
MNRAS 000, 1–5 (0000) Preprint 17 September 2024 Compiled using MNRAS LATEX style file v3.0

Superradiance and Periodic 6.7 GHz Methanol Flaring in
G22.356+0.066

T. Rashidi,1 V. Anari,1 A. Bartkiewicz,2 P. Wolak,2 M. Szymczak,2 F. Rajabi,1★
1Department of Physics and Astronomy, McMaster University, 1280 Main Street West Hamilton, Ontario, L8S 4M1, Canada
2Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland

ABSTRACT

We present a comprehensive analysis of the periodic flares observed in the 6.7 GHz
methanol transition in G22.356+0.066, utilizing the Maxwell-Bloch equations (MBEs) as a
framework to model these phenomena. By solving the one-dimensional MBEs, we describe
the behavior of both the quasi-steady-state maser and transient superradiance regimes. Our
findings indicate that the observed periodic flares, with varying timescales across different
velocities, are consistent with the characteristics of Dicke’s superradiance, triggered by a com-
mon radiative pump in regions of varying inverted column densities. This work provides new
insights into the physical processes governing variability in maser-hosting regions and under-
scores the significance of superradiance as a powerful radiation mechanism in astrophysical
environments.
Key words: masers – radiation mechanisms: non-thermal – ISM: individual objects:
G22.356+0.066

1 INTRODUCTION

G22.356+0.066 (also known as G22.357+0.066 and IRAS18290-
0924) is a high-mass young stellar object (HMYSO) located at a
distance of 4.3+3.8

−1.3 kpc (Reid et al. 2019). It is part of the Giant
Molecular Complex G23.3-0.3, which comprises several HII re-
gions and supernova remnants, serving as star-forming sites (Zhang
et al. 2023).

HMYSOs are known to host variable methanol masers (Goed-
hart et al. 2004; van der Walt et al. 2009; Szymczak et al. 2012).
In 2011, Szymczak et al. (2011) reported the discovery of periodic
flares of the 6.7 GHz methanol in G22.356+0.066 using the Toruń
32-m radio telescope. The flares appeared with a period of approx-
imately 178 days (178.2 ± 1.9), with a rise-to-decay ratio of 0.34
(Szymczak et al. 2015).

The maser activity in G22.356+0.066 is not limited to 6.7 GHz
methanol and is also reported in some velocity components of the
12.2 GHz methanol (Breen et al. 2016), 22 GHz water (Breen &
Ellingsen 2011), and 1665 MHz OH (Beuther et al. 2019) transi-
tions. However, the flux density in these lines is either faint or the
available data are too sparse, with no reports of periodicity.

A number of scenarios have been proposed to explain peri-
odic flaring activities in maser-hosting regions, most of which are
based on the maser regime of radiation. Some of these scenarios are
based on the disturbance of the masing region by shock waves or
clumps. Others are based on variations in the pump photons and/or
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the background radiation field. However, when the flux densities
return to nearly the same quiescent level after flaring, this indicates
that the masing region was not significantly affected by whatever
mechanism caused the flare. Therefore, the disturbance scenarios
involving shock waves or clumps are dismissed in such incidents
(van der Walt et al. 2009) and only mechanisms involving radiative
coupling with the masing region are considered viable. Examples of
such mechanisms include the colliding wind binary (van der Walt
et al. 2009; van der Walt 2011), cyclic accretion onto a young bi-
nary system (Araya et al. 2010), and stellar pulsation (Inayoshi et al.
2013).

