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Abstract

Blocked multiple sequence alignment refers to the construction of multi

ple alignment by first aligning conserved regions into what we call “blocks” 

and then aligning the regions between successive blocks to form a final align

ment. Instead of starting from low order pairwise alignments we propose a 

new way to form blocks by searching for closely related regions in all input 

sequences, allowing internal spaces in blocks as well as some degree of mis

match. We address the problem of semi-conserved patterns (patterns that 

do not appear in all input sequences) by introducing into the process two 

similarity thresholds that are adjusted dynamically according to the input. 

A method to control the number of blocks is also presented to deal with the 

situation when input sequences have so many similar regions that it becomes 

impractical to form blocks by trying every combination. BMA is an imple

mentation of this approach, and our experimental results indicate that this 

approach is efficient, particularly on large numbers of long sequences with 

well-conserved regions.
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Chapter 1

Introduction

Computational Biology, as the computational basis for molecular sequence 

analysis, has emerged and flourished in recent years. Many universities have 

started courses on computational biology, and more and more people are 

getting involved in it. In 1990, the U.S. Department of Energy and the 

National Institutes of Health started the 13-year Human Genome Project. 

The goals of the project are to identify all the genes in human DNA and to 

develop tools for data analysis.

Computational biology is emerging as an important field for the computer 

science community. It all started when people found that DNA and protein 

are the building blocks of life. At an abstract level, molecular sequences are 

long strings of characters over an alphabet of size four for DNA and twenty 

for protein. It is the sequence of these characters that decides the structure
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and function of all living things. The last ten years has seen an explosive 

growth in the quantity of biological sequence information. The availability 

of this data has catalyzed a revolution in biological and medical research.

A fact that explains the importance of molecular sequence data and se

quence comparison is that “high sequence similarity usually implies signif

icant functional or structural similarity” [17, page 212]. Indeed, searching 

for sequence similarity by comparing many related sequences simultaneously 

has been used intensively in inferring the biological function of a sequence. 

Several computational techniques were developed to approach this problem. 

A scientist will turn to complex and expensive biological experiments after 

such theoretical hypothesis for further test.

One of the most important techniques involved in sequence comparison 

is constructing sequence alignment. A (global) multiple alignment of k > 2 

sequences S = {S1, S2, • • •, Sk} is obtained by inserting chosen spaces into 

or at either end of each of the k sequences so that the resulting sequences 

have the same length. The sequences are aligned in such a way that each 

character or space in each sequence is contained in a unique column. An 

alignment displays a relationship among the sequences. People use different 

ways to construct sequence alignments to discover similarities between the 

sequences. An example is shown in Figure 1.1.
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Sequence 1:
Sequence 2: 
Sequence 3:
Sequence 4:

Figure 1.1: An example of multiple sequence alignment.

Multiple sequence alignment has been essentially utilized to identify bi

ologically important conserved patterns among a set of related sequences, 

and to infer the evolutionary history of some species from the associated se

quences. However, even extremely simple multiple sequence alignment prob

lems are NP-complete, as shown by Wang and Jiang [37]. There have been 

many multiple alignment programs devised [3, 4, 13, 23, 28, 33, 35]; however, 

these existing methods are far from being satisfactory. Theoretical investiga

tions can further progress towards practical solutions for precisely formulated 

subproblems.

We designed a heuristic algorithm for multiple sequence alignment. The 

intuition behind our method is very straightforward. Given k > 2 sequences, 

S = {S1, S2,.., Sk}, a region (or segment) for each sequence Si is obtained 

by selecting a substring from Si. The substrings are then aligned. We call 

such alignment a block (or motif, we will use the terms block and motif 

interchangeably hereafter). The alignment of the regions is also referred to 

as local multiple alignment, as opposed to the global multiple alignment which
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produces end-to-end alignment of all the sequences. The highlighted parts in 

figure 1.1 show the blocks we have found in the alignment. We observe that 

if the objective of alignment is to identify conserved regions, then instead 

of constructing an alignment first, we might start off by finding the regions 

directly. We can build a multiple alignment later on using the information 

of the regions.

Imagine that the blocks are embedded in a background of sequences, by 

aligning the gaps between successive blocks, a multiple alignment is obtained. 

In this thesis, we decompose the problem into three steps: (1) find similar 

substrings among input sequences, (2) build blocks using such similar sub

strings, which is a subset of all the possible combinations of the substrings, 

and then (3) chain the blocks to construct an alignment. In this process, a 

couple of technical issues may arise. In particular, what are the criteria to 

be used to decide similarity? How to construct blocks? Which blocks will be 

used to construct the final alignment, and how to construct the alignment? 

These issues will be addressed later in this thesis.

There is some previous work taking this approach [31, 33, 40, 41]; but 

none of them take into account of the problem of “repeats”, which arises 

when there are so many copies of similar substrings from each sequence that 

generating all the combinations becomes impractical. Furthermore, they all
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assume that there are no internal spaces inside a block, which is generally not 

the case, especially for DNA sequences. Due to the fact that “the extent of 

permissive mutations in structurally or functionally conserved molecules may 

be such that comparing two strings at a time reveals little of the critically 

conserved patterns or of the critical amino acids” [17, page 335], we try 

to avoid using pairwise alignments to construct blocks, as opposed to the 

approach taken by some previous work [5, 26, 27]. In our algorithm, we 

construct blocks using direct multiple alignment of similar substrings, which 

allows internal spaces and some degree of mismatch in blocks. Since there 

are cases when a block might not be “supported” by all the k sequences, 

we introduce partial blocks into the process. These issues will be covered in 

Chapter 3.

We have implemented the algorithm using C++ on a Unix platform. The 

program constructs a multiple sequence alignment from input sequences and 

reports the blocks that appear in the alignment. It also allows the user to 

specify some run-time parameters, such as length of a region, the maximum 

number of spaces allowed in a region, and gap penalties used in the alignment. 

Our experimental results indicate that this approach is efficient, particularly 

on a large number of long sequences with well-conserved regions. However,

in some extreme cases, the program may run out of memory and thus fail to
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produce an alignment. Some of them can be avoided by choosing different 

run-time parameters. Such extreme cases will be discussed later.

An outline of this thesis is as follows. First we will give a brief review in 

Chapter 2 on multiple sequence alignment and blocked sequence alignment. 

Then we describe the algorithm in Chapter 3, and implementation issues in 

Chapter 4. Some experimental results are reported in Chapter 5. Chapter 6 

contains the conclusion and future work.



Chapter 2

The Blocked Alignment

Problem

In this chapter, we first give a brief review on multiple sequence alignment, 

then describe in detail some previous work on blocked sequence alignment.

2.1 Multiple Sequence Alignment

During the process of evolution, a molecular sequence is duplicated and mod

ified. Such modification includes insertion, deletion, and replacement. The 

result is that parts of the related sequences might be exactly or almost the 

same, while other parts might be dramatically different due to the modifica

tions. The difference makes the conserved similarities even more significant, 

which in turn makes sequence comparison a very powerful tool in biology.

7
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Although sequence similarity usually implies significant structural or func

tional similarity, the converse is not true. This is caused by the fact that 

many positions in a molecular sequence are noncritical, and can be mutated 

without destructive effect on the sequence. The consequence is that the best 

alignment between two related molecular sequences might be statistically 

indistinguishable from the best alignment of two random sequences. Mul

tiple sequence alignment is a natural response to the problem. Conserved 

sequence features that cannot be detected by pairwise alignment might be 

revealed clearly by multiple sequence alignment. Multiple alignment is also 

used in the deduction of evolutionary history from related sequences.

Here we are trying to give a brief review on multiple sequence alignment 

methods that are related to our method. For a comprehensive survey, see 

McClure et al. [25] and Chan et al. [8]. Broadly speaking, each sequence 

alignment method can be put into one of the three categories: exhaustive 

methods, bounded-error approximation methods, and heuristic methods.

For a better understanding of the methods, let’s first define a general 

optimization model for multiple sequence alignment. Given an objective 

function 5, the score of a multiple alignment A is S(A). To date, there is 

no objective function that has been as well accepted for multiple alignment 

as edit distance has been for two-string alignment. However, there are three
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types of objective functions widely used in practise: sum-of-pairs functions, 

consensus functions, and tree functions [17, page 343]. An optimal alignment 

is the one which optimizes (either maximizes or minimizes) the objective 

function.

2.1.1 Exhaustive Methods

The exhaustive methods of multiple sequence alignment guarantee an opti

mal alignment. Many of them use dynamic programming. This approach 

refers to the simultaneous comparison of n sequences using a n-dimensional 

dynamic programming matrix. There are many papers published to improve 

this method by using different scoring schemes and improving the time com

plexity, especially for the case of three sequences [7, 14, 15, 23, 29]. However, 

since dynamic programming requires computation time proportional to Nn, 

where N is the average length of the n sequences, it becomes inefficient when 

applied to more than two sequences.

2.1.2 Approximation Methods

Approximation methods can efficiently find an alignment with a score that 

is guaranteed to be within a factor of ρ(I) of the optimal alignment score for 

any input of size I, where ρ(I) is a function of I. Some methods have been 

described [16, 19]. Although bounded-error approximation are not always the
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most effective methods, they can provide guaranteed bounds in practice and, 

if combined with other methods, lead to very effective solutions. Further

more, bounded-error methods with fixed error bound, which is independent 

of I, are often improvable to methods that have a provable trade-off between 

bounded-error and running time. Such methods are called polynomial time 

approximation schemes, some have been developed by Jiang et al. [19] and 

Bafna et al. [2].

2.1.3 Heuristic Methods

The heuristic methods try to find good alignments that are not necessarily 

optimal within reasonable time. There are many good methods available, for 

example, CLUSTAL W [35], DIALIGN [28], MSA [23], and DFALIGN [13]. 

Many of the previous work, including CLUSTAL W, MSA, and DFALIGN, 

begin by comparing all sequences in a pairwise fashion. Then they cluster 

the sequences into sub-alignments by using similarity measure (MSA) or a 

phylogenetic tree (CLUSTAL W and DFALIGN). Then the sub-alignments 

are aligned to each other progressively to produce a multiple alignment. This 

process is referred to as iterative pairwise alignment. The final alignment is 

dependent on the order in which the sequences are processed. When the 

relationships between the sequences are well understood, it works very well.
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The second major approach commonly used in multiple alignment is 

called repeated-motif method [17]. This approach relies on first finding a 

substring or a small similar subsequence that is common to many of the 

input sequences. Once a first substring/subsequence of this type is found, 

the sequences containing it are shifted so that the occurrences of the pattern 

are aligned with each other. Then the problem of completing the multiple 

alignment of those sequences is divided into two smaller subproblems, one 

for substrings on each side of the aligned part, as shown by Posfai et al. [32]. 

