenced by the effect size (fold change), mean abundance of in-
dividual taxa and the number of samples. We present a novel approach for sample size
calculation for differential abundance studies as a function of effect size, mean abun-
dance and statistical power. We applied our model for sample size calculation using
estimates of mean abundance and fold change of taxa obtained from real microbiome
data. Our results showed that differential abundance microbiome studies require larger
sample sizes than are currently prevalent in the literature to achieve adequate statistical
power. Our framework will help researchers make informed decisions about appropriate
sample sizes.

4.2 Introduction
Choosing the right sample size is a crucial step in planning scientific research (Singh
and Masuku 2014). Precise sample size selection helps avoid problems associated with
having too many or too few samples. Excess sampling leads to wastes of time, resources,
efforts of human participants and lives of experimental animals (Button et al. 2013).
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Conversely, too few samples make it hard to detect significant biologically meaningful
differences (Button et al. 2013).

Microbiome studies are often challenged with small sample sizes (Kers and Saccenti
2021). Studies with small samples have low statistical power, which increases the like-
lihood of failing to reject null hypotheses, even when meaningful differences truly exist.
Increased variability in effect size estimates obtained from data with small sample size
makes it difficult to differentiate between random noise and genuine biological difference,
leading to less reliable estimates of effect sizes. Effect size estimates in such studies are
often significantly biased, tending to deviate substantially from the true effect size. Sig-
nificant biological differences (e.g., differences with p-value < 0.5) detected in studies
with small sample sizes are often associated with exaggerated effect size estimates, a
phenomenon termed the “winner’s curse” (Button et al. 2013).

Researchers often select sample sizes for new studies based on previous studies (Singh
and Masuku 2014). However, relying solely on previous sample sizes can be problematic,
especially in fields where small sample sizes are common. If a field is traditionally
underpowered, following the approaches of previous research work may lead to repeating
the same limitations and obtaining inconclusive or unreliable results (Button et al. 2013;
Ioannidis 2005). Power analysis, widely used in scientific research to determine sample
size (Cohen 2013; Xia et al. 2018), can also be applied to ensure appropriate sample size
selection in differential microbiome abundance analysis.

Sample size is influenced by statistical power and effect size (Cohen 2013). Since
the goal of differential abundance microbiome studies is to detect taxa with meaningful
effects, statistical power must be estimated at the level of individual taxa, as each taxon
has its own unique effect size. Statistical power for each taxa is also influenced by mean
abundance of the taxa (Agronah and Bolker 2025). Because the raw data in a microbiome
analysis consist of count data (i.e., the number of reads detected), the relative degree
of variation (i.e., the coefficient of variation) is higher for taxa with lower counts. This
higher variability leads to lower statistical power to detect differences in rare taxa. To
illustrate, it is easier to detect a 10% difference for a common taxon (e.g., an increase
from 1000 to 1100 reads per sample) than for a rare taxon (e.g., an increase from 10 to
11 reads per sample). This difference in detectability arises because the absolute change
is much smaller relative to the inherent variability in counts for rare taxa.

Consequently, sample size for differential abundance studies is determined by effect
size, mean abundance and statistical power of individual taxa. This chapter extends
the power estimation framework developed in chapter 3 to include sample size as an
additional determinant in estimating statistical power for individual taxa and develops
a novel method for estimating sample size as a function of statistical power, effect size
and mean abundance. The sample size method presented in this chapter aims to assist
researchers in determining the appropriate sample size for their studies, thereby enabling
them to make informed decisions.
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4.3 Materials and Method

4.3.1 Statistical power estimation procedure

The power estimation method proposed by Agronah and Bolker 2025, also described in
Section 3.3.1, is given by:

y ∼ Bernoulli(pi)

pi = 1
1 + e−η

η = β0 + f1(x1, x2) + ϵ,

where y is a binary variable indicating whether the p-value falls below a critical threshold
(1) or not (0). We used the default threshold of 0.1 in the DESeq2 package. The
probability pi represents the statistical power for taxon i. β0 is the intercept, ϵ is the
error term, and the predictors x1 and x2 correspond to log mean abundance and log fold
change, respectively. The function f1 represents a two-dimensional smoothing surface,
generated using a tensor product smooth of log mean abundance and log fold change.
The DESeq2 package was used to compute p-values for testing the hypothesis for each
taxon, using the Benjamini and Hochberg method for multiple hypothesis correction.

We define the GAM model that extends the model by Agronah and Bolker 2025 as
follow:

Let x1i and x2i denote log mean abundance and log fold change of taxon i respectively.
Let n be the sample size and y denote a binary value with 1 indicating that the p-value
was below a critical value and 0 otherwise. Then y follows a Bernoulli distribution
defined by

y ∼ Bernoulli(pi)

pi = 1
1 + e−η

η = β0 + f1(x1i, x2i) + f2(x1i, n) + f3(x2i, n) + ϵ,

where pi is the statistical power for taxon i, β0 and ϵ are the intercept and error terms
respectively. The functions f1, f2 and f3 are two-dimensional smoothing surfaces with
basis generated by the tensor product smooth of pairs of x1, x2 and n.

Power and fold change are positively correlated. Moreover, taxa with high abundance
are more likely to be detected, thus having higher power, than rare taxa. To account
for these relationships, we constrained the functions f1, f2 and f3 to be monotonically
increasing with power (Pya and Wood 2015).
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4.3.2 Method for Sample size calculation

For a given log mean abundance, log fold change, we estimate the sample size required
to achieve a target power using a root-finding technique. We use the uniroot() function
from the stats package in R, which implements Brent’s method—an adaptive algorithm
that combines bisection, secant, and inverse quadratic interpolation to find the root of
a continuous function over a specified interval.

Let g denote the estimated function from the fitted GAM model. The function g is
then defined as

pi = g(x1i, x2i, n), (4.1)

Given x1i, x2i and a target power pi, we estimate the required sample size n by finding
the root of the equation:

pi − g(x1i, x2i, n) = 0 (4.2)

4.4 Data simulation
Estimating statistical power for individual taxa cannot be reliably calculated analyti-
cally using properties of count distributions due to the complexity of microbiome data.
Estimating statistical power for each taxon requires simulating data that mimics actual
microbiome data (Arnold et al. 2011). We used the MixGaussSim simulation method
described in Section 2.4 for our data simulation. The MixGaussSim simulation method
models appropriate distributions for effect size and mean abundance of taxa, which are
useful for estimating the statistical power of individual taxa. We estimated the param-
eters of MixGaussSim from the seven autism data sets described in Section 2.3.

4.5 Results and Discussion
Fig 4.1 presents power curves for three autism microbiome data sets (PRJNA168470, PR-
JNA355023, and PRJNA687773), illustrating how statistical power varies with sample
size per group and effect size. Across all three data sets, we observe that power increases
as both sample size and effect size grow. Larger effect sizes (e.g., | log2(fold change)| = 3
and | log2(fold change)| = 2) achieve high power with relatively small sample sizes, while
smaller effect sizes require larger sample sizes to reach comparable power levels. Larger
sample sizes are particularly crucial when studying taxa with small effect sizes, as un-
derpowered studies may fail to detect true associations. Conversely, when effect sizes
are large, studies can achieve adequate power with fewer samples.

Higher taxa mean abundance achieve greater power with smaller sample sizes, whereas
lower-abundance taxa require significantly larger sample sizes to reach comparable power
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Figure 4.1: Relationship between statistical power, sample size and fold
changes of taxa. | log2(fold change)| = 2, 3, 4 and log2(mean count) = 2

Figure 4.2: Relationship between statistical power, sample
size and mean counts of taxa. log2(mean count) = −1, 2, 7 and
| log2(fold change)| = 2

levels (Fig. 4.2). This pattern aligns with expectations, as taxa with low counts con-
tribute to greater variability in the data, reducing the likelihood of detecting true differ-
ences unless larger sample sizes compensate for this noise. Among the three data sets,
PRJNA168470 and PRJNA355023 show a more rapid increase in power with sample size,
particularly for the higher-abundance taxa. In contrast, PRJNA687773 exhibits a more
gradual power increase, with the green curve (lowest abundance) requiring the largest
sample sizes before reaching a power of 0.8 or higher. PRJNA168470 and PRJNA355023
show rapid power increases due to larger fold changes, higher mean counts, and fewer
zeros, and PRJNA687773 exhibits a gradual power increase due to smaller effect sizes,
lower mean counts, and possibly more zero inflation (Figs 4.3 - 4.4).

Researchers investigating low-abundance taxa must account for the need for larger
sample sizes to achieve sufficient power. Moreover, differences between data sets sug-
gest that power analysis should be conducted on a case-by-case basis to ensure robust
detection of microbial associations. Variability demonstrates the need to consider data
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set-specific characteristics, such as range of count abundance and sparsity, when planning
sample sizes for microbiome studies.

Figure 4.3: Comparing the distributions of fold change and mean count

Figure 4.4: Comparing the distribution of the proportion of zero counts
across taxa

In scientific research, a statistical power of 80% or higher is typically regarded as
high power (Cohen 2013; Descôteaux 2007). The sample sizes required to detect a
given fold change with 80% power are generally larger than those commonly used in
microbiome studies. Figure 4.5 shows the minimum sample size required per group
across all seven data sets to achieve 80% power at various combinations of fold change
and mean abundance. For example, the smallest sample size required across all data sets
to detect a fold change of 22 for a taxon with a high mean abundance of 27 at 80% power
is approximately 79 samples per group. In contrast, a study examining 100 microbiome
studies on alpha and beta diversity reported a median sample size of 39 samples per
group, with a mode of 8 samples per group (Kers and Saccenti 2021), which is lower
than the sample sizes observed in Figure 4.5.
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Figure 4.5: Sample size per group required to attain 80% statistical
power for taxa with log(fold changes) of 0.5, 1, and 2, and log(mean
counts) of -1, 2, and 7.

4.6 Conclusion
We developed a novel method for sample size calculation in differential abundance micro-
biome studies. While sample size is generally influenced by statistical power and effect
sizes, in differential abundance studies, power also depends on mean abundance. Since
statistical power is a function of both mean abundance and effect sizes of individual
taxa, our approach models sample size as a function of these factors. Using our method,
researchers can quantify the range of sample sizes required to detect various effect sizes
while accounting for the distribution of mean abundances across taxa in a data set.

To estimate statistical power, we apply the MixGaussSim simulation method pre-
sented in Section 2.4. MixGaussSim provides a flexible framework for modeling the
distribution of mean abundance and effect size of taxa, which is essential for estimating
taxon-specific statistical power. We fitted MixGaussSim to seven real microbiome data
sets (described in Section 2.3) to derive realistic parameter estimates for MixGaussSim.

