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Abstract

UML is a graphically based language to specify, visualize, construct, and document 

the requirements of software systems. UML is defined informally. We need a well- 

defined semantic base for better analysis and application.

Place/Transition nets (P/T-nets) and Coloured Petri Nets are two of the most 

useful languages for modelling of systems containing concurrent processes. P/T-nets 

axe low-level Petri nets, whose tokens contain very simple information.

Coloured Petri Nets (CP-nets) are high-level Petri nets. Each token of CP-nets 

can carry many attributes. CP-nets have a well-defined semantics allowing formal 

description.

The main purpose of this thesis is to proposed a set of transitions rules, which 

can transform UML graphs into the Coloured Petri Nets. These rules can be used to 

describe and analyse concurrent systems. The verification scheme and some examples 

to support the method axe provided.
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Chapter 1

Introduction

This chapter provides a brief introduction to the background, purpose and outline of 

this thesis.

1.1 Background

1.1.1 Petri Nets and Coloured Petri Nets

Petri Nets were developed in 1962 by Carl Adam Petri, as a tool for modeling and 

analyzing processes [23]. In principle, Petri Nets are graphic tools with strong math­

ematical basis.

There are various types of Petri nets. In this thesis, a kind of Petri nets called 

Place/Transition nets (P/T-nets) [23] will be used. P/T-nets are one of the most 

used and well-known Petri Nets.

P/T-nets are graphical and mathematical modelling tools, which include places, 

transitions and arcs. P/T-nets are low-level Petri nets, whose tokens contain very 

simple information. In a large concurrent system, the solution of P/T-nets may

1



1. Introduction 2

become very large and inaccessible.

One of the extensions of P/T-nets is Coloured Petri Nets (CP-nets) [18]. CP-nets 

are high-level Petri nets. Each token of CP-nets can carry many attributes. CP-nets 

allow a large system to be specified in a compact way.

1.1.2 UML

This section uses [11] as reference.

Identified object-oriented modeling languages appeared in the 70’s and are de­

veloped in the 80’s and 90’s. In 1994, there were more than 50 kinds of identified 

modeling languages. It is difficult to choose a language which can completely satisfy 

most of the users.

In the middle of the 90’s, incorporating different techniques becomes new trend. 

In 1994, Grady Booch and Jim Rumbaugh of Rational Software Corporation began 

to develop the Unified Modeling Language (UML).

UML is a graphically based language to specify, visualize, construct, and document 

the requirements of software systems. It uses mostly graphical notations to specify 

the design of software projects.

The development of UML was a co-operative effort, which combined the work of 

many UML partners. UML is organized by OMG (Object Management Group, Inc.). 

OMG provides the framework by which different opinions can come together to form 

a consensus.

UML 1.0 was published by OMG in 1996. It incorporates contributions from many 

partners such as Digital Equipment Corp., HP and IBM. This thesis uses the version 

1.4 of UML, which was published in September 2001.
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1.1.3 Formalized UML

UML is defined informally. We need a well-defined semantic base for better analysis 

and application. This can be done in two ways.

First way is to define a precise UML semantics using general tools, as for instance, 

Z [9, 10], CASL [14], Linear Temporal Logic [20], etc.

The second way is to transform UML to some specific model as automata, Petri 

Nets, etc [3, 25]. One possibility is to use Object Petri Net Model (OPN). Related 

papers on this approach are [4, 5, 25]. Another possibility is to use Coloured Petri 

Nets (OPN). The well-defined syntax and semantics of CPNs can be used to specify 

UML solutions.

1.2 Purpose

UML includes nine kinds of diagrams.

For concurrent systems, choosing suitable diagrams and building sets of corre­

sponding transition rules are very challenging and non-trivial jobs. The most popular 

approaches are the activity diagrams [19] and statechart diagrams [6, 13]. In this the­

sis, we try a new approach and use the class diagram, object diagram, collaboration 

diagram and statechart diagram to describe a concurrent system.

The purpose of this thesis is to propose a set of transition rules to transform UML 

graphs to Coloured Petri Nets. These rules will be used to describe and analyse con­

current systems. The verification scheme and some examples to support the method 

are provided.

It should be emphasized that it is not necessarily true that our method is the best 

method for specifying concurrent systems. Some may argue that we should not start
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with. UML after all. However, UML specification are very popular, and any result 

that helps to verify their properties seems to be worth to explore.

1.3 Outline

Chapter 2 introduces concurrency, Petri Nets and Coloured Petri Nets by the classic 

Dining Philosopher (DP) problem .

Chapter 3 introduces some UML concepts and definitions. It uses an example of 

the DP problem to explain how to specify a concurrent problem by UML.

Chapter 4 is the main part of this thesis. This chapter proposes a set of transition 

rules, which transform UML diagrams to CPN diagrams. It also gives some examples 

to illustrate them.

Chapter 5 discusses another classic concurrent problem — the Reader and Writer 

problem.

Chapter 6 summarizes the contribution and future work of this thesis.



Chapter 2

Concurrency, Petri Nets and

Coloured Petri Nets

This chapter provides a brief introduction to concurrent systems, Petri Nets and 

Coloured Petri Nets.

2.1 Concurrent Systems

In this section, some definitions are introduced first. All these definitions come from 

[16].

Sequential Systems: Set of actions/events are executed in a sequential manner.

Concurrent Systems: Actions/events are executed in a non-sequential manner.

Simultaneity: Two actions are executed simultaneously.

A possible definition of simultaneity is: There are two actions a and b.

5
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a, β : Events —> Time

α (a): the beginning of a

β(a): the end of a

a and b are simultaneous <=> α(a) < β(b) or α(b) < β(a), i.e, if a and b are 

“overlap”. The general axiomatic definition of simultaneity is problematic, however 

in most of specific applications, it is rather obvious, what simultaneous means.

Concurrency: Two actions a and b are concurrent if the orders of executions: 

ab, ba, a \ b lead to the same result, and their choice is non-deterministic. “|” 

means “simultaneous execution if allowed”.

Many tools are used to solve the concurrent problems, such as Calculus of Commu­

nicating System (CCS) [24], Communicating Sequential Processes (CSP) [8], Concur­

rent Systems (COSY) [15] and others. In this thesis, we use Petri Nets and Coloured 

Petri Nets to analyse a concurrent system.

2.2 Petri Nets

Petri Nets and Coloured Petri Nets are two of the most useful languages for modelling 

of systems containing concurrent processes. There are many books that introduce 

Petri Nets and Coloured Petri Nets. In this chapter, [16, 17, 18, 23, 26] are used as 

references.

2.2.1 Informal Introduction to P/T-Nets

Ordinary Petri nets, which are Petri nets without colours, are low-level nets. In this 

section we introduce a kind of Petri nets called Place/Transition nets (P/T-nets).
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P/T-nets are one of the most used and well-known Petri nets.

P/T-nets are graphical and mathematical modelling tools, which include places, 

transitions and arcs. A P/T-net can be represented as a directed graph.

2.2.2 Formal Introduction to P/T-nets

A P/T-net can be formally defined as follows [17].

Let Z, N and [A —> B] denote integers, nonnegative integers, and total functions 

from A to B respectively.

A P/T-net is a 4-tuple PTN = (P, T, W, M0). Here,

• P is a set of places. Places are indicated by circles or ellipses.

• T is a set of transitions.

Transitions are represented by rectangles, and usually, but not always, represent 

actions.

• P_T = O,P_T≠O.

• W ϵ [P x T —> Z] is a weight function. The number of tokens removed or added 

is specified by W.

• M is a marking function, where M : P --> N. M0 is the initial marking.

A marking of PTN is a function in [P —> N]. A place p is a condition for a 

transition t if and only if W(p,t) ≠ 0. It is a precondition if and only if W(p,t) < 0 

and a postcondition if and only if W(p, t) > 0.
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Token Each place contains a dynamically changing number of small black dots, 

which are called tokens [18].

Places contain tokens. Transitions may fire thereby removing tokens from their 

preconditions and adding tokens to their postconditions. The number of tokens re­

moved or added are specified by W. Transitions may fire concurrent (simultaneous) 

if and only if they involve disjoint sets of tokens [17].

2.2.3 Example of P/T-nets: the DP Problem

In this chapter, a widely known synchronization problem: the Dining Philosopher 

problem will be used as an example to illustrate some basic concepts of P/T-nets and 

CP-nets.

Dining Philosopher Problem There are five philosophers sitting around a cir­

cular table. They alternately think and eat. To eat, a philosopher needs two forks. 

However, there are only five forks at this table, and each philosopher is only allowed 

to use the two forks nearest to him. Obviously two neighbours can not eat at the 

same time.

The philosopher system can be described by a P/T-net. In our solution, we assume 

each philosopher takes and puts down two forks simultaneously.