There are some variants of this general approach, and we discuss some of 

them in section 2.3.

There are two other methods that are very different from the approaches 

mentioned above. One is Gibbs sampling method [22], and the other is 

hidden Markov models (HMM) method [21]. Both of them take a statistical 

approach to sequence analysis.

2.2 Local Sequence Alignment

Before we discuss blocked sequence alignment, let’s take a quick look at local 

sequence alignment, which is basically a global alignment of chosen sub- 

strings/regions from each sequence.

Global alignment is often meaningful when the sequences are from the
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same sequence family, in other words, when they are closely related. However, 

for sequences from different sequence families, local alignment is often the 

most appropriate type of alignment. The reason is that those sequences 

might only have a few similar regions, which are embedded in an overall 

background of dissimilarity. A global alignment would very likely fail to 

align those regions with each other.

There are many publications on identifying local sequence similarities. 

Some of them are based on string alignment or enumeration, while others use 

statistical methods. Typically, these algorithms are able to discover patterns 

of type ranging from simple strings to general regular expressions. For a 

comprehensive survey of several of these algorithms, see Brazma et al. [6]. 

The general form of pattern discovery has been shown to be an NP-hard 

task [24].

If combined with repeated-motif approach, local multiple alignment can 

be used effectively to construct global alignment, a method that we call 

“blocked multiple sequence alignment”.
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2.3 Blocked Multiple Sequence Alignment

We define a block from n > 2 sequences in Chapter 1: an alignment of n 

regions, one region from each sequence. Because we are interested in con

served sequence features, we only consider regions that are closely related in 

the construction of blocks. The idea of blocked multiple sequence alignment 

is we start by constructing blocks, then use these blocks to obtain a global 

alignment of the sequences. There have been many publications that turn 

this general outline of approach into concrete methods. Now, let’s look at 

some in more detail, and based on these previous work, we will present our 

algorithm in the next chapter.

Method I: Sobel and Martinez (1986)

The strategy of Sobel and Martinez [33] is based on first finding common 

segments above a specified length and then “piecing” these together to max

imize an alignment scoring function. Each group of common segments are 

exact repeats of a string that is common to all sequences. It is easy to see 

that there is at least one copy of matching segments in every sequence. A 

block is obtained by taking one copy from each sequence and then aligning 

them together. The best set of blocks making up the alignment is found by 

the classic longest path algorithm for directed acyclic graph.
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This is the first practical method that we are aware of taking blocked 

approach to do multiple alignment, and much later work is based on this 

one. However, there are a couple of issues that require discussion. It is 

frequently of interest to align segments with some degree of mismatch, inser

tion, and deletion, especially for DNA sequences. Furthermore, there may 

be no segment common to all the sequences. Another problem arises when 

we have many repeats of a match in many sequences, such that generating 

all the blocks becomes computationally unrealistic, which is known as com

binatorial explosion in literature. Sobel and Martinez attack this problem 

by putting restrictions on the length of common segments to help avoid the 

“explosion”.

Method II: Waterman (1989); Waterman and Jones (1990)

Waterman [38] suggests constructing an alignment by consensus words. A 

consensus word is a k-letter string that occur in at least a preset percentage 

of sequences. Therefore there are 4k such words in DNA and 20k in proteins. 

Mismatch is allowed, and the degree is chosen by the user. With sequences 

arranged in rows, the method defines a window as the block from column j to 

column j + W - 1, where W is the window width. It proceeds by finding the 

frequency of occurrence for each word in each window, and calculates a score
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s(wi) for word wi based on its frequency. The goal of an optimal alignment 

is to find words wi which satisfy

max{Σ(wij) : wi1 < wi2 <...},
j

where wij < wik if the occurrences of wij are to the left of the occurrences 

of wik in all the sequences. The alignment is then obtained by aligning the 

corresponding letters of the “winning” words.

However, due to the large number of words, it is not possible to accom

plish such optimization within reasonable time. The method proposes two 

algorithms to approximate the solution. The time complexity of this method 

is O(NW2nB) where N is the sequence length, n is the number of sequences, 

and B is a function of 4k for DNA or 20k for proteins. The statistical signif

icance of a word depends on the window width, and it is not easy to decide 

whether wi < wj when wi and wj appear in varying multiplicity and order 

within the given sequences.

Method III: Boguski et al. (1992); Miller et al. (1994); 

Miller (1993)

Miller et al. [27] propose constructing aligned sequence blocks from a set of 

pairwise alignments. From each pairwise alignment, a list of pairs of positions 

is obtained, one position from each sequence. The positions in each pair are
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considered to be related. Given a family F of pairwise alignments among 

sequences s1, s2,...,sn and a proposed column of positions, say position p1 

in s1, p2 in s2, ..., pn in sn, they propose a method to decide whether to 

accept the proposed column into the alignment based on the evidence from 

F. The strongest requirement is that each pair of positions in the column is 

related according to the pairwise alignment between the corresponding two 

sequences [5], but has proved to be overly restrictive in many cases. The 

method of Miller et al. [27] accepts columns that support two independent 

chains of deductions confirming the relatedness of every pair of positions in 

the column. They call such columns biconnected.

A block is constructed by concatenating a run of consecutive biconnected 

columns, therefore there is no internal space inside a block. The result relies 

heavily on the quality of pairwise alignments. Also, it would save time and 

space by working directly with segments, instead of decomposing them into 

individual positions. Such an algorithm was developed for the maximum

connectivity case [26].

Method IV: Zhang et al. (1996)

Based on the previous work, Zhang et al. [40] propose to do local multiple

alignment via subgraph enumeration. This method is also based on pairwise



CHAPTER 2. THE BLOCKED ALIGNMENT PROBLEM 17

alignments. First it constructs a single graph that subsumes all of the given 

pairwise alignments; after adding some special edges in the graph, it pro

ceeds to enumerate all maximal cliques in that graph. In this way, it is able 

to construct a special type of block that does not necessarily contain a seg

ment from every sequence, and a sequence might contribute more than one 

segment. After two more processes, chaining and flattening [40], a multiple 

alignment is obtained.

Since the number of maximal cliques can in theory be exponential in the 

number of vertices and edges, they apply the algorithm of Tsukiyama et al. 

[36] to achieve “polynomial delay” in the enumeration process, which does 

not really solve the problem. Another problem is that the process of chaining 

such incomplete blocks is NP-complete.

Method V: Parida et al. (1999)

Parida et al. [31] also use the idea of incomplete blocks, but attack the NP- 

completeness in a different way. In their method, they reduce the problem 

of selecting incomplete blocks to the well-known set cover problem, and use 

the result of Johnson [20] to achieve an approximation factor of 1 + ln|X|, 

where |X| is the size of set X. The objective function is to seek an alignment

that minimizes the number of characters that do not match in at least K
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sequences, where K is a preset constant. It does not allow internal spaces 

and there is no gap penalty in the final alignment.



Chapter 3

The Algorithm

This chapter gives a detailed description of our algorithm. First, we outline 

the approach by listing the issues we try to resolve in our algorithm. Then, 

after giving a schematic view of the algorithm, we elaborate on each step 

involved in the process of constructing sequence alignment. Some of the 

implementation issues are discussed in the next chapter.

3.1 Attacking The Problem

After inspecting some the previous work, we have designed a heuristic algo

rithm, trying to address the following issues:

• constructing the blocks using direct multiple alignment of similar sub

strings, instead of from low order pairwise alignments;

19
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• solving the problem of finding related regions to form a block by search

ing directly in all the input sequences;

• allowing internal spaces and some degree of mismatch in a block;

• taking into account incomplete blocks, i.e., alignment of regions that 

are not common to all input sequences;

• when there are too many blocks, try to eliminate some unlikely scenar

ios to avoid combinatorial explosion;

• penalizing gaps in the final alignment.

The main idea of the algorithm is to first align similar regions into blocks, 

then align the regions between successive blocks to construct the final align

ment.

3.2 A Schematic View of the Algorithm

Figure 3.1 shows a diagram of data flow in the algorithm. After obtaining 

input sequences, the algorithm proceeds sequentially through three steps, 

obtaining input only from the output of the previous step. Therefore, the 

alignment problem consists of three independent subproblems:

grouping Collect similar regions/substrings among input sequences.
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Step 0:

Step 1:

Step 2:

Step 3:

Figure 3.1: A schematic view of the algorithm
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blocking Build blocks using those similar substrings and try to eliminate 

some unlikely combinations.

chaining Select blocks that will be used in the final alignment and chain 

them up to obtain the alignment.

In the following sections, we will discuss in detail about each of them.

3.3 Grouping Similar Substrings: Step 1

3.3.1 String Similarity

Edit distance is one of the ways that the relatedness of two strings has been 

formalized. An alternate, and often preferred, way of formalizing the relat

edness of two strings is to measure their similarity rather than their distance. 

Let Σ be the alphabet used for sequences S1 and S2, let Σ' be Σ with the 

added character “_” denoting a space. Then for any two characters x,y ϵ Σ', 

s(x, y) denotes the score obtained by aligning character x against character y. 

For a given alignment A of S1 and S2, let S'1 and S'2 denote the strings after 

the chosen insertion of spaces, and let l denote the length of the alignment. 

The score of the alignment is defined as

Σs(S'1(i), S'2(i))
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For example, let Σ = {a,c,g,t} and let the pairwise scores be defined in

the following matrix:

Then the alignment

g a g _ t c t
g a c c t c _

has a score of 1+1+0+0+1+1+0 = 4.

Given a pairwise scoring matrix over the alphabet Σ', the similarity of 

two strings S1 and S2 is defined as the score of the alignment A of S1 and 

S2 that maximizes the score. For strings “gagtct” and “gacctc”, an optimal 

alignment can be obtained by dynamic programming [30]. The alignment is 

shown above. Therefore, the similarity of the strings is 4.

