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Lay Abstract

A radar can cause a conductive target to resonate, and it can record these resonances.

Much like musical instruments can be identified by their sound, targets can be iden-

tified by their resonances. Simple methods to estimate resonances are robust when

the resonances are much stronger than the radio noise, but that is rarely the case

in practice. Fortunately, in many applications, the measurements can be repeated

because the resonant behaviour is consistent. Estimates from each measurement are

unreliable, but there is potential for statistical analysis of the repeated measurements

to yield reliable aggregate estimates. This thesis develops three methods for doing

so and demonstrates their performance. A method for jointly processing multiple

measurements is developed in Chapter 2 and demonstrated on synthetic signals. In

addition to noise, there can be environmental clutter resonating at the same time as

a target. A method for estimating the target’s resonances separately from those of

the clutter is developed in Chapter 3. A method for classifying (identifying) a target

that is embedded in clutter is developed in Chapter 4. The performance of the latter

two methods is demonstrated on measurements of handheld weapons.

iii



Abstract

In time-domain radar, the resonant features of a target are contained in its late-time

response (LTR). The frequencies and attenuation rates (i.e., complex frequencies) of

these resonances can be viewed as inherent features of the target. Thus, they could,

at least in principle, be used to describe and identify it. Unfortunately, methods for

estimating these complex frequencies from a single observation window of the LTR

are not robust to noise. That is a concern because the LTR is an attenuating phe-

nomenon that is quite weak to begin with, and hence, the effective signal-to-noise

ratio (SNR) over an LTR observation window is low. As a result, the potential for

target identification using the resonances in the LTR has yet to be robustly realized

in practice in the nearly 35 years since it was identified. This thesis suggests new

approaches to processing the LTR that provide more robust realizations of the un-

derlying principles, and demonstrates their performance in physical experiments on

an indoor ultra-wideband radar.

The premise for the thesis begins with the observation that it is now possible to

design time-domain radars that have a rather high pulse repetition rate, allowing them

to quickly capture many measurement shots. Averaging to improve the effective SNR

can be employed, but this alone is insufficient for robustness. Statistical analysis of

the estimates of the complex frequencies is more effective, but it is hampered because
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there is no known expression for the distribution of these frequencies.

In Chapter 2, a technique is developed for estimating the complex frequencies via

a related distribution of the z-transform roots of the observed LTRs, which has a

known expression when the noise is Gaussian. The technique is demonstrated to be

effective in Gaussian noise and in the presence of non-Gaussian uncertainties such as

sampling jitter, provided the uncertainty is “approximately Gaussian.”

In has been shown that, for Gaussian noise, the maximum-likelihood estimator for

the complex frequencies requires the solution of a nonlinear least-squares problem.

Since finding the globally optimal solution to that problem is inherently difficult,

Chapter 3 presents an efficient method for finding good estimates of the complex

frequencies that is based on their empirical distribution. The method is applied to

measurements of handheld weapons in the presence of environmental clutter.

Chapter 4 tackles the problem of using LTR measurements to classify targets.

The proposed method employs empirical distributions of the estimates of the tar-

gets’ complex frequencies, rather than employing specific estimates. The method is

again applied to measurements of handheld weapons in the presence of environmental

clutter and shown to be highly effective.
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Chapter 1

Introduction

1.1 Background on Radar-Based Detection and

Estimation

Radar technology was conceived for the detection and ranging of targets using ra-

dio [81]. A signal is transmitted, transformed by the environment, and then received.

By comparing the received signal to the transmitted one, one can learn about this

transformation, and through analysis of the transformation, one can learn about the

environment. As a simple example, if a conductive target is placed in the environment

a certain distance from the radar, and the radar transmits a pulse1, some portion of

that pulse will reflect off the target and be received by the radar. If the target is

moved farther away, as a general trend, the received pulse will be delayed, and in this

way, the target can be ranged.

However, the restriction to ranging overlooks most of the information contained

1That is, the radar stimulates its transmitting antenna in such a way as to produce a spatially
concentrated radio wave such as a plane wave.
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in the received signal. For example, one can estimate the cross-sectional size of a

target from the energy of the received pulse because larger targets reflect more of

the pulse [18], and one can estimate its depth from how much the pulse is smeared

because only a flat target will reflect all of the pulse at once [1]. It stands to reason

that, through more sophisticated analysis of the received signal, one can glean more

information about the environment than just the distance to a target of interest;

e.g., [15]. In particular, it is possible to infer knowledge about some salient features

of such a target and thus identify it, either by classifying it as a particular type of

object, or else by describing it in terms of its identifiable features.

Such identification schemes can be broadly classified as imaging and non-imaging,

depending on whether or not they generate something akin to a photograph or holo-

graph of the target of interest. The aforementioned ranging application can be cat-

egorized as a non-imaging technique, whereas airport body scanners utilize imaging

techniques [2].

Imaging techniques (e.g., [4]) necessitate multiple measurements and typically

operate at millimetre-wave frequencies (approximately 30 GHz to 300 GHz); e.g.,

the system described in [78] operates in the band from 27 GHz to 33 GHz. The

aforementioned body scanners consist of arrays of mobile antennas, and thus are able

to acquire the many measurements needed to generate the scanned body’s image [78].

Such a generated image can be of fairly high fidelity [78]. However, imaging of this

nature is considered invasive by many [2] and thus typically controlled by various

laws and regulations [61].

Non-imaging techniques tend to be somewhat simpler and can operate effectively

at much lower frequencies than imaging techniques (e.g., the designs presented here
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operate predominantly in the low-GHz band). They require only one transmitter and

one receiver, at a minimum, but there is a benefit to having greater diversity than that.

An intuitive way to understand how a non-imaging technique can be used to identify

a target is through analogy to listening to music. For example, one can identify a

guitar as such because plucking of one of its strings causes a distinct twang and the

subsequent ringing (vibrating, resonating) of the string has distinctive qualities. In

radar, the resonances occur due to currents induced in the target, which form standing

waves that depend on the target’s shape and material properties, and attenuate over

time due to the target’s resistivity; that is, the standing waves are longitudinal rather

than transverse as in the guitar string. The twang corresponds to the early-time

return or early-time response (ETR) of a target and the subsequent ringing that

occurs corresponds to its late-time return or late-time response (LTR) [82]. The

only significant breakdown of this analogy is that it is the radar that stimulates the

target from afar, rather than a musician plucking a string directly. Instead, one could

potentially imagine a shockwave from a bomb causing the guitar to resonate.

For the purposes of detection and ranging, the ETR is altogether sufficient, and

the LTR is either irrelevant or outright detrimental, such as in cases where a strong

LTR from one target masks a much weaker return froI haven’t seen SAC in quite a

while, but im another. However, when the end goal is target identification, the LTR

becomes useful. Whereas the ETR is highly dependent on the stimulus, the frequency

and attenuation rate of the LTR are dependent on the target itself. For example, a

thin conductive rod of length 15 cm will resonate primarily at 1 GHz,2 and if that

rod is made of copper, the resonance will attenuate more slowly than if it were made

2Using a thin-wire approximation (e.g., [44]), the wavelength of the fundamental resonance is
λ = 30 cm, and the corresponding frequency is f = c/λ ≈ 1 GHz, where the speed of light is
c ≈ 30 cm/ns. Overtones of this fundamental frequency are present as well.
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of iron, which is more resistive [44]. More complicated targets would naturally have

more resonant components.

With this background knowledge, one can envision how a non-imaging target

identification technique might work. First, by analyzing the ETR, target detection

and ranging could be performed. Then, assuming a target has been detected, the

resonant frequencies and attenuation rates of the target could be estimated from the

LTR. Through the estimation of these resonance parameters or resonance features,

one could infer salient information about the target. If a database of such resonance

parameters is available, then the targets could even be identified, just like one can

identify a guitar in a musical recording by knowing what it sounds like.

The general idea is thus quite promising and has been advocated for by Carl

Baum [12] and others [21], [47]. However, as discussed in more detail in the following

section, the practical implementation of such a system is very challenging. Several

methods have shown promise in simulation experiments on electromagnetically simple

targets in idealized environments at somewhat optimistic SNRs [28], [62]. However,

it appears that it has been difficult to realize that promise in physical experiments,

even in a well-controlled environment. The goal of this thesis is to take a fresh look

at the theory, algorithms and practical implementation of target identification from

measurements of the LTR, inspired, in part, by the capabilities of a custom-designed

picosecond-pulse radar with high pulse repetition rate that has been developed at Mc-

Master University. This time-domain radar operates between approximately 0.5 GHz

and 5 GHz, which corresponds to target features sized between approximately 3 cm
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and 30 cm.3 This choice is practical in terms of experimental feasibility since count-

less common handheld metallic items are of such a size, and it is relatively easy to

manufacture uncommon items of such a size by hand. In terms of application, such

a system would be useful in the detection of visually concealed items carried by a

person (e.g., contraband, weapons), which are quite likely to be of such a size. Such a

design faces a number of theoretical and practical challenges. As outlined in the fol-

lowing sections, the work presented in this thesis addresses many of those challenges

at the theoretical, algorithmic and practical implementation levels, and demonstrates

that by employing the proposed approaches, promising performance can indeed be

achieved in practice.

1.2 Main Challenges

A noise-free LTR signal can be modelled as a superposition of damped sinusoids

(cf. [12], [50]). Each such component has an initial amplitude and phase, which can

be combined into a complex amplitude, and a resonant frequency and attenuation rate,

which can be combined into a complex frequency. The complex amplitude inherently

depends on the initial point of the observation window within the LTR. In contrast,

any observation window within the LTR should contain the same complex frequencies.

Thus, the complex frequencies are features that are time invariant for the duration

of the LTR, making them a natural choice for characterizing the target.

In [50], Hua et al. make use of this fact by sliding such an observation window

over the LTR and comparing the signal portions contained therein. In particular,

3In principle, overtones of features larger than this can be captured, but they are significantly
weaker than the fundamental resonance.
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they do so over the discretely sampled LTR and arrange the subsequent observation

windows into a pair of Hankel matrices referred to as a matrix pencil. Finally, they

show that the complex frequencies are directly related to the generalized eigenvalues

of this matrix pencil.4 Provided certain constraints are met, this matrix-pencil method

(MPM) yields a unique set of estimates of the complex frequencies for a given signal.

However, as Rellich outlines in Chapter 1, Section 1 of [73], entitled “A Small

Perturbation Parameter does not mean a Small Perturbation,” a small perturbation

to the matrix pencil does not necessarily result in a small perturbation to the eigen-

values. Therefore, when noise randomly perturbs the LTR signal, even slightly, it

randomly perturbs the estimates of the sought-after resonance parameters, and those

perturbations are not necessarily small. This is the fundamental problem that makes

this sort of estimation difficult. That difficulty is only exacerbated by the fact that

due to its very nature, the LTR attenuates, thus a longer observation window will

lead to a lower average signal-to-noise ratio (SNR) over the window regardless of the

initial signal amplitude. In practice, the start of LTR is typically some 10 dB weaker

than the ETR, so even this initial amplitude is quite low.

Strategies to mitigate the impact of these noise-induced perturbations include

filtering, as is implicitly done in a significant improvement to the MPM known as

the generalized pencil-of-functions (GPoF) method [49], and gathering more samples,

either through longer observation windows or multiple measurement shots. These

must be evaluated in the context of what can be measured experimentally. A major

issue in such experiments stems from multipath interference. Techniques such as

the MPM are rather sensitive to model mismatch, thus the observation window of

the LTR needs to be purely a superposition of damped sinusoids (and noise). This

4Each complex frequency ω̃k corresponds to two eigenvalues, e+jω̃k and e−jω̃∗
k .
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means that the longest possible observation window for the LTR is between the end

of the ETR of the initial response and the start of the ETR of the first multi-path

reflection. In many applications, including the experiments performed in this thesis,

that precludes the use of techniques such as the one in [37], which offers a significant

improvement to the MPM but only for very long observation windows. As pointed

out in Chapter 2, the filtering in the GPoF reduces the variance of the estimates of the

resonance parameters, as indicated in [49], but that does not necessarily improve the

average estimation performance. This leaves gathering multiple measurement shots

as the remaining alternative.

The key problems with working with many measurement shots is that the shots

must be acquired and then jointly processed in a manner that captures both the nature

of the acquisition and the nature of the environment. Consider an idealized scenario

in which multiple measurement shots can be acquired so rapidly that the target and

environment are effectively static, and there are no irregular sampling artifacts in

the observation windows of the LTRs. Simple averaging of the measurements shots

is a viable option, and doing so improves the effective SNR [55]. However, even in

this idealized scenario, such averaging does not guarantee a small perturbation in the

estimates of the complex frequencies.

That observation suggests that more sophisticated statistical signal-processing

techniques might be needed. Unfortunately, that leads to another problem: Although

there are a few standard ways5 to estimate complex frequencies from LTR-like mea-

surements of signals, there is no known closed-form expression for the probability

distribution of such estimates from signals that include additive noise for any of these

5These include the MPM and GPoF, Prony’s method [86] and finding the poles of Padé approx-
imants of the z-transform [39].
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methods. This makes statistical analysis challenging. An empirical observation is

that the estimates of the complex frequencies tend to cluster near to the complex

frequencies of the corresponding noise-free signal. Methods such as the one in [8]

seek to exploit that observation by identifying clusters and using their “centres” as

estimates of the complex frequencies. However, these clusters often overlap and dif-

fer greatly in spread. This makes the method in [8], which employs of averaging of

the estimates in a cluster to find its “centre,” awkward to use since it is difficult

to determine to which cluster an estimate belongs. In this thesis, this shortcoming

is partly overcome by using the estimates to create a smooth empirical distribution

of the complex frequencies, and analyzing this distribution instead of the estimates

themselves.

1.3 First Major Contribution – Estimating Com-

plex Frequencies from Multiple Measurement

Shots

As outlined above, the GPoF [49] is a promising approach to estimating the complex

frequencies when only a single measurement shot is available. It is computationally

efficient and has the flexibility that it does not require a model for the additive noise.

However, the sensitivity of the underlying eigenvalue problem to perturbations limits

its reliability, especially in scenarios with low SNR. In light of this, Barone suggested

using the GPoF to generate estimates of the complex frequencies on each of many

measurement shots [8]. He found that at sufficiently high SNRs these estimates form
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distinct clusters and that the clusters’ centres are good estimates of the complex fre-

quencies of the LTR. In essence, the computation of the cluster centres both averages

the “reliable” individual estimates and excludes outliers.

When the SNR is lower, the clusters are no longer as well defined, and thus

Barone’s method collapses. In an effort to extend the underlying principles of Barone’s

approach to the low-SNR regime, a slight modification is proposed. Rather than

taking a clustering approach, the estimates from each measurement shot are used

to construct an empirical distribution using kernel density estimation (KDE) [83].

Instead of cluster centres, local maxima (peaks) of the KDE serve as estimates of the

complex frequencies. At high SNRs, these peaks are indeed very close to Barone’s

cluster centres, and thus close to the complex frequencies that are being estimated.

As the SNR is lowered, Barone’s original method collapses, whereas the KDE peak-

finding modification continues to yield reasonable estimates. However, those estimates

drift as the SNR decreases, and thus further refinement is needed.

A promising candidate for such a refinement technique lies in the work of Umesh

and Tufts, who tackle the problem of estimating the complex frequencies from a single

measurement shot by deriving an associated nonlinear least-squares problem [84]. In

the case of white Gaussian noise, their proposed estimator is the maximum-likelihood

estimator. It is shown that the extension of this work to the case of multiple mea-

surement shots is straightforward in an algebraic sense, but that it requires careful

consideration of the model for the relationships between the complex amplitudes in

different measurement shots.6 Furthermore, an important issue with this overall ap-

proach is that the nonlinear least-squares problem has a very challenging optimization

6The complex amplitudes are “nuisance parameters” in our setting in the sense that we wish to
estimate the complex frequencies, but in order to do so we need to simultaneously model and (at
least implicitly) estimate the complex amplitudes.
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landscape. For the approach to be effective on a reasonable time scale with current

computing technology, a starting point that is reasonably close to the optimal es-

timate is needed. One of the insights that underlies each of the contributions in

this thesis is that the aforementioned modification to Barone’s method yields such a

starting point.

Unfortunately, the sampling jitter and synchronization7 issues that were present

in the prototype radar at the time of this work suggested that the nonlinear least-

squares estimator might not perform adequately in practice. This is because the

implicit assumption that underlies its good performance, namely that the dominant

form of signal degradation is additive Gaussian noise, would likely not hold well. As

a result, although the nonlinear least-squares estimates constitute a refinement of the

estimates from the proposed modification to Barone’s method, they themselves might

need refinement in practice.

One approach that could be envisioned for refining the least-squares estimates

would be to first obtain an analytical expression for the distribution of the estimates

of the complex frequencies of an LTR that is parameterized in terms of the true

complex frequencies and the true complex amplitudes. Then, one could optimize

the parameters so that the analytic distribution “matches” the empirical distribution

that was constructed using KDE techniques in the proposed modification of Barone’s

technique. While this approach has considerable potential, unfortunately there is

no known analytical expression for the distribution of the estimates of the complex

frequencies, even in the simple case of additive Gaussian noise. However, Hammersley

derived an analytical expression for the distribution of the roots of a polynomial

whose coefficients have an arbitrary Gaussian distribution in [40]. The z-transform

7Jitter of the entire signal, rather than individual samples.
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of a finite-length window of an LTR signal in additive correlated Gaussian noise is

one example of such a polynomial. This may not immediately seem relevant, but

the MPM eigenvalues are also the poles of a particular Padé approximant of the z-

transform, and work such as that of Froissart [32], where it is observed that a pole

and a zero can often interact as a “doublet,” suggests that this root distribution

likely relates closely to the eigenvalue/pole distribution. Furthermore, the peaks of

the root distribution drift as the SNR is lowered, which aligns with the observations

made regarding the peaks of the KDE.

Thus, a method of using the Hammersley distribution as a model was conceived,

and a means to compare it to the KDE of the z-transform’s roots, rather than the

complex frequencies, was devised. In this method, the mean of the distribution of the

coefficients of the polynomial is the idealized LTR, and thus it is parametrized in terms

of the complex amplitudes and complex frequencies. The covariance of the coefficients

is the noise covariance and is assumed to be known. By optimizing over the parameters

of the mean, with the objective to minimize the difference between the empirical

KDE of the roots and Hammersley’s analytical expression for the distribution of the

roots, the complex frequencies can be estimated. In the case of an LTR in zero-

mean, additive, possibly correlated, Gaussian noise, the covariance of the coefficients

of the polynomial in Hammersley’s model is simply the covariance of the additive

noise. In scenarios with significant jitter or synchronization errors, the distribution

of the coefficients of the polynomial is not Gaussian, but it is shown that an effective

Gaussian approximation can be constructed.
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When combined with some well-chosen constraints, this method based on Ham-

mersley’s distribution of the roots proved to be the most effective in numerical exper-

iments with synthetic signals, even in the case of Gaussian noise at very low SNR. It

outperformed the proposed modification of Barone’s method, and the nonlinear least-

squares method derived from the work of Umesh and Tufts, especially in the cases

of jitter and synchronization error. In particular, the demonstrated performance was

quite reasonable even for levels of jitter that are comparable to the sampling interval,

which is unreasonably high inasmuch as this degree of jitter would make for a rather

poor sampling receiver.

This work was published in the IEEE Transactions on Signal Processing as [34]

and appears as Chapter 2 of this thesis.

1.4 Second Major Contribution – Estimating

Complex Frequencies in a Cluttered Environ-

ment

The approach of matching a KDE of the roots of the z-transform of the observed

window on the LTR to a Hammersley root distribution described in Chapter 2 may

be an effective method to estimate the complex frequencies of an LTR, but it is also

very computationally demanding. In contrast, the extension of Umesh and Tufts’

nonlinear least-squares approach to direct estimation of the complex frequencies that

was also proposed in Chapter 2 performs adequately in many cases and converges

quite quickly when sufficiently well initialized. This leaves the robustness to non-

Gaussian uncertainty as the main advantage of the Hammersley-inspired method.
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However, after these methods were developed, the sampling issues of the custom-

designed prototype radar were resolved, and the jitter in the re-designed receiver was

measured to be low enough to be neglected. Thus, a pragmatic decision was made

to base the further development of LTR analysis techniques on the extensions of the

nonlinear least-squares approach, initialized, as before, by a KDE-based modification

of Barone’s method.

An arguably more critical problem in LTR analysis is that of environment clutter,

which is unavoidable in practice as even the radar system itself contributes to such

clutter. In general, clutter can cause multi-path interference, but in the envisioned

application, multi-path interference simply curtails the available LTR window. (The

observation window is truncated so that it closes before the first multi-path reflection

arrives.) The important role that clutter plays in the envisioned application is that

other objects in the environment and the radar itself resonate, and it is necessary to

distinguish these resonances from those of the target.

To that end, a method is proposed in which the complex frequencies of the reso-

nances of the environment are estimated first. These resonances are then assumed to

also be present once a target is introduced, with the same frequencies but with dif-

ferent complex amplitudes than prior to the target being introduced.8 As part of this

method, the extension of the nonlinear least-squares problem and its Barone-based

initialization are adjusted to account for these now-fixed complex frequencies.

With the problem of clutter potentially resolved, this method becomes a viable

option for analyzing LTRs obtained from physical experiments with the prototype

radar. The results of those experiments show that the proposed method is reasonably

8For example, consider that the target may partly block a resonating feature of the environment,
thereby reducing its amplitude.
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capable at estimating target resonances in the presence of clutter, even when that

clutter heavily influences the received signal.

1.5 Third Major Contribution – Classifying Tar-

gets Using Distributions of Complex Frequen-

cies

At this point, two promising methods for estimating resonance parameters have been

demonstrated, but the underlying problem of eigenvalue perturbation remains: one

can only have so much confidence that a particular estimate is accurate. However, if

the ultimate goal is to classify unknown targets, specific estimates of the resonance

parameters are not necessarily needed. If empirical distributions of the estimates of

the complex frequencies of a particular target are stored in a database, and then

the distribution for a new, unknown target is measured, it follows that this new

distribution can be compared to each of those in the database. The classification

problem thus becomes a multiple-hypothesis test; i.e., it becomes the problem of

determining which database target this new target most likely to be.

Were only one or a handful of measurement shots available, one might conduct

a classical multiple-hypothesis test of each estimate of a resonance frequency that is

available, then combine these into a compound result. When a significant number

of measurement shots are available, it becomes possible to construct an empirical

distribution of the estimates of the complex frequencies. Furthermore, the notion

of hypothesis testing naturally extends to measuring the Kullback-Leibler divergence

(relative entropy) between the distribution associated with the unknown target and
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each distribution in the database [58]. By combining these observations, an approach

to the classification of unknown targets using LTR measurements is developed. That

approach falls into a category of classification schemes that involve distribution match-

ing.