Why we need simultaneity? Suppose philosophers are allowed to take left fork 

first, right fork second. If five philosophers want to eat at the same time, everyone 

takes left fork. Then all five forks are taken, and there is no free fork left. Everyone 

takes a fork and is waiting for another, and nobody can eat. Obviously this is a 

deadlock.

The definition of simultaneously is given in Section 2.1. In our solution, we use
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simultaneity to avoid deadlock. For more details, see reference [16].

Figure 2.1 is a general solution for the DP problem using P/T-net [16].

Explaining this solution will give more details.

• Tokens: Each token has two attributes: type and number. Hence philosopher1 

and philosopher2 are different tokens. They should be described separately. 

These tokens are represented by black dots in places think1, think2, ... thinks. 

The number of each token is 1.

• Places: From Figure 2.1, we can see that each philosopher has two places: think 

and eat. Each fork has one place free_fork.

• Transitions: Each philosopher has two actions: take forks and put down forks.

• Arcs: Arcs are associated with transitions and places. The arcs with arrowheads 

indicate the start and end points of all processes.

• Marking: The initial markings are all places with black dots in Figure 2.1, and 

the token number for each of the places is 1.

• Weight: No number appeares on arcs. This means that the weight function is 

1.

At the beginning five forks are free, and five philosophers are in the think place. 

This is called initial marking M0. When a philosopher wants to eat, he must be 

sure that both left and right forks closest to him are available. Then he takes two 

forks and goes to the eat place. After he finishes eating, he puts down the two forks 

synchronously and goes to the think state.

From Figure 2.1, we can see that every philosopher and every fork is a token 

different from the others. It is necessary to describe the status of each philosopher and



2. Concurrency, Petri Nets and Coloured Petri Nets 10

Figure 2.1: The DP problem: P/T-net solution
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each fork since each is a different token, even though many processes are similar. Since 

the status of each fork and philosopher must be described, the diagram becomes very 

large and contains redundant information. This kind of problem can cause trouble 

for a small system, and may be catastrophic in a large system, such as a case with 

ten philosophers and forks.

Coloured Petri Nets can be used to solve this problem.

2.3 Coloured Petri Nets

A data value — called the token colour can be attached to each token. The data value 

may be of arbitrarily complex type. This kind of Petri nets are called Coloured Petri 

Nets. All definitions in this section are taken from [18].

2.3.1 Hierarchical CP-net and Non-hierarchical CP-net

The basic idea behind hierarchical CP-nets is to allow the modeller to construct 

a large model by combining many small CP-nets into a large one. It is same as that 

a large program consists of a set of modules and subroutines. After we have a set of 

non-hierarchical CP-nets, the next task is to combine them into a large hierarchical 

CP-net. The relationship between hierarchical CP-net and non-hierarchical CP-net 

is that each hierarchical CP-net can be translated into a behaviorally equivalent non- 

hierarchical CP-net and vice versa [18].

This thesis considers the Non-hierarchical CP-net only.
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2.3.2 Informal Introduction to CP-nets

Coloured Petri Nets (CP-nets) are high-level nets. They have a graphical 

representation and well-defined semantics allowing formal description.

A CP-net consists of three parts: the net structure, the declarations and the net 

inscriptions.

1. Net Structure It includes places, transitions and arcs.

2. Declaration It includes colour sets, functions, variables and constants. It can 

be used in net inscriptions. In this thesis, as in [18], CPN ML is used to describe 

the declarations. The declaration is surrounded by a box with dashed lines.

The declaration includes:

• colour sets Each colour set declaration indicates a new colour set, whose 

elements are called colours.

As an example, the following colour sets can be defined by: 

colour A = int with 1..10 (all integers between 1 and 10) 

colour Season = with Spring | Summer | Winter | Autumn

• functions Each function declaration defines a function. The function takes 

a list of arguments and returns a result. The types for these arguments and 

returns are either a colour defined in colour sets or other types recognized 

by CPN ML, such as bool.

For examples, 

fun Fac(n) = if n> 1 then n * Fac(n — 1) else 1
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• variables Each variable declaration defines a list of variables, with a type 

which must be defined in colour set.

For example the variables can be defined like this:

var x,y : Season

• constants Each constant declaration defines a constant, with a type which 

is either already defined in colour sets or in another type recognized by 

CPN ML.

For example, 

val n= 4 

declares a constant with type int.

3. Net Inscription contains various text strings which are attached to the ele­

ments of the net structure. Each net expression consists of variables, constants 

and functions.

In addition to the basic concepts above, the following concept is also needed.

We see the simple expression:

S1 = 2T + 3P.

T and P are different transitions. The coefficients 2 and 3 indicate that how many 

times T and P are executed. The sign “+” is a binding sign, which means that we can 

have a step where both T and P occur synchronously. In other words, two transitions 

can be concurrently enabled if there exist bindings for the variables.

2.3.3 Formed Definition of CP-nets

All definitions in this part are taken from [18].
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Before Coloured Petri nets are formally defined, we need a well-defined semantics 

first.

• The elements of a type, T. The set of all elements in T is denoted by the type 

name T itself.

• The type of a variable v is denoted by Type(v).

• The type of an expression expr is denoted by Type(expr).

• The set of variables in an expression expr is denoted by Var(expr).

• A binding of a set of variables V, associating with each variable v ϵ V an 

element b(v) ϵ Type(v).

• The value obtained by evaluating an expression, expr, in a binding, b - denoted 

by expr<b>. Var (expr) is required to be a subset of the variables of b, and the 

evaluation is performed by substituting for each variable v ϵ Var(expr) the 

value b(v) ϵ Type(v) determined by the binding.

• An expression without variables is said to be a closed expression. It can be 

evaluated in all bindings, and all evaluations give the same value, which we 

often shall denote by the expression itself. We simply write “expr" instead of 

the more pedantic “expr<b>".

• B denotes the boolean type: {false, true}

• When Vars is a set of variables, we use Type(Vars) to denote the set of types 

{Type(v) | v ϵVars}.
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A non-hierarchical CP-net is a tuple CPN = (Σ, P, T, A, N, C, G, E, I) satisfying 

the requirements below.

1. Σ is a finite set of non-empty types, called colour sets.

2. P is a finite set of places.

3. T is a finite set of transitions.

4. A is a finite set of arcs such that:

P_T = P_A = T_A = 0.

5. N is a node function, N : A—> (P x T) U (T x P). TV is a total function.

6. C is a colour function, C : P —> Σ. C is a total function.

7. G is a guard function. It is defined from T into expressions such that:

Vt ϵ T: [Type(G(t)) = B A Type(Var(G(t))) < Σ].

8. E is an arc expression function. It is defined from A into expressions such 

that:

Va ϵ A : [Type(E(a)) = C(p(a))MS ^Type(Var(E(a))) < Σ], 

where p(a) is the place of N(a).

9. I is an initialization function. It is defined from P into closed expressions 

such that

Vp ϵ P:[Type(I(p)) = C(p)MS].
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To describe the behaviour of non-hierarchical CP-nets, we introduce some defini­

tions.

Vt ϵ T : Var(t) = {v|v ϵ Var(G(t)) V a ϵ A(t) : v ϵ Var(E(a))}.

V(x1,x2) ϵ (P x T_T x P) : E(x1,x2) = ΣaϵA(x1,x2) E(a).

Var(t) is called the set of variables of t while E(x1, x2) is called the expression 

of (x1,x2).

Definition 2.1: A binding of a transition t is a function b defined on Var(t), such 

as:

1. Vv ϵ Var(t) : b(v) ϵ Type(v).

2. G(t) <b>

By B(t) we denote the set of all bindings for t.

A binding of a transition t is a substitution that replaces each variable of t with 

a colour. It is required that each colour is of the correct type and that the guard 

evaluates to true.

Definition 2.2: A token element is a pair (p, c) where p ϵ P and c ϵ C(p), while 

a binding element is a pair (t, b) where t ϵ T and b ϵ B(t). The set of all token 

elements is denoted by TE, while the set of all binding elements is denoted by BE.

A marking is a multi-set over TE while a step is a non-empty and finite multi-set 

over BE. The initial marking M0 is the marking which is obtained by evaluating 

the initialization expressions:

V(p,c) ϵTE:M0(p,c) = (I(p))(c).

The sets of all marking and steps are denoted by M and Y, respectively.
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Definition 2.3: A step Y is enabled in a marking M if and only if the following 

property is satisfied:

Vp ϵ P: Σ(t,b)ϵY E(p,t)<b> < M(p).