String similarity clearly depends on the specific scoring matrix involved. 

Numerous scoring matrices have been suggested for proteins and DNA, and 

no single scheme is right for all applications [17, page 226]. In our algorithm, 

we adopt the scoring matrix used by McClure et al. [25] for protein sequences, 

and the simple 0/1 matrix for DNA sequences. The user can change the score 

matrix at run time by feeding extra information into the program.

s a c g t _
a 
c 
g 
t
_

1 0 0 0 0
1 0 0 0

1 0 0
1 0

1
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3.3.2 A Straightforward Algorithm to Identify Similar 

Regions

In our algorithm, two regions are considered to be similar if the similarity 

score is above a certain threshold. The objective of step 1 is to identify similar 

regions within the given sequences, under the assumption that these similar 

regions might be closely related and therefore should be aligned together. 

We will use these similar regions to construct blocks in the next step. A 

straightforward solution is outlined in figure 3.2.

1. begin
2. select a subset of the input sequences;
3. enumerate every substring of the selected sequences;
4. for each substring s do
5. use s to find in all input sequences every substring with 

a similarity score above a fixed threshold;
6. if there is at least 1 substring from each sequence then
7. output this family of similar substrings;
8. end;

Figure 3.2: Step 1: a straightforward algorithm.

If M is the total length of input sequences, then the total number of 

distinct substrings in these sequences is 0(M2) For each substring of length 

l, searching for similar substrings requires time O(Ml + M2). Because l is 

usually much smaller than M, the total time complexity is O(M4). This 

algorithm will complete within reasonable time. However, there are two
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issues that require discussion. First, it is not proper to use a fixed threshold. 

Selecting the criteria to be used to decide similarity is a critical task in this 

step. This threshold varies with different inputs: it might be high when the 

regions are well conserved, and low when dissimilarity increases. Second, 

even in the same input, some of the sequences might have higher degree of 

similarity than the others. If we raise the threshold, we might lose some 

regions in the sequences that are less similar to the majority. On the other 

hand, if we lower the threshold, there might be too many regions that are 

assumed to be similar. Therefore, using single threshold to decide similarity 

is too restrictive in this case.

3.3.3 The Refined Algorithm

There are many ways to resolve the first issue mentioned above. We could 

only consider exact matching substrings, or we could use previous results of 

pattern discovery, which is discussed on page 11, or we could utilize pairwise 

alignments, a method that is used by Boguski et al. [5] and Miller et al. [27]. 

Some previous work addresses the second issue by using incomplete blocks, 

i.e., a local alignment that involves only part of the input sequences. In our 

method, we use two similarity thresholds and, after examining the input, 

adjust the thresholds dynamically within a limited range to try to adapt to
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each specific input. The idea is as follows.

Given a substring a and a set of input sequences S1, S2,..., Sn. First, 

we align a with every sequence Si to find the best local alignment, in other 

words, to find the best matching substring in each sequence Si. (For this 

reason, we call α a center string.) Denote the scores as c1, c2,..., cn. Then 

compute two temporary thresholds, τ1 > τ2, both are functions of |α|, and 

divide the sequences into three sets:

G1 = {Si|ci > τ1},G2 = {Si|τ2 < ci < τ1}, G3 = {Si|ci < τ2}. (3.1)

If G3 is nonempty, we say that a does not score well and simply discard it 

and try the next center string. Otherwise, α is a candidate, and we continue 

to find in all sequences every substring that is “similar” to it. To decide this 

similarity, we compute another two thresholds, T1 and T2, for sequences in 

G1 and G2 respectively:

T1 = min{ci|Si ϵ G1} (3.2)

T2 = min{ci|Si ϵ G2} (3.3)

For each sequence Si we use T1 as the threshold for Si if Si ϵ G1; other

wise, let T2 be the threshold. Then we proceed to enumerate substrings of 

Si that have similarity scores with a above the threshold. Those substrings

are inserted into a set after padded with spaces that is calculated according
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to the optimal alignment between each substring and a. In our algorithm, 

such optimal alignment is obtained by backtracking in a dynamic program

ming table, and of all the substrings ending at a specific position of an input 

sequence, only the substring with the maximum similarity score with α is in

serted into the set. We will discuss further in section dynamic programming 

on page 30.

The algorithm is shown in figure 3.3. At the beginning, we need to select 

some sequences (line 5), and enumerate every substring whose length falls 

within a specific range specified by the user at run time (line 6). Then we 

use every substring as a center string to collect similar regions (lines 8-23). 

The following are some of the issues that we want to discuss further.

selecting and marking sequences

Due to extensive computations involved in later steps, it could require too 

much computation if we enumerate every substring of every sequence when 

the input is large. At line 5, we use a simple scheme to select sequences: when 

the input is not large, we select and mark all the sequences; we decrease the 

number of marked sequences proportionally according to the increase of the

input size.
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1. procedure grouping (I);
2. var
3. A,R,M : set;
4. begin
5. select a subset of input sequences I;
6. A := {substrings of the selected sequences};
7. MAKENULL(R);
8. for each center α ϵ A do
9. find the best matching substring in each sequence;
10. τ1 = funcl(|α|); τ2 = func2(|α|);
11. compute G1, G2, G3 according to equation (3.1);
12. if G3 is empty then
13. compute thresholds T1 and T2 using equations (3.2, 3.3);
14. MAKENULL(M);
15. for each input sequence Si do
16. if Si ϵ G1 then T := T1;
17. else T := T2;
18. for every substring β of Si do
19. if similarity (α,β) > T then
20. β' := β padded with chosen spaces;
21. INSERT(β', At);
22. INSERT(M,R);
23. combine_similar_sets(R)
24. output R;
25. end;

Figure 3.3: Step 1: the refined algorithm.
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recording substrings in a prefix trie

At line 6, we want to enumerate in the marked sequences every substring 

whose length falls within a range specified by the user at run time. Because 

two identical substrings involve identical computations in later processes, we 

don’t want to keep all the copies of a substring. In the algorithm, we avoid 

this case of two identical substrings by using a trie [1, pages 163-169] to store 

the substrings. A trie is a data structure that supports efficient INSERT, 

DELETE, and FIND operations for keys that can be represented by a 

unique string. The nodes of a trie correspond to the prefixes of words in the 

set. We add a special marker to some of the nodes to indicate the end of a 

word. An example of such a trie, representing the strings “he”, “hi”, “his”, 

“hit”, “it”, and “is” is shown in figure 3.4.

Figure 3.4: An example of prefix trie.
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dynamic programming

At line 9, we use dynamic programming to find the best local alignment 

between a center string α = a1a2 ... aw and a sequence B = b1b2 ... bv, where 

at most K spaces is allowed inside each substring of B and no spaces are 

allowed in α, K is an integer specified by the user at run time. We will 

explain why no spaces are allowed in the center string later on. A dynamic 

programming table is shown in the following figure. Define Ckij = score of

Figure 3.5: The dependencies of C(i,j).

the best alignment between a1a2 ... ai and all the substrings of B ending 

at position bj with at most k spaces in each of the substrings of B, where 

i ϵ [0,w], j ϵ [0,v], k ϵ [0, K]. It follows that each cell in the table contains



CHAPTER 3. THE ALGORITHM 31

K + l values, C0ij, C1ij,..., CKij.

For each pair of characters x and y, s(x,y) denotes the score obtained by 

aligning character x against character y. In our algorithm, it is defined in 

the form of a matrix that has a default value for each entry of the matrix. 

If x and y are closely related, then s(x,y) = 1; otherwise, s(x,y) = 0. 

The user can specify such relatedness between characters by feeding extra 

information into the process. We will come back to this later when we discuss 

the implementation issues.

Then we can compute each entry in the dynamic programming table as 

follows.

C^ = max

The first line in the equation corresponds to the case of aligning ai against 

bj. The second line corresponds to the case of aligning ai against a space, 

and the substring ending at bj is aligned with α’s prefix, a1, a2,..., ai-1. The 

last line is added to guarantee that Ckij = max {Cuij: u < k}.

The score of the best local alignment is

Similarly, from the last row of the table, we can obtain the best alignment

Cki-1,j-1 + s(ai, bj) (i > 0, j > 0) 

Ck-1i-1,j + s(ai,_) (i > 0, k > 0)

Ck-1ij (k > 0)

max{CKwj : 0 < j < v}.
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score between a and all the substrings ending at each position of the sequence. 

This information will be used at line 19 in figure 3.3. The padding at line 

20 is computed by a traceback in this table starting from the corresponding 

column in the last row.

The reason that we don’t allow any internal spaces in a center string is 

as follows. Suppose that K = 1, and the center string is “ACGT”. Both 

“ATCG” and “ACTG” are similar to the center string, as shown in (1) and 

(2) of figure 3.6. Then we align the substrings and obtain a block as shown 

in (3). It turns out that we have two internal spaces in each substring, which 

violates the restriction of K = 1.

A - C G T
A T C G -

(1)

A - C - G T 

AC-GT A T C - G -
ACTG- A - C T G -

(2) (3)

Figure 3.6: A violation of internal space restriction.

All strings stored in one set are similar to a common center string, but we 

do not further check the similarity between the strings. They are assumed 

to be similar to each other. Here is a tradeoff between time efficiency and 

the probability of grouping unrelated strings by mistake. For example, for a 

center string of length 8, the value of threshold T = 6, suppose both strings
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A and B are similar to a center string. The probability of A and B having a 

similarity score of 4 is about 0.67, which is rather high. We could have added 

a procedure to check whether all strings related to the same center string are 

really “similar” to each other, but it will take a much longer time. Actually, 

the problem of having unrelated strings in one set becomes insignificant when 

the number of input sequences is large. When the number of input sequences 

increases, the number of strings in each set also increases. Even though two 

strings in a particular set might have a low similarity, the possibility of having 

other strings that relate these two strings to each other increases at the same 

time.

sequence grouping

At line 10, τ1 and τ2 are computed to divide the input sequences into three 

sets, where τ1 > τ2. We call G1 a good set, which contains sequences with best 

local alignment score above threshold τ1. G2 consists of sequences with best 

local alignment score greater than τ2. We call it a reduced set. G3 contains 

sequences with score lower than τ2, and we call it a bad set. As soon as we 

find a sequence in G3, we will discard the substring α, assuming that α will 

not entail any useful blocks. Both func1(|α|) and func2(|α|) are functions of 

the length of the center string α. Their values increase when |α| increases,

and decrease when |α| decreases. Currently, the function values are based on
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experience and experimental results, in the form of a table that the user can 

easily adjust.