More recently, a new regime of radiation based on Dicke’s su-
perradiance has been introduced in maser-hosting regions to model
periodic (Rajabi et al. 2023; Houde et al. 2024) and non-periodic
(Rajabi & Houde 2016, 2017; Rajabi et al. 2019) flaring events.
In essence, superradiance is a transient, highly efficient radiation
mechanism that manifests itself through sharp rises in flux densities,
with burst durations scaling with some fundamental properties of
the transition, such as the wavelength of the transition, and physical
parameters characterizing the source, such as the inverted column
density. In Rajabi et al. (2023), superradiance provides a natural ex-
planation for periodic flaring in G9.62+0.20E at four different tran-
sitions (6.7 GHz and 12.2 GHz methanol lines, as well as OH 1665
MHz and 1667 MHz) exhibiting different timescales in response to
a common radiative pump. In Szymczak et al. (2011), it is noted
that the profiles of periodic methanol flares in G9.62+0.20E and
G22.356+0.066 are very similar. This suggests that the same under-
lying physical mechanism could be responsible for the periodicity
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in both sources. It is, therefore, a natural step to extend the super-
radiance analysis performed on G9.62+0.20E to G22.356+0.066.
However, in G22.356+0.066, the periodicity is only reported in the
6.7 GHz methanol transition line, which will therefore be the focus
of this paper.

This paper is structured as follows: In Sec. 2, we briefly dis-
cuss the two distinct regimes of radiation, namely the maser action
and superradiance. Sec. 3 provides a detailed discussion of the
modelling and analysis. In Sec. 4, we evaluate the validity of the
superradiance model presented and conclude the paper. The MBEs
used in our analysis are detailed in Appendix A. Finally, the auto-
correlation analysis developed to quantify and identify variations
in the timescales of flares across different velocity components is
summarized in Appendix B.

2 THE MASER AND SUPERRADIANCE REGIMES

As discussed extensively in Rajabi & Houde (2020) and Rajabi et al.
(2023), the Maxwell-Bloch equations (MBEs) (see Appendix A)
provide a comprehensive description of a compound system com-
prising an extended group of 𝑁 two-level molecules (or atoms) and a
radiation field. This set of equations tracks the underlying difference
in population between the energy levels, the induced polarization
in the system, and the evolution of the radiation field (MacGillivray
& Feld 1976; Gross & Haroche 1982; Benedict et al. 1996). A
detailed study of the MBEs for a gas with an initial population in-
version reveals two complementary regimes: the quasi-steady-state
maser regime, where the stimulated emission process dominates,
and the fast transient superradiance regime (Feld & MacGillivray
1980; Rajabi & Houde 2020; Rajabi et al. 2023; Houde et al. 2024).

In the quasi-steady-state maser regime, temporal variations in
the population inversion, polarization, and radiation field occur on
an evolution timescale (𝑇e) longer than the noncoherent decaying
and dephasing timescales (𝑇1 and 𝑇2) that characterize the system’s
response. Consequently, a maser system in this regime can quickly
adjust to the excitation signal. For example, a saturated maser’s
response to an inversion pump closely tracks the profile of the
pump itself (Rajabi et al. 2023).

In the fast transient superradiance regime, the system responds
differently to variations in the pump signal whenever 𝑇e ≈ 𝑇R <

𝑇1, 𝑇2, with𝑇R being the characteristic superradiance timescale. The
transient intensity triggered by the excitation is thus a characteristic
response of the system and is largely independent of the shape of
the input signal, whether it is a pump or a trigger (Rajabi et al.
2023). Another distinctive aspect of the superradiance is that its
peak intensity scales with the square of the number of molecules
involved (𝑁2), in contrast to the linear scaling (𝑁) observed in a
saturated maser. The characteristics of the transient response, such
as its duration, profile, and strength, are influenced by the physical
conditions of the environment, including the relative significance of
𝑇1 and 𝑇2 compared to 𝑇R, as well as the inverted column density.
Additionally, the parameters that define the radiative transition, such
as the wavelength and the Einstein spontaneous emission coefficient,
play a crucial role. More precisely, the characteristic superradiance
timescale is defined as:

𝑇R =
8𝜋

3𝑛𝐿𝜆2 𝜏sp, (1)

where 𝜏sp = Γ−1 is the spontaneous emission timescale of the
transition, 𝜆 is the wavelength of radiation, 𝑛 is the population

inversion density, and 𝐿 is the length of the system (𝑛𝐿 is the
inverted column density) 1. It should be noted that while 𝑇R can be
interpreted simply in single superradiance burst events, it is more
complex to define in the case of periodic or multi-flaring events.
We thus define an initial 𝑇R,0 before the onset of the first modelled
flare, using the initial inverted column density to establish a relevant
timescale for interpreting the MBEs solutions (see Sec. 5 of Rajabi
et al. 2023).