Some care is needed in order to conduct the distribution matching effectively

in this setting. First, due to its construction, a KDE is a good approximation to

a distribution in subdomains where that distribution is quite dense (in the sense

that its probability density function has a high value), and can be relatively poor in

subdomains where it is sparse because there are only a few outlier samples on which

to base the estimate. Thus, if two KDEs are to be matched, it should be done in

these dense subdomains. In the proposed application, such refinement can be guided

by practical insights. In particular, only the subdomain that corresponds to the

frequency band in which the radar operates is considered. Similarly, analysis of the

physics of the system yields sensible bounds that can be placed on the attenuation

rates. Second, in a KDE constructed from measurement shots of a target embedded in

clutter, the clutter, which includes the radar system itself, has a substantial impact.

When a KDE constructed from this clutter, or even just some of it, is available, it is

sensible to use it to identify subdomains where the “target-in-clutter” measurement

is most similar to the clutter measurement. These subdomains can then be excluded

from the matching against database targets. This is especially useful in scenarios in

which the clutter that is present when the unknown target is measured is different

from the cutter that was present when the database of known targets was constructed,

but it remains helpful even when the clutter environments are very similar.

The proposed approach has many advantages, but a key one is that it does not
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rely on very many ad-hoc parameters, and for those that are present there are sensible

ways to choose them. An upper bound on the number of complex frequencies must

be set, but it can be quite a loose upper bound.9 The other parameter has to do

with how smooth the empirical distribution should be, and this choice can be largely

guided by the number of measurement shots available. With infinite measurement

shots, no added smoothing is necessary at all, but with very few shots, the divergence

between empirical distributions can be quite large simply because regions with some

samples in one distribution are compared to regions with no samples in the other,

and added smoothing helps reduce this effect.

All of this is unlike methods for estimating the complex frequencies themselves,

in which at least the number of complex frequencies needs to be specified, even

though it is generally unknown. Beyond that, the optimization algorithms used in

the estimation process have to be chosen carefully, and their parameters, including

starting points for iterative algorithms have to be selected. These difficulties are

avoided in the proposed distribution-based approach, and perhaps that has much to

do with the ultimate efficacy of the technique in physical experiments involving the

identification of handheld weapons. In particular, targets are demonstrated to be

classified correctly, even when partly obscured by resonating clutter, and the method

was still largely effective when the targets were in orientations different to those that

were used when the database was constructed.

The proposed approach to classification of an unknown target is likely to be suc-

cessful if the distribution of the unknown target diverges only a small amount from

9In fact, the choice made has to do more with the GPoF, for which there is a rule of thumb
that, for a signal of length N , one should estimate at most about N/4 complex frequencies for good
results, even though the theoretical maximum is N/2.
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one of the elements of the database and diverges from the other elements by a signif-

icantly larger amount. In a scenario in which the distribution of the unknown target

diverges significantly from all elements in the database, it becomes probable that the

unknown target is not one of the items from which the database was constructed. In

that case, it makes sense to fall back onto the methods of the second contribution,

which characterize the target rather than classify it. That is to say, the proposed

classification scheme complements rather than supplants the previously developed

method.
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Chapter 2

Estimating Resonances in

Low-SNR Late-Time Radar

Returns with Sampling Jitter

This work is published in the IEEE Transactions on Signal Processing as [34]. Its

reproduction here is in accordance with the IEEE’s Copyright Policy.

Abstract

The frequency and attenuation rate of a resonance in the late-time return of a radar

signal are indicative of a target’s geometry and conductivity, and hence they can be

used as features in a variety of filtering and classification applications. However, late-

time returns are typically observed over short windows at low signal-to-noise ratios

(SNRs, averaged over the window), and often in the presence of sampling jitter. This

can make the estimation of these parameters difficult, even when multiple measure-

ment shots are available. In this chapter, we develop a new multi-shot estimation
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method that is based on models for the distribution of the roots of the z-transform

of the received signal. Under an additive-Gaussian-noise model, we have a closed-

form expression for the root distribution in terms of the resonance parameters, and

the parameters are estimated by matching the model distribution to the empirical

distribution. The root distribution has a strong dependence on the frequency and

attenuation rate, and leads to significantly better estimates than existing techniques

at low SNRs. By developing approximate models, we extend these performance ad-

vantages to scenarios with significant sampling jitter and synchronization offsets.

2.1 Introduction

A common non-imaging technique for classifying radar targets involves the identifi-

cation of resonant modes, which appear as damped sinusoids in the radar return [11],

[12]. In impulse radar, the frequency of such a mode is indicative of the size and

shape of an object, whereas the attenuation (damping) rate is indicative of the over-

all loss of the object, which is dependent on its conductivity and its geometry [21],

[80]. For example, a 15-cm thin metallic rod has a dominant resonant mode with a

30-cm wavelength and thus a 1-GHz frequency. The more resistive the rod, the faster

the resonance attenuates. More complex objects have multiple detectable resonances,

whose frequencies and attenuation rates can be treated as classifiable features.

Such resonance classification techniques have numerous applications, including

the detection of targets at close-range, such as landmines, which prompted the devel-

opment of the original singularity expansion method (SEM) that this work aims to

improve upon [12], or on-body concealed weapons [3]. In on-body applications, these

techniques have certain advantages over imaging methods, such as millimeter-wave
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scanning [60], as they can operate in a monostatic regime with a single stationary

antenna. Polarization-diversity systems may employ as many as four antennas, but

they remain stationary, whereas an imaging radar requires some combination of mul-

tiple antennas and mechanical movement to form a synthetic aperture. Furthermore,

non-imaging methods do not produce an image of the target, which may be a person

or the surrounding environment. As such, they are perceived as less invasive [5] and

more suitable in applications where privacy is a concern.

For target resonances to be measured, an ultra-wideband pulse is transmitted,

and the signal reflected from the target is received and sampled in the time domain

[11]. The spectral span of such pulses is designed to include all expected resonant

frequencies. The received signal includes an early-time response (ETR), which has

a complex structure [46], but is dominated by the direct reflection of the pulse from

the target. If resonance is excited within the target by the pulse, the ETR is followed

by ringing, which contains the resonant modes. This ringing is termed the late-time

response (LTR) [42]. An explanation of how such resonances evolve in a complex

target is given in [45], and the complexities of this evolution are demonstrated via

simulation in [57]. Thus, the identification of the onset of the LTR requires some

sophisticated analysis [42], [76], but once it has been identified, the goal of the receiver

is to estimate the resonant frequencies and attenuation rates. As we describe in more

detail below, the estimation task faces three major challenges: (i) the usable LTR

duration is typically short, often on the order of 10s of samples, (ii) the average SNR

over the usable duration of the LTR is typically low, often below 10 dB, and (iii) it

is difficult to construct a sampler with sufficiently low jitter at the requisite sampling

rates.
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There are two factors which limit the usable LTR duration. Firstly, due to the

lossy nature of most radar targets, the LTR is a rapidly attenuating signal. Secondly,

it is necessary to reject multipath interference and clutter. If there were only one

reflecting object in the environment, there would only be one ETR followed by one

LTR. In the presence of clutter and multipath propagation, the observation window

of the LTR must end before the next response arrives. That response might arise

from a clutter reflection or may be a response from the desired target arriving along

a reflected path. For example, if a monostatic radar and its target are 1 m above

a reflective floor and 2 m apart, then the direct reflection has to travel 2 m to the

radar and multi-path reflection off the floor has to travel 2
√
2 m to the radar. This is

83 cm longer, a distance that light travels in 2.76 ns. Furthermore, the LTR window

can only start once the ETR has decayed sufficiently. The ETR has an appreciable

duration, due to both the non-ideal pulse shape and the depth of the target object.

For example, if the pulse width is 0.1 ns and the target is 5 cm deep, then the last part

of the ETR arrives (0.1 + 0.33) ns after the first. Taking the reflection, pulse width

and target depth into account, a realistic LTR window for this example is around 2.4

ns. At a sampling frequency of 20 GHz, a 2.4-ns window contains 48 samples.

With regard to the SNR, we observe that the start of the LTR is typically more

than 10 dB weaker than the ETR [42]. By its very nature, the LTR only decays

from that point in time. Ambient noise and active interference limit the effective

sensitivity of the receiver. Furthermore, even if the radar and target are isolated

from the ambient environment in order to eliminate the regulatory concerns, the

power of the transmitter is limited. Factoring all this in, the average SNR over the

window is typically 10 dB or less. This average SNR is the ratio of the signal energy
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over the usable LTR duration to the noise energy over that duration, and is formally

defined in Section 2.2.1. As such, the average SNR depends on the attenuation rate

of each resonant component. We will assume relatively low attenuations, as is typical

in the case of metallic radar targets; see [87] for a method suited to high-attenuation

scenarios.

With regard to sampling jitter, real-time sampling oscilloscopes that operate at

20 gigasamples/s or faster with low jitter exist, but they are very costly. A more

affordable alternative is equivalent sampling, which operates at a lower physical sam-

pling frequency and repeats the same measurement multiple times with different

offsets. For example, sampling at 200 megasamples/s one hundred times at offsets of

0 ps, 50 ps, . . . , 4950 ps creates a system with an equivalent sampling period of 50

ps (a rate of 20 gigasamples/s). A problem arises in that low jitter compared to the

physical sampling period (on this example, 5 ns) may be quite high compared to the

equivalent period (in this example, 50 ps).

The goal of this chapter is to develop an approach to estimating the frequencies,

ω̆k, and attenuation rates, ᾰk, of the resonances in an LTR that can provide reliable

performance in the difficult conditions described above. For ease of exposition, we will

call s̆k = −ᾰk + jω̆k the complex frequency of the resonance. As we outline in Section

2.2, the established approaches for estimating the complex frequencies include:

• the nonlinear least-squares technique in [84], which is the maximum likelihood

(ML) estimator in additive white Gaussian noise [20];

• the matrix-pencil method (MPM) [50] and generalized pencil-of-functions

(GPoF) method [49], which are inspired by the Kumaresan-Tufts method [51],

[56], [72] and are based on observations regarding the structure of the LTRs
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that enable estimation of the complex frequencies through the solution of a

generalized eigenvalue problem; and

• Padé approximation methods [7], [14], [25], [39], which are based on approxi-

mating the z-transform of the finite-length received signal by a rational function

whose poles are the estimates of the complex frequencies.

These existing single-shot methods perform well when applied to sufficiently long

observation windows with sufficiently high SNRs using samples with sufficiently low

jitter. However, even in the absence of jitter, they can be quite sensitive to certain

noise realizations. For example, in the GPoF method, the noise realization perturbs

both the matrices in the matrix pencil, and it is well known that small perturbations

in those may result in significant perturbations in the generalized eigenvalues [73].

In fact, these single-shot methods are so susceptible to noise [9] that it is difficult

to make use of them in the applications we have envisioned, such as on-body target

detection.

In these applications, one strategy to mitigate the sensitivity to noise is to take

multiple measurements of the LTR. (In equivalent sampling systems, this corresponds

to multiple measurements at the high sampling rate.) In the envisioned applications,

this is facilitated by the fact the range of the system is small enough that measure-

ments can be repeated on a time scale of hundreds of microseconds. As we explain

in Section 2.4.1, if the measurements are perfectly synchronized and free from jitter,

and if the additive noise has zero mean, then simple, if somewhat naive, estimates of

the complex frequencies can be constructed by applying the established single-shot

techniques to the average of the received signals. However, these naive multi-shot

estimators retain the inherent sensitivities of the underlying single-shot estimators.
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Furthermore, they are inherently sensitive to synchronization offsets and jitter.

A more sophisticated strategy would be to construct a model for the timing errors

(i.e., the synchronization errors and the jitter) and derive the ML estimator for the

complex frequencies. Unfortunately, when the timing errors are modeled as non-

random parameters, the number of “nuisance” parameters in the ML estimator grows

linearly with the number of shots, and when the timing errors are modeled as random

parameters with a known distribution, the expression for the likelihood, which the

estimator must maximize, involves multidimensional integrals and is computationally

unwieldy.

An interesting alternative strategy, inspired by the work of Barone [8], is to per-

form independent single-shot estimation on each measurement. The estimated com-

plex frequencies from each of the shots are scattered randomly, but form clusters.

An estimate of each complex frequency can be obtained by taking some measure of

the center of the corresponding cluster, such as its mean or the local maximum of

an estimated density function. The underlying idea, which leads to some robustness

in the technique, is that the highly perturbed estimates will present as outliers that

are far enough away from the clusters that they can be disregarded. This is indeed

the case, but, unfortunately, at low SNRs, some of these cluster-center estimates can

degrade significantly as shown in Figure 2.1.

Barone’s technique [8] can be interpreted as a model-free method that uses multi-

ple measurements to implicitly construct an empirical distribution for the complex fre-

quencies and then seeks to identify local maxima in that distribution (see Figure 2.1).

That interpretation suggests that if we had access to a model for the distribution of

the complex frequencies under given noise and timing error models, we could develop
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Figure 2.1: Contours (blue lines) of a kernel density estimate (KDE) [83] of the
distribution of the poles

{
es̆kT

}
of a 4-resonance signal at an SNR of 10 dB sampled

at a rate 1/T . The KDE was generated from 1600 48-sample measurement shots with
the matrix-pencil method (MPM) [56] (top), or the generalized pencil-of-functions
method (GPoF) [49] (bottom), being used to extract the complex-frequency estimates
of each measurement shot. Using the principles of Barone’s multi-shot technique in
[8], we have plotted (with blue crosses) the local maxima of the KDE. In the example,
note that while the GPoF’s filtering leads to a cleaner empirical distribution, it does
not improve the estimates. In particular, the distances to the true values in the MPM
case are 0.001, 0.031, 0.071, 0.029, and in the GPoF case, they are 0.004, 0.039, 0.070,
0.026.
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a model-based variant of Barone’s method. Such a method would optimize the val-

ues of the estimates of the complex frequencies so that the model-based distribution

comes as close as possible to the empirical distribution in an appropriate sense. If

it were possible to construct such an estimator, it could be viewed as a method-of-

moments estimator that simultaneously considers all the moments. Unfortunately,

the complex frequencies are a complicated function of the signal measurements, and

hence a model for their distribution has yet to be derived, even in the case of white

Gaussian noise. Thus, the envisioned estimator cannot be constructed.

In an earlier work [10], Barone and Ramponi partly overcome this by deriving an

approximate model of the complex-frequency distribution using a result from Ham-

mersley regarding the distribution of roots of polynomials with Gaussian coefficients

[40]. Since the complex frequencies can be derived from the roots of the denominator

of the Padé approximant of the z-transform of the finite-length signal (see Section

2.3.3), its coefficients are approximated with Gaussian ones so as to use Hammers-

ley’s result. Unfortunately, even in the case of an input signal with additive Gaussian

noise, which is of predominant interest to us, the coefficients of the denominator of

the Padé approximant may deviate significantly from a Gaussian distribution, so this

method necessarily incurs errors due to model mismatch.

The principle that underlies the approach proposed in this chapter is analogous

to that for the model-based variant of Barone’s method that was envisioned above.

However, instead of attempting to work with an empirical distribution of the complex

frequencies, we construct an empirical distribution of the roots of the z-transforms

of the finite-length measurements. Since the received signal is of finite length, its

z-transform is a polynomial. In the case of additive Gaussian noise, the coefficients
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of that polynomial are Gaussian, and we obtain a model for the distribution of the

roots that is an explicit function of the complex frequencies and amplitudes of the

resonant modes. This is also based on Hammersley’s result in [40]. However, in the

Gaussian case, there is no model mismatch. Since we work directly with the received

signal rather than the Padé approximant, the complex frequencies are estimated by

seeking to minimize the distance between the empirical and modeled distributions.

We first develop this technique for the case of no timing errors, and then we show

how it can be extended to accommodate timing jitter and synchronization offsets.

In our numerical results, we show that the proposed estimator provides good-quality

estimates at low SNRs.

The rest of the chapter is arranged as follows: In Section 2.2, we establish models

for single- and multi-shot measurements of LTRs. In Section 2.3, we review some

established methods of single-shot estimation of the complex frequencies, and in Sec-

tion 2.4, we review some established methods for the multi-shot setting. The final

preparatory step for the development of the proposed method is a review of Hammer-

sley’s closed-form expression for the distribution of the roots of a polynomial with

Gaussian coefficients [40], which we provide in Section 2.5. The proposed method is

introduced in Section 2.6, and the approximations that enable extension to scenarios

with significant timing jitter or synchronization offsets are introduced in Section 2.7.

The simulation results in Section 2.8 demonstrate the performance advantages of the

proposed approach at low SNRs, and conclusions are drawn in Section 2.9.
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2.2 System Model

In this section, we describe our system models for the single-shot and multi-shot cases.

We consider a signal model that consists of K complex-exponential components in

additive noise. The time origin is set at the time that the LTR arrives at the receiver.

Thus, the signal at the receiver input can be written as

y (t) =
K∑
k=1

r̆ke
s̆kt + v̆ (t) , (2.1)

where r̆k, s̆k ∈ C and v̆ (t) represents the additive noise. In the case of real-valued

measurements, K is even, r̆k+K/2 = r̆∗k and s̆k+K/2 = s̆∗k. To simplify our exposition,

in this section we will focus on the complex-valued case.

2.2.1 Single-Shot Model

In this model, the receiver obtains N samples of the incoming continuous time signal

y (t), starting at some time t0. In the absence of sampling jitter, the period T between

samples is constant and the samples can be written as

y [n] = y (t0 + nT ) , n = 0, . . . , N − 1. (2.2)

Therefore, we can write

y [n] = x [n] + [n] =
K∑
k=1

rke
skn + v [n] , (2.3)

where x [n] denotes the signal component of the sampled received signal, the nor-

malized complex frequencies are sk = s̆kT , the residues are rk = r̆ke
s̆kt0 , and v [n]
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represents the filtered and sampled additive noise. At times, it will be convenient to

refer to esk as a pole; see Section 2.3.3. Using ideas from [84], we can rewrite the

model (2.3) as

y = F (s) r+ v, (2.4)

where y ∈ CN with [y]n = y [n], s ∈ CK with [s]k = sk, r ∈ CK with [r]k = rk,

v ∈ CN with [v]n = v [n], and

F (s) =



1 1 · · · 1

es1 es2 · · · esK

es12 es22 · · · esK2

...
...

. . .
...

es1(N−1) es2(N−1) · · · esK(N−1)


∈ CN×K . (2.5)

For scenarios in which the additive noise has zero mean, we define the average SNR

over the observation window to be

∑N−1
n=0 |x [n]|2∑N−1

n=0 E
(
|v [n]|2

) =
rHF (s)H F (s) r

tr (E (vvH))

where E (·) denotes statistical expectation. In [84], this quantity is called the essential

SNR.
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2.2.2 Multi-Shot Model

If we have M measurements of the form in (2.3), over which the (normalized) complex

frequencies sk do not change, then the m-th of these measurements can be written as

ym [n] =
K∑
k=1

rk,me
skn + vm [n] , (2.6)

and also as

ym = F (s) rm + vm. (2.7)

The concatenation of these measurements can be written as

ỹ =
(
IM ⊗ F (s)

)
r̃+ ṽ, (2.8)

where IM is the identity matrix of size M , ⊗ denotes the Kronecker product and the

tildes denote concatenation, e.g., ỹ =

[
yT
1 yT

2 · · · yT
M

]T
. In a scenario in which

rk,m = rk for all m, we can write

ỹ =
(
1M ⊗ F (s)

)
r+ ṽ, (2.9)

where 1M is the M -dimensional column vector whose elements are all one.
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2.3 Single-Shot Estimation: Some Established

Methods

In this section, we examine estimation methods that operate on one measurement

of the form in (2.4) at a time. Our goal is to estimate the (normalized) complex

frequencies s. In this sense, the residues r are nuisance parameters in which we

are not interested, but which must nonetheless be incorporated in the estimator.

To expedite the exposition, we will consider the case in which K, the number of

exponential components in the received signal, is known. In practice, there are many

techniques that can be used to estimate K; see, e.g., [42], [54].

2.3.1 Maximum Likelihood for Additive Gaussian Noise

Let us consider a scenario in which the (filtered and sampled) noise vector v has a

circular complex Gaussian distribution with zero mean and covariance matrix C; i.e.,

v ∼ CN (0,C). If we treat {rk} and {sk} as non-random parameters, the conditional

distribution of y in (2.4) is

f (y|s, r) ∼ CN (F (s) r,C) .

Hence, by taking the log of f (·), we can show that the ML problem of finding

argmaxs,r f (y|s, r) is equivalent to (e.g., [20], [56])

argmin
s,r

∥y − F(s)r∥2C−1 , (2.10)

where ∥x∥2C−1 = xHC−1x is the Mahalanobis norm [59].
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As outlined in [84] and elsewhere, given an estimate for s, denoted ŝ, finding the

corresponding estimate of r in (2.10) becomes a standard linear weighted least-squares

problem, which has the closed-form solution,

r̂ML (ŝ) = A (ŝ)−1B (ŝ)y, (2.11)

where A (s) = F (s)HC−1F (s) and B (s) = F (s)HC−1. By substituting (2.11) into

(2.10), we can find the ML estimates of s directly, without the need to estimate r, by

solving a nonlinear least-squares problem. That problem is equivalent to the following

“concentrated” ML problem

ŝML = arg max
s

yHB (s)H A (s)−1 B (s)y. (2.12)

Due to its complicated optimization landscape, this can be quite a difficult problem

to solve [84].

2.3.2 Pencil-of-Functions Methods

The matrix-pencil method (MPM) [50] and generalized pencil-of-functions (GPoF)

method [49] are based on insights into the structure of the noise-free sampled signal

in (2.3). In particular, for a window of length W such that K ≤ W ≤ N −K, we can

construct the Hankel matrices, X0,X1 ∈ C(N−W )×W such that

[Xp]qr = x [p+ q + r] . (2.13)
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The key insight that underlies this method is that the set of poles {esk} is equal to

the set of K non-zero generalized eigenvalues of the matrix pencil (X0,X1); i.e., the

solutions {λk} to

det (λX0 −X1) = 0. (2.14)

In the absence of noise, the remaining W −K generalized eigenvalues are zero. One

way to compute the generalized eigenvalues of (X0,X1) is to compute the conventional

eigenvalues of X†
0X1, where (·)† denotes the Moore-Penrose pseudo-inverse.

In practical settings, the MPM and GPoF techniques are applied to the noisy

measurements y [n] = x [n]+v [n] with the corresponding pencil (Y0,Y1) = (X0+V0,

X1+V1), under the assumption that the noise is sufficiently small. The GPoF obtains

some robustness to noise by modifying the pseudo-inverse ofY0 so that it only includes

the K largest singular values of Y0, with the remainder assumed to be the result of

additive noise alone [49].

The method in [37] offers an alternative approach to compensate for the noise

that addresses the noise in Y1 as well as in Y0. The method is based on the ob-

servation that in the limit of long signal measurements, YH
p Yq → XH

p Xq + VH
p Vq.

Furthermore, using ergodicity arguments, VH
p Vq → Cpq, where the elements of Cpq

can be determined from the covariances E (v [m]∗ v [n]). This observation suggests

that, when the noise covariance is known and the signal observation window is long,

improved estimates in the presence of noise can be obtained from the eigenvalues of(
YH

0 Y0 −C00

)−1 (
YH

0 Y1 −C01

)
.

