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ABSTRACT

As driven by increasing energy costs, raw material costs and market competition, it is a

necessity that modern chemical plants operate at the optimum operating point and are

responsive to changes in product specification. The calculated plant optimum operating

point may be at or close to constraint boundaries, which makes the process susceptible to
constraint violation, off-specification products and loss of profitability in the presence of

disturbances.

A new approach has been developed to track the optimum of the chemical process such that

violation of constraints can be prevented by inclusion of closed loop dynamics in Real Time

Optimization. Constrained model predictive control will be used as the regulatory control.

This new approach introduces an additional layer in the process automation hierarchy which

determines an appropriate amount of back-off from target set points based on a closed-loop

dynamic model of the process. It does not require a large effort in modelling since the

dynamic model is that the model used in model predictive control and the steady-state

relation is the steady-state process gain of the dynamic model inside the model predictive

control. It is assumed that the target set-points from the Real-Time Optimization are

available to be used in our approach.

The new approach (dynamic real-time optimization) is formulated here as a multilevel

program where the upper-level problem has a quadratic objective function with linear con­
straints and the lower-level optimization problems have quadratic objective functions that
are strictly convex with linear constraints. A quadratic dynamic matrix control formulation

gives rise to the lower-level optimization problems. The upper-level determines set-points

that are as close as possible to set-point targets calculated at the steady-state Real-Time

Optimization level, but are such that the closed loop inputs and outputs satisfy specified

constraints

Oxygen bleaching in pulp mills is an example of chemical plants facing economic and en­

vironmental challenges. Improvements in the operation of oxygen delignification reactors
could have a potentially significant impact on the controllability of downstream units of
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the bleaching plant and the overall plant performance. Developing a dynamic model of

the oxygen delignification reactor is a necessity toward meeting this objective through the

development of model-based control schemes and finding the optimum set-point to the
controller.

A first-principles nonlinear dynamic model of an oxygen delignification tower is developed,

and used in the design and performance evaluation of a model-based control strategy. The

proposed dynamic real-time optimization approach was then applied to the oxygen deligni­

fication reactor model developed to calculate the required optimum set-points by the model
predictive controller in face of disturbances.
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Chapter 1

Introduction

1.1 Background and Motivation

As driven by increasing energy costs, restrictive environmental regulations, changing raw

material prices, quality specifications, market demands, changes in equipment and so forth,
the operating point of a plant will not remain constant. It is then a necessity for modern

chemical plants to operate at the optimum operating point and be responsive to product
specification.

For maximizing the profit of any chemical process, it has to have excellent dynamic perfor­
mance and it should be maintained at or near a steady-state. Model predictive control is

used to obtain an excellent dynamic performance and maintain the process operating close
to the set-points. This is achieved by calculating the predicted manipulated variable moves
and the predicted output variables over a time interval. Real-Time Optimizers (RTO) are

often used with explicit economics for the calculation of the set-points. The calculated plant

optimum may be at or close to constraint boundaries, which makes the process susceptible

to constraint violation in the presence of disturbances.

Traditionally, research has focused on using back-off methods. However, if the back-off is
larger than necessary, the constraints will not be violated but the loss of profits increases. On
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the other hand, if the back-off is less than necessary, infeasible operation will result. Some

other work has been done to integrate real-time optimization into linear model predictive
controllers in order to rapidly accommodate measured disturbances while avoiding offsets.
However, extending model predictive control to include a nonlinear steady-state to predict

the optimal operational point will lead to a complex optimization problem and the plant
can become unstable if the numerical algorithm used to solve the controller optimization

problem fails to converge.

The goal of this work is to develop a method to track the optimum of the chemical process
such that violation of constraints can be prevented (dynamic real-time optimization) by

inclusion of closed loop dynamics in Real Time Optimization. Constrained model predictive

control will be used as the regulatory control.

In the new approach, the MPC and steady-state RTO layers are kept separate, but a

new layer introduced between them to estimate the necessary back-off on the basis of the
predicted closed loop response to expected disturbances. This new approach simplifies
the previously proposed automation structures by removing the dynamics from RTO and
economics from MPC. No Real Time Optimization calculations will be done. It is assumed

that the target set-points from the RTO are available to be used in our approach.

The Dynamic Real-Time Optimization (DRTO) problem is formulated here as a multilevel
program where the upper and lower-level problems have a quadratic objective function with
linear constraints. A QDMC controller formulation is used as the lower-level optimization
problems. The DRTO level determines set-points that are as close as possible to set-point
targets calculated at the steady-state RTO level, but are such that the closed loop inputs
and outputs satisfy specified constraints.

Oxygen bleaching in pulp mills is an example of chemical plants facing economic and en­
vironmental challenges. Improvements in the operation of oxygen delignification reactors
could have a potentially significant impact on the controllability of downstream units of the

bleaching plant and the overall plant performance. A problem that needs to be taken into
account in the operation of oxygen delignification units is the natural tendency of oxygen
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to form reactive free radicals that can attack cellulose and other carbohydrates in addition

to the lignin that is required to be broken down. This adversely affects pulp strength, and
consequently poses a constraint on operation of the process.

A fundamental, nonlinear dynamic model that predicts cellulose degradation and lignin
removal over a wide range of operating conditions should permit oxygen delignification

units to be run such that lignin is removed to the farthest extent while maintaining an

acceptable level of pulp strength. Developing a dynamic model of the oxygen delignification
reactor is a necessity toward meeting this objective through the use of model-based control
schemes, and finding the optimum set-point to the controller using the Dynamic Real Time
Optimization approach(DRTO).

A first-principles nonlinear dynamic model of an oxygen delignification tower is developed
incorporating literature-based kinetic models for prediction of the kappa number and pulp
viscosity. Through the literature review, models proposed by Iribarne and Schroeder [1997]

and Myers and Edwards [1989] were found to be the most suitable for many processes

because they cover a wide range of operating conditions. The Myers and Edwards [1989]

model was used to describe lignin removal and the Iribarne and Schroeder [1997] model to
describe the cellulose degradation, and used in the design and performance evaluation of a
model-based control strategy. The effect of process disturbances on the optimum operating

point of the plant has also been explored.

Model predictive control studies were conducted using the Matlab MPC Toolbox for the
nonlinear oxygen delignification plant model developed in Simulink as S-functions. The
control objective was to maintain the outlet kappa number and viscosity at their set points
by manipulating the reactor temperature set point and inlet caustic rate. The reactor

temperature is being controlled using a local PID controller by manipulating the steam
flow rate. Disturbances considered were changes in the inlet kappa number of the pulp
feed. Step tests were performed on the model, and linear dynamic relationships between
the inputs and outputs were identified. The Dynamic Real Time Optimization approach

was then used to calculate the set-points to the MPC.
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1.2 Thesis Overview

Chapter 2 — Interaction Between RTO and MFC. Effect of Closed-Loop Dy­

namics

In Chapter 2, a method to track the optimum of the chemical process such that violation
of constraints can be prevented (Dynamic Real-Time Optimization) is developed. A litera­
ture survey is first presented followed by a Mixed Integer Quadratic Programming (MIQP)
optimization formulation of the DRTO problem. A fluid catalytic cracking unit is then
presented as a case study to illustrate the proposed DRTO approach.

Chapter 3 - Modelling of a Continuous Oxygen Delignification Unit

This chapter describes the development of a dynamic model of an oxygen delignification
unit. The model is based on fundamental mass and energy balances, and incorporates
literature-based kinetic models for prediction of the kappa number and pulp viscosity. The
development of the model is described. It is then used to generate open-loop responses
which are briefly explained.

Chapter 4 — Model—Based Control Of the Oxygen Delignification Unit

Chapter 4 describes the model-based control strategies for oxygen delignification unit. The
dynamic model developed in chapter 3 is used to generate an approximate linear dynamic
model for use in a model-based control strategy. This involves QDMC with DRTO used to

determine the set-points

Chapter 5 — Conclusions and recommendations

Chapter 5 will conclude with a summary of the presented methods and investigation re­
sults of both case-studies in the preceding chapters. Based on these conclusions, some
recommendations for future work will also be discussed.





Chapter 2

Interaction Between RTO and

MPC: Effect of Closed-Loop

Dynamics

2.1 Introduction

Processes are always subject to disturbances. These disturbances can lead to off-specification
products, loss of profitability and constraint violations that result in unsafe plant conditions.
For maximizing the profit of any chemical process, it has to have excellent dynamic perfor­
mance and it should be maintained at or near a steady-state. Model predictive control is

often used to obtain an excellent dynamic performance and maintain the process operating
close to the set-points. This is achieved by calculating the predicted manipulated vari­
able moves and the predicted output variables over a time interval. Real-Time Optimizers
(RTO) are often used with explicit economics for the calculation of the set-points.

Motivation and goals

RTO based on a steady-state nonlinear model is typically used to calculate the optimum
process operating point. However, steady state RTO has some deficiencies. First, it can

5





CHAPTER 2. INTERACTION BETWEEN RTO AND MPC: EFFECT OF CLOSED-LOOP
DYNAMICS 6

handle only low frequency disturbances. Second, for low frequency disturbances, the calcu­
lated plant optimum may be at or close to constraint boundaries, which makes the process
susceptible to constraint violation in the presence of disturbances.

Figure 2.1: Optimum back-off from constraints

Traditionally, research has focused on using back-off methods. However, if the back-off is

larger than necessary, the constraints will not be violated but the loss of profits increases.
On the other hand, if the back-off is less than necessary, infeasible operation will result.

The goal of this work is to develop a method to track the optimum of the chemical pro­
cess such that violation of constraints can be prevented (dynamic real-time optimization).
Constrained model predictive control will be used as the regulatory control.

Main contribution

In our approach, we will keep both RTO and MPC layers separate to take full advantage of
their characteristics. A linear dynamic model, the same linear model inside the MPC, will

be used to calculate the optimal amount of back-off. The resulting optimization problem
is challenging because it is a multi-level optimization problem which is not trivial to solve.
However, the solution approach followed will guarantee global optimality .
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2.2 Literature Survey

2.2.1 Steady—state RTO

Due to the increasing energy cost, restrictive environmental regulations, changing raw ma­

terial prices, quality specifications, market demands, changes in equipment and so forth,

the operating point of a plant will not remain constant. Due to the fact that improving the
plant operation is much cheaper than building new plants, optimization is used to achieve

these improvements in the process. This involves the manipulation of the degrees of freedom

of the process to satisfy the plant economic objectives.

Chemical processes are always subject to high frequency disturbances which will be rejected
by regulatory control, while the low frequency disturbances shift the optimal operating point

; thus new optimal operating conditions must be established. RTO is then used to calculate
this new optimum.

Steady-state optimization (RTO) is used when the frequency of non-stationary disturbances

is smaller than the frequency of the optimization runs and the time between the optimization

runs is sufficient for the plant to reach the new steady-state [Kassidas, 1993]. Real-time
optimization is the level in the control hierarchy at which business decisions are integrated

into the process operation. This linking of economic and process effects provides a powerful

tool for maximizing the operating profitability.

Traditional control hierarchy

The traditional control hierarchy consists of four levels as follows:

1. Plant scheduling

2. Steady-state optimizer (RTO): Calculates the optimal operating conditions and sends
the set-points either to the advanced controller in the level below or directly to the
regulatory PID control layer. Nath and Alzein [2000] presented a typical RTO execu­

tion cycle illustrated in the Figure 2.2 as the following:
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Figure 2.2: Traditional control hierarchy

(a) Steady-state detection of the process: This is to ensure that the process is close to
or at steady-state; furthermore, the current process data can be used to establish
the initial state of the process.