As we will show in Sec. 3.2, the observational data of the pe-
riodic flaring in G22.356+0.066 support the superradiance model.
We observe that the speed at which a superradiance system responds
to an excitation varies among different velocity components. This
is quantified through an autocorrelation analysis (see Appendix B),
which reveals the presence of different timescales at various veloc-
ities. This is a phenomenon that can be readily explained within
the context of superradiance (Rajabi & Houde 2017; Rajabi et al.
2023).

More precisely, this implies that, when a medium is pumped,
different velocity components of the 6.7 GHz methanol transition
might couple differently to the same pumping source resulting in an
inversion density 𝑛 that can vary throughout the medium.

3 ANALYSIS AND MODEL

3.1 Data

The data sets used in our analysis were obtained with the Toruń
32-m telescope between June 2009 and April 2014 at irregular
intervals; see Szymczak et al. (2015) for more details. The obser-
vations revealed cyclic variations in flux density for features within
the velocity range of 78.95 km s−1 to 83.50 km s−1, which are the
focus of this investigation. The periodic features in G22.356+0.066
consist of a non-zero quiescent level, upon which the periodic flares
are superimposed. In Appendix B, we selected only those features
with a nearly constant quiescent level for modelling.

3.2 Model and results

To model the flares in G22.356+0.066, similar to Rajabi et al. (2019)
and Rajabi et al. (2023), we solve the MBEs using the fourth-order
Runge-Kutta method for a one-dimensional sample with an inverted
column density 𝑛𝐿 (Mathews 2017). To simulate periodic flaring,
we employ a periodic pump:

Λ𝑁 (𝑧, 𝜏) = Λ0 +
∞∑︁

𝑚=0

Λ1,𝑚

cosh2 [
(𝜏 − 𝜏0 − 𝑚𝜏1) /𝑇𝑝

] . (2)

This pump propagates along the symmetry axis (𝑧-axis) of the sam-
ple. It consists of a constant term Λ0, modelling quiescent flux
levels, and a sequence of pump pulses with amplitudes Λ1,𝑚, which
can vary from pulse to pulse. The period of the pulses, 𝜏1, is set to
178.5 days, closely matching the reported period of the flares at the
source. The duration of the pump pulses is determined by 𝑇𝑝 , and
a time delay 𝜏0 is chosen to fit superradiance to the data.

The results of our simulations for four selected velocities are
presented in Figures 1–4. The black dots in the top panels represent
the observational data, while the solid blue curves correspond to
the flux density obtained by solving the MBEs. The bottom panels

1 Note that we are focusing on radiating systems with a cylindrical geometry.

MNRAS 000, 1–5 (0000)



3

0

2

4

F
lu

x
D

en
si

ty
(J

y)

G22.356+0.066 - 6.7 GHz CH3OH
vlsr = 79.30 km s−1

5600 5800 6000 6200
JD - 2450000

−2

0

2

4

n
(1

0−
12

cm
−

3
)

0

2

4

Λ
N

(1
0−

18
cm
−

3
s−

1
)

Figure 1. Top: Periodic flares of the 6.7 GHz methanol transition line in
G22.356+0.066 for 𝑣lsr = 79.30 km s−1 (black dots) and the flux density
yielded from MBEs (solid blue curve) are plotted as a function of time
in Julian Day-2450000. Bottom: The selected periodic pump with Λ0 =

3.97 × 10−19 cm−3 s−1 and Λ𝑖 = 4.45 × 10−18 cm−3 s−1, along with pump
amplitudes 𝑎𝑚 of 0.84, 0.73, 1.10, 0.91, and 0.76 (green), respectively, and
the population inversion density (𝑛) response to the pump (vermilion). The
model yields an initial inverted column density of 𝑛0𝐿 = 5.28 × 103 cm−2,
corresponding to 𝑇R,0 = 5.03 × 104 s.

display the population inversion (in vermilion) and the periodic
pump (in green), with the horizontal axis showing time in Julian
date.