There are cases when some of the input sequences are closer to each other 

than the rest of the sequences, which make it improper to use single threshold 

to decide similarity. The idea is to divide sequences into two groups, good 

and reduced, and to further refine the thresholds for each of them.

eliminating redundant set

Another important operation in step 1 is to merge similar sets of substrings 

(line 23 in figure 3.3). Each set in R contains similar substrings and is 

associated with a center string α. Suppose R1,R2 ϵ R, and R1 is associated 

with αi, and R2 with α2. It is easy to see that if α1 = α2 then R1 = R2. 

In the algorithm, this case has been taken care of by using a prefix trie to 

record only one copy of identical substrings.

On the other hand, if α1 and α2 are very similar then R1 and R2 might 

share a significant number of common elements; and if α1 is a substring of 

α2, R1 might contain corresponding substrings of those strings in R2. In 

the next step of the algorithm (figure 3.9 on page 38), we use the strings in 

each set Ri to construct blocks. Such redundant information would incur 

redundant computation. Therefore, we hope to eliminate such information 

as much as we can at step 1. Here we use a heuristic method to achieve it.
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The algorithm is shown in figure 3.7.

1. procedure combine_similar_sets(R);
2. begin
3. sort(R)
4. for i := 1 to \R\ do
5. for j := i + 1 to |R| do
6. if Ri and Rj consist of strings of the same length then
7. 5 := Ri  Rj;
8. if (|S| > |Ri| * c) or (|S| > |Rj| * c) then
9. Rj := Ri  U Rj;
10. R:=R-{Ri}
11. else
12. suppose that Ri contains shorter strings than Rj;
13. S := {x|x ϵ Ri, y ϵ Rj s.t. x is a substring of y};
14. if (|S| > |Ri| * c) then
15. R:=R-{Ri};
16. return R;
17. end;

Figure 3.7: Step 1: subroutine combine_similar_sets.

The constant c at lines 8 and 14 of figure 3.7 is a real number that is less 

than 1. We should make sure that c is not too small. Otherwise, there will 

be a lot of elements in R being merged. In practice, we use c = 0.9, which 

works well in our tests.

The result of merging and deletion depends on the order in which the 

elements in R are inspected. Because the deletion is more likely to happen 

when comparing a set containing short strings with a set containing long 

strings, putting the “long” set in front of the “short” one can speed up the



CHAPTER 3. THE ALGORITHM 36

process on average. This is done by sorting the sets in R at line 3, according 

to the length of strings that they contain.

3.4 Building Blocks: Step 2

The output from step 1 is a set R, which contains sets of similar regions that 

might be padded with spaces. We want to align the regions into blocks, and 

use these blocks to construct an alignment in step 3.

Denote the i-th element of R as Ri = {li1 ,li2,..., lin}, where lik is a list 

of regions from the k-th sequence. Each region in the list is called a repeat 

of the corresponding center string. Figure 3.8 shows an example of Ri. A

Figure 3.8: A set of similar regions.

block is formed by choosing one region from each list. Therefore, the set of 

blocks that could be generated from Ri is Bi = li1 x li2 x ... x lin. The size 

of Bi is also referred to as the volume of Ri. In practice, this number could 

increase exponentially in the length of the lists and it becomes impractical
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to generate all the blocks. We call it the problem of repeats.

In our algorithm, we use a population control algorithm (page 40) to 

try to reduce the number of blocks generated from 77 below q, where q is an 

integer that is set at run-time. The process is outlined in figure 3.9. Let us as

sume that we have k sets of similar regions R1, R2, ... , Rk, and v1, v2,... , vk 

represent the volume of each set respectively, such that v1 < v2 < ... < vk. 

First, we compute quota of blocks to be generated, q1, q2,..., qk, and then, 

for each set, use the quota as a suggestion on how to form blocks. If vi < qi, 

then we simply generate all the blocks in set Ri, by using every possible 

combination of the regions; otherwise, we use the quota qi as a suggestion, 

and try to eliminate some unlikely scenarios.

3.4.1 Quota of Blocks

Integer q is the total number of blocks we want to generate, and each set has 

its quota of blocks to be generated. The algorithm tries to keep the number 

of blocks generated from each set below the quota for that set. The idea is 

to distribute q among all the sets, which is proportionally adjusted according 

to their volumes.

First, we compute a threshold

(3.4)
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1. procedure blocking(R,q);
2. var
3. B,S : set;
4. begin
5. MAKENULL(B);
6. compute_quota(R,q);
7. for each Ri ϵ R do
8. if qi < volume(Ri) then
9. S := generate_all_blocks(Ri);
10. else
11. S := generate_blocks(Ri,qi);
12. B:=BUS;
13. merge_similar_blocks(B);
14. output B;
15. end;

Figure 3.9: Step 2: building blocks.

where σ is an integer > 1, and |R| is the size of set R. Threshold t acts like 

an average number blocks to be generated from each set. If a set’s volume is 

greater than t, we call it a large set; otherwise, we call it a small set. All the 

sets in a small set are generated, while only a proportional number of blocks 

are generated from a large set. Denote I = {i|vi < t,i < |R|}, where vi is 

the volume of Ri. Set I contains all the indices of small sets. The quota qi 

for set Ri is computed as follows:

i ϵ I, 

otherwise.
(3.5)
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Threshold t is fine-tuned by a constant integer σ (equation 3.4). We find 

that of all the sets generated in step 1, usually there are a few sets that 

have extremely large volumes, while most of the others are much smaller. 

Therefore, removing σ from equation 3.4 could end up with generating blocks 

without any restriction for most of the sets, and putting too much restriction 

on the large sets, which are supposed to contain more information. In order 

to keep as much information as possible, we increase the quota for large sets 

by increasing the value of σ, and hence lowering threshold t. This relation is 

shown in figure 3.10.

volume

Figure 3.10: Lower threshold t to retain more information. In equation 3.5, 
the value of q— Σ vj increases with the decreasing of t. Therefore, the quota

for each large set increases.
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3.4.2 Population Control

A critical task in step 2 is to reduce the number of blocks. Given a set R 

of similar regions, which has a volume greater than its quota, the objective 

is to try to reduce the number of blocks below its quota while retaining as 

much information as possible.

In the algorithm, we use a method to eliminate some unlikely combina

tions. Suppose we have n input sequences, and a set R of similar regions, 

R = {l1, l2, ..., ln}, where li is a list of regions from the i-th sequence for all 

i ϵ [l,n]. A partial block is formed by aligning k ϵ [l,n] regions from k lists 

in R. The question is “Given a partial block, how to decide whether this is 

an unlikely scenario?”

The idea is that we first obtain an alignment A of the k involved se

quences, and check whether the starting position of the regions are “close” 

enough in the alignment. For example, suppose k = 2, the partial block con

tains only two regions ri and rj from the i-th sequence and the j-th sequence. 

Considering alignment A, let L be the length of the alignment, and region 

ri starts at column x, and region rj at column y. We define regions ri and 

rj to be close if |x - y| < L/2. In general, a partial block B is valid iff each 

pair of regions in B are close with respect to alignment A. We can obtain 

this alignment A by simply padding the sequences with spaces at the end to
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make them have a same length, or we can utilize other alignment programs 

to generate one for us. Because the criteria that we use to decide closeness is 

rather permissive, the result would not heavily rely on a specific alignment 

program. Procedure generated_blocks uses this idea to reduce the number of 

blocks as shown in figure 3.11.

1. procedure generate_blocks{R, quota);
2. var
3. queue : PbQueue;
4. done : boolean;
5. begin
6. MAKENULL(gueue);
7. for each list l in R do
8. INSERT(l, queue);
9. done := false;
10. while not done do
11. l1 :=DELETEMAX(gueue);
12. l2 :=DELETEMIN(gueue);
13. l3 :=DELETEMIN(queue);
14. if EMPTY(queue) then
15. done := true;
16. l4= partial_aln(l1,l2,l3);
17. INSERT(l4, queue);
18. if number of blocks in queue < quota then
19. done := true;
20. output all blocks in queue;
21. end;

Figure 3.11: Step 2: subroutine to generate blocks

Subroutine partial_aln takes three lists of partial blocks as input, and
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merge them into one, which contains a subset of all possible combinations 

of the three input lists. In this process, it uses a temporary partial align

ment of the involved sequences to eliminate unlikely combinations. PbQueue 

is a priority queue of partial block lists, and operation DELETEMAX/ 

DELETEMIN deletes and returns the longest/shortest list in the queue. 

When there is only one list in queue or when the number of blocks to be gen

erated has been reduced below quota, partial_aln will proceed to generate 

all blocks in queue and return.

In an earlier version, procedure partial_aln takes out the three longest 

lists in the queue. Later we find it runs faster on average if we delete the 

longest list and two shortest lists. The main reason is that using short lists 

enables us to discard some invalid combinations earlier in the process, rather 

than to keep them until they are found to be invalid after a lot of comparisons. 

This is a heuristic based on computational experiments.

Instead of taking out three lists, we could choose to take out only two 

lists from the queue and try to eliminate unlikely combinations; but then, a 

partial alignment might degenerate into a pairwise alignment, which we have 

been trying to avoid. Many programs can handle three sequences alignment 

well, so we use three in our algorithm.

Quota of blocks for each set provides a suggestion in the partial alignment.
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Although it is not guaranteed to be able to reduce the number of blocks below 

quota, it helps to rule out most of the invalid alignments of the regions and, 

in most cases, keep the number of blocks reasonably low. However, in some 

extreme cases, the number of blocks could still be much higher than the 

program can handle. Such a case could occur if, in the temporary alignment 

A', a large number of similar regions are located in a “narrow” window, which 

has a width less than one half of the length of A'. They would be considered 

to be close enough, and all the combinations are valid. The program will 

give a warning if this occurs, then the user can choose different run-time 

parameters to raise similarity thresholds or increase the length of similar 

regions to reduce the number of blocks.