(b) Data reconciliation and parameter estimation: The purpose of this step is to
reconcile the process data and to determine the model parameters that best fit
the process state established in the previous step.

(c) Optimization of the updated model.

(d) Consistency check before downloading the data to the underlying control layer.
This step is used to evaluate the change in the profit from the current to the
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new conditions. If the increase is not significant, the new conditions will not be
implemented in the plant.

3. Advanced controller (Model predictive controller): Acting as a constrained controller,
it receives the set-point from the RTO layer to calculate the set-point for the regula­
tory PID control layer below.

4. Regulatory control layer (PID): Receives its set-points from the RTO layer or the
MPC layer and directly manipulates the process valves.

Deficiencies of traditional control hierarchy

The traditional control hierarchy suffers from two major deficiencies:

1. The steady-state detection step of RTO may take a very long time, depending on the
process, which means holding the set-points constant for a long time which will result
in loss in profit. This deficiency is handled in literature as a profit controller, opti­
mizer controller or integration of real-time optimization (RTO) into MPC [Zanin et al.,

2002] and [Becerra et al., 1998].

2. The calculated optimal set-points sent to the controller may lie at or close to the
process constraints; consequently constraint violation will occur in the presence of
disturbances.

2.2.2 Quadratic dynamic matrix control (QDMC)

Model Predictive Control (MPC) has within the past two decades become the advanced
control strategy of choice within the chemical process industry. Key features are that it
accommodates process interactions and dead time directly, and that constraints on manip­
ulated inputs and process outputs are handled explicitly. The latter feature is particularly
important in real-time optimization, since the steady-state economic optimum generally lies
at the intersection of one or more process constraints. The MPC algorithm uses a dynamic
model to predict future outputs based on future input changes over a specified time horizon.
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Model Predictive Control (MPC) refers to a class of computer control algorithms that

utilize an explicit process model to predict the future response of a plant to changes in the

manipulated variables u over prediction horizon P at the present time k. At each control

interval an MPC algorithm attempts to optimize future plant behavior by computing a

sequence of a future manipulated variable adjustments. Only the first computed change in

the manipulated variable Au is implemented. At time k + 1 the computation is repeated

with the horizon moved by one time interval. The discrepancy between the predicted and

measured outputs is used to adjust the model predictions. Comprehensive descriptions of

MPC are given in Qin and Badgwell [2003] and Bequette [2000].

From among the various MPC algorithms which include Model Algorithmic Control (MAC),

Dynamic matrix control(DMC), Generalized Predictive Control (GPC),etc, QDMC based

on a step response model will be used. Constraints on manipulated inputs will be considered.

The QDMC algorithm as presented by Bequette [2000] and Garcia and Morshedi [1986] will

be used in this study. QDMC (Quadratic Dynamic Matrix Control) consists of the on-line

solution of a quadratic program which minimizes the sum of squared deviations of controlled

variables from their set-points subject to the controlled variables being within their bounds.

QDMC for single-input single-output systems can be written in matrix-vector form at step

k as follows:
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(2-1)

Usp yfc+i|fc
T

lisp Vk+l\k &uk\k
T

. 1mm -
AuJt+.|fe 2

Usp ~ y/;+2|fc rTr Usp ~ l)k+2\k — Auk+l\k
ArA

^■uk+i\k

Vsp — Vk+P\k_ IJsp ~ 1Jk+P\k_ _^uk+M-X\k_ _^uk+M-l\k_

Subject to

1 0 •• ■ 0 Umin - Uk-1

1 1 •• ■ 0 > Umin - Uk-1

1 1 . . 1 _^uk+M-l\k_ Umin - Uk-1_

(2.2)

1 0 ••• 0 Uk-1 - Umax

1 1 ••• 0 ^■uk+l\k > Uk-1 - Umax

1 1 ... 1 _^uk+M~l\k_ Uk-1 - Umax

^■umin Auk\k ^umax

^Umjn
<

^uk+l\k <
Aumax

^umin~ _^uk+M-l\k_ ^Umax

(2-3)

(2-4)

Umin i)k+l\k Umax

Umin < yk+2\k < Umax

Umin jjk+P\k_ Umax

(2.5)
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It is clear that the above problem (2.1 to 2.5) can not be solved without prediction of the

future output yk+e\k- This, in turn, necessitates the availability of a process model which is
considered to be the heart of MPC controllers. The step response model for a single-input

single-output system is considered.

Uk — 51 Artfc-i + S,2Aufc_2 d--------- 1- Sw-iAuk-N+i + S^u^-n + d^ (2.6)

which can be written in the form
N-l

Vk = SiAuk-i + SiyUk-N + dk (2.7)
i=l

where Si are the step response coefficients, yk is the model prediction at time step k, N is

the number of steps to steady-state, and ut-yv is the manipulated input N steps in the past.

The model predicted output y^ is unlikely to be equal to the actual measured output y™

at the time step k. The difference between the measured output and the model prediction

is called the additive disturbance d^. Using the step response model to predict the outputs

over the prediction horizon P gives:
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(2-8)

’ S2 S3 ■ • S'tV-2 Sn-i &uk-i|fc uk-N+l\k

S3 S4 ■ • 5tv-i 0 ^uk-2\k uk-N+2\k

s4 s5 ■■ 0 0 ^uk-3\k + uk-N+3\k

_Sp+i Sp+2 ■ ■ 0 0 _^Uk-N+2\k_ _uk—N+P\k_

y‘ : Effect of past control moves

<4+l|fc

°k+2|fc

dk+P\k_

Predicted disturbance

or it can be simplified as follows:

yk = >lAufc + y*k + d<- (2-9)

The prediction of the output in Equation 2.9 and 2.8 involves three terms on the right-hand
side. The first term (ylAu^) includes the present and all future moves of the manipulated
variables which are to be determineded so as to minimze the objective function (2.1). The

second term yk includes only past values of the manipulated variables and is completely
known at time k. The third term d^ is the predicted disturbance which is commonly
assumed constant for all future times £ > 0.

dk\k = dk+l\k = • • ■ = djt+flfc (2.10)
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At time k, the disturbance is estimated as the difference between the measured output y™

and the output predicted from the model.

(2-11)

Also beyond the the control horizon M, there axe no control moves

(2.12)Auk+M\k = &uk+M+l\k ~ Auk+M+2\k ~ ■■■ ~ &uk+P-l\k ~ 0

dk\k = Vk - Vk\k

By substituting Equation 2.9 into Equation 2.1, the following quadratic program (QP)

results:

where:

and

min-Au^/fAufc + gfc Aufc
AUJt Z

S.t iL^Uk < Umax Uk—\6

^L^^k — Umin 4" 1®

Aum,„ < Aufc < Aumax

gfc = ATrTr(y;. + dfc-ysp)

yt = y*k + d* + AAuk

Ymin — Yk — Ymax

1 0 0 0 ... 0 0
1 0 0 ... 0 0

1111 (MxM)

... 1
-1T

1 J (IxM)

(2-13)

(2-14)

e = [1 1 1 1 (2.15)
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y-fc = A vector that represents the predicted value of y at time k + f. based

on information available at time k taking into account the effect of

the future and past control moves.

Ufc = A vector of future control values with respect to which

the optimization will be performed
^uk+i\k = uk+i\k uk+i— 1 |A:

ysp = The set-point vector

r = The matrix that contains the weights on the controlled variables

A = Manipulated variables weighting matrix

P = The prediction horizon

M = The control horizon

H is the Hessian matrix and it is constant,

h = ArrTrA + ATA (2-16)

and A is called the dynamic matrix of the system, defined as

Si 0 0 0

s2 Si • 0 0

A = S3 s2 ■ 0 0
(2-17)

Sp-i Sp-2 • • Sp-M+I Sp-M

Sp Sp-i •• ■ Sp-M+2 Sp-M+1

while gfc is the gradient vector and it needs to be updated every time step.

5*:+l|A-
/ yZ-+iifc dk\k ysp

<7fc+2|*; = ATrTr
yjfc+2|jt +

^k\k — ysp

9k+P\k_ k yk+p\k. ysp_ /

(2.18)
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where y£ is a vector of the model predicted output provided no moves are made at time

k, k + 1, k + 2,which means that Uk-i is kept constant over a prediction horizon P.

^Z+ilfc

yk+2\k

yk+3\k

y*k+P\k.

’ S2 s3 ■ ■ Stf-2 Sn-i ^uk-i|fc uk-N+l\k

s3 Sa ■ ■ Sn-i 0 AUA;-2|fc uk-N+2\k

S4 s5 ■ 0 0 ^uk-3\k + SN uk-N+3\k

_Sp+i Sp+2 ■ 0 0 &uk-N+2\k_ _uk-N+P\k_

(2-19)

In a typical MPC fashion [Garcia et al., 1989], the above optimization problem is solved at
time k. At the present time k, the behavior of the process over a horizon P is considered.

Using a model, the process response to changes in the manipulated variables is predicted.
The moves of the manipulated variables are selected such that the predicted response has

desirable characteristics. Only the first computed change in the manipulated variables is
implemented. At time k + 1, the' computation is repeated with horizon moved by one time

interval. The procedure is repeated at times k + 2, k + 3, etc.

2.2.3 Unconstrained model predictive control

When there are no inequality constraints for the manipulated variables and the controlled
variables in Equation 2.13, it will reduce to unconstrained optimization problem, which has

the following analytical solution:

Aufc = (AW + ATA)-1ATrTr(ysp - y£ - dfc) (2.20)

2.2.4 Back-off calculations

Chemical plants are always subject to disturbances which shift the plants from operating
at the optimal point, leading to potential constraint violations. Some work has been done
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previously on handling these constraint violations. Bandoni et al. [1994] presented an al­

gorithmic approach for determining the necessary back-off from the steady-state optimum.

This work focused on moving the steady-state operating point sufficiently far from active

constraints into the feasible region to ensure there are no constraint violations during the
plant operation.

Average deviation from the true optimum is another way of backing the calculated set­

point away from the active constraints. The calculated optimum back-off will depend on

the parametric uncertainty, measurement error and model mismatch. It is based on a first

and second order Taylor series expansion of a rigorous and approximate optimization model

[Loeblein and Perkins, 1996].

2.2.5 Integration of RTO and MPC

Including RTO within MPC (Optimizing Controller)

Based on the fact that there are some plants that are continuously perturbed and take a

long time to reach steady-state, several researchers have attempted to integrate an economic
objective into MPC formulations to avoid long waits to reach steady-state. Zanin et al.

[2002] integrated real-time optimization into linear model predictive controllers in order

to rapidly accommodate measured disturbances while avoiding offsets for a fluid catalytic
cracking (FCC) unit. They pointed out that the traditional control hierarchy has a major
deficiency; both the controller and the optimizer are not dealing with the same pieces of

information which may result in the predicted optimal operational point being suboptiinal.

However, extending model predictive control to include a nonlinear steady-state to predict

the optimal operational point will lead to a complex optimization problem and the plant
can become unstable if the numerical algorithm used to solve the controller optimization

problem fails to converge. Furthermore, it is difficult to update the steady-state model to
reflect the real process.
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Including MPC dynamics within the RTO level

Loeblein and Perkins [1999] calculated the effect of disturbances on the outputs through

the closed loop system using the unconstrained model predictive control law, so the amount

of back-off from the constraints that guarantees the feasible operation of the process can

be determined.