Our results show that larger sample sizes may be required than those commonly used
in microbiome studies to achieve high statistical power to detect effect sizes of taxa. This
highlights the importance of conducting sample size calculations before a study begins,
as relying on previous or pilot studies may be misleading—especially if those studies
already had low power.

Furthermore, data set-specific characteristics, such as sparsity and variability in
counts, influence sample size determination. For instance, data sets with low counts
of taxa and high proportion of zeros require larger sample sizes per group to detect
effect sizes with high statistical power (Figs. 4.2 - 4.4). To obtain more reliable sample
size estimates, researchers must take into account the specific characteristics of their
data set to avoid estimating an inadequate sample size for their study.
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Chapter 5

Beyond Independence: Joint
Modeling of Microbiome Taxa
with Reduced-Rank Correlation
Structure

This chapter is a draft of a manuscript intended for submission for publication

5.1 Abstract
Human microbiome data is crucial for understanding the mechanism of diseases and
treatment effectiveness. Researchers often aim to describe how counts of taxa differ
among discrete groups (such as control versus treatment) or according to other factors.

Most existing models analyze each taxon separately, assuming no correlation between
taxa within an individual. In reality, counts of taxa within subjects are correlated. Treat-
ing these counts as independent ignores the underlying biological structure in the data
and may make it harder to accurately estimate changes in abundances of particular
taxa. We developed a model that jointly models all taxa, accounting for the correla-
tions between them. Typical microbiome data sets contain hundreds or thousands of
taxa and require thousands or even millions of parameter estimates for the variance-
covariance matrix, making it computationally impractical. To address this, we applied
rank reduction to the variance-covariance matrix, reducing the number of parameter to
be estimated.

We conducted simulation studies and real data analysis, comparing our reduced-
rank model with three existing models: the negative binomial model in the DESeq R
package, and the the negative binomial mixed and zero-inflated negative binomial mixed
models in the NBZIMM R package. Our results show that modeling all taxa together and
accounting for correlations between taxa improves accuracy in effect estimates, reduces
bias, narrows confidence intervals, and increases statistical power compared to modeling
taxa independently.
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5.2 Introduction
Identifying taxa that show differential abundance between groups holds great potential
for clinical applications. These differentially abundant taxa can serve as biomarkers for
disease detection and treatment efficacy (Yang and Chen 2022). Microbiome research
typically involves sequencing specific conserved regions of the genome, such as the 16S
rRNA gene. These sequences are denoised using DADA2 to infer amplicon sequence
variants (ASVs), which represent unique biological sequences. Each ASV is then mapped
to a reference database to assign taxonomy and link the sequences to microbial species.
The resulting data, often presented in an ASV (Amplicon Sequence Variants) table lists
the frequency of each taxon detected in individual samples. This data is usually high-
dimensional, with hundreds or thousands of taxa but few subjects (Xia et al. 2018).

Other than a few models, mostly Bayesian approaches (Grantham et al. 2020; Lee
and Sison-Mangus 2018), that jointly model all taxa, most models developed for dif-
ferential abundance analyze each taxon separately. For example, the DESeq2 (Love et
al. 2014) and edgeR packages implement negative binomial models fitted independently
for each taxon. metagenomeSeq (Paulson et al. 2013) uses a zero-inflated log-normal
model, ALDEx2 (Gloor et al. 2014) applies univariate tests on centered log-ratio (CLR)-
transformed Dirichlet-multinomial samples, MaAsLin2 (Mallick et al. 2021) supports
generalized linear and mixed models (e.g., Gaussian, Poisson, and negative binomial)
fit separately per taxon, and corncob (Martin et al. 2020) uses a beta-binomial regres-
sion model with covariate-dependent mean and dispersion, also fit per taxon. Mixed
models and zero-inflated mixed models, such as those implemented in tools like ZINBMM,
similarly analyze each taxon independently.

These models assume that the abundance of taxa within subjects is independent.
However, in reality, counts of taxa in a microbial community covary among individuals.
Ignoring these correlations can misrepresent the biology of the microbiome community
and may result in potential imprecise and bias effect size estimates (Hawinkel et al. 2019).
It is essential to account for correlations between taxa within individuals to reflect the
inter-dependence of taxa within microbiome data.

Various mixed models have been proposed in the literature for analyzing microbiome
data (Zhang and Yi 2020). Examples of such models are the negative binomial (Zhang
et al. 2018), zero-inflated Gaussian (Zhang et al. 2020), and zero-inflated negative bi-
nomial (Yi 2020) mixed models. To our knowledge, current uses of mixed models in
microbiome research typically treat taxa individually, failing to address the correlations
among taxa (Yi 2020; Zhang et al. 2018). Fitting a mixed model involving correlation
between taxa is, however, challenging due to the high dimensionality of microbiome
data, when no constraints are imposed on these correlations. The number of parameter
estimates required for the correlation matrix grows quadratically with the dimension
(i.e., number of taxa) of the microbiome data. Without imposing any structure on the
variance-covariance matrix, microbiome data with n taxa requires estimating n(n+1)/2
parameters (corresponding to the number of elements in the lower triangle and the diag-
onal of the variance-covariance matrix). For instance, data with 10 taxa will require 55
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parameter estimates. Consequently, the typical ASV table with thousands of taxa will
require millions of parameter estimates, which is both statistically and computationally
impossible to fit.

We use a reduced-rank approach to decrease the rank (effective dimensionality) of the
variance-covariance matrix, thereby reducing the number of parameters to be estimated.
Assuming an ASV table with n taxa, fitting a covariance matrix with a rank of d ≪ n
allows the n expected per-taxon log fold changes (for example) to be expressed as a linear
combination of d latent variables (McGillycuddy et al. 2025). The number of parameter
estimates needed for the reduced-rank variance-covariance matrix is calculated as dn −
d(d − 1)/2 (McGillycuddy et al. 2025). Whereas the number of parameter estimates for
the full variance-covariance matrix increases quadratically with n, the estimates for the
reduced-rank matrix increase only linearly with n.

In this project, we propose a Reduced Rank Mixed Model (RRMM) for differential
abundance analysis while modeling the correlations between taxa in subjects. We use
the reduced rank functionality in the glmmTMB R package. The advantages of RRMM
include: (1) it models all taxa jointly, allowing information sharing between taxa and
accounting for the correlation structure in microbiome count data, (2) the flexibility
of the glmmTMB package allows for incorporating a wide range of random effect terms
and zero-inflation structures. We demonstrate through simulation studies and real data
analysis that the RRMM can outperform existing univariate negative binomial methods,
such as those implemented in DESeq2 and NBZIMM R packages.

5.3 Method

5.3.1 The Reduced Rank Mixed Effect Model (RRMM)

RRMM is described in Section 2.5.2 of this thesis. The model, presented in equation
(2.10), including the zero inflation component is specified in glmmTMB as follows:
glmmTMB ( count ~ 1 + o f f s e t ( normalizer ) +

us(1 + group | taxon) +
rr(0 + taxon | subject , d),
ziformula = ~1+(1| taxon),
data = data ,
f a m i l y = nbinom2 )

Listing 5.1: Example code for glmmTMB

where us() and rr() denote the unstructured and reduced-rank variance-covariance
matrices for the random effects respectively, and d specifies the rank of the reduced rank
matrix. nbinom2 is the negative binomial distribution. In this formulation, the latent
variables in the reduced rank model represent deviations from the average (log) count
for each taxon within a subject.
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5.3.2 Coverage estimation

The effect sizes in RRMM were modeled as random effects, which are latent variables
rather than model parameters. To quantify the uncertainty associated with these latent
variables, we computed empirical Bayes confidence intervals, also referred to as prediction
intervals in the context of mixed models. These intervals reflect the uncertainty in the
estimated taxon-specific group effects, given the observed data.

The random effect estimate (Best Linear Unbiased Predictor, BLUP) for taxon i
follows a conditional normal distribution, which corresponds to the empirical Bayes
posterior distribution:

bi | y ∼ N(b̂i, σ2
bi

), (5.1)

where b̂i is the conditional mode of the random effect, and σ2
bi

is the conditional variance,
obtained from the fitted mixed model. We computed prediction intervals using the
standard normal approximation as follows:

b̂i ± zα/2 × SE(b̂i), (5.2)

where SE(b̂i) is the square root of the posterior variance of bi, and zα/2 is the critical
value from the standard normal distribution.

5.3.3 Conditional AIC Estimation

The standard AIC (also referred to as the marginal AIC; (Greven and Kneib 2010; Vaida
and Blanchard 2005)) is defined as

AICmarginal = 2k − 2 ln(Lmarginal) (5.3)

where Lmarginal is the marginal likelihood of the model, and k is the number of esti-
mated parameters, typically including only the fixed effects and variance components
(e.g., random effect variances and residual variance). This marginal AIC has two main
limitations when applied to mixed models: (1) it relies on the log-likelihood calculated
from the marginal distribution obtained by integrating over the random effects. and
(2) it does not account for the variability induced by uncertainty in the estimates of
the random effects covariance matrix, often favoring smaller models that exclude them
(Greven and Kneib 2010).

A major challenge when computing AIC for mixed models is determining whether
to treat random effects as model parameters and whether the log-likelihood should be
conditioned on the random effects. The conditional AIC is often used for mixed model
and is defined as

AICconditional = 2k − 2 ln(Lconditional) (5.4)
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where Lconditional is the likelihood of the model conditioned on both the fixed and random
effects. Determining the value of k for AICconditional calculation is however, not straight-
forward. Since random effects in a mixed model are modeled as latent variables rather
than parameters, it is unclear whether to include random effects when determining the
value of k. Vaida and Blanchard 2005 proposed a method for determining k defined by
the trace of the the leverage matrix (also called the hat matrix).

The linear mixed model is given by:

y = Xβ + Zb + ε, (5.5)

where y is the response vector (n × 1), X is the fixed effects design matrix (n × p)
associated with the fixed effect coefficients β, and Z is the random effects design matrix
(n × q) associated with the random effect coefficients b. The random effects follow
b ∼ N(0, G), where G is the random effects covariance matrix. The residual errors
are ε ∼ N(0, R), where R is the residual covariance matrix. Assuming homoscedastic
residual variance, R is typically defined as R = σ2In, where σ2 is the residual variance
and In is the identity matrix of size n × n.

The marginal distribution of y, integrating over b, is:

y ∼ N(Xβ, V ), (5.6)

where the marginal covariance matrix is:

V = ZGZT + R. (5.7)

The leverage matrix H is defined as:

H = X(XT V −1X)−1XT V −1. (5.8)

Thus, the conditional AIC is given by:

AICconditional = 2tr(H) − 2 ln(Lconditional), (5.9)

where tr(H) denotes the trace of the leverage matrix H.

