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Lay Abstract

Modern scientific and engineering research relies heavily on custom software for nu-

merical analysis, yet the development of this class of software is often ad hoc for

small projects. Domain experts and partnering developers frequently lack shared

expertise. While existing solutions often assume large teams, this thesis proposes a

practical framework enabling small domain expert-developer teams to build robust,

sustainable research software.

Supported by a GitHub template, our approach centers on structured require-

ments elicitation, where developers guide domain experts through key questions about

theory, use cases, computational scale, and testing. Answers directly shape design,

verification, and documentation. Key recommendations include: (i) theory documen-

tation to ease development, (ii) early Continuous Integration adoption, (iii) low-level

design via code-embedded comments, and (iv) performance-aware modularization.

This framework elevates small research software projects from disposable tools to

sustainable assets. The thesis reviews prior work, analyzes case studies, details our

practices, and proposes experimental evaluations.
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Abstract

Modern scientific and engineering research increasingly relies on software for data

processing, analysis, and simulation. However, research software is often developed

ad hoc, with limited regard for sustainability or reproducibility, as researchers (do-

main experts) untrained in software engineering practices and developers new to the

domain theories must both tread unfamiliar waters. While existing solutions (e.g.,

documentation template, software life-cycle, CI/CD, formal methods) aim to bridge

this gap, they often assume large, specialized teams, leaving small research groups

underserved.

Building upon our experience from research software projects, this thesis pro-

poses a practical framework to empower small teams of domain experts and develop-

ers—particularly those transitioning from scientific or engineering backgrounds—to

collaboratively build robust, sustainable research software. The framework addresses

common pain points, such as evolving requirements and researchers’ limited techni-

cal familiarity, while fostering practices that benefit both immediate project needs

and long-term maintainability. Central to the approach is structured requirements

elicitation, where developers guide domain experts through targeted questions about

theories, typical uses cases, computational problem scale and possible tests. The an-

swers directly inform modular design, verification, and documentation, all supported
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by our GitHub template for a seamless development process.

Key recommended practices include: (i) theory should be documented with struc-

tures and notations that ease its transition into code, (ii) early introduction of contin-

uous integration, (iii) low-level design documentation via code-embedded comments

(e.g. docstrings), and (iv) performance-aware modularization suitable for the problem

scale.

By prioritizing clarity, flexibility, and developer-domain expert collaboration, this

work aims to elevate research software from disposable tools to sustainable, peer-

review-ready assets. The thesis reviews past studies on research software, examines

our own software projects, details our methodology, and proposes a preliminary ex-

periment design that would serve as a means to the proposed process and techniques.
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Chapter 1

Introduction

In today’s world, scientific and engineering research rarely stays on just pen and

paper. Software is often a crucial part of the research process. It is often used to

collect, process, analyze and visualize large amounts of data, or to simulate physical

systems that are otherwise difficult study in real life [5].

Due to the nature of research, it is not uncommon for the required software to

not exist in the first place; the software will need to be developed or adapted to suit

the specific needs of the research. This either pushes the researchers themselves into

the unfamiliar territory of software development, or requires collaborations between

software developers and researchers [1] [6]. Going forward, we will also refer to the

researchers as domain experts.

While some may view the software as just a temporary tool to get the research

done and to get papers published, we disagree. Scholarly research requires that the

research work can withstand the scrutiny of peer review and reproducibility; therefore,

it is only logical to extend this expectation to the research software as well.

This thesis aims to provide a guideline for research software development, with a
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focus on the developers’ point of view to efficiently collaborate with domain experts

and produce high quality, reproducible software.

1.1 Purpose and Motivation

The main driving force behind this thesis is to prompt well-documented, well-executed

software development in the field of scientific research. The hope is to move research

software away from being a one-off tool for a single paper/project, to a sustainable

product that can be reused, extended, and maintained by others in the future, which

would benefit not just the original research team, but the research community as a

whole.

As we will discuss in Literature review (1.4) and Background (2), there are a

number of challenges or pain points that lie between us and our vision. These include

technical challenges, such as researcher not familiar with tools like Git or concepts

like testing and continuous integration, as well as broader issues not strictly related

to programming itself, such as researchers’ time constraints and certain information

not being available early when drawing up initial software requirements.

Our proposed practices, in the form of a development framework (a GitHub tem-

plate as an example), aim to help developers who look to participate in a research

project navigate around these challenges. Key strategies include gathering as much

gathering certain information immediately relevant to the development early on, al-

lowing for flexibility in requirements and design to accommodate the evolving nature

of research, etc. Since there are currently existing practices that offer strong theory-

to-code traceability (as discussed in Section 1.4.2), we strive to maintain the same

level of traceability but with less overhead and a more approachable process. We hope

2
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that by following this guideline, the developers can produce high quality software that

can be easily understood and maintained by others, and that the researchers/domain

experts can focus on their research without having to worry about the software side.