In these figures, after each pump pulse, the population inversion
increases, followed by a decay, with the peaks of the population
inversion occurring with a delay relative to the peaks of the inversion
pump. It is also seen that the peaks of the inversion pump are
narrower than those of the population inversion.

To fit the superradiance models to the observed data, we varied
Λ0 and Λ1,𝑚 in equation (2). We kept the parameters 𝑇1 = 1.77 ×
107 s (≃ 205 days),𝑇2 = 1.02×106 s (≃ 11.8 days), 𝜏1 = 1.52×107 s
(≃ 178.5 days), and 𝑇𝑝 = 3.89 × 105 s (≃ 4.5 days) constant across
all velocities. To determine Λ1,𝑚, we used a constant Λ𝑖 for each
velocity and introduced a varying amplitude 0 < 𝑎𝑚 ≤ 1 for each
flare, defining Λ1,𝑚 = 𝑎𝑚Λ𝑖 .

Due to the non-linear nature of the MBEs and the fact that
the response of the superradiant system does not precisely follow
the pump (see Sec. 2), the choice of parameters Λ0, Λ𝑖 , and 𝑎𝑚 is
not unique. Specific values for these parameters are provided in the
figure captions. For each velocity component, the initial inversion
density 𝑛0 is calculated as 𝑛0 = Λ0𝑇1, which in all cases exceeds
the threshold needed for superradiance and the ensuing saturated
maser regime (Rajabi & Houde 2020; Rajabi et al. 2023). Thus each
model yields an initial inverted column density 𝑛0𝐿, corresponding
to an initial characteristic superradiance timescale 𝑇R,0, as defined
by equation (1). This timescale is determined before the onset of the
first superradiance burst, when only very weak levels of radiation are
present in the simulations. It is important to note that 𝑇R,0 ≪ 𝑇1, 𝑇2
in all cases, suggesting the potential for transient superradiance to
follow.

As discussed in Appendix B, we used an autocorrelation anal-
ysis to compare the flare duration for different velocities. The width
of the central peak in the autocorrelation of a periodic function
is a measure of the average widths of the flares. These widths,
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Figure 2. Top: Same as Figure 1, but for 𝑣lsr = 80.35 km s−1. Bottom:
Same as Figure 1, with Λ0 = 4.53 × 10−19 cm−3 s−1 and Λ𝑖 = 2.93 ×
10−18 cm−3 s−1, and pump amplitudes 𝑎𝑚 of 0.84, 0.81, 0.97, 1.00, and
0.79, respectively. The model yields an initial inverted column density of
𝑛0𝐿 = 6.02 × 103 cm−2, corresponding to 𝑇R,0 = 4.41 × 104 s.
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Figure 3. Top: Same as Figure 1, but for 𝑣lsr = 81.32 km s−1. Bottom:
Same as Figure 1, with Λ0 = 3.51 × 10−19 cm−3 s−1 and Λ𝑖 = 3.62 ×
10−18 cm−3 s−1, and pump amplitudes 𝑎𝑚 of 0.97, 0.92, 0.96, 0.95, and
0.82, respectively. The model yields 𝑛0𝐿 = 4.66×103 cm−2, corresponding
to 𝑇R,0 = 5.69 × 104 s.

FWHMA, are compared in Figure 5, where the vertical axis repre-
sents the FWHMA in days and the horizontal axis shows velocity
in km s−1.