On the other hand, Brengel and Seider [1992] did some similar work applying it to the
integration of process design and process control. They integrated the plant design and

control problem and solved the problem simultaneously to come up with an operationally

optimal plant design. They used the nonlinear model predictive controller to reject the

disturbances. Their algorithm does not guarantee global optimality.

2.2.6 Bilevel programming

A bilevel programming problem results when only two levels of interactions are considered.

Mathematically, it can be formulated as follows using the same notation of Clark and

Westerberg [1990]. Uppercase letters refer to the first level (outer problem) and lowercase
letters refer to 2nd level (inner problem).

minima;, y)
X

subject to H(x,y) = 0

G(x,y) < 0

minyf(x,y)

subject to h(x,y) = 0

9&,y) < 0

(2-21)

In equations 2.21, the outer optimizer selects values for the variables x, and given these
values, the inner optimizer selects the values of the variables y that minimize the inner
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problem objective f but the y variables affect the outer problem as well.

Difficult characteristic of the bilevel program Bilevel programs are considerably more

difficult than single-level optimizations because of interactions between the inner and outer

optimizers. The outer problem sets parameters influencing the inner optimization, but the

outer optimization, in turn, is affected by the outcome of the inner problem. These inter­

actions lead to serious problems, such as multiple inner problem optima, loss of convexity

and differentiability. These difficulties are illustrated below.

1. Multiple inner problem minima: If the inner problem has multiple minima for

certain values of the outer problem variables x, there is no specific requirement in the

statement of the bilevel program that any particular solution can be chosen. However,

the outer objective F will, in general, be a function of the inner variables as well and

will not have the same values for all inner minima. The outer optimizer will choose any

point of the inner optimizer’s feasible solutions sets that satisfy the outer constraints

(global solution).

2. Non-convexity: Even if each level of the bilevel problem is convex (global opti­

mum can be found), the resulting bilevel problem combining the two is generally a

nonconvex program.

3. Non-differentiability: The best algorithm for single-level nonlinear programs uses

gradient information to build local approximations and iterate to improve the estimate

of the solution [Kassidas, 1993]. As the outer variables are adjusted, there may be

changes in the set of active inequalities of the inner problem optimum. At the bound­
ary points where these changes occur, the equality constraints that are introduced by

the inner problem’s requirement for optimality, have no derivatives. Algorithms that

use gradient information will fail at these points; therefore, an explicit enumeration

technique is required to consider all the possible directions and choose a descent di­

rection for the outer problem, while maintaining the inner problem optimality [Clark

and Westerberg, 1990]. This non-differentiability arises from the interaction of the

On/Off nature of the complimentary constraints with the stationary relationships.
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4. Degeneracy: - Redundant inner program constraints

In algorithms for single-level mathematical programs, redundant constraints are lo­

cated during the solution process and discarded. In a bilevel program, however the

parametric nature of the inner optimization poses the problem of degeneracy. For

some values of the of the outer variables, some inner constraints may be redundant at

the inner problem optimum, therefore they could be deactivated and allow the outer

objective F to improve.

Solution algorithms for the bilevel programming problem

Many different algorithms have been developed to compute the global optimum of this

problem. There are two main algorithms for solving a general bilevel program. The first

approach comprises penalty methods that have played a key role beginning in the early

1980s. It approximates the original two-level problem as series of a single-level nonlinear

programs [Baid, 1998].

The second approach is based on solving the nonlinear program obtained by replacing the

lower-level problems by its Karush-Kuhn-Tucker conditions. Bard [1998] applied an active

constraint strategy and replaced the lower-level problem with its stationary conditions.

Fortuny-Amat and McCarl [1981] developed a computational method by transforming the

original problem into a mixed-integer program. Bard and Moore [1990] developed a branch

and bound algorithm for linear/quadratic problems by exploiting Karush-Kuhn-Tucker

conditions associated with the inner problem.
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2.3 Proposed Approach

RTO is usually executed every few hours. It is used to handle the non-stationary distur­

bances with frequencies lower than the execution frequency of the RTO and the critical

frequency of slowest control loops.

Figure 2.3: Proposed control hierarchy

RTO usually assumes perfect control in the controller layer so the disturbance is perfectly

rejected which is not the case in reality. RTO predicts the steady-state optimum which

is generally at or close to constraints. In the presence of the disturbances, the constraints

will be violated. Consequently, some work has been done to incorporate the control into
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RTO layer to take into account the dynamics. Involving the dynamics into the RTO layer

makes it a more complex problem that takes a longer time to solve with no guarantee for

a global optimum or even finding a solution. Another approach followed is to incorporate

the economics into the controller level, but this makes the problem more complex, causing

it to take long time to be solved and still with no guarantee for global optimum or even a
solution Zanin et al. [2002].

In this work a new approach is proposed to handle these problems. The MPC and steady­

state RTO layers are kept distinct, but a new layer inserted between them to determine

the necessary back-off on the basis of the predicted closed loop response to expected dis­

turbances . This new approach simplifies the previously proposed automation structures

by removing the dynamics from RTO and economics from MPC. This new layer will not

require a large effort in modelling. The dynamic model will be the model used in MPC and

the steady-state relation will be the steady-state process gain of the dynamic model inside

the MPC controller.

2.3.1 Problem formulation for the constrained Case

Multilevel optimization problem

In this section, the problem formulation for single-input single-output systems is presented.

This formulation can be easily extended to the multiple-input multiple-output case.

The dynamic real-time optimization (DRTO) problem is formulated here as a multilevel

program where the upper and lower-level problems have a quadratic objective function with

linear constraints and the lower-level optimization problems (controller 1 to controller TVs)

have quadratic objective functions that are strictly convex with linear constraints. A QDMC
controller formulation is used as the lower-level optimization problems . Constraints on

the magnitude of the control changes and hard output constraints will not be considered
within the MPC controller. Constraints on the outputs are accommodated at the outer

optimization level through adjustments of the set-point. The formulation is illustrated
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Figure 2.4: The multi-level optimization problem

schematically in Figure 2.4. The DRTO level determines set-points that are as close as
possible to set-point targets calculated at the steady-state RTO level, but are such that
the closed loop inputs and outputs satisfy specified constraints. The QDMC problem at

time step k will be as follows:
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min |Aujp/Aufc + gf Au;.
Aufc Z

s.t IiAuk < Umax Ufc—i©

-/LAufc < -umtn + Uk-ie

gfc = XrrTr(yfc + dfc - ysp)

yt = y*k + dj; + AAuk

The resulting multi-level optimization problem for SISO systems is:

min(ysp - ytpi)2
Vsp

Subject to

uss - a ysp + b

Vmin < Vsp — Umax

Controller 1

Model output 1

Controller Ns

Model output Ns

At each time step 1 to Ns, the corresponding QDMCs are as follows:

Controller 1

min |Auf HAui + gf Aui

S.t < UmaI Uo Uss

-/i/Aui < umin + uo + uss

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

g^A^HyJ+di-ysp) (2.31)
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Model output 1

2/1 — yip + di + ysp

Vmin < 2/1 < Vmax

In the above,

uo - uoe (2.32)

uss = usse (2.33)

Controller 2

miniAu2HAu2 + g^Au2
Au2 "

S.t /lAu2 < Umax Uj Uss

—IlAu2 < —Umm + Ui + Uss

g2 = ArrTr(y2+d2-ysp) (2.34)

Model output 2

2/2 = 2/2|2 + ^2 + ySp

ymin < 2/2 < ymax (2.35)

Controller Ns

min ^Au^ffAu^ + g^s Au^

S.t < UmQI — UN.-l ~ Uss

-/LAu^ < ^min + UN,-1 + Uss

= Arrrr(y^ + djV, - ysp) (2.36)
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Model output 7VS

i/N, = y*N,\Na + dNa + Vsp

l/min — UN, — Umax (2.37)

Nature of interaction between the master problem and the subproblems

In this section, the nature of interaction between the master problem (the optimization

problem of the decision making at level 1) and the subproblems (the optimization problem

of the decision making at levels 2,3,...) as shown in Figure 2.4 will be discussed.

When the master decision variable is set at a particular level, it influences the subproblem

in two ways, through the constraints:

1. Through uss term.

< umm 1 uss (2.38)

iL&Uk < Umin + Ufc—i + Uss (2.39)

Uss — Usp + (2.40)

2. And also through the objective function in its gt

When the subproblems are optimized, the master problem may be required to change the

variables because the new values for the subproblem’s variables may turn the constraints

of the master problem infeasible. This formulation allows feedback to the master problem,

which in turn uses it in the search for the optimal settings for the decision variables. There­

fore, a two-way interaction pattern is established and it will terminate in either an optimal

or infeasible solution for master and/or subproblems.

Solution Algorithm

The inner problems will be replaced by their Karush-Kuhn-Tucker conditions. This con­
verts the above problem into single-level optimization problem with A , the lagrange mul-
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tipliers for the problem, as additional problem variables.

This method replaces the subproblems by the Karush-Kuhn-Tucker conditions, and then
transforms the multi-level problem into a mixed-integer quadratic programming problem

by exploiting the disjunctive nature of the complementarity slackness conditions where

binary variables are used to choose the binding constraints for the inner problem. This

approach allows the control of all variables to be given to the leader (the master problem)

so we will essentially be dealing with a one level program. Fortuny-Amat and McCarl [1981]
developed an approach to find the global optimum of the bilevel optimization problem, how­
ever the approach is not the most efficient way to solve the multilevel optimization problems.

The formulation provides as follows:

min^Auf.HAufc + g£ Aut
Z (2.41)

s.t IiAuk - umax + Ufc-i + uss < 0 (2.42)

ZlAu/; + Umin Ufc—i Uss < 0 (2.43)

The optimization subproblems are replaced by its KKT conditions and then the slack vari­

ables are added to the constraints 2.42 and 2.43 as follows:

+ A2 (-IlAuk + Umin ~ Ujfc-1 - UJS)

£(Aufc,A1,A2) = ^Aupf Aufc + g^Au*

+ Af (lLAufc - umax + ufc_! + uss)

(2.44)
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The KKT conditions then become

<9£(Aufc,Ai,A2) _ _ > \ tT\~ — HAuk + gfc + /^Ai //,A2 (2.45)

0 = /lAua; + Ufc-1 + uss - umai + V! (2.46)

0 = -ZlAuA; - UAj-1 - Uss + Umin + V2 (2-47)

0 = Afvi (2.48)

0 = A2 v2 (2.49)

Ai, A2, vi,v2 > 0 (2.50)

where
Ai : is a vector that represents the Lagrange multipliers for the upper bound

of the manipulated variables

A2 : is a vector that represents the lagrange multipliers for the lower bound

of manipulated variable

vi : is a vector that represents the nonnegative slack variables of the constraint

V2 : is a vector that represents the nonnegative slack variables of the constraint

This transformed problem described in equation 2.45 to 2.50 is a nonlinear, nondifferen-

tiable and nonconvex problem and cannot be easily solved by using standard nonlinear

programming [Bard and Moore, 1990].

Complementarity conditions

The complementarity condition constraints are one of the major difficulties in solving the

transformed single-level problem. They involve discrete decisions on the choice of active set

constraints of the inner problem. The active set changes when at least one inequality func­

tion and its multiplier are equal to zero. With the change in the active set of constraints,

the overall feasible space changes. In order to overcome these difficulties, Fortuny-Amat

and McCarl [1981] suggested suppressing the complementarity conditions ATv = 0 by in­

troducing the binary variables zi and Z2 and solving the resulting linear Equation (2.51)

instead. Hence, the complementarity conditions can be formulated as follows:
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0 < Ai < ZiB

0 < A2 < Z2B

0<V!<(1-zi)B (2.51)

0 < v2 < (1 — z2)B

where B is an upper bound for the slack variables vi and v2.