1.2 Intended Audience

The work in thesis is made for developers of research software. More specifically, those

who did not come from a computer science or software engineering background, but

are looking to acquire the relevant knowledge. This can be the researchers themselves

on an ad-hoc basis. But additionally, we want to harness the talent of a specific

group of people: those who started from an engineering or scientific background, but

are looking to transition into software development, either through graduate studies,

switching majors or even after years of working in the industry. We believe their

ability to speak the language of both the domain experts and the software developers

can be a great asset in producing high quality research software.

While the direct goal of this thesis is to increase research software project pro-

ductivity, it also carries the potential bonus of aiding personal growth. Many aspects

of the discussion here, such as requirements gathering, continuous integration and

project management, are also applicable to software development in a broader con-

text, regardless of whether our audience decide to stay purely in research software

development or move to other software engineering roles.

Before diving deeper, we first need to define the roles being discussed in this thesis.

3
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1.2.1 Developers

The developers are the people who write the code, the associated documents and

tests. They are responsible for the design and implementation of the software, and

the intended audience for this work as mentioned above. They can be:

• In a one-person project, a researcher aspiring to develop high quality software,

also known as an “end-user developer” [7].

• A developer attached to the research project. This can be a student or someone

hired specifically to work on the software.

• A member of a research team who steps up to take on the software development

responsibility.

1.2.2 Domain Experts

The domain experts are the people who focus on the research itself. They are the

clients of the developers, and are the first users of the software. Other than the

one-person team scenario, we have to make the following assumptions:

• They may have limited programming experience, if any. They likely do not

know anything more sophisticated than writing simple MATLAB scripts.

• They are not familiar with software development practices, such as version

control, issue tracking, testing, or documentation.

• Other than strictly writing codes, they have little experience with software

development tools and infrastructure, such as GitHub, package and environment

managers, or Linux systems.
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• While they have a good understanding of the research problem, they may not

have a clear idea of what the software should do or look like.

• They may not have a clear idea of the software development process, such as

how long it should take, the milestones, or the resource requirements, potential

limitations or even risks.

1.3 Scope

In this thesis we define software custom-built to advance certain research as “research

software”, which may range from full-fledged computer programs to simple scripts.

This does not include off-the-shelf software used in the research process, such as Ansys

Fluent for fluid simulation, SOLIDWORKS for mechanical design, etc. Our scope

does, however, include programs, add-ons or adaptations made to work in conjunction

with such off-the-shelf software, such as a custom tool to analyze a standard output

for a specific research requirement.

This thesis provides a guideline for the developers to efficiently collaborate with do-

main experts and produce software that both stratifies the immediate research needs,

and is sustainable that future potential users can understand, adapt and maintain.

The scope of this thesis is limited to the development of research software. It does

not cover the research itself, the domain knowledge, or the research methodology.

While certain parts of this thesis may be applicable to very large scale problem

that involve a sizable research team, the focus is on small to medium size projects

(or a small slice of a larger project) where the developer is in direct contact with one

or a few domain experts. To be more specific, the immediate result from the domain

5
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experts utilizing the software built with this guideline is expected to be a single paper

or a small set of papers (with possible follow-up research and development), rather

than a large scale project that may span multiple years and involve multiple research

groups.

Aspects and best practices for software development in general are also not the

focus. They will only be discussed in the context of research software development

and with further resources provided for those who wish to explore them further.

1.4 Literature Review

In this section, we will review some of the pain points identified in other studies that

we aim to solve or avoid, and what is currently considered to be the best practices in

research software development.

1.4.1 Pain Points

There had been a number of previous studies that have tried to identify the pain

points in research software development, and the probable reasons behind those pain

points. Some of the previous studies have focused on researchers themselves devel-

oping software, while others looked at (possible) larger projects where collaborations

between domain experts and software developers are involved.

The issue that there is a widening gap of information and lack of communication

between the scientific community and general software community has been noticed

for quite some time [5]. This was the driving forcing behind a survey conducted back

in 2009 with almost 2000 participants from the scientific community [1]. This study
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and its replication in 2018 [8] focus on the first scenario where researchers themselves

develop software.