3.4.3 Merging Blocks

Due to the extensive computation involved in the next step, it is desir

able to have as few blocks as possible. At the end of step 2, procedure 

merge_similar_blocks is called. This procedure does two things. One is to 

delete extra copies of the same block. Although we have tried to eliminate 

redundant sets of regions, it is still possible to generate many copies of a 

same block; it also introduces redundant blocks when we use a substring of a 

center string as a new center string to form blocks. The other issue is to deal
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(2) Block B (4) Overlaps with variations

Figure 3.12: Overlapping blocks.

with similar copies of blocks. This is necessary because in our algorithm the 

regions are not generated using exact match. A well conserved motif might 

bring us many similar blocks; each one is a bit different from the true motif. 

In other words, if we find many such similar blocks within a small window, it 

could evidence the existence of one or more true motifs hiden in those blocks.

Similar blocks might overlap in a significant number of regions. In figure 

3.12, a schematic representation of two blocks A and B is shown on the left, 

and two different ways they can overlap are shown on the right. A simple 

case is when two blocks overlap consistently in all sequences as shown in (3). 

We can easily construct a longer block that subsumes blocks A and B. It 

becomes more complex when the overlaps vary from one sequence to another 

(4). It is difficult to say which one is the right alignment. In our algorithm,

(1) Block A (3) Consistent overlaps
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we merge some of the blocks, and let the chaining process decide which block 

is more important.

We define two blocks to be siblings if they overlap in every sequence no 

less than p percent of each region, where p is a constant integer less than 100, 

which has different values for DNA and protein sequences. If each region in 

block A is a substring of the corresponding region in block B, we say A is a 

child of B, and B a parent of A. The algorithm to merge blocks is outlined in 

figure 3.13. Subroutine merge at line 14 simply returns a block that aligns 

the regions covered by two siblings.

1. procedure merge_similar_blocks(B);
2. begin
3. for i := 1 to \B\ do
4. for j := i + 1 to |B| do
5. case get_relation(Bi, Bj) of
6. ‘SAME’:
7. B:=B- {Bj};
8. ‘CHILD’:
9. B:=B- {Bi};
10. goto line 5;
11. ‘PARENT’:
12. B:=B- {Bj};
13. ‘SIBLINGS’:
14. Bj := merge(Bi, Bj);
15. B:= B-{Bi}; 
16. goto line 3;
17. end;

Figure 3.13: Step 2: procedure merge_similar_blocks



CHAPTER 3. THE ALGORITHM 46

3.5 Chaining: Step 3

A block β from n sequences has n regions, one from each sequence; the length 

of the block is |β|. If β and β' are blocks from the same n sequences, then 

β precedes β' if the last sequence position of the i-th region in β strictly 

precedes the first sequence position of the i-th region in β', for all i ϵ [1,n]. 

Blocks β1, β2,...,βm form a chain if βj precedes βj+1 for all j ϵ [1, m — 1].

The input of step 3 is a set of candidate blocks, and the objective is to find 

the best chain of blocks, and use these blocks to construct a global alignment. 

A best chain of blocks can be a chain with the maximum number of blocks, 

or a chain that maximizes a score function. In our algorithm, we handle both 

cases. After obtaining a chain of blocks, constructing an alignment is rather 

straightforward. Each block in the chain is aligned already, only the regions 

between two consecutive blocks need to be aligned.

3.5.1 Near-Optimal Chains

A straightforward method of block chaining is a special case of classic optimal- 

path algorithm for directed acyclic graphs [10]. Given a set of blocks, we can 

construct a directed acyclic graph, or dag for short. Each block is associated 

with a vertex in the dag, and there is an edge from vertex i to vertex j if 

the block associated with the i-th vertex precedes the block associated with
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the j-th vertex. An optimal path in the dag can be found by a breadth-first 

search on the graph. It runs in O(B2) time, where B is the number of blocks. 

For the special case of two sequences, there exist block-chaining algorithms 

that run in O(B log B) time or faster [9, 11, 12]. However, their methods 

do not generalize to k > 2 sequences. Zhang et al. [41] propose to build a 

highest-scoring chain by adopting the use of k-D trees. Although they do not 

give a theoretical analysis of their method’s time complexity, they report the 

results of experiments indicating that it is far better than O(B2), but not as 

good as O(B log B).

Blocks in the optimal chain might not contain all the conserved regions. 

There could be other blocks that are even more informative but do not appear 

in the optimal chain. In our method, we use an algorithm [see 10] to obtain 

score of the optimal path, then continue to generate all near-optimal paths. 

In this way, the user has more choice about the blocks being used in the final 

alignment.

3.5.2 Scoring Scheme

Each block β has a score δ(β) > 0, and there is a penalty connect (β,β') for 

connecting β to a chain starting at β'. Define score (β) to be the maximum
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score over all block chains starting with β, which is,

score(β) = max{δ(β) — connect(β, β') +score(β') : β precedes β'}

Therefore, a best chain is the one that maximizes score(j3) over all candidate 

blocks.

The weight of a block δ(β) is based on the length of the block (|β|). 

Furthermore, for blocks that are the results of merging similar blocks, we 

give them more weight than those that are not. The reason is that we assume 

similar blocks give a strong hint of the existence of a real motif.

w =
wn\β\ if β a result of merging

(3.6)
n\/3\ otherwise,

where w is a constant real number that is greater than 1. This function has 

a time complexity of 0(1).

The penalty connect^, (3'} for connecting two blocks is computed as fol

lows:

connect (β,β') = (3.7)

where di is the difference between the ending position of the i-th region in 

β and the starting position of the i-th region in β', and d is the average of 

di for all i ϵ [l,n]. The purpose is to penalize those blocks, in which the 

distance between corresponding regions varies drastically. This function can 

be computed in 0(n) time.
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3.5.3 The Algorithm

In the corresponding weighted directed acyclic graph, each vertex is associ

ated with a block β, the weight of the vertex is δ(β) There is an edge from 

vertex i to vertex j if block βi precedes block βj. After constructing such a 

graph, we add two more vertices: a source that has edges pointing to every 

other vertex, and a sink that is pointed to by all other vertices. Then an 

optimal chain in the original problem becomes an optimal path from source 

to sink.

The algorithm to compute near-optimal chains is shown in figure 3.14. 

First we compute score(β) for each block β, and obtain the score OPT of 

an optimal path. Then put source in an empty chain, and let source be the 

current vertex cv. We check each vertex w that is connected to cv to see 

whether w could occur next in the near-optimal chain, i.e.,

score of current chain + score(w) — connection(cv,w) > φOPT, where

φ is a real number that can be set by the user. If cv=sink then a near-optimal 

chain has been found. This depth-first search continues until all near-optimal

chains are found.
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1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

procedure find_near_opt_path(B, φ);
var

G : graph;
candidate : stack;
chain : array of integer;

begin
G := construct_dag(B);
OPT := score_of_optimal_path(G); 
MAKENULL(candidate);
pos := 1; cur_score := 0; cv := source; 
chain[pos] := cv;
for all edges (cv,w) in G do

if score(w) — connect(cv,w) > φOPT then 
PUSH({w, pos}, candidate);

while not EMPTY(candidate) do 
POP({cv,pos}, candidate); 
pos := pos + 1; chain\pos] := cv, 
cur_score := update-chainscore(pos); 
if cv = sink then

output blocks chain[1]... chain[pos]; 
else

for all edges (cv, w) in G do
if cur_score + score(w) — connect(cv, w) > φOPT 
then

PUSH({w,pos}, candidate)-,
26. end;

Figure 3.14: Step 3: compute all near-optimal chains.



Chapter 4

Implementation

In this chapter, we first give a brief description about the programming 

language and platform we use to develop the program. Then the class design 

is elaborated to give an overview of the structure of the program. At the end 

of this chapter, we discuss time and space efficiency of our algorithm and 

some of the other issues involved in the implementation.

4.1 The Sequence Alignment Program

Based on the algorithms discussed in the previous chapter, we have developed 

a program BMA to do blocked multiple sequence alignment. The program is 

written in C++, and compiled using GNU C++ compiler (g++ version 2.8.1) 

in Sun Solaris. G++ is a freely available C++ compiler produced by the Free 

Software Foundation and is available for a wide range of computers. We do
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not use any platform specific features of the C++ programming language, 

therefore, the program can be easily ported to other platforms, such as MS- 

Windows, Linux, and many other Unix environments, as long as there is 

a decent g++ compiler on that platform. With minor modifications, the 

program can be compiled using Borland C++ Builder 4.

4.2 Top-Level Design

4.2.1 Class Diagrams in UML

The most common object-oriented design representation is the diagrams of 

the Unified Modeling Language (UML), which is designed by Grady Booch, 

Ivar Jacobson, and Jim Rumbaugh. UML is the industry-standard language 

for specifying, visualizing, constructing, and documenting the artifacts of 

software systems. It simplifies the complex process of software design, making 

a “blueprint” for construction. In this chapter, we use some of the notations 

of class diagram in UML to document our design.

UML class diagrams have two principle components: classes and relation

ships. Classes provide the set of classes and direct information about each 

class. Relationships provide other information, including the class hierarchy 

and how the various classes are related structurally.

A class is represented by a rectangle with three compartments separated
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by horizontal lines. The top compartment contains name of the class, middle 

compartment holds structure (data fields) of the class, and the third com

partment holds behavior (member functions) of the class. The icon at the 

start of each item indicates the visibility of the item: a plain icon indicates 

public, an icon with a lock indicates private, and an icon with a key indicates 

protected.

Lines are used in the diagram to express relationships. Two basic types 

of relationships can be defined, inheritance and containment. Inheritance 

is drawn as a line with a triangle between two classes where the triangle 

points to the superclass. Containment in general represents has-a relation

ship, which is drawn as a line with an arrow that points to the class being 

contained. Aggregation is a stronger form of containment between a whole 

and its parts. It is drawn as a line which contains a diamond placed next to 

the class that plays the role of the whole.

4.2.2 Basic Constructs

Our program consists of 44 classes. Some of the them are basic constructs 

used by higher level classes. For example, class SeqError is the base class 

of various error handlers used by other classes. These basic constructs are 

shown in figure 4.1 and figure 4.2.
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Figure 4.1: Class diagram for basic constructs.

