AN AUTOMATIC LOGFILE ANALYZER
FOR
PARALLEL PROGRAMS

AN AUTOMATIC LOGFILE ANALYZER
FOR
PARALLEL PROGRAMS

By
Haitong Zhang, M.Eng.

A Thesis

Submitted to the School of Graduate Studies
in partial fulfillment of the requirements
for the degree of
Master of Science

McMaster University

© Copyright by Haitong Zhang, November, 1999

MASTER OF SCIENCE (1999) McMASTER UNIVERSITY
(Computer Science)
TITLE: An Automatic Logfile Analyzer For Parallel Programs

AUTHOR: Haitong Zhang, M. Eng.
(Beijing University of Aeronautic and Astronautics)

SUPERVISOR: Dr. Sanzheng Qiao

NUMBER OF PAGES: xi, 86

ii

Abstract

Detecting communication errors in parallel programs has remained a very
challenging research and application area. In the thesis, we will present a new approach
to detect communication errors in parallel programs. We also implement a complete
tool to achieve this goal. The Logfile Analyzer is a tool for automatically analyzing the
logfiles generated during a parallel program execution. The purpose of the tool is to
check the communication consistency of parallel programs using MPI. It can help the
programmer to detect the communication errors, improve the parallel program
reliability, and give the programmer an overall picture of the communication sequence.
Along with the Analyzer, the tool also provides the Logger, the Wrapper and the
Preprocessor, enabling the automatic generation of the logfiles from MPI programs. The
logging procedure is hidden from the user. The logfiles contain all information needed
for analysis. Currently, the tool supports all major MPI functions and can be run on

UNIX and Windows systems. The tool is implemented in C++. It is designed to be

extensible and reusable.

In the thesis, we will discuss the design idea and implementation details. We

also provide a substantial number of testing cases to prove tool utility.

iii

Acknowledgements

I would like to express my sincere appreciation for Professor Sanzhang Qiao for
guiding me in the work that led to this thesis. His continuous assistance and
constructive remarks have been great help to me.

I also want to express my gratitude to Professor Skip Poehlman and Ridha

Khedri for serving on my thesis committee.

iv

Contents

Abstract ceesssesssenss vessreessensenns e
AcCKNOWIEdZEmMENLS ..occueivrieeieerinrencieriectereencrnrencenerassessecsassesssccsscsesenss
Table Of CONLENES .ccceeeereerrertanterecnccrssscsaceesosssesencensosssssssscsscssssnsecscone
List Of FIGUIeS .cccvucirenrininriareriucncreciececenceeatnciecenceseccoceccssassncnscnsonces

LiSt Of TAbleS ..cceeeereereeeceeceecerasensvscsccsssssssssssssanne ceccesessscesssenccssanessnne

1 Introductionc..cceeeeeees teveeesassacasscesasessnsessnnrestsosescesossenneesnnoosnoene
1.1 MO IVALIONL oiteenneeeeiiieetennnerennuneeesssessssasssssenssessssansssnssnsasssnsssnes
1.2 CONUIIDULIONS .eittttrereneenneesereeeesenssnseeeesesssesssnsssnseseesecensssssseesens

1.3 Organization of the Thesisccoiieiiiiiiiiiii

2 Message Passing Interfacec.cceeveinienineiiininnininiininiiniaiiiiiiecieccnennee.
2.1 INtroduCtiOnciiiiiiiiiniiiineiiieiiiiiie it reit et ieiiaateseaaaeaan
2.2 Terms and Conventions in MPIccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiecens

2.2.1 Processes and Process GIoUDPSc.ciieiiviiiiierierininnierennnnnns,
2.2.2 Messages and Message Selectivitycccooiiiiiiiiiiiiiiiiinvinnnnn,
2.23 Typesof MPICallsc.oiiiiiiiiiiiirecc

