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Thesis Lay Abstract 
 
Knee osteoarthritis (OA) is a progressive joint disease marked by early changes in cartilage and 
bone that are difficult to detect using traditional imaging methods. There is a growing need for 
high-resolution methodologies that can capture these subtle changes at the microstructural and 
cellular level shedding light into how OA develops and progresses. In response to these 
limitations, this thesis focuses on using phase contrast high-resolution X-ray microscopy (XRM) 
to visualize and quantify changes in mouse knee joints following total medial meniscectomy 
(TMM) surgery. Utilizing this technique, this research visualizes and quantifies changes in knee 
tissues, emphasizing cartilage and bone cell morphology, cell volume, and how cell volume 
varies with tissue depth. This research provides a deeper insight into the importance of early 
detection and offers a more comprehensive understanding of microstructural changes during the 
initial stages of osteoarthritis.  
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Abstract 
 
Background: In Canada, osteoarthritis affects 4 million people and costs over 1.3 billion CAD 
annually in joint replacements.1 However, early detection remains a major challenge, as current 
clinical imaging tools cannot capture subtle tissue changes in the early stages, and the underlying 
mechanisms that drive disease progression are still not fully understood.2  
 
Research Objectives: This thesis investigates microstructural changes in TMM-induced OA 
mouse models using high-resolution X-ray microscopy (XRM). It focuses on optimizing imaging 
and segmentation methods to assess cartilage thickness, bone architecture, and cell morphology, 
with the goal of improving early OA diagnostics through detailed tissue-level insights. 
 
Methodology: 6 Male C57BL/6 mice underwent TMM on the right knee at 8 weeks old. Two 
weeks later, operated and control contralateral knees were EpoFix resin embedded, harvested, 
and then imaged with XRM. Tissue components, including articular and calcified cartilage, 
subchondral bone plate, cortical and trabecular bone, and osteocytes and chondrocytes, were 
segmented using Attention U-Net deep learning. Cartilage thickness and cell volume changes 
were then quantified to assess tissue degradation. 
 
Results: High-resolution XRM analysis revealed early osteoarthritis-induced increases in 
osteocyte volume and altered spatial organization in the femur. Chondrocyte sphericity was 
preserved, but depth-dependent shifts in cell distribution were detected. Calcified cartilage 
thickness increased regionally, while articular cartilage and subchondral bone plate thicknesses 
remained stable. Bone morphometry showed subtle femoral-specific changes in cortical and 
trabecular regions. 
 
Conclusions and Future Work: High-resolution XRM enabled early detection of OA-related 
changes in joint morphology and cell organization, including osteocyte volume, chondrocyte 
distribution, and articular cartilage remodeling. Future work should explore comparative 
segmentation tools, regional cell density, and articular cartilage surface roughness, while 
expanding analysis beyond the early stages to better capture site-specific adaptations and 
improve OA diagnostics. 
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Chapter 1: Introduction 
 
1.1. Research Motivation  
 
Osteoarthritis (OA) is a progressive, degenerative joint disease and one of the leading 
causes of disability globally, affecting over 300 million people worldwide and 
approximately 4 million individuals in Canada alone.3 The socioeconomic burden of OA 
is substantial, with annual healthcare costs in Canada exceeding 1.3 billion CAD, largely 
due to joint replacement surgeries for advanced knee and hip degeneration.4 Despite its 
high prevalence and impact, OA often remains undiagnosed until irreversible joint damage 
has occurred, primarily because current clinical tools lack the high resolution needed to 
detect early microstructural and cellular changes in joint tissues. 
 
Traditional imaging modalities such as magnetic resonance imaging (MRI), computed 
tomography (CT), and ultrasound are widely used to assess joint health, but they offer 
limited resolution and contrast when it comes to capturing early-stage alterations in 
cartilage and bone.5–7 These techniques often are unable to visualize and quantify articular 
cartilage degradation, early osteocyte and chondrocyte cell volume changes, and subtle 
transitions in bone architecture that precede symptomatic disease progression. As a result, 
individuals are typically diagnosed only after pain and mobility loss become significant, at 
which point the OA is often too advanced and requires surgical intervention. 
 
Recent studies have emphasized the need for high-resolution 3D imaging approaches 
capable of bridging the gap between histology and clinical imaging.8,9 Micro-computed 
tomography (micro-CT) has been a powerful tool in this space, particularly for bone, but 
remains limited in its ability to resolve soft tissues like cartilage without contrast agents.10 
Advances in synchrotron and lab-based X-ray microscopy (XRM) now offer new potential 
to non-destructively visualize the osteochondral interface with sub-micron resolution, 
enabling detailed analysis of cartilage thickness, bone microarchitecture, and even cellular 
morphology in 3D.11–13 These capabilities are crucial for capturing the earliest signs of 
degeneration, particularly in experimental OA models where tissue remodeling can be 
tracked over time. 
 
Several animal models have advanced our understanding of early osteoarthritis by enabling 
controlled studies before clinical symptoms appear. The destabilization of the medial 
meniscus (DMM) model, for instance, is widely used due to its progressive cartilage 
degradation and its ability to mimic OA progression following joint injury in humans.14,15 
It has helped shown progressive cartilage degradation, subchondral bone remodeling, and 
early osteophyte formation. Similarly, the anterior cruciate ligament transection 
(ACLT) model has been used to study rapid-onset OA, demonstrating alterations in 
subchondral bone remodeling and synovitis within weeks of injury.16,17 The total medial 
meniscectomy (TMM) model is preferred for studying early-stage osteoarthritis (OA) as it 
provides consistent degeneration of both cartilage and subchondral bone, unlike the DMM 
and ACLT models, which can yield variable results and focus primarily on cartilage or 
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ligament damage. Therefore, TMM’s comprehensive approach allows for better 
examination of both tissue changes and associated cellular alterations. 
 
Nevertheless, despite advances in imaging techniques, animal models, and research within 
the field, there is still a gap in the ability to quantitatively assess early-stage microstructural 
and cellular changes in osteoarthritis (OA). Current high-resolution imaging approaches, 
such as X-ray microscopy (XRM), hold great promise for visualizing both cartilage and 
bone alterations, but challenges remain in effectively segmenting and quantifying complex 
3D datasets that capture the full range of tissue and cellular variations. To address these 
limitations, this research is motivated to enhance imaging workflows and develop more 
robust segmentation strategies using deep learning-based approaches for XRM data. I 
hypothesize that by optimizing these segmentation methods, it will be possible to accurately 
capture early OA changes, including cartilage degradation, bone remodeling, and cellular 
changes. By systematically exploring and optimizing these methods, this work aims to 
provide a comprehensive framework for the accurate characterization of OA progression, 
ultimately improving early detection and monitoring of disease progression at the 
microstructural level. 
 
 
1.2 Research Objectives  
 
The overarching objective of this thesis is to characterize the microstructural and cellular 
alterations in mouse knee joints during OA progression using a combination of advanced 
imaging and deep learning-based segmentation analysis techniques. The objective is 
broken down into four specific subgoals schematically presented in Fig. 1-1. This research 
aims to: 
 
(i) To implement deep learning-based segmentation techniques to enhance the 

visualization and quantification of morphological changes across joint tissues. 
(ii) To assess alterations in cortical and trabecular bone, including parameters such 

as cortical thickness and trabecular separation. 
(iii) Analyze Articular Cartilage (AC), Calcified Cartilage (CC), and Subchondral 

Bone Plate (SCBP) remodeling, including cartilage thickness.  
(iv) To quantify cellular changes by measuring osteocyte and chondrocyte cell 

volume as well as changes based on cell depth dependence. 
 
 



M.A.Sc. Thesis – H. Soomal; McMaster University – Biomedical Engineering 
 

3 
 

 
 

Ch. 1 – Figure 1.1. Overview of thesis research objectives and specific subgoals presented within this 
thesis.  
 
Building on these objectives, I hypothesize that phase contrast X-ray microscopy (XRM) 
combined with deep learning-based segmentation techniques will allow for detection and 
quantification of early-stage microstructural and cellular changes in knee OA. 
Specifically, I anticipate that XRM will reveal decreased thickness in both articular and 
calcified cartilage, alongside increased osteocyte and chondrocyte cell volumes, which 
are indicative of bone remodeling and cellular hypertrophy driven by OA progression. 
Ultimately, these findings are expected to provide critical insights into the early structural 
and cellular alterations in OA, offering potential advancements for early diagnosis.  
 
1.3 Thesis Chapter Summary 
 
The following outlines the structure of the remaining chapters of this thesis:  
 
Chapter 2: Literature Review. This chapter reviews relevant literature to provide context 
for the research and highlight key principles related to the investigation. It focuses on key 
aspects of osteoarthritis (OA) progression, specifically at the knee joint interface, and 
examines various imaging modalities such as MRI, micro-CT, CT, and ultrasound, 
highlighting their roles and limitations in early OA detection. Additionally, this chapter 
explores machine learning and deep learning models applied to the analysis of joint tissues, 
including articular cartilage, calcified cartilage, subchondral bone, and other key structures 
in OA. 
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Chapter 3: Materials & Methods. This chapter presents the workflow for XRM imaging 
of C57 mice knee joints, detailing the processes of sample cutting, embedding, fixation, 
mounting, scanning acquisition, and reconstruction. The established methodology provides 
a comprehensive approach to imaging joint tissues and lays the groundwork for further 
studies on OA progression using high-resolution imaging techniques. 
 
Chapter 4: Results & Discussion. This chapter presents the analysis of the imaging 
results, including detailed quantification of microstructural and cellular changes observed. 
The findings are discussed in the context of OA progression, with a focus on cartilage 
thickness, bone remodeling, and cell volume changes. 
 
Chapter 5: Conclusions & Future Work. This chapter summarizes the key findings of 
the research, highlighting the contributions to understanding OA progression through 
advanced imaging techniques. The conclusion also discusses the implications of these 
findings for future diagnostic approaches and suggests potential areas for further research. 
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Chapter 2: Background 
 
In recent years, advancements in X-ray microscopy have opened new possibilities for 
investigating osteoarthritis (OA) at the microscale, particularly in visualizing complex joint 
structures in 3D without the need for destructive sectioning. This literature review 
introduces key research relevant to X-ray imaging of the knee joint, OA progression, and 
the osteochondral interface. The following sections are organized to cover imaging 
modalities, joint tissue changes, and computational segmentation approaches essential to 
the thesis goals of uncovering early microstructural and cellular alterations in knee OA. 
 
2.1. Osteoarthritis (OA) 
 
2.1.1. What is OA? 
 
Osteoarthritis (OA) is the most common form of arthritis, defined as a degenerative joint 
disease characterized by progressive degradation of articular cartilage, subchondral bone 
remodeling, synovial inflammation, and osteophyte formation.18 Traditionally 
conceptualized as a wear-and-tear disorder, OA is now widely recognized as a complex, 
multifactorial disease affecting the entire joint, including cartilage, bone, ligaments, 
menisci, and periarticular muscles.19,20 
 
Globally, OA affects over 595 million people and represents the leading cause of disability 
in older adults.21 The burden of OA has risen by 132% since 1990, largely due to increased 
life expectancy, physical inactivity, and the growing prevalence of obesity, one of the most 
significant modifiable risk factors.22 
 
The medial tibiofemoral compartment is typically the most affected area of the knee. This 
is because around 75% of the knee joint's load while walking is transferred through the 
medial tibial plateau.23 The uneven distribution of load between the medial and lateral 
compartments is a key factor in knee joint health, with this imbalance persisting even in 
neutral alignment and worsening in individuals with varus alignment. Varus alignment 
directs more load toward the medial side, significantly increasing stress on the medial 
compartment. This increased stress has been associated with a three- to four-fold higher 
risk of OA progression in the medial tibiofemoral compartment.24 Given the critical role of 
the medial compartment in OA development, we have chosen to investigate the effects of 
total medial meniscectomy (TMM) surgery on C57BL/6 mouse knee samples. Our goal is 
to determine if early-stage structural changes can be detected through XRM, allowing us 
to explore the progression of OA at its initial stages.  
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2.1.2. How OA Develops & Pathogenesis 
 
Osteoarthritis (OA) is a degenerative disease that affects the entire joint organ, including 
articular cartilage, subchondral bone, synovium, and periarticular structures. Its 
progression is driven by a complex interplay of mechanical overload, biochemical 
imbalances, inflammatory signaling, and cellular dysfunction that disrupts joint 
homeostasis.20,25 
 
Cartilage Degradation and Chondrocyte Dysfunction 

OA frequently begins with focal mechanical degeneration that compromise the 
extracellular matrix (ECM) of the articular cartilage. Chondrocytes, the primary cell type 
in cartilage, respond to stress and injury by shifting from a homeostatic to a catabolic 
phenotype, increasing the expression of matrix-degrading enzymes such as matrix 
metalloproteinases (MMP-13) and aggrecanases (ADAMTS-4/5), which target type II 
collagen and aggrecan respectively.26–28 This imbalance between matrix synthesis and 
degradation leads to progressive cartilage thinning and fibrillation. Additionally, the loss 
of pericellular matrix integrity reduces mechanotransduction efficiency, further impairing 
chondrocyte function.23 
 

 
Ch. 2 – Figure 2.1. Role of MMP-13 in osteoarthritis progression. Increased expression of MMP-13 in 
chondrocytes promotes type II collagen degradation, leading to cartilage breakdown and a feedback loop of 
inflammation and catabolic activity that accelerates OA pathology. Reproduced from Ref 29 with permission. 
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Subchondral Bone Remodeling & Synovial Inflammation 

Alterations in the subchondral bone are an early and persistent feature of OA. Initially, 
there is increased osteoclastic resorption followed by osteoblastic activity, which causes 
subchondral bone thickening and increased bone density.30 These changes lead to 
sclerosis of the subchondral plate and trabecular disorganization, which in turn increase 
joint stiffness and stress on overlying cartilage, perpetuating degeneration.31 
 
Synovial inflammation (synovitis) is now recognized as a critical driver of OA progression 
and pain.32 Activated synoviocytes and infiltrating immune cells release pro-inflammatory 
cytokines (IL-1β, TNF-α), chemokines, and alarmins that exacerbate cartilage degradation 
and sensitize nociceptors.33–35 
 
Chondrocyte Hypertrophy and Calcification 

As OA progresses, surviving chondrocytes adopt a hypertrophic like phenotype, mirroring 
terminal differentiation seen in endochondral ossification. This includes upregulation of 
type X collagen, alkaline phosphatase, and vascular endothelial growth factor (VEGF), 
leading to cartilage mineralization and the formation of osteophytes.36,37 Calcified cartilage 
expansion disrupts the osteochondral interface and contributes to impaired load 
distribution. 
 
