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Abstract

We investigate the role of quantum entanglement and coherence in suppressing
radiation and explore its implications for dark matter. Using Dicke’s framework,
we demonstrate that entangled states in a gas at thermal equilibrium can lead
to subradiance, trapping energy in dark quantum states and reducing radiation
intensity. Applying this to the 21 cm line in dark matter halos, we find that quan-
tum coherence renders the gas effectively dark. Moreover, entanglement results in
a vanishing collision cross-section, consistent with the collisionless nature of dark
matter observed in systems like the bullet cluster. We also show that absorption
of incident radiation can exceed levels predicted by Beer’s law, which holds only in
the absence of coherence. These findings suggest that quantum entanglement and
coherence may explain the non-luminous behavior of matter in dark matter halos,
offering a novel perspective on dark matter and advancing the understanding of
astrophysical radiative processes.
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1 Introduction

It has been known since Dicke’s original treatment of the spontaneous emission of
coherent radiation [1] that the interaction between atoms composing a gas1 through
their common electromagnetic field leads to the formation of entangled quantum

1Although we focus on atoms in this paper, our analysis and discussions apply to molecular gases as well.
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mechanical states, with significant implications for the spontaneous emission rates of
photons emanating from the gas. As Dicke pointed out, atoms should not be considered
as independent entities; instead, the entire gas must be treated as a single quantum
mechanical system. While the material covered in his paper was broad, touching on
several phenomena involving coherence and entanglement, much of the early work it
inspired focused on superradiance.

Superradiance is a fundamental radiation process [2] in which the cooperative
behavior of the atoms composing the gas leads to powerful bursts of coherent radi-
ation. Indeed, superradiance can be thought of as “collective spontaneous emission,”
where, instead of spontaneously emitting photons individually, the atoms cooperate in
a coherent cascade of photon emission. Although the first experimental verification of
superradiance occurred almost 20 years after Dicke’s work [3], astronomers remained
largely unaware of this phenomenon and the intense research being conducted in the
quantum optics community. This remained the case despite the earlier discovery of
astronomical masers in the interstellar medium [4] and the complementarity between
the maser action and superradiance [2, 5]. It is only recently that superradiance has
been studied in an astronomical context and used to explain intense flares from maser-
hosting regions in diverse environments [5–14]. Beyond improving our understanding
and modeling of these systems, these studies have importantly established the presence
of the type of coherence proposed by Dicke in astronomical media.

Dicke’s 1954 paper [1] also explicitly discussed another coherent radiation process,
which later became known as subradiance. In contrast to superradiance, subradiance
describes the suppression of photon emission compared to the typical spontaneous
emission process. Dicke analyzed the trapping of energy in slow and dark quantum
states and its consequences for the radiation intensity emanating from a gas. Subradi-
ance was experimentally verified later than superradiance [15] and has only recently
been observed in large clouds of cold atoms [16]. The latter experimental result is par-
ticularly relevant to us as we explore the possible existence of subradiant systems in
astrophysical contexts.

More specifically, we ask the following question: Given that superradiance is known
to occur in diverse astronomical environments, should we not also expect subradiance
to be realized? We aim to answer this by exploring a possible link between subradiance
and the presence of dark matter in the universe – one of the deepest mysteries in
astrophysics since its manifestation in galactic rotation curves was discovered [17].

2 Results

2.1 Entangled quantum states and coherent behavior

In this section we revisit parts of Dicke’s work and focus on the trapping of energy
within an atomic ensemble. We first focus on a two-atom system at resonance with
Atom 1 at −z0/2 and Atom 2 at z0/2 on the z-axis. Given that single-atom transitions
take place between the lower |a⟩ and upper |b⟩ levels of energies −ℏω0/2 and ℏω0/2,
respectively, appropriate internal states for the two-atom problem consist of [1, 18]
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(see Appendices A and D)

|1, 1⟩ = |bb⟩ (1)

|1, 0⟩θ =
1√
2

(
ei

1
2kz0 cos θ |ab⟩+ e−i 1

2kz0 cos θ |ba⟩
)

(2)

|1,−1⟩ = |aa⟩ (3)

|0, 0⟩θ =
1√
2

(
ei

1
2kz0 cos θ |ab⟩ − e−i 1

2kz0 cos θ |ba⟩
)
. (4)

Following Dicke [1], the kets |r,m⟩ are defined with the “cooperative” number r and
“inversion” number m, which are analogous to quantum numbers for a system of
coupled spin-1/2 particles, with r ≥ 0 and |m| ≤ r (|r,m⟩θ = |r,m⟩ when cos θ = 0).
Note that k = 2π/λ with λ the radiation wavelength.

Given equations (1)-(4) it is straightforward to calculate the spontaneous emission
transition rates per unit solid angle between the different states

dγ1,1→1,0θ

dΩ
= 2

dΓ

dΩ
(5)

dγ1,1→0,0θ

dΩ
= 0 (6)

dγ1,0θ→1,−1

dΩ′ = 2 cos2
[
1

2
kz0 (cos θ

′ − cos θ)

]
dΓ

dΩ′ (7)

dγ0,0θ→1,−1

dΩ′ = 2 sin2
[
1

2
kz0 (cos θ

′ − cos θ)

]
dΓ

dΩ′ (8)

with dΓ/dΩ the spontaneous emission rate per unit solid angle of a single independent
atom, and θ and θ′ denoting the orientations of the first and second emitted photons,
respectively, relative to the z-axis.

The signatures of entanglement and coherence are displayed in equations (7)-(8).
That is, the enhancement of the transitions rates by a factor of ‘2’ is due to the
entangled nature of the states given in equations (2) and (4), while the disappearance
of the argument in the cosine and sine functions (i.e., when cos θ′ = cos θ) stems from
coherence between the two emitted photons. We therefore find the existence of an
angular correlation between successively emitted photons. More precisely, if the system
starts in the |1, 1⟩ state, then after the emission of the first photon it will for sure end
up in the symmetric |1, 0⟩θ intermediate state. From there, we see that the second
photon has a higher probability of being emitted in a direction where cos θ′ = cos θ to
reach the |1,−1⟩ ground state [18].

We will soon be interested in situations where the system is in thermal equilibrium
where all the states for a given m value are initially equally populated. We thus focus
on the transition rates between the m = 0 and m = −1 states given in equations
(7)-(8). We can obtain the radiation intensity by, among other things, integrating
these transition rates over the solid angle. Setting cos θ = 0, for simplicity, and initial
conditions where the states |1, 0⟩θ and |0, 0⟩θ have equal but uncorrelated probabilities
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of occupation (of 1/2), we can study the intensity in two opposite limits (see Appendix
A.1).

For the infinite size sample kz0 → ∞ we find

I∞ (t) = ℏω0Γe
−Γt, (9)

which is exactly the intensity from a single independent atom, with Γ is the single-atom
free-space spontaneous emission rate (see equation A10).

On the other hand, in the idealized small sample limit kz0 = 0 the intensity
becomes

Iss (t) =
1

2
ℏω0 (2Γ) e

−2Γt. (10)

The two-atom system will, on average, emit a photon half of the time but at twice the
single-atom rate. Another way to look at this is by considering the energy trapping
efficiency defined as

η = 1−
∫∞
0
Iss (t) dt∫∞

0
I∞ (t) dt

= 0.5. (11)

Again, we find that half of the internal energy initially stored in the system remains
within it in the steady-state.

The small sample behavior is readily understood from equations (7)-(8) since in
this case coherence happens for all radiation modes, resulting in the doubling and
cancellation of the corresponding transition rates. The latter implies that |0, 0⟩θ is a
dark state and that its initial occupation probability is preserved at all times. This is
where energy trapping originates. On the other hand, the behavior for kz0 → ∞ is
a global characteristic in the sense that it can only be discerned in the solid-angle-
integrated transition rate. Even at very large separations some radiation modes will
be coherent, but when considering all modes the two atoms behave as if they were
independent (see equation A8).

This last observation is important since external factors can sometimes render spe-
cific radiation modes dominant over the rest. For example, elongated (e.g., cylindrical)
geometries are often considered in studies of superradiance since in such cases radia-
tion along the symmetry axis is favored [5, 18–20]. Similarly, a gas in the interstellar
medium initially hosting a population inversion will be more likely to radiate in a
direction where velocity coherence is accentuated, leading to a transient superradiance
response [5, 13].

We also note that superabsorption, i.e., the converse of superradiance, takes place
when the two-atom system is initially in the |1,−1⟩ ground state. When subjected to
an incident one-photon field the transition rates of equations (5)-(8) are reversed [21].
Here again, there is angular correlation, but this time between successively absorbed
photons (see Appendix A.1).

The calculations can be extended to a larger number of atoms. The general case
for an arbitrary number of atoms n is shown in Figure 1 along with the expected
transition rates in the small sample (i.e., kz0 → 0) or coherent limits (taken from
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102 k. H.