Hence, we can combine the equations 2.45 to 2.51 as following:

0 = H Aufc + gk + /£ Ai — /£ A2 (2.52)

0 < -/lAua, - ufc_i - uss + umax < (1 - zi)B (2.53)

0 < +/lAua; + Ufc_i + uSJ - um:n < (1 - z2)B (2.54)

0 < Ai < ziB (2.55)

0 < A2 < z2B (2.56)

zi,z2 € {0,1} (2.57)

Ai, A2 > 0 (2.58)

and finally the one level optimization problem will be:
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min(?/Sp - ytgt')2
Vsp

Subject to y-min — Vsp — Umax

v-ss ~ a Vsp 4"

H = ATrTrA + ArA

Controller and model output 1

0 = 7/Aui + gi + A} — /£ A2

0 < ZlAui u0 uJS + umQI < (1 ^1)2?

0 < +ZLAux + u0 + uss - umin < (1 - z^)B

0 < Aj < z{B

0 < A2 <

yi = 2/i|i + <2i + ysp

Vmin — j/1 — Umax

zl>z2 {0,1}> Aj,A2>0

Controller and model output 2

0 = HAu2 + g2 + ~

0 < -ZlAu2 - ui - U55 + umai < (1 - zf)B

0 < +ZlAu2 + U1 + UJS - Umin < (1 ~ Z2)B

0 < A? < z^B

0 < A2 < z^B

j/2 = y2|2 + d2 + ysp

ymin < V2 — Vmax

zl>z2 {0> 1}> Aj,A2>0
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Controller and model output £ = N3

0 = HAuW1 + SN, + I^X?’ - l£X%‘

0 < -1lAuW1 - ujv.-i - uss + umax < (1 - z^‘)B

0 < +/lAuAtj + U/^-i + uss - umin < (1 - Z2V’)B

0 < Afs < zf’B

0 < A^ < z^B

vn, = yk|w3 + + ysp

ymin < IIN, — I/maz

zf',z*' G {0,1}, A^,A^>0

2.4 Software

The methods used to solve pure integer and mixed integer programming problems require

dramatically more mathematical computation than those for similarly sized pure linear

programs. Gams provides solvers for mixed integer nonlinear programming (MINLP), and
solvers for mixed integer quadratic programming (MIQP) was introduced in the latest ver­

sion of Gams. A brief introduction to Dicopt and SBB as examples of MINLP solvers and

Cplex as an example of MIQP solvers will be discussed. All of the simulation work for

this chapter has been done using MINLP solvers before MIQP availability in Gams latest

edition(Sep.2004)

DICOPT

DICOPT (Discrete and Continuous OPTimizer) is a program for solving mixed-integer

nonlinear programming (MINLP) problems that involve linear binary or integer variables

and linear and nonlinear continuous variables. While the modeling and solution of these

MINLP optimization problems has not yet reached the stage of maturity and reliability
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as linear, integer or non-linear programming modeling, these problems have a rich area of

applications. For example, they often arise in engineering design, management sciences,

and finance. The program is based on the extensions of the outer-approximation algorithm

for the equality relaxation strategy. The MINLP algorithm inside DICOPT solves a series

of NLP and MIP subproblems. These sub-problems can be solved using any NLP (Non­

linear Programming) or MIP (Mixed-Integer Programming) solver that runs under GAMS.

Although the algorithm has provisions to handle non-convexities, it does not necessarily

obtain the global optimum [Grossmann et al., 2004).

SBB

SBB is a relatively new GAMS solver for Mixed Integer Nonlinear Programming (MINLP)

models. It is based on a combination of the standard Branch and Bound method known

from Mixed Integer Linear Programming and some of the standard NLP solvers already

supported by GAMS.

Cplex

GAMS/Cplex is a GAMS solver that allows users to combine the high level modelling ca­

pabilities of GAMS with the power of Cplex optimizers. Cplex optimizers are designed to

solve large, difficult problems quickly and with minimal user intervention. Cplex solution

algorithms include linear, quadratically constrained and mixed integer programming prob­

lems. While numerous solving options are available, GAMS/Cplex automatically calculates

and sets most options at the best values for specific problems.

For problems with integer variables, Cplex uses a branch and cut algorithm which solves a
series of LP, subproblems. Because a single mixed integer problem generates many subprob­

lems, even small mixed integer problems can be very computationally intensive and require
significant amounts of physical memory. Cplex can also solve problems of GAMS model

type Mixed Integer Quadratic Constrained Programming (MIQCP). As in the continuous

case, if the base model is a QP the Simplex methods can be used and duals will be available

at the solution. If the base model is a QCP, only the Barrier method can be used for the

nodes and only primal values will be available at the solution [GAMS, 1998].
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Computer Ssytem

Computer system used: laptop, Pentium 4 with processor 2.4. 1024 MB cash memory.

2.5 Case Studies

2.5.1 Isothermal CSTR

This single- input single-output continuous stirred tank isothermal reactor model is taken,

in part, from the work of Marlin [2000]. The objective of this case study is to find the

optimum back-off from constraints using constrained MPC as the controller.

Process description and specification

In this section the transfer function model, together with simplifying assumptions will be

outlined. Controlled and manipulated variables, a description of the constraints and dis­

turbance will be outlined.

Process model and objective function

The system is illustrated in Figure 2.5 with the steady-state and dynamic model below.

An isothermal first order reaction A B takes place in the liquid phase. It is desired to

produce B within specification. The process model consists of one transfer function model

that describes the change in the outlet concentration.

Process transfer function model Controlled variable: outlet concentration from the

reactor CA(mole/m3) Manipulated variable: inlet feed flow rate F(m3/min)

CM =
2.722

12.4s + 1 F'(s) (2.59)

where the prime indicates a deviation from the steady-state.
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Figure 2.5: Continuous stirred tank reactor(CSTR)

Disturbance model

A step change in the inlet concentration will be considered as disturbance. The disturbance

time constant is assumed to 7 min.

Dynamic Model

(2.60)

(2.61)V^- = ~ ~ VkCA
at

x 0.503 .
C^(S) “ 12.4s+ lCxo(s)

Steady—state linear Model

CA„ ~ CA„ = 2.722(FSS - Fss) + 0.503Ad (2.62)
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Constraints

0.50 < Ca < 0.85 mole/m3 (2.63)

0.05 < F < 0.90 m3/min (2.64)

Target set—point

The target set-point was chosen to be 0.85 mole/m3

Model predictive control

The tuning parameters (which are the objective function weighting matrices), the output
prediction horizon and input control moves are selected and assumed constant as described

in the Table 2.3. A sampling time of 3 minutes was used and the simulation horizon chosen

to be 90 minutes.

Table 2.1: MPC tuning parameters

parameters Description Value

M Control move horizon 2

P Prediction horizon 10

Ns Simulation horizon 31

r Controlled variables weighting I

A Manipulated variables weighting I
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Simulation results

Cplex is used for simulating the isothermal CSTR. Table (2.2) shows the number of contin­

uous variables, integer variables, number of iterations and CPU time used for case 3.

Table 2.2: Comparison of the different solvers

MINLP MIQCP

Solvers SBB Dicopt Cplex SBB Baron

Solution - 0.0045 0.0045 - 0.0045

Number of variables 1646 1646 1646 1646 1646

Number of Integer variables 124 124 124 124 124

CPU time used >4 hrs 112 sec 1.03 sec > 4 hrs 954 sec
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1- Manipulated variable is not saturated

Step change in inlet concentration= 0.1 mole/m3

Figure 2.6: Manipulated variable is not saturated

In Figure 2.6, the set-point is backed-off from the constraints from 0.85 to 0.807 mole/m3.
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2- Manipulated variable touching the constraints without saturation

Step change in inlet concentration^ 0.29 mole/m3

Figure 2.7: Manipulated variable is touching the lower bound without saturation

In Figure 2.7, the set-point is backed-off from the constraints from 0.85 to 0.79 mole/m3.
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3- Manipulated variable partially saturated

Step change in inlet concentration= 0.31 mole/m3

Figure 2.8: Manipulated variable is partially saturated
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4- Manipulated variable is saturated

Step change in inlet concentration^.327 mole/m3

Figure 2.9: Manipulated variable is completely saturated

In Figure 2.9, the set-point is backed-off from the constraints from 0.85 to 0.78 mole/m3.

The manipulated variable is completely saturated
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2.5.2 Fluid catalytic cracking unit (FCCU)

Figure 2.10: Fluid catalytic cracking unit (FCCU)

Process description and specification

The fluid catalytic cracking (FCC) unit is one of the most important and complicated

processes in the petroleum refining industry. The complexity of the process, from both the

modeling and control points of view, arises from the strong interactions between the two

reactors, namely the riser reactor and the regenerator reactor. An FCCU converts gas oil
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into a range of hydrocarbon products of which gasoline is the most valuable. The amount of
low market-value feedstocks available for catalytic cracking is considerable for any refinery.
The ability of a typical FCC unit to produce gasoline from low market value feedstocks

gives the FCC a major role in overall economic performance of the refinery. Operating the

FCC unit at or close to the optimum will have a considerable effect on the overall economic
performance of the refinery. Therefore it is a prime candidate for any study of interaction

between RTO and control.

Process model: The original work of Ansari and Tad [2000] identified a 5-input 4-output

linear transfer function model for fluid catalytic cracking unit (FCCU) model by making

step changes in the manipulated variables. Here a subset of the of the their model was
selected to conduct this study.

Inlet feed flow
rate Disturbance

Air Flow rate
U1

Fluid Catalytic
Cracking Unit

Oxygen Concentration
O2_conc Y1

Riser Temperature
(RisT) U2 Regenerator Bed Temp.

(ReqT) Y2

Figure 2.11: Schematic of model predictive control problem for the catalytic cracking

reactor-regenerator system





CHAPTER 2. INTERACTION BETWEEN RTO AND MPC: EFFECT OF CLOSED-LOOP
DYNAMICS 43

Controlled variables (Cvs)

yi (s) Oxygen concentration in the outlet flue gases

from the regenerator [vol%]
3/2(5)

Manipulated variables (Mvs)

Regenerator bed temperature [C°]

«i(s) Inlet air flow rate to the regenerator [ton/hr
«2(s)

Disturbance

Riser outlet temperature [C°]

d(s) Inlet feed flow rate [m3/hr]

Process model

3/1(5) ~0.10(1.7s-H)e~23
18s2+7s+l

—0.080(4.8s-H) '
9s2+3s-f-l

0.08e—*3 0.8(1.7s+l)e-2’|_3/2 (5)J L 1152+8s+1 10s2+7.3s+l J

«i(s) —0.90e-23

+
13s2+4.6s+l

d(5) (2.65)

J12(s)_ 0.45e-4j
. 23s2+8s+l J

where all variables are in deviation form and units in square brackets:
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Constraints: The operating variables constraints were not available in the original work,
so model constraints limits based on Grosdidier et al. [1993] are used instead:

0.7 < 3/1G?)