Perhaps unsurprisingly, the lack of software engineering knowledge was identified

as one of the main pain points [1] [8]. While most participants identified the impor-

tance of good software in research, and acquired some software development skills

through mostly informal means like self-study or peers, their point of view of such

“importance” likely differs from that of a professional software developer [1]. During

research, these scientists were also the primary user of the software. The priority was

to make the software work for their research. This was somewhat reflected by the

fact that the participants did not feel that software maintenance and product/project

management were that important; the main focus was on building the software itself

[1]. One other interesting result found by the 2009 research [1] was that researchers

generally concur with the value of testing, but unfortunately, also felt their lack of

knowledge for doing so.

Figure 1.1: 2009 survey result showing understanding vs. perceived importance of
software engineering concepts by researchers [1]
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This is not helped by the fact that, research software, by definition, is used to

“explore strange new worlds”. The requirements are often not clear and possibly

keep changing as the research progresses, with the lack a ground truth or “oracle” for

software testing [9].

The ever-changing research landscape can also be a contributing factor to “scope

bloat” or “feature creep” when goals and requirements continuous to expand as re-

search progresses, an issue identified by multiple papers [8][9][6].

Poor documentation was also identified as a major pain point [8]. However, be-

sides simply pointing fingers to “fix your docs” and provide maintenance, we should

recognize the likely underlying reason behind all this: the lack of proper reward, aca-

demically and psychologically. The survey participants felt that, other than them-

selves, there were few end users that would ultimately use their software and provide

enough feedback [8]. And even in the case where their software was used, they did not

feel that they are given the same level of credit or recognition as they would be for a

paper [8][10]. Since they did not have enough dedicated time to work on the software

anyway [8], it was perhaps not surprising that they would let requirements, design

and maintainability slide. There have been calls for more recognition of software as

part of the research output [11], but it certainly would take some time before it ever

becomes a norm.

While a dedicated software engineer may address some of the issue above, intro-

ducing such member to the team is also not a silver bullet, and can even potentially

cause more issues. For example, a developer may expect well-defined software re-

quirements upfront, which is not always possible in a research setting, leading to

a communication breakdown [9]. There are inherent differences between developing
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software for research purpose and traditional software such as websites, accounting

tools, games, etc. For the most part, developers would at least have some under-

standing of how a type of software should work on the surface level [9]. This is

also eased by the fact that most clients of traditional software can give fairly clear

requirements or descriptions of their workloads [9]. But the same cannot be said

when dealing with research software where the field is highly specialized. One simply

cannot expect a developer to understand whatever biochemical, fluid dynamics, or

quantum mechanics problem that the domain expert bring to them, especially when

the domain experts (researchers) themselves may still be figuring out new ideas at

the same time [9]. Such a knowledge gap can happen in both ways. When working

in a collaborative setting, even with a dedicated developer, the domain expert may

lack some software know-how that is common in the software community, which the

developer can no longer take for granted. As a result, communication between the

developer and the domain expert can be slow and daunting, especially when they are

not speaking the same language initially [12].

For the developers, these challenges may lead to mean special requirements just to

make the software understandable for the domain experts, suitable documentations

for the audience [10], and potentially additional responsibilities that is outside the

traditional software development role, such as IT support [6].

An overarching idea attempting to address these pain points is the FAIR principals

(Findable, Accessible, Interoperable and Reusable) [13], which our work would also

contribute to. It was also recognized that while there are certainly many tools and

workflow for software development, they may also come with high barrier to entry

and limited guidance that can be ill-suited for research software [13].

9
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1.4.2 Current Practices

The inspiration and jumping off point for this thesis is the document-driven approach

proposed by Smith et al. [14]. It has since been further fleshed out into a full

template workflow for designing scientific software [2]. This template has been used

by a number of scientific computing projects, such as a Bridge Chloride Exposure

Predictor [15] to investigate bridge corrosion in Ontario, and a turbulent flow field

generator which we will discuss in more detail in the next chapter (Section 2.2). It

has also been used in a software engineering capstone course at McMaster University,

and enabled the analysis of team behaviors in software projects [3].

This template is geared towards specialized fields, which can require a substantial

amount of domain knowledge. It has a strong emphasis on documented traceability

from theory to design decisions to final implementation.

As a document driven framework, it requires the developers to produce several

artifacts before any code is written. In its suggested order, these include:

• Problem Statement

• Software Requirements Specification (SRS)

• Verification and Validation Plan (V&V Plan)

• Design documents

– Module Guide (MG)

– Module Interface Specification (MIS)

• Verification and Validation Report (V&V Report)

10
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Figure 1.2: A typical SRS table of content from [2]

Among these, the SRS is arguably the one that would receive the most attention

(shown in Figure 1.2), as it documents the physical system and the refinement process

from theory to final instance model that will be implemented in the software. The

SRS will be used to guide the development throughout the project.