5.3.4 Statistical Power Estimation

Microbiome studies and other related high-dimensional studies such as differential gene
abundance analysis often assume that a large fraction of taxa have exactly the same
abundance between treatments. This assumption is reflected in both computational
methods used to estimate treatment effects (e.g., lasso regression, spike-and-slab Bayesian
priors (Bhadra et al. 2017)) and in the evaluation metrics for model performance. Specif-
ically, metrics like specificity (the probability that an estimated nonzero change is truly
nonzero) and false discovery rate (the probability that the null hypothesis is true given
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that it was rejected) rely on the premise that some taxa remain unchanged across treat-
ments. However, some researchers (e.g., Stephens and Balding 2009) argue that in a
complex biological system, it is unlikely that treatment effects would be exactly zero for
any taxon, even if most changes are small.

In our simulations, the latent variable representing deviations of effect sizes from
the overall effect size is drawn from a multivariate Gaussian distribution with a zero
mean and a specified variance-covariance structure. As a result, the probability of any
taxon having exactly identical abundance across treatments is zero. Consequently, the
null hypothesis is never strictly true, meaning that we cannot evaluate specificity or
FDR in this context. Given that there are no true zero effects, we define the average
statistical power across taxa as the proportion of p-values less than a specified significance
threshold. We used a p-value threshold of 0.05 as is often used in the statistical literature.
Since the analysis involves many taxa and multiple hypothesis tests we applied the
Benjamini and Hochberg method.

5.4 Simulation Studies
We simulated data using the RRSim simulation method presented in Section 2.5. RRMM
jointly models all taxa and uses the reduced rank method to model correlations between
taxa. RRMM also has functionality to model zero inflation in microbiome data. We sim-
ulated with a full rank covariance-matrix (ie, without imposing rank reduction). RRMM
uses the simulate_new function from the glmmTMB R package. The simulate_new func-
tion allows setting up a simulation directly, specifying the right-hand side of the model
formula described in Listing 5.1, a data frame describing the experimental setup (e.g.,
number of taxa, number of subjects, group names of subjects), and a list of simulation
parameters. The function requires input values for all of the information in the model:
the standard deviations and correlations of each random effect, as well as the intercept
terms (that is, the overall average count, taxa-specific effect, and average zero-inflation
probability).

Table 5.13 presents the parameter values used for the simulation. To determine a real-
istic range of zero-inflation probabilities and parameter values for the zero-inflation term
of our model, we estimated zero-inflation probabilities from seven real microbiome data
sets from a previous study by Agronah and Bolker 2025. We fitted the zero-inflated
negative binomial mixed model implemented in the NBZIMM R package for estimating
these zero-inflation probabilities. The raw sequence data for these seven data sets is
available from the the National Center for Biotechnology Information (NCBI) (Sayers
et al. 2021) data repository under accession numbers PRJNA168470, PRJNA355023,
PRJNA453621, PRJEB45948, PRJNA644763, PRJNA589343 and PRJNA687773. The
range of zero-inflation probability estimates for each data set is shown in Fig. 5.13 under
supplementary material. The average minimum and maximum zero-inflation probabil-
ities across the seven data sets were 0.12 and 0.92, respectively, yielding a midpoint of
0.52. Consequently, we conducted our simulation using an average zero-inflation proba-
bility of 0.52. We calculated the standard deviation of the taxon-specific zero-inflation
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probabilities using the logit-transformed range, given by

log
( logit(0.92) − logit(0.12)

4

)
.

This ensures the random effect term varied by about two standard deviations around
the midpoint of 0.52. We generated correlation matrices for our simulation using the
huge (Zhao et al. 2012) R package. This package is well-suited for simulating high-
dimensional correlation matrices due to its ability to efficiently handle sparse and large-
scale networks. These features are relevant for microbiome data, which typically exhibit
high dimensionality and complex dependency structures among taxa. We chose the
parameter values (β0, β0disp

) = (3, 1) to yield a realistic range of mean abundance of
taxa.

Table 5.1: Parameter values used for simulation studies. The logit
function (ie, inverse of the logistic function) is defined as logit(x) =
ln(1/(1 − x)).

Parameter Description Value
β0 Intercept term representing overall average

(baseline) count
3

β0z Intercept term representing average zero-
inflation probability across taxa

logit(0.52) ≈ 0.0772

β0disp An over-dispersion parameter for the negative
binomial distribution

1

nsim Number of simulations 500
(m, n) A coordinate representing the number of sub-

jects (m) and taxa (n)
(10, 50), (50, 100), (100, 300)

θzi A standard deviation parameter for the varia-
tion in taxon-specific zero-inflation probabili-
ties

log((logit(0.92) - logit(0.12))/4)

≈ 0.103
θ1 A vector of length three corresponding to the

parameters for the us(1 + group | taxon)
term in our model: the first two entries repre-
sent the log-standard deviations of the taxon-
specific effects and group-specific random ef-
fects, while the third entry represents the cor-
relation between the taxon-specific and group-
specific random effects.

Code for simulating values for θ1 is pre-
sented under supplementary material

θ2 A vector of length n(n + 1)/2 representing
the parameters for the unstructured variance-
covariance matrix (i.e., the us(0 + taxon|
subject) term of our model): the first n en-
tries are the log-standard deviations of of the
taxon-specific random effects for each subject,
and the remaining n(n−1)/2 entries represent
the pairwise correlations among the n taxa-
specific random effects for each subject.

Code for simulating values for θ2 is pre-
sented under supplementary material
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5.5 Real Data
We applied the RRMM to four real microbiome data sets and compared its performance
with the models listed in Table 5.3. Since the zero-inflated mixed model from the NBZIMM
package cannot fit taxa without zero counts, we excluded taxa that had no zero counts
in any subjects in each data set to ensure a fair comparison.

5.5.1 The Autism Data

The Autism data (Chen et al. 2020) measures the gut microbiome of children with Autism
Spectrum Disorder (ASD) and neurotypical (NT) children. The raw sequence data is
available at the repository of the National Center for Biotechnology Information (NCBI:
Sayers et al. 2021), with accession number PRJNA644763. The data set consists of
fecal samples from 76 children with ASD and 47 children with typical development. We
used the processed ASV count data from a previous study by Agronah and Bolker 2025.
The processed ASV table contained 8,477 taxa and 123 subjects. Following standard
procedures in differential abundance microbiome studies, we filtered rare taxa, retaining
only those with an abundance of seven or more reads in at least four samples (Xia et al.
2018; Love et al. 2014). We then excluded taxa with no zero counts in any subjects. The
final ASV table after pre-filtering and exclusion of taxa without zero counts contained
689 taxa and 123 subjects.

5.5.2 The Soil Data

The soil bacterial species data set is described in a study by Nissinen et al. 2012, where
16S rRNA gene amplicon sequencing was used to characterize bacterial communities
associated with bulk soil samples. The raw sequence data is available in the European
Nucleotide Archive under the accession number PRJEB17695 (Sayers et al. 2021). The
data set comprises 56 soil samples collected from eight locations: three in Kilpisjärvi,
Finland, three in Ny-Ålesund, Svalbard, Norway, and two in Mayrhofen, Austria. Micro-
bial community profiles were obtained from these soil samples, and ASVs were assigned
based on sequence similarity, resulting in a raw count matrix with 1276 ASVs. Each
sampling site (denoted by Site in the data set) is treated as independent, as bacterial
communities are typically highly location specific. Each soil sample (Soiltype) was
grouped as being top soil (T) or bottom soil (B). Three continuous environmental vari-
ables were measured for each sample: soil organic matter, soil pH value and amount of
phosphorus in soil. We used the processed count data from the gllvm R package, which
has undergone pre-filtering to exclude low abundance species present in fewer than five
samples. The processed data after removing taxa with no zero counts included 969 ASVs
and 56 soil samples. We considered a model with covariates Soiltype and Site.
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5.5.3 The Crohn’s Disease Data

The Crohn’s disease data measures the microbial composition in the terminal ileum of
individuals with Crohn’s Disease (CD) and healthy controls (Gevers et al. 2014; Silver-
man et al. 2022). The data contains microbial abundance data and associated metadata,
including disease diagnosis, age of individuals and treatment information. After filtering
out missing values and low abundance taxa, the data contains 49 taxa and 250 samples.
The data is available in the fido R package. We consider disease diagnosis (healthy
vs CD) and the age of individuals as the only covariates and examine differences in the
microbiome composition between individuals with CD and healthy individuals.

5.5.4 The Human Intestinal Data

The human intestinal microbiome data set (Lahti et al. 2014) investigates the compo-
sition of the gut microbiota in 1,006 adults. The ASV count data included 130 taxa
and 1,151 samples, with some samples obtained from repeated measurement of some
subjects. Since our study in this chapter does not account for a longitudinal design, we
excluded repeated measurements, retaining only the first time point for each subject.
The data also includes subject information such as age, gender, nationality and Body
Mass Index (BMI) group (that is, BMI-based categories underweight, lean, overweight,
obese, severely obese and morbidly obese). We consider a model involving age and BMI
group only and study the effect of BMI groups on count abundance of taxa. The final
data set we used involved 130 taxa and 900 samples. The data set can be found in the
microbiome package (Lahti 2012) in R.

For both simulation and real data analysis, we compared the performance of the
RRMM with the negative binomial model implemented in DESeq2, as well as the negative
binomial mixed model and zero-inflated negative binomial models in the NBZIMM package.

5.6 Results and Discussion
Table 5.3 summarizes the notation used for each model.

To evaluate the impact of the reduced rank term in our model, we compared the
RRMM to a variant that excluded the reduced rank term while keeping all other com-
ponents unchanged. To assess the influence of including the zero inflation terms, we
compared:

• the Reduced Rank Mixed Model (RRMM) with a zero-inflation component (RRzi)
compared to the RRMM without a zero-inflation component (RR);

• the RRMM without the reduced rank term but with zero-inflation (USzi) to the
same model without zero-inflation (US);

• the negative binomial model implemented in the NBZIMM package (NB) with the
corresponding zero-inflated negative binomial model (ZNB).

