TRANSFORMING UML

DIAGRAMS TO CP-NETS

TRANSFORMING UML
DIAGRAMS TO COLOURED
PETRI NETS

By
WENXIANG YAO, B.Sc.

A Thesis
Submitted to the School of Graduate Studies
in partial fulfilment of the requirements for the degree of

M. A. Sc
Department of Computing and Software
McMaster University

© Copyright by Wenxiang Yao, Feb. 2005

ii

MASTER OF APPLIED SCIENCE (2005) .McMaster University
(Computing and Software) Hamilton, Ontario

TITLE:
TRANSFORMING UML DIAGRAMS TO COLOURED PETRI NETS

AUTHOR: Wenxiang Yao, B.Sc. (MCMASTER UNIVERSITY, CANADA)

SUPERVISOR: Dr. Ryszard Janicki, Dr. N. S. Nedialkov

NUMBER OF PAGES: ix, 91

Abstract

UML is a graphically based language to specify, visualize, construct, and document
the requirements of software systems. UML is defined informally. We need a well-
defined semantic base for better analysis and application.

Place/Transition nets (P/T-nets) and Coloured Petri Nets are two of the most
useful languages for modelling of systems containing concurrent processes. P/T-nets
are low-level Petri nets, whose tokens contain very simple information.

Coloured Petri Nets (CP-nets) are high-level Petri nets. Each token of CP-nets
can carry many attributes. CP-nets have a well-defined semantics allowing formal
description.

The main purpose of this thesis is to proposed a set of transitions rules, which
can transform UML graphs into the Coloured Petri Nets. These rules can be used to
describe and analyse concurrent systems. The verification scheme and some examples

to support the method are provided.

Acknowledgements

I would like to express my sincere appreciations to my supervisors, Dr. Ryszard Jan-
icki and Dr. N. S. Nedialkov, for their inspirations, invaluable and patient guidances
through out the research of this thesis.

I am grateful to Dr. Emil Sekerinski and Dr. Michael Soltys for their careful
review of this thesis and for their valuable comments.

Also I want to thank all staffs who work in the department office. I gratefully
acknowledge their support and help.

Finally, I appreciate very much the support from my parent and my sister.

ii

Contents

Abstract
Acknowledgements
List of Figures

1 Introduction

1.1 Background i e e e e ,
1.1.1 Petri Nets and Coloured Petri Nets
112 UML e e e e e e
1.1.3 Formalized UML

1.2 PUIPOSE & v v v v ittt e e e e e e e e e e e e e e e e e e e

1.3 Outline. i i it it et e e e e e e e

2 Concurrency, Petri Nets and Coloured Petri Nets

2.1 Concurrent Systems. . . - . . ¢« v v bttt e e e e e
2.2 PetriNets i i ittt it it it ittt e e
2.2.1 Informal Introduction to P/T-Nets
2.2.2 Formal Introduction to P/T-nets
2.2.3 Example of P/T-nets: the DP Problem

iii

W W N = e

0w I o & o ;

CONTENTS

6.2 TFuture Work

vi

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

The DP problem: P/T-pet solution 10
part of the DPproblem. 20
The DP problem: CP-net solution 21
Phl and Ph3 fire synchronously 23
Class diagrams for the Dining Philosopher Problem 29
Philosopher problem: the associations between two classes 30
Statechart diagram: Philosopherclass. 34
Statechart diagram: Forkclass 35
Collaboration Diagram: the DP Problem 39
Final statechart diagram of the DP problem 41
Examplesof T-2. ittt 47
Transition rules T8-1,T82 53
Transition rules 8-1,8-2: examples 54
Fork and Join — concurrentot ot e e .. 56
Mutual exclusion: the P/T-nets diagram 58
Statechart diagram: mutual exclusion 59
Mutual exclusion: from statechart diagramto CPN 60

vii

LIST OF FIGURES viii

4.8
4.9

4.10
4.11
4.12
4.13
4.14

5.1
5.2
5.3
5.4
5.5
5.6

The verification procedure 62
Fork and Join: Transforming the statechart diagram into a flat state

machine 63
Transforming the CPN to the reachability graph 65

Mutual Exclusion: Transforming UML into flat state machine 66

Mutual Exclusion: the Reachability graph 67
Transition rules for the DP problem 70
The transition procedure oo 72
Class diagram of RW problem 74
The statechart diagrams for the Reader and Writer classes 75

Synchronization Class: Class diagram and Statechart diagram 77
RW problem: Statechart Diagram 79
RW problem: Transforming procedure 82
P/T-nets solution for the RW problem 85

List of Tables

4.1 TranmsitionrulesT-1,T-2 46
4.2 Transition rules T-3,T-4 and T-3 examples 49
4.3 TransitionrulesT-5T-6 50
4.4 Transitionrules T-7,T-8 o i v 52

1. Introduction 4

with. UML after all. However, UML specification are very popular, and any result

that helps to verify their properties seems to be worth to explore.