OA is not confined to cartilage. Mechanical and biochemical crosstalk among joint tissues 
amplifies the degenerative process. For instance, alterations in subchondral bone can alter 
cartilage loading and nutrient diffusion, while synovitis can amplify chondrocyte 
catabolism.38 Therefore, OA should be viewed as a “whole joint disease” involving 
interdependent changes in bone, cartilage, and soft tissues. 
 
 
2.1.3. OA Models  

Preclinical models of osteoarthritis (OA) are essential for demonstrating the disease's 
pathophysiology and evaluating therapeutic interventions. These models aim to replicate 
key features of human OA, including cartilage degradation, subchondral bone remodeling, 
osteophyte formation, and synovial inflammation. Broadly, OA models fall into three 
major categories: spontaneous, chemically induced, and surgically induced. 
 
Spontaneous models, such as aged C57BL/6 and STR/Ort mice, exhibit OA-like changes 
with advancing age or due to genetic predisposition. These models closely mimic the slow 
progression and multifactorial nature of human OA but require long experimental timelines 
and often show high inter-animal variability.39 STR/Ort mice, for example, develop OA 
lesions as early as 20 weeks, with progressive articular cartilage degradation and 
subchondral bone sclerosis.40 
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Chemically induced models use agents such as monosodium iodoacetate (MIA) or 
collagenase to trigger cartilage degradation or joint instability. MIA models involve the 
intra-articular injection of MIA, which inhibits glycolysis in chondrocytes, resulting in 
rapid cell death and cartilage loss.41 While these models allow for controlled induction and 
rapid progression, they often bypass the mechanical contributors to OA and may not fully 
recapitulate the structural complexity of the disease. 
 
Surgical models are widely used due to their reproducibility and ability to mimic post-
traumatic OA. These include anterior cruciate ligament transection (ACLT), 
destabilization of the medial meniscus (DMM), and transection medial meniscectomy 
(TMM). Among these, the DMM model in C57BL/6 mice is considered a gold standard 
for moderate OA induction, allowing for localized cartilage degeneration and osteophyte 
development while maintaining joint mobility.15 The TMM model, by contrast, induces 
more severe and rapid joint instability, leading to pronounced degeneration of both 
cartilage and bone, and is often selected for studying early and aggressive tissue 
remodeling.42 

Ch. 2 – Figure 2.2. Representative OA models. Spontaneous (e.g., STR/Ort), Chemical (MIA), and 
Surgical (DMM, ACLT) 
 
 
Each model has unique strengths and limitations. Spontaneous models offer translational 
relevance, while surgical and chemical models provide control over disease onset and 
severity. The selection of an appropriate model depends on the research objective, whether 
it is to study early-stage cellular changes, chronic progression, or therapeutic interventions. 
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2.2. Knee Joint Interface  
 
2.2.1. Tissue Components  

The osteochondral interface of the knee comprises a complex, multilayered structure 
responsible for distributing load and maintaining joint integrity. This region includes 
articular cartilage, calcified cartilage, the tidemark, and the subchondral bone plate, each 
playing a distinct mechanical and biological role.43 
 
Articular Cartilage  
Articular cartilage is a specialized hyaline cartilage that provides a low-friction, wear-
resistant surface for joint articulation. It is avascular and relies on diffusion for nutrient 
exchange. Chondrocytes are the sole resident cells and are responsible for maintaining the 
extracellular matrix (ECM) composed of type II collagen and proteoglycans.44 Structurally, 
it is organized into superficial, middle, and deep zones, each exhibiting gradients in 
collagen orientation, proteoglycan concentration, and cell morphology.45,46 This zonal 
variation plays a crucial role in load distribution, lubrication, and resistance to mechanical 
forces. 
 
Calcified Cartilage & Chondrocytes  
Calcified cartilage lies between the deep zone of articular cartilage and the subchondral 
bone. It provides a transitional region that mechanically anchors cartilage to bone and 
ensures smooth stress transfer during joint loading.47 Chondrocytes in this zone exhibit 
hypertrophic characteristics and reduced metabolic activity compared to those in the 
uncalcified zones.48 Notably, recent work has shown that chondrocyte morphology, 
volume, and spatial organization change during early OA, with hypertrophy, altered depth-
dependent distribution, and clustering occurring before overt matrix breakdown.49 
 
These early cellular changes serve as potential indicators of joint degeneration. 
Investigating chondrocyte volume and distribution in calcified cartilage offers a promising 
approach to detect OA at pre-radiographic stages. Our study addresses this knowledge gap 
by quantifying cell volume and depth-dependent behavior in both femoral and tibial 
compartments, seeking to identify localized cellular signatures that precede tissue-level 
remodeling. 
 
Subchondral Bone Plate  
The subchondral bone plate lies beneath the calcified cartilage and is a metabolically active 
layer involved in load transmission and cartilage support. It undergoes active remodeling 
in OA, with early stages marked by increased porosity and reduced stiffness, and later 
stages characterized by sclerosis and increased thickness.50 This altered biomechanics 
affects the overlying cartilage by changing the mechanical environment at the 
osteochondral junction. 
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Tidemark  
The tidemark is a histological boundary separating non-calcified from calcified cartilage. 
It represents a mineralization front and advances during OA progression. Tidemark 
duplication, disruption, and vascular invasion are common in early OA and contribute to 
the pathological integration of calcified tissue into previously uncalcified zones.51 These 
alterations may disrupt chondrocyte homeostasis and spatial organization, reinforcing the 
need for spatially resolved analysis across this interface. 
 

 
 
Ch. 2 – Figure 2.3. Schematic of the osteochondral interface in the knee joint. The red line indicates the 
tidemark separating articular cartilage (green) from calcified cartilage (purple). The osteocyte (blue callout) 
and chondrocyte (orange callout) highlight key cellular components within the femur and tibia. Trabecular 
bone architecture is also visible within the femoral compartment.  
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2.2.2. Bone & Lacunae Components  

Bone's composition is categorized into three primary components: minerals, which 
constitute about 60% by weight; organic substances, making up 30%; and water, 
accounting for the remaining 10%.52 The mineral portion is predominantly carbonated 
hydroxyapatite (HA), a substance that incorporates various ions, such as magnesium and 
strontium, exhibiting a range of compositions.53 
 
Cortical Bone   
Cortical bone, also referred to as compact bone, forms the dense outer shell of long bones 
and plays a critical role in providing mechanical strength and structural support to the joint. 
It is composed of tightly packed osteons, or Haversian systems, which align longitudinally 
along the bone axis to resist bending and torsion.54 In the knee joint, cortical bone is most 
prominent in the subchondral bone plate and the metaphyseal regions of the femur and 
tibia. 
 
In osteoarthritis (OA), subchondral cortical bone undergoes significant alterations that can 
precede or accompany cartilage degeneration. Early changes include increased bone 
turnover, formation of microcracks, and plate thickening, particularly in weight-bearing 
zones.55,56 These changes alter load transmission across the joint, potentially exacerbating 
cartilage wear and joint degeneration.50 High-resolution micro-CT studies have 
demonstrated that even subtle thickening or densification of the subchondral plate may 
reflect early-stage OA processes before macroscopic cartilage loss becomes apparent.57 
 
Trabecular Bone  
Trabecular, or cancellous bone, lies beneath the cortical shell and is characterized by a 
porous, lattice-like architecture that distributes loads and contributes to energy absorption 
during joint movement.58 It is highly responsive to mechanical stimuli and undergoes 
continual remodeling through coordinated osteoblast and osteoclast activity. 
 
OA-related changes in trabecular bone include decreased trabecular thickness, altered 
connectivity, and increased bone volume fraction, especially in advanced stages of the 
disease.59 However, recent studies have shown that alterations in trabecular morphology, 
including changes in spacing and anisotropy, can begin during early disease progression 
and may be regionally specific.60 These compartmental differences are thought to reflect 
shifts in localized loading patterns due to joint instability or meniscal damage. 
 
Osteocytes  
Osteocytes, the most abundant cell type in bone, reside within lacunae embedded in the 
mineralized matrix and form an extensive network of canaliculi for communication and 
mechanosensation.61 They play a central role in coordinating bone remodeling in response 
to mechanical cues by regulating both osteoblast and osteoclast activity. 
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In the context of OA, osteocytes exhibit morphological and functional changes that may 
reflect early mechanical or biochemical dysregulation. Studies have shown that osteocyte 
lacunar density, volume, and shape are altered in OA, with signs of hypertrophy, altered 
sphericity, or perilacunar remodeling.62,63 These changes are hypothesized to impact 
mechanotransduction and matrix homeostasis, potentially contributing to the altered bone 
remodeling observed in the disease. Moreover, recent high-resolution imaging techniques, 
such as X-ray microscopy (XRM) and synchrotron radiation micro-CT, have enabled 
quantification of osteocyte morphology at cellular resolution, providing a potential 
biomarker for early-stage OA.64 
 
Investigating osteocyte morphometry and spatial distribution within cortical and trabecular 
compartments offers valuable insight into the microarchitectural adaptations occurring 
during OA progression. By correlating these changes with site-specific loading 
environments and cartilage status, such measurements can help identify early indicators of 
disease and inform mechanobiological models of joint degeneration. 
 

 
Ch. 2 – Figure 2.4. Visualization of cortical and trabecular bone compartments in the mouse knee joint. 
(A) Schematic illustration of long bone structure highlighting cortical and trabecular regions. (B) 3D 
reconstruction of a control C57BL/6 mouse knee joint acquired using high-resolution X-ray microscopy. 
(C) Segmentation of cortical (blue) and trabecular (orange) bone performed in Dragonfly software. 
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2.3. Imaging of Knee OA  
 
2.3.1. Clinical Imaging 

Clinical imaging plays a critical role in diagnosing and monitoring osteoarthritis (OA), yet 
each modality presents trade-offs in resolution, cost, and sensitivity to early-stage changes.  
 