705 < t/2(s)

140 < ui(s)

<1.3 [vol%]

< 735 [C°]
< 155 [ton/hr]

515 < u2(s) < 535[C°]

Steady-state relation ship between the inputs and the outputs

Ussi UsSl

UsS2 VsS2

0.10 -0.080 Ussi ^SSl

+
-0.90

Ad

0.08 0.8 ^SS2 ^SS2 0.45

(2.66)

where:
ySSl : Steady-state oxygen concentration in the outlet flue

gases from the regenerator [vol%]

y„2 : Steady-state regenerator bed temperature [C°]
uSS1 : Steady-state inlet air flow rate to the regenerator [ton/hr]

uSS2 : Steady-state riser outlet temperature [C°]

y : Refers to the initial output steady-state

u : Refers to the initial input steady-state

Target set-point

Target set-point for oxygen concentration was chosen to be 0.7 Vol%, while the set-point

for regenerator temperature was 705C°

Model predictive control

The output prediction horizon and control move horizon are selected and assumed constant

as described in the Table 2.3. A sampling time of 2 minutes was used and the simulation

horizon chosen to be 50 minutes.
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Table 2.3: MPC tuning parameters

parameters Description Value

M Control moves 2

P Prediction horizon 10

Ns Simulation horizon, steps 26

Controlled variable weighting matrix

1 0 (2.67)r =
0 1

Manipulated variable weighting matrix

0.1 0 (2.68)A =
0 1
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Simulation Results

Simulation results for small disturbances

Figure 2.12: Effect of small disturbances on the manipulated and controlled variables

Fig 2.12 shows the effect of a small disturbance (step change in inlet feed flow rate = 0.2

m3/hr). Uy is not saturated while yi is touching the constraints. The oxygen concentration
set-point to the controller has to be backed-off from 0.7 to 0.78 vol%





CHAPTER 2. INTERACTION BETWEEN RTO AND MPC: EFFECT OF CLOSED-LOOP
DYNAMICS 47

Partial Saturation of the inlet air flow rate (nJ and Riser Temperature (^2)

Step change in inlet feed flow rate = 0.42 m3/hr

time

Controlled variable

Figure 2.13: Both of the manipulated variables are partially saturated

Fig 2.13 shows the effect of a large disturbance (step change in inlet feed flow rate = 0.42

m3/hr). Both of the manipulated variables ui and u.2 are partially saturated and the oxygen

concentration set-point to the controller has to back-off from 0.7 to 0.89 vol%.
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Both of the manipulated variables saturated

Step change in inlet feed flow rate = 0.47 m3/hr. Lower bound on oxygen concentration^.7

Figure 2.14: Both of the manipulated variables are saturated

Both of the manipulated variables ui and U2 are saturated and the oxygen concentration
set-point to the controller has to back-off from 0.7 to 0.9 vol%.
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2.6 Future Work

In this study, the disturbance is assumed to be specified or estimated. Therefore this work
needs to be extended to include estimation for the unmeasured disturbances.

Alternative computation strategies are required to be developed in order to handle large

MIMO systems because standard algorithms are not suitable particularly when the number

of the integer variables increases. An interior point approach or more efficient branch and

bound strategy might be used.

Further extensions include consideration of process model mismatch and nonlinearities.





Chapter 3

Modelling of a Continuous Oxygen

Delignification Unit

3.1 Introduction

Due to strict environmental regulations on the use of chlorine in pulp bleaching, many

oxygen delignification reactors have been added to existing paper mills to reduce the con­

sumption of chlorine in bleaching units. The first commercial oxygen delignification unit

was introduced in South Africa in 1970. The oxygen delignification stage is carried out to
the farthest extent to remove the maximum amount of lignin without carbohydrate degra­

dation before the pulp is passed on to the chlorination reactor. Therefore, improvement in

the oxygen delignification processes can have a significant impact on the economic feasibil­
ity and controllability of bleaching plants. Lignin is the glue that binds fibres in the pulp.

It is a measure of the demand of potassium permanganate during oxidation of the pulp

under certain standardized conditions. The use of an oxygen stage before chlorination in

pulp bleaching plants can reduce the chemical oxygen demand (COD) of waste streams by

50% and the biological oxygen demand by 25-50 %. Furthermore, savings in chemical costs

of more than 25% may be achieved through reducing the use of chlorine, chlorine dioxide

50
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and hypochlorite [Hsu and Hsieh, 1988]. The dissolved material unlike that of chlorination
and caustic extraction, is uncontaminated by the chloride ions so it can therefore be routed

back to the recovery furnace where it becomes source of energy instead of a pollutant.

Energy related benefits include, recovery of heat from combustion of the material removed

from the pulp in the oxygen stage, lower refining energy requirements of oxygen-bleached

pulps and the fact that the manufacture of oxygen requires only about one-eighth of the

energy needed to make a chemical equivalent of chlorine. As a result of these benefits,
oxygen bleaching prior to chlorination stage has become a well-established process.

In order to benefit from the above advantages, one serious problem associated with oxygen

delignification needs to be overcome. This problem arises from the natural tendency of

oxygen to form reactive free radicals that can attack cellulose and other carbohydrates

in addition to the lignin that is required to be broken down. This adversely affects pulp

strength, and consequently poses a constraint on operation of the process.

Carbohydrate degradation is the most important factor limiting the amount of delignifica­

tion that can be achieved in the oxygen stage. The success of the oxygen delignification

process is dependent on its ability to overcome the selectivity problem. This can be handled

by developing a nonlinear fundamental dynamic model for cellulose degradation and lignin

removal. The model will allow better prediction and control of pulp properties over wide

range of operating conditions. Therefore, it will be possible to run the oxygen delignification

process to farthest extent of removing lignin before the chlorination process without losing

the pulp strength.

This chapter describes the development of a dynamic model of an oxygen delignification

unit. Its use in the development and evaluation of model-based control strategies is the
subject of the next chapter. The model is based on fundamental mass and energy balances

and incorporates literature-based kinetic models for prediction of the kappa number and

pulp viscosity. Through the literature review, models proposed by Iribarne and Schroeder

[1997] and Myers and Edwards [1989] were found to be the most suitable for many processes

because they cover a wide range of operating conditions. The Myers and Edwards [1989]
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model was used to describe lignin removal and the Iribarne and Schroeder [1997] model to
describe the cellulose degradation. Therefore a dynamic model for the oxygen delignification
reactor has been developed.

Quality variables

Kappa number: This is a quantity that gives an indirect measure of the amount of

residual lignin. Kappa number is defined as the number of milliliters of 0.1 N potassium

permanganate solution consumed by one gram of pulp in 10 minutes at 25 C.

According to the Casey [1980], the relation between the residual lignin in the pulp and the

kappa number is :

L = 100 (3-1)

where K is the kappa number and L where [L] is the lignin mass fraction.

Pulp viscosity: Pulp viscosity is an indicator of the extent of cellulose degradation. The

strength potential of the pulp is related to cellulose chain length and also to viscosity which

is used as an indirect measure of pulp strength. The viscosity is determined by the average

chain length of cellulose. No method is available to measure the pulp viscosity online so

laboratory analysis is necessary.

Operation Variables

The most important variables affecting oxygen delignification are:

1. Caustic soda flow rate

2. Reactor temperature - The temperature in the reactor is controlled mainly by ma­

nipulating the steam flow rate.

3. Oxygen partial pressure or concentration in the liquor phase - It is desirable to keep

Pq2 constant by manipulating the inlet oxygen flow rate.

4. Level - The reactor level is kept constant by manipulating the production rate.
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3.2 Kinetic Models for Oxygen Delignification Reaction

Introduction

For optimization and control of the oxygen delignification reactor, information on its kinetics

of delignification is required in order to build a dynamic model. Therefore a comparison

of different kinetic models in the literature is presented here in order to come up with the

most suitable overall kinetic model. This model should have the following characteristics:

1. Reaction rate is independent of consistency: sufficient mixing of the reactants

during the experiments to avoid changing the reaction rate as the consistency varies.
Myers and Edwards [1989], Hsu and Hsieh [1988] and Iribarne and Schroeder [1997]

mentioned that consistency does not have an effect on the rate equation and if hap­
pened this must be due to insufficient mixing during the experiments.

2. The model should cover wide range of operating conditions: i.e. inlet kappa

number, operating temperature, operating pressure, viscosity and consistency.

3. High Consistency the model should be applicable to high consistency pulp.

4. Soft and hard wood the model should be applicable to both soft and hard wood.

Several investigators have treated oxygen delignification kinetics such that the drop in kappa

number takes place over two distinct time periods. These correspond to a rapid initial step
followed by a long period over which the kappa number drops very slowly in addition to the

base level.

Ktotal = Kf + Ks + Kfloor (3.2)

where
Kf : Is the amount of easily and rapidly eliminated lignin.
Ks : Is the amount of difficult and slowly eliminated lignin.

Kfloor : Floor or final equilibrium value for kappa number (non-reacting lignin) which is
approximated by 10% of the initial kappa number [Myers and Edwards, 1989].
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Oxygen bleaching is a heterogeneous reaction which occurs in a system comprising of

fiber (solid), water (liquid), and oxygen(gas). Two competing reactions, delignification and

carbohydrate degradation, occur simultaneously during oxygen bleaching. Therefore any

kinetic study of oxygen bleaching must contain the kinetics of both delignification and

carbohydrate degradation.

The degree of delignification is measured by determining the kappa number of the pulp,

while the the carbohydrate degradation is monitored by measuring the intrinsic viscosity

which can be converted to mn, the estimated number of cellulose chains per metric ton of

pulp (moles/Oven Dry metric ton (O.D.mt) of pulp).

A new chain formed means that a carbohydrate bond has been broken. The use of is

more suitable in kinetic studies than viscosity. This is because in kinetics, both the reactant

and the products should be expressed in chemical units [Olm and Teder, 1979].

3.2.1 Olm and Teder kinetic model

Olm and Teder [1979] showed that almost all lignin in the kraft pulp can be removed wi...

an oxygen delignification stage. However, the practical extent of delignification is limited by

degradation of carbohydrates in the pulp. If allowed to proceed far enough, the degradation

will result in a loss of pulp strength. This nonselectivity is currently what limits the oxygen

stages to 40-50 percent delignification [Iribarne and Schroeder, 1997]

The degree of delignification is measured by determining the kappa number of the pulp,

which can be described by two first order reactions with respect to the remaining lignin; an

initial rapid delignification (A/) followed by slow residual delignification (/<s).

+ A2e^f[OH-]°-3P^Ks

where

(3-3)
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K : Is the kappa number.

Kf : Is the amount of easily and rapid eliminated lignin.

Ks : Is the amount of difficult and slowly eliminated lignin.

Carbohydrate degradation: The carbohydrate degradation is monitored by measuring

the intrinsic viscosity which can be converted to mn estimated number of cellulose chains

per metric ton of pulp. mn can be described by two zero order reactions with respect to the

residual carbohydrate; an initial rapid degradation followed by slow residual degradation.

For cellulose degradation

(3.4)= Acle^[OH-]^P°o; +
at

where: mn = number of cellulose chains per ton of pulp

Viscosity calculation:

Iogm„ - 4.35 — 1.25 log t? (3-5)

where: r/ = viscosity, dm3/kg

Effect of process variables:

The delignification rate and carbohydrate degradation rate during oxygen bleaching increase

with increasing the following variables :

1. Alkali concentration.

2. Oxygen partial pressure.

3. Operating temperature.

4. Consistency.
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Olm and Teder [1979] indicated in their experiments that pulp consistency will affect the

delignification rate and carbohydrate degradation rate in the initial phase of oxygen bleach­

ing. However, this contradicts the conclusions of Myers and Edwards [1989],Hsu and Hsieh

[1988] and Iribarne and Schroeder [1997].