(g, r& m~ezR~+epRp~ g, r, m~1)
=

p (eq&zez)L(r&m) (rWm+1))&. (23)

Transition probabilities will be proportional to the
square of the matrix elements. In particular, the spon-
taneous radiation probabilities will be

I=Ip(gym) (r—mg 1). (24)

Here, by setting r=m=-'„ it is evident that Ip is the
radiation rate of a gas composed of one molecule in its
excited state. Ip has the value'

4 GO

Ip
3 c

e~Pp~ ' 1 ~'
cy—$c2

mpe)~ 3 c
1 M=——(eg'+ eP). (25)
3 c

If m=r=2n (i.e., all n molecules excited),
I=nIp. (26)

Coherent radiation is emitted when r is large but (m~
small. For example, for even m let

r= ,'n, m=0; I=-', n(--,'n+1)Ip. (27)

This is the largest rate at which a gas with an even
number of molecules can radiate spontaneously. It
should be noted that for large rI, it is proportional to the
square of the number of molecules.
Because of the fact that with the choice of stationary

states given by Eq. (21) a given state couples with but
one state of lower energy, this radiation rate $Eq.
(27)], is an absolute maximum. Any superposition state
will radiate at the rate

I=Ip Q P„, (z+m) (r m+1)—
=Ip((R&+zRz) (Rz—zRz) ), (28)

where I'„, is the probability of being in the state r, m.
' Reference j., p. j.06.

The state P,, ; z, ;„is one of n states with this value
of m. The remaining e—1 states should be chosen to be
orthogonal to this state, orthogonal to each other, and
normalized. Since these remaining rI,—j. states are not
states of r=~e, they must be states of r=-', e—1, the
only other possibility. Again the complete set of states
with this value of r can be generated using Eq. (21),
where now r= ~pn—1, and the operator in Eq. (21) is
applied to each of the m—1 orthogonal states of
r=m=-,'m—1. This procedure can be repeated until all
possible values of r are exhausted, in which case all the
stationary states have been defined.
Kith this definition of the stationary states, the

interaction energy operator has Inatrix elements joining
a given state of the gas to but two other states. Aside
from the factor involving the radiation field operator,
the matrix elements of the interaction energy may be
written8

Al""ytl
m= —-ltl

2
nip

r=--ln
2

n - l fold degenerate

„2(n-I) Ip „(n-2)Ip

„3(n-2)Ip „2(n-3)Ip
I

l
I
I

I

, , (n-2) Ip

„2(n-3)Ip

r ~~P„rt
2

n (n-3)
fold degenerate

„(n-0)Ip

m=-—+Irl
2
nm=—2

nIp

(n-2)Ip
fl

(n-2) Ip

FIG. I. Energy level diagram of an n-molecule gas, each molecule
having 2 nondegenerate energy levels. Spontaneous radiation
rates are indicated. E =mE.

There are no interference terms. Consequently, no super-
position state can radiate more strongly than Eq. (27).
An energy level diagram which shows the relative mag-
nitudes of the various radiation probabilities is given
ln Flg.
States with a low "cooperation number" are also

highly correlated but in such a way as to have abnor-
mally low radiation rates. For example, a gas in the
state r=m=0 does not radiate at all. This state, which
exists only for an even number of molecules, is analogous
to a classical system of an even number of oscillators
swinging in pairs oppositely phased.
The energy trapping which results from the internal

scattering of photons by the gas appears naturally in
the formalism. As an example, consider an initial state
of the gas for which one definite molecule, and only
this molecule, is excited. The gas at first radiates at the
normal incoherent rate for a short time and thereafter
fails to radiate. The probability of a photon's being
emitted during the radiating period is 1/n. These results
follow from the fact that the assumed state is a linear
superposition of the various states with m=1 n/2, —
and that 1/n is the probability of being in the state
r= ~e. The probability that the energy will be "trapped"
is (n 1)/n. Th—is is analogous to the radiation by a
classical oscillator when rs—1 similar unexcited oscil-
lators are near. The solution of this classical problem
shows that only 1/n of the excitation energy is radiated.
The remainder appears in nonradiating normal modes
of the system.
For want of a better term, a gas which is radiating

strongly because of coherence will be called "super-
radiant. " There are two obvious ways in which a
"super-radiant" state may be excited. First, if all the
molecules be excited, the gas is in the state characterized
by

r=m= Qe. (29)
As the system radiates it passes to states of lower m
with r unchanged. This will take the system to the
"super-radiant" region m~0.
Another way in which such a state can be excited is

to start with the gas in its ground state,
m 2Q) (30)

Fig. 1 The coherent radiation rates between Dicke states in the small sample (i.e., when kz0 → 0)
or coherent limits. The number of atom contained in the radiating gas is n, while the states within
the different coherent cascades are identified through the cooperative number 0 ≤ r ≤ n/2 and the
inversion number −r ≤ m ≤ r. The radiative intensity (or rate) of a single atom is denoted by I0.
Taken from Dicke’s original 1954 paper [1].

Dicke’s original paper [1]). It is generally observed that, starting from a given m value,
transitions are allowed only between states sharing the same cooperation number r,
while rates systematically decrease as one moves rightward to lower r values.

It is shown in Appendix A.2 that for n ≫ 1 the energy trapping efficiency is
η ≈ 1 −

√
2/n when starting from m = 0. It is therefore clear that the combination

of coherence and the entanglement of a large number of atoms can potentially lead
to a significant amount of energy trapping within the gas. But one of our goals is to
assess the level of energy trapping within the gas for finite and more realistic atomic
separations in the interstellar medium. It is already obvious through our study of the
two-atom system that the general case where kz0 ̸= 0 will lead to a non-zero transition
rate from the |0, 0⟩θ ‘dark’ state (see equations 4 and A8). This has for implication
that all the energy initially stored in the system will eventually leak away. That is,
η = 0 in the steady-state and no energy trapping is realized in the long run.

2.2 Equilibrium conditions

To further our study of trapping and leaking of internal energy we move to the den-
sity matrix framework, using the master equation often used within the context of
superradiance [20, 22] (see Appendix B).

For our two-atom problem the elements of the density matrix ρ̂ for the atomic
system will be defined using the basis {|1⟩ ≡ |1, 0⟩ , |2⟩ ≡ |0, 0⟩, |3⟩ ≡ |1,−1⟩}, where
|r,m⟩ is given in equations (1)-(3) with cos θ = 0. That is, we have ρij = ⟨i|ρ̂|j⟩.
The solution of the master equation for the two-atom problem discussed in Sec. 2.1
is presented in Figure 2 for an atomic separation ∆r = 0.02λ with the black curves
tracing the time evolution of the corresponding populations. The initial conditions
were set to ρ11 (0) = ρ22 (0) = 1/2 and all other populations and coherences to zero.
As can be inferred from the figure, no energy is trapped in the system as the ρ11 and
ρ22 populations (corresponding to the |1, 0⟩ and |0, 0⟩ states, respectively) go to zero
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Fig. 2 Solution of the two-atom system under the initial conditions ρ11 (0) = ρ22 (0) = 1/2 and all
other populations and coherences set to zero. The separation between the atoms was set to ∆r =
0.02λ. The time evolution of the relevant populations are traced using the legend for the corresponding
states. Black curves: no equilibrium conditions are enforced and the populations corresponding to
m = 0 will eventually all relax to zero. No energy trapping takes place in the steady-state (i.e., when
Γt → ∞). Colored curves: the equilibrium condition ρeq11 = ρeq22 = 1/2 is applied with ΓT1 = 10.
Leakage is prevented and energy is trapped in the steady-state.

in the steady-state (i.e., as Γt→ ∞). The first (fast) state does so quickly (on a time-
scale of Γt ∼ 1/2) while the second (dark) state decays on a much longer time-scale,
but will still eventually go down to zero.

The leakage of internal energy is stopped in the steady-state by enforcing equi-
librium conditions for the populations. In Appendix B, we show how this happens
through the introduction of a relaxation term acting on a time-scale T1 and a con-
stant pump term, which we then define as ρeqjj/T1, with ρ

eq
jj the equilibrium condition

for the corresponding population.
In Figure 2 we also show, using the colored curves and legend, the two-atom system

response when ρeq11 = ρeq22 = 1/2, ρeq33 = 0 and ΓT1 = 10. Since internal energy trapping
is due to non-zero steady-state values in the upper populations ρ11 and ρ22, we find
that the presence of equilibrium conditions effectively causes this trapping to take
place. More precisely, we find ≈ 0.5 of the total energy remaining in the two m = 0
states for an energy trapping efficiency η ≃ 0.46.

Such analysis can be extended to cases involving a larger number of atoms. It will
then generally be the case that the coherences ρij , with i ̸= j, will come into play. We
therefore follow the usual practice of introducing a dephasing term scaling as −ρij/T2,
with T2 the corresponding time-scale, to account for external factors acting to reduce
coherence in the system.