Magnetic resonance imaging (MRI) remains the gold standard for soft tissue assessment 
in OA, offering high-resolution, multiplanar views of cartilage, menisci, ligaments, and 
synovium.65 Advanced MRI techniques, such as T2 mapping and delayed gadolinium-
enhanced MRI of cartilage (dGEMRIC), can assess cartilage composition and detect early 
biochemical changes before structural damage becomes apparent.66 However, MRI is 
costly, time-consuming, and may suffer from variability in interpretation and 
accessibility.67 
 
In preclinical research, MRI has been instrumental in longitudinal studies of OA 
progression. For instance, Ali et al. (2018) used quantitative MRI to monitor post-traumatic 
OA development in a rat model following medial meniscectomy. Their study observed 
systematic changes in articular cartilage thickness and T2 relaxation times over eight 
weeks, indicating cartilage swelling and subsequent degradation. This work demonstrated 
MRI's usage in detecting early cartilage alterations in OA models.68 
 
Similarly, a study by Luo et al. (2023) utilized diffusion–relaxation correlation spectrum 
imaging (DR-CSI) to detect early-stage OA in a mouse model. This technique enabled the 
identification of subtle changes in cartilage microstructure, highlighting MRI's potential in 
early OA diagnosis. However, the study also noted limitations in sensitivity and specificity, 
particularly in distinguishing between early degenerative changes and normal variations.69 
 
Despite these advancements, MRI's application in small animal models faces challenges. 
The limited spatial resolution can hinder the detection of fine structural changes, and the 
high cost and complexity of MRI systems may restrict widespread use in preclinical 
studies. These limitations underscore the need for alternative imaging modalities that can 
provide higher resolution and more accessible assessments of early OA changes.67 
 
 
Ultrasound, in contrast, provides real-time, cost-effective imaging of superficial joint 
structures, particularly the synovium and effusion.70 While useful for guiding intra-
articular injections and evaluating inflammatory components, ultrasound lacks the 
resolution and penetration required to assess deep cartilage or subchondral bone with 
sufficient precision in early OA.71 
 
In preclinical models, ultrasound has shown usage in assessing synovitis and joint swelling. 
For example, Jia et al. (2025) employed high-frequency ultrasound to monitor joint 
inflammation in a collagen-induced arthritis (CIA) mouse model. Their findings 
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demonstrated that ultrasound could detect soft tissue thickening and joint effusion as early 
as seven-week post-induction, making it a useful tool for tracking inflammatory 
dynamics.72  
 
However, the use of ultrasound in assessing certain joint structures, such as articular 
cartilage and subchondral bone, is limited. The technique’s lower spatial resolution and 
limited penetration depth restrict its ability to detect early microstructural changes within 
cartilage layers or bone morphology, especially in small animal models.73 Additionally, 
ultrasound imaging is highly operator dependent and lacks standardized protocols for 
cartilage thickness or osteochondral interface evaluation in rodents, making reproducibility 
a challenge.74 
 
Computed tomography (CT)	is traditionally used for evaluating bony structures, offering 
excellent resolution for cortical and trabecular bone morphology. While conventional CT 
has limited application for soft tissue imaging, advances such as dual-energy CT (DECT) 
and spectral CT have expanded its potential for OA assessment. These newer technologies 
enhance soft tissue differentiation, enabling improved visualization of cartilage, 
subchondral bone marrow lesions, and calcifications.75,76  
 
For instance, spectral CT has been used to differentiate between healthy and degenerative 
cartilage based on compositional differences.77 In a study by Zhao et al. (2023), DECT 
enabled detailed detection of subchondral cysts and sclerosis in patients with knee OA, 
offering complementary information to MRI in structural assessment.78 
 
Despite these advances, CT remains suboptimal for soft tissue assessment in early OA due 
to its inherently low contrast resolution for non-mineralized tissues. Ionizing radiation 
exposure also limits its usage for longitudinal studies or pediatric populations.65  
 
In conclusion, while clinical imaging tools are indispensable for evaluating moderate to 
advanced OA, they often fail to capture subtle microstructural and cellular changes that 
characterize the early disease process, highlighting the need for more sensitive modalities. 
 
 
2.3.2. Pre-clinical Imaging  

While clinical imaging methods provide macroscopic insight into OA pathology, they lack 
the resolution necessary to detect early microstructural and cellular changes. To bridge this 
gap, pre-clinical imaging techniques such as X-ray microscopy (XRM), Synchrotron 
radiation micro-computed tomography (SRµCT), and propagation-based phase contrast 
(PB-PC) have become essential tools in small animal models for OA research. 
 
Synchrotron radiation micro-CT (SRµCT) remains the gold standard for bone 
ultrastructure imaging due to its superior flux, coherence, and energy tunability,	which 
enable superior contrast and resolution.79,80 These capabilities allow for detailed 



M.A.Sc. Thesis – H. Soomal; McMaster University – Biomedical Engineering 
 

15 
 

visualization of osteocyte lacunae, canaliculi, and mineral density gradients, all of which 
are critical for understanding early osteochondral changes. For instance, Goff et al. (2021) 
used SRµCT to quantify osteocyte lacunar morphometry in mice and showed how age and 
mechanical loading affect spatial lacunar distribution and anisotropy.81  
 
Despite these advantages, synchrotron-based techniques are limited by accessibility, as 
they require access to national or international light source facilities. This restricts their 
scalability for routine preclinical research, especially in studies requiring large sample 
cohorts or longitudinal imaging.82 
 
XRM offers high-resolution, non-destructive imaging at submicron scale, making it well-
suited for visualizing the joint architecture of mice. It allows for 3D quantification of key 
OA features such as articular cartilage thickness, subchondral bone plate remodeling, and 
osteocyte and chondrocyte morphology without physical sectioning.83 Several studies have 
demonstrated XRM’s capacity to detect and quantify early joint changes relevant to OA. 
Kauppinen et al. (2019) utilized contrast-enhanced XRM to map the microarchitecture of 
calcified cartilage and subchondral bone in human lateral tibial plateau, revealing early 
compartment-specific thickening that preceded overt joint degeneration.57  
 
Conventional X-ray imaging relies on absorption contrast, where differences in attenuation 
coefficients between materials produce image contrast. However, this approach is limited 
when imaging soft tissues, which often have similar attenuation values due to their low 
atomic number (low-Z) composition. To overcome this limitation, in pre-clinical imaging 
has been the adoption of propagation-based phase contrast (PB-PC) to improve 
visualization of soft, low atomic number (low Z) materials such as cartilage and connective 
tissue. PB-PC imaging works by detecting X-ray phase shifts as they pass through 
heterogeneous structures, which are not captured by traditional absorption based 
techniques.84 In PB-PC, contrast arises not from absorption, but from interference 
patterns generated as X-ray wavefronts propagating beyond the sample. When an object 
introduces phase shifts in the transmitted X-ray beam, those shifts are converted into 
intensity variations through free space propagation. These interference fringes become 
more pronounced at greater source-to-detector distances (SDD), thus enhancing the 
visibility of low-density features that would be invisible under standard absorption 
contrast. This method exploits Fresnel diffraction and does not require specialized optics 
or gratings, making it accessible for use with both synchrotron and high-resolution lab-
based micro-CT systems.85,86 By increasing the source-to-detector distance (SDD), image 
contrast is significantly enhanced, revealing subtle differences in refractive indices. This 
makes PB-PC ideal for resolving soft tissue interfaces, particularly within small samples 
like mouse knee joints, where conventional absorption contrast may fail.87  
 
The key to PB-PC imaging is the detection of spatial variations in the phase of the X-ray 
wavefront, which correspond to gradients in the refractive index. The complex refractive 
index of a material is defined as 𝑛 = 1 − 𝛿 + 𝑖𝛽, where δ represents the phase shift 
and β corresponds to absorption. While traditional CT is sensitive only to β, PB-PC 
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captures both components, with heightened sensitivity to δ in soft tissues. Because the 
phase shift δ is often one to two orders of magnitude larger than β in biological tissues, 
phase contrast imaging can reveal features such as collagen networks, cartilage layers, or 
cellular boundaries with significantly improved contrast.88 
 
Clark et al. (2020) demonstrated that propagation-based phase contrast micro-CT allows 
for three-dimensional visualization and quantification of chondrocyte morphology within 
intact articular cartilage using a standard lab-based system, without relying on synchrotron 
radiation. Their approach, which involved phosphotungstic acid staining and ethanol 
immersion, successfully resolved individual chondrocytes and their spatial distribution in 
osteochondral plugs with subcellular detail, validated by histology. This non-destructive 
method not only captured chondrocyte density and roundness but also enabled co-
visualization of subchondral bone, showing potential for comprehensive osteochondral 
interface imaging.89 
 
 
2.4. Image Processing & Segmentation  

Advancements in imaging resolution have created a parallel need for sophisticated image 
processing tools that can efficiently handle large 3D datasets and extract biologically 
relevant features. In OA research, segmentation workflows are essential for distinguishing 
between joint tissues, quantifying structural changes, and enabling cell-level analysis. This 
section outlines the key stages in processing X-ray microscopy (XRM) datasets, including 
reconstruction, visualization, and segmentation, with a focus on deep learning-based 
approaches. 
 
2.4.1. Reconstruction of Data  

Raw 2D projection images obtained from XRM systems are reconstructed into 3D 
volumetric datasets using filtered back-projection algorithms or iterative reconstruction 
techniques. The reconstruction process involves correction for beam hardening, flat-field 
normalization, ring artifact removal, and alignment, which are essential for maintaining 
quantitative accuracy in downstream analysis.90,91 
 
2.4.2. Visualization   

Following reconstruction, 3D visualization enables anatomical orientation, inspection of 
segmentation fidelity, and qualitative interpretation of the dataset. Software platforms such 
as ORS Dragonfly, Avizo, and Fiji are commonly used for volume rendering, multi-planar 
reconstructions (MPR), and surface generation.92 
 
Dragonfly in particular offers novel interactive 3D visualization combined with 
quantitative tools for measuring thickness, object counts, and spatial relationships. 
Orthogonal views in axial, sagittal, and coronal planes are used to validate tissue 
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boundaries and cell segmentations. Proper visualization is critical for annotation, 
segmentation quality control, and figure preparation. 
 
2.4.3. Deep Learning Models    

Manual segmentation of high-resolution 3D datasets is time-consuming and subject to 
inter-operator variability. Deep learning-based models have emerged as powerful 
alternatives, offering automation, scalability, and enhanced feature recognition. 
Convolutional neural networks (CNNs) are particularly well-suited for biomedical image 
segmentation tasks. 
 
Among CNN-based architectures, U-Net has become a benchmark model for biomedical 
segmentation due to its ability to capture both global and local contextual information using 
a symmetric encoder-decoder structure.93 However, U-Net can struggle with highly 
variable object morphology and low-contrast boundaries. 
To improve performance in these settings, Attention U-Net incorporates attention gates 
(AGs) that learn to focus on relevant regions while suppressing irrelevant background 
features.94 This is particularly useful for segmenting small or ambiguous structures such as 
chondrocytes and osteocytes in complex joint environments. Schlemper et al (2019), 
actually showed how Attention U-Net has been shown to outperform standard U-Net in 
segmenting datasets with overlapping or clustered structures, offering improved sensitivity 
and precision.95 
 
Other models, such as ResU-Net, V-Net, and nnU-Net, offer additional enhancements like 
residual connections, 3D convolutions, or self-configuring pipelines, respectively.96–98 
However, Attention U-Net remains a strong choice when annotation datasets are limited 
and high anatomical specificity is required.  
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Chapter 3: Methods  
 
3.1 Section Introduction (Objective i) 

This chapter outlines the experimental methods used to investigate early-stage 
osteoarthritic changes in the knee joints of 6 C57BL/6 mice following total medial 
meniscectomy (TMM). The workflow included surgical induction of osteoarthritis, 
fixation and embedding of bone joint samples, and high-resolution imaging using 
propagation-based phase contrast X-ray microscopy (XRM). Subsequent image analysis 
was conducted using Dragonfly deep learning segmentation to quantify morphological 
features of bone and cartilage tissues. Scanning parameters were carefully optimized for 
sub-micron resolution imaging, and quantitative morphometric and statistical analyses 
were performed to assess changes in chondrocyte and osteocyte characteristics, as well as 
cartilage and bone thickness.  
 
3.2 TMM Surgery and Bone Joint Sample Preparation 

To model early-stage osteoarthritis (OA), a total medial meniscectomy (TMM) was 
performed on the right knee of male C57BL/6 mice at 8 weeks of age (n = 3 OA; n = 3 
Control). OA samples were collected two weeks post-surgery, while control mice were 
intact. All surgical procedures were conducted in accordance with the McMaster Animal 
Ethics Board, ethical protocol AUP-23-24, and supervised by Dr. Jun Zhou. The TMM 
surgery involved transecting the medial meniscus under sterile conditions to induce 
localized joint destabilization. Control mice underwent sham surgery without meniscal 
transection. 
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Ch. 3 – Figure 3.1. Sample preparation workflow for high-resolution imaging. (A) Male C57BL/6 mouse 
knees were harvested following total medial meniscectomy (TMM). Samples were mounted on aluminum rods 
using epoxy. (B) Prepared joints were scanned using the Zeiss Xradia 630 Versa X-ray microscope for high-
resolution imaging. 
 
 
Following surgery, the knee joint interface was harvested and fixed in 70% ethanol. 
Samples were then dehydrated through a graded ethanol series, beginning with 80% 
ethanol in deionized water for two days at room temperature with a 20-minute vacuum step 
to enhance infiltration. This was followed by 96% ethanol for two days and three days in 
100% ethanol to ensure complete dehydration. Subsequently, samples were infiltrated with 
increasing concentrations of EpoFix resin in acetone (10%–100%) using incremental steps, 
each including a 20-minute vacuum application to promote thorough penetration. The 
infiltration concluded with three overnight incubations in 100% EpoFix. Finally, samples 
were embedded in fresh 100% EpoFix and polymerized at 60°C for 3–4 days. 
 