54

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Michael Agronah; McMaster University– School of
Computational Science & Engineering

Table 5.2: Summary of microbiome data sets used in the analyses in
Chapter 5.

data
set

Data Source # Taxa
(Raw)

# Samples Pre-filtering Crite-
ria

# Taxa
After
Filter-
ing

Autism
Data

NCBI acces-
sion number
PRJNA644763

8,477 123 Retained taxa with
abundance of seven or
more reads in at least
four samples

123

Soil
Data

gllvm R pack-
age (ENA
Accession PR-
JEB17695)

1276 56 Taxa present in at
least 5 samples; taxa
with no zero counts
removed

969

Crohn’s
Disease
Data

fido R package 214 (origi-
nally 9511
taxa; fil-
tered by
aggregat-
ing to the
Family
level and
exclud-
ing low-
abundance
taxa)

286 (originally 1359
samples; removed
samples with missing
disease status,
excluded those on
steroids, antibiotics,
or biologics, and
retained only
samples from the
terminal ileum).
Retained samples
with at least 5000
total reads across
taxa

Retained taxa with
counts >3 in at least
10% of samples

49

Human
Intesti-
nal
Data

microbiome R
package

130 900 (originally 1151
samples. Excluded
samples with missing
data and repeated
measurements)

Filtered out taxa
with no zeros in all
samples and taxa
with zeros in all
subjects

30

Table 5.3: Abbreviation for model names and descriptions

Model Description
RR The Reduced Rank Mixed Model (RRMM) without a zero-inflation component.
RRzi The Reduced Rank Mixed Model (RRMM) with a zero-inflation component to account for taxon-

specific zero-inflation probabilities.
US The Reduced Rank Mixed Model (RRMM) excluding both the reduced rank component and the

zero-inflation term.
USzi The Reduced Rank Mixed Model (RRMM) with a zero-inflation component but without the reduced

rank term.
DE The negative binomial model implemented in the DESeq2 package, with shrinkage functionality en-

abled.
DE_noSk The negative binomial model implemented in the DESeq2 package, with shrinkage functionality dis-

abled.
NB The negative binomial mixed model implemented in the NBZIMM package.
ZNB The zero-inflated negative binomial mixed model implemented in the NBZIMM package.

5.6.1 Simulation studies

For each model, we compared the group effect sizes we used for the simulations with the
average group effect size estimates obtained across simulations. The effect size estimates
presented in these results are on the (natural) logarithmic scale. The average group
effect size estimate follows the trend of the true group effect sizes (Fig. 5.1).
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Figure 5.1: Average group effect estimates by taxon across simulation
for each model. y-axis has been truncated to exclude extremely large or
low effect size estimated from the NB and ZNB models (eg. estimate value
of 20) caused by identifiability issues (i.e., situations where some taxa
have zero counts in all subjects within one group, making it impossible or
unstable to estimate group effects for those taxa).

Root Mean Squared Error (RMSE), Variance and Bias

We compare the average (arithmetic mean) root mean squared error (RMSE) across
taxa and the average (arithmetic mean) bias across taxa for each model, incorporating
a 95% confidence interval to quantify the uncertainty in these average estimates. For all
combinations of number of taxa and subjects, the reduced rank models (RR and RRzi)
achieve the lowest average RMSE (Fig. 5.2). Including the reduced rank term improves
the precision of effect size estimates, as shown by the lower RMSE when comparing RR
to US and RRzi to USzi. The uncertainty associated with the average estimates for the
reduced-rank models is generally lower than that of all other models.

Among the models that analyze taxa separately, the DESeq2 models yield the lowest
average RMSE and highest precision in the average RMSE estimate. A strength of the
DESeq2 package is its capabilities for shrinkage estimation of effect size and dispersion,
which allow information sharing between taxa. The effect size shrinkage reduces esti-
mates for taxa with low counts, pulling them toward zero. This effect size shrinkage
is similar to the random effects incorporated in the US and RR models. Similarly, the
dispersion shrinkage pulls dispersion estimates for highly variable taxa toward the mean
trend observed across all taxa. Disabling effect size shrinkage increases the average
RMSE, as seen when comparing the DE and DE_noSk models (Fig. 5.2). In contrast, the
NBZIMM models (ie, NB and ZNB models), which also analyze taxa separately, do not allow
shrinkage estimation. Models that incorporate information sharing mechanisms result
in more precise effect size estimates (Love et al. 2014; Robinson et al. 2010).

In general, incorporating a zero-inflation term improves the precision of effect size
estimates (Fig. 5.2). Other than the joint models that omit the reduced rank term (i.e.,
US and USzi), all other models with zero-inflation have lower average RMSE compared
with their counterpart that excludes zero-inflation (comparing NB with ZNB, and RRzi
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with RR) (Fig. 5.2). This improvement in precision is unsurprising, as the data were
simulated including zero inflation. All models tend to underestimate the true effect sizes,
as indicated by the negative bias (Fig 5.3). The NBZIMM models (NB and ZNB) exhibit the
least bias, while the reduced rank models (RRzi and RR) show higher bias. The reduced
rank models generally exhibit lower variability in their effect size estimates compared
to all other models (Fig. 5.4). In contrast, the NBZIMM models have higher variance,
producing more variable estimates across taxa. Overall, the reduced rank models (RRzi
and RR) perform better based on these metrics, with lower average RMSE, error variance,
although slightly more bias in its estimates.

Figure 5.2: Comparing average Root Mean Squared Error (RMSE)
across all taxa each model. We use RRzi as the reference model shown
by dashed red line

Figure 5.3: Comparing average bias across taxa for each model. We use
RRzi as the reference model shown by dashed red line
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Figure 5.4: Comparing average variance of error across taxa for each
model. We use RRzi as the reference model, shown by the dashed red
line.

Confidence Width and Coverage

We fitted each model to 500 simulations. For each simulation, we estimated Wald
confidence intervals for each taxon at the 95% confidence level. For the joint models
(RR, RRzi US and USzi), we applied the confidence interval approach outlined in Section
5.3. We then computed coverage for each taxon as the proportion of simulations in
which the true value fell within the estimated confidence interval. For each taxon, we
also calculated the average width of its confidence intervals across simulations. Figure
5.6 presents a comparison of the overall average confidence interval width, computed
as the mean of the taxon-specific average widths. Models with a zero-inflation term
have a narrower confidence interval, as indicated by the reduced confidence width, but
show lower coverage. This can be seen by comparing ZNB with NB, RRzi with RR, and
USzi with US in Fig. 5.6. Thus, including zero inflation underestimates the uncertainly

58

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Michael Agronah; McMaster University– School of
Computational Science & Engineering

associated with the effect size estimates. The RR model has the best coverage, having a
coverage close to the nominal 95% value (Fig. 5.6). Comparing RRzi to USzi and RR to
US shows that including the reduced rank component increases coverage.

Figure 5.5: Comparing average statistical power across 500 simulations
for each model. 600 taxa and 100 samples per group. The standard errors
for points shown in plot are on the order of 10−5, making the confidence
intervals around the point estimates too small to be visible.

Statistical Power

We conducted 500 simulations and fitted each model to each simulation. For each
simulation fit, we estimated the average statistical power as the proportion of adjusted
p-values (based on FDR threshold of 0.05) less than 0.05. The average power for each
model across all simulations shows that models with zero inflation have higher statistical
power as seen when comparing RRzi to RR, USzi to US and ZNB to NB in Fig. 5.7. The
RRzi and USzi models exhibit the highest power of about 71%.

When including the reduced rank term might be beneficial

We performed an experiment to determine when including the reduced-rank term could
be beneficial. We simulated ten data sets with a fixed total variance of count abundance.
The total fixed variance was composed of different proportions of variance explained by
the group effect term (ie. the us (1 + group | taxon ) term in listing 5.3.1) and
variance explained by the reduced rank term (ie. the rr (0 + taxon | subject, d )
term in in listing 5.3.1). For the first simulation, the total variance was composed of the
group variance, without a contribution from the reduced rank term. We then simulated
data using increasing proportions from the reduced rank term and decreasing proportion
from the treatment effect.

For each of the ten simulations, we fitted the US and the RR models and selected
the best model based on marginal AIC (see Section 5.4). For different values of total
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Figure 5.6: Comparing average confidence width (averaging across sim-
ulations and across taxa) and average coverage (averaging across taxa)
for each model. 600 taxa, 100 samples per group and 500 simulations.
The standard errors for the plot in the left panel are on the order of 10−4,
making the confidence intervals around the point estimates too small to
be visible.

variance, we observed from our experiment that the reduced-rank model emerged as
the best model as the proportion of total variance contributed by the latent variables
exceeds the proportion of variance contributed by the group effect (Fig. 5.8), suggesting
that the complexity of including the reduced rank term might only be beneficial when
the latent variance explains more of the variance in mean abundance than is explained
by the treatment effect.

5.6.2 Real data sets

For real data, model performance metrics such as RMSE and bias cannot be calculated
because the true effect sizes are unknown. Therefore, to assess model performance, we
compare the Akaike Information Criterion (AIC), the width of the confidence intervals,
statistical power and the runtime of the models.

AIC Comparison

We compare the AIC of the models for the four data sets. For the RR and US models
which model effect sizes as random effects, we computed the conditional AIC as described
in Section 5.3.3. The DE model from the DESeq2 package, as well as the NB and ZINB
models implemented in the NBZIMM package, do not directly provide likelihood estimates
required for AIC calculation. Therefore, we computed the likelihood for the NB, ZINB, and
DE models by re-implementing these models within the glmmTMB package. We then used
the effect size estimates obtained from fitting each model in their respective packages
(NBZIMM or DESeq2) as input values to evaluate the likelihood within glmmTMB.
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Figure 5.7: Comparing average statistical power across 500 simulations
for each model. 600 taxa and 100 samples per group. The standard errors
for points shown in plot are on the order of 10−5, making the confidence
intervals around the point estimates too small to be visible.

The reduced rank models were selected as the best models with the lowest AIC
values for the human intestinal and the Crohn’s disease data sets while the NB model
was selected as the best model for the soil data (Fig. 5.9). The US model was selected
as the best model with the lowest AIC value of 104579.50 (lower than the AIC value for
the DE (DESeq with shrinkage) model (see supplementary material: Sup 5.8). Thus, for
these data sets, models that analyze taxa jointly mostly outperform models that assume
independence in taxa abundances.

Statistical power

We estimated the average statistical power as the proportion of adjusted p-values (us-
ing the Benjamini-Hochberg method) that fall below a significance threshold of 0.05.
Some models show notably low statistical power across certain data sets. In practice,
statistical power is typically assessed through repeated simulations that closely mimic
the characteristics of the actual data set under study (Agronah and Bolker 2025; Kelly
et al. 2015). However, in this case, we use a single real data set as a proxy to provide a
rough comparison of the expected power across models, recognizing that this approach
does not fully capture the variability inherent in power estimation.

The NB, ZINB, DE and USzi models show low average statistical power for the soil
and autism data sets (Fig. 5.10). In contrast, the RRzi model exhibit high power for
the autism and soil data sets. The soil data also has the lower range of power values in
comparison to the other data sets.
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Figure 5.8: Differences in marginal AIC between the US and the RR
model for increasing proportion of variance explained by the reduced rank
term. Total variance = 4. Number of taxa = 100 and 25 samples per
group.