This is inline with our expectation that the software contributing to a research

study should be able to withstand the same level of scrutiny, for which any piece

of software developed with this workflow would have the required information very
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clearly laid out. Its somewhat rigid structure however does risk colliding with the

aforementioned pain point that research can be evolving [8], so some information

needed to build these documents may be hard to pin down early on. We will discuss

our experience with this workflow and how we propose to address these issues in the

next section.

Perhaps the envisioned holy grail of such strongly traceable approach is the Drasil

Project [16] It aims to document theoretical knowledge from the most basic physical

laws (e.g. Newton’s laws), and refine them all they way to the eventual, domain

specific instance model that will be implemented in the software. This way, both

the software code (in various languages) and the accompanying documentation can

be generated from the encoded knowledge, as opposed to being written by hand.

The hope is that with each subsequent project utilizing Drasil, the knowledge base

grows, so that future projects can keep building on top of the existing knowledge, and

potentially require less and less effort. Although this is a noble goal, Drasil has not

yet captured enough scientific knowledge to be practically useful. Therefore, the work

presented in this thesis will take a practical approach that can be used immediately.

1.5 Methodology

While a document driven approach is beneficial for research software development that

requires deep domain knowledge [2], it is not without its own set of obstacles when

used in practice. In our experience, we found that it can be challenging to produce

good initial documentations (such as the SRS in [2]) when the research is still evolving.

This is echoed by many previous studies that identified the ever-changing nature of

research as a pain point [8][9][6]. In such cases, a highly structured document can be
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as much of a bane as it is a boon. A rebuttal to the opponent of the document driven

approach [2] called for “faking” a rational design process to maintain structure. But

in reality, the execution of this strategy is up for interpretation, and could be a source

of frustration for developers. We found ourselves often trying hard to fit the research

into the document and spending more time completing what the framework required

just for the sake of completion. Although the complete information is necessary for

a generative framework like Drasil, for a practical software developer, this is time

taken away from development. More importantly, for the domain experts (especially

when they are also the developer), they will very much justifiably feel that this is

not making progress on the research itself, as pointed out previously [8]. All these

combined can perhaps explain why the document driven framework first proposed in

2007 [14] has not seen an even wider adoption.

To address these pain points, we propose a more pragmatic approach in this thesis,

a “document-lite” workflow if you will. The goal is to provide structure in research

software development, while minimizing overhead and allowing for flexibility when

the research is still evolving. We aim to take as little time away as possible from: 1.

the domain experts, so they can focus on their research, and 2. the developers, so

they can focus on the software development. This involves, early on, asking only the

questions most relevant to creating the initial software (the Minimum Viable Product,

MVP). Instead of completing every aspect of the initial design documents or “faking

it”, we accept “I don’t know” as an answer, and circle back if it can be answered

when works progresses.

One caveat of our envisioned template is that it may capture less domain informa-

tion compared to the path that would lead to things like Drasil. Since we only require
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the most immediate domain knowledge to build the software, we lose the chance to

document the refinement process from basic physical laws all the way to the final

instance model. However, we believe that this is a fair trade-off for as this process is

probably only feasible for someone with a deep understanding of the domain, which

we do not necessarily require from our developers.

1.5.1 GitHub Template

One important artifact of this thesis is a document driven GitHub repository template

that helps the developer to follow the practices we suggest, and facilitate the interac-

tion between the developer and the domain expert. This template and accompanying

workflows are inspired by the capstone project template by Dr. Spencer Smith [17],

augmented with the lessons learned from when developing the projects described in

the Background chapter (Section 2) and communication with the domain experts.

While the focus of our template is on research software development, it is possible to

adapt it to a more general use case.

Compared to the previous template, this new template cuts down some overhead

(in terms of writing time) and focus more on the interaction between the developer

and the domain expert.

The entire documentation suite, including the development documents, user guides

and any notes are written in Markdown instead of LaTeX, which was used previously.

These are presented as a website using GitHub Pages and MkDocs [18, 19], with

Continuous Integration (CI) workflow already setup using GitHub Actions to auto-

matically build and deploy the website when the documents are updated. Unlike

monolithic LaTeX PDF documents, the documents on the website are broken down
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Figure 1.3: Example of a quick issue creation button present on each
section/subsection of the documents in our template, with generated issue linking

back to this exact location.

into smaller, more manageable pages, and can be reviewed independently before a

whole document is finished. It provides better guidance to the domain experts eval-

uating the documents, as they can easily navigate to different sections. The writer

(developer) can also include hyperlinks to any part of various documents when nec-

essary, which is not possible in the previous template. As many domain experts may

not be familiar with many common GitHub functionalities, our template allows any

viewer to easily create issues with one-click that link directly back to the relevant

part of the document, which can then be addressed by the developer (Figure 1.3).