While noise compensation techniques do offer performance improvements, the

analysis in [37] emphasizes that when the MPM and its generalizations are applied to

a noisy signal, they are finding the generalized eigenvalues of the perturbed matrix

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – M.S. Georgiev; McMaster University – Electrical and Computer Engineering

pencil (X0 +V0,X1 +V1) . Although the perturbations on the eigenvalues do scale

with the “size” of the noise, it is well known that, in general, the eigenvalues of a

perturbed pencil can be very sensitive to the perturbation [73]. That means that in

some scenarios, even a small perturbation (V0,V1) of the noise-free pencil (X0,X1)

can have a significant impact on the estimates of the eigenvalues {esk}. As a result,

matrix-pencil methods can be rather sensitive to noise, particularly for short block

lengths and at low SNRs.

2.3.3 Padé Methods

The complex frequencies can also be estimated using the principles of Padé approxi-

mation [7]. This involves approximating the z-transform of the time-reversed sampled

(noisy) received signal

YN (z) =
N−1∑
n=0

y [n] zn, (2.15)

which is a polynomial of order N − 1, by the Padé approximant, which is a rational

function; i.e.,

YN (z) ≈ PN−K (z)

QK+1 (z)
,

where PN−K (z) and QK+1 (z) are polynomials of order N − K − 1 and K, respec-

tively. The estimates of {esk} are the K roots of QK+1 (z), i.e., the poles of the Padé

approximant. To find these poles, we first need the coefficients of QK+1 (z).

In the absence of noise, i.e., when y [n] = x [n], see (2.3), we can write

PN−K (z) = XN (z)QK+1 (z) ,

where XN (z) is the z-transform of the time-reversed version of x [n] in (2.3). This
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enables us to show that the vector of coefficients q of QK+1 (z) lies in the nullspace

of the system matrix X ∈ C(K−1)×K with

[X]ij = x [N −K − 1 + i− j] , (2.16)

i.e., we are looking for a nontrivial solution toXq = 0. Such a solution can be thought

of [39] as a generalized eigenvector of the matrix pencil (W,X) that corresponds to

a generalized eigenvalue of 0 for a class of matrices W ∈ C(K−1)×K . The choice

W† = XH leads to a numerically robust algorithm [39], which corresponds to finding

the eigenvector of XHX corresponding to an eigenvalue of 0.

Unfortunately, like eigenvalues, eigenvectors are sensitive to small perturbations

[73]. Thus, in the presence of noise, when x [n] is replaced by y [n] = x [n] + v [n], as

in (2.3), the estimate of q can be quite sensitive of the realization of v [n]. There exist

methods that attempt to filter the noise by truncating the singular-value decompo-

sition of YHY, where Y is defined by analogy to (2.16) but with the possibility of

having more than (K − 1) rows. More generally, we can solve variations of

min
q

∥Yq∥2M = min
q

qHYHMYq

for different “heights” of Y and different choices of the Hermitian matrix M [19].

Ultimately, these techniques retain the noise sensitivity of matrix-pencil techniques,

with the additional computational cost of finding the roots of QK+1 (z). Thus, the

GPoF method is typically preferred for the envisioned applications.
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2.4 Multi-Shot Estimation: Some Established

Methods

In this section, we consider methods that operate on a set of multiple measurements

of the same target, all which have the same complex frequencies {sk}. We show that

while it is difficult to develop a computationally viable maximum likelihood estimator,

there is a method based on the empirical distribution of the complex frequencies {sk}

that is viable. In some applications, high-speed acquisition methods are available,

naturally providing multiple physical measurements. For other applications, several

strategies have been suggested for generating a large set virtual shots from a small set

of physical measurements. We summarize two such alternative strategies and their

associated trade-offs in Appendix 2.C.

2.4.1 Maximum Likelihood

In the multi-shot model in (2.6)-(2.8), if we model the additive noise as vm ∼

CN (0,C) and as being independent between shots, there are several approaches

that we could take to develop an ML estimator for the complex frequencies s. These

approaches are based on different underlying models.

First, we could model the residues at each shot, {rk,m} in (2.6), as being non-

random parameters. In that case, the ML estimator can be “concentrated” in a

similar way to the single-shot case, resulting in

ŝML = argmax
s

M∑
m=1

yH
mB (s)H A (s)−1B (s)ym, (2.17)
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where A (s) and B (s) are defined as in (2.11). However, this problem has an even

more complicated optimization landscape than the problem for in the single-shot case

in (2.12). Furthermore, modeling the residues at each shot as arbitrary parameters

means that the number of nuisance parameters grows linearly in the number of shots.

A naive way to address the growth in the nuisance parameters would would be to

assume that there is sufficient synchronization between the shots and sufficiently low

jitter between the samples that the residues are all the same (see (2.9)). In that case,

if we model the residues as non-random parameters, the ML estimator concentrates

to

ŝML = argmax
s

yH
sumB (s)H A (s)−1B (s)ysum, (2.18)

where ysum =
∑M

m=1 y
H
m. The difficulty of solving this problem is essentially the same

as that of the problem in the single-shot case in (2.12).

While the model that leads to (2.17) is arguably pessimistic in terms of our knowl-

edge of the system, the model that leads to (2.18) is rather optimistic and suffers

from model mismatch in practical scenarios. As we explain in Appendix D (in the

supplementary material), it is possible to develop multi-shot ML estimators based

on more sophisticated models that incorporate synchronization offsets and sampling

jitter. However, in the case where the offsets and jitter are modeled as non-random

parameters, the resulting optimization over the concentrated (log) likelihood function

has many more parameters than those in (2.17) and (2.18). In the case where the

offsets and jitter are modeled as random parameters, the objective to be maximized

is the marginalized likelihood, which is difficult to concentrate and each evaluation

of the objective requires the evaluation of a multidimensional integral with many di-

mensions. Since both of these approaches to ML estimation under more sophisticated
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models result in optimization problems that are significantly more difficult to solve

than the problems in (2.17) and (2.18), which are themselves difficult to solve, there

is considerable interest in the development of alternative estimation techniques.

2.4.2 Approximation of the Pole Distribution

The principles that underlie the model-free method of Barone [8] extend naturally to

the multi-shot case. In particular, we can form an estimate of the complex frequencies

{sk} from each shot using any of the single-shot estimators outlined in Section 2.3.

The M different estimates of the set {sk} can then be used to construct an empirical

distribution for the complex frequencies, or for the poles {esk}. The local maxima of

this empirical distribution are selected as the estimates of the complex frequencies,

as illustrated in Figure 2.1. Barone [8] employs a simple, but somewhat ad-hoc,

technique to determine the maxima. Instead, we will use the M estimates of {sk} to

construct a kernel density estimate (KDE) [83] of the underlying distribution of the

poles, and will then use smooth optimization techniques to determine the positions

of the peaks of the KDE.

Although this technique is simple to describe and straightforward to implement,

it retains a significant fraction of the noise sensitivity of the underlying single-shot

estimator. As illustrated in Figure 2.1, this sensitivity can have a marked impact

on the estimates of the complex frequencies, especially at lower SNRs. That said,

Barone’s (model-free) technique plays an important role in the initialization step of

the optimization algorithm that is inherent in the model-based technique that we

will develop in Section 2.6; see Algorithm 1. (Although we will focus on the use of

Barone’s method in the initialization of our approach, variations of the histogram
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technique described in [41] could also be used.)

2.5 Distribution of Roots of Random Polynomials

As alluded to in the Introduction, and explained in more detail in the next section,

the proposed method for estimating the complex frequencies will be based on a model

for the distribution of the roots of the polynomial YN (z) in (2.15), rather than the

empirical distribution of the poles {esk} that is used in the approach of Barone. In

preparation for the exposition of the proposed method, in this section we summa-

rize the results of the Hammersley [40] on the distribution of the roots of a generic

polynomial with Gaussian coefficients. Our summary is guided, in part, by that in

[77].

For a generic (N − 1)-th order polynomial P (z) =
∑N−1

n=0 pnz
n with z ∈ C, if we

are given a domain D ∈ C with closed boundary ∂D that does not pass through any

roots, the argument principle can be used to show that the number of roots of P (z)

that lie in D is

RD =
1

2πj

‰
∂D

P ′ (z)

P (z)
dz, (2.19)

where P ′ (z) =
∑N−1

n=1 pnnz
n−1. If the coefficients pn of P (z) are random with a known

distribution, we would like to find a density function pdf (z) such that the expected

fraction of roots of P (z) in D can be computed as

E

(
RD

N − 1

)
=

ˆ
D
pdf (z) dz.

By applying Green’s theorem to (2.19), Hammersley [40] obtained such a density

function for the cases of complex-valued and real-valued Gaussian coefficients.
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For the complex-valued case, let us define p =

[
p0 p1 · · · pN−1

]T
∈ CN and

z =

[
z0 z1 · · · zN−1

]T
∈ CN so that we can write P (z) = pTz. Let us also define

the real-valued isomorphs p̌ :=

[
Re
{
pT
}

Im
{
pT
}]T ∈ R2N and

Ž =

Re zT −Im zT

Im zT Re zT

 ∈ R2×2N .

The (Gaussian) distribution of the coefficients is specified through the mean µ̌ = E (p̌)

and covariance Ψ̌ = E
(
p̌p̌T

)
−µ̌µ̌T. For notational convenience, we let Φ̌ = E

(
p̌p̌T

)
.

If ŽΨ̌ŽT is non-singular for all relevant z then the density of the roots can be written

as [40]

pdf (z) =
exp

(
−1

2

(
Žµ̌
)T (

ŽΨ̌ŽT
)−1 (

Žµ̌
))

2π (N − 1)
√

det
(
ŽΨ̌ŽT

) tr
(
Ξ̌Φ̌Ξ̌

T
)
, (2.20)

where

Ξ̌ = Ž′ −
(
Ž′Ψ̌ŽT

) (
ŽΨ̌ŽT

)−1
Ž ∈ R2×2N ,

and

Ž′ =

Re z′T −Im z′T

Im z′T Re z′T

 ∈ R2×2N ,

where z′ :=

[
0 z 2z1 · · · (N − 1) zN−2

]T
∈ CN .

The case of real-valued Gaussian coefficients, which is of particular interest in our

application, requires more care because Ψ̌ is generally singular and, more importantly,

ŽΨ̌ŽT becomes singular on the real axis. Indeed, there is a discontinuity in the

distribution as the imaginary part of z approaches zero. For the real-valued case, we
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have

pdfreal coeffs (z) =


pdf (z) , z ∈ C\R

p̃df (z) , z ∈ R,
(2.21)

where p̃df (z) is the real-axis density. If we define

z =

[
z0 z1 · · · zN−1

]T
∈ RN ,

z′ =

[
0 z 2z1 · · · (N − 1) zN−2

]T
∈ RN ,

p =

[
p0 p1 · · · pN−1

]T
∈ RN ,

µ = E (p), Ψ = E
(
ppT

)
− µµT ∈ RN×N , Φ = E

(
ppT

)
, A0 = zTµ, A1 = z′Tµ,

U00 = zTΨz, U01 = zTCz′ and U11 = z′TCz′, the real-axis density can be written as

p̃df (z) =

√
U00U11 − U2

01 exp
(
−1

2
A2

0/U00

)
√
2π (N − 1)U00

(
r +

√
2/πH1 (r)

)
, (2.22)

where r = |U00A1 − U01A0| /
√

U00 (U00U11 − U2
01),

H1 (r) =

ˆ ∞

r

(t− r) exp

(
−1

2
t2
)
dt

= exp

(
−1

2
r2
)
−
√

π

2
rerfc

(
r√
2

)
,

and the complementary error function is erfc (r) = (2/
√
π)
´∞
r

exp (−t2) dt.
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2.6 Proposed Multi-Shot Estimation Method

As explained in Section 2.4, in a multi-shot estimation method for the complex fre-

quencies, we have M measurement shots of the form in (2.6) and (2.7) over which

the complex frequencies remain constant. In the proposed method, we will use those

measurements to construct an empirical distribution for the roots of YN (z) in (2.15).

In scenarios with sufficient synchronization between shots and sufficiently low jitter,

the residues in each shot can be assumed to be constant (cf. (2.9)), and hence the

coefficients of YN can be modeled as Gaussian. Therefore, we can apply the model for

the distribution of the roots that was outlined in the previous section. That model

is an explicit function of the complex frequencies (and the residues). Therefore, in

broad terms, we can develop an estimator by optimizing the estimates of the complex

frequencies so as to minimize the difference between the model-based and empirical

distributions. In this section, we provide the details of our invocation of that broad

idea. We will develop the estimator for the case of real-valued measurements, and

then we will show how the estimator can be simplified in the case of complex-valued

measurements.

In order to construct the empirical distribution of the roots of YN (z), we will use

the kernel density estimation (KDE) technique [83]. To do so, let YN,m (z) denote the

z-transform of the time-reversed version of the m-th measurement shot, computed

by analogy with (2.15), and let Rm denote the set of roots of YN,m (z) with non-zero

imaginary components, and let R̃m denote the set of real-valued roots of YN,m (z).

To construct the KDE of pdf (z), we take the standard two-dimensional Gaussian

kernel

gb (z) =
1

2πb
exp

(
−zz∗

2b2

)
,
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where z ∈ C. The empirical root distribution is then given by

kde (z) =
1

M

M∑
m=1

1

|Rm|
∑
r∈Rm

gb (z − r) , (2.23)

for z ∈ C, where |S| denotes the cardinality of a set S. The KDE of p̃df (z) is

constructed in an analogous manner using the one-dimensional Gaussian kernel

g̃b (z) =
1

b
√
2π

exp

(
− z2

2b2

)
,

where z ∈ R. It is given by

k̃de (z) =
1

M

M∑
m=1

1

|R̃m|

∑
r∈R̃m

g̃b (z − r) , (2.24)

for z ∈ R.

In order to construct the model distribution for the roots, we observe that with

sufficient synchronization between shots and sufficiently low jitter, the received signal

samples can be modeled as being Gaussian, with the mean being an explicit function

of the complex frequencies s and the residues r, and the covariance being the noise

covariance; see Section 2.7.1 for details. We will use the notation pdfs,r (z) and

p̃dfs,r (z) to make that dependence on s and r explicit. In Sections 2.7.2 and 2.7.3,

we show how this model can be adapted to approximate other scenarios.

With these definitions in place, the proposed estimator seeks to estimate the com-

plex frequencies s by determining the values for both s and the residues r (which are

nuisance parameters in our application) that position the model-based distribution
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close to the empirical distribution in an appropriate sense. To determine an appro-

priate sense, we first observe that both (2.23) and (2.24) are scaled such that their

integrals are individually 1. In contrast, (2.20) and (2.22) are more correctly scaled,

in the sense that the overall integral of the density is 1. Thus, if

W̃ =

ˆ ∞

−∞
p̃dfs,r (z) dz, (2.25)

then p̃dfs,r (z) should be compared to W̃ k̃de (z), and pdfs,r (z) should be compared to

Wkde (z), where W = 1− W̃ . In practice, the integral in (2.25) is computed numeri-

cally. Since the density is concentrated near zero, that computation is straightforward.

In addition to this scaling, the appropriate error metric should also incorporate the

nature of the kernel used in the KDE. In particular, we observe that in the limit of a

large number of measurements Wkde (z) approaches the convolution of p̃dfs,r (z) and

the kernel gb (z) used to construct kde (z), which we will denote by
(
pdfs,r ∗ gb

)
(z).

Analogously, k̃de (z) approaches
(
p̃dfs,r ∗ g̃b

)
(z). With those observations in mind,

let us define

KDE (z) =


Wkde (z) , z ∈ C\R

W̃ k̃de (z) , z ∈ R,

and

PDFs,r (z) =


(
pdfs,r ∗ gb

)
(z) , z ∈ C\R(

p̃dfs,r ∗ g̃b
)
(z) , z ∈ R.
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Then, given some appropriate notion of the difference between these functions, de-

noted error (·), the proposed estimator can be written as

{ŝ, r̂} = arg min
{s,r}∈X

error
(
KDE (z) ,PDFs,r (z)

)
, (2.26)

where we use the set X to denote that for real-valued measurements, the complex

conjugate relationships between the elements of s and r discussed after (2.1) mean

that the problem in (2.26) can be reduced an optimization problem over the sk with

positive imaginary parts, and the corresponding residues.

There are many appropriate metrics that could be considered for the error. In

this chapter, we select the symmetrized Kullback-Leibler divergence [26] (also known

as the Jeffreys divergence) over a domain D ⊂ C; i.e.,

error
(
p (z) , q (z)

)
=

ˆ
D
p (z) log

p (z)

q (z)
+ q (z) log

q (z)

p (z)
dz. (2.27)

The choice of domain the D in (2.27) involves a judicious trade-off between accuracy

and computational cost. Since we consider the case of real-valued measurements,

we can restrict D to the closed upper half of the complex plane, i.e., Im (z) ≥ 0.

Evaluation of the error along the real axis, if desired, is comparatively efficient and

hence we will focus on domains the open upper half-plane.

In the case of zero-mean uncorrelated Gaussian coefficients (i.e., a “white noise

only” signal), the roots are concentrated around the unit circle and uniformly dis-

tributed in phase except in the neighborhoods of z = ±1 [40]. In the case of expo-

nentially decaying signals in Gaussian noise, the roots remain concentrated around

the unit circle, but their distribution is significantly different from the noise-only case
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near the poles {esk}. It is less different elsewhere. This suggests that D should be

chosen to encompass the envisioned poles. To obtain some guidelines for that region,

we observe that in practice the frequencies can only be measured within the band-

width of the radar. This provides natural bounds on the phase of points z ∈ D. To

obtain guidelines on radial bounds, consider bounds of the form 1−A ≤ |z| ≤ 1+B,

where A,B ≥ 0. If the resonant response decays to below the noise level faster than

one sample period, then it is unlikely to be detectable, and that provides a guideline

for choosing A. To choose B, we note that the resonances are decaying and hence will

correspond to poles inside the unit circle. However, we are measuring the difference

between the empirical and model-based distribution of the roots of YN (z). Hence, a

reasonable guideline is to choose B to be a reasonably small positive number. This

analysis suggests that a good choice for D is the intersection of the cone specified

by the bandwidth of the radar (and the sampling period) with the annulus that is

specified by the parameters A and B. That annulus would include the unit circle.

A computationally efficient scheme for carrying out integration over such a domain

is outlined in Appendix 2.A. The domain D that we have used in our numerical

experiments is shown in Figure 2.2.

In the case of complex-valued measurements, the structure of the model-based

density is simplified in the sense that it is simply pdfs,r (z) for all z ∈ C. Therefore,

the estimator is simply

{ŝ, r̂} = argmin
{s,r}

error
(
kde (z) ,

(
pdfs,r ∗ gb

)
(z)
)
.

In this setting, however, we no longer have conjugate symmetry in the root distribu-

tion and the region D over which the error is evaluated may need to be significantly
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larger.

2.6.1 Implementation

In order to implement the proposed approach, we need to specify the system model,

and in particular the functional dependence of the mean µ̌ and covariance Ψ̌ in

Section 2.5 on the complex frequencies s and residues r. As we show in Section

2.7.1, this is straightforward in the case of sufficient synchronization between shots,

sufficiently low jitter and additive Gaussian noise. However, we also show how to

build appropriate models for scenarios in which the jitter and synchronization errors

cannot be neglected; see Sections 2.7.2 and 2.7.3, respectively.

Once the model is in place, we need to develop an effective algorithm to solve the

relevant optimization problem. We will focus on the case of real-valued measurements,

and hence the relevant problem is that in (2.26). While that problem is smooth,

it has a complicated optimization landscape. We will employ a local optimization

technique, and hence an effective initialization is important. We will employ a two-

stage initialization for the estimates of the complex frequencies, and will subsequently

initialize the residues using (2.11).

In the first stage of the initialization of the complex frequencies, we employ a

variant of Barone’s technique [8]. The first step of that technique involves constructing

estimates of the complex frequencies from each of the M measurement shots using

a single-shot technique. (We use the GPoF technique described in Section 2.3.2.)

Those estimates are used to create a kernel density estimate of the distribution of the

poles {esk} using an expression analogous to (2.23). The first-stage estimates of the

complex frequencies are obtained from the peaks of that KDE.
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In the second stage of the initialization, we use the estimates of s from the first

stage to initialize a search for good solutions to the problem in (2.18). (Akin to the

discussion after (2.26), that problem can be reduced to an optimization problem over

the elements of s with positive imaginary parts.) Given the nature of the optimization

landscape of that problem, conventional local optimization from a single initial point

might not provide sufficient refinement over the initialization from the first stage.

Instead, we spawn multiple initial points in the neighborhood of the result from the

first stage. These points constitute an initial population from which the differential

evolution technique [79] is used to generate multiple candidates for (2.18). The can-

didate with the largest objective value is chosen as the initialization for the complex

frequencies s in the proposed method. In this step, we constrain the estimates of s

so that the (normalized) frequencies lie within the bandwidth of the radar and the

attenuation rates lie within a physically reasonable range. We will denote the com-

bination of this constraint region and the complex conjugate relationships by s ∈ S,

and in Figure 2.2 we illustrate the constraint region that we use in our numerical

experiments in terms of the constraints that it imposes on the pole estimates {eŝk}.

(Any spawned initial point outside S is projected to its boundary before the differ-

ential evolution step begins.) We will refer to the estimates from this second stage as

the constrained non-linear least-squares (CNLS) estimates of s.

With this two-stage initialization in place, and the subsequent initialization of

r using (2.11), the final stage of the algorithm is to perform a local optimization

of the expression in (2.26) using a bound-constrained BFGS quasi-Newton method

(e.g., [29]), that constraints the estimates of s to S. This approach is summarized

in Algorithm 1. Our numerical results in Section 2.8 show that, at low SNRs, each
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Algorithm 1 Estimation of complex frequencies using Hammersley’s model for the
the distribution of of z-domain roots

Input: Measurements {ym [n]}M,N−1
m=1,n=0, number of resonances K/2, noise covari-

ance C, model that describes µ̌ and Ψ̌ as a function of s, r and C, domain
D, and region of viable complex frequency estimates S.

Step 1: Obtain an initial estimate of s ∈ X , denoted ŝBar., by applying our variant
of Barone’s technique.

Step 2: Refine ŝBar. to ŝCNLS ∈ S using differential evolution to find a good solution
to the nonlinear least-squares problem in (2.18) over s ∈ S.

Step 4: Construct the empirical distribution kde (z) over z ∈ D from the mea-

surements (and k̃de (z) if D intersects the the real axis).

Step 5: Refine ŝCNLS to ŝHamm. ∈ S using bound-constrained BFGS to find a local
solution of the optimization problem in (2.26).

Output: The estimated complex frequencies ŝHamm..

stage of the algorithm yields significant improvements in the estimates of the complex

frequencies.

2.7 Models of Practical Signals

In order to employ the method described in the previous section, we need to con-

struct a model for the coefficients of the z-transform of (the time-reversed version

of) the received signal that is Gaussian and in which the mean µ̌ and covariance

matrix Ψ̌ of the real-valued isomorphs of the coefficients (see Section 2.5) are explicit

functions of the complex frequencies s and residues r. As we show in Section 2.7.1,

this is straightforward when the measurement jitter and synchronization errors are

49

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – M.S. Georgiev; McMaster University – Electrical and Computer Engineering

negligible. However, we also show how approximate models can also be constructed

in the cases of non-negligible jitter and synchronization error. While the Gaussian

approximation yields models that are inherently mismatched, in Section 2.8, we show

that they lead to very effective estimates in practical scenarios.