1.3 Outline

Chapter 2 introduces concurrency, Petri Nets and Coloured Petri Nets by the classic
Dining Philosopher (DP) problem .

Chapter 3 introduces some UML concepts and definitions. It uses an example of
the DP problem to explain how to specify a concurrent problem by UML.

Chapter 4 is the main part of this thesis. This chapter proposes a set of transition
rules, which transform UML diagrams to CPN diagrams. It also gives some examples
to illustrate them.

Chapter 5 discusses another classic concurrent problem — the Reader and Writer
problem.

Chapter 6 summarizes the contribution and future work of this thesis.

2. Concurrency, Petri Nets and Coloured Petri Nets 7

P/T-nets are one of the most used and well-known Petri nets.
P/T-nets are graphical and mathematical modelling tools, which include places,

transitions and arcs. A P/T-net can be represented as a directed graph.

2.2.2 Formal Introduction to P/T-nets

A P/T-net can be formally defined as follows [17].
Let Z,N and [A — B] denote integers, nonnegative integers, and total functions

from A to B respectively.
A P/T-net is a 4-tuple PTN = (P, T, W, My). Here,

P is a set of places. Places are indicated by circles or ellipses.

T is a set of transitions.

Transitions are represented by rectangles, and usually, but not always, represent

actions.

e PNT=0,PUT #93.

W € [P xT — Z] is a weight function. The number of tokens removed or added
is specified by W.

e M is a marking function, where M : P — N. M is the initial marking.
A marking of PTN is a function in [P — N]. A place p is a condition for a

transition ¢ if and only if W (p,t) # 0. It is a precondition if and only if W(p,t) <0
and a postcondition if and only if W(p,t) > 0.

2. Concurrency, Petri Nets and Coloured Petri Nets 9

simultaneity to avoid deadlock. For more details, see reference [16).

Figure 2.1 is a general solution for the DP problem using P/T-net [16].

Explaining this solution will give more details.

Tokens: Each token has two attributes: type and number. Hence philosopher,
and philosopher, are different tokens. They should be described separately.
These tokens are represented by black dots in places thinkl, think2, ... think5.

The number of each token is 1.

Places: From Figure 2.1, we can see that each philosopher has two places: think

and eat. Each fork has one place free_fork.
Transitions: Each philosopher has two actions: take forks and put down forks.

Arcs: Arcs are associated with transitions and places. The arcs with arrowheads

indicate the start and end points of all processes.

Marking: The initial markings are all places with black dots in Figure 2.1, and

the token number for each of the places is 1.

Weight: No number appeares on arcs. This means that the weight function is

1.

At the beginning five forks are free, and five philosophers are in the think place.

This is called initial marking My. When a philosopher wants to eat, he must be

sure that both left and right forks closest to him are available. Then he takes two

forks and goes to the eat place. After he finishes eating, he puts down the two forks

synchronously and goes to the think state.

From Figure 2.1, we can see that every philosopher and every fork is a token

different from the others. It is necessary to describe the status of each philosopher and

2. Concurrency, Petri Nets and Coloured Petri Nets

think1 think2 think3 . think4 thinks .
2]
takes takey takes takm takes
forka forks forks forka forks

free_forkl A fork2 ork3 fork4 orkS free \fork1
' 6; . é; . eat3 . eatd . eats .

phlpats phpats ph3 pets Pl puts phS puts
down down down down down
forks forks forks forks forks

Figure 2.1: The DP problem: P/T-net solution

10

2. Concurrency, Petri Nets and Coloured Petri Nets 12
2.3.2 Informal Introduction to CP-nets

Coloured Petri Nets (CP-nets) are high-level nets. They have a graphical

representation and well-defined semantics allowing formal description.