Class Segment encodes a region defined in the algorithm, and the ag

gregation of Segment is called Segments, which corresponds to the set 

of similar regions in our algorithm. The underlying structure of Segment 

is a boolean vector, recording the patter of the substring, and an integer, 

indicating the start position of the substring. Class Segments is imple

mented as a vector of linked lists of Segment objects. We could have added 

to Segment another data field to indicate from which sequence this region
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Figure 4.2: Class diagram for error handlers.

originates. However, we have a large number of Segment objects residing in 

memory, adding this data field would cause unnecessary memory overhead. 

Actually, this information can be retrieved by other methods. For example, 

in Segments, similar regions are recorded in linked lists, while every list 

corresponds to a specific input sequence. We will come back to the memory 

issue later, and we will see other cases when we add seemingly redundant 

data field to improve the running time.

Class AutoPtr comes into handy when we want to store a large object in 

memory. After the creation of a large object, copying or moving the object 

requires extra memory and CPU time. An alternative way is to keep a pointer 

of the object. However, keeping the pointer as a data member will not free
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the object automatically from memory when the object holding the pointer 

is destroyed, since a pointer in C++ is not really a class. One solution is to 

wrap the pointer by a generic class, while this class may or may not own the 

pointer. If it has the ownership, the object referenced by the pointer will be 

destroyed when the wrapper’s destructor is called. Sets of similar regions in 

the algorithm are represented by a linked list of such wrapper objects, each 

of which contains a pointer referring to a Segments object.

Both class Block and class PartialBlock contain a vector of Segment 

objects, and PartialBlock contains a boolean vector of size n, which is the 

number of input sequences. This boolean vector indicates which sequences 

are involved in the partial block. SegsList, BlockList, and PblockList 

store a set of objects in the form of linked lists (figure 4.1). Finally, class 

Chains holds all the near-optimal block chains generated in the program.

4.2.3 Top-Level Classes

Figure 4.3 shows the top-level classes in our design. The AbstractMain 

class does not really exist. We only use it in the diagram for the purpose of 

notational convenience. It abstract the main function of the program.

Class Options manages all the parameters of the program. Each pa

rameter has a default value and can be set by the user at run-time. It also
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Figure 4.3: Class diagram of top-level classes.

provides an error checking mechanism to resolve conflict settings. The algo

rithm contains many threshold values that are calculated dynamically based 

on the parameters managed by this class.

The SequencePool object holds all the input sequences. It can index a 

sequence in the pool by the sequence name, and provides a string represen

tation of the sequence. It also provides sequence input and output functions.

All the operations in step 1 of the algorithm are done by Watchmaker.
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It collects similar regions and output the regions in a SegsList object, which 

BlockBuilder takes as input and generates a list of candidate blocks. The 

“contract” for the Contractor object is to find all the near-optimal chains 

and build alignments for each of them or only for the optimal chain, which 

depends on the user’s choice. It also generates a log file reporting which 

blocks are found in the chains, and the score for each of them.

4.3 Second-Level Designs

In the previous section, we give an overview of the top-level classes. Now 

let’s see different parts of the system.

4.3.1 SequencePool

SequencePool provides accessor/modifier methods by overloading the sub

script operator [ ]. Given index of a sequence, it returns a Sequence object, 

which in turn provides functions to access or modify a sequence. In this small 

package, we have another class Translator. It translates between internal 

and external representations of a sequence. For example, DNA sequences are 

strings over an alphabet of four characters (A,C,G,T), which internally are

mapped to integers (0,1,2,3).
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Figure 4.4: Class diagram for SequencePool.

4.3.2 Watchmaker

As We mentioned before, in step 2 we use a prefix trie to record center 

strings that has been used. A prefix trie holds the root of the trie, and the 

only public method is “bool search(key_type[])”, which returns true if the 

word is in the trie; otherwise, inserts the word, and returns false. Basically, 

a trie node v holds labels of the edges connecting v to v’s child nodes, and 

pointers pointing to the corresponding child nodes. Member function “bool 

wordEndWith(key_type e)” in TrieNode returns true if there is an end-of- 

word marker on the edge labeled with character “e”. Otherwise, it returns 

false, and adds an edge with the marker. In this way, a word is inserted into
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Figure 4.5: Class diagram for Watchmaker.
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the trie.

When comparing protein sequences, people usually use various similarity 

scheme to specify the relatedness. In our program, the default scheme we 

use is (F,Y), (M,L,I,V), (A,G), (T,S), (Q,N), (K,R), and (E,D), which is also 

used by McClure et al. [25]. The user can customize the relatedness in a 

configuration file, which is read by a Distance object. We use this object 

all through the program as the only source to get the relatedness of two 

characters. For example, this object is used to compare similar substrings, 

and is also used in the prefix trie for comparing keys.

A dynamic programming table DPTable contains a 2-dimensional array 

of Cell objects. Each Cell object has all the information of K + 1 cases, 

as shown in figure 3.5. Since each entry depends on two other entries on 

the upper row, we can simply use a boolean vector to record the back-trace 

direction.

Class Gauge computes τ1,τ2 and performs sequence grouping. The values 

of τ1 and τ2 are functions of length of the center string. Gauge maintains 

a lookup table that has three sets of values. Each set corresponds to high, 

normal, or low similarity degree that can be set by the user. The default 

setting is normal. This parameter gives us some degree of flexibility to adjust 

to different types of input. For example, if we find there are too many
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repeats in the input sequences, we can run the program again and set the 

degree to high. The lookup table is stored in a disk file, and can be modified 

easily. Perhaps the values can be fine-tuned further for each special type of 

input by feeding the program with a large amount of real data with known 

characteristics of that type of sequences. Gauge also decides the relationship 

between two Segments objects, and this information is used to merge similar 

sets of substrings in subroutine combine_similar_sets (figure 3.7).

4.3.3 BlockBuilder

BlockBuilder uses PbQueue and Puritant to form blocks and to keep 

the number of blocks under control. In class Puritant, function “getAln” 

returns a temporary alignment, which is used by BlockBuilder to decide 

the candidacy of a partial block in PbQueue.

AlignHelper is an abstract class. The purpose of this class is to pro

vide an interface to use other alignment programs to generate temporary 

alignments. We use Clustal W in our program, which is implemented in 

the derived class Cclustal. Any other class that implements those virtual 

functions can be used in place of Cclustal. The functions include prepar

ing sequences in a special input format that is used by the helper program, 

feeding the input into the program, and reading the alignment generated by
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Figure 4.6: Class diagram for BlockBuilder.
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the program into memory.

Given a partial block, Puritant generates a temporary alignment for 

those involved sequences and evaluates the validity of this partial block based 

on the alignment. Puritant stores all the alignments generated so far, some 

reside in memory, while others are saved in disk files. A registry records 

up to M temporary alignments being kept in the memory, M depends on 

the available memory on the computer. When a new alignment is needed, 

Puritant uses the helper program to generate one, and read this alignment 

into memory. If the registry is full, the least recently used alignment is 

swapped out, and this new one is put at the beginning of the LRU list.

4.3.4 Contractor

In the chaining step, the Contractor object first construct a Cdag, which 

represents a dag in the form of adjacency lists. Then it asks Cdag for the 

longest path or all near-optimal paths. For each block chain, Contractor 

can generate a final alignment consisting of the blocks. The unaligned regions 

between consecutive blocks are aligned by the helper program. Contractor 

also generate a log file to give detailed information about all the blocks that 

appear in the final alignment.
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Figure 4.7: Class diagram for Contractor.

Cdag only records the index of each block. The detailed information of 

all blocks are stored in a vector outside of the Cdag object. Three function 

objects are passed to Cdag so that we can compute the score for each block.

4.4 Space Efficiency

There are two types of memory space used by the program. One is stati

cally allocated memory. For example, we need some memory to store input 

sequences and blocks generated in the program. This memory space cannot
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be used by other processes until the program terminates. The other type 

is dynamically allocated memory. Typically, a task first initiates a memory 

request and then, after obtaining the memory space, performs some com

putation. At the end of the task, such dynamically allocated space is freed 

and put back to free-store, and hence becomes available to other processes 

running at that time.

The size of statically allocated memory depends on the size of input and 

the number of blocks generated. For example, if integers and pointers are of 

4 bytes in memory, 10000 blocks from 12 sequences occupies a memory space 

of about 2MB. In most cases, statically allocated memory is only a small 

fraction of all the memory space needed by BMA.

The major memory consumption happens in the process of population 

control (in step 2) and the construction of directed acyclic graph (in step 

3). In step 2, we try to eliminate some unlikely alignments of similar regions 

by using partial alignments. Most of the sets are relatively small, and one 

or two partial alignments will reduce the number of blocks below quota. 

However, there are cases when the partial alignments don’t help much. The 

consequence is that we have a large number of partial blocks generated, even 

though most of them will be eliminated in the later process. In our tests, 

such memory needs range mostly from 30MB to 150MB, but there are a few
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that require as much as 300MB. It could happen that these partial blocks 

exhaust all available memory. If it happens, the program will exit, and give 

a warning that there are too many blocks.

In step 3, we need construct a graph to find block chains. In our program, 

we use adjacency lists to represent the graph. In an implementation under 

the same assumption about the size of integers and pointers, a graph with V 

nodes and E edges will require a space of 12V+8E bytes, in contrast to 8V+ 

4 V2 if we represent the graph in an adjacency matrix. We observe that on 

average E = V2/10 in our test. Therefore, adjacency matrix representation 

requires about five times as much memory as adjacency lists representation. 

In our implementation, a graph with 10000 nodes represented as adjacency 

lists requires a memory space of about 120MB on average.

4.5 Time Efficiency

We run the program on our workstation, a Sun Ultra 2 Workstation running 

Solaris 2.x, using test data presented in the next chapter. The running time 

ranges from a few seconds to an hour. It highly depends on the input data. 

In this section, we give an analysis of the time complexity of our algorithm.