2.7.1 Additive Gaussian Noise

In the case in which the sampling jitter and synchronization errors are sufficiently

small, the received signal in the m-th measurement shot can be modeled as ym [n] =

x [n] + vm [n], where, as in (2.3), x [n] =
∑K

k=1 rke
skn, and vm [n] is the additive

Gaussian noise, which has zero mean and covariance matrix C. In this case, [µ]n =

E (ym [n]) =
∑K

k=1 rke
skn, and the coefficients are Gaussian with

[Ψ]nn′ = E
(
vm [n] vm [n′]

∗)
= [C]nn′ .

The real-valued isomorphs µ̌ and Ψ̌ can be computed in a similar way. In this setting,

it is only the mean of the coefficients µ that depends on s and r.

2.7.2 Measurement Jitter

As described in the Introduction, significant sampling jitter can arise in LTR mea-

surements, especially when equivalent sampling is used. To model the effects of this,

we assume we have multiple shots which are synchronized, but are subject to jitter,

so the m-th measurement shot can be written as

ym [n] = y (t0 + (n+ ςγm [n])T ) ,
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where y (t) is given in (2.1) and ςγm [n] is the jitter, where each γm [n] is independent

and is identically distributed according to N (0, 1), and ς ≥ 0. In this case, we can

write

ym [n] =
K∑
k=1

rke
sk(n+ςγm[n]) + vm [n] , (2.28)

where we implicitly assume that the timing jitter does not affect the distribution of the

noise samples. Although the distribution of ym [n] in (2.28) is not Gaussian, we can

compute its mean and covariance and apply the technique developed in Section 2.6

to the computed mean and covariance. While that involves a fundamental mismatch

in the model, if that mismatch is small, we may still obtain good results. Indeed,

the first-order Taylor series approximation of (2.28) is Gaussian, and hence for small

values of ς the model mismatch is likely to be small.

As shown in Appendix 2.B, the mean of ym[n] is

[µ]n = E (ym [n]) =
K∑
k=1

rke
skn+s2kς

2/2 (2.29)

and the (n, n′)-th element of the cross-correlation takes the form

[Φ]nn′ = E
(
ym [n] ym [n′]

∗)
=

K∑
k=1

K∑
k′=1

rkr
∗
k′e

skn+sk′n
′+ρ2

nn′,kk′/2 + [C]nn′ , (2.30)

where C is the covariance of vm [n] and

ρ2nn′,kk′ =


ς2 (sk + s∗k′)

2 , n = n′

ς2
(
s2k + (s∗k′)

2) , n ̸= n′.

(2.31)

The definitions in Section 2.6 can then be applied to the real-valued isomorphs of
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these expressions.

2.7.3 Synchronization Offsets

Even if the sampling jitter is negligible, we may still need to consider synchronization

offsets between the measurement shots. As an example, consider a situation where a

target is placed roughly in front of the radar but shifts back and forth. This might

occur if we are attempting to identify clutter on the body of a person who fails to

stand perfectly still. It is reasonable to assume the shift is constant for any given

measurement, but is not the same from one measurement to the next. In our lab,

we have noted that a person attempting to stand still will typically wobble up to a

few centimeters. Light travels 3 cm in 100 ps; thus a wobble with a span of 3 cm

will affect the round-trip time by up to 200 ps, or 4 samples at T = 50 ps. If the

wobble is modeled as being Gaussian, then its standard deviation would be roughly

one quarter of that, i.e., up to 0.75 cm or 50 ps or 1 sample. Another case which

is modeled equivalently is jitter in the transmitter’s trigger, which causes the pulse

to be emitted at slightly different times thus also causing a wholesale delay in the

received signal.

Referring to our model in (2.6), synchronization errors present as a particular

sort of residue uncertainty. The residue can be thought to have a (real) amplitude

component ak and phase ϕk such that rk = ake
jϕk .

For the analysis, we opt to ignore the effect on the amplitudes ak. In the case

of a plane-wave stimulus in the far field, the entire signal scales quadratically with

distance; i.e., every ak scales quadratically with distance. Scaling an entire polynomial

by the same constant has no impact on its roots, and thus this scaling would have
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no impact at all in the absence of additive noise. However, the signal-to-noise ratio

would change in the noisy case. We choose to ignore this also since the effect is often

negligible in practice, as we now explain. Assume some uncertainty δ relative to a

distance d. The received amplitudes would be

(
d+ δ

d

)2

ak.

Typically, d is in excess of 1 m and δ has a standard deviation of roughly 0.75 cm per

the analysis above, thus the fraction is approximately 1.

We cannot similarly ignore the effect on the phase ϕk. As the target distance

to the radar changes, so does the round-trip time. This is much like the jitter case,

except the offset is the same across all samples n. The signal can therefore be modeled

similarly:

ym [n] =
K∑
k=1

rke
sk(n+νφm) + vm [n] ,

where φm is i.i.d. and distributed as N (0, 1). With the exception of it being constant

over all samples, the randomness induced by the synchronization offset has a similar

structure to that of jitter, and thus the analysis is similar. The expected value is

E (ym [n]) =
K∑
k=1

rke
skn+s2kν

2/2,

and the cross-correlations are

E (ȳnȳ
∗
n′) =

K∑
k=1

K∑
k′=1

rkr
∗
k′e

skn+sk′n
′+ν2(sk+s∗

k′)
2
/2 + [C]nn′ .

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – M.S. Georgiev; McMaster University – Electrical and Computer Engineering

2.8 Numerical Experiments

In this section, we examine the performance of the proposed estimation approach in

a variety of simulated scenarios. We consider real-valued measurements, and hence,

as discussed after (2.1), the (normalized) complex frequencies that we seek to identify

take the form sk = −αk + j2πfk with fk > 0, and sk+K/2 = s∗k, for k = 1, 2, . . . , K/2.

We consider a radar system with a bandwidth that corresponds to normalized fre-

quencies f ∈ [0.05, 0.25], and our estimates of {sk} will be constrained so that each

fk lies in that range. (Under this model, the sampling rate has been chosen to be four

times the upper edge of the radar’s bandwidth.) We also consider an application in

which the attenuation rates of interest lie in the range αk ∈ [0, 0.1]. Therefore, our

estimates of the poles {esk}K/2
k=1 will be constrained to lie in the region bounded by

the black curves in Figure 2.2. With the poles of interest, and their estimates, being

constrained to that region, it is sufficient to choose the region D in (2.27) to be the

shaded region in Figure 2.2.

In our experiments we compare the performance of the proposed estimator in Al-

gorithm 1, ŝHamm., against Barone’s method [8], ŝBar., which we use as the first stage of

the initialization of our method, and the constrained nonlinear least squares (CNLS)

estimate, ŝCNLS, in (2.18), which we use as the second stage of the initialization of

our method. In each Monte Carlo trial, a set of 5 conjugate pairs of (normalized)

complex frequencies sk = −αk ± 2πjfk was randomly generated, with the attenua-

tion αk ∈ [0.0, 0.1] and frequency fk ∈ [0.05, 0.25] being generated according to the

uniform distribution on the stated intervals. For any two poles esk and esℓ , where

ℓ ̸= k, a minimal distance was set as |esk − esℓ| > 0.015. Any trial violating this

criterion was removed and replaced. The magnitudes of the residues were generated
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from the uniform distribution on [0.8, 1], and the corresponding phases were uniformly

distributed on [0, 2π]. For each trial, a set of M = 40 measurement shots of length

N = 48 was then generated using the measurement model that is being investigated.

To provide some context for the errors that we obtain, let us consider some physical

quantities. A highly conductive (αk ≈ 0) half-wavelength dipole of length 15 cm

resonates at approximately 1 GHz. With a sampling frequency of 20 GHz, this is

a normalized frequency of fk = 0.05, and the corresponding pole is approximately

ej2πfk . An error of 0.01 in the estimate of ej2πfk corresponds to an error of up to

0.01/2π in fk, which corresponds to around 32 MHz. Assuming a phase velocity of

roughly 30 cm/ns, the estimated wavelength would lie between roughly 29 cm and

31 cm, and hence the estimate of the corresponding dipole length would be between

14.5 cm and 15.5 cm. This is likely sufficient to identify the 15-cm dipole as such. In

contrast, an error of 0.1 in ej2πfk would result in an estimated dipole length between

11 cm and 22 cm, which is likely insufficient to identify the 15-cm dipole as such. For

this reason, especially at lower frequencies, we consider errors on the order of 0.01 to

be acceptable and those on the order of 0.1 to be unacceptable.

Before we discuss the results of our Monte Carlo experiments, let us consider an

illustrative example of a single typical trial in the case of perfect synchronization and

no sampling jitter, with additive white Gaussian noise at an SNR of 0 dB. As shown

in Figure 2.2, in this trial the initial estimates from Barone’s method (in green) have

appreciable errors, but these estimates are refined using the second initialization step

(the CNLS estimates in blue). The proposed “Hammersley” estimator is initialized by

the CNLS estimates. The improved estimates that it provides are visible (in orange)

in the lower plot in Figure 2.2. For context, Figure 2.2 also illustrates the region
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Figure 2.2: Illustrative results for the three considered methods for one trial of the
white noise case at 0 dB SNR. Views of all four quadrants (top) and only Quadrant I
(bottom) are given. The constraint region for the poles is outlined in black, and the
domain D in (2.27) is shaded.
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within which the pole estimates are constrained to lie (by the constraint that ŝ ∈ S;

see Section 2.6.1). This region is outlined by the solid curves, and corresponds to

attenuations 0 < α < 0.1 and frequencies 0.05 < f < 0.25. The domain D over which

the error in (2.27) is computed is shaded. It corresponds to −0.25 < α < 0.25 and

0 < f < 0.5.

For our Monte Carlo experiments, we will consider both the average and worst-case

errors. We observe that having a small worst-case error is likely to lead to accurate

classification, and hence the worst-case error is important. However, for targets with

multiple resonances, it is possible that misidentifying one or two resonances might

still lead to an accurate classification in the subsequent stages. Thus, the average-

case performance in the geometric sense is also relevant. For this reason, both are

reported.

Figure 2.3 shows the results for the case of additive white Gaussian noise with per-

fect synchronization and no jitter. We observe that, for SNRs in the range [0, 10] dB,

the proposed estimator has an average error that is more than an order of magni-

tude smaller than that of Barone’s method [8] and around two times smaller than

that of the CNLS method. Perhaps more interestingly, in the range [5, 20] dB, the

worst-case performance of the proposed method is comparable to or better than the

average performance of the comparator methods. The worst-case performance of pro-

posed method is below 0.02 in the range [10, 25] dB, which is likely to be acceptably

low in a classification problem in our intended application, whereas the comparator

methods only achieve this at 20 dB. The grid size for the numerical approximation

of the integral in (2.27) (see Appendix 2.A) was chosen to balance performance at

low-to-moderate SNRs against computational cost, and leads to a visible error floor
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for the proposed method. If increasingly accurate approximations were chosen as

the SNR was increased, the proposed approach would extend its advantage over the

CNLS method, but with a diminishing performance gap.

Figure 2.4 shows the results for the case of increasing sampling jitter in the pres-

ence of additive noise such that the SNR (excluding jitter) is 10 dB. We observe

that, for jitter with standard deviation in the range [0.0625, 1.0] samples, the pro-

posed method has an average error that is more than an order of magnitude lower

than Barone’s method and around two times lower than the CNLS approach. The

worst-case error is below 0.02 in the range [0.0625, 0.5] samples, which is likely to be

acceptably low in our envisioned classification problem.

Figure 2.5 shows the results for the case of increasing synchronization offsets in

the presence of additive noise such that the SNR is 10 dB. We observe that, for offsets

with standard deviation in the range [0.0625, 1.0] samples, the proposed method has

an average error that is around an order of magnitude lower than Barone’s method

and around two times lower than the CNLS approach. The worst-case error is at or

below 0.02 in the range [0.0625, 0.5] samples, which is likely to be acceptably low in

our envisioned classification problem.

In closing, we point out that although the proposed method provides significantly

better performance than Barone’s method [8] in the settings that we have considered,

Barone’s method plays a critical role in the initialization of our method. Indeed,

although it is possible, in principle, to apply a global optimization technique to the

distribution-matching problem in (2.26), it is computationally expensive to do so.

Barone’s method enables us to efficiently obtain good starting points for the nonlinear

least-squares estimator, from which we obtain a good starting point for solving (2.26).
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Figure 2.3: Errors in the estimates of the poles {esk} for the different levels of additive
white Gaussian noise.
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Figure 2.4: Errors in the estimates of the poles {esk} for the different levels of sampling
jitter with additive white Gaussian noise at a fixed SNR of 10 dB.
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Figure 2.5: Errors in the estimates of the poles {esk} for the different levels of syn-
chronization offset with additive white Gaussian noise at a fixed SNR of 10 dB.
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2.9 Conclusion

We have demonstrated a new method for estimating the damped-sinusoid resonances

of signals in noise. The method relies on minimizing the error between the observed

distribution of z-domain roots of the signal and its theoretical counterpart. We have

shown that this method is effective not only for additive Gaussian noise, for which

we have an accurate theoretical counterpart, but also for other sorts of uncertainly

for which we have some model mismatch, of which jitter is particularly interesting.

We have demonstrated a significant improvement over prior art at low SNR (typically

[0, 10] dB). As such, the proposed method is well suited to the extraction of resonance

parameters from late-time radar returns.

Appendices

2.A Efficient Computation of the Objective Func-

tion

The computation of the objective in (2.26) involves a 2-D convolution on a domain

D ⊂ C, which is the intersection of a cone and annulus, i.e.,

D =
{
e−α+jω|αmin ≤ α ≤ αmax, ωmin ≤ ω ≤ ωmax

}
.

The domain Ds of s = −α+jω lends itself to a regular rectangular grid, but the origi-

nal domainD of z = es does not. Our approach is thus to construct a regular rectangu-

lar grid {sp,q} in Ds, where sp,q = −αp + jωq, αp = αmin + (p+ 1/2) (αmax − αmin) /P
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and ωq = ωmin + (q + 1/2) (ωmax − ωmin) /Q for grid sizes P,Q ∈ Z+ and indices

p = 0, . . . , P − 1 and q = 0, . . . , Q − 1. The rectangular grid points {sp,q} are then

transformed to the log-polar grid points {zp,q}, where zp,q = esp,q , so as to numerically

approximate the convolution in D.

To that end, note that the convolution of f (z) and g (z) over D is

(f ∗ g) (z) =
¨

D
f (z′) g (z − z′) dz′,

where dz′ is a surface element in D. The function that is being swept, g (z − z′), is

called the kernel or stencil. An approximation of the convolution is

(f ∗ g)FD (z) =
∑
p′,q′

f (zp′,q′) g (zp+p′,q+q′) area (zp+p′,q+q′) ,

where area (zp,q) denotes the area of the grid cell with corners at zp−1/2,q−1/2,

zp−1/2,q+1/2, zp+1/2,q−1/2 and zp+1/2,q+1/2. With u1 = zp−1/2,q+1/2 − zp−1/2,q−1/2,

u2 = zp+1/2,q+1/2 − zp−1/2,q−1/2 and u3 = zp+1/2,q−1/2 − zp−1/2,q−1/2, this area is

area (zp,q) =
1

2
|Im (u∗

1u2)|+
1

2
|Im (u∗

2u3)| . (2.32)

To justify (2.32), consider the vector isomorphs un =

[
Re (un) Im (un) 0

]T
of un.

The area of a triangle with sides ∥um∥2, ∥un∥2 and ∥um − un∥2 is 1
2
∥um × un∥2 =

1
2
|Im (u∗

mun)|, where × denotes the cross product.

Note that, unlike discrete convolution on a rectangular grid, neither the stencil

g (zp+p′,q+q′) nor the area area (zp+p′,q+q′) are the same for all (p, q). However, they can

be computed once and applied to different inputs f (zp′,q′), so this does not present a
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significant computational overhead.

2.B Cross-Correlation of Complex Exponential

Signals with Jitter

To derive an expression for the cross-correlation of a signal of the form in (2.28), we

need the complex moments of a log-normal random variable. It is known that the

c-th real moment of a log-normal random variable (about zero) is

E
(
e(µ+σX)c

)
= ecµ+c2σ2/2, (2.33)

where X ∼ N (0, 1) [53], but it is not immediately clear how this generalizes for

µ, σ, c ∈ C. To determine that generalization, we observe that the log-normal PDF is

[53]

f
(
eµ+σx

)
=

1

exσ
√
2π

exp

(
−(x− µ)2

2σ2

)
.

Hence,

E
(
e(µ+σX)c

)
=

ˆ ∞

−∞
e(µ+σx)cf

(
eµ+σx

)
dx

=
1

2
ecµ+c2σ2/2

ˆ ∞

x=−∞
d

(
erfc

(
µ+ cσ2 − x√

2σ

))
(2.34)

If we can show that the integral converges to 2 then we will have shown that (2.33)

holds in the complex-valued case.

To pursue that line of thought, we observe that the complex generalization of the
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complementary error function erfc (·) is commonly given via the Faddeeva function

[85], which is defined on z ∈ C with Im (z) > 0 as

w (z) =
j

π

ˆ ∞

−∞

e−t2

z − t
dt.

It relates to erfc (·) as [85]

w (z) = e−z2erfc (−jz) ,

and thus, for z ∈ C with Re (z) > 0, we can define

erfc (z) = e−z2w (jz) .

In (2.34), we are interested in finding limRe(z)→∞ erfc (z). Using the Faddeeva function,

we have that

lim
Re(z)→∞

erfc (z) = lim
Re(z)→∞

e−z2w (jz) = 0,

which is evident since both e−z2 and w (jz) tend to 0 in the limit. Since erfc (−z) =

2− erfc (z), we obtain

lim
Re(z)→−∞

erfc (z) = 2.

Thus, the integral in (2.34) indeed converges to 2, and (2.33) is valid for c, µ, σ ∈ C.

Referring to our noise-free signal with sampling jitter xm [n] =
∑K

k=1 rke
sk(n+ςγm[n]),

using the above result, we obtain

E (x [n]) =
K∑
k=1

rke
skn+s2kς

2/2,
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by term-wise application of (2.33) with c = 1. The cross-correlations are

E
(
xm [n] xm [n′]

∗)
=


E
(
|xm [n]|2

)
, n = n′

E (xm [n]) E (xm [n′]∗) , n ̸= n′.

In the n = n′ case,

|xm [n]|2 =
K∑

k,k′=1

rkr
∗
k′e

(sk+s∗
k′)(n+ςγm[n])

thus

E
(
xm [n] xm [n′]

∗)
=

K∑
k,k′=1

rkr
∗
k′e

(sk+s∗
k′)n+ς2(sk+s∗

k′)
2
/2.

In the n ̸= n′ case,

E (xm [n]) E
(
xm [n′]

∗)
=

K∑
k,k′=1

(
rke

skn+σ2s2k/2
)(

r∗k′e
s∗kn

′+ς2(s∗k′)
2
/2
)
,

thus

E
(
xm [n] xm [n′]

∗)
=

K∑
k,k′=1

rkr
∗
k′e

skn+s∗
k′n

′+ς2
(
s2k+(s∗k′)

2
)
/2
.

These results are summarized in (2.30) and (2.31).

A noise-free signal with synchronization error is modeled as xm [n] =∑K
k=1 rke

sk(n+νφm). The analysis for E (x [n]) is thus unchanged from the sampling

jitter case, and the cross-correlations are

E
(
xm [n] xm [n′]

∗)
=

K∑
k,k′=1

rkr
∗
k′e

(sk+s∗
k′)n+ν2(sk+s∗

k′)
2
/2.
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2.C Generating Multiple Shots

For applications in which multiple physical measurement shots are not readily avail-

able, Barone [8] has noted that additional white noise can be added synthetically to

a single measurement to create multiple virtual measurement shots. This comes at

the cost of further lowering the SNR of the LTR, which, as noted in the Introduction,

is already quite low. Hargrave et al. [41] have noted that it is also possible to use

different windows on a single LTR measurement to generate multiple virtual shots.

This comes at the cost of reduced signal length. As discussed in the Introduction,

ensuring a sufficiently long LTR is already a challenge.
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Supplementary Material

2.D Multi-Shot Maximum Likelihood Estimator

Let us consider a multi-shot scenario in which the m-th shot has a synchronization

offset of τmT and the sampling jitter on the n-th sample of the m-th shot is ηm[n]T .

(In the models in Section 2.7, τm = νφm and ηm [n] = ςγm [n].) In that setting,

if we assume that the synchronization offset and sampling jitter do not impact the

distribution of the noise, we can write

ym[n] =
K∑
k=1

rke
sk(n+τm+ηm[n]) + vm[n].

Using the vectorized notation outlined in Section 2.2, we can rewrite this expression

as

ym =
(
F(s)⊙

(
H(s;ηm)D(s; τm)

))
r+ vm, (2.35)

where where F(s) is defined in (2.5), ⊙ denotes the Hadamard (elementwise) product,

[ηm]n = ηm[n], [H(s;ηm)]nk = eskηm[n], and D(s; τm) = diag
(
es1τm , es2τm , . . . , esKτm

)
.

Let us define ξm = [ηT
m, τm]

T ∈ RQ, where, in the case of synchronization offsets

alone, Q = 1, and in the case of sampling jitter alone, Q = N . Let us also construct

E(s; ξm) such that E(s; [ηT
m, τm]

T) = H(s;ηm)D(s; τm). We can then write (2.35) in

the form

ym = F̆(s; ξm)r+ vm, (2.36)

in which the residues r are the same in each shot and F̆(s; ξm) = F(s)⊙ E(s; ξm).

Under the model in (2.36), if the parameters ξm are modeled as non-random
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parameters and are concatenated into the vector ξ̃ =

[
ξT1 ξT2 · · · ξTM

]T
, the max-

imum likelihood estimator can be written as

{
ŝML, r̂ML,

ˆ̃ξML

}
= argmax

s,r,ξ̃

M∑
m=1

∥∥ym − F̆(s; ξm)r
∥∥2
C−1 .

If we define Ă(s, ξ̃) =
∑M

m=1 F̆(s; ξm)
HC−1F̆(s; ξm) and B̆(s, ξm) = F̆(s; ξm)

HC−1,

then given ML estimates for s and ξ̃, the ML estimate of r is

r̂ML(ŝML,
ˆ̃ξML) = Ă(ŝML,

ˆ̃ξML)
−1

M∑
m=1

B̆(ŝML, ξ̂m,ML)ym,

and if we define P̆
(
ỹ; s, ξ̃

)
=
∑M

m=1 ymB̆ (s, ξm), the ML estimator can be concen-

trated to

{
ŝML,

ˆ̃ξML

}
= argmax

s,ξ̃
P̆
(
ỹ; s, ξ̃

)H
Ă
(
s, ξ̃
)−1

P̆
(
ỹ; s, ξ̃

)
. (2.37)

When ξ̃ = 0, there are no synchronization errors, nor any sampling jitter, and the

objective in (2.37) collapses to that in (2.18). Due to the presence of ξ̃ ∈ RMQ,

and the way that it enters the objective, the problem in (2.37) is significantly more

difficult to solve than those in (2.17) and (2.18).