Let the step Y be enabled in the marking M. When (t,b) ϵ Y, we say that t 

is enabled in M for the binding b. We also say that (t, b) is enabled in M, and so 

is t. When (t1, b1), (t2, b2) ϵ Y and (t1, b1) ≠ (t2,b2) we say that (t1, b1) and (t2,b2) 

are concurrently enabled, and so are t1 and t2 When |Y(t)| > 2 we say that t is 

concurrently enabled with itself. When Y (t, b) > 2 we say that (t, b) is concurrently 

enabled with itself.

When a step is enabled it may occur, and this means that tokens are removed 

from the input places and added to the output places of the occurring transitions. 

The number and colours of the tokens are determined by the arc expressions.

Definition 2.4: When a step Y is enabled in a marking M1 it may occur, changing 

the marking M1 to another marking M2, it is defined by:

Vp ϵ P: M2(p) = (M1(p) - Σ(t,b)ϵY E(p,t)<b>) + Σ(t,b)ϵY E(t,p)<b>.

The first sum is called the removed tokens while the second is called the added 

tokens. Moreover, we say that M2 is directly reachable from M1 by the occurrence 

of the step Y, which we also denote: M1[Y > M2.

From the definitions above we can see that CP-nets provide precise and well- 

defined semantic base to describe concurrent systems. There are some other defini­

tions and rules of CP-nets. For detailed explanations, see [18].
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2.3.4 Coloured Petri Nets and P/T-nets

P/T-nets are low-level Petri nets, while CP-nets are high-level Petri nets. The dif­

ference between the low-level nets and the high level nets is similar to the difference 

between assembly language and the modern programming language [18].

The low-level net has a very simple token. This kind of token has only two 

attributes: type and token number. In high-level Petri nets, each token can carry 

many attributes. This means that the token carries more complex information or 

data that can be used to describe a complex system [18].

A Coloured Petri net can be transformed to a P/T-net. This is done by replacing 

each place p with a set of places C(p) (one for each kind of tokens p may hold) and 

replacing each transition t with a set of transitions C(t) (one for each way in which 

t may fire).

We can also construct a Coloured Petri net from a P/T-net. However, the con­

structed net is not unique. Given a P/T-net, each partition of the places together 

with each partition of the transitions determine a Coloured Petri net. At the two 

extremes we obtain either a Coloured Petri net with the same number of places and 

transitions as the P/T-net or a CP-net with only one place and one transition. In the 

first case, each place and each transition have attached a set of coloures with only 

one element. Tn the second case, the single place (transition) has a colour for each 

place (transition) in the P/T-net. For a detailed explanation see [17].

2.3.5 Example of CP-net: the DP Problem

Figure 2.1 describes the DP system by a P/T-net. Next we can transfer this P/T-net 

into a CP-net [17].
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First, we can replace the five places think1, think2,..., think5 by a single place 

“think", which can carry up to five tokens. To distinguish these philosopher tokens, 

we attach to “think" a set of colours PH = {ph1,ph2, ...,ph5}, and we demand that 

all tokens on “think" must be labelled by an element of PH. Markings of “think" are 

functions in PH —> N. They are represented as formal sums over PH. For example, 

m(think) = ph1+ph2+ph3 represents that philosopher1, philosopher2,philosopher3 

are thinking while philosopher4 and philosopher5 are not.

Second, same as the PH, the places eat1, eat2,..., eat5 are replaced by a single 

place “eat" with PH as the set of possible colours.

Third, free_fork1,..., free_fork5 are replaced by a single place “freeforks" with 

FORK = {f1, f2, f3, f4, f5} as the set of possible colours.

Fourth, to replace the five transitions ph1takefork,phltakefork, ...,ph5takefork 

into a single transition “takeforks", we attach to the transition “takeforks" the set 

of colours, PH, representing the individual philosophers.

x,LEFT and RIGHT are functions from the set of colours PH attached to 

“takeforks" into the sets of colours attached to its conditions: “think", “eat", and 

“freeforks". The function indicate that a firing of “takeforks", with colour v € PH, 

removes a token with colour x(v) ϵ PH to “eat", and remove two tokens from 

“freeforks" with colours LEFT(v) ϵ FORK and RIGHT(v) ϵ FORK respec­

tively. x is the identity function on PH. LEFT and RIGHT map each philosopher­

colour into the colour of its left and right fork respectively.

Figure 2.2 is the part of the philosopher net after a folding where some places and 

some transitions are unified.

Finally, the transitions ph1putdown forks, ...,ph5putdownforks are replaced by a 

single transition “put down forks" with PH as the set of possible firing colours.
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Figure 2.2: part of the DP problem

Figure 2.3 is the final CP-net solution for the Dining Philosopher problem [16].

Obviously, Figure 2.3 is much simple and more concise than Figure 2.1.

We give a more detailed explanation of Figure 2.3:

1. In the Declaration part:

• There are two colour sets: Colour: set PH and Colour set FORK.

PH has 5 colours: pl,p2,p3,p4,p5.

FORK also has 5 colours: f1, f2, f3, f4, f5.

• One variable x — philosopher id is defined.

• There are two functions: LEFT(x) and RIGHT(x). These two functions 

define:

‘x’ is a variable;

‘p1, ..p5, f1, ..f5’ are constants;

Each function has five clauses, which are separated by “ | ”.
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colour PH = with ph1 / ph2 / ph3 / ph4 / ph5

colour FORK = with f1 / f2 / f3 / f4 / f5

var x: PH

fun LEFT x = case x of ph1 => f2 / ph2 => f3 /
ph3 => f4 / ph4 => f5 / 

ph5 => f1

fun RIGHT x = case x of ph1 => f1 / ph2 => f2 / 
ph3 => f3 / ph4 => f4 / 

ph5=>f5

Figure 2.3: The DP problem: CP-net solution
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‘LEFT(x)' is equivalent to

“if x=phl then f2, else if x=ph2 then f3, ..”.

2. Net Structure This figure consists of 3 places, two transitions and sets of arcs.

3. Net Inscriptions are strings attached to the places, transitions and declara­

tions.

The initial places are PH_think and Fork_free_forks, they contain 10 colour 

tokens there initially.

Figure 2.3 is the initial state of the DP problem. Figure 2.4 illustrates the result 

when philosopher1 and philosopher3 fire synchronously.

This chapter describes some basic concepts of P/T-nets and CP-nets. Chapter 4 

will provide a more detailed introduction to CP-nets.



2. Concurrency, Petri Nets and Coloured Petri Nets 23

FORK 
free forks

Firing Occurrence

(take forks, x = ph1) + (take forks, x = ph3)

FORK 
free forks

Figure 2.4: Ph1 and Ph3 fire synchronously



Chapter 3

Unified Modeling Language

In this chapter, we introduce some basic concepts of UML. We also provide our UML 

solution for the DP problem. Up till now, some methods are proposed to describe 

the DP problem by UML, such as [4, 7], etc. Most of them give partial solutions. In 

this thesis, we attempt to give a complete UML solution for the DP problem.

Unified Modeling Language (UML) is a graphical language. It provides a stan­

dard way to write blueprints of a system, including conceptual things such as business 

processes and system functions as well as concrete things such as programming lan­

guage statements, database schemas, and reusable software components [1].

The development of UML was a co-operative effort, which combined the work 

of many UML partners. UML is organized by OMG (Object Management Group, 

Inc.). OMG provides the framework by which different opinions can come together 

to form a consensus. UML is a gradually complete document. In this thesis, we use 

the version vl.4 of UML as criterion.

All definitions in this chapter are from [1]; [21] and [22] are also used as references.

24
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3.1 Introduction to UML

Generally, UML offers the following diagram types:

• Class diagrams

• Object diagrams

• Use case diagrams

• Component diagrams

• Deployment diagrams

• State machines

• Activity diagrams

• Sequence diagrams

• Collaboration diagrams

These diagrams are different, but complement each other. They work together to 

describe a system. These nine diagrams are divided into three groups: static structure 

diagrams, dynamic structure diagrams and architecture structure diagrams.

Static Structure Diagrams describe the structure and functions of a system. 

They include class diagrams, object diagrams and use case diagrams.

Dynamic Structure Diagrams describe the interactive operations of a system. 

They include activity diagrams, collaboration diagrams, sequence diagrams, state ma­

chines and use case diagrams.
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Architecture Structure Diagrams classify a system according to the running 

and executing components. They include component diagrams and deployment dia­

grams.

In practical applications, not every diagram is used to solve a problem. Probably 

40% of UML diagrams would describe 98% of design specifications [21]. The choice 

of suitable diagrams is a very important step when using UML to solve a problem.

Static structure diagrams use class diagrams and object diagrams only. Use case 

diagrams are not considered in this thesis.

In dynamic structure diagrams, sequence diagrams and collaboration diagrams 

are equivalent, and they can be equally transformed each other. Activity diagram 

methods have already been discussed in [19], and will not be discussed here. The 

architecture structure diagrams are also beyond the scope of this thesis.