1.6 Roadmap

In this chapter, we have discussed the purpose of this thesis, the problems we aim to

address, and a brief overview of our intended approach.

In the next chapter, Background (2), we will examine the software projects that
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were most influential in shaping our approach. This includes overview of the projects

and the lessons learned.

The Practices chapter (3) provide details on our proposed research software

development framework and the reasoning to support it, as well as some suggestions

given to the developers in different stages of the project. It is written in a chronological

order representing a likely software development process.

Although we did not have time to fully evaluate our framework with real partici-

pating software projects, we do follow up with an Experiment Design chapter (4).

It gives the hypotheses to be tested, and the experimental setup to both evaluate the

effectiveness of our framework and to gather feedback for future improvements.

Finally, the Conclusion chapter (5) that summarizes the key points of this thesis,

and discuses our vision for potential future adoptions of our framework, given the

current academic landscape.
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Chapter 2

Background

Besides the suggestions presented by works in the literature review (Section 1.4),

the practices proposed in this thesis are largely based on lessons learned from sev-

eral software projects that the author has either participated in or closely followed.

These include a Six-Degree-of-Freedom (6DOF) Ballistic Trajectory Calculator, and

SynthEddy, a turbulent flow field generator.

In this chapter, we will briefly introduce these projects, and examine the lessons

learned from our experiences with them that can be generalized to other research

software projects in later chapters.

2.1 6DOF Trajectory

This was a previous work by the author of this thesis, for his Master’s Degree in

Mechanical Engineering. It was a typical “one-person team” scenario where the de-

veloper was the domain expert. The software work enabled the author’s previous
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research on Six-Degree-of-Freedom Trajectory Simulation at Embry-Riddle Aeronau-

tical University (ERAU) [4]. It was a MATLAB program that acts as a high-precision

ballistic computer to simulate spinning projectiles in a 3D space. Example results are

shown in Table 2.1 and Figure 2.1. It has since been used by a few other researchers

at ERAU working on related topics.

Table 2.1: Simulation result summary in the form of a range card, showing the
trajectory of a projectile with a 6DOF model.
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Figure 2.1: Plot produced by the 6DOF trajectory simulator of projectile tip
orientation, showing its self-stabilizing behavior after initial disturbance

While the research itself was a success, the software, though functional, had left

a lot to be desired. It was developed before the author had any formal knowledge

of software development practices. Here we would use it mainly to contrast with the

practices proposed in this thesis.

2.1.1 What Went Right

Despite many shortcomings, two positive takeaways still held from this project:

First is the validation approach, although the process is manual. The more com-

plex 6DOF trajectory model (the governing differential equations of which is shown

below) required a series of non-trivial aerodynamic coefficients for each of the force

and moment components (Table 2.2) that were hard to obtain, and there was no
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publically available implementation to test against. However, the author was able to

standardize the inputs (Table 2.3) and pre-processing/post-processing steps across all

possible models in the software. This allowed the software, while using such simpler

models, to be validated against publically available ballistic calculators with the same

underlying models.

dV

dt
=
FD + FL

m
+ g +Λ

dh

dt
=
Ma +MMpα +Mlp +MMq+α̇

IT

Terms in the equations:

• V: Velocity vector of the projectile.

• FD: Drag force.

• FL: Lift force.

• Λ: Coriolis Effect acceleration.

• h: Angular momentum vector of the projectile.

• IT : Total moment of inertia of the projectile.

• Ma: Overturning moment.

• MMpα : Magnus moment.

• Mlp : Spin damping moment.

• MMq+α̇
: Pitch damping moment.
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Table 2.2: Aerodynamic coefficients used by simple, 6DOF and Modified Point Mass
(MPM) models in the 6DOF trajectory simulator

Second is the large number of well-documented inputs that the user can change

to simulate a wide range of scenarios (Table 2.3). While these were much more than

any commercial software may allow, and can be overwhelming to a new user at first,

they did facilitate exploring many research questions in the problem domain without

having to constantly modify the code.
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Table 2.3: The list of user inputs in the 6DOF trajectory simulator
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2.1.2 What Can Be Improved

The software was developed in a very ad-hoc manner, with no traceable requirements

or design documents. While there were documentations explaining required user in-

puts, they were later found to be inadequate for other users to utilize the software

independently. There was only one set of known-to-work inputs provided as an ex-

ample, but not much detail regarding acceptable input ranges, which input should be

modified for different scenarios, or what the user should do if certain inputs are hard

to obtain (e.g. when they switch to a different projectile). This led to us suggesting

more considerations for inputs when both gathering information (Section 3.2.5) and

drawing up requirements (Section 3.4.1).