Myers and Edwards [1989] mentioned that the data that Olm and Teder [1979] used did

not eliminate the mixing effects. Insufficient mixing will lead to changing the reaction rate

with changing the consistency. Also the model could not handle variations in the initial

kappa number if it is not held constant at a value of 29.5.

We could not therefore use this model because of the following:

1. The frequency factors Aj, A2, Acl and Aci are not provided.

2. The model could not be relied upon for inlet kappa numbers different from 29.5.

3. Consistency is affecting the initial phase delignification and carbohydrate degradation

rate.

3.2.2 Hsu and Hsieh kinetic model

Hsu and Hsieh [1988] managed to remove the effect of consistency on the kappa number by

running their experiments at ultra low consistency. They obtained the reaction kinetics by
using the data at 0.4% consistency. They presented a two stage kinetic model to describe

oxygen delignification kinetics Equation 3.6.

= 2.46e"^[OH-]°-78F°235/<3 07[«(t) - u(t - 2)]

+ 143.49e^^[OH'“]°'7F327'I^3 07h^ - 2)]

(3.6)

where:
[OH-] : is the alkali concentration on solution (kmol/m3)

Po2 : is the oxygen Partial pressure (N/m2)
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u(t) is the unit step function used to show that in the first two minutes of reaction time, the

kinetic equation was described by the first term and during the remainder of the reaction

time was described by the second term.

This model works for low consistency ranging from 0.4 to 4 percent so there is no effect of

changing the consistency which is contradictory to Olm and Teder [1979]. The model works

also for high feed kappa number 29.5.

This kinetic model fits some experimental data well, but if the initial kappa number is raised
slightly the reaction rate increases too much (i.e. third order power). Hsu and Hsieh used

only one initial kappa number in their experiments [Myers and Edwards, 1989].

This model is unsuitable because it is applicable to a narrow consistency(0.4-4 %) range

and also for very narrow range for inlet kappa number (around 29.5).

3.2.3 Myers and Edwards kinetic model

The predictive oxygen delignification kinetic model is used for both of softwood and hard­

wood kraft pulps. It can also be used for all consistencies up to 30% pulps and an initial

kappa number range varying from 11 to 128.

Myers and Edwards’ [1989] model mainly depends on fitting data from literature that has ef­

ficient mixing and thereby, avoids dependency of the delignification rate on the consistency;

It is assumed that the delignification rate is not affected at all by consistency.

They also used dissolved oxygen concentration instead of oxygen partial pressure since

oxygen solubility depends on temperature as well as pressure. They did not not take the

effect of caustic soda on oxygen concentration into consideration. And also, they used a

nonlinear caustic consumption model.
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~ X 1^5e

= 1.68 x 107e^[O#-]°-87W''3^

K = Kf + Ks + Kfloor

(3-7)

(3-8)

(3-9)

The initial condition for kappa number is :

Kf = 0.225/Co

Ks = O.675Ko

Kfloor = O.IOOAq

[OH-] : hydroxide concentration (kg/m3liquor)

[O2] : dissolved oxygen concentration (kg/m3liquor)

T : temperature K

R : universal gas constant 8.314 kJ/kmol,

Ko : inlet kappa number

When they applied their model on data obtained on an industrial scale, they used an oxygen

consumption rate of a=0.8 kg(oxygen)/kg(lignin) without any tuning for the model.

They pointed out that a high reaction order with respect to lignin as proposed by some

other workers gives abnormal reaction rates for high initial kappa number.

Myers and Edwards’ [1989] model is applicable to a very wide range of operating conditions
but it does not account for the cellulose degradation. Their model will be used for prediction

of kappa number.

3.2.4 Iribarne and Schroeder model

The motivation of the Iribarne and Schroeder [1997] study was to find a global kinetic

model which covered a higher range of oxygen partial pressure up to 18.4 MPa. The main
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hypothesis of their study was that the higher the concentration of oxygen might increase

delignification rates. Previous studies covered up to 1.5 MPa.

The Iribarne and Schroeder [1997] model covers a wide range of operating conditions from

20-60 for kappa number, up to a 20%consistency, 50° C to 150° C for temperature, 0 to 0.4
mole/litre for alkali concentration, 2 to 26 cp for viscosity and up to 18.4 MPa.

Iribarne and Schroeder [1997] expressed oxygen as concentration (mole/litre) in their model

instead of using oxygen partial pressure. This is because the oxygen concentration in the liq­

uid phase does not depend only on oxygen partial pressure but also on alkali concentration

and temperature. As the alkali concentration and temperature increases, the oxygen con­

centration decreases. Iribarne and Schroeder [1997] used Broden and Simonson equating*'

to estimate oxygen concentration in alkali medium

[Iribarne and Schroeder, 1997].

[O2] = 5.351 - 1.252 * 10~2T - 79.54PO2 + 2.135 * 1(T4FO2T2 + 2.125 * lO4^2- U 

where: 
^O2]

[O2]

MPa: oxygen partial pressure MPa

: dissolved oxygen concentration mol/litre

: temperature

The kinetic model of lignin degradation is described by two first order differential equations

in the kappa number.

 g x 1011 e kt [OH j1’2^]1’3^at
= 6 x 104 eir[O#-]0-3[O2]°-2A7

at
Kf(0) = O.57Ko

(3-11)

(3.12)

(3.13)

Ks(0) = O.43Ko (3-14)
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[O77-] : alkali concentration in solution mole/litre
[O2] : oxygen concentration in solution mmole/litre

K : Kappa number mL/g

The model predicts that initial delignification would be essentially complete in 7 minutes.

The final delignification would be much slower.

The model assume stoichometric coefficient of 1.33 x 10 3f7Naon/(5JO/(wooj)(^-^) for caustic 
soda consumption and almost the same amount for oxygen consumption.

Cellulose degradation

It is expressed as zero-order reaction in mn

d-^=7x 10we^[OH-]0-3[O2]0A
at

106
n ~ 162mn

DPn = 961.38 log10 7] - 245.3

(3.15)

(3.16)

(3-17)

[OH~ ] : hydroxide concentration mole/litre

[O2] : oxygen concentration mmole/litre
mn : number-average moles of cellulose per metric ton of pulp mol/metric ton

77 : viscosity mPa.s

DPn : degree of polymerization

3.2.5 Gendron’s model

Gendron et al. [2002] presents kinetic model for oxygen bleaching. The model covers lignin

removal and cellulose degradation. The model was developed using unbleached pulp of

specific inlet kappa number (K = 32). The conditions affecting the rate of lignin removal 

are:

1. Temperature (T).
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2. Pressure (P).

3. Caustic feed flow rate.

4. Oxygen feed flow rate.

Weaknesses

1. High reaction order with respect to kappa number.

2. The experiments were carried out at one kappa number(Jf = 32)

3. The model fixed the alkali concentration

4. There are redundant variables; oxygen flow rate and pressure.

5. The model accounts for the pressure gradient which has a small effect compared with

the effect of alkali charges and temperature [McDonough, 1986]

From 1 and 2, following the arguments of Iribarne and Schroeder [1997] and Myers and

Edwards [1989], the model would not predict the kappa number correctly if it was different
from 32. This will limit the capability of the delignification reactor to handle the variation

in the digester outlet kappa number due to any upsets. It will be also difficult for the

optimization of the digester and bleaching unit.

3.2.6 Agarwal and Genco model

Agar wal et al. [1998] presented a kinetic model for both kappa number and cellulose degra­

dation.

Kappa number model:

= _6.59 x 10-Ge-^[O77]°-92F°253K7'7 (3.18)
at
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Cellulose degradation model:

log(-l) = -5.8265 x 10~7T2[C>H1o'8P3'2 log(t)
T10

(3.19)

[O77-] : hydroxide concentration g/litre

po2 : oxygen pressure N/m2
t : time minutes

K : Kappa number ml

: intrinsic viscosity cc/g

T : temperature °C

Agarwal et al. [1998] presented an equation to correlate the intrinsic viscosity to dynamic

viscosity expressed in cP.

n(cP) = O.OOO3772 - 0.39277 + 175.7 (3.20)

Weaknesses

1. High reaction order with respect to kappa number.

2. The experiments were carried out at one kappa number.

3. The model fixed the alkali concentration.

4. Equation 3.20 was fitted using Excel and it did not predict the data correctly at all

and this is seemingly due to unsealed data used by Agarwal et al. [1998] to fit it. It

is recommended that the data be scaled first before fitting.

3.2.7 Summary

From Table 3.1 , both of the Myers and Edwards [1989] and Iribarne and Schroeder [1997]

models cover a wide range of operating conditions. As a result, their models will be used in

developing the dynamic model for a continuous industrial reactor. The Myers and Edwards
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Olm and
Teder
(1979)

Hsu and
Hsieh
(1988)

Myers and
Edwards

(1989)

Iribarne and
Schroeder

(1997)

Gendron
(2001)

Initial Kappa 29.5 29.5 11-128 20-60 32

Consistency 0.3 to 8 0.4 Up to 30 10 10

Temperature,
°C

110 75-125 75-105 50-150 90-110

Pressure, Mpa 0.98 0.4- 1.1 0.14-1 0-18 0.34-0.69

Delignification
Kinetics

Cellulose
Degradation
Kinetics

Figure 3.1: Comparison of the different models operating ranges

[1989] model will be used for the kappa number calculation and the Iribarne and Schroeder

[1997] model will be used for cellulose degradation calculations. Table 3.1 summarizes the

different kinetic models equations used in this comparison.
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Table 3.1: Summary of global kinetic models
Olm and Teder [1979]

-RK = Aie^O#-]01/^1 K + A2ei$[OH-]0-3P^ K

For Cellulose -Rm = A3e^r[OH~]a-2P^ + A^[OH~]^P^

log m — 4.35 — 1.25 log rj

Hsu and Hsieh [1988]

—Rk = 2^e^[OH~]°-3P^ K3A [u(t) - u(t - 2)]

+143.5e^[O>#-]°-7P327 K31 [u(t - 2)]

Myers and Edwards [1989]

-RI<f = 1.51 x 105eT[O2]0« Kf

-RI<S = 1.68 x 107er^4[6»P-]0 0-875[O2]0 '13 Ks

[O2] = [O2]i — [Caused

[OH] = [OH]f - [OH]U5etZ

Kf = 0.225/G and Ks = 0.675/G

Agarwal et al. [1998]
= -6.59 x 10-6e-^[OH]°-92P3253H7-7

log(i) = -5.8265 x 10-7T2[OH]°-8Pq2log(t)

Iribarne and Schroeder [1997]
-Rk = 6 x 1011 e^OH-p W’3 K} + 6 x 104 e^[OH-]0-3[O2]0'2 Ks

For cellulose degradation —Rm = 7 x IO10 e^r [OH-]0’3[O2]q4

Gendron et al. [2002]
= -3.51 X l0-6e^^l.32X0.33p0.4 ^8

For cellulose = Be^N^'X^P^ Nc 

logio(77) = gh(325 + (^DP)°-905)
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3.3 Development of Dynamic Model for Oxygen Delignifica­

tion Reactor

Optimal selection of operating conditions

We now apply the kinetic models developed above to the development of a dynamic model

of a continuous oxygen delignification tower. Generally, the objective is to remove as much
lignin as possible in order to minimize the consumption of costly chemicals in subsequent

bleaching stages. However, the penalty for using oxygen to remove lignin is the weakening

of the fibers. A second objective then consists of ensuring that the oxygen treatment does

not weaken the pulp beyond some limit. As discussed earlier, the weakening of the fibers is

closely associated to the amount of depolymerization suffered by the cellulose chains.