An alternative approach to estimating s using a model of the form in (2.36) is

to model the vector ξ̃ as a random parameter with a known distribution. Under

that model, the “stochastic” ML estimator can be expressed as the joint estimation

problem {
ŝMLR, r̂MLR

}
= argmax

s,r
L̄(ỹ|s, r), (2.38)
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where L̄(ỹ|s, r) denotes the likelihood marginalized over ξ̃; i.e.,

L̄(ỹ|s, r) =
ˆ

f
(
ỹ|s, r, ξ̃

)
f
(
ξ̃|s, r

)
dξ̃,

in which f
(
ξ̃|s, r

)
is the conditional distribution of the random parameters. In our

case, this distribution is not dependent on s nor r, and hence we will write f
(
ξ̃|s, r

)
=

f(ξ̃). The distribution f
(
ỹ|s, r, ξ̃

)
= CN (g, IM ⊗C), where

g =



Z̆ (s; ξ1)

Z̆ (s; ξ2)

...

Z̆ (s; ξM)


r.

In fact, since the noise is modeled as being independent between shots, f
(
ỹ|s, r, ξ̃

)
factorizes to

∏M
m=1 f(ym|s, r, ξm) =

∏M
m=1 CN (Z̆(s; ξm)r,C). If each ξm is indepen-

dent from all the others, then f(ξ̃) =
∏M

m=1 f(ξm), and we can write

L̄(ỹ|s, r) =
M∏

m=1

ˆ
f(ym|s, r, ξm)f(ξm) dξm. (2.39)

The expression for the marginalized likelihood in (2.38) involves a multidimensional

integral overMQ dimensions, and hence simply evaluating the marginalized likelihood

for one choice for the pair (s, r) becomes rather unwieldy, let alone optimizing over

those parameters as shown in (2.39) . If we can model the vectors ξm as being

independent from each other, then the evaluation of L̄(ỹ|s, r) for a given pair (s, r)

can be reduced to the computation of M integrals of dimension Q. However, that

evaluation remains unwieldy, and the problem in (2.38) remains difficult to solve.
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Chapter 3

Multi-Shot Estimation of

Resonance Parameters of

Late-Time Radar Returns in

Clutter

Abstract

The resonance parameters of late-time returns (LTRs) can be used as features in the

identification of radar targets. However, reliable estimation of the complex frequency

of each resonance is notoriously difficult. This is due to the short duration of the LTR,

its low effective signal-to-noise ratio (SNR) and the inherent sensitivity of the esti-

mation problem. These issues are exacerbated when the radar background includes

resonating clutter. We develop an effective technique for estimation the complex fre-

quencies of a target’s resonances for scenarios in which the radar can obtain multiple
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measurement shots of the background (clutter) alone and multiple measurement shots

of the target in the presence of the background. The proposed method exploits the

fact that the maximum likelihood estimator for measurements in Gaussian noise can

be decomposed to estimate the complex frequencies of the resonances separately from

their complex amplitudes. This enables us to decouple the estimation of the complex

frequencies of the target from those of the background because the the background’s

complex frequencies remain largely unchanged when the target is introduced. We

investigate the performance of the proposed method using a radar that operates in

the band of 0.5 GHz to 5 GHz and employs equivalent sampling at a rate of 20 GSa/s.

Proof-of-concept experiments on brass rods of known length validate the overall ap-

proach, and experiments on more complex targets in clutter demonstrate its potential

for practical applications.

3.1 Introduction

Time-domain impulse radar systems seek to locate and identify targets by measuring

and processing their early-time responses (ETRs) and late-time responses (LTRs) to

the transmitted pulse [16], [30]. In the idealized case of a plane-wave stimulus, a

target reflects the wave directly, which is its ETR, which is followed by a largely

resonant response, its LTR [46], [80]. In an acoustic analogy, a guitar string may be

plucked, which creates a loud twang, its ETR, which is then followed by ringing, its

LTR. It is often possible to identify a guitar as such based on this ringing. Similarly,

it is often possible to identify a radar target based on the resonant features of its

LTR [12], [42]. Although it is notoriously difficult to estimate the parameters of these

resonant features [3], this approach remains a compelling option in applications in
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which radar-imaging techniques are not appropriate; e.g., due to privacy concerns.

Once the onset and duration of the LTR have been identified, using techniques

such as those in [42], the goal is to estimate the number of resonating components,

and the frequency and attenuation rate of each component. In some scenarios, it is

also of interest to estimate the amplitude and phase of each component. In others,

these are “nuisance” parameters, which are unknown and must be estimated, at

least implicitly, but are not of interest. In a conventional setup, the parameters of

interest are estimated from a single measurement shot. If the number of components

is known, this can be done by using linear prediction techniques [56]; (non-linear) least

squares techniques [84] derived from the maximum likelihood estimator in Gaussian

noise [20]; or methods that rely on the algebraic structure of the resonating signal

in the absence of noise, such as Prony’s method [24], Padé approximants [39], and

matrix-pencil techniques [49], [50], [74]. Unfortunately, the observation window of the

LTR tends to be quite short in practice, and its effective signal-to-noise ratio (SNR)

tends to be quite low. Worse still, the estimation problems themselves can be rather

sensitive to noise and other perturbations [34], [37], [51].

In many potential applications, the expected motion of the target is slow enough

that it can be considered to be stationary over the duration of multiple measurement

shots. If those measurement shots are processed jointly, then the limitations imposed

by the duration of the observation window and the low SNR can be mitigated to some

degree [34]. However, that approach does not address the issue of environmental clut-

ter, which we will call the background. We consider tackling this problem in scenarios

where it is possible to capture multiple measurement shots of the environment before

and after the introduction of the target (TG) whose resonance parameters are to be
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estimated. We thus have a set of background-only (BG) measurements and a set

of target-and-background (TG&BG) measurements available for analysis. We posit

that combined processing of both measurement sets should enable us to improve the

estimation of the resonant parameters of the target.

In this chapter, we develop such a method and demonstrate its performance using

an ultra-wideband time-domain radar to estimate the resonance parameters of several

targets in the presence of “light” and “heavy” background clutter. We show that

when we use simple rods as targets, our results agree with the resonance parameters

obtained by simulation, and that when we use common handheld weapons as targets,

we arrive at consistent estimates, even when the clutter partially blocks the target.

The proposed method is based on the observation that the introduction of the tar-

get can, and often will, change the amplitude and phase of a clutter resonance. For

instance, the target may partially obscure a given object in the background, reducing

the associated amplitude. The amplitude and phase of a clutter object’s resonance

may thus be significantly different in the BG and TG&BG measurement sets, and

this difference may be rather difficult to predict. However, the resonant frequencies

and attenuation rates are features of an object; they are unaffected by the environ-

ment, provided that the object is “separate enough” from that environment (i.e., at a

minimum, not in direct contact with conductive background clutter). Therefore, the

background’s resonant frequencies and attenuation rates should be consistent between

the BG and TG&BG measurement sets. Provided that we can decouple the estima-

tion of the frequencies and attenuation rates from that of the amplitude and phase,

this would enable to make effective use of the BG measurements in the estimation of

the TG resonances from the TG&BG measurements.
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The (nonlinear) least-squares estimator that is derived from maximum likelihood

estimator in Gaussian noise [20] indeed decouples the estimation in the desired manner

[84]. However, it requires the solution of a non-convex optimization problem that

has a smooth, but complicated, optimization landscape. We develop a pragmatic

approach to generating good estimates from that problem. Our approach involves

local smooth optimization from a carefully selected starting point, the application of

physically motivated bounds on the optimization, and insight-driven post-processing

of the optimization output. Our method for selecting the starting point is inspired by

observations by Barone [8] that estimates of the resonant frequencies and attenuation

rates from multiple measurement shots tend to cluster, even though the estimates

from any one shot may be significantly perturbed. We show that the number of

significant clusters is a good estimate of the number of resonating components, and

that a good starting point for the nonlinear least-squares optimization can be obtained

by finding the “center” of each significant cluster.

After describing the signal model in Section 3.2 and the estimation problem in

Section 3.3, we outline our pragmatic approach to solving this problem in the case

of multiple measurement shots in Section 3.4. The main contribution of the chapter

is outlined in Section 3.5, wherein we describe the proposed approach for estimating

the resonance parameters of the target given a set of BG measurements and a set

of TG&BG measurements. In Section 3.6, we apply this technique to measurements

from a physical radar system. The proposed approach provides significantly better

estimates of the resonance parameters than a baseline technique that was constructed

from existing ideas in the literature.
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3.2 System Model and Problem Statement

We assume that the LTR is composed of damped sinusoids and is uniformly sampled

at N instants n = 0, . . . , N − 1, leading to the discrete-time signal model

x• [n] =
K•∑
k=1

r•ke
s•kn, (3.40)

where the • indicates whether the signal is from the target (TG), background clutter

(BG), or from the target embedded in background clutter (TG&BG). The terms r•k

are the complex amplitudes or residues of the resonances, and the terms s•k = −α•k+

jω•k are the complex frequencies of the resonances which contain their attenuation

rates α•k and their frequencies ω•k. We will often find it convenient to refer to the

z-domain poles z•k = es•k , and to write x• [n] =
∑K•

k=1 r•kz
n
•k.

In the scenario that we will consider, we seek to estimate the complex frequencies

of the target(s) {sTGk}KTG

k=1 from MTG&BG measurement shots of the target embedded

in the background, assisted by MBG measurement shots of the background clutter (in

the absence of any targets). Each measurement shot consists of N samples taken in

the presence of zero-mean additive noise v•m [n] and takes the form

y•m [n] = x• [n] + v•m [n] , (3.41)

wherem = 1, 2, . . . ,M•, and •may be BG or TG&BG. (Of course, we cannot measure

the target TG directly.) We will develop our estimator for a time-domain pulsed radar,

and hence x• [n] and y•m [n] are real. Thus, K• is inherently even. We will index the

terms in (3.40) so that r•(k+K/2) = r∗•k and s•(k+K/2) = s∗•k. Therefore, we only need
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to estimate sTGk for k = 1, . . . , KTG/2.

We will often find it convenient to work with the matrix-vector form of our model

in which the expression in (3.40) is rewritten as

x• = VandN (z•) r•, (3.42)

where [x•]n = x• [n], [z•]k = z•k = es•k , and VandN (z) is an N × K• Vandermonde

matrix with [VandN (z•)]nk = zn•k, where n = 0, . . . , N−1. Similarly, the measurement

shots in (3.41) can be rewritten as

y•m = x• + v•m, (3.43)

where [y•m]n = y•m [n] and [v•m]n = v•m [n].

Let us also define the effective signal-to-noise ratio (SNR) as the average SNR

over the N samples, which is equivalent to the ratio of the signal energy to the noise

energy over the observation window, i.e.,

SNRm =
xT
• x•

vT
•mv•m

. (3.44)

3.3 Least-Squares Pole Estimation

The target-resonance estimation techniques that we will develop in this chapter are

based on a nonlinear least-squares estimation method derived from the maximum

likelihood (ML) estimator in Gaussian noise; e.g., [20], [84]. Let us first consider the

ML estimation problem for a single measurement shot. We observe from the model in
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(3.42) and (3.43) that if the measurement noise vector v•m can be modeled as being

a zero-mean random Gaussian vector with covariance matrix C• and the number

of resonant terms K• is known, then maximum likelihood estimation of the poles

and residues from the m-th measurement shot corresponds to solving the following

single-shot (nonlinear) least squares (SSLS) problem:

ẑ•mSSLS, r̂•mSSLS = argmin
z,r

∥y•m − VandN (z) r∥2
C−1

•
. (3.45)

We will refer to (3.45) as the (nonlinear) least squares estimator because it can be

applied even if the noise is not Gaussian; it is just not the ML estimator in that case.

An advantage of the SSLS estimator is that we can decouple the estimation of the

poles from the estimation of the residues. In particular, the SSLS estimator for the

poles is [84]

ẑ•mSSLS = argmax
z

yH
•mQ• (z)y•m, (3.46)

where Q• (z) = B• (z)
HA• (z)

−1B• (z) with A• (z) = VandN (z)H C−1
• VandN (z) and

B• (z) = VandN (z)HC−1
• . Once an estimate ẑ•mSSML has been found, if estimates of

the residues are needed, they can be determined by solving the linear least-squares

problem

r̂•mSSLS = argmin
r

∥y•m − VandN (ẑ•mSSLS) r∥2C−1
•
. (3.47)

In our envisioned application, multiple measurement shots {y•m}Mm=1 are available,

and the poles and residues can be estimated by processing the measurement shots

jointly. In particular, the multi-shot least squares (MSLS) estimates of the poles are

78

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – M.S. Georgiev; McMaster University – Electrical and Computer Engineering

(e.g., [34])

ẑ•MSLS = argmax
z

M∑
m=1

yH
•mQ• (z)y•m. (3.48)

The estimator in (3.48) does not rely on any assumption on the relationship between

the residues in different measurement shots. In that sense, it can be viewed as being

a universal multi-shot estimator of the poles.1 Once the pole estimates in (3.48) have

been found, we can find residues that are a “best fit” for those estimates:

r̂•MSLS = argmin
r

M∑
m=1

∥y•m − VandN (ẑ•MSLS) r∥2C−1
•
. (3.49)

These best-fit residues can be useful in making inferences regarding the quality of the

pole estimates; see the discussion in the following section.

3.4 Pragmatic Approach to Solving the Pole-

Estimation Problem

A significant advantage of the multi-shot least squares estimation technique in the

envisioned application is that it separates the estimation of the poles, which we are

interested in, from the estimation of the residues, which are of lesser interest; cf.

(3.48). However, this estimation technique requires the solution of a non-convex

optimization problem, (3.48), that has an optimization landscape that is smooth, but

complicated. As a result, methods that guarantee a globally optimal solution tend

to be too computationally expensive to be viable in practical applications. In this

1An alternative approach would be to assume that the residues in each measurement are the
same. The resulting estimation problem for the poles corresponds to applying the SSLS estimator
in (3.46) to the averaged received signal ȳ• = 1

M

∑M
m=1 y•m; see, e.g., [34].
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section, we will outline a pragmatic approach that generates good solutions in a wide

variety of scenarios. Our approach employs a smooth local optimization technique,

namely the BFGS quasi-Newton method [64, Ch. 6], initialized by a carefully chosen

starting point. We also use our knowledge of the physical capabilities of the radar and

of the physical properties of the reflective targets to constrain the search space for

the pole estimates. Our method for selecting the starting point of the optimization

also provides an initial estimate of the number of resonant sources. The final step is

a method to mitigate the impact of errors in that estimate.

3.4.1 Generating an Initial Solution

The first step in this phase is to apply the generalized pencil-of-functions (GPoF)

method [49] to each measurement shot, in order to generate M independent estimates

of N/2 poles, {ẑk•mGPoF}N/2
k=1, m = 1, 2, . . . ,M•; see Step 1 in Algorithm 2. As detailed

in Appendix 3.A, the GPoF estimates are obtained by solving generalized eigenvalue

problems that involve matrices assembled from the received signal. In any given

measurement shot, the additive noise can significantly perturb the GPoF estimates

of the poles, but the estimates will tend to cluster over the M• measurement shots

[8]. To exploit that clustering, we use the MN/2 GPoF pole estimates to construct

a (smooth) kernel density estimate (KDE) of the distribution of the pole estimates

in the presence of noise. This step is described in more detail in Appendix 3.B; see

Step 2 in Algorithm 2. The number of poles to be estimated using the MSLS method

in (3.48) is chosen to be of the number of significant maxima of the KDE, K̂•KDE,

and the locations of the maxima, {ẑk•KDE}K̂•KDE
k=1 , are used as the starting point for

the BFGS-based local optimization. Thus, the number of pole estimates that will
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be generated by the BFGS search is K̂•BFGS = K̂•KDE. Given the nature of our

estimation problem, it is preferable to err on the side of overestimating the number

of poles to be estimated, and then to resolve any spurious estimates in the final step;

see Section 3.4.3.

3.4.2 Restricting the Search Space

To improve the effectiveness of the BFGS solver for the MSLS estimation problem,

we constrain the search space. We choose bounds on the frequencies such that the

operating band falls well inside the chosen range, with sufficient tolerances to account

for the aforementioned susceptibility to large perturbations in such estimation prob-

lems. We also place loose bounds on the attenuation rates. Since the length of the

measurement shots, N , is often quite short, the attenuation estimates are especially

prone to large perturbations. Hence, it can be prudent to allow for slightly negative

estimates of the attenuation rates, so that the optimization algorithm can explore

a wide variety of paths to good solutions. All the BFGS estimates of the poles,

{ẑk•BFGS}K̂•BFGS
k=1 , will be constrained by these bounds. In our physical experiments

described in Section 3.6, we will bound the frequency estimates to the range from

0.25 GHz to 5 GHz, and the estimates of the attenuation rates to the range from

−0.3 ns−1 to 0.6 ns−1.

3.4.3 Removal of Spurious Pole Estimates

Since our initial estimate of the number of background poles, K̂•BFGS = K̂•KDE, is

chosen so that it errs on the side of overestimation, we must perform some post-

processing on the BFGS estimate to remove any spurious pole estimates in out final
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MSLS estimate. These spurious pole estimates can arise because the estimated poles

{ẑk•BFGS}K̂•BFGS
k=1 and residues {r̂k•BFGS}K̂•BFGS

k=1 relate to the actual poles {zk•}K•
k=1 and

residues {rk•}K•
k=1 as

K•∑
ℓ=1

rℓ•z
n
ℓ• ≈

K̂•BFGS∑
k=1

r̂k•BFGSẑ
n
k•BFGS.

As such, they represent an accurate but non-unique decomposition of the signal.

One case of spurious poles that may arise is that there may be two nearly identical

pole estimates ẑj•BFGS ≈ ẑk•BFGS, where j ̸= k. Such pole estimates should be

combined into a single pole estimate ẑ′ℓ•MSLS = (ẑj•BFGS + ẑk•BFGS) /2 with estimated

residue r̂′ℓ•MSLS = r̂j•BFGS + r̂k•BFGS. This procedure should be repeated until all of

the pole estimates are distinct. Let K̂ ′
•MSLS ≤ K̂•BFGS denote the number of such

estimates.

Once all of the pole estimates {ẑ′ℓ•MSLS}
K̂′

•MSLS
ℓ=1 are distinct, it is possible there

may be a pole estimate ẑ′ℓ•MSLS with an associated residue r̂′ℓ•MSLS ≈ 0. This is

most likely to occur when the residue addition from the previous step is destruc-

tive, but it is also possible that the pole simply has a vanishing residue. Every

such estimate should be removed, resulting in a final MSLS set of pole estimates

{ẑℓ•MSLS}K̂ℓ•MSLS
ℓ=1 ⊂ {ẑ′ℓ•MSLS}

K̂′
ℓ•MSLS

ℓ=1 , where the final number of MSLS-estimated poles

is K̂ℓ•MSLS ≤ K̂ ′
ℓ•MSLS.

3.4.4 Algorithm

In Algorithm 2, we have summarized our pragmatic approach to generating good

solutions to the pole estimation problem in (3.48). To place our approach in context,

we observe that, prior to its development, the prominent multiple-measurement-shot

approaches that were available to estimate the poles independently from the residues
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Algorithm 2 Pragmatic Approach to Pole Estimation

1. Perform GPoF on each measurement shot y•m to generate the pole estimates
{ẑk•mGPoF}N/2,M

k=1,m=1.

2. Generate a KDE from those estimates

3. Find the significant peaks of the KDE {ẑk•KDE}K̂•KDE
k=1 .

4. Find a local solution of (3.48), {ẑk•BFGS}K̂•BFGS
k=1 , by applying bounded BFGS

starting from {ẑk•KDE}K̂•KDE
k=1 .

5. Remove any duplicate and spurious poles as described in Section 3.4.3 to yield

the final estimate {ẑℓ•MSLS}K̂•MSLS
ℓ=1 .

were based on the principles that underlie the clustering technique developed by

Barone [8]. Our approach to obtaining the starting points for the local BFGS opti-

mization can be viewed as a tailored application of the principles of Barone’s clustering

technique; see Steps 1–3 in Algorithm 2. However, as we will show in our experimental

results in Section 3.6, Steps 4 and 5 in Algorithm 2 provide significant improvements

in the quality of the pole estimates.

3.5 Proposed Approach to Target Pole Estimation

In our envisioned application, a target is introduced into an environment containing

background clutter within the field of view of a radar. Therefore, we can acquire

both a set of multiple measurement shots of the background clutter alone, and a

set of multiple measurement shots of the target embedded therein. Acquiring a set

of measurement shots is very quick, thus we assume that the target is static during

the acquisition of its measurement set, and the background is static throughout the
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acquisition of both sets. Our goal is to build upon the method described in the

previous section to develop an approach for estimating the poles of the target(s) that

effectively leverages the availability of the background measurements.

One intuitive approach would be to perform signal subtraction and then perform

conventional estimation on the remaining signal. To do that, we would simply sub-

tract an estimate of the background signal x̂BG from each of the measurements of the

target embedded in the background yTG&BGm, and then apply a pole estimator to the

measurements {yTG&BGm − x̂BG}Mm=1. While we will make use of a subtraction-based

approach as a signal preconditioning step in our proposed approach, the subtraction-

based approach has the inherent weakness that the presence of the target may change

the values of some of the residues associated with the background resonances. For

example, if the target blocks part of the background, then its corresponding residue

may be smaller in the TG&BG measurements compared to the BG measurements. If

the target provides an additional reflection path to a component, then its correspond-

ing residue may be larger and have a different phase in the TG&BG measurements

compared to the BG measurements. The combined impact of these effects is that

although subtraction may suppress the influence of the background resonances, there

may be significant residual components that should be directly addressed.

Our proposed approach embraces the presence of residual background components.

It exploits the observation that while the presence of the target may change the

residues associated with background resonances, the poles of these resonances are

properties of the resonating object itself, and will not be significantly2 affected by

the presence of the target. This observation is used in conjunction with the fact

that the (nonlinear) least-squares estimator (3.48) enables direct estimation of the

2Assuming the target is not in extreme proximity to the clutter.
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poles without the need to estimate the residues. In particular, when this estimator

is applied to the TG&BG measurement shots, we can treat the poles of the BG

components as being known because they can be estimated from the background-

only measurements. This enables us to distinguish the TG poles from the BG poles,

and also reduce the dimension of the optimization problem that needs to be solved.

As outlined in the sections below and in Algorithm 3, our approach consists of

three phases: a background estimation phase, a signal preconditioning phase, and a

target estimation phase.

3.5.1 Background Estimation

In this phase, we estimate the poles of the background signal from the measurements

of the background {yBGm}MBG
m=1 . This problem can be viewed as a straightforward

multi-shot estimation problem. As such, we will employ the pragmatic approach

described in the previous section for generating good solutions to the MSLS problem

in (3.48) with • = BG; see Step 1 of Algorithm 3.