Figure 3 shows the master equation solution for a system consisting of two two-
atom pairs located a distance 0.1λ apart; the two atoms forming one pair are still
separated by ∆r = 0.02λ. The solution is presented using the basis {|aa⟩ |1, 0⟩ ,
|aa⟩ |0, 0⟩, |1, 0⟩ |aa⟩, |0, 0⟩ |aa⟩, |aa⟩ |aa⟩} to ‘preserve’ the identity of the two pairs.
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Fig. 3 The master equation solution for a system consisting of two two-atom pairs located a distance
0.1λ apart; the two atoms forming one pair are still separated by ∆r = 0.02λ. Only the first two-
atom pair is initially excited, equally in its fast and dark states. We set the equilibrium conditions
for the populations of the four m = −1 states (i.e., |aa⟩ |1, 0⟩, |aa⟩ |0, 0⟩, etc.) to 1/4 and that of the
|aa⟩ |aa⟩ ground state to zero. The black curves show the time evolution of the relevant populations
for ΓT1 = ΓT2 = 10, while the red and blue curves show that of the ground state for ΓT2 = 1 and
0.1, respectively; T1 is unchanged. Although the increased decoherence reduces the energy trapping
efficiency from ≈ 0.6 to ≈ 0.5, energy trapping still occurs.

The black curves show the time evolution of the corresponding populations for
ΓT1 = ΓT2 = 10 when only the first two-atom pair is initially excited, equally in its
fast and dark states (i.e., we set ⟨1, 0| ⟨aa|ρ̂|1, 0⟩ |aa⟩ = ⟨0, 0| ⟨aa|ρ̂|0, 0⟩ |aa⟩ = 1/2 and
all other populations and coherences to zero). We set the equilibrium conditions for
the populations of the four m = −1 states (i.e., |aa⟩ |1, 0⟩, |aa⟩ |0, 0⟩, etc.) to 1/4 and
that of the |aa⟩ |aa⟩ ground state to zero. It is interesting to see how the emission of
a photon by the first pair is followed by its absorption by the second, with like-states
(e.g., |aa⟩ |1, 0⟩ and |1, 0⟩ |aa⟩) thermalizing to the same steady-state value because of
their shared decay rate. Most importantly, the ground state settles to an occupation
probability of approximately 0.4 leading to an energy trapping efficiency η ≃ 0.55.

The effect of the dephasing time-scale is also depicted in the figure with the red
and blue curves for the population of the |aa⟩ |aa⟩ ground state when ΓT2 = 1 and 0.1,
respectively; T1 is unchanged. It is found, as could be expected, that increased decoher-
ence (i.e., a lower T2) reduces the energy trapping efficiency, but it does not eradicate
the effect. Rather, decoherence tends to render the two pairs more uncorrelated.

Figure 4 shows the intensities (normalized to ℏω0Γ) for the single-atom, and the
two- and four-atom cases of Figures 2 and 3 when ΓT1 = ΓT2 = 10. While equilibrium
conditions have enabled the trapping of energy in the long run, they also bring a non-
zero steady-state intensity in all cases. This is not surprising since, as discussed above,
equilibrium forces the establishing of non-zero steady-state populations. The systems
then radiate in this regime at intensities proportional to the sum of the products of
the populations and their transitions rates (see equation A11).
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Fig. 4 Intensities (normalized to ℏω0Γ) for the single-atom, and the two- and four-atom cases of
Figures 2 and 3 when ΓT1 = ΓT2 = 10. While equilibrium conditions have enable the trapping of
energy in the long run, they also bring a non-zero steady-state intensity in all cases. Subradiance and
energy trapping are apparent from the narrower profiles of the transient intensities for the two- and
four-atom systems over the single-atom case.

Subradiance and energy trapping are also apparent in Figure 4 from the shorter
time-scales (i.e., narrower profiles) of the transient intensities for the two- and four-
atom systems over the single-atom case. But it should be kept in mind that these
results all rest on the fact that k∆r ≪ 1 for the close pairs of atoms. These are not
common conditions in the interstellar medium. It would thus appear that a many-atom
system would behave in the same manner as a single-atom whenever k∆r ≫ 1.

There is, however, another way toward efficient energy trapping. As was observed
earlier, environmental conditions can sometimes favor the realization of specific radi-
ation modes. In such cases, radiation can become coherent and transition rates can
approach those of the small sample systems (see equations 5-8 or A13-A16).

2.3 Superabsorption, coherence and triggered subradiance

Extending the analysis of Sec. 2.2 would quickly become prohibitive for even a mod-
erate number of atoms. Furthermore, we have limited ourselves to transitions between
the ground and first excited states. Realistic conditions would require initiating the
system at higher internal energy levels. In order to generalize our analysis we now
move to the framework of the Maxwell-Bloch equations (MBE), which are presented
in Appendix C.

We now study the propagation of an incident radiation field on a slab composed
of an atomic gas, similar to what is often done in elementary radiative transfer anal-
ysis in astrophysics [23]. This will allow us to compare the outcome of our analysis
with well-known results. The MBE are perfectly suited for this problem, being one-
dimensional in nature. We will also investigate effects the incident field will have on
the radiation emanating from within the gas itself. For a magnetic dipole transition,

8



such as the atomic hydrogen 21 cm line, the MBE allow us to follow the evolution of
three quantities as a function of position z and the retarded time τ = t − z/c: the
differential density n− = nb − na, with na and nb are the number densities of atoms
in the lower and upper levels2, respectively, the magnetization M+ and the magnetic
field B+. Our MBE include relaxation and dephasing time-scales T1 and T2, as well as
a thermal equilibrium condition enforced through a corresponding differential density
neq− = neqb −neqa < 0 set by the Boltzmann equation for the population of energy levels
at the temperature of the gas Tkin.

With the incident radiation field propagating along a well-defined direction (i.e.,
along the z-axis), we have an example of situations where environmental or external
conditions favor one radiation mode over others. Importantly, the interaction between
the incident field and the gas will initially elicit superabsorption and favor coherence
in subsequent transitions through angular correlation among photons, as discussed
in Sec. 2.1. It is therefore expected that the radiation field emanating from, and
propagating within, the gas itself will also take the same form as that induced by the
incident field and be limited to the same radiation mode as the incident field (see
equation C32). This effect could be termed triggered subradiance as it is in some ways
similar to what is observed for triggered superradiance. As experimentally verified by
[24], for example, the injection of an incident field at the entrance of a superradiance
system will enhance the intensity in the corresponding radiation mode at the expense
of all others (including the one where superradiance would naturally occur in the
absence of the incident field). While here the incident field is attenuated instead of
being amplified, its associated radiation mode will be favored in a similar manner.

Hence, we will subject the system to two independent stimuli: i) the aforementioned
incident magnetic field B0, which effectively serves as a boundary condition at the
input z = 0 of the system, and ii) initial internal quantum fluctuations throughout the
system modeled as an initial magnetization. Since phase coherence is expected for the
radiation field, we focus our analysis on a cylinder of cross-section area A = λL, with
L the length of the cylinder and λ the wavelength of radiation [20] (see Appendix C).

2.3.1 Response to incident radiation

Linear regime. The general solution of the MBE requires numerical computations.
It is, however, possible to provide analytical solutions in the linear regime (i.e., weak
radiation intensity) where n− = neq− . We show in Appendix C.2 that the magnetic
field resulting from the response of the gas to an incident field of amplitude B0 is

B+ (z, τ) = B0

{
e−αz/2 +

α

2
e−τ/T2

[
e−αz/2 ⋆ J0

(
2

√
zτ

LTR

)]}
, (12)

where Jp (x) is the Bessel function of the first kind and order p, while ‘⋆’ stands for a
(spatial) convolution. The two terms on the right-hand side consist of the steady-state
and transient responses, respectively, with the absorption coefficient generally defined

2From now on we use lower n’s for densities and capital N ’s for numbers of particles.
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as (i.e., for any density n−)

α =
µ0ω0µ

2T2 |n−|
ℏc

=
2T2
LTR

, (13)

where µ0 is the permeability of vacuum and µ the magnitude of the transition’s mag-
netic dipole moment. In the last equation we have introduced the superabsorption
time-scale (defined at equilibrium)

TR =
8π

3λ2
∣∣neq− ∣∣LΓ , (14)

which has exactly the same form as the superradiance time-scale, except for the fact
that in our case neq− < 0 [5, 19, 20].

As we will soon be interested in the duration of the transient response of the
system, we note that the evolution time-scale of the system is (see Appendix C.2)

Ttr ≈ T2

(
1 +

zT2
LTR

)−1

(15)

when zτ ≪ LTR. The transient signal thus dies out on a time-scale of the order of Ttr.
Steady-state solution. It is also instructive to study the steady-state response

for more general conditions, i.e., without limiting ourselves to the linear regime. Doing
so, we readily find

n− =
neq−

1 + I/Isat
(16)

dI

dz
= −αI, (17)

where the intensity I = cB+B−/2µ0 and the saturation intensity

Isat =
ℏ2c

8µ0µ2T1T2
. (18)

The steady-state solution leads to relations (i.e., equations 13 and 16-18) that have
exactly the same form as the maser equations with, again, the difference that n− < 0
[2, 5]. Accordingly, two regimes are identified for the intensity.