A CP-net consists of three parts: the net structure, the declarations and the net

inscriptions.
1. Net Structure It includes places, transitions and arcs.

2. Declaration It includes colour sets, functions, variables and constants. It can
be used in net inscriptions. In this thesis, as in [18], CPN ML is used to describe

the declarations. The declaration is surrounded by a box with dashed lines.

The declaration includes:

e colour sets FEach colour set declaration indicates a new colour set, whose

elements are called colours.
As an example, the following colour sets can be defined by:
colour A = int with 1..10 (all integers between 1 and 10)
colour Season = with Spring | Summer | Winter | Autumn
¢ functions Each function declaration defines a function. The function takes
a list of arguments and returns a result. The types for these arguments and

returns are either a colour defined in colour sets or other types recognized

by CPN ML, such as bool.
For examples,

fun Fac(n) = if n>1 then nx Fac(n—1) else 1

2. Concurrency, Petri Nets and Coloured Petri Nets 13

e variables Each variable declaration defines a list of variables, with a type

which must be defined in colour set.
For example the variables can be defined like this:
var z,y : Season
e constants Each constant declaration defines a constant, with a type which

is either already defined in colour sets or in another type recognized by
CPN ML.

For example,
valn= 4

declares a constant with type nt.

3. Net Inscription contains various text strings which are attached to the ele-
ments of the net structure. Each net expression consists of variables, constants

and functions.

In addition to the basic concepts above, the following concept is also needed.

We see the simple expression:

Sy = 2T + 3P.

T and P are different transitions. The coefficients 2 and 3 indicate that how many
times T and P are executed. The sign “+” is a binding sign, which means that we can
have a step where both T" and P occur synchronously. In other words, two transitions

can be concurrently enabled if there exist bindings for the variables.

2.3.3 Formal Definition of CP-nets

All definitions in this part are taken from [18].

2. Concurrency, Petri Nets and Coloured Petri Nets 14

Before Coloured Petri nets are formally defined, we need a well-defined semantics

first.

The elements of a type, T. The set of all elements in T is denoted by the type

name T itself.

The type of a variable v is denoted by Type(v).

The type of an ezpression expr is denoted by Type(expr).

The set of variables in an ezpression expr is denoted by Var(ezpr).

A binding of a set of variables V, associating with each variable v € V an

element b(v) € Type(v).

The value obtained by evaluating an ezpression, expr, in a binding, b - denoted
by ezpr(b). Var(ezpr) is required to be a subset of the variables of b, and the
evaluation is performed by substituting for each variable v € Var(ezpr) the
value b(v) € T'ype(v) determined by the binding.

An expression without variables is said to be a closed expression. It can be
evaluated in all bindings, and all evaluations give the same value, which we
often shall denote by the expression itself. We simply write “ezpr” instead of

the more pedantic “ezpr(b)”.
B denotes the boolean type: {false, true}

When Vars is a set of variables, we use T'ype(Vars) to denote the set of types
{Type(v) | v € Vars}.

2. Concurrency, Petri Nets and Coloured Petri Nets 15

A non-hierarchical CP-net is a tuple CPN = (£, P,T, A, N, C, G, E, I) satisfying

the requirements below.
1. X is a finite set of non-empty types, called colour sets.
2. P is a finite set of places.
3. T is a finite set of transitions.

4. A is a finite set of arcs such that;

PNT=PNA=TNA=0.
5. N is a node function, N : A — (P x T) U (T x P). N is a total function.
6. C is a colour function, C: P — 3. C is a total function.
7. G is a guard function. It is defined from T into expressions such that:
Vt € T: [Type(G(t)) = B A Type(Var(G(t))) € X).

8. FE is an arc expression function. It is defined from A into expressions such

that:
Va € A : [Type(E(a)) = C(p(a)) s A Type(Var(E(a))) € X,

where p(a) is the place of N(a).

9. I is an initialization function. It is defined from P into closed expressions

such that

Vp € P : [Type(I(p)) = C(p)ps)-

2. Concurrency, Petri Nets and Coloured Petri Nets 18
2.3.4 Coloured Petri Nets and P/T-nets

P/T-nets are low-level Petri nets, while CP-nets are high-level Petri nets. The dif-
ference between the low-level nets and the high level nets is similar to the difference
between assembly language and the modern programming language [18].