3.5.2 Preconditioning of the Target Measurement Signal

As we noted above, subtracting an estimate of the background signal is insufficient

to remove the influence of the clutter on a target-and-background signal yTG&BGm.

However, the background also includes other components for which subtraction can

provide substantial suppression. One of these is the radar antennas’ self resonances.

For example, the narrow transmitted pulse induces self resonances in the transmitting

antenna which are picked up by the receiving antenna through direct coupling. The

pulse itself is also picked up by direct coupling, which induces resonances in the
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receiving antenna. Since they arise from direct coupling, such resonances are by far

the strongest resonant components of the received signal, and hence they remain a

significant component of the received signal over a long time window; see Figure 3.7

in Section 3.6 for an example from our system. This is problematic because a cluster

of pole estimates with large residues can conceal a smaller cluster which is nearby;

i.e., strong resonances can mask weaker ones. Since the directly coupled signal is

not affected by the presence or absence of the target, we will precondition our target

measurement shots {yTG&BGm}MTG&BG
m=1 by subtracting the mean of the background

measurement shots,

ȳBG =
1

M

M∑
m=1

yBGm.

That is, we construct

y′
TG&BGm = yTG&BGm − ȳBG. (3.50)

This preconditioning step not only suppresses the direct coupling components, but

also the resonant components of the clutter whose residues are not significantly af-

fected by the presence of the target. It suppresses non-resonant components of the

background, as well. However, it is unable to suppress the transmitting antenna’s self-

resonance signals that reflect off the target, the receiving antenna’s self-resonances

that are induced by the reflection of the transmitted pulse from the target, nor any of

the background resonances that undergo a significant phase change due to the pres-

ence of the target. An example of the effect of this subtraction-based preconditioning

in our experimental set up is illustrated in Figure 3.7.
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3.5.3 Target Estimation

The key observation in our approach to estimating the poles of the target is that the

MSLS approach of (3.48) enables the estimation of the poles independently of the

residues. This is important because the residues are are a function of the target, the

radar environment, and the preconditioning. In contrast, the poles are an inherent

characteristic of the target itself. Therefore, in the preconditioned received signal in

(3.50), we expect to find poles which correspond to the background resonances, ẑBG,

and poles which correspond to the target resonances, ẑTG. The background poles have

already been estimated in phase 1 of our method, which was described in Section 3.5.1.

Using those estimates, we propose to estimate the poles of the target by applying a

reduced-dimension variant of the MSLS estimator in (3.48) to the preconditioned

measurements. In particular, given the estimates of the background poles ẑBG and an

(over)estimate of the number of target poles K̂TG, the reduced-dimension estimator

is

ẑTG = argmax
z

MTG&BG∑
m=1

y′H
TG&BGmQ

([ z
ẑBG

])
y′
TG&BGm. (3.51)

The “best-fit” residues corresponding to both the BG and TG poles can be estimated

by applying (3.49), namely

r̂TG&BG = argmin
r

MTG&BG∑
m=1

∥y′
TG&BGm − VandN

([
ẑTG
ẑBG

])
r∥2

C−1
•
.

Even though it has reduced dimensions compared to the MSLS pole estimation

problem in (3.48), the optimization landscape of the problem in (3.51) remains com-

plicated. Therefore, we apply the natural variant of the pragmatic approach to gen-

erating a good solution to (3.48) that was described in Section 3.4. That natural
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Algorithm 3 MSLS Method for Target Pole Estimation

1. Estimate the background poles {ẑkBG,MSLS}
K̂BG,MSLS

k=1 from {yBGm}MBG
m=1 .

2. Generate {y′
TG&BGm}

MTG&BG
m=1 using (3.50).

3. Estimate the target poles {ẑkTG,MSLS}
K̂TG,MSLS

k=1 from {y′
TG&BGm}

MTG&BG
m=1 , using

{ẑkBG,MSLS}
K̂BG,MSLS

k=1 and the modified form of Algorithm 2 described in Sec-
tion 3.5.3.

variant involves applying Steps 1–3 of Algorithm 2 to the preconditioned signals

{y′
TG&BGm}

MTG&BG
m=1 , then applying the bounded BFGS technique to obtain a local

solution to (3.51), and finally removing any duplicate and spurious pole estimates.

3.5.4 Algorithm

The steps describing how Algorithm 2 is used to to estimate target poles in the

presence of clutter are summarized in Algorithm 3.

3.5.5 A Baseline Method

As we observed in Section 3.4.4, the prominent existing multi-shot methods for esti-

mating poles, independently of residues, are based on clustering techniques. In order

to establish a baseline against which we can compare the performance of our ap-

proach, we will now describe how those clustering techniques could be adapted to the

estimation problem that we consider herein.

The first step would be to perform the same signal preconditioning that we use in

the proposed technique; see Section 3.5.2. That is, we perform Step 2 of Algorithm 3.

Then, assuming that the preconditioning step has provided sufficient suppression
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of the background resonances, we would apply Steps 1–3 of Algorithm 2, and use the

significant peaks of the KDE as the estimates of the target poles.

3.6 Results

We now apply the proposed multi-shot least squares (MSLS) method for target pole

estimation in Algorithm 3 to estimate the poles of various targets from measurements

taken from our physical test bed. As shown in Figure 3.6, our measurement system

consists of quad-ridge horn antennas at the transmitter and receiver. The system

operates between 0.5 GHz and 5 GHz, with reliable performance between 0.7 GHz

and 3.5 GHz. The receiver employs equivalent-sampling techniques to achieve an

effective sampling rate of 20 Gsamples/sec. That receiver is described in more detail

in [67], and the transmitter is described in more detail in [66]. The structure behind

the target in Figure 3.6 is a “quiet” chamber that ensures that we will have an LTR

window that is free of multi-path reflections, aside from the multi-path reflection

from the floor; see Figure 3.7. It also allows us to acquire relatively good “clean”

measurements, which we will use to establish a “ground truth” for the experiments

in which we will add clutter to the environment.

A typical received signal for the setup in Figure 3.6 is shown in Figure 3.7. The

latter figure shows that in between the initial reflection or ETR, which is marked in

red, and the subsequent multi-path reflection via the floor, which is marked in orange,

there is a relatively short window of 2.4 ns, which is marked in blue, during which

we can analyze the LTR. At our equivalent sampling rate of 20 Gsamples/sec, this

corresponds to an observation window of N = 48 samples.
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Figure 3.6: Measurement setup with a sample target, a facsimile of a Colt-1911 pistol.
The transmitting quad-ridge horn antenna is visible on the left, and the receiving one
on the right.
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Figure 3.7: A sample measurement of the raw received signal, yTG&BGm, (top), and
the corresponding preconditioned signal, y′

TG&BGm in (3.50), (bottom). The precon-
ditioning removes almost all of the coupling signal (blue), and suppresses other strong
signal components throughout. A weak but significant multi-path reflection (orange)
curtails the usable LTR (green), which follows the ETR (red).
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3.6.1 Proof-of-Concept Experiments

To validate the core claims of our approach, we tested our pole-estimation algorithm

on two brass rods, one of length 15 cm and the other of length 10 cm. Both rods

were 4.8 mm thick. In these experiments, we only use the horizontal polarization.

Each rod was rotated in 22.5◦ increments, and the resonant pole was estimated using

the proposed method. The BG measurement set contained MBG = 100 shots, and

the TG&BG measurement sets contained MTG&BG = 100 shots at each of the sixteen

angles. The corresponding resonant frequency, which reflects the length of the rod,

is plotted in Figure 3.8 for the 15-cm rod and in Figure 3.9 for the 10-cm rod. As a

performance benchmark, both figures include the resonant frequency from a FEKO

simulation [27]; see the green dashed line. Both figures also include a performance

comparison with the baseline scheme described in Section 3.5.5.

Figure 3.8 shows that in the case of the 15-cm rod, both the proposed method

and the baseline method provide consistently good estimates, except at angles where

the rod is perpendicular to the polarization of the transmitted signal. The scenario

in Figure 3.9 is more difficult for both methods because the shorter rod naturally

has a smaller radar cross-section. For example, at the 0◦ orientation (at which the

rod is aligned with the polarization) the effective SNR (cf. (3.44)) for the shorter

rod is 12 dB whereas that for longer rod is 20 dB. However, it can be seen that the

performance of the proposed approach (orange line) is significantly better than that

of the baseline method (blue line). We carried out analogous experiments with rods

of length 12.5 cm, 17.5 cm and 20 cm, and the results were consistent with those

presented here.
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Figure 3.8: The estimated resonance frequency of a 15-cm-long 4.8-mm-thick brass
rod at various orientations relative to the radar polarization. Note that when the rod
is orthogonal to the radar polarization, the estimate is poor, as can be expected, but
the proposed MSLS method yields consistently good estimates in all other cases.
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Figure 3.9: The estimated resonance frequency of a 10-cm-long 4.8-mm-thick brass
rod at various orientations relative to the radar polarization. Note that proposed
MSLS method maintained good performance, despite the smaller target.
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3.6.2 Realistic Targets in Clutter

In this section, we show how the proposed approach performs on realistic targets in the

presence of background clutter. The targets are a hatchet, a (facsimile of a) Colt 1911

pistol, a kukri, and a Bowie knife; see Figure 3.10. The targets are first measured in

the absence of significant clutter (referred to as a “clean” measurement), as shown in

Figure 3.10. The resulting estimates of the resonant frequencies and attenuation rates

obtained by the proposed MSLS method represent our best estimate of the ground

truth for each target, and are marked by green filled circles in Figures 3.12–3.15. We

then measure the targets in the presence of “light” clutter, where two orthogonal

rods are placed 8 cm in front of the target, and in the presence of “heavy” clutter,

where a hammer and unfolded scissors are placed 8 cm in front of the target; see

Figure 3.11. Both of these represent a challenging clutter environment because the

clutter cannot be obscured by a polarization mismatch or by the target itself. For

these experiments, the BG measurement set again contains MBG = 100 shots, but the

TG&BG set contains 100 shots at each of two orthogonal polarizations corresponding

to orientations of 22.5◦ and 112.5◦ for a total of MTG&BG = 200 shots. Because the

estimator in (3.48) does not require consistent residues between measurement shots,

we are able to simply combine measurement shots in this fashion.

The estimates of the resonant frequencies and attenuation rates for the hatchet are

given in Figure 3.12. The baseline method is unable to provide estimates that resemble

the ground truth in either the light clutter or heavy clutter scenarios. However, in

both of these scenarios, the proposed method provides good estimates of both resonant

frequencies and good estimates of the attenuation rate of the resonance at around

1 GHz. The estimates of the attenuation rate of the resonance around 2.75 GHz
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Figure 3.10: Measurement set-ups for the “clean” measurements of a small hatchet,
a Colt-1911 facsimile, a kukri and a Bowie knife.

exhibit greater variation than the estimates of the frequency.

The parameter estimates for the facsimile of the Colt 1911 are given in Figure

3.13. The proposed method is quite accurate throughout, particularly in terms of

frequency. The baseline method is also quite effective in the case of light clutter,

but in the case of heavy clutter it does not detect the “ground truth” pole around

2.6 GHz.

The parameter estimates for the kukri are given in Figure 3.14. The “ground

truth” resonant frequencies, which correspond to the ordinate of the green filled cir-

cles, are around 1 GHz and 2.75 GHz. As such, they are quite similar to those of the

hatchet. Since the metallic portions of the kukri and the hatchet are of similar size,

that is expected. However, the estimators perform somewhat differently in this case.

In the case of light clutter, the proposed method provides good estimates of the poles,
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Figure 3.11: Measurement setups for the facsimile of the Colt-1911 in the light clutter
environment (top) consisting of two orthogonal rods 8 cm in front of the target, and
in the heavy clutter environment consisting of a hammer and a pair of scissors 8 cm
in front of the target.
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Figure 3.12: Estimates of the resonant frequency and attenuation rate for the hatchet.
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Figure 3.13: Estimates of the resonant frequency and attenuation rate for the Colt
1911.
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Figure 3.14: Estimates of the resonant frequency and attenuation rate for the kukri.

but the baseline method did not generate any pole estimates within the range of val-

ues provided on the figure, which is the region where the radar performs reliably. In

the case of heavy clutter, the proposed method provides a reasonable estimate of the

higher frequency pole, but that of the lower frequency pole is somewhat degraded.

Furthermore, the proposed method does not sufficiently suppress a clutter pole at

around 1.75GHz. The baseline method also picks up this clutter pole, along with

the higher-frequency “ground truth” pole, but it does not detect the lower-frequency

“ground-truth” pole.

The parameter estimates for the Bowie knife are given in Figure 3.15. In this
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Figure 3.15: Estimates of the resonant frequency and attenuation rate for the Bowie
knife.

setting we only have one “ground truth” pole, at around 0.9 GHz. In light clutter,

the proposed method provides a good estimate of this pole, but the baseline method

does not produce any estimate within the scope of the figure, which is the region

where the radar performs reliably. In heavy clutter, both the proposed method and

the baseline method identify a clutter pole at just over 1 GHz.

Looking at these results collectively, it can be seen that the proposed approach

provides very good results in the light clutter environment, whereas the baseline

method fails in the cases of the hatchet, kukri and Bowie knife. As can be seen
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from Figure 3.11, the heavy clutter environment poses a serious challenge to any

estimator. However, for the hatchet and the (facsimile of the) pistol, the proposed

method continues to provide very good estimates, while the baseline method fails.

For the kukri and the Bowie knife, the proposed method performs at least as well as

the baseline method.

3.7 Conclusion

We have developed a novel algorithm for estimating the complex frequencies of the

resonances of targets in the presence of significant environmental clutter. The algo-

rithm is inspired by the observation that the interplay between the resonances of a

target and the clutter is made complicated predominantly due to their complex ampli-

tudes. That suggested the development of an estimation algorithm that is minimally

dependent on those amplitudes. We developed such an algorithm by using the struc-

ture of the maximum likelihood estimator for scenarios in which the noise is Gaussian.

We have experimentally demonstrated that the proposed algorithm gives consistent

estimates, even in the presence of significant clutter, particularly with regard to the

estimation of the resonant frequency.
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Appendices

3.A Generalized Pencil-of-Functions Method

The generalized pencil-of-functions (GPoF) method [49], a generalization of the matrix-

pencil method (MPM) [50], is a technique for extracting poles {zk}Kk=1 from a noise-

free signal x = VandN (z) r of length N , where [z]k = zk andK ≤ N/2. Both methods

rely on the structure of x. In particular, they are based on the observation that if one

chooses a window-length parameter W such that K ≤ W ≤ N −K, and constructs

Hankel matrices X0,X1 ∈ C(N−W )×W such that

[Xp]qr = x [p+ q + r] , (3.52)

then the set of poles {zk} is equal to the set of K nonzero generalized eigenvalues of

the matrix pencil (X0,X1); i.e., the non-zero solutions {λk} to

det (λX0 −X1) = 0. (3.53)

Given the absence of noise, the remainingW−K generalized eigenvalues are zero. One

way to compute the generalized eigenvalues of (X0,X1) is to compute the conventional

eigenvalues of X†
0X1, where (·)† denotes the Moore-Penrose pseudo-inverse. In the

GPoF method, a particular truncated singular-value decomposition (SVD) of X0 is

employed, which allows (3.53) to be solved in a more robust way than the MPM.

In practice, the MPM and GPoF methods are applied to noisy measurements of

x, i.e., y = x+ v. In that case, the related pencil (Y0,Y1) and system matrix Y†
0Y1

are randomly perturbed from their noise-free counterparts. It is known that even a
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small perturbation can lead to a large perturbation in the eigenvalues [73], and hence

the MPM and GPoF methods can be quite sensitive to noise. The SVD truncation

employed in the GPoF method mitigates this somewhat, but does not eliminate it.

Alternatively, if the properties of the noise are known and the signal is long enough,

the pencil can be augmented to compensate for the cumulative effects of the noise on

the system matrix [37].

3.B Pole Clustering

In [8], Barone acknowledges the noise sensitivity of the GPoF method, but also makes

the useful observation that repeated application thereof leads to clustering of the

pole estimates; i.e., the probability distribution PDF (z) of the pole estimates from

the noisy measurement shots is concentrated around the true poles. To use Barone’s

observation in the multi-shot measurement scenario, we note that we have M mea-

surement shots ym = x+ vm of length N , where x = VandN (z) r with poles {zk}Kk=1

arranged in a vector z where [z]k = zk. We then apply the GPoF to each ym to gen-

erate K ≤ W ≤ N/2 estimates of the poles {ẑkm}Wk=1. For a sufficiently high effective

SNR, the pole estimates
M⋃

m=1

{ẑkm}Wk=1 cluster in the vicinity of each zk, and the K

most prominent “centers” of these clusters can be used to form multi-shot estimates

of the poles {ẑk}Kk=1.

To avoid the various difficulties associated with a true clustering technique (cf.

[8]), in our implementation of this approach, we opt to use kernel density estimation

(KDE) [83] to identify the “centers” of the clusters. The KDE approximates the

distribution of the poles as a linear combination of basis functions or kernels gb (z);
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i.e.,

KDE (z) =
1

M

M∑
m=1

1

W

W∑
k=1

gb (ẑkm − z) .

Here, we use a Gaussian kernel with standard deviation or bandwidth b; i.e.,

gb (z) =
1

2πb
exp

(
−zz∗

2b2

)
.

We simply take the K largest local maxima of the KDE as the cluster “centers.” If

the number of poles K is not known, then the number of “significant” maxima can

be used as an estimate thereof. Notice that as M → ∞, KDE (z) → (PDF ∗ gb) (z),

where ∗ denotes convolution. Thus, it is important to choose the bandwidth b to be

wide enough that each cluster of poles only has one peak, but not so wide that the

clusters blur together.

We further make the observation that when W > K, the excess pole estimates

often either have very small residues or high rates of attenuation, both of which

imply low energy. Therefore, a straightforward way to suppress the effect of spurious

poles in the KDE is to weight the samples by their energies. That is, each resonant

component ukm with elements [ukm]n = rkz
n
k for n = 0, . . . , N − 1 has an associated

energy Ekm = uH
kmukm, where (·)H denotes the Hermitian transpose. Hence, we use

the weighted KDE

KDEweighted (z) =
1

E

M∑
m=1

W∑
k=1

Ekmgb (ẑkm − z) ,

where E =
∑M

m=1

∑W
k=1Ekm is the the total energy of the W resonant components.
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This weighted KDE is biased in favor of energetic poles, but when one is only inter-

ested in the cluster centers, this can be beneficial when a limited number of measure-

ment shots is available.
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Chapter 4

Classification of Radar Targets via

Distribution Matching of

Late-Time Resonance Parameters

This work is published in the IEEE Transactions on Radar Systems as [38]. Its

reproduction here is in accordance with the IEEE’s Copyright Policy.

Abstract

A promising non-imagining approach to the classification of radar targets is to use

the frequencies and attenuation rates of the resonant modes that present during a

target’s late-time response (LTR) as features. Unfortunately, the estimation of these

resonance parameters is rather sensitive to noise. However, we observe that when a

large number of measurements of the LTR can be taken in a short time, the prob-

ability distribution of the estimates of the parameters can be estimated, and then
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matched against a database of such distributions. That has the potential to reduce

the sensitivity of the classification problem to noise. In this chapter, we develop a

pragmatic approach to target classification using this distribution-matching approach,

and demonstrate its effectiveness through physical experiments. The proposed ap-

proach is shown to be highly robust to environmental clutter and somewhat robust

to target orientation.

4.1 Introduction

Beyond the eponymous tasks of detection and ranging, radar systems also offer a num-

ber of other opportunities, including the opportunity to identify targets from their

signal returns. The techniques for target identification can be grouped into imaging

techniques (e.g., [4]), and non imaging techniques (e.g., [12]). Imaging techniques,

like airport mm-wave scanners, have the advantage of producing an image that is

intuitive for a human to interpret, but they also have the drawback that they require

an array of antennas, or a moving antenna, to generate this image. Non-imaging

techniques have the advantage of only needing a few antennas, sometimes just one,

but they do not produce anything that is quite as intuitive as an image. That can

actually be an advantage in certain applications where privacy may be a concern. In

this chapter, we will focus on non-imaging systems that employ time-domain impulse

radar, e.g., [31]. Time-domain impulse radars transmit a narrow pulse and hence

they probe the environment across a wide band of frequencies. The transmitted pulse

stimulates a response from a target or targets in the environment, and this response is

measured at the receiver. The initial part of the response is the reflection of the pulse

by the target, and called the early-time response (ETR). The pulse also causes the
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target to start resonating for some time, which is called its late-time response (LTR).

By analogy, the initial twang when a guitar string is plucked is akin to its ETR, and

the subsequent sustain (ringing) is akin to its LTR. The frequencies and attenuation

rates of the LTR resonances, which we refer to collectively as the resonance parame-

ters hereafter, are indicative of the target [12], and have been used as features in the

classification of aircraft [75], and buried ordnance [21], [47]. A variety of techniques

have been developed for estimating the resonance parameters from a single measure-

ment shot of an impulse radar (e.g., [17], [20], [39], [49], [56], [84]), but in typical

applications the LTR has a rather low effective1 signal-to-noise ratio (SNR), and the

estimation problem itself is quite sensitive to perturbations caused by noise and other

impairments [73], [48], [37]. This has prompted the development of techniques that

can mitigate the sensitivity to some degree. One class to such techniques is based

on performing single-shot estimation on different measurements of a target and look-

ing for agreement between the estimates. These different measurements may include

different observation windows of the same measurement shot [41], or repeated mea-

surement shots that differ only in their noise content [8]. One can then combine these

individual estimates to construct a “best-fit” estimator for the resonance parameters

[8]. Another class of techniques that mitigate the sensitivity of resonance parameter

estimates involves the construction of an estimator that jointly processes multiple

measurements (in contrast to processing the estimates from each measurement); e.g.,

[34], [36], [55]. However, such techniques can be sensitive to the assumptions that

are made regarding the relationships between the measurements. In some applica-

tions, the ultimate goal is more than simply estimating the resonance parameters of

1The effective SNR is the ratio of the energy of the signal over the observation window of the
LTR to the energy of the noise over the observation window of the LTR.
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the LTR of an unknown target. Instead, we seek to use the LTR measurements to

classify the unknown target against a database of known targets. Early approaches

to this problem included methods that synthesize a transmitted waveform that yields

a certain “signature” in the returned signal if the target corresponds to a particular

entry in the database [22], [52], [75]. However, in an impulse radar system, the trans-

mitted waveform typically has a fixed pulse shape. An approach that is applicable

to impulse radar systems (with a single measurement shot) begins with storing the

resonance parameters of known targets in a database. Classification of an unknown

target then involves determining which entry in the database is the most likely to have

generated the measured LTR [62], or which entry has the largest canonical correlation

with the measured LTR [23]. However, such an approach retains much of the sensitiv-

ity of the underlying estimation problem for the resonance parameters that is used in

the construction of the database. It is also sensitive to the presence of clutter in the

measurements of the unknown target. An alternative approach to target classifica-

tion would be to construct a database of the distributions of the resonance parameter

estimates for each target, rather than a database of the estimates of the resonance

parameters themselves. In that setting, multiple-hypothesis testing can be used to

decide to which distribution a resonance estimated from a single measurement of the

LTR of an unknown target is most likely to belong. When multiple measurements

of the unknown target can be taken in a time frame within which the environment

is static, we can avoid explicit estimation of each resonance of the unknown target

and instead estimate the distribution of the resonances of the unknown target. That

estimated distribution can then be tested against the distributions of known targets;

this is called distribution matching. An advantage of this approach is that we do not
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have to determine accurate estimates of the resonance parameters themselves, neither

during the construction of the database, nor during operation, and hence the impact

of the sensitivity of that estimation problem is reduced. In this chapter, we consider

an impulse radar system that has a high pulse repetition rate, and we describe a tech-

nique for classifying unknown targets based on multiple measurements of the LTR

of the unknown target and distribution matching. In the proposed technique, the

resonance parameters from the LTR of a single measurement shot are estimated with

the relatively simple generalized pencil-of-functions (GPoF) method [49]. Repeating

this for all available shots of a given target yields a large number of estimates. Their

distribution is empirically approximated via kernel density estimation (KDE) [83].