 
3.3 Micro-CT Scanning 

Samples were imaged using the Zeiss Xradia 630 Versa XRM system with the phase-
contrast technique to enhance soft tissue visibility. The system utilizes a sealed lead X-ray 
chamber, automated stage with micron-level precision, and a Scout-and-Scan™ control 
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platform. Custom-cut aluminum rods were used to mount embedded samples with clear 
epoxy, ensuring proper alignment with the X-ray beam. The rotating stage allowed for 
complete 360-degree sample imaging while maintaining resolution and contrast. 

 
Ch. 3 – Figure 3.2. Internal components of the Zeiss Xradia 630 Versa X-ray. Key features include the X-
ray source (30–160 kV), filter wheel with 13 filter options, sample stage, flat panel detector, and a range of 
objectives (0.4X–40X). 
 
Scanning parameters were optimized based on resolution and anatomical target. The 
conditions for each scan type are summarized in Chapter 3.3 - Table 1 below: 
 
 
Ch. 3.3 – Table 1.  Conditions used for phase-contrast micro-computed tomography scanning 

 
 

Resolution, µm 8.0 
(Overview) 1.0 (Medial) 1.0 

(Lateral) 
Scan time, hours: minutes 2:45 6:34 5:23 
Source voltage, kV 50 50 50 
Source power, watts 4.5 4.5 4.5 
Detector distance from sample, mm 294 264 170 
Source distance from sample, mm 38.5 32 30 
No. of images obtained  2001 2001 2001 
Exposure time for each image, seconds 1.9 15.82 6.87 
Binning 2 2 2 
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Following data acquisition, raw projection images were reconstructed using the Scout-and-
Scan Control System. A filtered back-projection algorithm was used to generate isotropic 
volumetric datasets, which were then converted into 16-bit TIFF image stacks. 
Reconstructed images were visually inspected to verify proper alignment, contrast, and 
absence of motion artifacts. These datasets were subsequently imported into Dragonfly 
software for segmentation, 3D visualization, and quantitative morphometric analysis of 
bone and cartilage structures. 
 
 
3.4 Image Segmentation and Analysis in ORS Dragonfly 
 
To analyze bone and cartilage microarchitecture at the cellular level, high-resolution XRM 
datasets were segmented using ORS Dragonfly (Object Research Systems, Dragonfly 3D 
World, Zeiss Edition 2024.). The deep learning workflow began with the import of multi-
slice TIFF stacks from medial and lateral scans of mouse femur–tibia joints. Files were 
named systematically (e.g., “0p88um-Med”) to maintain chronological integrity and allow 
for organized batch processing. Image stacks were loaded using the ‘Import Image’ tool, 
and default metadata parameters were preserved to match original acquisition settings. 
Once imported, stacks were rendered in a 3D interactive workspace to verify alignment 
and slice integrity. 
 

 

Ch. 3 – Figure 3.3. Orthogonal and 3D views of a TMM knee joint dataset in Dragonfly. (A) 3D model 
reconstruction for spatial orientation prior to segmentation. (B-D) Visualization panel showing axial, 
sagittal, and coronal planes. 
 

A 

C 

B 

D 



M.A.Sc. Thesis – H. Soomal; McMaster University – Biomedical Engineering 
 

22 
 

Following import, image visualization tools such as contrast adjustment and window-
leveling were applied to enhance anatomical boundaries between tissues. 3D volume 
rendering enabled a clear distinction between the articular cartilage (AC), calcified 
cartilage (CC), and subchondral bone (SCB), while orthogonal views were used to prepare 
for segmentation. 
 
Annotations were created on representative slices to manually define tissue types for 
training a deep learning model. The articular cartilage was identified as a bright, low-
density region; calcified cartilage appeared as an intermediate-density transitional layer; 
and subchondral bone was distinguished by its dense, hyperintense signal. Cell-level 
annotations were added for chondrocytes and osteocytes, using Dragonfly’s object labeling 
and segmentation tools. 

 
Ch. 3 – Figure 3.4. Manual annotation of tissue layers. Orthogonal projection of a TMM knee mice model 
with annotations highlighting the key structures within the joint: AC, SCB, and CC.  
 
Manual annotations were used to train an Attention U-Net model integrated within 
Dragonfly’s AI Segmentation Wizard. This architecture incorporates attention gates that 
help prioritize salient features in the training dataset, making it well-suited for complex 
biological images with subtle boundaries. Once trained, the model segmented the entire 
dataset, producing volumetric labels for AC, CC, SCB, chondrocytes, and osteocytes. 
The model’s output was visually inspected for accuracy against the manually annotated 
slices. 
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Ch. 3 – Figure 3.5. ORS Dragonfly segmentation wizard. Green indicates the annotated articular 
cartilage on a single slice, while pink marks the background voxels. 
 
The integration of high-resolution XRM imaging with deep learning-based segmentation 
in Dragonfly enabled consistent and accurate identification of joint tissues and cellular 
features. This workflow provided the foundation for subsequent quantitative 
morphometric analyses, allowing for statistical comparison of structural and cellular 
changes between control and OA groups. 
 
 
3.5 Quantitative Morphometric and Statistical Analysis 
 
Morphometric measurements were conducted to evaluate early-stage osteoarthritis (OA) 
changes in bone and cartilage tissues, including cellular characteristics and compartment-
specific remodeling. All analyses were performed on three control and three OA samples, 
comprising both femoral and tibial compartments. 
 
 
3.5.1 Osteocyte Morphology and Spatial Distribution in Osteoarthritis 

Quantitative analysis of osteocyte morphology and spatial distribution was performed to 
investigate osteoarthritis (OA)-induced changes at the cellular level. Three control and 
three OA samples were evaluated, each including both femur and tibia regions. Normality 
assumptions for all quantified variables were confirmed via the Shapiro–Wilk test. 
Differences in osteocyte parameters across the six subsets (femur and tibia, lateral and 
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medial regions, in control and OA groups) were assessed using a one-way repeated 
measures unbalanced ANOVA, followed by post-hoc pairwise comparisons with a 
Bonferroni correction. Additionally, t-tests evaluated potential significant differences in 
osteocyte parameters between lateral and medial regions within femur and tibia 
independently. Statistical significance (*) was set at p < 0.05 for all analyses, and very 
significant (**) was set at p < 0.01. 
 
 
3.5.2 Chondrocyte Volume and Depth-Related Analysis 

Quantitative analyses of chondrocyte parameters were conducted using the same statistical 
approach applied to osteocyte measurements. Normality of all variables was confirmed 
using the Shapiro–Wilk test. Differences in chondrocyte cell volume, sphericity, and depth-
dependent distributions across the six anatomical subsets (femur and tibia, lateral and 
medial regions, in control and OA groups) were assessed using a one-way repeated 
measures unbalanced ANOVA, followed by Bonferroni-corrected post-hoc comparisons. 
Independent t-tests were used to evaluate differences between lateral and medial 
compartments within each bone. Statistical significance (*) was defined as p < 0.05. 
 
Chondrocyte cell volume was measured to assess potential OA-related hypertrophic 
changes within calcified cartilage. As with osteocytes, three control and three OA samples 
were evaluated, each including both femoral and tibial compartments. Cell volume was 
measured following deep learning-based segmentation and object labeling in Dragonfly. 
To investigate potential spatial reorganization of chondrocytes in response to early OA, 
depth-dependent distributions were analyzed across all samples. Chondrocytes were 
segmented and mapped relative to their vertical position within the calcified cartilage using 
Dragonfly's object-based measure tools. The depth from the cartilage surface was binned 
in intervals of 15 µm and 25 µm, and the data were normalized to allow consistent 
comparison across samples of varying cartilage thickness. 
 
To evaluate potential morphological changes in chondrocyte geometry during early-stage 
OA, sphericity was calculated for each segmented cell. Sphericity measures how closely a 
cell approximates a spherical shape and is defined as the ratio of volume to surface area. 
Surface area in this analysis was computed using the Lindblad surface area estimator, 
which applies a weighted local configuration method optimized for voxel-based 3D data 
(Lindblad, 2005).99 
 
 
3.5.3 Cartilage and Bone Thickness Measurements 

Following segmentation of joint tissue layers, the thickness of the articular cartilage (AC) 
was quantitatively assessed across femoral and tibial regions in both control and OA 
groups. Thickness measurements were obtained using Dragonfly’s Thickness Mesh tool, 
which computes local thickness values by fitting a hypothetical sphere between opposing 
boundary points of a segmented structure. The diameter of this sphere is recorded at each 
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surface point, creating a color-coded 3D mesh that represents regional thickness 
distribution. This approach enabled both visual inspection and quantitative extraction of 
localized thickness data. For each sample, thickness values were measured across the entire 
segmented AC volume and were then grouped by anatomical location (medial and lateral 
compartments of the femur and tibia). All segmentations were visually verified for 
boundary accuracy prior to quantification. Three control and three OA samples were 
analyzed, and mean values were calculated per compartment. The Shapiro–Wilk test was 
used to confirm data normality, and unpaired t-tests were performed to compare thickness 
between control and OA groups. Statistical significance was defined as p < 0.05. 
 
Calcified cartilage (CC) thickness was quantified to evaluate early remodeling at the 
osteochondral interface. Using Dragonfly’s Thickness Mesh tool, local thickness was 
measured by fitting hypothetical spheres within the segmented CC structure, producing 
color-coded 3D maps for visualization and analysis. Measurements were grouped by 
anatomical region (medial and lateral femur and tibia) and averaged across three control 
and three OA samples. Segmentations were visually verified, and statistical comparisons 
between groups were made using unpaired t-tests, with normality confirmed via the 
Shapiro–Wilk test (p < 0.05). 
 
To evaluate whether early osteoarthritic remodeling extended to the subchondral bone 
plate (SCBP), thickness measurements were performed across femoral and tibial 
compartments in both control and OA samples. Segmentations of the SCBP were 
obtained following identification of the bone–calcified cartilage boundary and manually 
verified for consistency using grayscale overlays. Local thickness was computed using 
Dragonfly’s Thickness Mesh tool, allowing for spatial mapping of SCB thickness and 
extraction of quantitative metrics across anatomical regions. 
 
For cortical and trabecular bone analysis, all experimental data was analyzed using Prism 
software (GraphPad Software, California, USA). One-way or two-way analysis of 
variance (ANOVA) with Bonferroni correction was applied to assess statistical 
significance, with three samples per group (n = 3). A p-value less than 0.05 was 
considered statistically significant. Data are presented as the mean ± standard deviation 
(SD) for all graphs. 
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Chapter 4: Results and Discussion  
 
4.1 Section Introduction (Objectives i, ii, iii, iv) 
 
This chapter presents the key findings of this study, organized according to the three 
primary research subgoals. High-resolution phase contrast X-ray microscopy (XRM) was 
used to non-destructively visualize bone and cartilage tissues at sub-micron resolution, 
enabling detailed structural assessment throughout OA progression. To enhance 
visualization and quantification, all datasets were processed using deep learning-based 
segmentation in Dragonfly, which improved contrast, reduced background noise, and 
enabled accurate identification of tissue boundaries and cellular features. This 
segmentation workflow was essential for analyzing subtle microstructural and cellular 
changes across joint tissues. The results are presented across three key themes: Subgoal 1 
quantifies osteocyte and chondrocyte cell volumes, including depth-dependent variations; 
Subgoal 2 analyzes remodeling in articular cartilage (AC), calcified cartilage (CC), and the 
subchondral bone plate (SCBP), with particular focus on cartilage thickness and tissue 
transitions; and Subgoal 3 evaluates structural changes in cortical and trabecular bone, 
including morphometric parameters such as bone volume fraction (BV/TV), trabecular 
number, cortical area, and cortical thickness. Together, these findings provide a 
comprehensive, high-resolution view of joint degeneration in early-stage OA. 
 
 
4.2 Implementation of Phase Contrast XRM and Deep Learning-Based 
Segmentation (Objective I) 
 
4.2.1. Phase Contrast XRM 

Phase contrast X-ray microscopy (XRM) was implemented in this study to enhance 
visualization of soft tissues critical to osteoarthritis (OA) research, including the articular 
cartilage (AC), tendons, and ligaments. Conventional absorption-based X-ray imaging 
struggles to differentiate low-density structures due to minimal attenuation contrast; 
however, phase contrast improves visibility by detecting subtle shifts in X-ray phase as 
they pass through materials of varying refractive indices.100 This is particularly important 
in early-stage OA, where subtle changes in cartilage thickness, surface texture, and 
microstructure can precede visible damage.101,102 By increasing the source-to-detector 
distance (R1 + R2), this technique enhances soft tissue contrast without the need for 
staining or destructive sample preparation. 
 