The low-level net has a very simple token. This kind of token has only two
attributes: type and token number. In high-level Petri nets, each token can carry
many attributes. This means that the token carries more complex information or
data that can be used to describe a complex system [18].

A Coloured Petri net can be transformed to a P/T-net. This is done by replacing
each place p with a set of places C(p) (one for each kind of tokens p may hold) and
replacing each transition t with a set of transitions C(t) (one for each way in which
t may fire).

We can also construct a Coloured Petri net from a P/T-net. However, the con-
structed net is not unique. Given a P/T-net, each partition of the places together
with each partition of the transitions determine a Coloured Petri net. At the two
extremes we obtain either a Coloured Petri net with the same number of places and
transitions as the P/T-net or a CP-net with only one place and one transition. In the
first case, each place and each transition ha.ve attached a set of coloures with only
one element. In the second case, the single place (transition) has a colour for each

place (transition) in the P/T-net. For a detailed explanation see [17].

2.3.5 Example of CP-net: the DP Problem

Figure 2.1 describes the DP system by a P/T-net. Next we can transfer this P/T-net
into a CP-net [17].

2. Concurrency, Petri Nets and Coloured Petri Nets 19

First, we can replace the five places thinkl, think2,..., think5 by a single place
“think”, which can carry up to five tokens. To distinguish these philosopher tokens,
we attach to “think” a set of colours PH = {phl,ph2,...,ph5}, and we demand that
all tokens on “think” must be labelled by an element of PH. Markings of “think” are
functions in PH — N. They are represented as formal sums over PH. For example,
m(think) = phl+ph2-+ph3 represents that philosopherl, philosopher2, philosopher3
are thinking while philosopher4 and philosopher5 are not.

Second, same as the PH, the places eatl, eat2, ..., eatb are replaced by a single
place “eat” with PH as the set of possible colours.

Third, free.forkl, ..., free_fork5 are replaced by a single place “freeforks” with
FORK = {f1, f2, f3, f4, f5} as the set of possible colours.

Fourth, to replace the five transitions phltakefork,phltakefork,...,phStakefork
into a single transition “takeforks”, we attach to the transition “takeforks” the set
of colours, PH, representing the individual philosophers.

z,LEFT and RIGHT are functions from the set of colours PH attached to
“takeforks” into the sets of colours attached to its conditions: “think”, “eat”, and
“freeforks”. The function indicate that a firing of “takeforks”, with colour v € PH,
removes a token with colour z(v) € PH to “eat”, and remove two tokens from
“freeforks" with colours LEFT(v) € FORK and RIGHT(v) € FORK respec-
tively. z is the identity function on PH. LEFT and RIGHT map each philosopher-
colour into the colour of its left and right fork respectively.

Figure 2.2 is the part of the philosopher net after a folding where some places and
some transitions are unified.

Finally, the transitions phlputdown forks, ..., phbputdown forks are replaced by a

single transition “put down forks” with PH as the set of possible firing colours.

2. Concurrency, Petri Nets and Coloured Petri Nets

colour PH = with phl | ph2 1 ph3 | ph4 | phS
colour FORK =with 110213 1/41{5
varx : PH
fun LEFT x=casexof phl=>R21ph2=>{3]|
ph3 => {4 | phd => 151
phS=>11
fun RIGHT x =case xof phl =>f1|ph2=>12I

ph3 => 13| phd => 41
phS=>15

Figure 2.3: The DP problem: CP-net solution

21

2. Concurrency, Petri Nets and Coloured Petri Nets 22

‘LEFT(z)’ is equivalent to

“f z=phl1 then f2, else if z=ph2 then f3, ..”.

2. Net Structure This figure consists of 3 places, two transitions and sets of arcs.

3. Net Inscriptions are strings attached to the places, transitions and declara-

tions.

The initial places are PH_think and Fork._free_forks, they contain 10 colour
tokens there initially.

Figure 2.3 is the initial state of the DP problem. Figure 2.4 illustrates the result
when philosopherl and philosopher8 fire synchronously.

This chapter describes some basic concepts of P/T-nets and CP-nets. Chapter 4

will provide a more detailed introduction to CP-nets.

Chapter 3

Unified Modeling Language

In this chapter, we introduce some basic concepts of UML. We also provide our UML
solution for the DP problem. Up till now, some methods are proposed to describe
the DP problem by UML, such as [4, 7], etc. Most of them give partial solutions. In
this thesis, we attempt to give a complete UML solution for the DP problem.