Figure 3.2: Modeling oxygen delignification reactor as a series of n CSTRs
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3.3.1 Assumptions and model structures

1. Assume constant oxygen concentration through out the reaction due to its low sol­

ubility. Concentration in the liquid only drops towards zero when gas phase oxygen

has been consumed [Pageau, 2000].

2. Assume constant operating pressure (no pressure drop).

3. Assume the reactor level is perfectly controlled.

4. The reactor will be simulated as series of CSTRs with constant volume V =

5. Assume adequate mixing within each CSTR.

6. Assume the density of the oven dry pulp is constant pJibrc = 600 g/litre.

7. Assume the heat capacity of the pulp mixture is constant.

8. Assume the density of the liquor is constant through the reactor pliquor — 1100 g/litre.

9. Fast dynamics inside the steam mixer.

10. Oxygen contribution to the mass and energy balance is negligible comparing to the

amount of pulp, caustic and steam.

3.3.2 Material and energy balance

Feed Mixer

Fast dynamics inside the mixer shown in Figure 3.3 will be assumed and so the mass and

energy balance will be:

Total material balance:

Fq — Fln + FNaOH 4- Fsteam (3.21)
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Figure 3.3: Feed Mixer

where:
Fin : Is the inlet pulp feed feed flow rate g/min

FNaOH : Is is the sodium hydroxide flow rate g/min

Fsteam : Is the steam flow rate g/min

Consistency:

Fin^in

Fo

where Xq represents consistency of the pulp in percentage.

total flow rate of fibre in g/min
liquor flow in g/min 4- total flow of fibre in g/min

1 1 -X X— —--------- 1--------
Pt Pliquor PFibre

Kappa number = x 100[L]

(3.22)

(3.23)

(3-24)

(3.25)

where [L] is the lignin mass fraction.
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Component material balance:

Wo — Win

Mo = [C\in

(3.26)

(3.27)

where Wo is the inlet lignin mass fraction and [C\o is the inlet cellulose mass fraction as
follows:

total mass of Lignin
total mass of fibre (Lignin + Cellulose)

total mass of Cellulose
total mass of fibre (Lignin + Cellulose)

w =
W] =

For Sodium hydroxide concentration:

_ [OH''[inF^aOII/PNaOH , , x
[°H = (1 - X0)F0/Wi, (3.28)

where:
pNaOH ■' Is density of the sodium hydroxide feed solution g/litre
pliq : Is the density of the liquor in the pulp stream g/litre

Total energy balance:

^CPrnil<o{TQ - Tr) = FinCPmil.n(Tin - Tr) + FNaOHCPw(Tin - Tr) + Fstcam{HTi - HTr)
(3.29)

Constants for the above are taken from Perry and Green [1997]

where:
Tr : Is the reference temperature K

Ts : Is the superheated low pressure steam temperature K

Hr, : Is the steam specific enthalpy at Ts

Cpw : Is specific heat of water J/g.K
dPmix,o : Outlet pulp specific heat from the mixer J/g.K
Cp . .

1 TTLXX ,in : Inlet pulp specific heat to the mixer J/g.K
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3.3.3 Reactor

Figure 3.2 presents the oxygen delignification reactor as an n series of CSTRs.

Material Balance:

Total material balance: for the ntfl CSTRs, the total material balance as follows:

(3.30)Fn = Fn-i

where:
Fn : Is the outlet flow rate from reactor n g/min

Fn_i : Is the inlet flow rate to reactor n g/min

Consistency:

(3.31)r dXn
mix dt

r
mtx dt

where is the rate of delignification which can be expressed as the rate of decrease in

kappa number per unit time. The amount of lignin removed is related to the kappa number

governed by Equation (3.32).

0.147
100

(3.32)

where [L] is the residual lignin (mass fraction) and K is the kappa number. By substituting

Equation 3.32 into Equation 3.31, the following consistency balance equation results:

PmiXVmix^- = Fn_1Xn_1 - FnXn - 0.00147 PmixVmixXn(Rj + Rs)
at

(3.33)

and for density:

Pt Pliquor Ppulp
(3.34)





CHAPTER 3. MODELLING OF A CONTINUOUS OXYGEN DELIGNIFICATION UNIT 70

where pt is the total mixture density of the pulp and liquor, X is the consistency, ppuip is

the pulp density , assumed to be 600 g/litre.

Component material balance:

Lignin material balance: Delignification in bleaching is achieved through the combi­

nation of oxidation and alkaline extraction. The oxidants are chlorine, chlorine dioxide,

sodium hypochlorite, oxygen and hydrogen peroxide. These oxidants reacts rapidly with

lignin, resulting in changes in the structure and in fragmentation of the macromolecule of

lignin in the unbleached pulp. Oxidation of the lignin not only breaks the bonds in the

lignin macromolecule creating smaller more soluble fragments, it also spawns a new func­

tional groups such as carboxylic acid and phenols. These functional groups increase the

ionic character of lignin specially in alkali solution and make it more soluble in water. From

these oxidants, oxygen is used in alkaline medium.

[Myers and Edwards, 1989] kinetic model is used for lignin removal. Myers and Edwards

[1989] model is applicable to a very wide range of operating conditions. It can be used for

both of softwood and hardwood kraft pulps. Also it can be used for all consistencies up to

30% pulps and initial kappa number range varying from 11 to 128.

(Kf>nXn) = - FnXnKf,n - pmixVmixXnRf (3.35)

Pt,V—(Ks nXn) = Fn—iXn—iKSn_l — FnXnKSn ~ pmixVmiXXnRs (3.36)
at

Rf = 1.51 x 105e^[O2]0-43Kz (3.37)

Rs = 1.68 x 107e^[OF-]0'875[O2]0-43^ (3.38)

where:

K = Kf + Ks + Kfloor
g(lignin)

g(o.d.pulp) ■ min

(3.39)

(3.40)
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The initial condition for kappa number is :

Kf = O.225Ko

Ks = 0.675A'o

floor = O.lOOAo

Kq is the inlet kappa number, Kf is the easily and rapidly removed lignin and Ks is the

slowly removed lignin.

Cellulose material balance(carbohydrate degradation): Carbohydrate degradation

is the chief factor limiting the amount of delignification achievable in the oxygen delig­

nification stage [McDonough, 1986]. The more important component in the pulp is the

cellulose since it is the major component in bleached pulp. Therefore, it is responsible for

the strength of the pulp. Subsequently, cellulose will be studied. Cellulose consists approx­

imately of 90.7% D-Glucose. The only repeating unit in cellulose polymer is Anhydro-D-

glucose [Casey, 1980], with a molecular weight of 162 and with repeating units DPn (degree

of polymerization). Cellulose is attacked by free radicals generated by the oxygen. These

free radicals randomly attack the cellulose chain and decrease the degree of polymerization.

Measuring the cellulose content is not possible online so the rate of cellulose degradation

can be monitored by the change in viscosity with time. The number-average degree of

polymerization is calculated as a function of viscosity using the Iribarne and Schroeder

[1997] model as the following:

DPn = 961.38 log10 t? - 245.3 (3.41)

The cellulose degradation has been reported in literature in terms of the number of cellulose

chains, mn, which is the moles of cellulose per ton of pulp [Iribarne and Schroeder, 1997].

The material balance of cellulose is :
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(^n,n-^n) — -^n—1-^n—1 4" PtVXnRm,

Rm,n = 7 x 1010e^[OH-]°-3[O2]0-4

(3-42)

(3.43)

n — 1162772n
 g(Cellulose)
g(o.d.pulp) • min

Degree of polymerization is the number of anhydroD-glucose units in the cellulose polymer

chain, It ranges from 600 to 1500 for commercial wood pulp [Watson, 1994]

Sodium hydroxide material balance:

Iribarne and Schroeder [1997] used an empirical equation to express the [Off-] consumed.

[!VaO/r]use(/ = 1.33 x IO-3 A/< x flow of fiber(g/min) (3.46)

The material balance for sodium hydroxide is therefore:

at Pliq Pliq
- 1.33 x 10-3^^(^ + Rs) (3.47)

^NaOH

Sodium hydroxide consumption is attributed only to the delignification reaction. There is no

data to support the assumption of sodium hydroxide consumption by cellulose degradation

which must be taken into account.

Oxygen material balance: Broden and Simonson equations will be used to estimate

oxygen concentration in water; by this way we can take oxygen partial pressure into account

for control purposes [Iribarne and Schroeder, 1997].
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[O2] = 5.351 - 1.252 x 1(T2T - 79.54PO2 + 2.135 x 10~4.PO2T2

+ 2.125 x 104^ (mmole/litre) (3.48)

with temperature in Kelvin and Pq2 in MPa.

It is recommended to use oxygen concentration in the model instead of oxygen partial

pressure because oxygen concentration is not only a function of oxygen partial pressure but

also the temperature and the sodium hydroxide concentration.

Energy balance:

(3.49)

The nonlinear model developed was then applied to the Kushiro mill oxygen delignification

reactor described in detail in Chapter 4. Step tests were performed in the oxygen delig­

nification nonlinear model built in Simulink using S-functions to study the relationships
between the inputs and the outputs. The Kushiro mill oxygen delignification reactor has

a six trays. Each tray was considered as a single CSTR. It was assumed that the outlet

kappa number and viscosity were directly measurable with no measurement delay.

where Hrx is the Heat of reaction

3.4 Simulation Results

PmiXVmixCp^- = F^CpT^ - FnCpTn

- 0.00147pmixVmixXnHrx(Rf + Rs)

Figure 3.4 shows the open loop response dynamics of the full order nonlinear model for a
—5K change in the reactor temperature. A decrease in the reactor temperature increases
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Figure 3.4: Step response of the outlet kappa number and outlet viscosity to step disturbance

in the delignification reactor top temperature (AT = — 5K)
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both viscosity and kappa number. Figures 3.5 and 3.6 show the responses to step changes
in inlet kappa number and inlet caustic soda flow rate respectively. An increase in the inlet

kappa number will increase the outlet kappa number and viscosity due to consumption of

caustic soda while an increase in inlet caustic soda flow rate will decrease the outlet kappa

number and viscosity.

36

34

33

32

31

30

15010050
time.minutes

29
0

35

Figure 3.5: Step responses of the outlet kappa number and outlet viscosity to step distur­

bance in the delignification reactor inlet kappa number (Akappa = +5)
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Figure 3.6: Step response of the outlet kappa number and outlet viscosity to +4 kg/ton

change in the delignification reactor inlet caustic flow rate





Chapter 4

Model—Based Control of the

Oxygen Delignification Unit

4.1 Introduction

The fundamental mass and energy balance model developed in Chapter 3 for an oxygen

delignification reactor is configured to match the reactor inlet and outlet conditions for

Jujo paper’s Kushiro mill. The dynamic performance of model predictive control (MPC)

on the developed model is evaluated. The dynamic real time optimization (DRTO) approach
to track optimum operating point of a chemical plant developed in chapter 2 is also applied.

4.2 Kushiro Mill Oxygen Bleaching Unit

4.2.1 Kushiro mill overview

Jujo paper’s Kushiro mill, with a newsprint production capacity of around 460000 tons per

year is located in the eastern part of Hokkaido island in Japan [Sakum et al., 1987]. A kraft

pulp plant at Kushiro mill started operation in August 1975, and has replaced the former

77
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high yield sulfite pulp line to provide reinforcing pulp for news print furnish. The needs
to improve pulp quality, solve pollution problems and cope with change of wood species
were the key reasons for this investment. Especially, a careful consideration was given to

environmental protection and it was decided to employ various installations along with an
oxygen delignification process.