In the preparatory phase of the technique, empirical distributions of known targets

are constructed in this way and stored in a database. In the operational phase, the

constructed empirical distributions of unknown targets are matched against those in

the database. Inspired by the principles of hypothesis testing, the empirical distri-

butions are compared using a carefully chosen approximation of the Kullback-Leibler

divergence. The approximation is a variant of a “plug-in” type estimate that we have

refined for our application by using insight into the radar system and its environ-

ment to mitigate the impact of clutter. The effectiveness of the proposed technique

is demonstrated using physical experiments on an ultra-wideband impulse radar op-

erating in a scenario that involves classification of handheld weapons. The chapter is

organized as follows: After establishing the system model in Section 4.2, we describe

how the resonance parameters can be estimated from an individual measurement shot

using the relatively simple generalized pencil-of-functions (GPoF) method [49]; see

Section 4.3. In Section 4.4, we elaborate on the principles of the proposed method. As
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described above, this involves constructing empirical distributions of the parameter

estimates using kernel density estimation (see Section 4.5.1), and careful construction

of a metric for comparing distributions; see Sections 4.5.2, 4.6.1 and 4.6.2. With that

mathematical framework in place, the method itself is described in Section 4.6.3. Fi-

nally, the results from the physical experiments on an ultra-wideband impulse radar

system are reported in Section 4.7.

4.2 Signal Model

The model of the late-time response (LTR) to an impulsive stimulus, in the absence

of noise, is

x (t) =
K∑
k=1

rkz
t
k, (4.54)

which, assuming that the timebase is normalized to the sampling period, is uniformly

sampled at instants t = n to yield a discrete-time model

x [n] =
K∑
k=1

rkz
n
k , (4.55)

where rk ∈ C are the residues and zk ∈ C are the poles. Each residue rk = ake
jϕk

has an amplitude ak ∈ R and a phase ϕk ∈ R. Each pole zk = e−αk+jωk has an

attenuation rate αk ∈ R and a frequency ωk = 2πfk ∈ R. Collectively, ωk and

αk will be referred to as the resonance parameters of the k-th pole, as discussed in

the Introduction. The resonance parameters can also be combined into a complex

frequency ω̃k = ωk + jαk or an s-domain pole sk = jω̃k = −αk + jωk = log zk. It

follows that the estimation of the resonance parameters {(αk, ωk)}Kk=1 is equivalent to
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the estimation of the poles {zk}Kk=1. Our proposed classification method is based on

the distribution of the estimates of the poles {zk}Kk=1 from multiple measurements of

the LTR. In the idealized case, the radar stimulus can be modeled as being sufficiently

impulsive, and the noise can be modeled as being additive. In that case, the m-th

measurement can be modeled as

x(t) + vm(t),

form = 1, 2, . . . ,M , where vm(t) denotes the additive noise, which is often modeled as

being Gaussian and white. A more accurate model for the measurements would take

into account the linear effects of the antennas, filters and amplifiers at the transmitter

and the receiver, the structure of the transmitted pulse, and a variety of noise sources.

If the component of the received signal that is due to the noise in the transmitter

being reflected off the target lies below the receiver noise level, then a more accurate

model for the the m-th measurement would be

ym(t) = (x ∗ h) (t) + wm(t), (4.56)

where h(t) is the impulse response of the concatenation of the transmitter and receiver

components, ∗ is the convolution operator, and wm(t) is the sum of the environmental

noise, filtered by the front end components of the receiver, and the noise generated

by the receiver itself. Using standard Laplace-transform analysis, the first term in

(4.56) can be rewritten as

(x ∗ h) (t) =
K∑
k=1

r′kz
t
k +

K+L∑
k=K+1

r′kz
t
k, (4.57)
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for some residues {r′k} that may be different from those in (4.54), where L is the

number of poles of the equivalent filter h(t). The expression in (4.57) indicates that

the residues are altered by the radar, but the poles are not. Therefore, we can estimate

the poles from the measurements of the form in (4.56), without the need to deconvolve

the measured signal (and the extensive calibration needed to perform deconvolution;

e.g., [43]). Our approach to classifying the targets will be based on M measurement

shots, each of which consists of N samples of the signal in (4.56); i.e.,

ym[n] =
K+L∑
k=1

r′kz
t
k + wm[n], n = 0, 1, . . . , N − 1, (4.58)

where m = 1, 2, . . . ,M . As suggested by (4.56), assuming that the noise at the

receiver is uncorrelated may result in significant model mismatch. In order to avoid

the calibration required to estimate the noise correlation, we will develop a technique

that makes minimal assumptions on the noise.

4.3 Pole Estimation

Before we discuss the proposed method, which is based on the distributions of the

pole estimates, let us review a popular method for the pole estimation itself. The

poles {zk}(K+L)
k=1 can be estimated using the generalized pencil-of-functions (GPoF)

method [49]. That method is based on the observation that the poles are the (K+L)

non-zero solutions to the following generalized eigenvalue problem: Given x[n] in

(4.55) for n = 0, 1, . . . , N , and W ∈ [K + L,N − 1], find zk and qk such that

X0qk = zkX1qk, (4.59)
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where Xℓ ∈ R(N−W )×W , [Xℓ]ij = x [ℓ+ i+ j]. The remaining (W − K − L) gener-

alized eigenvalues are all zero. The name of the method is derived from that fact

that the pair (X0,X1) is called a matrix pencil. The principle of the GPoF method

is to apply the observation in (4.59) to a noisy measurement ym[n] (cf. (4.58)), to

determine W pole estimates {ẑkm}Wk=1. Since the excess (W − K − L) generalized

eigenvales will be non-zero in this setting, we must then determine which of the W

estimates correspond to the (K+L) poles of the LTR. Unfortunately, the generalized

eigenvalues of a matrix pencil are notoriously sensitive to perturbations in the matri-

ces [37], [48], [73], [34]. While the GPoF method incorporates a truncated singular

value decomposition that mitigates that sensitivity to some degree, it remains diffi-

cult to obtain reliable estimates of the poles from a single measurement unless that

measurement has a large effective signal-to-noise ratio (SNR) and a large number of

samples, N . In scenarios in which the radar can take M measurement shots in a time

interval over which the resonance parameters remain constant, it has been observed

[8], [10] that the W generalized eigenvalues from each measurement shot, {ẑkm}Wk=1,

m = 1, 2, . . . ,M , tend to form clusters near the “true” poles {zk} of the (sampled)

LTR, x[n], with the excess eigenvalues scattered across the complex plane, typically

near the unit circle. That suggests that if we have a sufficient number of measurement

shots, M , at a sufficiently large signal-to-noise ratio, we should be able to obtain good

estimates of the poles by jointly processing the pole estimates,
{
{ẑkm}Wk=1

}M
m=1

, from

all the measurement shots {ym [n]}Mm=1. One approach is to cluster the pole estimates

[8]. That approach is appropriate if parameter estimation is the ultimate goal. For

applications in which target classification is the ultimate goal, we seek a method in

which the pole estimates
{
{ẑkm}Wk=1

}M
m=1

are jointly processed with the classification
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goal in mind, instead of being jointly processed to achieve an interim goal of param-

eter estimation. In the next section, we will outline the principles of our proposed

approach to doing so.

4.4 Principles of proposed method

In the proposed method, we combine the pole estimates from all the measurement

shots into a flat set {ẑj}(WM)
j=1 , where ẑ(k−1)W+m+1 = ẑkm. Due to the additive noise

in the measurement shots, each ẑj can be viewed as being a random variable drawn

from an (unknown) distribution that describes the pole estimates. Each target will

have a different distribution, and hence one can envision a classification scheme in

which the pole estimates from the unknown target, {ẑj}(WM)
j=1 , are used to construct an

empirical distribution, and classification is performed by comparing that distribution

to distributions generated by known targets. In the following section, we will describe

the basic mathematical tools that underlie our approach, and in Section 4.6, we will

put the principles of our approach into practice by modifying these basic mathematical

tools so that they account for practical considerations, including the bandwidth of

the radar and the presence of environmental clutter.

4.5 Mathematical Preliminaries

4.5.1 Constructing an Empirical Distribution

As described in the previous section, the pole estimates generated from the measure-

ments can be viewed as being drawn from an unknown distribution, which we will
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denote by P ; i.e., ẑp ∼ P . In this section we describe a well-established method

for constructing an approximation of the corresponding probability density function

(PDF), PDFP(z). To simplify the exposition of the material in the following section,

we will adopt a mild abuse of notation and use the index of the pole estimates to

indicate the distribution with which they are associated. In the case of a distribution

P , that will mean that we index the pole estimates by p. In particular, given M

measurement shots, each of length N , {ym[n]}Mm=1 in (4.58), we let {ẑp}(WM)
p=1 denote

the pole estimates generated by the GPoF method described in Section 4.3. We will

let P = WM denote the number of pole estimates. To construct the desired em-

pirical distribution, one could simply make a histogram with each bin spanning a

range of the frequency and attenuation rate parameters, as in [41]. However, such

an approach is very sensitive to the choice of bins, in terms of both their size and

where their edges lie. An alternative that is also reasonably simple is the kernel den-

sity estimate (KDE), which is a superposition of Gaussian kernels centered at each

sample [83]. The KDE does not suffer from the bin-width and bin-edge sensitivities

of the histogram approach, and we will opt to use it here. A key tuning parameter

of the KDE is its bandwidth, the standard deviation of its Gaussian kernels. These

kernels are typically chosen to be radially symmetric. In [34], it is observed that the

distribution of pole estimates, P , is also roughly radially symmetric, particularly in

the neighborhood of where the pole estimates cluster. (In contrast, the distribution

of the estimates of the corresponding s-domain poles or complex frequencies can be

significantly skewed.) Therefore, a KDE obtained from {ẑp} with a bandwidth that

is smaller than the standard deviation of a cluster should yield a reasonable estimate

of the pole probability density. With this in mind, we construct a KDE from a set of
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P pole estimates {ẑp}Pp=1 as

KDE{ẑp}(z) =
1

P

P∑
p=1

gb(z; ẑp), (4.60)

where gb(z;u) = exp (−(z − u)(z − u)∗/2b2) /2πb is a radially symmetric Gaussian

kernel centered at z = u with standard deviation or bandwidth b. Due to the con-

struction in (4.60), the KDE is related to the PDF of P as

lim
P→∞

KDE{ẑp}(z) = (PDFP ∗ gb)(z).

That is, the KDE is an approximation of a smoothed version of the PDF, where the

Gaussian kernel is the smoothing function. Therefore, we must thus take care in

choosing a bandwidth b that is large enough for the KDE to be relatively smooth

for a given set size P , but not so large that adjacent clusters blur together. In

preparation for the discussion of our classification method, we define kde{ẑp} (z) to be

the logarithm of the KDE in (4.60); that is

kde{ẑp} (z) = logKDE{ẑp} (z) . (4.61)

4.5.2 Comparing Distributions

In order to describe an appropriate way to compare distributions, we consider the

following abstracted problem. Let z̃P denote a random variable with an unknown

distribution P . We suspect that P is one of two known distributions; that is P is

either G or Q. We wish to determine which distribution z̃P is more likely to have,

i.e., which of the hypotheses P = G and P = Q is more likely. We will do this based
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on a set of observations {ẑp} of z̃P . Given a single observation ẑp of z̃P , ẑp is more

likely to be drawn from G than Q if the likelihood ratio, ΛG
Q (ẑp), where

ΛG
Q (z) =

PDFG (z)

PDFQ (z)
, (4.62)

is greater than 1, [58]. Given multiple independent observations {ẑp}, the cumulative

likelihood ratio is
∏P

p=1 Λ
G
Q(ẑp). Alternatively, using the log likelihood ratio λG

Q(ẑp) =

log ΛG
Q(ẑp), the cumulative log likelihood ratio is

∑P
p=1 λ

G
Q(ẑp), which is positive if

the distribution of P is more likely to be G than Q. To gain some insight into

the classification behavior as the number of observations grows, we note that if the

distribution of z̃P is indeed G (that is, if P = G), then the average of the cumulative

log likelihood ratio over the observations {ẑp} of z̃P approaches its expected value;

i.e.,

lim
P→∞

1

P

P∑
p=1

λG
Q(ẑp) = E

(
λG
Q(z̃P)

)
. (4.63)

Since P = G, we can write that expectation as

E
(
λG
Q(z̃P)

)
= E

(
λP
Q(z̃P)

)
=

ˆ
PDFP(z)λ

P
Q(z)dz. (4.64)

In the proposed application, we encounter a related classification problem to this

abstracted problem. However, we wish to avoid binary hypothesis testing because

we wish to classify the measurements from the unknown distribution as belonging

to one of more than two existing distributions. It would be easier to simply have a

measure of how similar the unknown target’s distribution is to an existing one. To

that end, we observe that the integral on the right hand side of (4.64) is, in fact, the
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Kullback-Leibler (KL) divergence of P from Q, [58],

DKL(P ∥ Q) =

ˆ
PDFP(z)λ

P
Q(z)dz. (4.65)

The KL divergence, which is also known as the relative entropy of P with respect

to Q, is a measure of how different P is from Q. In our application, P will be the

distribution of an unknown target being classified, and Q will be the distribution of a

known target. The corresponding KL divergence will be small if the unknown target

is similar to the known one and large otherwise.

4.6 Implementing the Principles

In this section, we seek to use the mathematical tools described in Sections 4.5.1 and

4.5.2 to put the principles outlined in Section 4.4 into practice in the proposed appli-

cation. Our first observation is that we do not have access to the distribution of the

pole estimates of the (unknown) target, P . We only have access to the pole estimates,

{ẑp}Pp=1, that are obtained by applying the GPoF technique in Section 4.3 to each

of the multiple measurement shots ym[n] in (4.58). Similarly, the distributions of

the known targets in the database, which we have denoted by Q, are also estimated

from measurements. There are a number of available strategies for estimating the

KL divergence from the data; e.g., the multi-dimensional methods described in [65]

and references therein. To enable us to accommodate practical considerations and

environmental clutter in a straightforward way (see Sections 4.6.1 and 4.6.2, respec-

tively), we will employ a “plug-in” estimate of the “resubstitution” type, in the sense

of the taxonomy in [13]. To construct that estimate of the KL divergence, we will

120

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – M.S. Georgiev; McMaster University – Electrical and Computer Engineering

begin by approximating the expectation in (4.65) using the finite-sample version of

(4.63). That is, for a finite set of samples {ẑp}Pp=1, we will use the approximation

DKL(P ∥ Q) ≈ 1

P

P∑
p=1

λP
Q(ẑp), (4.66)

which is a truncation of the sum in (4.63). However, the fact that the distribution of

the pole estimates from the target is inherently unknown, and that the distribution

Q in the database will itself have been constructed from measurements (taken in

a scenario in which the target is known), means that we do not have a direct way

to calculate the log likelihood ratios λP
Q(ẑp). To construct an approximation for

the log likelihood ratios, we observe that the likelihood ratio (cf. (4.62)) can be

approximated from measurements using the KDE described in Section 4.5.1, namely

ΛP
Q(z) ≈ Λ

{ẑp}
{ẑq}(z), where the approximate likelihood ratio is

Λ
{ẑp}
{ẑq}(z) =

KDE{ẑp}(z)

KDE{ẑq}(z)
.

Thus, the log likelihood ratio can be approximated by λP
Q(z) ≈ λ

{ẑp}
{ẑq}(z), where the

approximate log likelihood ratio is

λ
{ẑp}
{ẑq}(z) = kde{ẑp}(z)− kde{ẑq}(z). (4.67)
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Using (4.66) and (4.67), we arrive at the following approximate KL divergence2

DKL ({ẑp} ∥ {ẑq}) =
1

P

P∑
P=1

λ
{ẑp}
{ẑq}(zp), (4.68)

where, for convenience, we have adopted a mild abuse of notation to distinguish the

approximation in (4.68) from the true definition in (4.65) using only the arguments

of the function. We will use this approximate KL divergence as an indicator of how

much a set of pole estimates from measurements of an unknown target {ẑp} diverges

from a set of pole estimates from measurements of a known target {ẑq}.

4.6.1 Practical Considerations

When we apply the GPoF method in Section 4.3 to estimate the poles from a single

measurement shot ym[n] in (4.58), we would typically choose the number of poles

to be estimated W to be somewhat larger than the sum of the predicted number of

poles from the target and radar (K + L). This is to account for poles due to the

environment clutter; see Section 4.6.2. Therefore, we expect that some of the pole

estimates ẑp will be artifacts of the noise, rather than being features of the target

or the environment. Ideally, if a pole estimate ẑp is an artifact of the noise, then its

log likelihood ratio λP
Q(ẑp) will be small with respect to the log likelihood ratio of an

estimate that corresponds to a physical pole, and thus it will have little bearing on

the KL divergence. Unfortunately, when the number of estimated poles P is finite, it

is not guaranteed that the corresponding approximate log likelihood ratio λ
{ẑp}
{ẑq}(ẑp) is

small, and and the resulting errors can accumulate over multiple noise-pole estimates.

2As an aside, we point out that, whereas DKL(P ∥ Q) ≥ 0, [58], the approximation could be
slightly negative for very similar distributions, i.e., DKL ({ẑp} ∥ {ẑq}) ? 0.
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We propose to use some physical insight into the radar system to reduce the impact of

these noise poles. In particular, we observe that any pole estimates that lie outside the

bandwidth of the radar or attenuate very rapidly are very likely to be noise artifacts,

and it makes little sense to include their contributions in the approximation of the KL

divergence. Thus, they are removed prior to computing (4.68). This can be modeled

by refining our definition of the approximate KL divergence to

DKL ({ẑp} ∥ {ẑq}) =
1

P

P∑
p=1

Mphy(ẑp)λ
{ẑp}
{ẑq}(ẑp), (4.69)

where Mphy (z) is a masking (indicator) function such that

Mphy(z) =


1, z is a plausible physical pole,

0, otherwise.

In our physical experiments described in Section 4.7, the proposed method will be

implemented on an ultra-wideband radar that has a bandwidth of approximately

[0.5, 5.0] GHz, with an equivalent sampling rate of 20 GSa/s. To allow for per-

turbations in the estimation process, pole estimates with (normalized) frequencies

0.05π ≤ ωk ≤ 0.55π will be considered to be potentially generated by physical reso-

nances. Furthermore, we make the observation that no detectable physical pole will

have an estimate with its (normalized) attenuation rate outside −0.1 ≤ αk ≤ 0.2.3

3Note that since our targets are passive, no physical pole can have a negative attenuation rate.
However, as discussed in in Section 4.3, the estimate of a physical pole by the GPoF method can
be significantly perturbed by the noise, and hence an estimate of a physical pole from a single
measurement shot may have a slightly negative attenuation rate.
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4.6.2 Environmental Clutter

In our intended applications, a target cannot be easily measured in isolation. Typi-

cally, some of the extracted poles will belong to background clutter, which can include

resonances in the radar itself (such as those described in (4.57)) or something other

than the target in the radar’s field of view. Various background de-embedding strate-

gies exist. Some are as simple as subtracting a reference background signal prior

to any other processing, while others attempt to classify pole estimates as belong-

ing to the background and remove them accordingly. Here, we are inspired by the

latter approach, but consistent with our overall strategy, we seek to work with the

distribution of the pole estimates. The idea behind our approach to managing envi-

ronmental clutter is as follows. Given a distribution of background pole estimates B

with log PDF pdfB(z) and a distribution of target pole estimates P with log PDF

pdfP(z), a pole estimate ẑp is more likely to be due to the background than the tar-

get if the log likelihood ratio λB
P(ẑp) is positive. By definition, that is equivalent to

pdfB(ẑp) > pdfP(ẑp). Such pole estimates should not play a role in the classification

metric. In our implementation of this idea, we use KDEs of the PDFs, and we further

refine our notion of the approximate KL divergence to

DKL ({ẑp} ∥ {ẑq}) =
1

P

P∑
p=1

M¬BG(ẑp)Mphy(ẑp)λ
{ẑp}
{ẑq}(ẑp), (4.70)

where M¬BG(z) is a masking (indicator) function such that

M¬BG (z) =


0, kde{ẑp} (z) > kde{ẑb} (z)

1, otherwise.

(4.71)
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Since the background that is observed during the classification of an unknown target

may be different from the background that was observed during the construction of

the database of known targets, it may be to our advantage to replace the condition

in (4.71) for M¬BG(z) to be zero with the condition

kde{ẑp} (z) > max
(
kde{ẑb,DB} (z) , kde{ẑb,Cls} (z)

)
,

where the subscripts DB and Cls identify the background observed during the con-

struction of the database, and the background observed during classification, respec-

tively. Although it is possible for the difference in backgrounds to introduce or remove

significant environmental clutter, the most energetic components of the background

are usually from the radar system itself. Thus, this modification to the condition

usually has a small impact in practice.

4.6.3 Classification Algorithm

The basic structure of the classification problem can be broken down into two phases:

building a database from measurements of known targets, which we describe in Al-

gorithm 5; and using measurements of an unknown target to classify against the

database, which we describe in Algorithm 6. As can be seen from the algorithm

statements, both of these phases require the construction of a KDE of the distribu-

tion of the pole estimates. The steps that are taken to construct such a KDE are

outlined in Algorithm 4. Algorithm 4 can be viewed as being a summary of Sec-

tion 4.5.1, but we note that we make use of our radar’s polarization diversity, which

is necessary when comparing targets at different orientations.

125

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – M.S. Georgiev; McMaster University – Electrical and Computer Engineering

Algorithm 4 PDF Approximation by KDE

1. Acquire M (HH) measurement shots with horizontal-horizontal polarization.

2. Acquire M (VV) measurement shots with vertical-vertical polarization.

3. Extract an N -sample window of the LTR, which lies between the ETR and first
multi-path reflection.

4. Extract W poles from each measurement shot using the GPoF method in Sec-
tion 4.3 to create a set of pole estimates {ẑg}(WM)

g=1 , where M = M (HH)+M (VV).