Confidence width comparison

For real data, where true effect sizes are unknown and coverage cannot be directly
measured, narrow confidence intervals alone do not necessarily reflect a model’s overall
performance. Thus, we cannot necessarily be confident that the confidence intervals have
correctly estimated the uncertainty. Assuming similar coverage holds for these real data
sets as with those observed in our simulation studies, then narrow confidence intervals
for models observed to have high coverage (eg. models without zero inflation terms —
see Fig. 5.6) would indicate improved precision in effect size estimates.

Among the models that analyze individual taxa separately, the DE model consistently
exhibits the lowest average confidence interval width across all data sets, except for the
autism data set, where the ZINB model achieves the narrowest intervals (Fig. 5.11). In
contrast, the NB model shows the highest average confidence interval width across all
data sets, suggesting lower precision in its effect size estimates. The average confidence
widths for the RR, RRzi, US, and USzi models, which jointly model all taxa, vary across
data sets. However, given the high coverage demonstrated by the RR model in simulation
studies (see Fig. 5.6), its generally low average confidence interval width suggests it may
provide more precise effect size estimates in real data applications.

Run time comparison

We compared the computation time required to fit the four models to each of the real
data sets (Fig. 6.12). For each data set, we fitted the RR model with a rank of 2. All
models, except the RR model fitted to the pregnancy data set, were run on a Dell laptop
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Figure 5.9: AIC values for the models for each data set. AIC values
for the RR and RRzi models fitted to the autism and soil data sets were
omitted due to computational challenges in estimating the hat matrix (see
Section 5.3.3) required for conditional AIC calculations. Specifically, the
high dimensionality of these models led to memory demands exceeding 5
TB (terabytes) during the leverage computation, rendering the calcula-
tions infeasible.

running Ubuntu with 6 cores and 12 threads. The RR model for the pregnancy data
set required a substantially higher number of iterations to converge due to the large
number of taxa and the model complexity. It was therefore run on the Graham cluster;
a high-performance computing resource provided by the Digital Alliance of Canada, us-
ing glmmTMB with extended optimization controls: optCtrl = list(eval.max = 1000,
iter.max = 100).

Across all data sets, the US and USzi models, which jointly analyze all taxa without
explicitly accounting for correlations, consistently exhibited shorter runtimes than the
NB and ZINB models, which analyze each taxon separately and are comparatively less
complex. The DE model required approximately the same runtime as the US model for
both the Crohn’s disease and soil data sets. The US model had the lowest runtime for the
autism data set. These results suggest that modeling all taxa jointly may not necessarily
lead to longer computational times.

For all data sets, the reduced rank models (RR and RRzi) takes longer to run due
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Figure 5.10: Average statistical power across taxa for the four data sets.

to the complexity of the model. Overall, this analysis illustrates a clear trade-off be-
tween model complexity and runtime. Although the reduced-rank models may require
longer runtimes, the improvement in effect size estimation may justify the additional
computational cost.
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Figure 5.11: Average confidence width across taxa for the four data
sets. The standard errors for some of the points show in these plots are
on the order of 10−4, making the confidence intervals around these point
estimates too small to be visible.
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Figure 5.12: Computational runtime of each model when fitted to the
data sets
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5.7 Conclusion
This chapter introduced the Reduced Rank Mixed Model (RRMM) for joint analyses
of microbiome data while accounting for correlations among them through a rank-rank
structure. Our approach highlight limitations of models which assume independence
among taxa and analyze them individually. Through simulation studies and application
to real data sets, our findings highlight the following conclusions.

First, joint modeling of taxa consistently improves model performance. Even when
correlations between taxa are not explicitly modeled (as in the US and USzi models),
jointly analyzing taxa enables information sharing across features, resulting in more
precise effect size estimates. This is reflected in lower root mean squared error (RMSE)
of effect size estimates compared to models that treat taxa independently (Fig. 5.2).
Moreover, models that assume independence but incorporate effect size shrinkage still
show gains in precision over those that neither model correlations nor apply shrinkage
(Fig. 5.2) (Love et al. 2014; Robinson et al. 2010).

Second, our simulations show that incorporating rank reduction increases the coverage
of confidence intervals (Fig. 5.6). When compared with joint models that excluded the
reduced rank term, RRMM yielded lower RMSE and higher coverage (Fig 5.6).

Third, zero-inflation components can further enhance model performance under sparse
data scenarios. Incorporating a zero-inflation term generally improved the precision
of effect size estimates and increased statistical power to detect biologically meaning-
ful differences. In our simulations, models with zero-inflation (e.g., RRzi, USzi, ZNB)
consistently showed higher power and narrower confidence intervals compared to their
non-zero-inflated counterparts. However, this improvement comes at the cost of reduced
coverage, suggesting that these intervals may underestimate uncertainty.

Finally, our runtime analysis challenges the assumption that joint modeling is always
computationally burdensome. Some joint models (e.g., US and USzi) required similar or
even less computation time than independent models like DESeq2 and NBZIMM, par-
ticularly in data sets with moderate dimensionality. Although RRMM models are more
computationally intensive due to the added complexity of estimating latent structures,
they offer significant gains in model accuracy and biological interpretability.

In summary, our work demonstrates that modeling taxa jointly—especially with re-
duced rank correlation structures and optional zero-inflation terms—offers substantial
improvements in estimation accuracy, statistical power, and biological relevance. Even
when taxon-level correlations are not explicitly modeled, joint models outperform tradi-
tional independent approaches. The RRMM framework provides a scalable and statisti-
cally rigorous alternative for modern microbiome analysis, balancing model complexity
with computational feasibility. We recommend its adoption in settings where taxa are
likely to be interdependent, and where accurate, high-resolution inference is required.

67

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Michael Agronah; McMaster University– School of
Computational Science & Engineering

5.8 Supplementary material

Figure 5.13: Ranges of zero inflation probability estimates across taxa
for seven real microbiome data sets.

Functions for simulating log standard deviations and correlations for random
effect terms

#’ @param meanlog mean log
#’ @param sdlog log standard deviation
#’ @param rank: specifies the rank of the reduced rank approximation

get_theta_logSD <- function(n, meanlog = 0, sdlog = 1,
seed = NULL, rank = NULL) {

set.seed(seed)
val <- rlnorm(n, meanlog, sdlog)
logSD <- log(sqrt(val))

if (!is.null(rank)) {
logSD <- logSD[1:rank]
return(logSD)

} else {
return(logSD)

}
}

#’ @param ntaxa number of taxa
#’ @param nsubject number of sunject
#’ @param mat specify a matrix directly.

get_theta_corr <- function(ntaxa,nsubject, mat= NULL, seed = NULL) {
if(!is.null(mat)){C <- mat}
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else{set.seed(seed); C <- get_corr(ntaxa, nsubject,seed = seed)}
C <- nearPD(C)$mat
scale <- sqrt(fastmatrix::ldl(as.matrix(C))$d)
cc2 <- chol(C) %*% diag(1/scale)
cc2[upper.tri(cc2)]

}

Table 5.4: AIC estimates and differences (∆AIC) for all models across
data sets

data set Model ∆AIC

Autism data US 0
USzi 800267
NB 5848122
ZNB 573927
DE 3293

Crohn’s Disease data US 4862
USzi 5210
RR 0
RRzi 184
NB 3059
ZNB 3224
DE 9951

Human Intestine data US 9036
USzi 9973
RR 0
RRzi 849
NB 6369
ZNB 6365
DE 36104

Soil data US 2286
USzi 4599
NB 0
ZNB 1051
DE 29761
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Chapter 6

A Reduced Rank Poisson Model
for Longitudinal Microbiome
Data: Accounting for Taxa
Correlations

This chapter is a draft of a manuscript intended for submission for publication

6.1 Abstract
Modelling associations between longitudinal microbiome data and other covariates aids
in understanding how microbial communities change over time and how these changes
differ between treatment groups (eg. control vs. treatment). Such longitudinal micro-
biome analysis also aid in understanding disease progression in patients and microbial
responses to dietary interventions, antibiotics, and environmental changes.

Just as in a non-longitudinal microbiome study, taxa within subjects in a longitudinal
design are correlated. Accounting for these correlations may lead to improved precision
in effect size estimates. However, modelling these correlations in a longitudinal design
is more challenging because taxa can co-vary in different ways over time. Similar to a
non-longitudinal design, modeling correlations in longitudinal design also require esti-
mation of thousands or hundreds of parameter estimates for microbiome data, which is
computationally impossible to fit. Due to this complexity, most existing models analyze
individual taxa separately.

In this chapter, we propose a Longitudinal Reduced Rank Mixed Model (LRRMM),
which extends the Reduced Rank Mixed Model proposed in Chapter 5 for non-longitudinal
designs. LRRMM is designed to analyze associations between microbiome data and co-
variates by modeling all taxa jointly, while accounting for correlations among taxa within
subjects over time. We used the reduced rank functionality available in the glmmTMB
package to reduce the number of parameter estimates required for modeling correlations
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between taxa. We demonstrate that LRRMM provides more precise estimates of ef-
fect sizes compared to both the Negative Binomial and Zero-Inflated Negative Binomial
mixed models implemented in the NBZIMM R package.

6.2 Introduction
Longitudinal data arises when subjects in an experiment are repeatedly sampled over
time. This type of data is common in microbiome research, where microbial samples are
collected from each subject at multiple time points. The common goal of such research
is to study how microbial communities change over time and how these changes differ
between treatment groups (Zhou et al. 2015). Researchers also conduct longitudinal
microbiome analysis to investigate the development of diseases within subjects over time
(Dashper et al. 2019) and to investigate microbial responses to dietary interventions,
antibiotics, and environmental changes (Lyu et al. 2023).

Three kinds of analyses are common in longitudinal microbiome research: (1) studies
of changes in microbial abundance over time and associations with host or environmental
variables (Zhang et al. 2020; Lewis et al. 2015; Bäckhed et al. 2015), (2) clustering of taxa
based on similar temporal trends, often using dimensionality reduction techniques such as
principal component analysis (PCA) or linear discriminant analysis (LDA) (McNicholas
and Murphy 2010), (3) understanding biological and temporal relationships among taxa,
using tools such as network models to identify relationships among taxa (Kodikara et al.
2022).

There are several challenges in analyzing longitudinal microbiome data. First, re-
peated sampling from the same subject creates dependencies among observations, lead-
ing to correlations in microbial counts over time. Second, longitudinal designs introduce
additional complexity due to potential interactions over time, which may require more
sophisticated models. For example, the effect of a probiotic supplement on gut microbial
composition might depend on participants’ physical activity levels with stronger effects
during more active periods and weaker effects during sedentary periods, illustrating an
interaction between treatment and a time-varying covariate.