This thesis uses class diagrams, object diagrams, statechart diagrams and collabo­

ration diagrams to solve concurrency problems.

This chapter uses the Dining Philosopher Problem to illustrate how to use these 

diagrams to specify a practical problem. The next several sections will describe these 

diagrams in detail.

3.2 Class Diagram and Object Diagram

3.2.1 Class Diagram and Object Diagram of UML

First, we consider class diagrams and object diagrams.

Class Diagram is a graph of classifier elements joined by their different static 

relationships [1]. It mainly includes class name, attributes and operations.



3. Unified Modeling Language 27

Object Diagram is a diagram that includes objects and their relationships at a 

point in time. An object diagram may be thought of as a special case of a class 

diagram or of a collaboration diagram [1].

There are three parts in a class diagram:

• The top compartment is class name.

• The middle compartment is attribute list.

The default syntax is:

visibility name: type-expression = initial-value {property-string}

The visibility is:

+ : public visibility

— : private visibility

# : protected visibility

Another sign is:

/ : this attribute is read only.

• The last compartment is operation list.

The default syntax is:

visibility name (parameter-list) : return-type-expression {property-string}

Association is the semantic relationship between two or more classifiers that spec­

ifies the connections among their instances [1].
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In this thesis, only binary association is considered, which is the connection be­

tween two classes.

An association provides a pathway for communication. The communication can 

be between classes or interfaces. Associations are the most general of all relationships 

and consequentially the most semantically weak [2].

There are two kinds of associations. A uni-directional association is represented 

by a single arrow at one end of the association. The end with the arrow indicates 

who or what is receiving the communication. A bi-directional association represents 

communications between two directions.

There are many parameters in an association relationship. Only two of them are 

introduced in this thesis for they will be used in next part.

Multiplicity specifies the range of allowable cardinalities that a set may assume. 

The cardinality field specifies the number of expected instances of the class. For 

example 1 represents one instance, 0..* represents from 0 to many instances.

A role can be thought of as the “face” an element presents to the world at a 

particular time. The role identifies a specific behavior in a particular context at 

a specific time. Roles can be static (e.g., an association end) or dynamic (e.g., a 

collaboration role).

3.2.2 Class Diagram and Object Diagram of the DP Problem

In the Dining Philosopher Problem, we define two classes: class Philosopher and 

class Fork. Figure 3.1 describes the class diagrams for this problem.
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Philosopher Fork
+ id : Integer = 1..5
- is_free : Boolean = 1- i: Integer = 1..5

+ take_forks() 
+ put_down() + is_taken()

+ is_putdown()

Figure 3.1: Class diagrams for the Dining Philosopher Problem

Philosopher Class Diagram In the Philosopher class diagram, every philoso­

pher has an id attribute. The values for id are integers from 1 to 5, which means 

that there are five philosophers totally.

In the Philosopher operation list, there are two operations: take_forks() and 

put_down().

Fork Class Diagram In the Fork class diagram, every fork has two attributes: 

an id number and a fork free status: is_free. The initial values for id are integers 

from 1 to 5, which means that there are 5 forks totally. Another attribute is_free is 

to render the fork status: free or not. The data type for is_free is boolean. In this 

thesis, we use 1 to represent “true” and 0 to represent “false”. The initial values axe 

1, which means that all forks are free at the beginning.

We define two operations in this class: is_taken() and is_putdown(). The attribute 

is_free will be operated by using only these two operations.

Association In the DP problem, the association between two classes is represented 

in Figure 3.2.

First, this is a uni-directional association, sends communication message from 

Philosopher class to Fork class. The role identifies are left and right. This role
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Philosopher
- i: Integer = 1..5 +left, +right

Fork
+ id : Integer = 1..5 
- is free : Boolean = 1

+ take_forks() 
+ put_down()

2 + is_taken()
+ is_putdown()

Figure 3.2: Philosopher problem: the associations between two classes

specifies a specific behavior and it is a dynamic collaboration role. The related col­

laboration roles can be found in Figure 3.5. This role gives the position information 

about philosophers and forks.

Multiplicity is 2, which means that each philosopher uses two forks each time.

Next, we will discuss two operations in Fork class in more details.

In Chapter 2, we assume each philosopher takes and puts down the two forks 

simultaneously. Thus in these two operations, the input parameters are i.left and 

i.right. Integer i is the philosopher id, i.left and i.right are fork id’s, which we 

can get from Figure 3.5. Next we use the operations is_taken() and is_putdown() to 

change the fork statuses.

We define is_taken() and is_putdown() as follows.

is_taken(left, right) {

left.is_ free = 0;

right.is_free = 0;

}

The operation is_putdown() is defined:
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is_putdown(left, right) {

left.is_free = 1;

right.is_free = 1;

}

We must guarantee atomicity of these two actions.

3.3 Statechart Diagram

3.3.1 Statechart Diagram of David Harel

The statechart diagram is developed by David Harel in 1987. Several variants of stat­

echarts have been introduced, and there have also been several attempts to support 

statecharts with precise semantics. Harel himself has published different versions of 

statechart semantics, for example [12, 13]. UML has adopted statecharts and has 

given them semantics that differs from Harel’s in several points.

For example, the definition of state in Harel’s statechart is: “there are three types 

of states in a statechart: OR-states, AND-states and basic states. The state at 

the highest level is called root”. “Each state can be associated with static reactions 

(SRs)”, etc. These concepts only appear in Harel’s statechart, not in UML statechart.

However, they are similar in many points, such as “The general syntax of an 

expression labeling a transition in a statechart is "e[c]/d," where e is the event that 

triggers the transition; c is a condition that guards the transition from being taken 

unless it is true when e occurs; and a is an action that is carried out if and when the



3. Unified Modeling Language 32

transition is taken” [13]. This definition is similar as the transition definition in UML 

statechart diagram.

Detailed introduction can be found in Harel’s papers [12, 13]. In the next section, 

we introduce the definition of UML statechart diagrams. In this thesis, we only use 

UML statechart diagrams.

3.3.2 Statechart Diagram of UML

A statechart diagrams is a graph that represents a state machine. It specifies the 

sequence of states that an object or an interaction goes through during its life in 

response to events or actions [1].

The statechart diagram is used for describing the behavior of class instances. 

Usually this diagram is used to describe the class that has many interesting states. 

This thesis uses this diagram to describe the lifetime of every class.

The statechart diagram is comprised by the states, events and transitions.

A state has two parts: Name compartment and Internal transitions compartment.

The internal transitions compartment includes a list of internal actions or activities 

that are performed while the element is in the state [1]. UML reserves some special 

labels as below:

• entry

This label identifies an action which is performed when the object enters a state.

• exit

This label identifies an action which is performed when the object exit from a

state.
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• do

This label identifies an ongoing activity, which will be performed by the object 

from the time it enters the state until it exits.

An event is an important occurrence that can trigger a transition [1]. It includes 

different types, such as after(5 seconds'), when(), etc.

A signal or call event has the format:

event — name(parameter list)

Another important concept is transition.

Transition is a relationship between two states. It represent the fact that an object 

in the first state will perform certain specified actions and enter the second state when 

a specified event happens, and specified conditions are satisfied [1].

A transition can be labelled by a transition string:

event — name()[guard — condition]/action — expression

The guard — condition is a boolean expression. It is executed if and when the 

transition fires. It can be an operation, an attribute or a link of the owning objects.

3.3.3 Statechart Diagram of the DP Problem

Figure 3.3 is a statechart diagram for the Philosopher class. Figure 3.4 is a state­

chart diagram for the Fork class.

Figure 3.3 shows that the Philosopher class has two states: think and eat. Ini­

tially there are five philosophers staying at the think state. These five philosophers 

and their relationships with five forks are represented by Figure 3.5. When philoso­

phers are in the think state, they do only one action: think. The label do means the 

philosophers will keep thinking until they leave this state.
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Figure 3.3: Statechart diagram: Philosopher class

philosopher.think(i)
[ i.left.is_free=O or i.right.is_free=O ]

philosopher.take_forks(i.right, i.left) 
[i.left.is_free=1 and i.right.is_free=1]

philosopher.put down(i.right, i.left)
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fork_is_free(i)

fork. is_used(i)

fork_is_taken(i)

fork. is_putdown(i)

Figure 3.4: Statechart diagram: Fork class
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When a philosopher i wants to eat, he requires the left and right forks. He keeps 

checking the statuses of i.left and i.right. If one of these two forks is not free, then 

he will remain at the think state. A transition to self is used on this state to represent 

this situation. The guard condition for the transition to self is:

[i.left.is_free = 0] or [i.right.is_free = 0].