2.2.4 Opaque ODJECS .ouviuniiintiiniiiiriiiiiitiie it i,

iii

iv

1

2.2.5 AITay ATBUMENES t.oivviiniiiiiiiiniiiiiieiiieeiieiiieerinaereeeeaaeeees 13

2.2.6 Named CONStANtSovvineiiuiieeiiiiiiiiiiiiiii i eiaeeeane 13

3 The Communications Covered by our Toolcc.ccciiinriiiinieiiinnccerionnncee 15
3.1 Blocking Point-to-Point Communicationscecvveveviiniiniininnennens 15
3.2 Non-blocking Point-to-Point Communicationscocevveiiniiniinnnee. 17
3.3 Communication MOAEScvevuiinieiereiiiiit i eeaaeas 19
3.4 Non-blocking Completion Functionscccooiiiiiiiiiiiiiiiiiiiin... 20
3.5 Collective COMMUNICALIONS ...uueuerniinenniniieiiiiniiiiniiiniieiiiaeenreann 21
3.6 The Typical Errors in Parallel Programmingcccccoiviiiiiinininnn... 24

4 The Architecture of the Automatic Logfile Analyzerccccecevveenvecennnnne 28
4.1 An Overview of ALA Architectureccooevviiiiiiiiiiiiiiiiiiiiiiiinnnn. 28
4.2 The ALA Major COMPONENLScouuiiniiniinminiiieiiniiiiiiiireineiieeanaaan. 30

7 B 20 W ¥ TSR\ ¢ 0] o =) O g 30

4.2.2 TheLOZEET ..uviiieiieiiiiiiiiiiiiiiii ettt e e e aens 32

4.2.3 The Pre-PrOCESSOTcueeurerniiniinitenteteieaneattateaneesennsnenneeneens 33

4.2.4 The ANALYZET ...uineinniniiiiiiiiii e e e e e e 33

4.3 The Implementation DESIZN ...c.vvviiiiiiiiiiiiiiiiiiiii i eaeeeanenaen, 34

4.4 The Implementation of ALA ...c.oiiiiiiiiiiiiiiiiiiiiii e, 34

vii

5 The ANALYZEIr ..ccvecceiciinnirenroricssscsscccssssscscsssccssacnnsasecssescesscnnnsases 40
5.1 Program OVEIVIEWcceeiuiieiieiiimieiiiiiiiitieeiieienieeianeeraraneennenn 40
5.2 The Communication CateZOIY ...cccevverineerereneeneenieeeineeaneeersneeenneen 41
5.3 Data StrUCIUIEScovviiiniiiuiiiiieiiii ittt iieietereeeeaeaeeeanaeensneannnes 42
5.4 TheInterfaceocciviviiiiiniiniiiiiiiiiiiiiiii i rereieenenenaans 46
5.5 AlgOrithmS .ooviiiiiiiii e 48
5.6 Implementation Detailsccovviiiiniiiiiiiiiiiiiiiiiiiieae, 53

6 Case Study T 58

6.1 The Hypethetic Testing Casescceoeveviiiiiiiiiiiiiiiiiiniiniienn 58
6.2 Real Applicationcoeiviniiiiiiiiiiiiiiiiiiii e 65
6.2.1 Program OVEIVIEWciiiiiiiiiiiniiiiiiiiiniiiiiiiiiiiiriieeennnenn 65
6.2.2 Problem Solving with the Toolccoiiiiiiiiiiiiiiiiiiiiiiiin. 69

7 Conclusion and Future Work g . 73
7.1 ConCIUSION ..cviiiiiiiiiiiiiiiiiiiii it r e cee e e e, 73
7.2 FUuture WOTKS ...eouviiniiiiiiiiiiiiiiii e et a s 75

Appendix A — Reference Manualscoooeiiiiiiiiiiiiiiiiiiiii i, 77

| 2 (= £ 1o o T 85

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Figure 14

List of Figures

Broadcastocoiiiiiiiiii e 22
Scatter and Gathercooeiviiiiiiiiiiiiiiiiiiiii e 23
Reduce and Allreducecooviiniiiiiiiiiiiiiiiiiiiiii e, 24
The System Overall Structureccccoeeieiviineniniiininnnnnnn.n. 29
Simplified Checking Flow in the Analyzerc.cccccvvvena...... 52
A Segmentofalogfilecooovevniiiiiiiiiiiiiiiiii 53
A Segment of MPICHECK Outputccoovviiiiiiiiiiiiineinennenn. 54
A Segment of State Vector Updating Logccovvvvvennenennnnenn.. 55
Event Bitmapccocovviiiiiiiiiiiiiiiiice e 56
Case NO. 1 oo e e 61
Case NO. 2 ettt e e 62
Case NO. 3 ot e et e 64
Communication Pattern Onecccovveiiiiiiniiiniiinninnennnn.. 67
Communication Pattern TWOccociviiiiiiiiiiiiiiiiiiiiiiiiii, 68