5. Construct KDE{ẑg}(z) using (4.60).

Algorithm 5 Database Building

1. For j = 1, 2, . . . , J , construct the KDE for the j-th known target, KDE{ẑqj }(z),
using Algorithm 4.

2. Construct the KDE for the background that was observed when those known
targets were measured, KDE{ẑb,DB}(z), using Algorithm 4.

3. Store these (J + 1) KDEs in a database for later use.

4.7 Results

To demonstrate the practical performance of the proposed approach to target classi-

fication, we consider an application involving the classification of hand-held weapons.

We use a bistatic ultra-wide-band time-domain radar system that uses two quad-

ridge antennas to enable full polarization diversity; see Figure 4.16. In our mea-

surements, we will restrict attention to the (co-polarized) horizontal-horizontal (HH)

and vertical-vertical (VV) polarizations. The radar’s transmitter operates reliably

between approximately 0.5 GHz and 5.0 GHz [66], and the receiver employs an equiv-

alent sampling rate of 20 GSa/s [67]. From an estimation perspective, the receiver’s
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Algorithm 6 Classification

1. Construct the KDE for the unknown target, KDE{ẑp}(z), using Algorithm 4.

2. Construct the KDE for the background that was observed when that unknown
target was measured, KDE{ẑb,Cls}(z), using Algorithm 4.

3. Load the KDEs for the known targets, KDE{ẑqj }(z), j = 1, 2, . . . , J , from the
database.

4. Load the KDE for the background that was observed when those known targets
were measured, KDE{ẑb,DB}(z), from the database.

5. For j = 1, 2, . . . , J , compute the approximate KL divergence from the j-th
known target in the database to the unknown target, DKL

(
{ẑp} ∥ {ẑqj}

)
, us-

ing (4.70).

6. Determine j⋆ = argminj∈{1,2,...,J}DKL

(
{ẑp} ∥ {ẑqj}

)
, the index of the known

target from which the unknown target diverges the least.

reliability begins to taper off above 3.5 GHz [36], but for our distribution-matching

approach to classification the receiver remains effective up to 5.0 GHz. The targets

are placed approximately 1.2 m in front of the radar on a minimally reflectively stand

that allows them to be rolled and yawed relative to the radar. In our experiments,

we only alter the roll angle; see Figure 4.16. We refer measurements taken in this

fashion as “clean.” We then take measurements where clutter is added 8 cm in front

of the target; see Figure 4.17. In one case, the clutter consists of a pair of orthogonal

brass rods, which we refer to as “light clutter.” Our choice of the arrangement of the

rods ensures that there is at least one problematic clutter resonance regardless of po-

larization. In the other case, the clutter consists of a hammer and scissors, which we

refer to as “heavy clutter.” This introduces multiple difficult-to-predict resonances,

and weakens the target response somewhat more than the rods. The targets that
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we will consider are a (monolithic) hatchet, a (monolithic) Bowie knife, a facsimile

of a Colt 1911 pistol, and a kukri; see Figure 4.18. To provide some context for

what we might expect from the LTR of these targets, we observe that we can make a

very rough estimate of the resonant frequency of a component of a target by approx-

imating that component by a thin rod of the same length. If we denote that length

by L, then its fundamental resonant frequency is fres = 2c/L, where c is the speed

of light. With this approximation, the fundamental resonant frequency a target of

length 30 cm would be 0.5 GHz, which is at the lower limit of what our radar can

detect reliably. Since the largest dimensions of our targets are on the order of 30 cm,4

our classification scheme will rely heavily on the resonances of smaller features and

the harmonics of the larger features. As such, the classification task in this setting is

quite challenging. In order to employ Algorithm 4 to construct a reliable KDE of

the distribution of the pole estimates, we need to make an appropriate choice for the

number of pole estimates P in (4.60), and for the bandwidth b of the Gaussian kernel

function gb(z; ẑp). We have empirically determined that approximately P = 1000

pole estimates are sufficient. As discussed at the end of Section 4.5.1, b must be

small enough that adjacent clusters of estimates do not blur together, and must be

large enough that the KDE does not have artificial peaks in the subdomains that are

sparsely sampled. In our experiments we began to observe noticeable blurring when

b ? 0.06, and hence we opted for b = 0.055. To determine how many measurement

shots are required to generate at least this number of pole estimates, we observe that

in our set up we have identified an LTR window which is 2.4 ns (48 samples) long,

which is nearly the maximum available between the end of the ETR and the arrival

4All of the bladed targets are longer, as is the cumulative length of the Colt-1911 pistol’s barrel
and grip; see Figure 4.18.
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of a multi-path reflection from the floor. From the LTR window in each measurement

shot, we estimate W = 10 poles. This choice is consistent with the “rule-of-thumb”

for the GPoF method that from a window of N samples one should seek to estimate

at most N/4 poles. In our implementation, we take 100 HH measurements and 100

VV measurements for each target for a total of M = 200 measurement shots, and

hence we obtain 2000 pole estimates. This takes less than 3 seconds; see [68] for more

details. In our analysis below, we will only use half of these measurements at a time,

and hence our experiments correspond to an acquisition time of 1.5 seconds.

4.7.1 Performance on a Single Set of Measurement Shots

The database of known targets was constructed by applying Algorithm 5 to 100

“clean” measurement shots (50 HH and 50 VV) of each of the four targets at a roll

angle of 0◦. Classification was carried out by applying Algorithm 6 to 100 measure-

ments of each of the four targets (50 HH and 50 VV), in no, light, and heavy clutter,

at roll angles of 0◦, +22.5◦ and −22.5◦, for a total of 36 classification tests. (In the

uncluttered 0◦ case, the classification measurements were distinct from the database

measurements.) The values for the approximate KL divergence in (4.70) of each test

from each entry in the database are shown in the rows of Tables 4.1, 4.2 and 4.3.

(The columns represent the known targets in the database.) The smallest divergence

in each row, which corresponds to the decision made by the classifier, is highlighted

in bold font. In Table 4.1, we observe the effect the clutter alone has on the classifi-

cation. In the case of no clutter, the proposed classifier is able to confidently classify

each target in the sense that the divergence from the database entry that corresponds

to the actual target is much smaller than the divergence from the other database
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Figure 4.16: The radar setup for taking the “clean” measurements in our experiments.
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Figure 4.17: The light and heavy clutter scenarios used in the experiments. The
facsimile of the Colt 1911 pistol is visible behind the heavy clutter.
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Figure 4.18: The hatchet, knife, facsimile of a Colt 1911 pistol, and kukri used in the
experiments.

entries. That is, the diagonal entries of the table are much smaller than the other

entries in the corresponding row. In the cases of light and heavy clutter in Table 4.1,

the proposed classifier continues to correctly classify the targets. However, the confi-

dence in that classification is lower than the confidence in the no-clutter experiments.

When the hatchet is measured in light clutter, the divergences from the database

entries of both the hatchet and kukri are close to zero. (Recall from Footnote 2 that

the approximate KL divergence may be slightly negative.) For the Colt in light clut-

ter, we can be confident that it is unlikely to be the knife or the kukri, because the

divergence from the database entries for those weapons is more than double that from

the database entry for the Colt. However, the divergence from the database entry

for the hatchet is only 26% larger than the divergence to the database entry for the

Colt. Hence, we are unable to be as confident that the measured weapon is not the
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hatchet. When measured in heavy clutter, the Bowie knife can be confidently distin-

guished from the Colt, but the divergences from the database entries for the hatchet

and kukri are only 12% and 14% larger than the divergence from the database entry

for the knife. In contrast, the kukri can be confidently classified in both light and

heavy clutter, as well as in the no-clutter scenario. From Tables 4.2 and 4.3, we ob-

serve that the proposed classification method continues to provide good performance

even as the orientation of the target is rolled, although some classification errors now

arise. In the case of the positive roll with light clutter, and all three cases of the

negative roll, one of the four targets was misclassified. (The number of successful

classifications is listed in the heading of each sub-table in the tables.) Looking more

closely at Tables 4.2 and 4.3, we can see that the kukri is correctly classified in all

of the cases. However, in many cases, that classification comes with reduced con-

fidence when compared with the results for the 0◦ roll. In particular, in the case

of the positive roll and heavy clutter, the divergence of the measurement from the

database entry for the hatchet is almost the same as the divergence from the database

entry for the kukri. The Colt can be confidently identified in all cases bar the case

of the positive roll in light clutter, where it is misidentified as a hatchet. However,

the correct identification has the second smallest divergence, and that divergence is

only 11% larger than the minimum. Interestingly, if we look at the results for the

zero-degree roll in Table 4.1, there is an indication of the potential for this misclas-

sification. In the light clutter results for testing the Colt in that table, the hatchet

is the second choice of classification, and has a divergence that is only 26% larger

than that for the correct entry. The hatchet is correctly identified in all but one case

in Tables 4.2 and 4.3, namely the case of a negative roll with no clutter, where it is
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misidentified as a kukri. However, the divergence for the correct identification is the

second smallest, and is also quite small. There is an indication of the potential for

this misclassification in the light clutter results for the zero-degree roll case, where

the divergence from the data base entry for the kukri is very similar to that for the

hatchet. Finally, we observe that while the knife is correctly classified in four of the

six cases in Tables 4.2 and 4.3, it is misclassified as a hatchet in the light clutter case

of the negative roll, and is misclassified as a kukri in the heavy clutter case of the

negative roll. In the light clutter case, the divergence from the database entry for

the knife is the second smallest and is only 12% larger than the smallest divergence.

In the heavy clutter case, the divergence from the database entry for the knife is

the third smallest, and is 24% larger than the smallest. However, in this case, the

divergences from all of the entries in the database are quite small, which suggests

that in this instance, the classification problem may be inherently difficult. It is also

worth noting that the knife is the most linear of the tested targets, and hence it is

expected to be the most sensitive to rotation. Overall, the results in Tables 4.1–4.3

indicate that the proposed classification approach is quite robust to clutter; it can

distinguish between targets with considerable efficacy even when significant clutter

is placed in front of them. However, the results also demonstrate that the proposed

approach has some sensitivity to the orientation of the target. As such, an avenue for

future improvement might be to construct a database that includes KDEs for multiple

orientations of each known target, rather than the single orientation case that was

considered here.
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Table 4.1: KL Divergence with Same Orientation

No Clutter – 4/4

Target Hatchet Knife Colt Kukri

Hatchet 0.512 87.572 70.370 40.973
Knife 215.167 0.482 169.418 79.114
Colt 46.593 158.839 0.310 40.385
Kukri 73.784 49.013 89.511 0.142

Light Clutter – 4/4

Target Hatchet Knife Colt Kukri

Hatchet −1.492 48.672 43.883 −1.151
Knife 176.171 16.084 123.037 110.133
Colt 69.369 132.822 54.961 113.312
Kukri 101.482 74.651 105.581 16.256

Heavy Clutter – 4/4

Target Hatchet Knife Colt Kukri

Hatchet 37.429 120.853 38.609 83.929
Knife 63.159 56.395 89.551 64.272
Colt 70.812 163.967 34.482 108.720
Kukri 47.840 133.298 65.818 26.275
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Table 4.2: KL Divergence with +22.5◦ Roll Angle

No Clutter – 4/4

Target Hatchet Knife Colt Kukri

Hatchet 44.380 82.009 120.933 98.800
Knife 141.184 −7.326 119.417 87.825
Colt 30.542 79.060 26.532 30.609
Kukri 9.512 45.787 27.624 −2.307

Light Clutter – 3/4

Target Hatchet Knife Colt Kukri

Hatchet 63.343 69.292 91.859 88.989
Knife 146.364 37.885 118.713 87.427
Colt 41.946 82.383 46.027 68.325
Kukri 42.524 38.421 59.407 20.481

Heavy Clutter – 4/4

Target Hatchet Knife Colt Kukri

Hatchet 7.242 130.850 60.660 66.424
Knife 194.733 57.539 132.415 139.459
Colt 63.328 147.296 22.539 74.927
Kukri 45.719 56.475 101.907 45.710
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Table 4.3: KL Divergence with −22.5◦ Roll Angle

No Clutter – 3/4

Target Hatchet Knife Colt Kukri

Hatchet 31.005 48.627 84.465 18.791
Knife 134.828 46.033 160.569 67.198
Colt 45.720 123.301 8.092 43.740
Kukri 27.975 94.859 48.877 18.021

Light Clutter – 3/4

Target Hatchet Knife Colt Kukri

Hatchet 12.691 64.664 37.594 28.741
Knife 30.772 34.446 69.440 51.409
Colt 65.812 105.278 20.912 82.437
Kukri 12.396 23.976 30.016 10.852

Heavy Clutter – 3/4

Target Hatchet Knife Colt Kukri

Hatchet 74.482 183.984 77.598 139.008
Knife 48.921 56.522 71.303 45.597
Colt 60.596 120.339 24.702 86.565
Kukri 53.957 138.943 105.626 33.340
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Table 4.4: Confusion Matrix (%) with Same Orientation

No Clutter – 4/4

Target Hatchet Knife Colt Kukri

Hatchet 100.0 0.0 0.0 0.0
Knife 0.0 100.0 0.0 0.0
Colt 0.0 0.0 100.0 0.0
Kukri 0.0 0.0 0.0 100.0

Light Clutter – 4/4

Target Hatchet Knife Colt Kukri

Hatchet 55.2 0.0 0.0 44.8
Knife 0.0 100.0 0.0 0.0
Colt 0.0 0.0 100.0 0.0
Kukri 0.0 0.0 0.0 100.0

Heavy Clutter – 4/4

Target Hatchet Knife Colt Kukri

Hatchet 60.2 0.0 39.8 0.0
Knife 0.9 98.9 0.0 0.2
Colt 0.0 0.0 100.0 0.0
Kukri 0.0 0.0 0.0 100.0
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Table 4.5: Confusion Matrix (%) with +22.5◦ Roll Angle

No Clutter – 4/4

Target Hatchet Knife Colt Kukri

Hatchet 100.0 0.0 0.0 0.0
Knife 0.0 100.0 0.0 0.0
Colt 3.0 0.0 96.0 1.0
Kukri 0.3 0.0 0.0 99.7

Light Clutter – 3/4

Target Hatchet Knife Colt Kukri

Hatchet 78.6 21.4 0.0 0.0
Knife 0.0 100.0 0.0 0.0
Colt 93.4 0.0 6.6 0.0
Kukri 0.0 0.0 0.0 100.0

Heavy Clutter – 3/4

Target Hatchet Knife Colt Kukri

Hatchet 100.0 0.0 0.0 0.0
Knife 0.0 100.0 0.0 0.0
Colt 0.0 0.0 100.0 0.0
Kukri 58.2 0.2 0.0 41.6
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Table 4.6: Confusion Matrix (%) with −22.5◦ Roll Angle

No Clutter – 3/4

Target Hatchet Knife Colt Kukri

Hatchet 0.0 0.0 0.0 100.0
Knife 0.0 100.0 0.0 0.0
Colt 0.0 0.0 100.0 0.0
Kukri 0.0 0.0 0.0 100.0

Light Clutter – 3/4

Target Hatchet Knife Colt Kukri

Hatchet 100.0 0.0 0.0 0.0
Knife 73.7 26.3 0.0 0.0
Colt 0.0 0.0 100.0 0.0
Kukri 31.5 0.0 0.0 68.5

Heavy Clutter – 3/4

Target Hatchet Knife Colt Kukri

Hatchet 76.6 0.0 23.4 0.0
Knife 16.3 0.0 0.0 83.7
Colt 0.0 0.0 100.0 0.0
Kukri 0.0 0.0 0.0 100.0
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4.7.2 Performance Over Multiple Sets of Measurement Shots

In order to examine the statistical performance of the proposed method, we repeated

the single-measurement-set analysis described in the previous section 1000 times.

Each time, a different random subset of 100 measurement shots was taken from the

set of the 200 available shots and the database was constructed from the other 100

“clean” measurement shots at the 0◦ roll angle. The classification result (i.e., the entry

of the database with the smallest divergence) was recorded for each realization. These

results were collated into the confusion matrices presented in Tables 4.4, 4.5 and 4.6,

which are organized in the same way as Tables 4.1, 4.2 and 4.3. Each entry in each

confusion matrix indicates the fraction of trials that yielded a particular classification

result, presented as a percentage. Each row represents a particular target (which is

treated as being unknown), and the four percentages in that row indicate how often

it was classified as a particular database target. The most frequent classification

result is highlighted in bold. The number of targets for which the most frequent

classification is the correct classification is listed in the heading of each subtable.

These statistical results align well with the outcomes of the single-measurement-

set results in the previous section, which suggests that those single-measurement-

set results are typical. In cases for which the statistical classification results are

consistent, there is one divergence in the corresponding single-measurement-set results

that is significantly smaller than the other divergences in that row. In the cases where

the statistical classification is consistently correct, the smallest divergence corresponds

to the correct target. However, there are cases where the statistical classification

results are consistently incorrect. This is also reflected in the single-measurement-set

results, where the smallest divergence corresponds to an incorrect classification; see
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the +22.5◦-roll Colt in light clutter and the −22.5◦-roll hatchet in the absence of

clutter. In cases for which the statistical classification results alternate between two

decisions in different realizations, the two smallest divergences for the corresponding

single-measurement-set results are of similar size. An example of that is the 0◦-roll

hatchet in both light and heavy clutter. The insight that can be gleaned from

the statistical results in this section is in agreement with the observations made in

the previous section. In particular, the proposed method demonstrates considerable

robustness to the rather difficult clutter environments that we have considered, but

it can be somewhat sensitive to orientation.

4.8 Conclusion

A promising method for classifying targets based on measurements of their late time

responses was proposed. Rather than using direct estimates of the resonance param-

eters as the classification features, or using estimates of the system poles that capture

the information in the resonance parameters, the proposed approach uses the distri-

bution of the pole estimates as the classification feature. An approximation of the

Kullback-Leibler divergence that is tailored to the proposed application is employed

as the classification metric. That metric incorporates practical considerations regard-

ing the radar, and helps to mitigate the impact of environmental clutter. In physical

experiments, the proposed approach was demonstrated to be remarkably robust to

environmental clutter, but it did exhibit some sensitivity to target orientation.
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Chapter 5

Conclusion and Future Work

The availability of a radar capable of a high rate of repeated measurements has

opened up an avenue of exploration involving statistical analysis of relatively large

sets of measurements shots of the late-time responses (LTRs) of radar targets. Three

approaches for estimating the resonance parameters of a target in such a setting

have been presented. These parameters correspond to the poles of a particular Padé

approximant of the z-transform of a finite-length window of the target’s sampled

LTR. These poles can be highly perturbed even if the LTR is only slightly perturbed

by noise, making their estimation challenging in low-SNR scenarios. For this reason,

probability distributions of the poles (and of closely related features) were studied.

In the first proposed method, the poles are estimated via distribution matching

of the roots of the z-transform of the sampled late-time response. The zeros and

poles are known to “repel” one another, thus their distributions are closely related.

However, a closed-form expression for the distribution of these zeros is known whereas

such a distribution for the poles themselves is not. The developed method was demon-

strated to be effective on synthetic signals in low-SNR conditions. Moreover, it was
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demonstrated to work even in the cases of sampling jitter and synchronization errors.

In the second proposed method, the poles were estimated by using an analysis of

an empirical approximation of their distribution to initialize a constrained nonlinear

least-squares optimizer. In this way, a good solution to the non-convex optimization

problem can usually be found without resorting to global optimization. By applying

this resonance estimation method to environment background signals first and then

introducing the target, the method is able to accurately estimate the poles of a target

separately from its background. This enabled its application in physical experiments

with a prototype radar, because measurement shots from such experiments inherently

have a background component. The method was shown to be effective at estimating

resonance parameters in such cases, even when the targets are quite cluttered.

The third contribution of the thesis directly addresses the problem of target clas-

sification, as distinct from the problem of explicitly estimating the resonance parame-

ters. A feature of this contribution is that aggregate estimates of individual resonance

parameters are eschewed in favour of studying the empirical distributions of such

estimates. Those empirical distributions are obtained by processing the estimates

obtained from multiple individual measurements shots. Classification was performed

by comparing the distribution of an unknown target against each member of a set

of distributions stored in a database of known targets, using a modified version of

the Kullback-Leibler (KL) divergence that incorporates knowledge of the background

clutter and the bandwidth of radar. This was shown to be a natural generalization of

Bayesian binary-hypothesis testing. The proposed classification method was shown

to be effective, remarkably robust to clutter, and reasonably robust to changes in
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target orientation (aspect). Indeed, to the best of the author’s knowledge, the experi-

mental results in Chapter 4 represent the first example of a practical resonance-based

classification scheme that is effective in scenarios that involve a somewhat realistic

(and perhaps even excessive) degree of clutter.

Nonetheless, there are numerous aspects of the analysis of the resonances in the

LTRs acquired from multiple measurement shots that have yet to be explored. The

most compelling practical avenue of exploration involves testing the efficacy of the

classification method in more realistic kinds of clutter, such as having the target in a

bag or on the body of a person.

In the latter case, having the person move introduces a new set of challenges. For

example, in the results presented here, each analyzed measurement shot is actually

the average of 256 physical measurement shots, which slows acquisition to a point

that it takes a few seconds to acquire a set of 100 measurements. However, the

radar can operate with averages of just 8 or 16 shots.1 Thus it should be possible to

measure 16 to 32 times faster for the purposes of measuring moving targets without

having to account for motion blur. It is not clear exactly what effect the reduced

fidelity of the measurement shots would have, be it purely from the decrease in SNR

or some other aberrations that the averaging is masking, and it is not clear how the

algorithms would have to be adjusted. Such a scenario also has the inherent challenge

of having to estimate the LTR window, whereas in the experiments studied here, this

was controlled.

It was noted in Chapter 4 that the method is not especially tolerant to changes

in orientation, which is a common problem with these techniques. However, it is not

1In principle, it can operate without averaging, but offloading and processing such a great volume
of data is both very difficult and likely of less value due to the low SNR.
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clear how many orientations it is necessary to store in a database, it is not clear what

impact different tilt angles might have because only roll angles were studied, and is

it not clear whether all of these measurement shots should be clumped together in a

single empirical distribution, treated separately, or some combination of the two.

Having polarization diversity proved to be critically important throughout the

analysis of the physical experiments. This is most apparent for linear targets, such as

the brass rods studied in Chapter 3, but it applies to more complex targets as well.

However, only co-pol (HH and VV) responses were analyzed in this thesis, whereas the

radar also records cross-pol (HV and VH) responses, which should also contain useful

information. In a similar vein, in the bistatic setup that was utilized, the transmitting

antennas were collocated as were the receiving antennas, which was done purely for

pragmatic reasons. It may be worth exploring alternative configurations.

It has been noted throughout the thesis that having a multi-path return within

the LTR window is detrimental. In the experimental setup in this thesis, the first

such return comes from a reflection from the floor, forcing the use of an LTR window

that is around 2.4 ns in duration. Light travels 72 cm in that time. This suggests

that the (partly) anechoic chamber behind the target is not actually needed, but

rather that it is only important to have the area up to 36 cm behind the target clear.

Demonstrating this would would provide valuable guidance for future implementa-

tions in other scenarios, but that is impractical with the current configuration of the

laboratory space.
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