Another significant problem was that it was not version controlled with Git or

similar tools. This had more than once led to awkward conversations between the

author and other users seeking help, only for both parties to realize they were looking

at different versions of the software. This had limited the potential users to only those

who had direct contact with the author, as the software was not easily shareable.

2.2 SynthEddy

This was a more recent project that fell under the “developer & domain expert col-

laboration” setting, where the author served as the developer. The software [20]

was a Python program to generate turbulent flow fields using the Synthetic Eddy

Method [21] to be used as initial conditions (IC) and boundary conditions (BC) for

computational fluid dynamics (CFD) simulations.

SynthEddy generates divergence free 3D velocity fields (Figure 2.2) consists of
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many individual “eddies” (a circular flow, as shown in Figure 2.3), approximating

real turbulent flows, without the need for a full physical simulation, which can be

used to jump-start much more computationally expensive CFD simulations such as

Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS).

Figure 2.2: Velocity magnitude cross-section plot of a full turbulent velocity field
with zero mean velocity generated by SynthEddy.
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Figure 2.3: Velocity magnitude plots showing the top and side view of a single eddy
(left and center) and the wrap-around of an eddy (right) when it reaches the edge of

the flow field to ensure conservation of mass.

This project started during CAS 741 (Development of Scientific Computing Soft-

ware), and was later further developed into a full-fledged product that supported

more general use cases such as channel/pipe internal flow and boundary layer flow.

The domain expert and main user during its development phase was Nikita Holyev,

a PhD student in Mechanical Engineering at McMaster University, whose research

was on turbulent flow. This software has support at least one pending publication by

Nikita Holyev.

SynthEddy itself was submitted to the Journal of Open Source Software (JOSS),

pending review. It was also presented at the Seventh Computing and Software Poster

and Demo Competition at McMaster University, where it won first place (Figure 2.4).

2.2.1 Highlights

Before diving into the development process and lessons learned, it is worth noting

some unique aspects of SynthEddy that helps it standout as a piece of research soft-

ware.
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Figure 2.4: Poster of SynthEddy as presented as McMaster CAS Poster Competition

Information Preserving

A key design philosophy of SynthEddy was to preserve as much information as possible

in the generated flow field. Since it is not a numerical simulation that solves the

field like a CFD solver, we did not blindly follow what CFD solvers would do, i.e.

discretizing the field at the beginning and updating it at each time step, which can

lead to loss of information. Instead, the eddies are tracked as individual entities

continuously moving in space and time, and the query process is independent of

the field generation. This allows the user to query the same field multiple times

with different parameters, such as having an overall coarse grid and a fine grid for a

specific region of interest, or when performing grid sensitivity analysis. When queried
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at any point in time, the program first finds the location of each eddy at such time

analytically, without having to advance through prior time steps numerically.

This opens up the possibility for usage like “salami slicing” the field to obtain

many thin strips of the field at any arbitrary rate demanded by the user, without

concerning grid resolution or time step size. These can then be fed into a CFD solver

as boundary conditions (see the bottom-center portion of Figure 2.4).

Chunking

The original theory of synthetic eddy method called for the sum of influence of all

eddies for every point in the field, which would lead to a huge number of operations

(O(n4) complexity for a 3D field) and unrealistic memory requirements. We recog-

nized that the influence of each eddy is local, and thus designed the software the

process the field in chunks. This drastically reduced resource requirements so that a

1000

2.2.2 Development Process

The software was developed using a document driven process with a focus on trace-

ability from theory to requirements to final implementation. For example, Figure 2.5

shows a snapshot of its requirements document that includes an instance model of the

software, which traceability clearly presented. It represents a more formalized under-

standing of software development best practices by the author compared to previous

works, with modularization, designed for change and continuous integration. Lessons

learned from this project greatly contributed to this thesis.
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Figure 2.5: The instance model used in SynthEddy as documented in its Software
Requirements Specification (SRS)

2.2.3 What Went Right

From a usability standpoint, the software was a success. With clear documentation

and examples, the domain expert, who had no experience python environments or

software development in general, was able to install and use the software both locally

and on a computing cluster. He was able to run many different scenarios for his

research need.
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The software was developed with designed for change in mind. Initially it could

only generate external flow with constant mean velocity across the entire field. How-

ever, when new requirements from the domain expert’s supervisor, Dr. Marilyn Light-

stone and Dr. Stephen Tullis, called for any arbitrarily define flow (as shown in Figure

2.6), the majority of the change made was limited to just one module.