Given n input sequences of average length N, in step 1 we use dy

namic programming to compare each center string α with every sequence,
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allowing at most K spaces in each substring. In practice |α| is within 

a range of constant integers. Consider the algorithm outlined in figure 

3.3 on page 28. The operations of line 5-6 require O(nN) time. Within 

the for-loop of line 9-21, the most time consuming operation is the com

parison between a and every sequence, which has a time complexity of 

O(KnN\α\). Computing τ1 and τ2 can be done in O(1), and computing 

G1, G2, G3, T1, and T2 in O(n). Collecting similar substrings (line 20) has a 

time complexity of O(nN). Therefore, the time complexity of the for-loop 

is 0(Σ(KnN\α\ + n + nN)) = 0(KnNΣ |α|), which is O(Kn2N2). Sub- a a

routine combine_similar_sets inspects each pair of Segments objects, and 

merge them if they share a significant number of common regions. Let P be 

the maximum number of repeats of a center string in one sequence, and |R| 

be the number of Segments objects generated in step 1. From the algorithm 

outlined on page 35, it is easy to see its time complexity is O(nP2\R\2), and 

the total time complexity of step 1 is O(Kn2N2 + nP2\R\2).

The total length of input is M = nN. Because the length of center strings 

is within a constant range, the maximum number of similar sets is O(M), 

which is also the maximum number of center strings. Hence |R| = O(M). 

Moreover, if both P and K are below a constant integer, then the time 

complexity will be O(n2N2 + n2N) = O(M2).
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In step 2, we use the algorithm shown on page 38 to generate blocks. 

The running time highly depends on the input sequences. The worst case is 

when none of the partial alignments helps to eliminate any blocks. Then for 

each set of substrings, we would have 0(n) partial alignments. We use each 

partial alignment to check the validity of at most Vmax partial blocks, each 

taking O(n2) time, where Vmax is the volume of the largest set of substrings. 

Therefore, the worst case time complexity of step 2 is O(\R\n(T'+n2Vmax)) = 

O(nT'\R\ + n3Vmax\R\), where T' is time complexity of the helper alignment 

program.

Let |R| = O(nN). Furthermore, suppose Vmax = 10000. In this special 

case, the time complexity of step 2 will be O(n2NT' + 10000n4N). It depends 

on the time complexity of the helper alignment program. If that program 

runs too slow, the overall running time might be very long. However, if the 

number of blocks that could be generated from R is below q, which is the 

number of blocks the program can handle, then the helper program will not 

be called by BMA because no partial alignment is needed. In that case, the 

time complexity of step 2 is O(|R|Vmax).

We construct a dag in step 3 by inserting nodes into the graph. The 

calculation of each node’s weight (equation 3.6) is in 0(1) time, and edge 

cost (equation 3.7) in O(n). The precedence relationship between two blocks
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can be determined in O(n) time. Hence constructing the graph has a time 

complexity of O(nB2), where B is the number of blocks generated in step 2. 

The score of the optimal path and all near-optimal paths can be obtained in 

O(B2) time, and therefore the total time complexity of step 3 is O(nB2).

4.6 Other Issues in the Implementation

4.6.1 Improving the Performance

Besides the other things we do to improve the time efficiency, we run gprof 

to produce an execution profile of the program. To our surprise, we find that 

the program spends more than 70% of time in the function getRange of class 

Segment. This function returns the start position and the end position of 

a region in an input sequence.

The problem is that we use an integer to store the start position, and a 

boolean vector to record the pattern of the region — false for a space, and 

true for a character from the sequence. It is sufficient to record a region in 

this way; but each time when we want to know the end position of a region in 

the sequence, we have to go through the boolean vector to count how many 

real characters it has, and return this number plus index of the start position 

minus 1. After we add an extra data member in class Segment to record 

the end position, the time spent in function getRange is negligible comparing
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with the time spent in other operations.

4.6.2 Fine-Tuning the Final Alignment

At the beginning, we use Clustal W version 1.7 to help generate temporary 

alignments. Later we find that the program does not penalize end spaces. 

The consequence is that if we use it to align the regions between consecutive 

blocks in step 3, it generates many spaces at both ends of the regions. How

ever, Clustal V, which is an earlier version of the program, does penalize end 

spaces. After contacting the authors, we switched to Clustal W version 1.8. 

The source code is freely available, and after some small modifications in the 

source code, we can make it perform the penalization.



Chapter 5

Experimental Results

We run our program on some simulated data sets, as well as four real data 

sets proposed by McClure et al. [25]. In this chapter, we first show some of 

the experimental results of BMA on simulated data sets, and compare the 

results with those from Clustal W. Then we report the results of running 

BMA on the test cases proposed in [25].

5.1 Scoring for Motif

Here we adopt the scoring method that is used in [25]. Instead of using an 

independent scoring scheme to measure the global “goodness” of the align

ments produced by the program, we score the method’s ability to detect each 

motif in a data set. A score for a motif is the percentage of the number of 

sequences in the data set for which the motif is correctly identified. In the

72
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case that a motif is found in more than one subset of the sequences that are 

not aligned together to produce a single multiple alignment of all the input 

sequences, the total percent correct match is a combined score of the aligned 

subsets, allowing full credit for motif identification in each subset as if the 

motifs were each aligned correctly throughout the set.

For example, given six input sequences, if a motif is correctly identified 

only in the first three sequences, then the score for this motif is 50 since 

3/6 = 50%. If the motif is also found in the last two sequences (2/6 = 33%), 

but the two subsets of conserved regions are not aligned together, then the 

combined score for this motif is 83 (50,33).

5.2 Simulation Test

We use a simulator to generate 6 protein sequences of length within 10% 

variation of 2000. Ten motifs are inserted into the sequences. We run BMA 

to see how well it scores on each motif.

The similar regions of a motif are generated as follows. First we randomly 

choose a string, then modify the string according to a change rate. For exam

ple, for a string of length 8, if the change rate is 20%, then 8 x 20% = 1.6 sites 

will be changed. Each similar region of the motif is generated by randomly 

changing 1 or 2 sites of the string based on the probability. Such changes
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can be substitutions, insertions, or deletions; but in our simulation only sub

stitutions are allowed in protein sequences. The background sequences are 

generated randomly, which ensures that it is unlikely to have any other mo

tifs besides the ones that we insert intentionally. We use two change rates 

(10%, 20%) and generate 10 data sets for each. The length of a motif varies 

from 6 to 8.

We run both BMA and Clustal W on the simulated data. Tables 5.1- 

5.2 summarize the results with 10% change rate. Each column shows how a 

program scores for each motif in the particular data set. The last row shows 

the average score of the program for all the motifs in the data set. We can see 

that BMA correctly identifies all the motifs in each data set, while the overall 

average score of Clustal W is about 70. This shows BMA is very effective to 

find conserved regions in long sequences when the regions are well conserved.

We increase the change rate to 20%, and the results are shown in tables 

5.3-5.4. BMA scores very well in data sets 1 and 2, almost all the motifs are 

identified correctly. However, in data sets 5 and 6, BMA misses some of the 

motifs completely and finds some in a small subset of the input sequences. 

This can be attributed to the simulator generating motifs based on probabil

ity. If many sites in a motif are changed, the regions forming the motif might 

not be similar any more. Comparing with the case of 10% change rate, the
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Table 5.1: Simulation test — change rate 10% (part I)

Motif
Set 1 Set 2 Set 3 Set 4 Set 5

BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL

I 100 67 100 67 (33 x 2) 100 67 100 33 100 100

II 100 83 100 33 100 100 100 50 100 0

III 100 100 100 0 100 67 (33 x 2) 100 0 100 0

IV 100 67 100 100 100 33 100 100 100 100 (50 x 2)

V 100 50 100 83 (50, 33) 100 100 100 100 100 100

VI 100 100 100 100 100 100 100 100 100 100

VII 100 83 100 33 100 33 100 33 100 0

VIII 100 100 100 33 100 0 100 100 100 100 (67, 33)

IX 100 67 100 100 100 100 100 83 100 0

X 100 100 100 100 100 83 100 100 100 67

avg score 100 82 100 65 100 68 100 70 100 57



C
H

AP
TE

R 
5.

 EXP
ER

IM
EN

TA
L 

RE
SU

LT
S

Table 5.2: Simulation test — change rate 10% (part II)

Motif
Set 6 Set 7 Set 8 Set 9 Set 10

BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL

I 100 83 100 33 100 100 100 33 100 100

II 100 0 100 50 100 100 100 83 100 0

III 100 0 100 0 100 67 100 100 100 100

IV 100 67 (33 X 2) 100 100 100 50 100 100 100 83 (50, 33)

V 100 50 100 83 100 67 (33 x 2) 100 85 100 83 (50, 33)

VI 100 83 100 83 100 100 100 67 100 100

VII 100 50 100 67 100 83 100 67 100 67

VIII 100 0 100 100 100 100 100 100 100 100

IX 100 67 100 83 100 50 100 100 100 50

X 100 100 100 100 100 100 100 83 100 83

avg score 100 50 100 70 100 82 100 82 100 85
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overall average score of BMA drops from 100 to 82, while the score of Clustal 

W drops from 70 to 44.

Table 5.5 shows the run-time parameters that we choose for BMA: lower 

bound and upper bound specify the length of similar regions; similarity de

gree controls the thresholds that we use to divide the input sequences into 

groups and to evaluate similarity between two substrings. In the tests, we 

use the default value of K = 0, which is the number of spaces allowed in 

a block, gap_open = 10 and gap_extension = 0.1. The last two parameters 

specify gap open penalty and gap extension penalty that are used to align 

the regions between two blocks. For both change rates, we use the default 

settings for Clustal W. On our workstation, running BMA on these simulated 

data sets takes about 50 minutes each, and requires 40MB-60MB memory.

5.3 Real Data Test

We use four protein families as data sets to test the ability of BMA to recon

struct known biologically informative patterns: the hemoglobin family, the 

kinase family, the aspartic acid protease family, and the RH region of both 

the RNA-directed DNA polymerase and the Escherichia coli RH enzyme. 

The sequence length of the data sets ranges from 100 to 300.