viii

Table 19 Function Values

Table 20 Testing Cases ...

..

Chapter 1

Introduction

1.1 Motivation

Parallel programming using message passing is error prone. There are various
errors that may occur in parallel programming. It is difficult or impossible to avoid all
of the communication errors at the design stage. Among these errors, the ones related to
communications are very difficult to detect. Some typical communication errors are
deadlocks, disordered messages, unmatched communication pairs, message with
incorrect parameters and pending messages. These errors can not be detected by current
compilers. Some potential errors may not happen in every execution, even though they
happen in some executions, but trying to locate them is very difficult and time
consuming.

Why is debugging parallel programs so difficult? First, unlike sequential
programs, parallel programs run on several processors concurrently and the processors
communicate with each other by passing messages. The communication sequence of

each program execution is indeterminate. Secondly, most message passing libraries,

such as MPI (Message Passing Interface) do not provide functionality for tracing
program execution. For example, we can use “printf” to trace a sequential program by
simply adding some debugging outputs. MPI does not provide parallel /O operations.
The programmer cannot trace a program execution on remote processes. If some errors
occur on the remote process, such as program hang, failed or getting incorrect result, it
is very difficult to find out the error source, because the programmer has no idea about
what happens on the other processes. Even if MPI provided parallel I/O, there would be
additional problems since parallel I/O requires communications which could be the
source of more problems.

All these things make writing reliable parallel programs a very difficult task.
How to detect the communication errors, or in other words, how to check the
communication consistency in parallel programs, and thus improve the reliability of

parallel programs has remained a challenging research area.

1.2 Contributions

In this thesis, we present a new approach to checking communication
consistency in parallel programs using MPI. It allows us to improve program reliability,

detect errors in communication, and also obtain an overall picture of the execution of a

program.

knowledge about the parallel programming and the MPI Standard. In chapter 3, we will
discuss the communication types covered by our tool, their definitions, prototypes and
typical errors in parallel programming. The major communication types described in
this chapter include blocking point-to-point, non-blocking point-to-point, collective and
non-blocking completion operations. In chapter 4, we will give detailed information
about the architecture of the tool: how many components are involved, the relationship
among the different components, the entire system layout and the functionality of each
component. We devote a whole chapter 5 to the core part of the tool — Analyzer. We
address the interface design as well as the algorithms. In chapter 6, we present the test
cases. The design of the test cases includes some real applications. We present the
whole procedure to show how the Automatic Logfile Analyzer can help the programmer
to resolve the communication problems. So the reader can obtain some real appreciation
about the usage of our tool, we also give the test results. Finally, we will draw

conclusions and discuss future work in chapter 7.

Chapter 2

Message Passing Interface

Before we discuss our tool, we need to introduce Message Passing Interface
(MPI1) [2], and some terms and data types used in MPI. We will use these data types
extensively in this thesis. Understanding these terms and data types is very important

for developing our tool.

2.1 Introduction

MPI stands for message passing interface. It was developed by an open,
international forum consisting of representatives from industry, academia, and
government laboratories. MPI is not a new programming language. It is a standard
specification for a message passing library of subprograms which can be called from C
and Fortran 77 programs. MPI has been carefully designed to permit maximum
performance on a variety of systems, and it is based on message passing, one of the

most powerful and widely used paradigms for programming in parallel systems.