Unified Modeling Language (UML) is a graphical language. It provides a stan-
dard way to write blueprints of a system, including conceptual things such as business
processes and system functions as well as concrete things such as programming lan-
guage statements, database schemas, and reusable software components [1].

The development of UML was a co-operative effort, which combined the work
of many UML partners. UML is organized by OMG (Object Management Group,
Inc.). OMG provides the framework by which different opinions can come together
to form a consensus. UML is a gradually complete document. In this thesis, we use
the version v1.4 of UML as criterion.

All definitions in this chapter are from [1}; [21] and [22] are also used as references.

24

3. Unified Modeling Language 25
3.1 Introduction to UML
Generally, UML offers the following diagram types:

e Class diagrams

Object diagrams

e Use case diagrams

e Component diagrams
e Deployment diagrams

e State machines

Activity diagrams

Sequence diagrams

Collaboration diagrams

These diagrams are different, but complement each other. They work together to
describe a system. These nine diagrams are divided into three groups: static structure

diagrams, dynamic structure diagrams and architecture structure diagrams.

Static Structure Diagrams describe the structure and functions of a system.

They include class diagrams, object diagrams and use case diagrams.

Dynamic Structure Diagrams describe the interactive operations of a system.
They include activity diagrams, collaboration diagrams, sequence diagrams, state ma-

chines and use case diagrams.

3. Unified Modeling Language 27

Object Diagram is a diagram that includes objects and their relationships at a
point in time. An object diagram may be thought of as a special case of a class
diagram or of a collaboration diagram [1].

There are three parts in a class diagram:
e The top compartment is class name.

e The middle compartment is attribute list.
The default syntax is:
visibility name: type-ezpression = initial-value {property-string}
The wvisibility is:
+ : public visibility
— : private visibility
: protected visibility
Another sign is:

/ : this attribute is read only.

e The last compartment is operation list.
The default syntax is:

visibility name (parameter-list) : return-type-expression {property-string}

Association is the semantic relationship between two or more classifiers that spec-

ifies the connections among their instances [1}.

3. Unified Modeling Language 35

N
fork_is_free(i)

fork. is_used(i)

\/
fork_is_taken(i)

fork. is_putdown(i)

Figure 3.4: Statechart diagram: Fork class

3. Unified Modeling Language 39

fork4:ForH
left w
phd:Philo phd:Philo
right k
g \\u:n
fork3:ForK ml
left right
ph2:Philo phS:Philo
right Aﬁ
fork2:ForK forkl:Fork
left phl:Philo right

Figure 3.5: Collaboration Diagram: the DP Problem

3.5 Final Solution of the DP Problem

3.5.1 Concurrent Transition in Statechart Diagram

In Subsection 3.3.3, we use statechart diagram to describe the Philosopher class
and the Fork class separately. In this part, we will combine them together. UML
statechart diagram provides us a powerful tool to describe the concurrent transition.

A concurrent transition is enabled when all the source states are occupied. It
is represented by a short heavy bar (synchronization bar) [1]. The synchronization
bar also can be used in Activity Diagram of UML.

In this thesis, the synchronization bar will be used to represent concurrent events.

ork.fr

3. Unified Modeling Language 42

3.6 Conclusion

We used an approach to develop a method in this chapter. This method can be used

to solve the concurrency problem by using UML methods.

1. After understanding the problem, the class diagram and object diagram can be

used to initially analyse the problem.

2. Then the statechart diagram can be used separately to analyse the status of

every class.

3. The final statechart solution can be produced using fork or join operations of

statechart diagram when there are simultaneous actions in the system.

4. The collaboration diagram can be used to specify the relationships and inter-
actions of different classes. It helps the statechart diagram to describe the

concurrent system.