As with non-longitudinal microbiome data, taxa counts within the same subject in a
longitudinal design are also correlated. However, modeling correlations in a longitudinal
design is more complex, as taxa can co-vary in different ways over time. For example,
some taxa may tend to rise or fall together across time within a subject, suggesting a
shared pattern or trajectory throughout the study period. Alternatively, taxa may be
correlated within a subject at specific time points, meaning that certain taxa tend to co-
occur or vary together at particular moments in time. The rates of change of individual
taxa over time within a given subject may also be correlated.

Mixed models have been widely used in microbiome research to examine associations
between microbial abundance and covariates as well as to model changes in microbial
communities over time. Examples include Gaussian and zero-inflated Gaussian mixed
models (Paulson et al. 2017; Zhang et al. 2018), Poisson and zero-inflated Poisson mixed
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models (Romero et al. 2014; Zhang et al. 2018), negative binomial and zero-inflated
negative binomial mixed models (Zhang et al. 2018), and zero-inflated Beta regression
mixed models (Chen and Li 2016). Mixed models are a well-established approach for
analyzing longitudinal data, as they accommodate both within-subject correlations and
between-subject variability. By incorporating random effects, mixed models allow for
subject-specific variation and provide a flexible framework for modeling complex depen-
dency structures. Several R packages, including glmmTMB, lme4, NBZIMM (Zhang and Yi
2020), and ZIBR (Chen and Li 2016), provide tools for fitting mixed models to micro-
biome data.

Few methods for longitudinal microbiome analysis model taxa jointly while account-
ing for correlations within subjects; those that do are predominantly Bayesian (Lee and
Sison-Mangus 2018). Most existing methods analyze each taxon separately, ignoring
correlations among taxa within a subject (Zhang et al. 2020; Kodikara et al. 2022).
To address this limitation, we extend the Reduced Rank Mixed Model (RRMM), in-
troduced in Section 5, originally developed for single-time-point microbiome data, to a
longitudinal setting. RRMM offers a frequentist alternative for joint modeling, leverag-
ing a reduced-rank approximation to efficiently capture correlations among taxa while
controlling model complexity. In Chapter 5, we demonstrated, for a non-longitudinal
microbiome data analysis, that modeling all taxa jointly and accounting for correlation
between taxa improves the precision of effect size estimates.

In this chapter, we propose the Longitudinal Reduced Rank Mixed Model (LRRMM)
for longitudinal microbiome data analysis. LRRMM models all taxa jointly across all
time points and accounts for correlations between taxa using the reduced rank method to
reduce the number of parameter estimates required for the correlation between taxa. We
apply LRRMM to address the research question: “how do the rates of change of a partic-
ular taxon (i.e. slope with respect to time) differ between groups (control vs treatment,
healthy vs diseased subjects, etc.)?”. Understanding how the rates of change of microbial
taxa differ between groups provides insights into disease progression, treatment effects,
and ecological shifts in microbial communities. Analyzing these longitudinal trends
can reveal whether certain taxa respond differently to interventions or environmental
changes, which is aids in identifying potential biomarkers.

The goal of this chapter is to evaluate how well LRRMM performs in addressing this
question, compared to models that analyze each taxon separately and ignore these cor-
relations. By comparing the two approaches, we assess whether joint modeling improves
estimation accuracy, effect size precision, and statistical power to detect meaningful
differences between groups.
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6.3 Method

6.3.1 General Model Description

The Poisson Mixed Model for Longitudinal Microbiome Data Analysis

Let Y t denote a m×n Amplicon Sequence Variant (ASV) table at time t for t = 1, . . . , T ,
with rows i = 1, . . . , m and columns j = 1, . . . , n, where m, n and T represent the number
of subjects, number of taxa and the number of repeated time measures, respectively.
Let xit denote a d-dimensional vector of covariates (which may vary over time), and let
yit = (yi1t, . . . , yint)′ represent the 1 × n vector of count abundance at time t.

Define the long-format concatenation of all subject-taxon-time observations as

ȳ =
(
y′

11, y′
12, . . . , y′

1T , . . . , y′
m1, . . . , y′

mT

)′
,

a vector of length N = m × n × T . Each entry ȳk ∈ ȳ, where k = 1, . . . , N , follows a
poisson distribution:

ȳk ∼ Poisson(µk),

where µk denotes the expected mean for observation k.

We model the vector of expected mean counts µ = (µ1, . . . , µN )′ using a generalized
linear mixed model:

g(µ) = Xβ + Zb,

b ∼ N (0, Σ),

where g is the log link function, X ∈ RN×d is the design matrix for fixed effects (including
time and covariate interactions) and β is a d-dimensional vector of fixed effect coefficients.
Z ∈ RN×q is the design matrix for random effects, b is a q-dimensional vector of random
effects with b ∼ N (0, Σ) and Σ ∈ Rq×q is the variance-covariance matrix of the random
effects.

6.3.2 Specific Model Description

The Reduced Rank Poisson Mixed Model for Longitudinal Microbiome Data
(LRRMM)

We consider a longitudinal design where samples are collected from subjects from two
groups (e.g., treatment vs. control or diseased vs. healthy) over time. For our research
question, we are interested in investigating how much the rates of change of a given
taxon differ between the two groups.

We develop a model to estimate how group, time, and their interaction affect count
abundance while accounting for correlations between taxa within subjects. We do not
include fixed effect terms for taxa, group (control vs. treatment),time nor their interac-
tions. Estimating taxon-specific fixed effects could lead to overfitting, especially when
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the number of taxa is large. Instead, we model the effect of taxa on count as a ran-
dom effect, which captures variability across taxa while avoiding the need to estimate
an excessive number of parameters. Including a fixed effect for group (that is, main
effect for group) measures the degree to which all taxa consistently increase or decrease
across all subjects in one group compared to another group. However, this assumption
does not accurately reflect the nature of microbiome data. Researchers typically treat
microbiome data as compositional, meaning the changes in abundance of each taxon are
measured in relation to the abundance of others. If one taxon increases, others must
decrease. In practice, this compositionality is typically handled by normalizing the data
to adjust for differences in overall abundance, as caused for example by differences in
sequencing depth between samples. Thus, the normalization and compositional nature
of microbiome data make the assumption of a consistent increase or decrease in all taxa
abundance across all subjects in a group inappropriate for microbiome data.

We allow the effect of groups, time and their interactions to be correlated. We assume
taxa within subjects are correlated at each time point. We also allow each subject-taxon
combination to have its own random intercept, accounting for subject-specific variability
in taxon counts. For simplicity, we do not allow random slopes for each subject-taxon
combination.

Microbiome data often exhibit overdispersion, where count variability exceeds what is
expected under a Poisson model. We modelled overdispersion by including an observational-
level random effect to account for additional dispersion. Alternatively, overdispersion
can be modeled directly using a negative binomial distribution, which includes an explicit
dispersion parameter (Harrison 2014).

The specific model formulation is therefore as follows:
g(µt

ij) = o + z′
i1bj1 + zi2bj2 + zi3bj3

bj1 ∼ N (0, Σ1),
bj2 ∼ N (0, Σ2)
bj3 ∼ N (0, Σ3)

(6.1)

where o is an offset term to account for differences in sequencing depth (read depth)
between samples and g(·) is a log-link function. Z1 ∈ Rmn×2n and Z2 ∈ Rmn×mn are the
design matrices for the random effects. The variance-covariance matrices Σ1 ∈ R2n×2n

and Σ2 ∈ Rmn×mn are positive definite block matrices. Each block within Σ1 models
correlation between the random intercept and random group effect for each taxon. The
blocks of Σ2 model correlations between taxa within each subject.

It is impractical to assume that the correlation between taxa within subjects differs
across subjects as this would lead to over-parametrization, making it impossible to fit the
model. Therefore, we simplify our model by assuming that all subjects have the same
between-taxon correlations. We also assume the correlation between baseline counts
(intercepts) and group effects is the same for all taxa. Consequently, we define the

74

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Michael Agronah; McMaster University– School of
Computational Science & Engineering

variance-covariance matrices Σ1 and Σ2 as follows:

Σ1 = σ∗
1 ⊗ I2n,

Σ2 = σ∗
2 ⊗ Imn,

where σ∗
1 ∈ R2×2 is a positive definite matrix that models correlations between baseline

counts and group effects for each taxon, σ∗
2 ∈ Rn×n is a positive definite matrix that

models correlations between taxa within each subject, and ⊗ denotes the Kronecker
product. I2n and Imn are identity matrices. The model in equation (6.1) including the
zero inflation component is specified in glmmTMB as
glmmTMB ( count ~ o f f s e t ( normalizer )

+ (group ∗ t ime |taxon)
+ (1| obs)
+ rr(taxon + 0 | subject : time ,d),

ziformula = ~1,
data = data ,
f a m i l y = p o i s s o n )

Listing 6.1: Example code for glmmTMB

where us() and rr() specify unstructured and reduced-rank variance-covariance ma-
trices for the random effects, respectively. The term obs introduces a random effect
to capture additional variability at the level of individual observations, accounting for
overdispersion. The argument d defines the rank of the reduced-rank matrix.

6.3.3 Estimating coverage

Estimating coverage for individual taxa is computationally intensive, as it requires nu-
merous simulations, each involving additional nested simulations. In order to estimate
coverage for each taxa, we computed Wald confidence intervals for each simulation and
computed the coverage for each taxon as the proportion of confidence intervals across
simulations that contained the true effect size. In the LRRMM, effect sizes were modeled
as random effects, which latent variables rather than fixed statistical parameters. To
quantify the uncertainty associated with these latent variables, we used prediction inter-
vals. A prediction interval for an effect size represents the range within which new values
are likely to fall with a specified probability. We define the wald confidence interval in
Section 5.3.2.

To compute prediction intervals for our effect size estimates, we must first estimate
their standard errors. This involves inverting the joint precision matrix (ie, the inverse
of the joint covariance matrix) of all model parameters estimated by glmmTMB during
model fitting. However, the full precision matrix can be extremely large (e.g., 20, 000 ×
20, 000 in some of our data sets), and inverting it requires substantial memory and
computational time, making this approach impractical in many cases. To overcome this
limitation, we adopt the simplifying assumption that the block components of the joint
precision matrix are independent of each other. This assumption, also used in the lme4
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R package (Bates et al. 2015), enables computational efficiency by allowing us to isolate
and invert only the relevant sub-blocks corresponding to the parameters of interest. We
then compute standard errors based on these submatrices. While this approach greatly
reduces computational burden, it can underestimate the true standard errors because
it ignores correlations between blocks. To mitigate this underestimation, we apply a
scaling factor to inflate the standard error estimates, yielding more realistic measures of
uncertainty—closer to what would be obtained using the full joint precision matrix.