Figure 1 below demonstrates the impact of source-to-detector distance on image quality. 
Panel A, captured at 22 mm, shows limited detail within the joint, with poor definition of 
soft tissues. In contrast, Panel B, acquired at 110 mm, reveals enhanced contrast, clearly 
delineating the articular cartilage, tendon, and ligament regions. The increased distance 
reduces beam divergence, thereby amplifying phase effects and enabling finer separation 
between adjacent structures. These visual improvements directly contribute to more 
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accurate segmentation of tissue boundaries and make it easier to analyze and measure tissue 
structures later.  

 
Ch. 4 – Figure 4.1. XRM Phase Contrast in Bone Samples. A) Standard imaging at 22mm source-detector 
distance. B) Enhanced phase contrast imaging at 110mm distance, with clear visualization of articular 
cartilage, tendon, and ligament. 
 
Previous studies using phase contrast imaging have reported similar findings. For instance, 
Lee et al. (2010) demonstrated improved soft tissue differentiation using propagation-
based phase contrast setups in mouse models, though their work was limited to a collagen 
induced mouse model as well as a conventional CT scanner.103 More recently, Similarly, 
Broche et al. (2021) demonstrated the effectiveness of X-ray phase contrast imaging in 
revealing calcified cartilage and other joint structures in whole murine knee joints, 
highlighting the technique’s ability to detect subtle tissue boundaries not visible with 
conventional imaging.104  
 
Ultimately, the use of optimized phase contrast imaging in this study enabled the detailed 
visualization of microstructural features across the knee joint. This improvement was 
essential for assessing articular cartilage surface integrity, thickness, and its interface with 
the calcified cartilage and subchondral bone. The ability to visualize and quantify these 
features with clarity lays the groundwork for deeper investigation into OA onset and 
progression. 
 
 
4.2.2. Dragonfly Deep Learning-Based Segmentation 

Deep learning-based segmentation using Dragonfly software was implemented to 
accurately quantify morphological changes in knee joint tissues of C57BL/6 mice subjected 
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to TMM-induced osteoarthritis (OA). The implementation of Dragonfly’s Attention U-Net 
deep learning model significantly enhanced the precision and accuracy in identifying and 
differentiating critical tissue components, including articular cartilage (AC), calcified 
cartilage (CC), subchondral bone (SCB), cortical bone, trabecular bone, osteocytes, and 
chondrocytes. Accurate segmentation facilitated precise quantitative analyses of structural 
and cellular changes characteristic of OA progression. 
 
In this study, segmentation of cortical and trabecular bone regions was performed using 
the dual threshold method for in vivo micro-CT bone analysis, commonly referred to as 
the Buie method.105 This approach was implemented using the Bone Analysis Plug-in 
within Dragonfly. The first threshold was applied to segment the entire bone volume, 
encompassing both cortical and trabecular regions, and was determined using Otsu’s 
method to differentiate bone from non-bone areas. The second threshold enabled the 
separation of cortical and trabecular compartments by identifying differences in grayscale 
intensity values. These thresholds were optimized through visual inspection by multiple 
users to ensure accurate segmentation across all specimens. A representative 3D 
visualization of segmented femoral cortical and trabecular bone is shown in Figure 2, 
processed using the Bone Analysis Plug-in.  
 

 
Ch. 4 – Figure 4.2. 3D rendering of the femur bone showing cortical (green) and trabecular (blue) bone 
regions. Panel A provides an overview of the entire femur with clipping done to illustrate both regions. 
Panel B zooms in with a clipped view to highlight the cortical bone. Panel C shows a different angle of the 
trabecular bone, emphasizing its internal structure. 
 
After segmenting the femur and cortical bone using the Dragonfly deep learning 
framework, the process was extended to isolate articular cartilage for assessing OA-
induced changes. This segmentation incorporated the Dragonfly snap grid feature along 
with Otsu thresholding to accurately distinguish between bone and articular cartilage. As 
shown in Figure 3 (Panel B), the resulting clear delineation of articular cartilage boundaries 
was confirmed by thorough visual inspection, establishing a reliable basis for subsequent 
quantitative analyses, such as measurements of cartilage thickness, surface area, and 
volume.  



M.A.Sc. Thesis – H. Soomal; McMaster University – Biomedical Engineering 
 

29 
 

 
Ch. 4 – Figure 4.3. Multi-stage visualization and segmentation of articular cartilage in the medial tibial 
plateau of a C57BL/6 mouse knee following TMM-induced osteoarthritis. (A) 3D rendering of the right 
knee joint with region of interest highlighted in red. (B) High-resolution slice showing articular cartilage 
(AC, white arrows). (C) 64x64 snap grid feature detection within dragonfly for articular cartilage 
segmentation. (D) 3D segmentation of femur articular cartilage (blue) and tibial articular cartilage (green) 
 
In addition to distinguishing major tissue types, the segmentation approach enabled 
detailed characterization of cellular components. Within figure 4, high-resolution grayscale 
imaging allowed clear differentiation of tissue boundaries, while the corresponding 
segmentation maps identified and delineated chondrocytes (yellow), osteocytes (blue), 
articular cartilage (green), calcified cartilage (pink), and bone tissue (orange). This 
integrated imaging strategy lays the foundation for comprehensive quantitative analyses of 
both tissue architecture and cellular organization.  
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Ch. 4 – Figure 4.4. Grayscale imaging and segmentation of bone components. Panel A displays a 2D 
grayscale image of the bone sample with zoomed-in regions marked by dashed lines, where the yellow dashed 
outline highlights a chondrocyte, and the blue dashed outline denotes an osteocyte. Panel B shows the 
corresponding segmentation model overlaid on the image, with chondrocytes in yellow, osteocytes in blue, 
articular cartilage in green, calcified cartilage in pink, and bone components in orange. 
 
Finally, further analysis focused on cellular distributions within joint tissues to enhance 
understanding of OA at a microstructural level. High-resolution imaging revealed distinct 
spatial distributions of osteocytes and chondrocytes, with segmentation techniques clearly 
delineating individual cell boundaries. To further improve accuracy, distance mapping 
combined with watershed transformations was applied, ensuring that each osteocyte lacuna 
and chondrocyte was uniquely identified and counted as a single unit. This refined 
approach enabled reliable quantitative measurements of cellular localization and density, 
laying a foundation for subsequent detailed analyses of joint tissue morphology. 
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Ch. 4 – Figure 4.5.  Enhanced cellular segmentation using distance mapping and watershed 
transformation. Panels (A) and (B) depict the distance maps for osteocytes and chondrocytes, respectively, 
which facilitate watershed transformation and ensure that each cell is labeled as a distinct class. Panel (C) 
shows the color-coded segmentation of osteocytes, with each hue representing an individual cell for accurate 
measurements. In Panel (D), chondrocyte segmentation is overlaid in color onto a mice knee joint 3D model, 
highlighting the spatial distribution of chondrocytes. 
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In recent years, deep learning has become an interesting area within osteoarthritis research 
for its ability to automate and refine tissue segmentation. For example, Zhang et al. (2018) 
demonstrated that convolutional neural networks significantly enhanced cartilage 
segmentation accuracy from MRI data, while Kumar et al. (2019) showed that deep 
learning outperformed traditional thresholding techniques in detecting OA-related 
structural changes.106,107 In the present work, Dragonfly’s Attention U-Net model was used  
to achieve precise delineation of tissue interfaces, including articular cartilage, calcified 
cartilage, and bone, and was further augmented with distance mapping and watershed 
transformations for detailed cellular segmentation. This approach not only provided 
quantification of both macrostructural and microstructural changes which will be discussed 
in the next section but also confirmed the potential of deep learning techniques to provide 
measurements for OA assessments. 
 
 
4.3 Quantification of Osteocyte and Chondrocyte Cell Volumes and Depth-
Dependent Changes (Objective IV) 
 
4.3.1. Osteocyte Cell Volume Comparison  

Quantitative analysis of osteocyte cell volumes revealed morphological differences 
between OA and control groups. Figure 1A demonstrates a statistically significant decrease 
(p < 0.01) in osteocyte volume specifically in OA sample 1 compared to its corresponding 
control, while samples 2 and 3 showed no significant differences. When further examining 
osteocyte volumes across anatomical sites (femur versus tibia) and specific regions (lateral 
versus medial), no statistically significant differences were found (Figure 1B). This 
suggests that OA-induced changes in osteocyte morphology occur uniformly across bone 
compartments rather than being localized to specific regions. 
 

 
Ch. 4 – Figure 4.6.  Osteocyte cell volume comparisons in control vs OA. (A) Mean osteocyte cell volume 
(µm³) in control and OA groups demonstrating significant reductions in OA (**, p < 0.01). (B) Comparative 
osteocyte cell volumes across femur and tibia lateral and medial regions for control and OA, showing no 
significant region-specific differences. ns = not significant. 
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These findings partially support the original hypothesis, which anticipated detectable 
cellular volume changes via high-resolution X-ray microscopy (XRM) combined with deep 
learning-based segmentation. Contrary to expectations of increased osteocyte cell volumes 
indicative of hypertrophy during early OA stages, this analysis instead indicated a decrease 
in cell volume in one OA sample, and no clear volume increase in the remaining samples. 
The limited significance and inconsistent trends across samples suggest variability in 
individual responses to OA at the early stages investigated. Such variability aligns with 
Kim et al. (2013), reporting heterogeneity in early-stage OA responses in C57BL/6 mice, 
where microstructural and cellular changes may not yet exhibit consistent or pronounced 
alterations.108 

The observed decrease in osteocyte volume in OA samples may reflect early-stage cellular 
adaptation or stress-induced morphological remodeling rather than the initially 
hypothesized hypertrophy. This interpretation aligns closely with previous findings by 
Tiede-Lewis et al. (2017), who reported significant age-related reductions in osteocyte cell 
body volume (approximately 19%) in male mice, accompanied by corresponding decreases 
in lacunar volume.109 Such findings suggest that osteocyte cell and lacunar volume 
reductions can occur as part of an early or adaptive response to altered mechanical or 
biological stress. Similarly, the variability and limited significant changes observed in this 
study’s osteocyte volumes emphasize the complex nature of cellular responses during early 
OA progression. Collectively, these data highlight the sensitivity of XRM in capturing 
subtle morphological variations in osteocytes and underscore the necessity of carefully 
considering individual and sample-specific differences when analyzing early OA-related 
changes. 

 
 
Osteocyte Lacunae Characteristics  

Further characterization of osteocyte lacunae included total lacunal volume, lacunar 
density, and depth-dependent distribution within bone regions. In comparing total lacunal 
volume and lacunal density (Figure 2A and 2B), no significant differences emerged 
between control and OA groups. However, depth-dependent analyses (Figures 2C and 2D) 
provided deeper insights, showing a shift in osteocyte distribution in OA samples toward 
superficial (subchondral) regions of bone (bins 100–150 µm depth range). This altered 
cellular distribution pattern could reflect an adaptive or degenerative response associated 
with cartilage deterioration and mechanical stress redistribution in OA.  
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Ch. 4 – Figure 4.7.  Osteocyte lacunae characteristics and depth dependence. (A-B) Total lacunal volume 
and normalized lacunal density between OA and control groups (ns = not significant). (C-D) Depth-
dependent osteocyte distribution demonstrating OA-induced shifts towards superficial bone regions. 
 
Although significant changes in total lacunal volume or density were not observed, the 
clear shift of osteocytes toward superficial subchondral regions supports the hypothesis of 
detectable early-stage adaptive responses. This redistribution may represent an initial 
compensatory mechanism, reflecting altered local mechanical conditions and stress 
gradients typically associated with early-stage OA.110 
 
Literature supports the notion of spatial cellular shifts in OA progression. For example, 
Burr and Gallant (2012) described changes in osteocyte localization and density as 
indicative of bone remodeling due to altered mechanical loading conditions in OA.30 
Similarly, Palacio-Mancheno et al. (2014) demonstrated that osteocyte lacunar architecture 
is sensitive to mechanical loading conditions, with spatial redistribution and alignment 
changes reflecting bone adaptation. These findings support the notion that altered 
mechanics, such as those occurring in early OA, may drive similar adaptive osteocyte 
responses.111 The depth-dependent shifts noted in the present study further reinforce the 
potential role of osteocyte spatial organization as an early and sensitive indicator of OA-
related bone adaptation. The absence of significant lacunal volume or density changes in 
early OA suggests that morphological alterations at this stage may primarily involve cell 
redistribution rather than pronounced structural remodeling. Overall, these results 
emphasize the sensitivity of XRM-based segmentation techniques in capturing subtle yet 
significant early OA-induced microstructural changes and highlight the importance of 
carefully interpreting these depth-dependent cellular redistributions as early indicators of 
disease adaptation. 
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Regional Comparisons and Cellular Shape Analysis 

Regional comparisons of osteocyte morphology were performed to assess whether OA-
related changes varied by anatomical location across the femur and tibia. As shown 
in Figure 3, total lacunar number and osteocyte sphericity were analyzed across lateral and 
medial regions in both control and OA groups. No statistically significant differences were 
found among any of the anatomical subgroups. 
 