78
C

H
AP

TE
R 

5.
 EXP

ER
IM

EN
TA

L 
RE

SU
LT

S

Table 5.3: Simulation test — change rate 20% (part I)

Motif
Set 1 Set 2 Set 3 Set 4 Set 5

BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL

I 83 0 100 67 100 83 0 33 100 67

II 100 100 100 0 33 100 33 67 (33 x 2) 100 33

III 100 33 100 0 100 33 100 0 67 50

IV 100 33 100 33 100 67 (33 x 2) 100 33 33 33

V 100 33 100 67 100 33 100 33 67 33

VI 100 67 100 33 100 100 100 33 0 0

VII 100 33 100 67 100 100 100 67 33 50

VIII 100 83 100 33 100 83 (50, 33) 100 0 0 33

IX 100 100 (67, 33) 100 0 50 67 100 67 100 50

X 100 83 (50, 33) 100 67 100 83 (50, 33) 33 50 100 100

avg score 98 57 100 37 88 75 77 38 60 45
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Table 5.4: Simulation test — change rate 20% (part II)

Motif
Set 6 Set 7 Set 8 Set 9 Set 10

BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL BMA CLUSTAL
I 100 100 100 33 100 67 100 100 100 100
II 100 0 67 83 0 0 0 33 33 67 (33 x 2)
III 0 33 100 83 (50, 33) 100 33 100 0 100 50
IV 0 0 100 83 100 67 100 67 (33 x 2) 67 (33 x 2) 0
V 50 33 100 83 100 33 83 33 100 33
VI 100 33 50 33 100 33 100 0 50 0
VII 100 33 67 (33 x 2) 0 67 0 100 0 100 0
VIII 33 33 67 67 100 33 100 50 100 33
IX 100 0 33 0 100 67 100 0 67 67
X 67 0 100 100 100 50 100 0 100 50

avg score 65 27 78 57 87 38 88 28 82 40
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Table 5.5: Run-time parameters for BMA

Change 
Rate (%)

Lower Upper Similarity GAP GAP K 
Bound Bound Degree Open Extension

10
20

6 8 HIGH 10 0.1 0
6 8 NORM 10 0.1 0

The hemoglobin family has often been used to illustrate the reconstruc

tive ability of a new multiple alignment method. This data set includes 

α- and β-globins from mammals and birds, myoglobins from mammals, and 

hemoglobins from insects, plants, and bacteria. There are five motifs defining 

the globin family. We list the score of BMA on each of the motifs in table 5.6, 

we also list the results reported by McClure et al. [25] for comparison. BMA 

correctly identifies all five motifs as blocks appearing in the final alignment. 

It also finds two other blocks, one before motif I and one between motif II 

and motif III.

The eukaryotic kinase proteins constitute a large enzymatic family that 

regulates the most basic of cellular processes. This data set includes ser- 

ine/threonine, tyrosine, and dual specificity kinases from mammals, birds, 

fungi, retroviruses, and herpes viruses. The result is listed in table 5.7. Of 

the eight motifs in this data set, BMA identifies six of them as six blocks. 

Motif III and motif VIII, which are motifs of length 1, are found by aligning 

regions between blocks. BMA also identifies two extra blocks, which are not
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Table 5.6: Scores for Programs Tested Using Globins

Program Motif I 
(7 residues)

Motif II 
(5 residues)

Motif III 
(5 residues)

Motif IV 
(5 residues)

Motif V 
(3 residues)

AMULT 100 100 100 100 100

ASSEMBLE 100 92 100 100 100

CLUSTAL V 100 92 100 100 100

DFALIGN 100 100 100 100 100

GENALIGN 92 (67, 25) 100 100 83 (67, 17) 92 (67, 25)

MULTAL 100 92 100 100 100

MACAW 75 92 75 67 67

PIMA 100 92 100 100 100

PRALIGN 67 67 (33, 17 x 2) 75 (33, 25, 17) 67 (33, 17 x 2) 83 (67, 17)

BMA 92 (58, 33) 100 100 100 (83, 17) 100
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Table 5.7: Scores for Programs Tested Using Kinases

Program Motif I 
(6 residues)

Motif II 
(1 residue)

Motif III 
(1 residue)

Motif IV 
(9 residues)

Motif V 
(3 residues)

Motif VI 
(3 residues)

Motif VII 
(8 residues)

Motif VIII 
(1 residue)

AMULT 100 83 92 100 100 100 100 100

ASSEMBLE 83 58 (33, 25) 83 100 100 100 100 100 (67, 33)

CLUSTAL V 100 92 92 (50, 42) 100 100 100 100 100 (58, 42)

DFALIGN 100 100 100 100 100 100 100 100

GENALIGN 100 75 (42, 33) 83 100 100 100 100 (50 x 2) 92 (67, 25)

MULTAL 100 75 (58, 17) 83 (50, 33) 100 100 100 (58, 42) 100 100

MACAW 67 0 75 100 100 83 100 0

PIMA 100 92 92 100 100 100 100 100

PRALIGN 100 83 (42 x 2) 50 (33, 17) 33 75 (42, 33) 75 (42, 33) 33 33

BMA 100 92 58 100 100 100 100 92
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motifs according to McClure et al. [25], but which should be aligned together.

The aspartic acid protease data set includes pepsin from mammals, birds, 

and fungi and from representative members of the retroid family. The result 

is shown in table 5.8. In this data set, only two blocks are reported by BMA 

in the final alignment. These two blocks contain motif I and motif III. Motif

II is found by aligning the regions between the two blocks.

Table 5.8: Scores for Programs Tested Using Proteases

Program  Motif I  
(3 residues)

 Motif II  
(5 residues)

 Motif III  
(3 residues)

AMULT 92 58 83
CLUSTAL V 100 75 (50, 25) 50 (25 x 2)
DFALIGN 100 100 (70, 30) 100
GENALIGN 92 67 (42, 25) 58 (25, 17 x 2)
MULTAL 83 58 (33, 25) 75 (50, 25)
MACAW 100 25 67
PIMA 100 42 (25, 17) 42 (25, 17)
PRALIGN 67 (33 x 2) 34 (17 x 2) 67 (25 x 2, 17)
BMA 100 83 (42 x 2) 83

The fourth data set includes sequences from E. coli and representative 

members of the retroid family, including retrovirusese, caulimoviruses, hep- 

adnaviruses, retrotransposons, retroposons, and group II plasmids of filamen

tous ascomycete mitochondria. Table 5.9 compares the results of BMA and 

the programs tested in [25]. Two blocks are found by BMA in the final align

ment, which contain Motif I and motif II. The other two motifs are found by 

aligning the regions after the second block.
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Table 5.9: Scores for Programs Tested Using RH

Program Motif I 
(3 residues)

Motif II
(1 residue)

Motif III 
(3 residues)

Motif IV 
(5 residues)

AMULT 92 75 (58, 17) 67 (50, 17) 59 (25, 17 x 2)
CLUSTAL V 100 75 75 (58, 17) 75 (33, 25, 17)
DFALIGN 100 100 83 100
GENALIGN 100 (83, 17) 58 67 (33, 17 X 2) 75 (33, 25, 17)
MULTAL 92 (75, 17) 92 (58, 17 X 2) 75 (50, 25) 83
MACAW 58 42 58 17
PIMA 83 75 67 (33, 17 X 2) 92 (42, 33, 17)
PRALIGN 75 67 (33 x 2) 50 (33, 17) 17
BMA 83 92 (42, 33, 17) 75 67 (42, 25)

It is hard to say which method is the best. For example, program AMULT 

[3, 4] scores well in the first two tests, but in the last two tests it scores below 

average. In general, BMA is one of the best running on the aspartic acid 

protease data set, and scores above average in the other three data sets.

Finally, in table 5.10 we summarize the run-time parameters that we 

use in real data tests. In the tests, we use the default setting of K = 0, 

gap_open = 10, and gap_extension = 0.1. We also give the running time 

and memory size that are needed for each data set on our workstation. The 

column of total number of blocks indicates how many blocks are found by 

BMA in each data set, and blocks in final alignment shows how many blocks 

appear in the corresponding final alignment. From the table we can see that 

the hemoglobin family requires the largest amount of memory since it uses 

the option of low similarity degree, which generates more similar substrings.
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Table 5.10: Summary of Real Data Tests

Data 
Set

Lower Upper Similarity Total Number Blocks in Time Memory
Bound Bound Degree of Blocks Final alignment (mm:ss)

Globins 8 9 low 2439 7 6:38 281MB

Kinases 7 10 normal 3869 8 4:06 45MB

Proteases 3 5 normal 1333 2 0:23 7MB

RH 3 7 normal 846 2 0:32 3MB



Chapter 6

Conclusions, Future Work

We discuss three problems, grouping, blocking, and chaining, that arise in 

blocked multiple sequence alignment. For each problem, practical algorithms 

are presented.

To solve the problem of grouping, we propose a new way to search for 

closely related regions directly in all input sequence rather than to start from 

pairwise alignments. Internal spaces, as well as some degree of mismatch, are 

allowed in this process. We also present a method that takes into account 

incomplete blocks by dividing the sequences into groups and using different 

similarity thresholds for sequences in different groups. Recall that in the 

process of blocking, we might have a large number of similar regions, such 

that generating all the blocks is impractical. We present a method to control 

the number of blocks by using partial alignments to eliminate some unlikely
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scenarios. The best block chain is found by using the classic optimal-path 

algorithm for directed acyclic graphs. We propose a scheme to calculate 

weight of nodes and edges in the graph. At the end of chaining all the near- 

optimal block chains are found, and we use those chains to construct final 

alignments.

BMA is an implementation of this approach. We have tested BMA on 

both simulated data and real data. Our experimental results indicate that 

this approach is efficient, particularly on large numbers of long sequences 

with well-conserved regions.

However, there are a couple of things closely related to extensions and 

performance improvements that need more consideration:

1. We find that for large inputs with long sequences, BMA spends most 

of the time in collecting similar regions. We are working on improving 

the time-efficiency of this process. If the length of center strings ranges 

from a to b (a < b), then a center string might be a substring of one 

or more of the other center strings. We should be able to use this 

information to speed up the collecting rather than using these strings 

independent of each other.

2. We are also working on alternative methods to reduce the number of 

blocks. A possible approach is to use partial chaining instead of partial
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alignments. The idea is that we construct a DAG using the blocks 

generated so far and use the graph to decide the validity of a partial 

block by adding it to the graph. If the partial block could contribute 

to or be “compatible” with the highest scoring chain in the graph, we 

say it is valid.

3. Currently BMA has to go through all three steps each time it is exe

cuted. For example, if we want to find both the longest chain of blocks 

and the one that maximizes the score function, we have to run BMA 

twice, although the computations differ only in the third step. If we 

divide BMA into three programs, one for each step, it would be much 

easier to reuse the generated data. We could even use other methods 

to collect similar substrings and store them in a special format, which 

can be recognized by the program that constructs blocks. Similarly, 

the generated blocks can be fed into other block chaining programs, 

such as chain [41], to construct global alignments.
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