There are two major parallel computer models. One is called the shared-memory
parallel computer [6] where such a computer has a global memory that can be accessed
by all the processors. The cost of building a shared-memory parallel computer increases
rapidly with the number of processors. The other model is called the distributed-
memory parallel computer [7]. Such a computer connects several processors together,
each with its own local memory. For example, some distributed-memory computers are
simply a collection of workstations or personal computers linked together by an electric
network (e.g. Ethernet). This kind of parallel system is inexpensive to build and offers
great flexibility in terms of computational resources. The more powerful distributed-
memory computers consist of a fixed number of processors, all of the same architecture
and connected together by a fixed communication network.

Most programming languages and environments shield the programmer from the
intricacy of working directly with processors. They supply instead, a higher level
concept, called a process. Usually only one process runs on one processor.

Shared-memory and distributed-memory parallel computers have resulted in two
major parallel programming models. One is High Performance Fortran (HPF) [8],
which is based on shared-memory data-parallel model with implicit parallelism. The
other major parallel programming model is a distributed model with explicit control
parallelism, also referred to as a message passing programming model [9]. Processes in
a message passing programming model are only able to read and write into their
respective local memory. They synchronize with one another by explicitly calling

library procedures. The message passing programming model is regarded as a viable

Chapter 3

The Communications Covered by Our Tool

As we mentioned in the chapter 1, our tool can support two major kinds of
communications: point-to-point and collective. The basic point-to-point communication
operations are send and receive. They can be blocking or non-blocking operations. In
order to improve the program efficiency and flexibility, MPI also provides different
communication modes for send operations. The collective communications include
| Broadcast, Reduce, Gather and Scatter. They only perform in a synchronous way. There

are many issues about point-to-point and collective communications, we only address

those related to our tool.

3.1 Blocking Point-to-Point Communications

The blocking point-to-point communications have blocking send and receive;
these functions are the most often used when writing parallel programs. The function

prototypes for blocking send and receive are shown in the following tables.

15

OXO,
OO

Chapter 4

The Architecture of

the Automatic Logfile Analyzer

4.1 An Overview of ALA Architecture

As mentioned in the Chapter 1, the Automatic Logfile Analyzer (ALA) logically
consists of three essential parts and one add-on part. Figure 4 illustrates the relation
among the four parts. In pre-processing, the original MPI functions in the user program
are replaced by the wrapped MPI functions; this step is done before the compilation of
the source code. Then the Wrapper calls the Logger interface to log the communication
events and produces the logfiles; this step is done during the program execution. After
the logfiles have been generated, the Analyzer processes the logfiles and returns the

messages to the user - which is the last and most important step and is done after the

program execution.

28

MPI Program

MPI Function call T—

-Preprocessing-

MPI Program with Logger

_’

Wrapped MPI
Function call

Figure 4. The System Overall Structure

Logfile

Logger

29

39

3. MPICHECK
This executable implements the Automatic Logfile Analyzer. It runs against logfiles
generated from the MPI program execution. We will discuss the data structures,

algorithms and implementations concerning MPICheck in Chapter 5.

Chapter 5

The Analyzer

5.1 Program Overview

In this chapter, we are going to discuss the Analyzer, the key component of the
system. The Analyzer runs independently from the Logger, the Wrapper and the Pre-
processor. It takes logfiles as inputs regardless of whether they are complete or partial.
The latter may occur as the result of an abnormal exit during an execution. The running
results from the Analyzer either indicate the communication consistency or detect the
possible communication errors.

As we discussed in chapter 3, since MPI supports synchronous and
asynchronous communications, deadlock and message pending would occur quite often.
A parallel program may have very different communication patterns in different
executions, as the result of the variance in computation capacity, computer load and
network traffic, etc. This kind of randomness introduces difficulties in analyzing

parallel programs. To overcome this difficulty, we use the Logger described in chapter

40

41

4 to log all communication events. Each process generates one logfile. Our analysis is
based on the sequence of events in each logfile. It is unnecessary to know the
chronological difference between entries from different logfiles. Therefore, the
execution randomness has no effect on our analyzing results. In addition, our tool can
detect not only errors, such as deadlock, which causes execution hang or fail, but also
potential errors, such as incomplete operations in non-blocking communication, which

may not cause any problem in one execution. In this chapter, we present the major

algorithms used in the Analyzer.