 
Ch. 4 – Figure 4.8.  Osteocyte lacunar number and sphericity across anatomical regions. (A) Total lacunar 
number segmented and labeled post-watershed (ns = not significant). (B) Osteocyte sphericity calculated as 
the ratio of volume to surface are. 
 
The total lacunal number, derived from Dragonfly’s object labeling following watershed 
transformation, showed variability across samples but no consistent trend or statistical 
significance. This suggests that OA does not substantially alter the overall number of 
osteocyte lacunae across femoral and tibial compartments in early OA stages. The absence 
of significant differences in total osteocyte lacunar number between control and OA groups 
in this study aligns with findings from previous research. For instance, Carpentier et al. 
(2012) reported that, while the proportion of hypermineralized osteocyte lacunae increased 
in osteoarthritic bone, the total lacunar number density did not differ significantly between 
osteoarthritic and control samples.112 This study along with the results shown suggest that 
early-stage OA may not drastically affect the overall number of osteocyte 
lacunae. Similarly, Murtavoic et al. (2023), reported on subchondral bone in OA patients 
and found no significant change in osteocyte lacunar density between moderate and severe 
OA stages, indicating that lacunar density remains relatively stable during early OA 
progression.113  These consistent observations imply that, in the initial phases of OA, 
osteocyte lacunar density may be preserved, with alterations potentially occurring in other 
aspects of bone microarchitecture or at later disease stages. 
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Similarly, osteocyte sphericity, calculated as the ratio of cell volume to surface area, 
showed no significant changes across all sample groups. This parameter reflects how 
closely each osteocyte approximates a spherical shape. In this case, surface area was 
calculated using the Lindblad surface area estimator, which applies a weighted local 
configuration method for 3D voxel data.99 The stability of sphericity across regions and 
conditions in this study suggests that early-stage OA does not substantially alter osteocyte 
geometry. These findings are consistent with observations by Hemmatian et al. (2017), 
who reported that while osteocyte lacunar morphology influences local bone tissue strains, 
significant changes in lacunar shape, such as increases in sphericity, were more commonly 
associated with advanced age or later stages of OA degeneration.64 In earlier stages, such 
as those investigated in this study, osteocyte shape remained relatively stable. This supports 
the interpretation that geometric remodeling of osteocytes may be a later event in OA 
progression, whereas early changes are more likely to manifest in spatial redistribution or 
cell volume rather than shape. Together, these results demonstrate the ability of high-
resolution imaging for detecting early-stage cellular responses and reinforce the need to 
consider disease timing when evaluating osteocyte morphology. 
 
 
4.3.2. Chondrocyte Cell Volume Analysis   

Chondrocyte cell volumes was measured to assess potential OA-related hypertrophic 
changes within calcified cartilage. As with osteocytes, three control and three OA 
samples were evaluated, each including both femoral and tibial compartments. Cell 
volume was measured following deep learning-based segmentation and object labeling in 
Dragonfly. 
 

 
Ch. 4 – Figure 4.9.  Chondrocyte cell volume comparisons in control vs OA. (A) Mean osteocyte cell volume 
(µm³) in control and OA. (B) Comparative osteocyte cell volumes across femur and tibia lateral and medial 
regions for control and OA. ns = not significant 

As shown in Figure 4A, chondrocyte volumes in OA samples were consistently lower than 
their respective controls across all three sample groups; however, none of these differences 
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reached statistical significance. When further stratified by anatomical site, femur versus 
tibia, and lateral versus medial compartments (Figure 4B), no regional differences were 
observed, and the overall distribution of chondrocyte volumes remained consistent 
between OA and control conditions. These findings do not support the original hypothesis, 
which anticipated an increase in chondrocyte volume as a marker of early hypertrophy 
driven by OA progression. Instead, the lack of statistically significant differences suggests 
that, at the early time point assessed in this study, chondrocyte hypertrophy may not yet be 
morphologically apparent. 

Notably, prior studies have documented chondrocyte hypertrophy in early OA models, 
particularly within the calcified cartilage layer, where hypertrophic differentiation is 
considered a hallmark of disease progression.36 In early osteoarthritis (OA), chondrocyte 
hypertrophy is often regionally confined and temporally variable. For instance, Kamekura 
et al. (2005) observed that type X collagen and MMP-13 were markedly induced and 
colocalized in the early-stage OA cartilage of murine models, particularly in the superficial 
and middle zones above the tidemark. However, these molecular changes occurred without 
consistent alterations in overall chondrocyte cell size.114,115 This suggests that molecular 
alterations may precede measurable volumetric expansion during the early transitional 
phase of OA progression.  

 

Depth-Dependent Chondrocyte Distribution 

To evaluate spatial changes in chondrocyte organization during early OA, depth-dependent 
distributions were analyzed across all samples. Chondrocyte positions were quantified 
relative to the cartilage surface to assess shifts in localization across zones. 

 
Ch. 4 – Figure 4.10.  Depth-dependent chondrocyte distribution in calcified cartilage. (A–B) Normalized 
chondrocyte frequency plotted at 15 µm and 25 µm depth intervals from the cartilage surface.  
 
In control samples, chondrocytes exhibited a relatively uniform distribution throughout the 
cartilage depth, with a higher density toward the mid to deeper zones. In contrast, OA 
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samples showed a distinct shift, with increased chondrocyte density concentrated in the 
superficial to mid-depth regions. This superficial redistribution may reflect early structural 
changes and altered load-bearing conditions in cartilage undergoing degeneration. Notably, 
this pattern was consistent across both femoral and tibial compartments. This shift in 
chondrocyte localization aligns with previous studies describing altered zonal organization 
in cartilage affected by OA. In particular, Tschaikowsky et al. (2022), demonstrated that 
early OA is characterized by progressive reorganization of superficial chondrocyte 
patterns, from linear strings to double strings and eventually to small clusters, highlighting 
a disruption of normal cellular architecture in the upper cartilage zones.116  
 
The depth-dependent analysis in this study supports the hypothesis that early-stage OA 
induces subtle, yet detectable, changes in cartilage organization at the cellular level. These 
alterations may serve as early changes of tissue adaptation or degeneration, which precede 
measurable structural loss or chondrocyte hypertrophy. Together, these findings highlight 
the ability of XRM imaging and segmentation techniques in capturing early cellular 
responses to joint degeneration. 
 
 
Chondrocyte Sphericity and Shape Preservation 

To determine whether early OA alters chondrocyte geometry, sphericity was calculated for 
all segmented cells across anatomical regions. This analysis assessed potential shape 
changes independent of volume or spatial distribution. 

Ch. 4 – Figure 4.11.  Chondrocyte sphericity in control and OA groups.  Quantification of chondrocyte 
sphericity across femur and tibia, lateral and medial regions. ns = not significant. 
 
As shown in Figure 6, no statistically significant differences in chondrocyte sphericity 
were observed between control and OA groups across femoral or tibial regions. 
Chondrocyte shapes remained largely uniform, with no apparent shift toward more 
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elongated or irregular geometries in early-stage OA samples. This result suggests that 
despite early changes in chondrocyte localization, overall cell shape remains preserved at 
this stage of disease progression. These findings align with the observations of Rim et al. 
(2020), who noted that chondrocyte hypertrophy and senescence are more prominent in 
later stages of OA and are associated with cartilage breakdown and matrix remodeling. 
However, the study also highlighted that the sequence of these events, whether 
hypertrophy or senescence initiates the degenerative cascade, remains unclear.117 In this 
study, the stable chondrocyte shape likely reflects an early stage of disease, where 
changes may be starting at the molecular or spatial level but have not yet affected cell 
morphology. This supports the interpretation that chondrocyte shape alterations may 
emerge only in more advanced phases of OA, while early-stage responses may be 
confined to spatial reorganization or molecular shifts. 
 
 
4.4 Remodeling of Articular Cartilage, Calcified Cartilage, and Subchondral Bone 
Plate (Objective III) 
 
4.4.1. Delineation and Segmentation of Joint Tissue Interfaces 

Accurate segmentation of the articular cartilage (AC), calcified cartilage (CC), and 
subchondral bone plate (SCBP) was imperative for analyzing tissue-level changes 
associated with early-stage OA. In this study, segmentation was performed using a manual 
visual delineation process, guided by distinct grayscale contrast differences in phase-
contrast XRM images. These anatomical boundaries were identified based on their relative 
position and grayscale intensity, consistent with established tissue organization in the 
mouse knee joint. 

Ch. 4 – Figure 4.12.  Visual segmentation of AC, CC, and SCB. (A) Grayscale XRM image labeled to 
show articular cartilage (AC), calcified cartilage (CC), and subchondral bone plate (SCB) regions. (B) 
Overlay of traced boundaries used during segmentation to delineate the interfaces between tissue 
compartments. 
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The articular cartilage was characterized by its superficial location, smooth contour, and 
uniform low-density signal. Directly beneath the AC, the calcified cartilage appeared as a 
denser band with an abrupt grayscale transition, indicating mineralization. This interface, 
known as the tidemark, was used to distinguish the AC-CC boundary. Finally, the 
subchondral bone plate was defined by its higher grayscale intensity and trabecular 
continuity beneath the CC layer. 
 
 
4.4.2. Articular Cartilage Thickness Changes in Early OA 

Following segmentation of joint tissue layers, the thickness of the articular cartilage (AC) 
was quantitatively assessed across femoral and tibial regions in both control and OA 
groups.  

Ch. 4 – Figure 4.13.  Articular cartilage thickness measurements across compartments. (A–D) Thickness 
of articular cartilage (AC) in femur and tibia, medial and lateral compartments. (C), p < 0.05. ns = not 
significant. 
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As shown in Figure 2, bar plots compare AC thickness across all anatomical regions. A 
statistically significant reduction in AC thickness was observed in the medial tibial 
compartment of OA samples compared to controls (Figure 2C, p < 0.05). No other regions, 
including the medial femur, lateral femur, or lateral tibia, demonstrated significant 
differences (Figures 2A, 2B, 2D; ns = not significant). This localized thinning suggests that 
the tibial cartilage is more susceptible to early degeneration following TMM-induced OA, 
particularly in the medial region where mechanical loading is concentrated. 

Ch. 4 – Figure 4.14.  3D visualization of femoral medial articular cartilage thickness. (A) Control sample 
shows continuous cartilage surface. (B) OA sample shows regions of surface thinning. Thickness is colour 
coded according to the scale bar, where purple indicates lower thickness values and yellow represents 
greater thickness. 
 
To visualize these microstructural changes in 3D, segmented AC surfaces were rendered 
for representative medial femur regions in control and OA samples (Figure 3). In Panel A, 
the control sample demonstrates a relatively uniform and continuous cartilage surface. In 
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contrast, Panel B shows the OA sample, where localized thinning and surface roughness 
are evident.  
The observed pattern of articular cartilage thinning observed in this study, specifically the 
significant reduction in the medial tibia, with no changes in the femur, likely reflects 
mechanical loading differences inherent to the TMM-induced OA model. Tibial cartilage, 
particularly on the medial side, experiences increased compressive stress following 
meniscal destabilization, making it more susceptible to early degeneration.118 Glasson et 
al. (2007), have shown that the tibial plateau bears a disproportionate share of joint loading 
in rodent models of OA, especially following surgical destabilization.15 However, it is 
important to note that this finding is not universally consistent across all OA studies. For 
example, Hada et al. (2014), have reported greater degeneration in femoral cartilage 
compared to tibial regions during early stages of human knee OA.119 These discrepancies 
may reflect species-specific biomechanical differences, the influence of loading models, or 
variation in OA stage and disease progression. Thus, the localized cartilage loss observed 
in the medial tibia of this TMM-model may represent an early and model-specific 
manifestation of OA-related remodeling.  
 
4.4.3. Visualization and Quantification of Calcified Cartilage Remodeling 

Calcified cartilage (CC) thickness was quantified to evaluate early remodeling at the 
osteochondral interface.  
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Ch. 4 – Figure 4.15.  Calcified cartilage thickness measurements across compartments. (A–D) Thickness 
of calcified cartilage (CC) in medial and lateral femur and tibia regions. Statistically significant reductions 
are shown in the medial femur (A) and lateral tibia (D). p < 0.05. ns = not significant. 
As shown in Figure 4, significant reductions in calcified cartilage thickness were observed 
in the medial femur and lateral tibial compartments of OA samples compared to controls 
(Figures 4A and 4D). No significant changes were detected in the medial tibia or lateral 
femur (Figures 4B and 4C).  
 

 

Ch. 4 – Figure 4.16.  3D visualization of medial femoral calcified cartilage thickness. (A) Control sample 
shows consistent CC thickness and surface regularity. (B) OA sample shows regions of focal thinning and 
surface disruption. Thickness is colour coded according to the scale bar, where purple indicates lower 
thickness values and yellow represents greater thickness. 
 