Figure 2.6: Velocity magnitude cross-section plot of a non-uniform mean velocity
field generated by the updated SynthEddy. This field mimics a channel or pipe flow,
with a parabolic velocity profile that has a zero mean velocity on the edges and a

maximum velocity at the center.
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2.2.4 What Can Be Improved

However, the initial rigid adherence to modularization and information hiding, when

combined with a communication breakdown with the domain expert, led to one ma-

jor redesign of the software early on. Since the initial presentation by the domain

expert only showed a very limited number of eddies at play, the developer incorrectly

presumed the scale of the problem and did not ask for further clarification on actual

typical use cases. This resulted in the developer naively believe that he can capsulize

all the eddies as objects of an eddy class, with self-contained states and methods.

When the developer was finally aware of the actual output meshgrid resolution that

is suitable for publication, the initial design turned out to be too slow and memory

intensive to be practical (Figure 2.7). Part of the software had to be redesigned to

put different eddy states as arrays in the parent module for broadcasting vectorized

operations, which was much more efficient.

Figure 2.7: A screenshot during early development of SynthEddy, showing it
requesting an unreasonably large amount of memory when hit with the actual

problem scale suitable for publication.

The developer was also able to identify the local influence of the eddies and thus

let the software process whole flow field space in chunks, saving memory and number

of operations. However, it should be identified that this was possible partly due to the

developer’s Mechanical Engineering background, which allowed him to better under-

stand the underlying physics of the problem domain, which may not be generalizable
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to other research software projects. As such, the actual best practice proposed in this

thesis is to gather the correct information from the domain expert to begin with, and

not fall into similar traps.

Another interesting aspect that may be changed if the project were to be redone

is the choice of programming language. Since the influence of each eddy was local,

the software would actually be very easy to parallelize with a language like C++.

However, this discovery was made too late into the project that was already written

in Python, which was chosen for its better support for vectorized operations using the

NumPy library. Parallelization attempts in Python did not see significant speedup.

Given the increased complexity, this branch was put on hold. This highlights the

importance of understanding not just the theoretical model itself, but also how it

would be invoked in a practice as early as possible in the project.-
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Chapter 3

Proposed Practices

This chapter provides a wholistic view of our proposed workflow that we believe would

be a best practice for developing small to medium scale research software, derived from

the lessons learned from the software projects mentioned in the Background chapter

(Chapter 2). It represents a typical development workflow from the perspective of

a developer. Sections in this chapter are ordered chronologically on how each step

would likely take place in a research software project. The life cycle model subsection

provides a visualized overview (Figure 3.2) of the workflow and the focus of this

chapter:

We start with the first technical meeting with the domain expert for Information

Gathering (Section 3.2), providing specific guidelines on how to extract as much

immediately relevant information as possible from the domain expert early on, and

justifying the significance of various pieces of information.

This is followed by forming the Software Requirements (Section 3.4), which

is adapted to the changing nature of research software, especially when a lot of the

details need to be ironed out as the research progresses. A Testing (Section 3.5)
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plan is produced next. We discuss how to circumvent the challenge of a lack of

test cases, and better serve domain experts who may not be familiar with software

testing. Design and Implementation (Section 3.6) is then the final piece of the

puzzle. The above three sections map to the Requirements, Testing and Design

documents, respectively. Readers will see that even in the context of a document

driven workflow, these documents can still be produced in the most pragmatic way

to minimize overhead without compromising traceability.

Aside from strictly talking about developing the software itself, we also include a

User Guide and “Advertising” section (3.7) that focuses on the documentations

facing all potential end users (not just the domain expert), and how they may also

help to promote not just the software itself but also the domain expert’s research.

3.1 Overall Considerations

We will focus on the practices that are directly applicable to research software, while

also providing some resources for best practices in software development in general.

That being said, the writings in this thesis do not go into every single detail of the

development process; it is limited to what we consider to be additions or modifications

to a typical software development process. The responsibility of presenting the entire

workflow end-to-end is left to the GitHub template, which is included as an artifact

of this thesis.

Before going into the following sections, we should reiterate the assumption that

we are looking at a scenario with a developer working with a domain expert to develop

a piece of software that represents and/or aids the domain expert’s research. More

specifically, we assume that the domain expert has traits laid out in the introduction
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chapter (Section 1.2.2). We will be discussing interactions, such as meetings between

the developer and the domain expert.

The only technical expectation of the domain expert is that they will register for

a GitHub account, so that they can post or respond to issues similar to on a forum.

They are not expected to use other functionalities of GitHub, such as pull requests or

branching, or any other software development tools. Note that they may learn these

skills during the course of the project or over time, but these by no means should be

a requirement for the project to proceed.