5.2 The Communication Category

We have already discussed the MPI communication functions that are supported
by our system in the Chapter 3. We divided these MPI functions into six categories,
which are blocking send or receive, non-blocking send or receive, non-blocking
completion, partial non-blocking completion, collective and persistent communications.

We list all the functions according to their category in the following table.

COMMUNICATION
CATEGORY MPI FUNCTION NAME

Blocking Point-to-Point MPI_Send, MPI_Bsend, MPI_Rsend, MPI_Ssend,
MPI_Recv

Non-blocking Point-to-Point MPI_Isend, MPI_Ibsend, MPI_Irsend, MPI_Issend,
MPI_Irecv

Non-blocking Completion MPI_Wait, MPI_Waitany, MPI_Waitsome,
MPI_Waitall

Partial Non-blocking MPI_Test, MPI_Testany, MPI_Testsome,

43

pair, MPI_Isend and MPI_Irecv is a matched pair. The following table shows how

event pairs are matched.

receive and Null

1 | Matched blocking send MPI_Send & MPI_Recv, MPI_Ssend & MPI_Recv,
and blocking receive MPI_Rsend & MPI_Recv, MPI_Bsend & MPI_Recv

2 | Matched blocking send MPI_Send & MPI_Irecv, MPI_ Bsend & MPI_Irecv,
and non-blocking receive | MPI_Irsend & MPI_Irecv, MPI_Issend & MPI_Irecv

3 | Matched non-blocking MPI_Isend & MPI_Recv, MPI_Issend & MPI_Recv,
send and blocking receive | MPI_Irsend & MPI_Recv, MPI_Ibsend & MPI_Recv

4 | Matched non-blocking MPI_Isend & MPI_Irecv, MPI_Issend & MPI_Irecv,
send and non-blocking MPI Ibsend & MPI_Irecv, MPI_Irsend & MPI_Irecv
receive

5 | Non-blocking send or MPI_Isend & Null, MPI_Ibsend & Null, MPI_Irsend &

Null, MPI_Issend & Null, MPI_Irecv & Null

e Matched Events

Table 16. Event Pairs

An event is matched by one or more events. There are three types of matched events.

The first kind is Send and Receive matched events when their source and destination, as

well as tag, match. If there are only one Send and one Receive, they are also represented

as a matched pair. If the Receive uses a wild card (MPI_ANY_SOURCE or

MPI_ANY_TAG), the Receive event will be matched by several Send events. The

second kind of matched events are non-blocking send or receive with test or wait when

their request handles match. The last kind of matched events are collective events when

they are in the same type (e.g. Bcast) throughout the state vector at a specific point.

50

the complete list; otherwise mark the matched event as

incomplete.

4. Test (pre-log and post-log)
- If the communication is complete then follow the rules
in “Non-blocking Complete Event” and update the state

vector if there is one blocking event.

5. Collective Events (pre-log)

- Find the matched events in the state vector. If all
Events are matched then put the events into the
Complete Event List and update the state vector, if
events are not matched and the state vector can not

be further updated, generate error message.

6. Persistent Event (pre- log and post-log)

- To be implemented

Algorithm 2: Find a matched event in the pending list by Comparing

the input event with all events in the pending list.

y

Read an entry from the
state vector

!

blocking send /
recv

nonblocking
send / recv

nonblocking
complete

Check the type of the
event

Search the state
vector for matched
blocking or
nonblocking events

Search the pending
list for matched
nonblocking events

Search the pending list
for matched
nonblocking event

Search matched events
in the state vector

Add matched
blocking pairs to
complete list

Add unmatched
nonblocking
event; matched
nonblocking pair,
matched blocking
& nonblocking
pair to pending
list

Move the
complete pair
from pending list
to complete list

Add to the
complete list

update
state

vector

error

53

5.6 Implementation Details

All the functionalities of the Analyzer are implemented in the executable —
MPICheck. It takes log entries line by line as the inputs to calculate the state vector. An
event entry is usually represented by one line. However, two consecutive lines with the
same sequence ID are used to provide enough information in cases of Wait or Test
events. As shown in the following example, lines starting with 11, 12, 13, 15 represent

one event per line, where two lines started with 14 represent one MPI_Wait event.