To further illustrate these changes, 3D surface maps of the medial femoral CC layer were 
generated (Figure 5). In the control sample (Panel A), the CC layer appeared continuous 
and evenly distributed. In contrast, the OA sample (Panel B) showed disrupted CC 
morphology with clear focal thinning and irregular surface topography, further supporting 
localized structural remodeling. 
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This study found significant thinning of calcified cartilage in the medial femur and lateral 
tibia, with no notable changes in the medial tibia or lateral femur. These compartment-
specific findings suggest that calcified cartilage remodeling in osteoarthritis may occur in 
a regionally distinct manner. The reduction in medial femoral calcified cartilage thickness 
may reflect early remodeling at the osteochondral interface, potentially driven by region 
specific mechanical stress. Kauppinen et al. (2019) demonstrated that changes in calcified 
cartilage surface topography and thickness are associated with osteoarthritis progression 
and correlate with histological grade and structural irregularities at the tidemark.57 
Similarly, Deng et al. (2016) reported that calcified cartilage morphology, including 
thinning and surface roughening, is altered in a site-specific manner during disease 
development.120 The absence of significant change in the medial tibial compartment may 
seem unexpected, especially given the high load associated with this region in 
destabilization models. However, some studies have suggested that changes in calcified 
cartilage thickness are not solely determined by load bearing but may also depend on local 
remodeling dynamics and biological signaling. In contrast, the lateral tibial thinning 
observed here could reflect early compensatory changes or microarchitectural shifts that 
precede overt cartilage loss. Studies such as those by Schultz et al. (2015) have shown that 
calcified cartilage morphology in rodent OA models can vary between compartments, with 
early changes sometimes occurring in less load-bearing areas, potentially due to altered 
joint mechanics following injury.121 Together, these results reinforce the idea that calcified 
cartilage remodeling is a complex and regionally variable process. Rather than reflecting a 
uniform progression, structural changes may appear first in isolated regions depending on 
localized mechanical, cellular, and biochemical influences. 
 
 
4.4.4. Subchondral Bone Plate Thickness Stability in Early OA 

To evaluate whether early osteoarthritic remodeling extended to the subchondral bone plate 
(SCBP), thickness measurements were performed across femoral and tibial compartments 
in both control and OA samples.  
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Ch. 4 – Figure 4.17.  Subchondral bone plate thickness measurements across compartments. (A–D) 
Thickness of subchondral bone in medial and lateral femur and tibia. All comparisons were nonsignificant.  
 
As shown in Figure 5, SCB thickness did not significantly differ between OA and control 
groups in any region examined. This includes the medial femur (Figure 5A), medial tibia 
(Figure 5B), lateral femur (Figure 5C), and lateral tibia (Figure 5D). Despite localized 
thinning in the articular and calcified cartilage layers in certain compartments, the SCBP 
remained structurally consistent across all anatomical sites at this early disease stage. These 
findings suggest that subchondral bone thickening, often associated with late-stage 
osteoarthritis, may not be an early hallmark of disease in this TMM-induced model. Prior 
studies have similarly reported that SCB sclerosis is more prominent in advanced OA, 
where chronic remodeling leads to increased bone mass and mineral density.59,102 In 
contrast, Li et al. (2013), purposed early changes in SCB may be more functional or 
microstructural, such as alterations in porosity or trabecular organization, which are not 
captured by thickness alone.50 The stable SCB thickness observed here supports the notion 



M.A.Sc. Thesis – H. Soomal; McMaster University – Biomedical Engineering 
 

46 
 

that structural bone plate remodeling lags behind cartilage changes in the early phases of 
OA progression. 
 
Nevertheless, these results reinforce the concept that cartilage degeneration precedes gross 
subchondral bone plate remodeling in the early stages of osteoarthritis. While the articular 
and calcified cartilage layers exhibit signs of regional thinning and structural disruption, 
the underlying subchondral bone plate remains relatively stable. This spatial and temporal 
degeneration highlights the complex nature of OA progression and emphasizes the 
importance of analyzing each tissue compartment independently. As the disease advances, 
future studies incorporating microarchitectural and compositional metrics may reveal more 
nuanced changes in subchondral bone beyond thickness alone. 
 
 
4.5 Morphometric Analysis of Cortical and Trabecular Bone Alterations (Objective 
II) 

In this section, we explore the microstructural changes in the femur and tibia of control and 
OA groups, with a focus on the bone volume fraction, trabecular architecture, and cortical 
parameters. The results presented here offer insight into how OA influences bone 
microarchitecture in these two critical bone regions.  
 

4.5.1. Cortical and Trabecular Bone Volume Parameters 

To evaluate potential early bone changes during osteoarthritis progression, morphometric 
parameters of cortical and trabecular bone were compared between OA and control groups 
in both the femur and tibia. Quantitative parameters included bone volume fraction 
(BV/TV), cortical thickness (Ct.Th), cortical area (Ct.Ar), trabecular number (Tb.N), 
trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp). 
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Ch. 4 – Figure 4.18.  Morphometric analysis of cortical and trabecular bone parameters in the femur and 
tibia of control and OA groups. (Top row) Bone volume fraction (BV/TV), cortical thickness (Ct.Th), and 
cortical area (Ct.Ar). (Bottom row) Trabecular number (Tb.N), trabecular thickness (Tb.Th), and trabecular 
separation (Tb.Sp). Data represent mean ± SD; n = 3 per group. Statistical analysis was performed using 
two-way ANOVA with Bonferroni correction. 
 
Figure 1 summarizes the mean values of these metrics and statistical comparisons between 
groups. A significant reduction in bone volume fraction was observed in the femur of OA 
samples (p < 0.05), indicating early bone loss in this compartment. However, tibial BV/TV 
remained unchanged between groups. No statistically significant changes were detected in 
other cortical or trabecular parameters in either bone. 
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Ch. 4.5 – Table 1.  Comparison of microarchitecture in the femur OA and Control groups. 

 
Ch. 4.5 – Table 2.  Comparison of microarchitecture in the tibia OA and Control groups. 

 

Microstructure Control, mean ± SD OA, mean ± SD 
Anisotropy (MIL) 0.62 ± 0.03 0.56	± 0.04 
Anisotropy (SVD) 0.51	± 0.02 0.50	± 0.01 
Bone surface density (BS/TV) (µm⁻¹) 0.012	± 0.001 0.010	± 0.001 
Bone volume fraction (BV/TV) (%) 0.45	± 0.04 0.39	± 0.03 
Average cortical area (Ct.Ar) (mm²) 1.92	± 0.15 1.53	± 0.17 
Average cortical area fraction (Ct.Ar/Tt.Ar) 0.43	± 0.02 0.43	± 0.03 
Cortical porosity (Ct.Po) 0.74	± 0.05 0.76	± 0.06 
Average cortical thickness (Ct.Th) (µm) 94.30	± 4.21 94.66	± 5.07 
Structure model index (SMI) 3.68	± 0.30 2.47	± 0.35 
Trabecular number (Tb.N) (mm⁻¹) 6.52	± 0.41 6.13	± 0.38 
Average trabecular separation (Tb.Sp) (µm) 102.70	± 7.66 117.77	± 9.21 
Average trabecular thickness (Tb.Th) (µm) 51.26	± 3.44 45.61	± 2.71 
Average total (cortical + marrow) area (Tt.Ar) (mm²) 4.44	± 0.23 3.71	± 0.26 

Microstructure Control, mean ± SD OA, mean ± SD 
Anisotropy (MIL) 0.63 ± 0.05 0.51 ± 0.07 
Anisotropy (SVD) 0.79 ± 0.06 0.53 ± 0.08 
Bone surface density (BS/TV) (µm⁻¹) 0.011 ± 0.001 0.012 ± 0.001 
Bone volume fraction (BV/TV) (%) 0.436 ± 0.03 0.42 ± 0.04 
Average cortical area (Ct.Ar) (mm²) 1.453 ± 0.14 1.59 ± 0.17 
Average cortical area fraction 
(Ct.Ar/Tt.Ar) 0.447 ± 0.03 0.46 ± 0.02 

Cortical porosity (Ct.Po) 0.72 ± 0.05 0.74 ± 0.06 
Average cortical thickness (Ct.Th) (µm) 89.34 ± 5.32 85.18 ± 6.11 
Structure model index (SMI) 4.83 ± 0.39 3.76 ± 0.44 
Trabecular number (Tb.N) (mm⁻¹) 5.60 ± 0.49 6.76 ± 0.54 
Average trabecular separation (Tb.Sp) 
(µm) 135.37 ± 11.23 105.94 ± 9.88 

Average trabecular thickness (Tb.Th) 
(µm) 46.44 ± 3.25 43.34 ± 2.97 

Average total (cortical + marrow) area 
(Tt.Ar) (mm²) 3.25 ± 0.21 3.36 ± 0.19 
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Detailed numeric comparisons of bone parameters for the femur and tibia are provided in 
Ch. 4.5 – Table 1 and Ch. 4.5 – Table 2, respectively. In the femur (Table 1), the OA group 
showed a modest decrease in bone volume fraction (0.39 ± 0.02) compared to controls 
(0.45 ± 0.03), which is consistent with the significant difference visualized in Figure 6. 
Other measures such as cortical thickness, cortical area, and trabecular morphology (e.g., 
Tb.N, Tb.Th, Tb.Sp) remained largely unchanged. Similarly, in the tibia (Table 2), no 
significant differences in cortical or trabecular parameters were observed between OA and 
control samples. 
 
The observed reduction in femoral bone volume fraction suggests localized trabecular bone 
loss as a potential early response to mechanical and biological changes induced by OA. 
This aligns with previous studies demonstrating that bone structural changes, particularly 
in the femur, can occur in response to both pathological and aging-related stimuli. For 
example, Shim et al. (2022) observed pronounced age-related deterioration in femoral 
trabecular architecture in mice, suggesting that the femur is particularly sensitive to 
systemic or local changes in bone metabolism and mechanical strain.122 Likewise, Tu et al. 
(2015) reported that aging mice with osteoporotic-like bone remodeling exhibited 
substantial alterations in femoral trabecular morphology, including increased trabecular 
segment radius and bone mineral density at the distal metaphysis, reinforcing the site-
specific nature of trabecular remodeling.123 
 
However, the lack of changes in trabecular microstructure in other compartments, 
including the tibia, highlights the compartment-specific nature of bone adaptation. Botter 
et al. (2011) similarly found that while early OA induced transient bone loss in certain 
compartments, structural remodeling was not uniform across the joint.124 This spatial 
disparity could reflect differences in vascularity, loading environments, or the timing of 
cartilage and bone changes within each region. 
 
Moreover, cortical bone metrics, including cortical thickness (Ct.Th) and cortical area 
(Ct.Ar), remained stable in both femur and tibia. These findings align with those of Auger 
et al. (2021) which observed increased cortical thickness, area, and porosity in human 
femoral necks with progressively severe radiographic OA, alongside decreased cortical 
bone mineral density (Ct.BMD).125 Their findings suggest that cortical remodeling, 
particularly porosity-driven density loss, is closely tied to chronic joint degeneration and 
is not a prominent feature of early OA. These results suggest that in the early phases of 
OA, as modeled by TMM-induced joint destabilization, cartilage and calcified cartilage 
layers undergo more immediate structural changes, while bone adaptations may lag behind 
or be confined to subtle volumetric loss. 
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4.6 Discussion of Results 

The objective of this study was to investigate early-stage osteoarthritis (OA) related 
changes in knee joint microstructure, with a specific focus on cellular and tissue-level 
remodeling across bone and cartilage compartments. Utilizing high-resolution phase 
contrast X-ray microscopy (XRM) alongside deep learning-based segmentation, we 
achieved detailed three-dimensional visualizations and quantitative analyses of articular 
cartilage (AC), calcified cartilage (CC), subchondral bone plate (SCBP), and both cortical 
and trabecular bone. The results collectively underscore the value of XRM in detecting 
early OA related alterations, even in the absence of significant early structural changes, 
and highlight the compartment and region-specific nature of OA progression. 
 
The implementation of phase contrast XRM drastically improved visualization of soft 
tissue structures without the need for staining or destructive processing, in agreement with 
previous findings by Broche et al. (2021) and Lee et al. (2010), who demonstrated the value 
of propagation-based phase contrast in revealing cartilage and ligament structures 
otherwise poorly visualized with traditional absorption imaging.103,104 By optimizing 
source-to-detector distance, this study enhanced contrast at soft tissue interfaces, enabling 
precise segmentation of AC and CC. Equally important was the use of deep learning-based 
segmentation with Dragonfly’s Attention U-Net, which allowed accurate delineation of 
cellular features such as chondrocytes and osteocytes. This approach substantially 
outperformed manual segmentation or conventional thresholding methods, as previously 
observed in MRI-based cartilage segmentation by Zhang et al. (2018) and OA feature 
detection by Kumar et al. (2019).106,107 Furthermore, the integration of watershed 
transformation and distance mapping enabled accurate identification and quantification of 
cellular features, crucial for evaluating depth-dependent morphology and spatial 
reorganization, which are known to occur early in OA pathogenesis. 
 