4 DISCUSSION

Our analysis demonstrates that our model based on the MBEs ef-
fectively captures and reproduces the duration of flare profiles of
the 6.7 GHz methanol maser at four distinct velocity components
in G22.356+0.066. A key feature of the model is its ability to use
a common pump across different velocity components, with only
the pump amplitudes being modified. Specifically, while the pump-
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Figure 4. Top: Same as Figure 1, but for 𝑣lsr = 81.49 km s−1. Bottom:
Same as Figure 1, with Λ0 = 3.01 × 10−19 cm−3 s−1 and Λ𝑖 = 4.62 ×
10−18 cm−3 s−1, and pump amplitudes 𝑎𝑚 of 1.00, 0.94, 0.98, 0.98, and
0.80, respectively. The model yields 𝑛0𝐿 = 4.00×103 cm−2, corresponding
to 𝑇R,0 = 6.63 × 104 s.
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Figure 5. Full width at half maximum (FWHM) of the central peak of
the autocorrelation curve for four flaring features in G22.356+0.066. The
vertical axis shows the FWHMA in days, and the horizontal axis shows
the velocity of the feature in km s−1. The velocity corresponding to each
FWHMA is explicitly labeled on the graph.

related timescales 𝜏1 and 𝑇𝑝 were held constant, the pump param-
eters Λ0 and Λ1,𝑚 were adjusted to fit the model to the observed
data. These adjustments in pump amplitude successfully reproduced
the varying flare durations, which show a notable increase from
𝑣lsr = 79.30 km s−1 to 𝑣lsr = 81.49 km s−1, as quantified by au-
tocorrelation analysis and illustrated in Figure 5. The variations in
pump amplitude can be interpreted as differences in the coupling
of the pump to the systems responsible for the flares, potentially
due to factors such as orientation, sample geometry, and other local
conditions (Rajabi et al. 2023).

It is commonly understood that 6.7 GHz methanol masers
are driven by infrared (IR) radiation through radiative pumping
(Sobolev et al. 1997). A nearby variable IR source within the flar-

ing region of G22.356+0.066 was cataloged by Lucas et al. (2008).
Szymczak et al. (2015) mapped the 6.7 GHz methanol flares along-
side this IR source, highlighting its location a few hundred AU east
of the periodic flaring region. Although IR light curves are not avail-
able, the superradiance flares are not sensitive to the exact profile of
the pumps used (e.g., symmetric or asymmetric), and similar results
can be obtained with different pump profiles while maintaining a
constant flare duration (Houde et al. 2024). The key point is that,
within such a small physical proximity of the flares to the pump,
the variable flare durations cannot be explained by traditional maser
theory, where maser flares are expected to closely mimic changes
in the pump for saturated masers. A common pump cannot account
for the presence of substantial differences (a variation of more than
50%) in flare timescale. However, superradiance highlights a tran-
sient regime of radiation where the flare duration, even in response
to the same pump duration, can vary depending on the physical
conditions realized at the source.

The maps of 6.7 GHz methanol flares in G22.356+0.066 pre-
sented by Bartkiewicz et al. (2009) and Szymczak et al. (2015)
indicate that periodic flaring sources at different velocities are con-
centrated within a compact region of about 80 AU. Consequently,
to fit the MBEs model to the light curves of various velocity chan-
nels, the dephasing and relaxation timescales, 𝑇1 and 𝑇2, were kept
constant, implying a similar environment across the source.

Remarkably, the timescales 𝑇1 ≃ 205 days and 𝑇2 ≃ 11.8
days, derived here closely align with those reported by Rajabi et al.
(2023) for modelling the periodic flares in G9.62+0.20E, further
suggesting comparable environmental conditions between the two
sources. Finally, G22.356+0.066 is the second example of periodic
flaring, alongside G9.62+0.20E, where we successfully model flares
of different durations originating from a close physical vicinity,
using the MBE framework and the superradiance mechanism.