When both his left and right forks are free, then the event 

philosopher.take_forks(i) can be fired. The guard-conditions for event 

philosopher.take_forks(i) is:

[i.left.is_free = 1] and [i.right.is_free = 1]

When event philosopher.take_forks(i) is fired, the Philosopher class sends an 

event to the Fork class: fork.is_taken(left, right). We defined these two operations 

in Section 3.2.2. The Fork class will change i.left.is_free and i.right.is_free from 1 

to 0.

After the event philosopher.take_forks(i) is performed, the object philosopher(i) 

goes into another state: eat. When he finishes eating, he puts down forks, sends 

events fork.is_putdown(i.right, i.left) to the Fork class. The Fork class sets the 

forks to be free again. Then he goes back into the think state. This is the whole 

procedure for the Philosopher class.

Figure 3.4 is a statechart diagram for the Fork class. There are two states 

in the fork class: fork-is_free and fork-is_taken. Evens fork.is_used() and 

fork.is_putdown() are used to change the fork statuses.

In this section, we consider the statechart diagram for the Philosopher class and 

the Fork class separately. This is not the final solution. This step helps us to analyse 

the DP problem.
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3.4 Collaboration Diagram

3.4.1 Collaboration Diagram of UML

A collaboration diagram describes a set of objects, their relationships and their 

interactions. An interaction is a sequence of messages that are exchanged between 

the participating objects [1].

The collaboration diagram is part of the object interaction diagram. The object 

interaction diagram includes a collaboration diagram and a sequence diagram. It 

describes the dynamic structure of the objects, and emphasizes the communication 

structures of different objects in the system.

Compared with the statechart diagram, the collaboration diagram does not focus 

on the details of states. Instead, it emphasizes the messages (stimulus) between states.

In the state specification, normally only the name compartment is shown. The 

attribute and operation compartments may only be shown when needed.

The message is a very important part in this diagram. The default message syntax 

is:

predecessorsequence — expressionreturn — value := message — namearg — list 

predecessor The default syntax means that the message is not enabled until all of 

the communications whose sequence numbers appear in the list have occurred.

sequence-expression The order of message is rendered with a sequence of numbers, 

usually beginning with number 1. The sequence of numbers helps the reader know 

the sequence of the message. If the sequence of message is very simple and obvious, 

the sequence numbers do not need to be given in the diagram.

The sequence-expression is a dot-separated list of sequence-term followed by a

colon. Each term has the following syntax:
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[interger\name] [recurrence]

The recurrence specifies conditional or iterative execution.

There are three kinds of messages which are usually found in this diagram: syn­

chronous, asynchronous and call-back messages [1].

synchronous message When the receiver is executing this message, the sender 

does nothing except wait until the procedure has finished. This message is denoted 

by “- ►”.

asynchronous message The sender dispatches the message and immediately con­

tinues to the next step. This message is denoted by “—►”.

call-back message Return from a procedure call. This message is denoted by “—>”.

An arrowhead on a line between states indicates a link or an association role with 

one way navigability. This means it is a one-way line.

The collaboration diagram is an important diagram in UML. In Section 3.3, the 

statechart diagram is used to describe the different states of every separate class. In 

order to describe the communications among these classes, the collaboration diagram 

should be used.

3.4.2 Collaboration Diagram of the DP Problem

We give the collaboration diagram of the DP problem in Figure 3.5. Figure 3.5 

illustrates how the five instances of the Fork class and the Philosopher class are 

related. In Section 3.3.2, we use this diagram to get the values of i.left and i.right.
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Figure 3.5: Collaboration Diagram: the DP Problem

3.5 Final Solution of the DP Problem

3.5.1 Concurrent Transition in Statechart Diagram

In Subsection 3.3.3, we use statechart diagram to describe the Philosopher class 

and the Fork class separately. In this part, we will combine them together. UML 

statechart diagram provides us a powerful tool to describe the concurrent transition.

A concurrent transition is enabled when all the source states are occupied. It 

is represented by a short heavy bar (synchronization bar) [1]. The synchronization 

bar also can be used in Activity Diagram of UML.

In this thesis, the synchronization bar will be used to represent concurrent events.
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3.5.2 Final Statechart Diagram Solution of the DP Problem

First, we use the collaboration diagram — Figure 3.5 to describe the position infor­

mation of the Fork class and the Philosopher class.

Second, we merge two statechart diagrams (Figure 3.3 and Figure 3.4) into one 

statechart diagram using synchronization bar. During this procedure, some states and 

actions are combined therefore reducing redundant information. Figure 3.6 shows that 

this will give us a very clear and concise solution.

We explain Figure 3.6 in more detail.

• The initial conditions are same as before.

• In Figure 3.6, there are three states only: ph_think(i), ph_eat(i), f ee(k). 

One fork state is reduced.

ork_fr

• Two operations in the Fork class is_taken() and is_putdown() are merged into 

the operations in the Philosopher class: take_forks(), put_down().

• There are two synchronization bars in this solution. The first one is a Join 

operation. The second one is the Fork operations.

A join consists of two of more flows of control that unite into a single flow of 

control [2].

A fork construct is used to model a single flow of control that divides into two 

or more separate, but simultaneous flows [2].

ork.fr
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Figure 3.6: Final statechart diagram of the DP problem
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3.6 Conclusion

We used an approach to develop a method in this chapter. This method can be used 

to solve the concurrency problem by using UML methods.

1. After understanding the problem, the class diagram and object diagram can be 

used to initially analyse the problem.

2. Then the statechart diagram can be used separately to analyse the status of 

every class.

3. The final statechart solution can be produced using fork or join operations of 

statechart diagram when there are simultaneous actions in the system.

4. The collaboration diagram can be used to specify the relationships and inter­

actions of different classes. It helps the statechart diagram to describe the 

concurrent system.



Chapter 4

Transforming UML to Coloured

Petri Nets

This chapter is the most important part of this thesis. It is organized into the following 

parts: In Section 4.2, we propose a set of transition rules. Section 4.3 introduces two 

special examples, both of them are often used in solving concurrent problems. Section 

4.4 illustrates the verification procedure for the transition rules. Section 4.5 uses 

these transition rules to solve the DP problem. Finally a conclusion of this transition 

procedure is made.

4.1 Why it is necessary to transform UML into

CP-nets

UML is a graphical informal language. The well-defined semantic tools are needed to 

support it. In this thesis, CP-nets are chosen to provide the formal semantic base for 

the UML diagrams.

43
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UML is a standard for software engineers. Currently, it is widely used in engi­

neering field. If we have a concurrent problem, we set up an UML model, and next 

we want to use a more formal, powerful tool to specify it. CPN is a good approach.

In this chapter, a set of rules for the transition from UML expressions to CP-nets 

are proposed. Then the well-defined CPN tools can be used to formally specify the 

UML solutions. This is the main motivation for this thesis.

Compared with UML, CP-nets have some advantages as follows.

• UML is a graphical representation. CP-nets also are graphical representations, 

but have more powerful support tools. They are similar in many places, so it is 

possible for them to be transformed to each other.

• CP-nets have well-defined semantics.

• UML has stubbed transition. Nested states may be suppressed. Transitions to 

nested states are subsumed to the most specific visible enclosing state of the 

suppressed state [1]. CP-nets have hierarchical structure. This property is very 

important. A complex system can be represented by a simple graph.

• CP-nets have a lot of formal analysis methods [17, 18]. UML can use them to 

do further specification.

• There are many computer tools to support CP-nets. These tools can be com­

bined with the existing UML tools to produce more powerful tools.

4.2 Transition Rules

The transition rules for the basic UML diagrams are proposed below. The UML 

expressions are mapped into CP-nets.
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4.2.1 Transition String

An event is an important occurrence that can trigger a transition [1].

An Transition is a relationship between two states. It represent the fact that an 

object in the first state will perform certain specified actions and enter the second 

state when a specified event happens, and specified conditions are satisfied [1].

A transition can be labelled by a transition string that has the following general 

format:

event — name() [guard — condition] / action — expression

In this thesis, UML transition strings will be transformed into CPN transitions.

4.2.2 Transition Rules

We define eight kinds of transition rules in this section. These rules axe used to 

transform UML diagrams into CPN diagrams. In the next section, we will use some 

examples to illustrate how to use these rules.

Transition rules T-1, T-2 — basic places and transitions

The transition rules T-1 and T-2 are shown in Table 4.1. Both of them axe basic 

transitions.

Tn Table 4.1, the transition rule T-1 maps an UML statechart state into a CPN 

place, and the transition rule T-2 maps an UML statechart transition into a CPN 

transition. The states and transition strings axe basic elements of UML statechart 

diagrams, and the places and transitions axe basic elements of CPN. T-1 and T-2 are 

basic transition rules. Other six rules axe developed on the basis of T-1 and T-2.