11,72,296,0,91,,,,()
12,82,770,1,91,0,2,1, (2324)
13,92,514,0,91,0,2,3, ()
14,102,1059,0,,,,,(2324)
14,102,1059,1,,,.,.,(0)
15,112,545,0,91,2,0,5, ()

Figure 6. A Segment of a Logfile
a) It generates one possible communication trace and shows which events have

completed or are still remaining in the pending list. It also indicates whether the

communication path is in the current program or not.

54

Rank O Rank 1 Rank 2 Rank 3

Completed Events:

[Ln #10] Send(1) [Ln #10] Recv(0)
[Ln #11] Send(3) [Ln #20] Recv(2)

[La #21] Send(3) [Ln #40] Recv(2)
[Ln #20] Recv(3) [Ln #41] Send(0)

[Ln #105] Wait(0)
State vector cannot be updated anymore!

The Last State Vector:
[Ln #105] Wait(0) [Ln #28] Testali(2,3) [Ln#31]Recv(0) [Ln#51] Recv(2)

Pending Events:
[Ln #101] Issend(2,1126)
[Ln #30] Ibsend(3,3126) [Ln #51] Recv(1)
[Ln #22] Isend(3,2129)
[Ln #25] Isend(2,2131)
[Ln #26] Isend(3,2132)
MPICHECK stopped!

REMARKS:

The output parameters for each MPI function are :

Blocking Send/Receive — Destination/Source rank

Non-blocking Send/Receive — Destination/Source rank + Request handle
Waits and Tests — Index of request handle

Collectives — None

Detailed information can be found in state vector log file.

Figure 7. A Segment of MPICHECK Output.

57

7 Collective Reduce

8 Collective Gather

9 Collective Scatter
10-31 Reserved

Table 19 Function Values

For example, a non-blocking ready-mode send function can be described as Type = 3,
Mode = 4, Function = 1, so that MPI_IRSend =3 * 2A8 + 4 * 245 + 1 = 897.
In this chapter, we addressed the detail design and implementations about the

Analyzer. In the chapter 6, we will do case study in order to prove the tool utility.

Chapter 6

Case Study

In order to evaluate the practicality and effectiveness of the methods described
in the previous chapter, and to gain an appreciation of their strengths and weaknesses,
we designed various cases to fully test every part of the tool. The test cases are
classified into two categories, hypothetical cases and real applications. The hypothetical
cases focus on testing the core part — the Analyzer. The real applications focus on
testing every part of the tool, including the Pre-processor, the Logger, the Wrapper and
the Analyzer. Also through testing these applications, we will show how the tool
participates in parallel program developing and what role it plays in checking

communication consistency. In the Section 6.1 and 6.2, we will discuss the hypothetical

testing cases and a real application, respectively.

6.1 The Hypothetical Testing Cases

The hypothetical cases focus on testing the core part — the Analyzer. The Analyzer

takes the logfiles as inputs, goes through all the checking procedures and returns results

58

o s 00 e e

e

65

TESTING RESULTS:
Checking the outputs and state log, the testing results were same as the expected results.
P1 sent a message to PO, but P1 did not issue a completion operation to complete this

blocking send. Hence, that message could become a pending message.

6.2 Real Application

In the last section, we focus on testing the core part — the Analyzer. In this
section, we do integrated testing, which includes testing the pre-processor, the logger,
the wrapper and the Analyzer. In order to address the problem clearly, we present a real
application: adaptive quadrature using the rectangle rule. We will describe the whole
debugging procedure to show how our tool assists the programmer to detect the

communication errors and improve program reliability.

6.2.1 Program Overview

* PURPOSE
Using MPI to develop a parallel software version for adaptive quadrature using the

rectangle rules. In this application, we need to cover the issues such as dynamic load

balance, communication structures and program termination.

Job Distribution &
Loading Balance

Job Request

-—
17}
m
=]
o
@
a
o
o
-

Job Request

Job Request

68

Each process sends the finished work in terms of energy to the PO.