To determine an appropriate scaling factor for inflating the standard errors, we fo-
cused on models where the joint precision matrix was small enough to allow full inversion.
For these models, we computed standard errors using both the full joint precision matrix
and the corresponding block subset. We then calculated the ratio of the standard errors
obtained from the full matrix to those from the subset. Based on these comparisons
across five simulated data, we selected the average of the median ratios as the scaling
factor (see Fig. 6.14 under supplementary material). The average of the median ratios
from these five simulation was calculated as 6.7.

6.3.4 Estimating statistical power

Microbiome studies and other related high-dimensional studies such as differential gene
abundance analysis often assume that a large fraction of taxa have exactly the same
abundance between treatments. This assumption is reflected in both computational
methods used to estimate treatment effects (e.g., lasso regression, spike-and-slab Bayesian
priors (Bhadra et al. 2017)) and in the evaluation metrics for model performance. Specif-
ically, metrics like specificity (the probability that an estimated nonzero change is truly
nonzero) and false discovery rate (the probability that the null hypothesis is true given
that it was rejected) rely on the premise that some taxa remain unchanged across treat-
ments. However, some researchers (e.g., Stephens and Balding 2009) argue that in a
complex biological system, it is unlikely that treatment effects would be exactly zero for
any taxon, even if most changes are small.

In our simulations, the latent variable representing deviations of effect sizes from
the overall effect size is drawn from a multivariate Gaussian distribution with a zero
mean and a specified variance-covariance structure. As a result, the probability of any
taxon having exactly identical abundance across treatments is zero. Consequently, the
null hypothesis is never strictly true, meaning that we cannot evaluate specificity or
FDR in this context. Given that there are no true zero effects, we define the average
statistical power across taxa as the proportion of p-values less than a specified significance
threshold. We used a p-value threshold of 0.05 as is often used in the statistical literature.
Since the analysis involves many taxa and multiple hypothesis tests we applied the
Benjamini and Hochberg method.
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6.4 Simulation Studies
We used the simulate_new function from the glmmTMB package to simulate count data
from the Poisson mixed model described in equation (6.1). In order to simulate data
with more general and flexible within-subject correlations across taxa, we replaced the
rr() term in the code in Listing 6.3.2 with the us() to allowing use to simulating with
an unstructured variance-covariance matrix (i.e., a general, full-rank positive definite
matrix) for the within-subject taxon-level random effects. The simulate_new function
requires input values for the standard deviations and correlations of each random effect,
as well as the zero-inflation probability (Table 6.1).

6.5 Real Longitudinal Microbiome data sets

6.5.1 The Pregnancy data

The pregnancy data set is a longitudinal microbiome count data set used to characterize
vaginal microbiome composition during normal human pregnancy (Romero et al. 2014).
It includes 32 non-pregnant women (control group) and 22 pregnant women who deliv-
ered at term (38 to 42 weeks) without complications (case group). Sample collection for
pregnant women occurred every four weeks until the 24th week of gestation, then every
two weeks until the final prenatal visit. For non-pregnant women, samples were collected
twice weekly for 16 weeks. The data set is available in the NBZIMM R package (Zhang
and Yi 2020) and consists of microbiome count data for 143 taxa across 900 samples.
The data also included sample information containing nine variables, including subject
ID, pregnancy status, total sequencing reads, age, race, and gestational age. We remove
those taxa with missing data to result in 897 samples of 131 taxa.

6.5.2 The Human Intestine data

The human intestinal microbiome data set (Lahti et al. 2014) investigates the composi-
tion of gut microbiota in 1,006 adults. It includes 130 taxa and 1,151 samples, with some
individuals providing multiple samples over time. These repeated measures account for
the total sample count of 1,151 across different time points. Specifically, 928 subjects
had data from a single time point, 40 from two time points, 23 from three, one from
four, and 14 from five time points. In addition to microbiome data, the data set includes
host factors, such as Body Mass Index (BMI) categories, which classify individuals into
underweight, lean, overweight, obese, severely obese, and morbidly obese groups. Some
taxa had no zero counts in any samples and could not be fitted by the zero inflated
negative binomial in the NBZIMM package. We removed those taxa, and samples with
missing data, to ensure fairness in the model comparisons, leaving 1045 samples and 22
taxa.

Table 6.2 presents a summary of each of the data sets.
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Table 6.2: Summary of microbiome data sets used in the analyses in
Chapter 6.

data set Data
Source

# Taxa
(Raw)

# Samples Pre-filtering Crite-
ria

# Taxa
After Fil-
tering

Human In-
testinal Data

microbiome R
package

130 1045
(Originally
1151 samples
but excluded
samples with
missing data)

Removed taxa with
no zero counts across
all subjects

22

Pregnancy
Data

NBZIMM R
package

143 897 (originally
900 samples,
but excluded
three samples
with missing
data)

Removed taxa with
no zero counts across
all subjects

131

6.6 Result and Discussion

6.6.1 Simulation Studies

Comparing trend, Root Mean Squared Error, Bias and Standard Deviation
of Error

Figure 6.1 shows the trend of average effect size estimates across simulations. In both
simulation scenarios, all models capture the general trend of the true effect sizes. How-
ever, the RR and US models provide estimates that more closely align with the true
values and exhibit lower variability, indicating improved precision. The US model which
fits all taxa jointly without explicitly modelling correlations between taxa performs sim-
ilarly to the RR model. In contrast, the NB and ZINB models, which fit each taxon
separately, show greater variability in their estimates.

The errors in the effect size estimates from the RR and US models are substantially
smaller and less variable than those from the NB and ZINB models, as indicated by the
root mean squared errors and the standard deviation of the errors of individual taxa in
figures 6.2 and 6.3. The NB and ZINB models exhibit high variability in bias estimates
across effect sizes of individual taxa (Fig. 6.4). In contrast, the RR and US models
yield lower and more stable bias across the full spectrum of true effect size. On average,
the RR and US models yield less bias estimates across taxa compared with the NB and
ZINB (see Fig. 6.13 in supplementary material (Sup. 6.8))

Overall, the RR and US models produce more precise estimates and are less bias
estimators compared with the NB and ZINB models. Modeling taxa jointly, whether by
explicitly accounting for correlations among taxa (as in the RR model) or without doing
so (as in the US model), leads to improved precision in parameter estimates. This joint
modeling approach allows information sharing across taxa, resulting in more precision
estimates compared to modeling each taxon independently.
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Figure 6.1: Trend of average effect size across simulations for each model

Figure 6.2: Root mean squared error for each taxa computed from
simulations

Coverage and Confidence intervals

Figures 6.5 and 6.6 show the 95% confidence intervals for the effect size estimates for each
taxon, constructed using the empirical distribution of estimates across 300 simulations.
For each taxon, we computed the 2.5th and 97.5th percentiles of the estimated values
across the simulations to form the lower and upper bounds of the confidence intervals.

For both simulation scenarios, the RR and US models consistently yield the narrowest
confidence intervals. In contrast, the NB and ZINB models produce substantially wider
intervals, with ZINB often exhibiting the greatest variability in confidence interval width
across taxa.
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Figure 6.3: Standard deviation of errors for taxa

Figure 6.4: Bias of models for each taxa
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Figure 6.5: Confidence intervals for each taxa (30 subjects, 100 taxa
and 3 time points)

Estimating coverage for individual taxa is computationally intensive, as it requires
a large number of simulations. To overcome the computational challenge, we estimated
coverage as the proportion of wald prediction intervals across simulations that contained
the true effect size. For each of the 300 simulation replicates, we computed wald predic-
tion intervals using the procedure described in Section 5.3.2. Coverage for each taxon
was then estimated as the proportion of these intervals that contained the true effect size.
For all models, the average coverage across taxa fell below the nominal 95% level (Fig.
6.7). The Negative Binomial (NB) model consistently achieved the highest coverage,
while the Zero-Inflated Negative Binomial (ZINB) model showed the lowest coverage
across both simulation scenarios. However, the higher coverage of the NB model comes
at the cost of lower precision, as its confidence intervals tend to be substantially wider
(Fig. 6.8). In contrast, the RR and US models have the lowest average confidence width
for all taxa (Fig. 6.8).
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Figure 6.6: Confidence intervals for each taxa (50 subjects, 200 taxa
and 4 time points)

Figure 6.7: Average coverage across taxa for each model. The standard
errors for the points in these point are on the order of 10−2, making the
confidence intervals around the point estimates too small to be visible.
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Table 6.1: Parameter values used for simulation studies. The logit
function (i.e., inverse of the logistic function) is defined as logit(x) =
ln(1/(1 − x)).

Parameter Description Value
β0 Intercept term representing overall

average (baseline) count
5

β0z Average zero-inflation probability
across taxa

logit(0.52) ≈ 0.0772

d The specified rank for the reduced
rank model

2

obsvar observational level variation to in-
troduce overdispersion

0.2

nsim Number of simulations 300
(m, n, t) A triple representing the number of

subjects (m), taxa (n) and time (t)
(30, 100, 3), (50, 200, 4)

θ1 A vector of length ten correspond-
ing to the parameters for the
us(group*time| taxon) term in
our model: the first four entries
represent the log-standard devia-
tions of the random effects for each
taxon corresponding to the inter-
cept, group, time, and group-by-
time interaction terms while the re-
maining six entry represents the cor-
relation between intercept, group,
time, and group-by-time interaction
terms.

Code for simulating values for
θ1 is presented under supple-
mentary material

θ2 A vector of length n(n + 1)/2
representing the parameters for the
unstructured variance-covariance
matrix (i.e., the us(0 + taxon|
subject:time) term of our model):
the first n entries are the log-
standard deviations of of the
taxon-specific random effects at
each subject–time point, and the
remaining n(n − 1)/2 entries rep-
resent the pairwise correlations
among the n taxa-specific random
effects at each subject–time point.

Code for simulating values for
θ2 is presented under supple-
mentary material

83

http://www.mcmaster.ca/
http://cse.mcmaster.ca/
http://cse.mcmaster.ca/


Doctor of Philosophy– Michael Agronah; McMaster University– School of
Computational Science & Engineering

Figure 6.8: Average confidence width across simulations for each taxon
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Statistical Power

Figure 6.9 shows the average statistical power across taxa for 200 simulations. The RR
and US models consistently demonstrate the highest average statistical power across
taxa for all simulation replicates. In contrast, the ZINB model performs moderately,
showing a noticeable improvement when sample size and complexity increase. The NB
model exhibits the lowest average statistical power for all simulations in both simulation
scenarios. Thus, the RR and US models, which analyze all taxa jointly, are effective in
detecting taxa with significant differences between groups compared with the NB and
ZINB models which model individual taxa separately.