In the linear regime, when I ≪ Isat, we find that n− (z, τ) = neq− and

I (z) = I0e
−αz (19)

with I0 = c |B0|2 /2µ0 and α a constant (i.e., with n− = neq− in equation 13). This
solution is the same as found in the steady-state component of equation (12), and is
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of a similar form as Beer’s law when α replaced by [25]

αB =
3

4

∣∣neq− ∣∣λ2Γϕ (ω) (20)

for a two-level system (i.e., no degeneracies). In this relation, ϕ (ω) is the normalized
atomic distribution in frequency (i.e.,

∫
ϕ (ω) dω = 1).

A comparison of equations (13) and (20) reveals that

α = αBT2δω (21)

with δω the spectral extent of B+ (z, τ) as it propagates through the gas. This quantity
is the reciprocal of the transient response time-scale given in equation (15). We then
find

α ≈ αB

(
1 +

zT2
LTR

)
. (22)

We uncover the important result that Beer’s law holds strictly only under con-
ditions where T2 → 0, i.e., in the limit of complete decoherence/dephasing. In the
opposite limit when T2 ≫ TR, for z = L we have δω ∼ T−1

R , α = αBT2/TR and find,
just as importantly, that the density of the gas determined with Beer’s law can be
overestimated when coherence is present.

The saturated regime when I ≫ Isat will be considered in more details in a future
publication. But we note its solution

I (z) = I0 −
∣∣neq− ∣∣ ℏω0

8T1
z (23)

for z < zsat, where zsat is the location where I = Isat. This regime is entirely neglected
when Beer’s law is solely considered.

An example steady-state solution obtained with the MBE is shown in Figure 5
with the intensity plotted as a function of the position within the gas. The shape of
the intensity curve is reminiscing, and practically a mirror image, of the one obtained
for masers when n− > 0 (see Fig. 4 in [5]).

Linear regime response – The 21 cm line. A slab of atomic hydrogen gas of
length L ≃ 1.7 pc at thermal equilibrium with a density of 1 cm−3 and a temperature
Tkin = 10 K is now considered (see Sec. 4). This approximately corresponds to typical
mass densities measured in dark matter halos [26, 27], while we assume the gas to be
cold. The response of the system to a constant incident radiation fieldB0 = 1×10−23 T,
as numerically computed with the MBE (i.e., equations C28-C30), is shown in Figure
6. This corresponds to an incident intensity approximately five orders of magnitude
lower than the saturation intensity Isat, which ensures that we are well into the linear
regime. The precise intensity level is irrelevant to our discussion, as long as we remain
in the linear regime.

The left panel of Figure 6 shows the temporal evolutions of the radiation inten-
sity (normalized to Isat; top) and the magnetic field (bottom). A broken curve in red
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Fig. 5 Example steady-state intensity as a function of position along the optical path in the gas.
This result was obtained with the MBE (i.e., equations C28-C30). The linear and saturated regimes
are indicated, as well as the saturation intensity Isat.

corresponding to equation (12) is plotted on top of that obtained from numerical com-
putations using the MBE for the magnetic field (in black); there is perfect agreement
between the two. The (constant) density n− (in black) and pump Λn (in cyan; using
the vertical scale on the right; top) and the magnetization (in units of Bohr magneton
µB per cubic centimeter; bottom) are displayed in the right panel. We note that the
mean distance between neighboring cooperating atoms is ∆r ≈ 740λ and T2 ≃ 14TR,
which implies that coherence can be sustained in the system under these conditions.

It is interesting to note that at τ = 0 the incident magnetic field is transmitted
unattenuated at z = L (or any other position) no matter how large L is. Thereafter,
superabsorption defines the transient response to greatly reduce the intensity on a
time-scale ≈ TR and in a oscillatory manner reminiscing of superradiance systems.
According to our previous discussion, the steady-state regime settles afterwards to
an intensity diminished by a factor e−αL, where αL = 2T2/TR ≃ 28 from equation
(13). Such signal would therefore be detected as a deep and narrow absorption line
(≈ 0.3 km s−1 in width) against the background radiation.

2.3.2 Response to initial fluctuations

As shown in Appendices C.1 and C.2, the linear regime response of the system to
initial internal fluctuations M+ (z, 0) = neq− µθ0/2 within the gas, with θ0 the initial
“rising” angle, is expressed as

B+ (z, τ) = −i ℏθ0
2µTR

e−τ/T2
z

L

√
LTR
zτ

J1

(
2

√
zτ

LTR

)
. (24)

Studying the behavior of J1 (2
√
x) /

√
x reveals that the amplitude of the field

corresponding to the initial fluctuations in magnetization is transmitted without
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Fig. 6 Left: Temporal evolutions of the radiation intensity (top) and magnetic induction field (bot-
tom) of the 21 cm line for an atomic hydrogen gas at a temperature of 10 K and length L ≃ 1.7 pc. We
set T1 = T2 ≃ 14TR and the intensity is normalized to the saturation intensity Isat given in equation
(18). In the bottom panel, the incident magnetic field’s amplitude is shown in cyan (using the verti-
cal scale on the right), while a broken curve in red corresponding to equation (12) is plotted on top
of that obtained from numerical computations (in black) using the MBE. Right: Temporal evolution
of the density n− in black with the pump Λn = neq

− /T1 in cyan (using the vertical scale on the right;
top) and the magnetization (bottom). The density is limited to the spectral extent of the signal (i.e.,
T−1
R ) and corresponds to a total density of 1 cm−3 for a gas at a temperature of 10 K. The mean

distance between neighboring cooperating atoms is ∆r ≈ 740λ and TR = 1.7× 108 s ≃ 5.0× 10−7/Γ.

amplification/absorption to z = L at τ = 0. This response is linear in z and there-
fore coherent (i.e., the intensity is proportional to z2). At a given position, the field
(and the corresponding intensity) displays a weak oscillatory temporal behavior with
a period scaling with TR, but damped on the dephasing time-scale T2. Importantly,
we find that the magnetic field is zero in the steady-state.

We show in Figure 7 the response to these internal fluctuations for the same system
as when studying the propagation of an incident radiation field. In the left panel the
intensity is normalized to that expected from a gas radiating non-coherently (denoted
by Inc; see Appendix C.3). The curve for the normalized intensity is reminiscent of
those found in Figure 4 for the simple two- and four-atom systems discussed in Sec. 2.2
using the master equation. Here, however, we have ∼ 1027 cooperating atoms in total
contained in the system, which in comparison leads to an extreme level of subradiance.

More precisely, at τ = 0 the system’s intensity is at a level similar to what is
expected from a non-coherent gas (i.e., I ≃ 0.25 Inc), but it only radiates for a duration
≈ TR. To that effect, we should emphasize that ΓTR ≃ 5.0× 10−7. In comparison, for
the 21 cm line the non-coherent transient intensity for non-cooperating atoms would
last on the order of Γ−1 ∼ 107 yr, whereas TR ∼ 6 yr. This implies that almost the
totality of the available energy is locked within the atomic population, which is almost
entirely in dark states since the fast states are quickly depleted during the transient
regime.

Unlike the two- and four-atom systems in Figure 4, the steady-state intensity is
zero despite having a significant fraction (almost half) of the atoms in the excited
state. The combination of the widespread entanglement of atoms and coherence in our
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Fig. 7 Left: Radiation intensity (top) and (the imaginary part of) the magnetic field (bottom) of the
21 cm line for the same atomic hydrogen gas as in Figure 6 in response to intial internal fluctuations.
The intensity is normalized to that expected from a gas radiating non-coherently under the same
conditions. A broken curve in red corresponding to equation (24) is plotted on top of that obtained
from numerical computations (in black) using the MBE. Right: Temporal evolution of the density
n− in black with the pump Λn = neq

− /T1 in cyan (using the vertical scale on the right; top) and the
magnetization (bottom).

system suppresses the intensity in the steady-state regime. We therefore find that the
gas becomes completely dark after a very short time.

3 Discussion

If entanglement naturally results from the interaction between the atoms composing
the gas and the ambient electromagnetic field, coherence can only happen under cer-
tain conditions. As reviewed in Secs. 2.1 and 2.2, close proximity between atoms (i.e.,
separations much shorter than λ; the small sample limit) ensures coherence for all radi-
ation modes. The manifestation of this coherence will take different forms depending
on the initial conditions. For example, superradiance will ensue when the gas is ini-
tially hosting a population inversion. Otherwise, at thermal equilibrium, for example,
the initial occupation of slow and dark states leads to subradiance. Importantly, dark
states are responsible for the trapping of energy and the suppression of radiation in
the steady-state. However, close proximity between cooperating radiators is unlikely
to be common in astrophysical media and the trapping of radiation is negated under
such conditions, as energy escapes through non-coherent radiation modes.

Equilibrium conditions set the population of slow and dark states, and will natu-
rally stop their gradual decay in the steady-state. These features render equilibrium
essential to achieving significant levels of subradiance. However, this comes at the cost
of a non-zero steady-state intensity (see Figure 4).

Close proximity between atoms is not the only way to achieve energy trapping.
As is evident from the transition rates for the two-atom system (see equations 7-8
and A15-A16), no matter how large the separation between atoms, coherence can be
achieved through angular correlation between emitted/absorbed photons. This will be
realized whenever one mode of radiation (or a few) is favored over the others. This
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can happen whenever some form of anisotropy is present, whether in the geometry of
the system or the ambient physical conditions (e.g., accentuated velocity coherence
along a well-defined direction). Although these forms of anisotropy are also applicable
to the problem of the atomic hydrogen 21 cm line analyzed in Sec. 2.3, we found that
another scenario is likely to be efficient in that respect.