4. Transforming UML to Coloured Petri Nets

fromAccount

depositFunds(..) :{>

toAccount

T-2 : Examplel

P1

S

T-2 : Example2

fromAccount

1)

depositFunds(..)

toAccount

P1

ORN(),

[i=0]

@

Figure 4.1: Examples of T - 2

47

Transidon RN Transitdon
Seang l:‘r/ o

T - 3: initial state

fidne = 1:3 'l:

T - 3: example 2

4. Transforming UML to Coloured Petri Nets 53

(guard 1) | P2
P3
[guard2]

/

[guard 2]
T8-1
eveat |
\ N
event2 eveat2
T8-2

Figure 4.2: Transition rules T8-1,T8-2

4. Transforming UML to Coloured Petri Nets

P2

hps

mtw confirmed

N

tentative

oom canceled

=)

T8-1-example

=)

T8-2-example

[i=0]

[i>0}

[i<0] ~(P2\

eJ6

N

costConfirmsOrder

0

costCancelsOrder

0

Figure 4.3: Transition rules 8-1,8-2: examples

54

4. Transforming UML to Coloured Petri Nets

-9

Transition 1

Transition 2

s3
Statechart Diagram CPN

Figure 4.4: Fork and Join — concurrent

56

4. Transforming UML to Coloured Petri Nets

So

S1

T2 T1 I

Synchronlzation

z)

S5

O O——C
O
o\
/)

TS

Figure 4.5: Mutual exclusion: the P/T-nets diagram

58

4. Transforming UML to Coloured Petri Nets

So
’ TO
.
S2 S1
A'. .I. | L] .
T2[1>0/ i=1-1 l I T1|[1>0]7i=1-1
S4 Synchronization §3
fml
.
T4 /i=141 T 3| 7/ 1=1+1
Sé6 SS

Figure 4.6: Statechart diagram: mutual exclusion

99

o]

L]

= [

=

s6
E
TS

UML

composit states
statechart diagram PO flat state machines
Transition Rules ?
4
CPN P/T-net reachability graph

4. Transforming UML to Coloured Petri Nets 63

S$1,S82
S3
(c) flat state machine

Transition 1
Transition 2

=

SO
: T
|
!
|
1
| s2
|
|
|
©
|

S3

(b) composite state

Transition 1
S1
N
Transition 2

S2

S0
s3
(a) statechart diagram

Transition 1
S1
Transition 2

Figure 4.9: Fork and Join: Transforming the statechart diagram into a flat state

machine

4. Transforming UML to Coloured Petri Nets

®

Transition 1

Transition 1

=

@1@ i

Transition 2
Transition 2
CPN Reachability Graph

Figure 4.10: Transforming the CPN to the reachability graph

4. Transforming UML to Coloured Petri Nets

So

T4

Figure 4.12: Mutual Exclusion: the Reachability graph

67

72

4. Transforming UML to Coloured Petri Nets

2aNPII0IJ UONBIJLIIA

NA

lunba 5y

ON

>

skjeun
wajqoad

JIsn

ydea3 uppsw
Anngqeyoeaa amsisy

t T
nau-u/d sns

Nsodwod

weadeip wedep

NdD -~ Euuu_u:.

oy
uopsues]]
(PO N4 PPOW TQ

Figure 4.14: The transition procedure

Chapter 5

The Reader and Writer Problem

This chapter will use another classic synchronization problem — the Reader and

Writer problem to illustrate the transition rules.

The Reader and Writer Problem There are n processes in an operating system
which may read and write in a shared memory. Several reading processes can be exe-
cuted concurrently, but when a process is writing, no other processes can be reading

or writing. This problem will be solved step by step by using the method explained

in Chapters 3 and 4.

5.1 TUML Solution

The UML solution includes: class diagram, object diagram and statechart diagram.

73

5. The Reader and Writer Problem

do/ waiting to read

)
Reader Writer
Local Processing Local Pry '3
I=n I:=n
RequestReading () Writing ()
Walting to Read Walting to Write

do/ waiting to write

EnterReading () EnterWriting ()
Reading © Writing
do/read do/ write
exit/ finish reading exit/ finish writing
ExitReading () ExitWriting ()
_ y

Figure 5.2: The statechart diagrams for the Reader and Writer classes

75

77

5. The Reader and Writer Problem

weageip ssep)

w+y=1

w-y=1

s w

uonezIuoIyIuUlg

wrex3erp jieyodje)g

g A -)

asn pasn
RS ETET) us-ix=jlo
tHr=y o= I+1=1 1-1=y

I=:1 u= 3y
bl jupsu
EEXT) 531

ZUONEZIUOIYIULG L (ngmﬁ:ozugw)

Figure 5.3: Synchronization Class: Class diagram and Statechart diagram

79

5. The Reader and Writer Problem

u+f=f
‘%= ;0 Jopppipg

u-{=('T+1=1/ (u=[)QTupppsivg

fo<i)