APPENDIX A: MAXWELL-BLOCH EQUATIONS

The models are derived from the MBEs (Gross & Haroche 1982;
Benedict et al. 1996; Rajabi et al. 2023):

𝜕𝑛′

𝜕𝜏
=

𝑖

ℏ

(
𝑃+

0𝐸
+
0 − 𝑃−

0 𝐸
−
0

)
− 𝑛′

𝑇1
+ Λ𝑁 (A1)

𝜕𝑃+
0

𝜕𝜏
=

2𝑖𝑑2

ℏ
𝐸−

0 𝑛′ −
𝑃+

0
𝑇2

+ Λ𝑃 (A2)

𝜕𝐸+
0

𝜕𝑧
=

𝑖𝜔0
2𝜖0𝑐

𝑃−
0 , (A3)

where the slow-varying-envelope and rotating wave approximations
are applied. Here, 𝜏 ≡ 𝑡 − 𝑧/𝑐 represents the retarded time. The
variable 𝑛′ denotes half of the inverted population density (𝑛 = 2𝑛′),
while 𝑃+

0 and 𝐸+
0 are the amplitudes of the polarization and electric

field, respectively.
To account for the inversion pump, the term Λ𝑁 , as defined

in equation (2), is included in equation (A1). Internal fluctuations
in 𝑛′ and 𝑃+

0 are introduced to initiate the temporal evolution of
the system. To represent these internal fluctuations in polarization,
a phenomenological polarization pump term Λ𝑃 is added to equa-
tion (A2). Non-coherent relaxation and polarization dephasing are
modelled by the decay terms −𝑛′/𝑇1 and −𝑃+

0/𝑇2, respectively. The
polarization and electric field vectors are:

MNRAS 000, 1–5 (0000)
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Figure B1. Removal of the non-zero quiescent level from the SR fit for
the 𝑣 = 80.35 km s−1 velocity channel in G22.356+0.066. The vertical
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Julian Day − 2450000. The solid blue curve illustrates the fit produced by
the MBEs. The dashed orange line shows a third-order polynomial fit to
the quiescent level. The solid vermilion curve displays the adjusted MBEs
fit, which is obtained by subtracting the third-order polynomial fit from the
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𝑷± (𝜏, 𝑧) = 𝑃±
0 (𝜏, 𝑧)𝑒

±𝑖𝜔0𝜏𝝐𝑑 (A4)

𝑬± (𝜏, 𝑧) = 𝐸±
0 (𝜏, 𝑧)𝑒

∓𝑖𝜔0𝜏𝝐𝑑 , (A5)

where 𝝐𝑑 = 𝒅/𝑑 is the unit vector for the dipole of the molecular
transition, 𝜔0 = 𝑐𝑘 is the transition angular frequency, and 𝑑 = |𝒅 |
is the transition electric dipole moment. The superscripts + and
− denote transitions between the lower and upper levels and vice
versa, respectively.

APPENDIX B: AUTOCORRELATION

To quantitatively assess the differences in flare durations across fea-
tures at different velocities, we perform an autocorrelation analysis
of the flares. The width of the central peak in the autocorrelation
function provides a measure of the mean flare duration. By compar-
ing the full widths at half maximum (FWHMA) of the autocorrela-
tion functions for different velocities, we can demonstrate that the
flaring features exhibit varying durations.

To obtain smooth autocorrelation curves, we use fits to the data
yielded by MBEs (solid blue curves in Figs. 1 to 4), as the data are
limited and unevenly spaced. We first subtract a third-order polyno-
mial function, which fits the quiescent maser level between flares,
from our models, as shown in Fig. B1. We then compute the normal-
ized autocorrelation using Python’s scipy.signal.correlate function
in full mode. The resulting autocorrelation is depicted in Fig. B2,
where the vertical axis shows the normalized autocorrelation, and
the horizontal axis indicates lags in days. The vertical distance
between consecutive peaks is 178.5 days, corresponding to the as-
sumed flare period in our model.

The FWHM of the central peak for each autocorrelation curve
is measured and reported in Fig. 5.
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