In our analysis of the 21 cm line in Sec. 2.3, we purposely chose a gas density
that is in line with measurements in dark matter halos. For the matter contained in
these environments, the main source of anisotropy comes in the form of the radia-
tion field emanating from the host galaxy. As then mentioned, the incidence of this
field will effectively select one mode for the propagation of radiation within the halo.
It is expected that superabsorption of the incident field will elicit coherence in sub-
sequent radiative transitions in the gas through angular correlation among photons.
As a consequence, extreme subradiance, leading to a complete darkening of the gas,
takes place within a few years even at a mean separation ∆r ≈ 740λ between closest
neighbors. As far as emission properties are concerned, this atomic hydrogen gas is
invisible and effectively behaves like dark matter. This darkening effect may therefore
possibly account for the dark matter known to exist in these environments.

However, is the suppression of radiation in a given transition through triggered
subradiance sufficient for the corresponding atomic species to be considered dark? In
other words, what about all the other transitions pertaining to this atom?

Entanglement is not a property that is unique to a specific transition. That is, it
is always possible to use the symmetry of the Hamiltonian to determine proper states
for the problem at hand. The forms of these symmetry-adapted states are the same
for all energy levels. For example, if equations (1)-(4) apply to the states pertaining
to the 21 cm transition for two entangled atoms, then similar looking states will also
apply for, say, the Lyman-α or other hydrogen lines. In other words, entanglement is
a global property of the atom. Coherence, however, is not and needs to be assessed on
a transition by transition basis.

For our analysis of the 21 cm line for a gas at a density of 1 cm−3 and temperature
Tkin = 10 K these considerations have no bearing on the outcome since all other lines
(e.g., Lyman-α) will remain essentially unexcited. The gas as a whole will thus appear
dark in the steady-state on the account of the 21 cm line alone. While we only stud-
ied this specific example, similar conclusions may be reached when considering other
environments with differing gas densities and temperatures, or other atomic/molecu-
lar species. It also follows that this darkening effect, which also relies on the presence
of anisotropic radiation, should be closely correlated with the presence of “luminous”
matter, as is the case for dark matter [27].

We also studied the propagation of an incident radiation field at 21 cm in the
same atomic hydrogen gas. Interestingly, we found that Beer’s law, commonly used
to quantify the attenuation in intensity as a function of position, is an approximation
that holds only under complete decoherence/dephasing (i.e., in the limit T2 → 0) in
the linear regime. It follows that the amount of attenuation could exceed expected
levels in situations where coherence exists in the gas. Furthermore, the existence of
the saturated regime is completely missed when only Beer’s law is considered.
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We are then led to a picture where our “dark” hydrogen gas (in emission) would
also appear more opaque (or more optically thick) in its absorption lines against the
background source responsible for the incident radiation. However, it would otherwise
be completely transparent to radiation at wavelengths alien to the hydrogen atom, as
expected from dark matter. For a cold gas as the one considered in our analysis, these
lines would appear as narrow absorption features, such as those commonly detected
in observations of the interstellar medium [28], the Galactic halo [29], the Galactic
disk [30] and external galaxies [31]. Furthermore, any other field (of weaker intensity)
incident on the gas at radiation modes other than the dominant mode responsible for
the presence of coherence will propagate unaffected through the gas.

Another important property of our darkened atomic hydrogen gas is discussed in
Appendix D. There, we calculate the cross-section for high-speed collisions between
two two-atom systems (i.e., when the kinetic energy is far greater than the transition
excitation energy ℏω0), both being entangled as discussed in Sec. 2.1. Interestingly, it
is found that in such circumstances the collision cross-section will likely vanish because
of destructive interference due to the entangled nature of the states the systems find
themselves in after the transient regime. Although this analysis needs to be generalized,
this result is consistent with astronomical observations of the so-called bullet cluster
(with collision speeds on the order of 103 km s−1) and similar objects [32]. These
observations put a constraint on the ratio of the collision cross-section to the mass
of a purported dark matter (point) particle to σ/M ≲ 1 cm2 g−1 [27]. Although the
corresponding figure for atomic hydrogen is ∼ 109 cm2 g−1, it does not apply in our
case. Our analysis does not suggest that atomic hydrogen is a dark matter particle,
but rather that the cooperative behavior of a large number of entangled hydrogen
atoms is consistent with what is expected for dark matter. While individual atoms
may collide, entangled systems of atoms will be essentially collisionless.

Finally, we should make a few observations concerning our model based on the
MBE. First, we used the Arecchi-Courtens condition to set the length scale of a coher-
ent entity within the gas [33]. In superradiance systems, for example, this is applicable
to cases where the pump responsible for the population inversion is transverse, i.e., it
affects the gas simultaneously at all positions. When this happens, regions separated
by a distance L > cTR will evolve on a time-scale (TR) shorter than that needed for
their interaction (L/c) and, therefore, cannot work cooperatively. In our case, thermal
equilibrium is set by the pump and one would therefore expect the Arecchi-Courtens
condition to apply. However, the favoring of a single radiation mode, through which
the photon angular correlation and coherence are set, can only happen when upstream
photons reach atoms located further down along the optical path. This is akin to the
effect of a longitudinal pump, in which case the Arecchi-Courtens condition would not
apply [20]. This would then relax any restriction on the coherent length in the gas
and allow for lower values of TR, and potentially broaden the applicability and the
strength of the darkening effect.

On the other hand, the use of the MBE renders it difficult to investigate situations
where coherence and the darkening effect cannot be established. This is because the
selection of a single radiation mode is inherent in the model (see equations C31-C32).
The only manner coherence can be impeded is, therefore, through the lowering of the
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dephasing time-scale T2. But for subradiance the impact of a lower T2 is limited to
the dampening of the signal.

This limited effect of dephasing in our system stems from the fact our model is
one-dimensional. For example, the darkening effect clearly cannot proceed for a more-
or-less spherical cloud of gas when the ambient field is not sufficiently anisotropic to
ensure the selection of one (or a few) radiation mode. To numerically test this scenario,
one would need a three-dimensional generalization of the MBE to allow for differing
boundary conditions (i.e., different types of incident field) and geometries for the
cloud of gas. This would also permit the investigation of the effect of dephasing and
decoherence when a large number of radiation modes are available. This may reveal
the lack of a darkening, or some limitation of it, for sufficiently low values of T2.

4 Methods

For the atomic hydrogen slab of density 1 cm−3 and temperature Tkin = 10 K con-
sidered in Secs. 2.3.1 and 2.3.2, thermal motions bring an average time-scale between
collisions of about 2.5×109 s, which we ascribe to T2. Since we are considering radiation
from the 21 cm line, which has an excitation temperature T21 cm ≃ 0.068K ≪ 10 K,
we set, for simplicity, T1 ≈ T2 = 2.5× 109 s (i.e., we assume that inelastic and elastic
collisions happen at similar rates and are the sole sources of relaxation and dephasing
in the gas, respectively).

Because we expect the linear regime response of the system to happen on the
superabsorption time-scale TR (see equations 12 and 24) it follows that only a fraction
of the atomic population can act cooperatively in the process. That is, given the
spectral breadth ∆ω ∼ ω0∆v/c associated with thermal motions (of characteristic
speed ∼ ∆v) the density entering our equations is 1 cm−3/TR∆ω. In accordance with
the Arecchi-Courtens condition [33], we fixed the thickness of the slab to L = cTR,
which corresponds to the maximum length of a coherent region when the excitation
happens simultaneously over the whole sample (see the corresponding discussion in
Sec. 3). Accounting for the degeneracy of the upper level, using equation (14) and
the Boltzmann equation for the population of energy levels we arrive at neq− = 7.2 ×
10−15 cm−3, L = 5.2 × 1018 cm ≃ 1.7 pc and TR = 1.7 × 108 s = 5.0 × 10−7/Γ−1,
with Γ ≃ 2.9 × 10−15 s−1 for the 21 cm line. We therefore set a constant “pump”
Λn = neq− /T1 to enforce thermal equilibrium and keep n− = neq− at all times (see
equation C28).

Given a set of initial and boundary conditions for n′, M+ and B+, as well as the
values for T1, T2 and n′eq, the MBE (i.e., equations C28-C30) are solved by numerical
integration using a fourth-order Runge-Kutta method. We compute the evolution of
the system of length L up to a retarded time τmax by moving forward in τ for a given
position zk (k is an integer) with n′ andM+ evaluated at the next grid point in τ , and
B+ at the next spatial point zk+1. This process is repeated for z = zk+1 and τ = 0
once τ = τmax is reached, and so on until zk = L [10, 34].
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Appendix A Hamiltonian and transition rates

Following Dicke [1] and we express the Hamiltonian for the gas with

Ĥ = Ĥ0 + ℏω0

∑
j

R̂3
j + V̂ , (A1)

where Ĥ0 accounts for the translational motions of the atoms’ center-of-mass, the
second term for their internal energy and V̂ for dipole interactions with the elec-
tromagnetic field. For simplicity we approximate the atoms as two-level systems at
resonance with each other with an internal energy difference ℏω0; the summation in
equation (A1) is on all atoms. That is, if |a⟩ and |b⟩ are the lower and upper atomic
states, respectively, then for the jth atom R̂3

j = 1
2 (|b⟩⟨b| − |a⟩⟨a|).