Figure 4.1 gives 2 examples of T-2. In example 1, the event depositFunds() is
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UML-Statechart CPN

Comments: The transition rule T-1 maps an UML statechart state object 

into a CPN place with the same name. The state of UML statechart diagram 

is represented by a rectangle, and a CPN place is represented by an ellipse.

In this thesis, we talk about a static collection of objects, restrict that one ob­

ject appears in one statechart diagram only. And we ignore the state structure 

of objects.

UML-Statechart CPN

Comments: The transition rule T-2 maps an UML statechart transition 

string into a CPN transition with same name. Using T-1, sendObject and 

targetObject are converted into CPN places. The transition string of UML 

statechart diagrams includes event, guard conditions and action-expression.

Table 4.1: Transition rules T-l,T-2
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T - 2 : Example 1

T-2 : Example2

Figure 4.1: Examples of T - 2
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transformed into a CPN transition with the same name. In example 2, a guard 

condition [ i = 0 ] is converted into a CPN transition. P1 and P2 are UML states. 

They are transformed into CPN places. i is a parameter associated with P1.

Transition rules T-3, T-4 — initial and final states

In Table 4.2, the transition rules of the initial states and the final states are proposed. 

Some examples are given to make the rules easy to understand. We add comments 

in the table to help understanding the transition procedures.

Transition rules T-5, T-6 — concurrent fork and join

Table 4.3 shows the join and fork transition rules when the events occur concurrently. 

They are the most important part of these transition rules. Synchronization bar is a 

sign for this kind of transitions.

Concurrent transition: A concurrent transition includes a short heavy bar (Syn­

chronization bar). A transition string may be shown near the bar [1].

A concurrent transition is enabled when all the source states are occupied. After 

a compound transition fires, all its destination states are occupied [1].

In the statechart diagrams, all source and destination states are places.

Tn this transition rule, before or after the transition is triggered, its source or 

destination states are satisfied.

In fork, which means that when a transition fires, all its destination states are

satisfied.
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Comments: The transition rule T-3 maps a UML statechart initial state 

into a CPN initial place. The transition string of UML statechart diagram is 

converted into a CPN initial place with the same name.

UML-Statechart CPN

T - 4: final state

Comments: The transition rule T-4 transforms a UML statechart final state 

into a CPN final plane.

Comments: Tn example 1 of T-3, one object stays at the initial state of 

statechart diagram. Using T-3, this object is transformed into a token of 

CP-net staying at this place.

In example 2, 5 objects with integer ID from 1 to 5 stay at the initial state of 

statechart diagram. Using T-3, they are converted 5 different tokens of CP-net 

staying at the initial place.

Table 4.2: Transition rules T-3,T-4 and T-3 examples

UML-Statechart CPN



4. Transforming UML to Coloured Petri Nets 50

UML- Statechart CPN

Comments: The transition rule T-5 transforms the concurrent join UML 

statechart diagram into the CPN diagram. The three UML states are converted 

into three CPN places. The transition string of UML is mapped into the 

transition of CPN with the same name. The black bar is a synchronization 

bar, it is used to ensure that before the transition is triggered, all its source 

states axe satisfied.

UML- Statechart CPN

T6: Fork

Comments: The transition rule T-6 maps the concurrent fork UML state­

chart diagram into the CPN transition. All descriptions of fork axe the same 

as the join operation except when a transition fires. Then all its destination 

states will be satisfied.

Table 4.3: Transition rules T-5,T-6
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In join, which means that when all source states are satisfied, then a transition is 

enabled.

The examples of these two transition rules will be found in next section.

Transition rules T-7, T-8 — sequential fork and join

Table 4.4 gives us the sequential join T-7 and fork T-8 transition rules when the 

events occur sequentially.

Some examples of T-8 are given in Figure 4.2. This is usually called a branch. 

T1 and T2 of T-8 are transition strings we mentioned before. In Figure 4.2, two 

examples are illustrated.

T8-1 is a guard condition example. P1,P2,P3 are UML states, [guard1] and 

[guard2] are different guard conditions. A detailed example is given in Figure 4.3. 

In T8-1 example, P1 has a variable i. When i has different values: i < 0, i = 0, 

i > 0, P1 can go to different places: P2, P3 or P4. This is a guard condition branch 

example.

T8-2 is another normal example. This example has events only. There are not 

guard conditions and actions. P1 sents event1 to P2, or sends event2 to P3. In Figure 

4.3, the example T8-2-example is used to explain T8-2. The tentative customer order 

has two results: One is confirmed by the customer, then this tentative order enters 

the confirmed state. Another one is cancelled by the customer, thus the tentative 

order goes to the cancelled state. This is an event branch example.
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CPNUML-Statechart

Comments: The transition rule T-7 transforms the sequential join UML 

statechart diagram into CPN transition. P1, P2 and P3 are states of UML. 

They are mapped into CPN places. T1 and T2 are transition strings of UML. 

They are converted into CPN transitions. This is a sequential join operation. 

There are two paths to reach P3. One path is P1-T1-P3, another one is P2- 

T2-P3.

Comments: The transition rule T-8 maps the sequential fork UML statechart 

states into CPN transition. It has the same explanations as T-7, except that 

it is a fork operation. There are two paths to leave Pl: one is P1-T1-P2, 

another one is P1-E2-P3.

Table 4.4: Transition rules T-7,T-8
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Figure 4.2: Transition rules T8-l,T8-2
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Figure 4.3: Transition rules 8-1,8-2: examples
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Tokens

The dynamic behavior of a system represented by CPN needs a token. A token is 

a basic concept in CPN. There are no such concepts in UML diagrams. Hence this 

thesis uses some variables and functions to simulate the movement of a token.

For example, the counter i is used to represent token numbers. There are two 

operations in class Counter. When a token goes out, the variable i = i - 1 is used to 

describe this movement. When this token is back, the variable i = i + 1 is used. The 

value of i can be checked to know how many tokens remain in this place.

This thesis will use this technique to map the UML functions into token movings 

in CPN. Some examples will be provided later.

4.3 Two Special Cases

This section introduces two special cases. These cases are specified because they are 

the most common and important structures in a concurrent system.

4.3.1 Join and Fork - Concurrent

In a concurrent system, fork and join is a common structure.

The conversion procedure is shown in Figure 4.4. In the fork part, both 

Transition 1 and Transition 2 are transition strings. when Transition 1 is fired, 

both states S1 and S2 will be satisfied concurrently. In the join part, only when 

S1 and S2 are satisfied synchronously, then the Transition 2 is triggered. Their 

transition rules are T-5 and T-6.
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Statechart Diagram CPN

Figure 4.4: Fork and Join — concurrent
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4.3.2 Mutual Exclusion Structure

Mutual Exclusion Structure is another structure, which we often use in CPN and 

P/T-nets. A simple mutual exclusion example of P/T-nets is shown in Figure 4.5.

In this diagram, TO is a fork transition, T5 is a join transition. At beginning, a 

token is at the initial state SO. When TO is triggered, both S1 and S2 will obtain 1 

token separately.

The token in S1 has the path1:

path1: S1 --> T1 --> S3 --> T3 --> S5

The token in S2 has the path2:

path2: S2 --> T2 --> S4 --> T4 --> S6

T5 is a join transition. Only when both S5 and S6 have tokens, T5 can be 

triggered. Then the token goes back to SO.

Assuming that it is unfavorable for transition T1 and T2 to occur concurrently, 

this means that if one token stays at S3, then no other tokens can walk into S3 or 

S4 until T3 is triggered. Then this token goes into S5, and other tokens can go into 

S3 or S4 from SO. This structure is called mutual exclusion.

The mutual exclusion structure can be used to control which transition will be 

triggered in a concurrent system. This structure can avoid to access common resource 

concurrently. In the next chapter, a detailed example is given.

A corresponding statechart diagram is represented in Figure 4.6. In Figure 4.6, 

S0,S1,S2,S3,S4,S5,S6 are states, T1,T2,T3,T4,T5,T6 are events. [i > 0] is guard 

condition. i = i — 1, i = i + l are actions.

Figure 4.7 shows the conversion of the UML statechart diagram into the P/T-nets 

diagram.

This conversion focuses on five parts:
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Figure 4.5: Mutual exclusion: the P/T-nets diagram
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Figure 4.6: Statechart diagram: mutual exclusion
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Figure 4.7: Mutual exclusion: from statechart diagram to CPN
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• A: using T-3: initial state

• B: using T-6: concurrent fork

• C: using T-5: concurrent join

• D: using T-6: concurrent fork

• E: using T-5: concurrent join

4.4 Verification

4.4.1 Verification Procedure

Section 4.2 proposed some transition rules to map the UML statechart diagrams onto 

CPN diagrams. To be more confident in these transition rules, they must be verified.