Energy and Termination

Figure 14. Communication Pattern Two

PO decides when the program should terminate by adding the energy received from
all the other processes. When the total energy equals to one, all the work has been
finished. Next PO broadcasts the termination message to all the processes, then
shuts itself down too.

Each process computes the local energy after they finish the current local work, then

sends the energy to PO. When they receive the “Termination” message, they

terminate immediately.

72

different processes. The reason was that one process such as P1 sent out a “Request
Work” message to another process such as P2, but P2 received the “Termination”
message before the “Request Work”, then it terminated. P1 also received the
“Termination” message from PO after it sent the “Request Work”, then it terminated
immediately without cleaning up the messages, which were already sent, but have not
been received. Both the sender and receiver for the ‘“Request Work” message
terminated, resulting in the message “Request Work” becoming a pending message.
After this realization, we added the clean up operations for every process, then the
problem was solved.

The application we described shows that the Automatic Logfile Analyzer is very
helpful to detect communication errors. It can detect not only the errors appearing in
executions, but also the potential ones. Without this help, we will have very hard time to
locate the first error, and have very small chance to detect the second one. So, the tool
can reduce the time spent on debugging the communication problems and give the users

more confidence about their programs. Finally, it can improve the parallel program

reliability.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this last chapter, we will draw some conclusions to highlight the advantages
of our tool. Also we will discuss what improvements are expected to be completed in
the future.

In the thesis, we have addressed background knowledge and the new ideas
behind this tool, the detailed design and implementation and the testing results. Now,
we are confident that this tool is useful. It provides a simple and intuitive way of
detecting communication errors in MPI programs. The user can save time spent on
detecting the communication problems. It provides clear indications, which serve to

locate the problem quickly. One of the good things about the tool is that it can detect not

73

76

4. Code Optimization
The current code is optimized at the compiler level. The code size is relatively large
because of using the Standard Template Library (STL). The code size may be

dramatically reduced if only C along with some optimized library code is used.

Appendix 1. Reference Manuals

MPICHECK (1.0)

Purpose:

To perform a deadlock check against an MPI* program written in C.

Syntax:

mpicheck [-sfilename] [-c] [-p] [-v] [-u] [-t#] [-w#] [-h] [M#logfile]...

Description:

This program takes input logfiles generated by the MPI programs that are
interpolated with the MPIWRAP runtime routines, then runs the deadlock-check
algorithm against the MPI program. It formats event updating status to a file, the last

state vector and the complete event pair list to stdout. Finally it produces an analysis

result for the MPI program.

Flags:

-l#logfile

71

78

To specify the processor rank and its associated logfile. Up to 8
processors/logfiles can be defined by this version. # ranges from 0 to 7. logfile
must be a valid path to the logfile produced on the corresponding processor #.
-sfilename

To specify the output file for the state updating status. (default = states.log)

-c

To suppress creating the complete event pair list (default = not)

P

To suppress creating the pending list (default = not)

-v

To suppress creating the last state vector if state vector cannot be updated
(default = not)

-u

To suppress creating the state vector updating file (default = not)

-t#

To define the size of a tab stop. This flag only affects the output formatting.
(default = 4)

-wi#

To define the number of tabs per column that represents a processor. (default =
5). This flag only affects the output formatting.

-h

To display a help screen for command line usage

Exit Status:

0—
1 — Invalid command line switch
2 — Invalid rank number

3 — Logfile open error

Successful

79

4 - Logfile is either corrupted or in an invalid format

5 — No logfile specified

6 — The state vector cannot be updated anymore, potential deadlock

7 — The pending list is not cleaned up even though the MPI program terminates

normally.

Examples:

1) Run mpicheck on two logfiles pO.log and pl.log, which were generated on

processor 0 and 1 respectively, use tab size 8 and 5 tabs per processor rank.

mpicheck -10p0.log -1llpl.log -t8 -wS

MPICHECK Version 1.0 Copyright (c) 1999 by Haitong Zhang

% (Email: hzhang@church.cas.mcmaster.ca) *

Rank 0

Completed Events:

[Ln #38]
[Ln #39]
{Ln #40])
[Ln #44]
[Ln #45]

BCast(...)
Gather(...)
Allgather(...)
Scatter(...)