For our problem the interaction term reduces to

V̂ = −i
∑
k

1

2
ℏΩk

(
R̂+

k âk − R̂−
k â

†
k

)
, (A2)

where the summation on k is on the radiation modes, and âk and â†k are the photon
annihilation and creation operators. In equation (A2) the Rabi frequency is given by

Ωk =
2µE0
ℏc

(
ϵµ · ϵ⊥k

)
(A3)

for a magnetic dipole transition, where µ and ϵµ are the magnitude of the magnetic
dipole moment and its associated unit vector (assumed real), while that for the radia-
tion mode’s polarization is (also real and) denoted by ϵ⊥k (i.e., k = kϵk and ϵk ·ϵ⊥k = 0).
The one-photon electric field is

E0 =

√
ℏω0

2ϵ0V
(A4)

with ϵ0 the permittivity of vacuum and V the volume of quantization. We focus on
magnetic dipole transitions in view of our application to the atomic hydrogen 21 cm
line in Sec. 2.3. For an electrical dipole transition one has to substitute µ → dc and
ϵµ → ϵd in equation (A3), with d the magnitude of the electric dipole moment.

The phase-matched raising and lowering operators introduced in equation (A2) are
defined by

R̂±
k =

∑
j

R̂±
j e

±ik·rj (A5)

with rj the position of atom j. For the single-atom raising and lowering operators we

have R̂+
j = |b⟩⟨a| and R̂−

j = |a⟩⟨b| while, as we assume resonance, we write k = |k| =
ω0/c. For two identical two-level atoms located a distance z0 from one another (Atom
1 at −z0/2 and Atom 2 at z0/2 on the z-axis), as considered in Sec. 2.1, we have

R̂±
k = R̂±

1 e
∓i 1

2kz0 cos θ + R̂±
2 e

±i 1
2kz0 cos θ (A6)

with θ the angle of k relative to the z-axis.
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A.1 Two-atom transition rates from m = 0 and
superabsorption

Starting with equations (7)-(8), we can obtain the radiation intensity by integrating
these transition rates over dΩ′. Setting cos θ = 0, for simplicity, we find

γ1,0θ→1,−1 = Γ [1 + F (kz0)] (A7)

γ0,0θ→1,−1 = Γ [1− F (kz0)] (A8)

with

F (kz0) =
3

2

{[
1− (ϵµ · ϵz)2

] sin (kz0)

kz0

+
[
1− 3 (ϵµ · ϵz)2

] [cos (kz0)
(kz0)

2 − sin (kz0)

(kz0)
3

]}
(A9)

and

Γ =
µ0ω

3
0µ

2

3πℏc3
(A10)

the single-atom free-space spontaneous emission rate with µ0 the permeability of
vacuum (for an electric dipole transition we again substitute µ→ dc).

We consider initial conditions where the states |1, 0⟩θ and |0, 0⟩θ have equal proba-
bilities of occupation (of 1/2) but with uncorrelated probability amplitude coefficients.
Under these conditions, the radiation intensity can be evaluated with

I (t) = ℏω0 [P1,0θ (t) γ1,0θ→1,−1 + P0,0θ (t) γ0,0θ→1,−1] , (A11)

where Pr,mθ
(t) is the probability of being in state |r,m⟩θ at time t; the different

Pr,mθ
(t) are readily calculated from equations (A7)-(A8) and the initial probabilities.

We thus have

I (t) =
1

2
ℏω0Γe

−Γt
{
[1 + F (kz0)] e

−ΓF (kz0)t + [1− F (kz0)] e
ΓF (kz0)t

}
. (A12)

The two limits given in equations (9)-(10) result from this relation.
The transition rates for superabsorption are obtained when the two-atom system

is initially in the ground |1,−1⟩ state and subjected to an incident one-photon field. It
is then found that the transition rates of equations (5)-(8) are reversed [21]. That is,

dγ1,−1→1,0θ

dΩ
= 2

dΓ

dΩ
(A13)

dγ1,−1→0,0θ

dΩ
= 0 (A14)
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dγ1,0θ→1,1

dΩ′ = 2 cos2
[
1

2
kz0 (cos θ

′ − cos θ)

]
dΓ

dΩ′ (A15)

dγ0,0θ→1,1

dΩ′ = 2 sin2
[
1

2
kz0 (cos θ

′ − cos θ)

]
dΓ

dΩ′ (A16)

with θ and θ′ denoting the orientations of the first and second absorbed photons,
respectively, relative to the z-axis. Here again, there is angular correlation, but this
time between successively absorbed photons.

A.2 Energy trapping efficiency for n atoms

For the two-atom problem only two permutation symmetries are available for the
Dicke states: the totally symmetric species is shared by the r = 1 triplet (equations
1-3), while the lone r = 0 singlet is anti-symmetric (equation 4). In the more general
case where the gas is composed of an arbitrary number of atoms n a larger number of
symmetries, tied to the cooperative number r, exist for the Dicke states (see Fig. 1).

Although it is in principle possible to extend the spontaneous emission rates anal-
ysis for finite separations performed for the two-atom case to the n-atom problem
using appropriate Dicke states, the calculations quickly become prohibitive even for a
restricted number of radiators. It is, however, possible to determine the ratio of num-
bers of photons emitted in the small and infinite-size samples when m = 0 initially, as
done in equation (11) for the two-atom problem. For this, we use the known level of
degeneracy of states as a function of the cooperative number r [1]

gr =
n! (2r + 1)

(n/2 + r + 1)! (n/2− r)!
, (A17)

with the fact that, for n even, the number of photons emitted from m = 0 for the
small and infinite-size samples are r and n/2, respectively. We thus find for the energy
trapping efficiency

η = 1− 2

n

∑n/2
r=0 grr∑n/2
r=0 gr

. (A18)

One can readily verify that η = 1/2 for the two-atom case, while it is 0.69 for n = 10,
0.88 for n = 100, etc. Furthermore, it is known that r (r + 1) ≃ m2 + n/2 whenever
n ≫ 1 and ℏω0 ≪ kBTkin [1], which from equation (A18) yields η ≈ 1 −

√
2/n when

m = 0.

Appendix B The master equation

The master equation used for the analysis presented in Sec. 2.2 is as follows [20, 22]

dρ̂

dt
=

1

iℏ
ℏω0

∑
j

[
R̂3

j , ρ̂
]
− Γ

i

∑
i ̸=j

Ωij (k∆rij)
[
R̂+

i R̂
−
j , ρ̂

]
− Γ

2

∑
ij

Fij (k∆rij)
(
R̂+

i R̂
−
j ρ̂+ ρ̂R̂+

i R̂
−
j − 2R̂−

j ρ̂R̂
+
i

)
(B19)
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with

Fij (k∆rij) =
3

2

{[
1− (ϵµ · ϵr)2

] sin (k∆rij)

k∆rij

+
[
1− 3 (ϵµ · ϵr)2

] [cos (k∆rij)
(k∆rij)

2 − sin (k∆rij)

(k∆rij)
3

]}
(B20)

Ωij (k∆rij) =
3

4

{[
1− (ϵµ · ϵr)2

] cos (k∆rij)

k∆rij

−
[
1− 3 (ϵµ · ϵr)2

] [ sin (k∆rij)
(k∆rij)

2 +
cos (k∆rij)

(k∆rij)
3

]}
(B21)

and where ρ̂ is the density matrix for the atomic system, ∆rij = |ri − rj | is the distance
between atoms i and j, ϵr = (ri − rj) /∆rij and Γ is given by equation (A10). In all
calculations presented in Sec. 2.2 we set ϵµ · ϵr = 0 for simplicity.