Kushiro mill has softwood semi-bleached kraft pulp line with a design capacity of 320 tons

per day. The line consists of a kaymr digester, a high consistency oxygen delignification
tower and single sodium hypochlorite bleaching stage. The oxygen delignification tower is a
reactor used for removing the maximum amount of lignin from the pulp before the bleaching

plant.

The main equipment units are:

- Kaymr vapor/liquid phase digester with 2.5 hours of high-heat washing zone.

- Diffuser washer

- Pressure knotter

- Drum washer
- Suction mold with pressure roll and vacuum pump.

- Steam mixer
- High density pump
- Kaymr oxygen delignification reactor with a Suffer and 6 trays

- Two drum washers in series.
- Hypochlorite bleaching tower.

- Screen room

4.2.2 Oxygen bleaching unit process description

After the brown stock washing stage, magnesium oxide is added as a protector to the pulp at

the mixing chest. The pulp is then pumped to a suction mold, where the pulp is dewatered
to 25 to 27 % consistency with a good stability. After the suction mold, the pulp is shredded,
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and alkaline solution NaOH is added. Under normal operation, the kappa number after the

oxygen stage is controlled by the alkaline addition. Following alkaline addition, the pulp is
preheated to 65C with low pressure steam at the steam mixer.

High Pressure
Steam

Bleaching

Figure 4.1: Jujo Mill oxygen bleaching line

Thereafter, the pulp is transported by means of a high density pump to a reactor through

a fluffer. The reactor has six trays, and the retention time is controlled with the rotating
speed of a shaft. The delignification reactor operating conditions are described in Table 4.1.

The temperature at the top of the reactor is maintained at 120 °C by high pressure steam.
The temperature at the middle of the reactor shows 125 °C. Oxygen gas (28 kg/ton) is fed
from under the lowest tray, and the reactor pressure is maintained at 6.5 kg/cm2-gauge with
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relief venting of exhaust gas. The oxygen content based on dry gas is 90% at the bottom

and 75% at the top of the reactor. At the bottom of the reactor, the pulp is diluted to
about 3% consistency before being transported to a blow tank. The oxygen delignified pulp

is then washed in two drum washers in series and sent to the hypochlorite bleaching stage,

where it is bleached with sodium hypochlorite to 60-65% brightness.

Table 4.1: Jujo Mill oxygen bleaching line operating conditions
Variables Value

Production rate 320 AD ton/day

Pulp consistency in the reactor 23-25%

Temperature at the top 120 °C

Temperature at the middle 125 °C

Total Pressure 6.5 kg/cm2-gauge

O2 partial pressure 3.5 kg/cm2-gauge

NaOH flow rate 23 kg/ton

MgO flow rate 1 kg/ton

O2 flow rate 28 kg/ton

Inlet kappa number 30

Outlet kappa number 12

Inlet Viscosity 19.5 cP

Outlet viscosity 16 cP

The viscosity of the oxygen delignified pulp was reported to be 16 cP. Magnesium oxide

is very effective against cellulose degradation. Without magnesium oxide, the pulp would

drop to 11 cp.

Controlled Variables

The main considered variables in this study are:
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1. Kappa number

2. Pulp Viscosity

The main objective is to minimize the outlet kappa number and to control its variation

before the bleaching plant. Controlling this variation will reduce the operating cost of the

downstream units. It is also required to keep the viscosity between limits.

Manipulated Variables

The most important variables affecting oxygen delignification are:

1. Caustic soda flow rate

2. Reactor Temperature - The temperature in the reactor is controlled mainly by the

high pressure steam.

3. Oxygen partial pressure or concentration in the liquor phase - It is desirable to keep

Po2 constant by manipulating the inlet oxygen flow rate and the vent stream to the

atmosphere.

Process Disturbances

From many disturbances that can affect the oxygen bleaching process such as inlet kappa

number, production rate and oxygen partial pressure, the inlet kappa number is the major

disturbance and will be selected for this study.
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4.3 Model—Based Control

The control objective was to maintain the outlet kappa number and viscosity at their set

points by manipulating the reactor temperature set point and inlet caustic rate. The reactor

temperature is being controlled using a local PID controller by manipulating the steam flow
rate. Disturbances considered were changes inlet kappa number of the pulp feed. Step tests

were performed on the model and linear dynamic relationships between the inputs and

outputs identified. MPC studies were conducted using the Matlab MPC Toolbox on the

linearized models.

4.3.1 Linear dynamic model identification

Step tests were performed in the oxygen delignification nonlinear model built in Simuhnk

using S-functions to identify the linear relationships between the inputs and the outputs.

Applying step changes in the manipulated variables, a low-order transfer function model

was generated. The reaction curves were used to fit First-Order-Plus Time-Delay (FOPTD)

transfer functions as shown in Equation 4.1.

Z/fc

Uvis

-0.7 — 13.6s
13s+le
-0.123 -13.8s
14s+l e

—0.029 —24s
13s+l e

-0.08 -—18.5s
14.5s+le

UOH
0.83 — 14s

13s+le
0.06 _-14.5s

13.3s+le
(4-1)

The open loop response dynamics of the full order nonlinear model for changes in the reactor

temperature, inlet kappa number and inlet caustic soda flow rate is shown in Figures 3.4,

3.5 and 3.6 respectively in Chapter 3.
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4.3.2 Simulation results of model-based control

Model predictive control studies were conducted using the Matlab MPC Toolbox for the

nonlinear oxygen delignification plant represented as Simulink S-functions. Figure 4.2 shows

the Simulink interface for the simulation where the MPC is represented by nlmpcsim block.

Clock Save Timo

+ I 3001

nlmpcsim
this is simulation tor controlling the Delignification

reactor using Model predictive control

Time Display

Figure 4.2: Model Predictive control simulation using a nonlinear plant

The tuning parameters comprising the objective function weighting matrices, the output

prediction horizon and input control moves are selected and assumed constant as described

in the Table 4.2. A sampling time of 2 minutes was used and the simulation horizon chosen

to be 300 minutes.
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Table 4.2: MPC tuning parameters

parameters Description Value

M Control moves horizon 2

P Prediction horizon 15

NS Simulation horizon 151

r Controlled variables weighting I
/1.8 0 \

A Manipulated variables weighting
\ 0 0.25y

Control variables set-points were as follows:

Outlet kappa number — 11.6

Outlet viscosity = 16.4 cP
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4.3.3 Disturbance rejection

Figures 4.3 and 4.4 show the system’s closed-loop response to step changes in the inlet
kappa number of a +3 and —3 respectively. The figures show good disturbance rejection
with a modest amount of control effort.

11

14

100 200 300

Figure 4.3: Closed-loop responses of the outlet kappa number and outlet viscosity, for step
disturbances in the delignification reactor inlet kappa number (+3)
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5 10.5
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Figure 4.4: Closed-loop responses of the outlet kappa number and outlet viscosity, for step
disturbances in the delignification reactor inlet kappa number (-3)
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4.3.4 Set—point change

Figure 4.5 shows the system’s closed-loop response to a set-point change of +1 in the outlet
kappa number.

Figure 4.5: Closed-loop responses of the outlet kappa number and outlet viscosity, for
set-point change of +1 in the outlet kappa number
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Figure 4.6 shows the system’s closed-loop response to step changes in the outlet kappa
number and viscosity of +0.5 and -0.5 cP respectively.

Figure 4.6: Closed-loop responses of the outlet kappa number and outlet viscosity, for
set-point change of +0.5 in the outlet kappa number and -0.5 cP in the outlet viscosity
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4.4 Interaction Between RTO and MFC Effect of Closed-

Loop Dynamics

The MPC tuning parameters are selected and assumed constant as described in the Ta­
ble 4.3. A sampling time of 3 minutes was used and the simulation horizon chosen to be
120 minutes.

Table 4.3: MPC tuning parameters

parameters Description Value

M Control moves horizon 2
P Prediction horizon 15

Ns Simulation horizon 41
B large constant 70

change in kappa set-point 0
^yvis(sp) change in viscosity set-point 0

r Controlled variables weighting I
/o.2 0 \

A Manipulated variables weighting
\0 0.1/

Control variables target set-points were as follows:

Outlet kappa number = 13
Outlet viscosity = 16.4 cP

Steady-state relation ship between the inputs and the outputs

The steady-state model relating the manipulated inputs and controlled outputs was taken

as follows:
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Vk„ - yk„

=

-0.7 -0.029 UOH„ ~ UOH„

+
0.83

Ad

~ Vvis,, -0.123 -0.08 UT„ - 0.06

(4.2)

where:
yk : Outlet kappa number
yViS : Outlet viscosity, cP
uqh : Inlet caustic flow rate, kg/ton
ut ■ Reactor temperature, K
ss : Refer to the steady-state
y : Refers to the initial output steady-state
u : Refers to the initial input steady-state

Constraints: The operating variables constraints were not available in the original work,
thus the model constraints limits will be assumed as follows:

9 < Vk < 13
14 <
0 <

Vvis

UOH

< 19.5 cP
< 35 kg/ton

375 < ut < 402 K
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Simulation Results

MIQP/Cplex is used for simulating the oxygen delignification reactor. The number of
continuous variables was 2357 and the integer variables was 336.

Simulation results for small disturbances

Figure 4.7: Non of the manipulated variables are saturated

Fig 4.7 shows the effect of a small disturbance (step change in inlet kappa number = 1.5).
None of the manipulated variables are saturated. Only the kappa number is touching the
upper constraint and it has to be backed-off to 12.
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Step change in inlet feed kappa number=2.9

Figure 4.8: Output response to a step change in inlet kappa number of 2.82.

In Figure 4.8, the caustic soda flowrate is partially saturated. The kappa number set-point
is backed-off from 13 to 11.2. The outlet kappa number is touching the upper bound while
the outlet viscosity is within limits.





Chapter 5

Conclusions and Recommendations

5.1 Conclusions

A method to track the optimum of the chemical process such that violation of constraints
can be prevented (Dynamic Real-Time Optimization) by inclusion of closed loop dynamics
in Real Time Optimization was developed. Constrained model predictive control will be
used as the regulatory control.

The Dynamic Real-Time Optimization (DRTO) problem was formulated here as a multilevel
program where the upper and lower-level problems have a quadratic objective function
with linear constraints and the lower-level optimization problems have quadratic objective
functions that are strictly convex with linear constraints.

In this thesis also, a first-principles dynamic model of an oxygen delignification tower is
developed. It is based on material and energy balances, and incorporates literature-based
kinetic models for the lignin removal and cellulose degradation. The model produces steady­
state results that are consistent with reported operating data. The model was used to
generate approximate, linear dynamic relationships that were used in a model-based control
strategy that yielded good closed-loop performance

93
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5.2 Recommendations

1. In Dynamic real-time optimization study, the disturbance is assumed to be measured
or estimated. This is not always the case in reality. Therefore this work needs to be
extended to include estimation for the unmeasured disturbances.

2. Alternative computation strategies are required for dynamic real-time optimization
to be developed in order to handle large MIMO systems because standard algorithms
are not suitable particularly when the number of the integer variables increases. An
interior point approach and more efficient branch and bound strategy might be used.

3. It is recommended to incorporate the calculations of target set-points from the Real-
Time Optimization.

4. Further extensions to dynamic real-time optimization approach include the parameter
uncertainties, model errors, process model mismatch and nonlinearities.

5. Further study for the oxygen delignification reactor should consider the incorporation
of an inferential strategy to estimate oxygen delignification outlet stream viscosity

and kappa number from typically available measurements.
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