It is necessary to find a way to simplify UML diagrams. The flat state machine 

is used to transform these complex diagrams into simple diagrams.

Flat state machine contains just simple states and arcs. Since the statechart 

diagram may contain hierarchical or nested states, effective conversion to Petri nets 

requires that the nested states be “flattened” [25].

On the other hand, all CPN diagrams can be transformed into P/T-nets, and 

P/T-nets can be transformed into reachability graphs. The reachability graph is a 

well-known P/T-nets analysis tool. The transition from CPN to P/T-nets is also a 

complex procedure. Many reference books and articles describing this procedure can 

be found. This thesis skips this step, assuming that the corresponding P/T-nets are 

already obtained from CPN.
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Figure 4.8: The verification procedure

This verification phase transforms the UML diagrams into the flat state machines, 

and the P/T-nets are transformed into reachability graphs. To complete the pro­

cedure the two graphs can be compared to prove that they are equivalent. This 

procedure is represented by Figure 4.8.

4.4.2 Verifying Two Special Cases

Both the flat state machines and reachability graphs are very complex graphs, since 

they contain many states. In a large system, it is difficult to draw all the states 

by hand. Tn this section, the two special cases we mentioned in last section are 

verified. These special cases were chosen because they are very common structures in 

concurrent system. These two examples are used to explain the verification procedure.

Fork and Join — Concurrent

Figure 4.9 shows the procedure to transform the statechart diagram of the Fork and 

Join (FJ) into a flat state machine. It includes three steps:

• (a) is the statechart diagram of the FJ problem.
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Figure 4.9: Fork and Join: Transforming the statechart diagram into a flat state 

machine
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• (b) is a diagram which has composite states . The swim line in the middle of 

the diagram illustrates that two concurrent transitions occur in this diagram. 

The two Synchronization bars are transformed into initial and final states of S1 

and S2.

• (c) is the flat state machine. In (b), when Transition 1 is triggered, two initial 

states of S1 and S2 are fired simultaneously. Then two states S1 and S2 

are reached concurrently. Because the states S1 and S2 are reached and left 

together, we can combine them into a new state: {S1,S2}. This is the flat state 

machine of the FJ problem.

Next we discuss the CPN diagram. We need transform CPN diagram into the 

reachability graph. Figure 4.10 shows this transforming procedure. Comparing (c) of 

Figure 4.9 and this reachability graph, it is evident that they are identical, and the 

verification procedure is finished.

Mutual Exclusion Structure

Figure 4.11 transforms the statechart diagram of Mutual Exclusion Structure (ME) 

into a flat state machine. The conversion procedure includes following steps:

1. (a) is the statechart diagram of ME structure (Figure 4.6).

2. (b) is the composite state diagram transformed from (a).

TO and T5 are the fork and join structures we mentioned in last part. We use 

the same method as in the last part. The synchronization bars are converted 

into initial and final states.

The Synchronization state is between two swim lines, where the number 1 is 

the bound of the synch state. This object controls T1 or T2 is triggered.
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CPN Reachability Graph

Figure 4.10: Transforming the CPN to the reachability graph
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Figure 4.11: Mutual Exclusion: Transforming UML into flat state machine
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Figure 4.12: Mutual Exclusion: the Reachability graph
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3. (c) is the flat state machine. In (c), all compose states of (b) can be decomposed 

into the single states and arcs, producing the flat state machine (c).

At beginning, assume one object stays in SO. TO is a concurrent fork operation. 

When TO is triggered, both S1 and S2 have objects simultaneously. In (c), S1 

and S2 are combined into a new state S1, S2.

In the next step, there are two paths:

pathl: S1,S3,S5.

path2: S2,S4,S6.

Suppose S1 gets the key — the object Synchronization. Then T1 is fired, and 

the object of path1 enters S3. The object of path2 still remains at S2. New state 

S2,S3 is produced. Next T3 is triggered, Synchronization object is returned, 

and in the same time, the object of path1 goes to S5. For T5 is a concurrent 

join operation, the object of path1 must stay at S5, waiting the object of path2.

After the object of path2 gets the key and finishes path2, the state S5,S6 is 

produced, then T5 is fired, and the object returns to the initial state.

When examining this diamond shaped graph, it is evident that the center is empty. 

This is the effect of the synchronization. It does not allow the state {S3, S4} to exist.

Next CPN diagram will be discussed. Figure 4.12 gives the Reachability Graph of 

the ME problem from the CPN diagram. It uses the well-known reachability graph 

technique to produce this diagram. By comparing Figure 4.12 and Figure 4.11(c), it 

becomes clear that they are equivalent.

In this section, two special examples are used to illustrate how to use and verify 

these proposed transition rules. Next, the rules will be used to solve the DP problem.
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4.5 Finishing The DP Problem

The conversion of the DP problem is shown in Figure 4.13.

The conversion includes four parts:

1. In part A, the initial conditions for philosophers are transformed from the stat­

echart diagram into the CPN diagram. Transition rule T-3 is applied.

2. Part B is the initial state for the Fork class. The transition rule T-3 is used 

again.

3. Part C is a join operation. There is a guard condition that must be satisfied 

— [i.left.is_free = 1] and [i.right.is_free = 1]. Only when this condition is 

satisfied, the transition take_forks() is triggered, we get i.left.is_free = 0 and 

i.right.is_free = 0.

4. Part D is a fork operation. When transition put_down() is triggered, we have 

i.left.is_free = 1 and i.right.is_free = 1.

This conversion procedure shows that the DP problem is a Join-Fork operation, 

and is similar to the special case 1.

4.6 The Transition Procedure

4.6.1 The Iterative and Incremental Method

This section will introduce the important concept of iterative and incremental software 

development method. This section references [22].

Iteration is the repeated execution of a job.
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Figure 4.13: Transition rules for the DP problem
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Increment Creating middle product. Every increment is an important part for the 

final product.

Using the increment method is an effective transition procedure. Every step is 

repeated until the final solution is satisfied. If there any problems found in the middle 

steps, the previous steps may need to be modified to solve the problem. This same 

method is repeated until the conversion is complete.

4.6.2 The Transition Procedure Diagram

Usually the diagram representation can provide an explanation that is more clear. At 

the end of this chapter, the whole transition procedure is shown in Figure 4.14.
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Figure 4.14: The transition procedure



Chapter 5

The Reader and Writer Problem

This chapter will use another classic synchronization problem — the Reader and 

Writer problem to illustrate the transition rules.

The Reader and Writer Problem There are n processes in an operating system 

which may read and write in a shared memory. Several reading processes can be exe­

cuted concurrently, but when a process is writing, no other processes can be reading 

or writing. This problem will be solved step by step by using the method explained 

in Chapters 3 and 4.

5.1 UML Solution

The UML solution includes: class diagram, object diagram and statechart diagram.

73
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Reader

ID: int

RequestReading ()

EnterReading ()

ExitReading ()

Writer

ID: int

Requestwriting ()

EnterWriting ( )

ExitWriting ( )

Figure 5.1: Class diagram of RW problem

5.1.1 Class Diagram

There are two classes in this RW problem: Reader Class and Writer Class. Figure 

5.1 describes the class diagrams for these two classes.

In the Reader class, three functions RequestReading(), EnterReading() and Ex- 

itReading() are defined. These three functions represent three events in the statechart 

diagram. At this point, these functions that will be needed may be unknown, but 

this part can be left empty and later filled or modified when the statechart diagrams 

are finished. This is an iteration procedure mentioned in the previous chapter.

5.1.2 Statechart Diagram

Figure 5.2 is the statechart diagrams for the Reader class and the Writer class.

In the Reader class, the reader process will stay in one of these three places: 

Local processing, Waiting to read and Reading.

At the initial state, all processes stay at Local processing. Then a RequestReading() 

event occurs, the reader process comes to Waiting to read state. During this state the 

process can only wait until the EnterReading () event occurs and the Reading state 

can be entered. After it finishes reading, it returns to Local processing. This is the
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Figure 5.2: The statechart diagrams for the Reader and Writer classes
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whole procedure for a reader process. The writer process is similar.

5.1.3 Preparing of the Final Statechart Diagram

The final statechart diagram is the most important and complex phase in this thesis.

The separate statechart diagrams only describe the states for one single class. 

The other classes do not need to be considered. But when they are put together, 

they communicate with each other. New problems such as deadlock or starvation 

will occur. To solve these problems, new controls must be added to the previous 

statechart and class diagrams. This is also an iteration procedure.

Figure 5.2 shows two very simple statechart diagrams for this RW problem. When 

these two diagrams are put together to build the final statechart diagram, new prob­

lems are encountered: How to control which process can enter the shared memory? 