Contrary to the hypothesis of hypertrophic osteocyte responses during early OA, our study 
identified a statistically significant reduction in osteocyte cell volume in one OA sample, 
with no consistent trends across the remaining samples. While not uniformly conclusive, 
this reduction aligns with reports by Tiede-Lewis et al. (2017), who described osteocyte 
shrinkage as part of aging-related bone remodeling, potentially reflecting early adaptive 
responses rather than pathology-driven hypertrophy.109 Moreover, osteocyte spatial 
distribution showed a clear shift toward the subchondral region in OA samples, despite the 
absence of significant differences in lacunar volume or density. This depth-dependent 
redistribution may indicate mechanical compensation in response to altered load 
environments at the osteochondral interface, a concept well-supported by Palacio-
Mancheno et al. (2014) and Burr and Gallant (2012), who reported similar shifts in 
osteocyte alignment and positioning under modified mechanical strain.30,111 Collectively, 
these results suggest that early stage OA triggers local changes in bone cell structure before 
larger-scale bone remodeling begins. 
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Chondrocyte hypertrophy is considered a hallmark of OA progression, typically 
accompanied by upregulation of matrix metalloproteinases and type X collagen.114 
Surprisingly, our data did not reveal significant increases in chondrocyte cell volume in 
OA samples, suggesting that volumetric expansion may not yet be apparent at the examined 
disease stage. Instead, chondrocyte redistribution toward the superficial calcified cartilage 
layers was evident, echoing previous observations by Tschaikowsky et al. (2022), who 
described superficial-to-deep zone shifts as early indicators of cartilage remodeling.116 
These changes likely represent the initial stages of chondrocyte disorganization, which 
precede hypertrophy and contribute to subsequent matrix degradation. The preserved 
chondrocyte sphericity across all groups suggests that geometric remodeling of these cells 
is not a prominent feature of early OA. This is in line with Rim et al. (2020), who showed 
that significant shape distortions emerge during more advanced phases of the disease, when 
chondrocyte senescence and hypertrophy coincide with matrix breakdown and surface 
fibrillation.117 Thus, our findings reinforce a progressive model of chondrocyte changes as 
shifts in position occur before changes in size, shape, or structure. 
 
Tissue-level analysis revealed distinct region-specific changes in AC and CC, with 
statistically significant thinning of the medial tibial AC and medial femoral CC in OA 
samples. These findings align with the known mechanical vulnerability of the medial tibial 
plateau in destabilization models such as the TMM model used in this study, where 
compressive stress becomes concentrated post-meniscectomy.15 Similarly, Kauppinen et 
al. (2019) reported localized thinning and roughening of the CC layer as early structural 
signatures of OA progression, particularly in areas of high mechanical loading.57 
Unexpectedly, the lateral tibial CC also showed significant thinning in OA, despite being 
a less load-bearing region. This finding may reflect early compensatory remodeling or 
secondary alterations in joint mechanics following meniscal destabilization, consistent 
with Schultz et al. (2015), who described early CC changes in less-loaded compartments 
of rodent OA models.121 In contrast, SCBP thickness remained stable across all 
compartments, suggesting that bone plate thickening, commonly associated with advanced 
OA, is not a reliable indicator at early time points, a conclusion supported by Li et al. 
(2013) and others.50 
 
Finally, morphometric analysis revealed a significant reduction in femoral trabecular bone 
volume fraction (BV/TV) in OA samples, with other cortical and trabecular parameters 
remaining largely unchanged. This femur-specific bone loss aligns with findings by Shim 
et al. (2022) and Tu et al. (2015), who supported the idea that the femur is especially 
sensitive to biological and mechanical changes, likely due to the adaptive nature of its 
trabecular bone structure.122,123 In contrast, the tibia showed no significant bone changes, 
highlighting the spatial and temporal variability of bone remodeling in OA. Importantly, 
cortical parameters such as thickness, area, and porosity were unaffected in both datsets. 
These findings suggest that cortical bone remodeling may occur later in disease 
progression, as supported by Auger et al. (2021), who noted significant cortical alterations 
only in advanced stages of OA.125 The preservation of cortical geometry further supports 
the idea that cartilage and CC degeneration precede new bone responses, a model 
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consistent with the temporally staged progression of OA described by Botter et al. 
(2011).124 
 
This study confirms that XRM, in combination with deep learning segmentation, enables 
the high-resolution, non-destructive analysis of subtle OA-induced alterations across joint 
tissues. Early-stage OA appears to be characterized by region-specific cartilage thinning, 
superficial cellular redistribution, and selective trabecular bone loss, without widespread 
structural degeneration in cortical bone or the SCBP. These compartmentalized and 
temporally nuanced responses highlight the need for sensitive imaging and analysis tools 
capable of detecting early changes before irreversible joint degradation occurs.
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Chapter 5: Conclusions & Future Work 
 
In this thesis, high-resolution X-ray microscopy (XRM) combined with deep learning 
segmentation has been demonstrated as a powerful and non-destructive approach for the 
three-dimensional quantification of microstructural and cellular changes in early-stage 
osteoarthritis (OA). By leveraging propagation-based phase contrast imaging and 
advanced object-based morphometry in Dragonfly, this work provides new insight into 
the spatial and depth-dependent alterations of osteocyte and chondrocyte morphology in a 
surgically induced OA mouse model. The methods developed here facilitate visualization 
of soft and mineralized tissues at near-histological resolution, with the added benefit of 
preserving the native architecture across intact femur–tibia joint complexes. 
 
5.1. Quantification of Cellular Changes: Osteocyte and Chondrocyte Volume and 
Depth-Dependent Variations 
 
This thesis established a 3D deep learning-based workflow for the segmentation and 
quantification of osteocytes and chondrocytes in the femoral and tibial compartments of 
the mouse knee joint. Using high-resolution XRM and attention U-Net segmentation, we 
identified that early-stage OA induces distinct changes in cell morphology and spatial 
organization. Osteocyte volume and distribution showed region-specific alterations in the 
femur of OA joints, suggesting localized bone remodeling responses that precede large-
scale structural changes. Meanwhile, chondrocyte analysis revealed significant shifts in 
volume and vertical distribution within calcified cartilage, particularly in the medial 
femoral region, without concurrent loss of sphericity. These results support a model where 
early OA involves spatial reorganization and hypertrophic changes in cartilage-resident 
cells before overt degeneration. 
 
Limitations: While this study provides novel insights into early cellular remodeling, the 
analysis was based on a small sample size (n = 3 per group), which limits statistical power. 
Additionally, the analysis involved manual declination and watershed transformation 
during the segmentation pipeline, which is not always 100% accurate. Particularly for 
densely packed or overlapping cells, it is challenging to reliably distinguish one object per 
individual cell, potentially leading to over or under segmentation in some regions. 
 
Future work: Future studies should aim to improve the accuracy of cell segmentation by 
refining the deep learning pipeline, particularly for distinguishing closely packed or 
overlapping cells. Expanding the sample size and including earlier and later disease time 
points would help capture a more complete picture of cellular remodeling over time. 
Additionally, integrating other morphological features such as elongation, orientation, or 
cell clustering could offer a more comprehensive view of how chondrocytes and osteocytes 
respond to early joint degeneration. 



M.A.Sc. Thesis – H. Soomal; McMaster University – Biomedical Engineering 
 

54 
 
 

5.2.  Remodeling of the Osteochondral Interface: Articular Cartilage, Calcified 
Cartilage, and Subchondral Bone Plate 
 
This study quantitatively assessed early-stage remodeling at the osteochondral interface by 
measuring the thickness of articular cartilage, calcified cartilage, and the subchondral bone 
plate. Using phase-contrast XRM imaging and 3D segmentation in Dragonfly, regional 
changes were captured across medial and lateral compartments of the femur and tibia. The 
findings revealed localized thinning of the articular cartilage and thickening of calcified 
cartilage in early OA, particularly within medial regions subject to increased mechanical 
loading. In contrast, subchondral bone plate thickness remained relatively stable between 
control and OA groups, perhaps indicating that bone remodeling at this early stage is 
largely restricted to the cartilage layers. 
 
These results support a compartment-specific model of joint degeneration, where early 
morphological changes occur in calcified cartilage and articular cartilage before overt 
subchondral bone alterations. The ability to visualize and quantify such subtle tissue level 
differences highlights the usage of high-resolution XRM for early OA research. 
 
Limitations: This analysis was limited by the resolution and accuracy of segmentation at 
tissue boundaries, especially in thin regions like articular cartilage. Manual correction was 
required to verify boundaries between cartilage and bone, introducing some manual 
dependency. Additionally, the small sample size and short disease duration may not fully 
capture longer-term changes in bone plate remodeling or mineralization. 
 
Future work: Future work should incorporate time course studies to evaluate progressive 
changes across the osteochondral interface and extend analyses to include mineral density 
or collagen orientation to better understand tissue quality. Integration with histology could 
also help validate and complement 3D XRM findings, improving the biological 
interpretation of remodeling dynamics at the cartilage–bone interface. 
 
 
5.3.  Comprehensive Assessment of Cortical and Trabecular Bone 
Microarchitecture 
 
In Chapter 4, detailed morphometric analysis of cortical and trabecular bone architecture 
in femoral and tibial compartments revealed early osteoarthritic changes with regional 
specificity. High-resolution XRM and deep learning-based segmentation enabled 
quantification of trabecular thickness, separation, number, and cortical thickness and area. 
Cortical bone in the femur showed notable changes in the OA group, indicating localized 
remodeling in response to joint instability, while the tibial bone remained largely 
unchanged. These results could highlight the compartment-specific nature of bone 
adaptation and the importance of site-specific evaluation in early-stage OA. 
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Limitations: A key limitation lies in the use of the Bone Analysis plugin for morphometric 
quantification. As a semi-automated tool with limited transparency in its internal 
processing, particularly for complex 3D geometries, there is inherent uncertainty in how 
certain parameters are computed. Moreover, sensitivity to segmentation thresholds and 
parameter tuning can introduce variability across samples, potentially influencing the 
reproducibility and precision of the extracted metrics. 
 
Future Work: Future analyses could benefit from refining the morphometric pipeline to 
increase transparency and control over segmentation parameters, particularly for 
distinguishing complex 3D structures. Incorporating open source or fully customizable 
tools may enhance reproducibility and reduce uncertainty. Additionally, while this study 
assessed the entire femur and tibia, including regions above and below the growth plate, 
many previous studies have focused solely on the metaphysis or epiphysis. Future work 
could leverage this broader anatomical coverage to explore region-specific differences in 
bone remodeling and their relationship to localized joint degeneration in early-stage OA. 
Comparing specific femoral and tibial regions can reveal local changes and loading 
responses that standard methods might overlook. 
 
 
5.4.  Deep Learning-Based Segmentation for Enhanced Joint Tissue Analysis 
 
This work implemented an Attention U-Net deep learning model to perform high-
resolution segmentation of joint tissues, enabling detailed quantification of cellular and 
structural changes in osteoarthritis. The model successfully distinguished key anatomical 
features, including articular cartilage, calcified cartilage, subchondral bone, chondrocytes, 
and osteocytes, providing a novel platform for morphometric and spatial analysis. By 
combining orthogonal and 3D visualizations in Dragonfly with manual annotations for 
model training, the pipeline enabled anatomically detailed segmentation across joint tissues	
This approach provided a scalable and efficient alternative to fully manual processing, 
allowing for high-resolution cellular analysis of early OA changes while minimizing 
processing time. 
 
Limitations: Despite its efficiency, the segmentation approach has limitations. Manual 
delineation of training data introduces subjectivity, and the watershed-based object 
separation struggles to consistently identify individual cells in densely packed regions, 
leading to potential over or under segmentation. Additionally, the attention U-Net model, 
while effective, depends heavily on the quality and diversity of the training slices, which 
may limit generalizability across anatomical regions or datasets with different contrast or 
resolution characteristics.  
 
Future work: Future directions should focus on enhancing segmentation accuracy by 
exploring alternative segmentation models and comparing their performance against the 
current deep learning approach. In addition, integrating other image analysis platforms 
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such as Fiji could help validate segmentation outputs and improve confidence in 
quantitative measurements. Expanding the annotated dataset across more anatomical 
regions and OA timepoints would also improve the model’s adaptability. Finally, 
incorporating multi-class segmentation for cell types, tissue zones, and extracellular 
components could enable a more detailed and integrative assessment of OA bone 
remodelling. 
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