=112 %/ o] (3opupmnboy

3umum AP 0 Juppey
o=
f =
[uonezIuOIpULS TuopezIUOIPULG
Supeay
ped o) dupey

T+f={
‘1+3=% /0 opeayirg

T (=010 3opoymug Lj=1ga=x/ [gor)(Supsagiocboy

To<1]

=y

Figure 5.4: RW problem: Statechart Diagram

5. The Reader and Writer Problem 84

5.3 P/T-nets Solution

This section describes the common P/T-nets solution for the RW problem.
In Figure 5.6, there are five states for the reader and writer processes. Each

process is in one of these five states. They are:

e LP: Local processing

e WR: Waiting to read

WW: Waiting to write

R: Reading

o W: Writing

In the initial state, all processes stay in LP, LP contains n tokens.
There are other two states:

o Synchronization2: Key to control T1 and T2

e Synchronizationl: Key to control T3 and T4

The place Synchronization? contains 1 token. It is used to control which token

can go to the place WR or WW.

The place Synchronization! contains n tokens. It corresponds to the number of
processes which are allowed to read on the shared memory concurrently.

We also have set of transitions:
e T1: Request Reading

e T2: Request Writing

5. The Reader and Writer Problem

synchronizationl

TS
T6

T4

synchronization2

L
ww

Figure 5.6: P/T-nets solution for the RW problem

85

5. The Reader and Writer Problem 86
e T3: Enter Reading
e T4: Enter Writing
e T5: Exit Reading
e T6: Exit Writing

The comparison of the transition result and this common solution shows that they

are equivalent.

5.4 Verification Procedure

The RW problem and Mutual Exclusion (special case 2) are similar, except for the
presence of extra synchronizationl in the RW problem. The verification graph should

be very similar to Figure 4.14 and 4.15 but more complex. This verification procedure

is omitted in this section.

Chapter 6

Conclusions and Future Work

This chapter summarizes the contributions of this thesis, and suggests future research

in this filed.

6.1 Contribution

Transforming the UML diagrams to CPN or P/T-nets is a new field, with not many
papers on this topic. Most of papers give partial solutions, and focus on some aspects
of this field.

On the other hand, UML is a very large system. It includes 9 kinds of diagrams.

When faced with a concurrent problem, it is difficult to decide on what diagram to

use.

This thesis has presented a method to transform the UML diagrams into the CPN

diagrams. It has also provided a verification and given some examples to illustrate

the transition procedure.

The major contribution of this thesis is to provide a method to transform the

87

Chapter 6

Conclusions and Future Work

This chapter summarizes the contributions of this thesis, and suggests future research

in this filed.

6.1 Contribution

Transforming the UML diagrams to CPN or P/T-nets is a new field, with not many
papers on this topic. Most of papers give partial solutions, and focus on some aspects
of this field.

On the other hand, UML is a very large system. It includes 9 kinds of diagrams.
When faced with a concurrent problem, it is difficult to decide on what diagram to

use.

This thesis has presented a method to transform the UML diagrams into the CPN
diagrams. It has also provided a verification and given some examples to illustrate

the transition procedure.

The major contribution of this thesis is to provide a method to transform the

87

Bibliography

1]

2]
3]

[4]

[5]

[6]

OMG Unified Modeling Language Specification. The Object Management Group,
Inc.(OMG), September 2001, Version 1.4.

Rational Rose Help. Rational Software Corporation, 2002.05.

L. Baresi and M. Pezze, “On formalizing UML with high-level Petri Nets,” in
Lecture Notes In Computer Science: Concurrent Object-Oriented Programming
and Petri Nets, Advances in Petri Nets, vol. 201, pp. 276-304, Springer-Verlag,
2001.

L. Baresi, “Some Preliminary Hints on Formalizing UML with Object Petri
Nets,” Integrated Design and Process Technology, vol. IDPT-2002, June 2002.

B. E. Bauskar and B. Mikolajczak, “Abstract Node Method for Integration of
Object Oriented Design with Colored Petri Nets,” Technical Report, CIS-4-2004,
Computer and Information Science Department, University of Massachusetts at

Dartmouth, MA, 2004.

M. Beeck, “Formalization of UML-Statecharts,” vol. UML2001, pp. 406421,

Springer-Verlag, 2001.

89

http://pigseye.kennesaw.edu/