The time evolution equations for the two-atom populations presented in Figure 2
(black curves) are obtained with equations (B19)-(B21). Equilibrium conditions are
imposed by adding a relaxation term acting on a time-scale T1 and a constant pump
term, which we then define as ρeqjj/T1, with ρeqjj the equilibrium condition for the
corresponding population. We thus write

dρ11
dt

= −Γ (1 + F12) ρ11 −
(ρ11 − ρeq11)

T1
(B22)

dρ22
dt

= −Γ (1− F12) ρ22 −
(ρ22 − ρeq22)

T1
(B23)

dρ33
dt

= Γ (1 + F12) ρ11 + Γ (1− F12) ρ22 −
(ρ33 − ρeq33)

T1
. (B24)

The steady-state solution of these equations yields

ρss11 =
ρeq11

(1 + F12) ΓT1 + 1
≃ ρeq11

(1 + F12) ΓT1
(B25)

ρss22 =
ρeq22

(1− F12) ΓT1 + 1
≃ ρeq22 (B26)

ρss33 = (1 + F12) ΓT1ρ
ss
11 + (1− F12) ΓT1ρ

ss
22 + ρeq33

≃ ρeq11 + (1− F12) ΓT1ρ
eq
22 + ρeq33, (B27)

where the approximations apply whenever ΓT1 ≫ 1 and F12 (kz0) ≃ 1. Since internal
energy trapping is due to non-zero steady-state values in the upper populations ρ11
and ρ22, we find that the presence of equilibrium conditions effectively causes this
trapping to take place. One also readily verifies from equations (B25)-(B26) that no
energy can be trapped when T1 → ∞, which is the case shown with the black curves
in Figure 2.
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Appendix C The Maxwell-Bloch equations

Assuming propagation along the z-axis, the Maxwell-Bloch equations (MBE) [5, 12, 20]
for a magnetic dipole transition are [6]

∂n′

∂τ
=
i

ℏ
(
M+B+ −B−M−)− n′ − n′eq

T1
(C28)

∂M+

∂τ
=

2iµ2

ℏ
B−n′ − M+

T2
(C29)

∂B+

∂z
=
iµ0ω0

2c
M−, (C30)

where n′ = (nb − na) /2 with na and nb the densities of atoms in the lower and upper
states, respectively, and M+ and B+ the amplitudes of the atomic magnetization and
the magnetic induction field. The temporal derivatives are in relation to the retarded
time τ = t − z/c. The “slowly varying envelope approximation” is used with the
magnetization and magnetic field vectors given by

M± (z, τ) =M± (z, τ) e±iω0τϵµ (C31)

B± (z, τ) = B± (z, τ) e∓iω0τϵµ. (C32)

As for the master equation (see equations B22-B24), we added relaxation and dephas-
ing terms with corresponding time-scales T1 and T2, as well as enforcing equilibrium
conditions through n′eq. We can relate this framework to that used in Secs. 2.1 and
2.2 through the correspondences

n′ → 1

δV
∑
j∈δV

R̂3
j (C33)

M+ → µ

δV
∑
j∈δV

R̂+
j e

ikzj , (C34)

at a given position z with δV the volume occupied by the gas in the vicinity. In our
analysis and discussion we consider n− ≡ 2n′ = nb − na instead of n′. Furthermore,
we are mainly concerned with conditions of thermal equilibrium or, more generally,
situations where nb < na. We thus have, unless otherwise indicated, n− < 0.

As stated in Sec. 2.3, the system is subjected to an incident magnetic field B0 ≡
B+ (0, τ), which effectively serves as a boundary condition at the input z = 0 of the
system, and internal quantum fluctuations throughout the system at τ = 0. These
fluctuations are modeled as an initial magnetization M+ (z, 0) = neq− µ θ0/2, where

θ0 =
√
2N/

∣∣N eq
−
∣∣ is the initial “rising” angle [20] with N = Na+Nb the total number

of atoms (Na and Nb in the lower and upper states, respectively) and N eq
− = N eq

b −N eq
a

(see Appendix C.1). Unlike for our discussion of Dicke’s work in Sec. 2.1 and Appendix
A, we express numbers of atoms using capitalized letters starting in Sec. 2.3 to avoid
potential confusion with number densities.
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Since phase coherence is expected for the radiation field and that this cannot take
place over an arbitrarily large volume, we enforce a Fresnel number of unity and focus
our analysis on a cylinder of cross-section area A = λL, with L the length of the
cylinder and λ the wavelength of radiation [20]. We then have for the relevant numbers
of atoms Na = naAL, etc. Our slab is therefore composed of a very large number of
independent cylinders.

C.1 Initial Bloch angle and magnetization

We require initial conditions for the integration of the MBE in equations (C28)-(C30).
While n′− (z, 0) = neq− /2, it is clear from an inspection of the MBE that in the absence
of an incident signal (i.e., when B+ (0, τ) = 0) we have B+ (z, τ) = M+ (z, τ) =
0 if M+ (z, 0) = 0. In reality, internal quantum fluctuations modeled through the
initial Bloch angle θ (0) (see below) will cause a corresponding magnetization that will
start the response from the gas. Here, we closely follow the treatment developed for
superradiance by Gross and Haroche [20] but adapt it to our problem.

With R̂± =
∑

j R̂
±
j , we start by noting that [35]

R̂± |r,m⟩ =
√

(r ∓m) (r ±m+ 1) |r,m± 1⟩ , (C35)

which in turn leads to(
R̂−

)p

|r,m⟩ = [(r +m) . . . (r +m+ 1− p)

× (r −m+ 1) . . . (r −m+ p)]
1/2 |r,m− p⟩ . (C36)

and

⟨r,m|
(
R̂+

)p (
R̂−

)q

|r,m⟩ = (r +m) . . . (r +m+ 1− p)

× (r −m+ 1) . . . (r −m+ p) δpq. (C37)

When considering states |r,m⟩θ, such as those used in Sec. 2.1 for the two-atom

case, it can be shown that a similar relation holds if we replace R̂± by R̂±
k in equation

(C37). That is, we write

θ ⟨r,m|
(
R̂+

k

)p (
R̂−

k

)q

|r,m⟩θ = (r +m) . . . (r +m+ 1− p)

× (r −m+ 1) . . . (r −m+ p) δpq. (C38)

When p≪ |m| ≈ r we have

θ ⟨r,m|
(
R̂+

k

)p (
R̂−

k

)q

|r,m⟩θ ≃ δpq p! (2r)
p
, (C39)
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which is the situation considered by Gross and Haroche for superradiance with r = N/2
[20]. On the other hand, whenever p≪ |m| ≲ r equation (C37) reduces to

θ ⟨r,m|
(
R̂+

k

)p (
R̂−

k

)q

|r,m⟩θ ≃ δpq
(
r2 −m2

)p
. (C40)

At thermal equilibrium when |m| ≪ N/2, calculations are complicated by the very
high degeneracy of states. However, we can simplify matters by considering the mean
values m and r (r + 1). Whenever ℏω0 ≪ kBTkin, which is the case for the 21 cm line,
these are found to be [1]

m ≃ N

4

ℏω0

kBTkin
(C41)

r (r + 1) ≃ m2 +
N

2
, (C42)

where the latter is valid for any m satisfying our assumption and kB is the Boltzmann
constant. With these relations we can now use equation (C40) to find

θ ⟨r,m|
(
R̂+

k

)p (
R̂−

k

)q

|r,m⟩θ ≃ δpq

(
N

2

)p

. (C43)

Once again following Gross and Haroche [20], we assign the result for an initial
measurement on R̂+

k to be

θ ⟨r,m| R̂+
k (0) |r,m⟩θ ≡ βeiφ (C44)

with β and φ random variables. We thus seek probability distributions P
(
β2

)
and

Q (φ) such that ∫∫
P
(
β2

)
Q (φ)β2pd

(
β2

)
dφ =

(
N

2

)p

, (C45)

with the outcome P
(
β2

)
= δ

(
β2 −N/2

)
, Q (φ) = 1/2π and β2 = N/2.

Further considerations and transformations of the MBE (with T1 = T2 → ∞ in

equations C28-C29) reveal that
(
µn′−

)2
+M+M− is a conserved quantity over time.

This motivates the definition of classical versions for the pseudo-spin operators as [20]

R3 (τ) =

∣∣N eq
−
∣∣

2
cos [θ (τ)] (C46)

R+
k (τ) =

∣∣N eq
−
∣∣

2
sin [θ (τ)] eiφ. (C47)
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Setting the initial Bloch angle to θ (0) = π− ϵ, with ϵ≪ 1, we find from equations
(C44) and (C47) that ϵ = 2β/

∣∣N eq
−
∣∣ and
θ0 ≡

√
ϵ2

=

√
2N∣∣N eq
−
∣∣ (C48)

for the initial “rising” angle. From equations (C34) and (C47)-(C48), the initial
magnetization becomes

M+ (z, 0) =
1

2
neq− µθ0. (C49)

C.2 Linear regime solutions

In the linear regime when I ≪ Isat, the magnetic field and the polarization are small
and we expect ∂n−/∂τ ≈ 0, implying that n− = neq− is constant. Equations (C29)-
(C30) then reduce to a simple system of linear differential equations. These equations
can be solved using Laplace transforms, with the z ↔ u and τ ↔ s correspondences,
leading to

B+
1 (u, s) = B0

s+ 1/T2
us (s+ 1/T2 + 1/uLTR)

(C50)

when the system is subjected to an incident magnetic field of amplitude B0 ≡
B+ (z = 0, τ) and

B+
2 (u, s) = i

neq− µ0ω0µθ0

4c

1

u2 (s+ 1/T2 + 1/uLTR)
(C51)

when responding to initial internal magnetization fluctuations M+ (z, 0) = neq− µθ0/2.
These two solutions are uncorrelated since θ0 is a random process.