Figure 6.9: Average statistical power across taxa for 200 simulations

6.6.2 Real Data Analysis

We do not include AIC comparisons in this analysis because calculating the leverage
required for computing conditional AIC (see Section 5.3.3) for the fitted RR and US
models is highly memory-intensive, requiring memory surpassing 5 TB due to the large
number of observations in these data sets.

Confidence interval comparison

For both data sets, the US and RR models have narrower confidence intervals with lower
variability in the confidence width across low and high abundance of taxa (Fig. 6.10).
In contrast, the NB and ZINB models have much wider confidence intervals and the width
of these confidence intervals are much more variable, especially for low abundant taxa.
This indicates that the NB and ZINB models have less precision in estimating effect
sizes of taxa compared to the RR and US models, especially for low abundant taxa.
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Figure 6.10: Width of confidence interval for each taxa for the human
intestine and pregnancy data sets

Statistical power

We define average statistical power as the proportion of adjusted p-values (where multiple
hypothesis correction is performed using the Benjamini–Hochberg procedure) across taxa
that fall below the 0.05 significance threshold. We present a 95% confidence interval to
quantify the uncertainty associated with these power estimates. We estimated these
confidence intervals for this proportion from a binomial test, treating each detection
(whether adjusted p-value for a given taxa was below the significance threshold) as a
Bernoulli trial.

In the Human Intestinal Data, ZINB outperforms the other models, exhibiting the
highest average statistical power, followed by the NB model. The RR and US models
demonstrate lower power, suggesting potential limitations in their ability to detect true
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effects in this data set. The NB and ZINB models also demonstrate wider variabil-
ity in power estimates as compared with the RR and US models as indicated by the
confidence intervals. In the Pregnancy Data, the ZINB model again shows the highest
average power. The US model performs better here than in the Human Intestinal Data,
surpassing the NB and RR models in average power. This may suggest that the struc-
ture of correlations or variability among taxa in the Pregnancy Data is more effectively
captured by the US model. The RR model shows a modest improvement in power in
this data set compared to its performance in the Human Intestinal Data, although it
still lags behind the top-performing models.

Figure 6.11: Average statistical power defined as the proportion of ad-
justed p-value (multiple hypothesis correction done using Benjamini and
Hochberg) less than 0.05 significance threshold

Model runtime comparison

We compared the computation time required to fit the four models to each of the real
data sets (Fig. 6.12). For each data set, we recorded the runtime along with the number
of taxa and the reduced-rank dimension used in the RR and US models. All mod-
els—except the RR model fitted to the pregnancy data set—were run on a Dell laptop
running Ubuntu with 6 cores and 12 threads. The RR model for the pregnancy data set
required a substantially higher number of iterations to converge. It was therefore run
on the Graham cluster, a high-performance computing resource provided by the Digi-
tal Alliance of Canada, using glmmTMB with extended optimization controls: optCtrl
= list(eval.max = 1000, iter.max = 100). Despite the more powerful computing
environment, the run time for RR model fitted to the pregnancy data is significantly
higher than the run times for the NB, ZINB and US models due to the model’s com-
plexity. In contrast, for the human intestine data set, the RR and US models ran faster
than the NB and ZINB models.
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Figure 6.12: Computational run time for each model

6.7 Conclusion
In this chapter, we introduced the Longitudinal Reduced Rank Mixed Model (LRRMM),
a model for analyzing longitudinal microbiome count data. Unlike approaches that model
each taxon independently, LRRMM jointly models all taxa while accounting for corre-
lations within subjects over time using a reduced-rank approximation. Our simulation
studies demonstrate that this joint modeling approach improves the precision of effect
size estimates, reduces bias, and enhances statistical power compared to the Negative
Binomial (NB) and Zero-Inflated Negative Binomial (ZINB) models, which treat each
taxon separately.

While the RR and US models perform similarly in many respects, the RR model
offers the added advantage of modeling correlations between taxa explicitly. However,
we observed that model performance varies with data set characteristics. For example,
in the real data analysis, the ZINB model exhibited higher power in the human intestinal
data set, while the RR and US models performed better in terms of precision and interval
consistency, particularly for low-abundance taxa.

Despite the increased computational time required by the RR model, particularly for
complex data sets, the performance gains in estimation accuracy and power make it a
valuable tool for longitudinal microbiome research.
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6.8 Supplementary material

Figure 6.13: Average bias across taxa for each model

Figure 6.14: Boxplot showing the distribution of the ratios between
standard errors computed from the full joint precision matrix and those
from the corresponding block matrix subsets across five simulations.
These ratios were used to determine an appropriate scaling factor for
standard error adjustment.

Functions for simulating log standard deviations and correlations for random
effect terms

#’ @param meanlog mean log
#’ @param sdlog log standard deviation
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#’ @param rank: specifies the rank of the reduced rank approximation

get_theta_logSD <- function(n, meanlog = 0, sdlog = 1,
seed = NULL, rank = NULL) {

set.seed(seed)
val <- rlnorm(n, meanlog, sdlog)
logSD <- log(sqrt(val))

if (!is.null(rank)) {
logSD <- logSD[1:rank]
return(logSD)

} else {
return(logSD)

}
}

#’ @param ntaxa number of taxa
#’ @param nsubject number of sunject
#’ @param mat specify a matrix directly.

get_theta_corr <- function(ntaxa,nsubject, mat= NULL, seed = NULL) {
if(!is.null(mat)){C <- mat}
else{set.seed(seed); C <- get_corr(ntaxa, nsubject,seed = seed)}
C <- nearPD(C)$mat
scale <- sqrt(fastmatrix::ldl(as.matrix(C))$d)
cc2 <- chol(C) %*% diag(1/scale)
cc2[upper.tri(cc2)]

}
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Chapter 7

Conclusion

7.1 Summary
This thesis contributes to differential abundance (DA) microbiome research, with a spe-
cific focus on statistical power estimation, sample size determination, joint modelling of
microbiome data with correlations between taxa within samples.

7.2 Contributions
The thesis contributions to the field of differential abundance microbiome data research
in the following ways.

• Developed MixGaussSim, a novel simulator for microbiome data that models
the distributions of mean abundance and effect size of taxa using a mixture of
Gaussian distributions and also models the relationship between mean abundance
and effect size.

• Developed RRSim, a second simulator to generate microbiome count data includ-
ing correlations between taxa count with subjects using reduced-rank mixed-effects
models. Unlike other simulators which simulate counts of taxa independent of each
other, RRSim simulates counts of all taxa jointly while introducing correlations be-
tween taxa within subjects.

• Introduced a novel power estimation method tailored for individual taxa in mi-
crobiome differential abundance studies, and showed that many studies are likely
underpowered.

• Proposed a taxon-specific sample size estimation framework that accounts for mean
abundance, effect size, and desired power.

• Developed and implemented the Reduced Rank Mixed Model (RRMM) for
joint modeling of all taxa while accounting for correlations between taxa.

• Extended RRMM to a longitudinal framework (LRRMM) for analyzing changes
in microbiome composition over time while accounting for repeated measurements
within subjects.
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Together, these contributions improve the reproducibility of microbiome research by
providing researchers with tools for estimating statistical power to detect effect sizes of
taxa within differential abundance microbiome study. For instance, Using MixGaussSim,
researchers can estimate realistic ranges of effect size and mean abundance of taxa for
their studies. This simulation approach is particularly useful when estimating statistical
power in a differential abundance microbiome study where statistical power for any given
taxa is determined by the effect size and mean abundance of that taxa.

Chapter 2 introduced two novel simulation frameworks: MixGaussSim, which al-
lows flexible modeling of the distribution of effect sizes and mean abundances of taxa;
and RRSim, which enables joint simulation of correlated taxa counts across subjects
using a reduced-rank structure. These simulators lay the foundation for more realistic
modeling and better experimental planning in microbiome research.

Chapter 3 built upon MixGaussSim to introduce a method for estimating statistical
power at the level of individual taxa. Our findings showed that many existing microbiome
studies are likely underpowered, especially for detecting differential abundance in low-
abundance taxa.

Chapter 4 presented a novel sample size estimation framework for differential abun-
dance studies that considers taxon-specific mean abundances and effect sizes. The results
emphasized that common sample sizes in the literature are often insufficient for achieving
adequate statistical power, particularly when studying rare taxa.

Chapter 5 proposed a new modeling approach called the Reduced Rank Mixed
Model (RRMM), which jointly models all taxa while accounting for taxon-taxon cor-
relations within subjects. Simulation and real data analyses demonstrated that RRMM
produces more accurate effect size estimates and tighter confidence intervals compared
to models that treat taxa independently.

Chapter 6 extended RRMM to a longitudinal setting, introducing the Longitudinal
Reduced Rank Mixed Model (LRRMM). This model accounts for both taxon-taxon
correlations and the correlation of repeated measures within subjects over time. Eval-
uation using simulated and real data sets showed that LRRMM improves estimation
accuracy in longitudinal microbiome analyses.

7.3 Limitations
While this thesis presents important advancements in modeling and simulation tech-
niques for microbiome studies, several limitations remain that suggest promising direc-
tions for future research.

First, the simulators introduced in this thesis–MixGaussSim and RRSim–as well as
the RRMM and LRMM modeling frameworks, do not currently account for the composi-
tionality of microbiome data. Compositional data, characterized by relative abundances
constrained to a constant sum, require specialized statistical treatment to avoid spurious
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inferences. Second, computational scalability presents a challenge. For example, esti-
mating leverage values needed for conditional AIC calculations in reduced-rank models
is memory-intensive, particularly for high-dimensional data. Future work will explore
approximations techniques to reduce computational burden and make these approaches
more practical for large-scale studies.

7.4 Future Work

7.4.1 Accounting for compositionality within RRMM and LRRMM

In microbiome research, the Dirichlet model is commonly used to address the composi-
tional nature of microbiome data (La Rosa et al. 2012). However, the Dirichlet model
imposes negative correlations through the Dirichlet distribution, making it ill-suited to
model positive correlations in microbial communities. Log-ratio transformations (ex-
ample additive log-ratio (alr), centered log-ratio (clr), and isometric log-ratio (ilr)) are
alternative approaches for modelling compositionality in microbiome data (Xia et al.
2018). Log-Ratio approaches transform compositional data into Euclidean space, mak-
ing it suitable for statistical analysis. Our future research will incorporate the centered
log-ratio (CLR) into our reduced-rank models framework, allowing researchers to model
correlations between taxa and compositional effects simultaneously.

7.4.2 Computational tools for differential abundance microbiome re-
search

To promote accessibility and wider use of the methods presented in this thesis, future
work will focus on developing R packages for microbiome data simulation, sample size
and power calculations in order to provide researchers with tools to conduct power
analysis and sample size planning for future research.
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