How many reader processes can be read synchronously? How to ensure that when a 

writing process is writing, no other processes disturb it, etc?

To solve these problems, a Synchronization class must be added. This class 

works as a Mutual Exclusion Structure. It uses Synchronization objects to control 

which transition is triggered. This class includes two synchronization objects: syn­

chronization1 and synchronizations.

synchronization1: To assure that several reader processes can be reading the 

shared memory synchronously. But when a writer process is writing, all other pro­

cesses can not enter this shared memory.

synchronizations: To assure that the RW problem has a fairness (starvation free) 

solution.

Figure 5.3 is the object diagrams and the statechart diagrams for synchronization!

and synchronizations.
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Figure 5.3: Synchronization Class: Class diagram and Statechart diagram
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5.1.4 Final Statechart Diagram

In this step, the writer, reader and synchronization statechart diagrams must be 

combined together to produce the final solution. The combination procedure includes 

some important steps:

• To reduce the duplicate states,

• To change event communications among different classes,

• The most important thing is to add synchronization bars in the statechart 

diagram when it is found that some events can occur simultaneously.

The result in Figure 5.4 is the final statechart diagram for the RW problem.

To give a more detailed explanation:

• states: After combination, there are two synchronization free states left. On 

the other hand, both reader and writer requests come from the same LP, so two 

LPs can be united into one. Finally 7 states are present.

• initial states: There are three initial states.

LP: k := n represents that there are n processes initially. When a reader or 

writer process goes out, action k = k — 1 occurs. The value of k is used to 

control the number of processes in LP.

Synchronization2: i := 1 represents that only one Synchronization object can 

be used.

Synchronization1: j := n represents that there are n Synchronization objects 

initially.
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Figure 5.4: RW problem: Statechart Diagram
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• transitions: Figure 5.2 shows that all events happen sequentially in a single 

class. But when the three classes are combined together, some events will occur 

concurrently.

As an example, a reader process is described in detail.

When a reader process occurs, except event RequstReading(), two guard condi­

tions must be satisfied. [i > 0] means that the object Synchronization is in free 

state or it is available to be used. [i > 0] means that one or more objects stay at the 

Local Processing.

When two conditions are satisfied concurrently, the event RequstReading() is 

triggered, and at same time, two actions: k = k-1 and i = i — 1 occur synchronously. 

k = k — 1 represents one process walks out LP, hence there are (n-1) processes left in 

LP. i = i - 1 is a very important action. i := 1 is the initial condition, after i = i — 1 

is executed, i := 0, thus no more Request Reading() or RequestWriting() can occur 

until i := 1 again. This is how the synchronization controls processes to work. This 

transition is a join transition.

Next the reader process goes into the state Waiting to Read. Before event 

Enter Reading() is triggered, one object of synchronization2 must be available 

([j > 0]).

After these two conditions are satisfied synchronously, the event Enter Reading() 

is triggered. At the same time, two other actions occur. i = i + 1 makes 

synchronization2 available again (i := 1). Hence the other writer or reader processes 

can go out from LP. j = j — 1 causes synchronization1 to reduce an object. This is 

a join and fork transition. Finally the reader process goes into the state Reading to 

read. After it finishes, the event ExitReading() is triggered, and k = k + 1 adds one 

process in LP, j = j + 1 also causes synchronization! to increase one object too.
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The writer processes are similar to the reader processes, except for the 

synchronization1 part.

The initial condition for synchronization! is j := n. This means that there are 

n objects initially. When an event Enter Reading() is triggered, j := j — 1. For the 

initial condition is j := n, thus at most n processes are reading concurrently.

But the writer process is different. Before the event EnterWriting () occurrs, 

another guard condition [j := n] must be satisfied. This means that there is 

no any reader or writer process in the shared memory (otherwise j < n). After 

EnterWriting() is triggered, two other actions, i = i + 1 and j = j - n, occur 

synchronously. i = i + 1 has the same meaning as the reader process. j = j — n 

means j := 0. When the writer process is in wring state, no other processes can enter 

Reading or Writing state. After it finishes writing, ExitWrinting() is triggered, and 

j = j + n lets j := 0 + n = n. This difference comes from the different requirements 

needed for reader and writer processes.

5.2 Transforming a Statechart Diagram to P/T-

Nets

Figure 5.4 is the final statechart diagram for the RW problem. In this section the 

transition rules, which were defined in chapter 4, are used to transform the statechart 

diagram to P/T-nets. This problem can be easily solved by P/T-nets, so CP-nets are 

not used. Technically P/T-nets can be seen as a special case of CP-nets, only one 

colour: Token.

The transition procedure is shown by Figure 5.5. The transition steps for the 

reader processes are as follows:
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Figure 5.5: RW problem: Transforming procedure
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1. All states are mapped into same states in P/T-nets.

2. Part A is the initial transitions.

A_1: T-3. We transform k := n into n tokens.

A_2: T-3. We transform i := 1 into one synchronization token.

A_3: T-3. We transform j := n into n synchronization tokens.

3. Part B is a join transition.

B: T-5. In P/T-nets the corresponding transition has Request Reading only. 

k = k — 1 and i = i — 1 in P/T-nets are not needed, because they correspond 

to the tokens moving. When a token walks out of the state synchronization, 

there is no token there, thus it is equivalent to i = i — 1. k = k — 1 has the 

same situation, making the P/T-nets diagram look simple.

4. Part C is a fork and join transition.

C: T-5 and T-6. EnterReading is used without actions i = i +1 and j = j — 1.

5. Part D is a fork transition.

D: T-6. We transform the transition into ExitReading, and set k = k + l and 

j = j + 1.

6. The writer processes is in the same situation.

There are some common rules from above transitions: states usually of UML are 

mapped onto same name places of P/T-nets; transition strings are mapped onto same 

name transitions of P/T-nets but remove the corresponding token moving parts.
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5.3 P/T-nets Solution

This section describes the common P/T-nets solution for the RW problem.

In Figure 5.6, there are five states for the reader and writer processes. Each 

process is in one of these five states. They are:

• LP: Local processing

• WR: Waiting to read

• WW: Waiting to write

• R: Reading

• W: Writing

In the initial state, all processes stay in LP, LP contains n tokens.

There are other two states:

• Synchronization2: Key to control T1 and T2

• Synchronization!: Key to control T3 and T4

The place Synchronization2 contains 1 token. It is used to control which token 

can go to the place WR or WW.

The place Synchronization1 contains n tokens. It corresponds to the number of 

processes which are allowed to read on the shared memory concurrently.

We also have set of transitions:

• T1: Request Reading

• T2: Request Writing
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Figure 5.6: P/T-nets solution for the RW problem



5. The Reader and Writer Problem 86

• T3: Enter Reading

• T4: Enter Writing

• T5: Exit Reading

• T6: Exit Writing

The comparison of the transition result and this common solution shows that they 

are equivalent.

5.4 Verification Procedure

The RW problem and Mutual Exclusion (special case 2) are similar, except for the 

presence of extra synchronization1 in the RW problem. The verification graph should 

be very similar to Figure 4.14 and 4.15 but more complex. This verification procedure

is omitted in this section.



Chapter 6

Conclusions and Future Work

This chapter summarizes the contributions of this thesis, and suggests future research 

in this filed.

6.1 Contribution

Transforming the UML diagrams to CPN or P/T-nets is a new field, with not many 

papers on this topic. Most of papers give partial solutions, and focus on some aspects 

of this field.

On the other hand, UML is a very large system. It includes 9 kinds of diagrams. 

When faced with a concurrent problem, it is difficult to decide on what diagram to 

use.

This thesis has presented a method to transform the UML diagrams into the CPN 

diagrams. It has also provided a verification and given some examples to illustrate 

the transition procedure.

The major contribution of this thesis is to provide a method to transform the
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statechart diagrams of UML to CPN diagrams.

Another contribution is to try an approach to describe the classic concurrent 

problem: the Dining Philosopher problem and the Writer and Reader problem by 

the UML diagrams. This thesis tries to give complete specifications for these two 

problems.

6.2 Future Work

There are several areas of this paper that can be extended in future research.

One area is to develop this method from the non-hierarchical CPN into the Hi­

erarchical CPN. In UML, there is a concept: stubbed transitions, which indicates a 

transition connected to a suppressed internal state [1]. By using this stubbed tran­

sitions structure, the transition method can be extended from non-hierarchical into 

hierarchical CPN.

The second area is to try other approaches of UML. There are 9 kinds of UML 

diagrams, but only 3 are used in this thesis. In the future, other UML diagrams can 

be used to solve the concurrent problems.

Finally, the computer tools to implement this transition method can be used. 

A software package to implement this transition can be written, and add this new 

package into the existing UML tools, so that the UML diagrams can be automatically 

transformed to the CPN diagrams.
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