Reduce(...)

[Ln
(Ln
[Ln
{Ln

[Ln

Rank 1

#38]
#39]
#40)
#44)
#45]

BCast(...)
Gather(...)
Allgather(...)
Scatter(...)

Reduce(...)

80

[Ln #46] Allreduce(...) [Ln #46] Allreduce(...)

[Ln #53] Isend(1,793232) (Ln #71] Recv(0)

[Ln #61) Testall(0,1,2)

[Ln #54] Issend(l,793340) [Ln #72]) Irecv(0,713824)
[Ln #73) Wait(0)

[Ln #55) Irsend(1l,793448) [Ln #74) Irecv(0,713824)
[Ln #82] Waitall(0,1,2)

[Ln #62] Issend(1,793556) [Ln #75] Irecv(0,713976)
(Ln #82) Waitall(0,1,2)

[Ln #64) Irsend(1l,793664) [Ln #76] Irecv(0,714128)
[Ln #82] Waitall(O0,1,2)

MPICHECK run successfully!

Files:
Mpicheck
Remarks:

* Supports most blocking and non-blocking functions defined in MPI 1.0

MPILOG (1.0)

Purpose:

To interpolate the event-logging enabled code into MPI programs written in C.

This is the preprocessor for MPICHECK.

Syntax:

81

mpilog [-spath] [—iext] [-oext] [-b] [-¢] [-p] [-h] filel, file2, ...

Description:

MPICHECK requires “events” must be logged in order to make further analysis.
Since the default MPI logging mechanism cannot fit this purpose, some special logging
routines must be interpolated into source code. Then these routines can link to a runtime
library “libwrap.a” after compiling. The users’ MPI program can log all the information
required by MPICHECK.

MPILOG takes C source files filel, file2, ... as input, which must have
extension “.mpc” or a name specified in [-iext], then creates output “.c” files. All files
that implemented MPI routines must also include the header “mpiwrap.h” to declare the
prototypes for the wrapped MPI routines.

MPILOG does not replace any MPI functions that contain syntax errors. It puts a

comment at the end of source line.

Flags:
-spath
To specify the source file directory (default = “.””)

-iext

To specify input file extension (default = “.mpc”)

-oext

T .
0 specify output fije extension (default = “.c”)

82

-b

To disable source file backup : overwrite existing “.mpc” files if they are in the
same path as output files. (default = enabled)

-c

To disable continue on error (default = enabled)

P

To supress print statistics.

-h

To display a help screen for the usage.

Examples:

1) To interpolate logging runtime routines to a MPI C source file “mpitest.mpc”. A file
“mpitest.c” is generated after running mpilog. Statistics about how many times each

MPI function has occurred in this file are also output to stdout.

mpilog mpitest.mpc
MPILOG Version 1.0 Copyright (c) 1999 by Haitong Zhang

*** (Email: hzhang@church.cas.mcmaster.ca) ***

MPI_Init
MPI_Finalize
MPI_Bcast

MPI_Reduce

(T T = T U

MPI_Gather

mailto:hzhang@church.cas.mcmaster.ca

MPI_Scatter
MPI_Allreduce
MPI_Allgather
MPI__Send
MPI_Recv
MPI_Irsend
MPI_Issend
MPI_TIrecv
MPI_Wait
MPI_Waitany
MPI_Waitsome
MPI_Waitall
MPI_Test
MPI_Testany
MPI_Testsome

MPI_Testall

=

83

86

8. High Performance Fortran Forum. High Performance Fortran language
specification, version 1.0. Technical Report CRPC-TR92225, Center for Research
on Parallel Computation, Rice University, Houston., Tex., 1993.

9. Ian Foster. Designing and Building Parallel Programs. Addison-Wesley Publishing
Company, 1994.

10. Building an advanced climate model: Program plan for the CHAMMP climate
modeling program. U.S. Department of Energy

11. J. Worlton. Characteristics of high-performance computers. In Supercomputers:

Directions in Technology and its Applications. National Academy Press, 1989.