Effecting a first inverse Laplace transform to recover the retarded time τ and then
a second to recover z, using

L−1

{
e−a/u

un

}
=

(z
a

)n−1
2

Jn−1

(
2
√
az

)
, (C52)

with Jp (x) the Bessel function of the first kind and order p [36], we find

B+
1 (z, τ) = B0

{
e−αz/2 +

α

2
e−τ/T2

[
e−αz/2 ⋆ J0

(
2

√
zτ

LTR

)]}
(C53)

B+
2 (z, τ) = −i ℏθ0

2µTR
e−τ/T2

z

L

√
LTR
zτ

J1

(
2

√
zτ

LTR

)
(C54)
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with α and TR defined in equations (13)-(14). In equation (C53) ‘⋆’ stands for a spatial
convolution.

To determine the evolution time-scale of the system, Ttr, when subjected to an
incident field, we expand the Bessel function for zτ ≪ LTR in equation (C53) to
approximate

B+
1 (z, τ) ≈ B0

{
e−αz/2 +

α

2

[
e−αz/2 ⋆ e−τ/T2e−zτ/LTR

]}
(C55)

and we find

Ttr ≈ T2

(
1 +

zT2
LTR

)−1

. (C56)

That is, Ttr ≃ T2 for T2 ≪ TR and Ttr ≃ TR for T2 ≫ TR at z = L.
When responding to initial internal fluctuations, a similar process yields

B+
2 (z, τ) ≈ −i ℏθ0

2µTR

z

L
e−τ/T2e−zτ/2LTR (C57)

when zτ ≪ LTR in equation (C54). We thus have

Ttr ≈ T2

(
1 +

zT2
2LTR

)−1

(C58)

with Ttr ≃ T2 for T2 ≪ TR and Ttr ≃ 2TR for T2 ≫ TR at z = L.

C.3 Non-coherent radiation intensity

The non-coherent radiation intensity used for normalization in Figure 7 and the related
discussion is defined with Nb atoms in the excited state [6, 7]

Inc = Nb
ℏω0Γ

A

ϕD
8π/3

=
nb∣∣neq− ∣∣ ℏω0

ATR
, (C59)

where ϕD = λ2/A is the diffraction solid-angle at the end of our (cylindrical) system.
We also note that equation (C59) can be transformed such that

Inc = Bν0
(Tkin)

ϕD
2TR

, (C60)

where Bν0
(Tkin) is the Planck function at frequency ν0 = ω0/2π and temperature

Tkin. The non-coherent intensity is therefore that of a blackbody into a solid angle ϕD
and spectral bandwidth (2TR)

−1
(see equation C58).
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Appendix D Collision cross-section

We consider a two-atom system initially in the state

|ψ0⟩ = |P,∆p⟩ |bb⟩ |0⟩ , (D61)

where P = p1 + p2 and ∆p = (p2 − p1) /2 with p1 and p2 the linear momenta of
the first and second atoms, respectively, and the last state |0⟩ stands for the vacuum
radiation field. We will assume that the two atoms are at resonance, i.e., ∆p = 0
initially. We rewrite the interaction term of the Hamiltonian in equation (A2) as follows

V̂ = −i
∑
q

1

2
ℏΩq

2∑
j=1

[
R̂+

j T̂q (ℏkq) âq − R̂−
j T̂q

†
(ℏkq) â

†
q

]
(D62)

with T̂q (ℏkq) = eikq·r̂ the linear momentum translation operator [37].
Using a first-order perturbation expansion, it can be shown that the state of the

system after the emission of a first photon is composed of a superposition of states of
the form

|ψ+⟩ =
1√
2
(|ℏkr/2⟩ |ab⟩+ |−ℏkr/2⟩ |ba⟩) |P− ℏkr⟩ |1r⟩ (D63)

that differ only in the radiation mode of the emitted photon. In equation (D63) the
radiation state |1r⟩ implies that one photon occupies mode r and all other modes are
empty. After a short time the photon leaves the system and |1r⟩ is replaced by |0⟩.

We can express this state using the position basis |R,∆r⟩, where R = (r1 + r2) /2
and ∆r = r2 − r1 are conjugate to P and ∆p, respectively, to get

|ψ+⟩ ∝
∫
d3Rei(P/ℏ−kr)·R |R⟩

∫
d3∆r |∆r⟩

× 1√
2

(
eikr·∆r/2 |ab⟩+ e−ikr·∆r/2 |ba⟩

)
|0⟩ . (D64)

We recognize on the last line the internal state |1, 0⟩θ of equation (2) when kr makes
an angle θ with ∆r. The state orthogonal to |ψ+⟩, and related to |0, 0⟩θ in equation
(4), is

|ψ−⟩ ∝
∫
d3Rei(P/ℏ−kr)·R |R⟩

∫
d3∆r |∆r⟩

× 1√
2

(
eikr·∆r/2 |ab⟩ − e−ikr·∆r/2 |ba⟩

)
|0⟩ . (D65)

As discussed in Sec. 2.3.2, after the transient regime, when the gas has become
dark, every system is in a dark state such as the one given in equation (D65). Let us
then consider two such systems A and B entering into a collision. We choose a reference
frame at rest with the center-of-mass for the two systems such that RA = −RB =
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−R0. For the 21 cm line of the hydrogen atom we can assume that |PA| , |PB | ≫ ℏkr
irrespective of the radiation mode. To lighten the notation we omit the spatial states
|RA⟩, |∆rA⟩, etc., and the vacuum |0⟩ state to focus on the internal states, such that
we can write for the colliding system

|Ψ⟩ = |ψ−⟩A |ψ−⟩B
∝ ei(PB−PA)·R0/ℏ (|ab⟩A − |ba⟩A) (|ab⟩B − |ba⟩B)
∝ ei(PB−PA)·R0/ℏ (|ab⟩A |ab⟩B + |ba⟩A |ba⟩B − |ab⟩A |ba⟩B − |ba⟩A |ab⟩B) . (D66)

For high relative speed between colliding atoms, i.e., when |PB −PA|2 /2mr ≫
ℏω0 (mr is the reduced mass), it is expected that the scattering amplitude will be
independent of their internal states (see section D.1 below). If two atoms enter into a
collision, say the first atoms of both pairs, then under the Born approximation each
term will bring a scattering amplitude of the type [38, 39]

f (kin,kout) = − mr

2πℏ2

∫
d3r′e−ikout·r′V1 (r

′) eikin·r′ (D67)

with kin = (PB −PA) /ℏ, kout the scattered wave vector and V1 (r) the component
of the atomic interaction potential independent of the internal states. It therefore fol-
lows from equation (D66) that under these circumstances the collision cross-section
σ (kin,kout) = 0 since it consists of the square of the sum of the four correspond-
ing scattering amplitudes3. We note that the vanishing of the scattering amplitude
rests entirely on the (anti-symmetric) form of the entangled states, as in equation
(D65). This outcome would therefore hold for any other types of high-energy scattering
processes (e.g., involving cosmic rays, etc.).

Although such calculations need to be generalized, we find that at high relative
speed two darkened entangled systems are likely to pass through each other, unim-
peded, during a collision. They would not feel the presence of each other even though
individual atoms may collide. This is due to the destructive interference resulting from
the entanglement within each of the systems.

Finally, it is interesting to note that in cases where the states are totally symmetric
the cross-section scales as N2σ0, where N is the number of atoms and σ0 the one-atom
cross-section.

D.1 Independence on internal states for high energy scattering

In the center-of-mass of the system, the Hamiltonian for the scattering of two hydrogen
atoms in the electronic ground state can be expressed as [40]

Ĥ =
p̂2

2mr
+ V̂1 (r) + Ĥhf (D68)

3An exchange term should be added to equation (D66) to account for the symmetrization process stem-
ming from the indistinguishability of the two identical atoms during the collision [38, 39]. For simplicity,
we only consider the direct term since the same result (i.e., the vanishing of the corresponding scattering
amplitude) is obtained for the exchange term.
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with r and p the relative position and (half of) the relative linear momentum between
the two atoms, respectively. The hyperfine Hamiltonian results from the intra-atomic
interactions due to the Fermi contact term [38], which dominates over any other
interatomic spin coupling term, and is thus given by

Ĥhf = A
(
Î1 · Ŝ1 + Î2 · Ŝ2

)
, (D69)

where Îj and Ŝj are the proton and electron spins for atom j, andA = ω0/ℏ a constant.

In equation (D68) (and D67), the interatomic potential V̂1 (r) is independent of the
internal states (and spins).

From a classical standpoint, the turning point rmin for a collision at energy Ekin =
p2/2mr will be approximately determined by V1 (rmin) ∼ Ekin [41]. In cases such as
the bullet cluster [27, 32], with collision speeds ∼ 103 km s−1, we find that Ekin ∼
109ℏω0 and therefore V1 (rmin) ≫ ℏω0, or equivalently V1 (rmin) ≫ Hhf . It follows that
the hyperfine Hamiltonian is completely negligible in the region where the scattering
occurs.

Since the internal states are determined by the atomic spins, we observe a decou-
pling between the internal and external degrees of freedom on account of the large
separation in the corresponding energy scales. In other words, the scattering ampli-
tude is largely independent of the atoms’ internal state and can be evaluated with
equation (D67) (including the hyperfine interaction brings a correction term of the
order of ℏω0/Ekin).
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