This may sound confusing and not applicable to scenarios where the developer

themselves is the domain expert (How do I have a meeting with myself?). How-

ever, even in such cases, it is perhaps not the worst idea to have two imaginary

roles for thinking, which offers different perspectives on the same problem. This can

potentially lead to a more relatable way of thinking when it comes to serving any

future user/researcher/developer who does not possess the full knowledge of both the

research and the software.

3.1.1 Life Cycle Model

Choosing a life cycle model is a critical decision in software development. However,

when working with a research domain expert who does not yet appreciate the im-

portance of proper software development practices, this can potentially lead to some

pushbacks, since they may view any rigid model as a hindrance to the research process.

While prior case studies by Carver et al.[22] on scientific and engineering software in-

dicate that a more “free-form” approach was better accepted, the unfavorable view of

a structured plan was mostly due to too many unanswerable questions early on when
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forming requirements. We believe that this can be alleviated by acknowledging the

unknown and changing nature of research, only asking the most pragmatic questions

related to the development, and allowing some blanks early on as these can them-

selves be research questions. The requirements and design should then accommodate

exploration, which we will discuss in the following sections.

Adopting any model requires time spent on writing and reviewing documentation,

coming up with test cases and other activities not directly related to producing re-

search codes. While it would be hard to convince anyone otherwise before the project

has started, we can still minimize such friction by forming a workflow more suited to

research software development. This will reduce using the domain expert’s time as

much as possible.

Despite the potential pushback, one must be aware that following any structured

model, however simple, can still be more beneficial in the long-term. It is much

harder to bring an already chaotic project back to order when the need arises, a

lesson learned from the 6DOF Trajectory project (Section 2.1.2).

In the context of the current work, considerations for choosing a life cycle model

include:

• It must be a document driven process that provide clear traceability between

requirements, design, and implementation. This allows the domain expert who

is not familiar with code to still understand the software. Any outside reviewer

or future user will also benefit from this to replicate or build upon the work.

• To provide credibility to the research, the software must be tested and validated,

ideally by test cases coming from the domain expert, not just the developer

themselves.
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• It has to accommodate the exploratory nature of research, such that the needs

may change over time.

• It should not take any unnecessary time away from the domain expert, which

may be seen as a hindrance to their research process.

The overall workflow we propose is based on the V-model [23], which was also

used in the original template as shown by a recent paper around it (Figure 3.1)[3].

The main reason for choosing a V-model instead of a waterfall model is driven by the

involvement of the domain expert. The V-model pushes the developer to gather as

much information from the domain expert as possible upfront, for both requirements

and testing. This allows the domain expert to have a decreasing involvement as

development work moves closer to implementation, since they may not be that well-

versed or interested in the development work. Another added benefit of working on

system tests early is reinforcing the requirements by taking a complementary view.

Figure 3.2 shows our proposed V-model workflow, which also highlights the focus

of this chapter and the two major documents where we would like to reduce overhead.

The goal here is to get a Minimum Viable Product (MVP) out to the domain expert

as soon as possible, without compromising adherence to requirements and testing.

At the same time, this lays the foundation for proper software and documentation

structure for version tracking and future development. Any future developments, may

not need to go through the entire V again, but they should remain document-driven,

with tests added/updated as necessary.

36



M.Sc. Thesis—A. Du McMaster University—Software Engineering

Figure 3.1: The original, full V-model which the current work builds upon,
displayed in the paper [3]

3.2 Information Gathering

In our proposed workflow, writing the requirements document is the responsibility

of the developer. However, before they can start writing, they need to gather the

necessary information and understand the problem domain, as shown in Figure 3.2.

A lesson learned from working with domain expert in the SynthEddy project

is that too much information is almost the same as too little information. It is

understandable that the domain expert is very enthusiastic about their research field,

and would like to share as much as possible. However, this can quickly lead to the

developer feeling they are “drinking from a firehose” and not knowing what to do

with the information. As we have established with the Intended Audience (Section

1.2), while it is possible that the developer may come from a similar background as

the domain expert, which can allow them to achieve a research-level understanding
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Figure 3.2: Our V-model workflow, with numbering indicating suggested
chronological order of activities. Bold frame items are the main focus of this

chapter. Green (Information Gathering) is newly introduced in this thesis. Blue
items are where we will primarily cut-down development overhead.

of the problem, this is not always the case and certainly not their primary goal. The

developer’s goal is to understand the problem enough to be able to represent it in

software, and to be able to communicate with the domain expert in a way that is

understandable to both parties. To be more specific, if there is an equation used in

the software, the developer should be able to explain what each term in the equation

represents in the context of the problem, but not necessarily why/how the theory

behind the equation works, or how the equation is derived.

We propose a single (technical) meeting with the domain expert to extract as

much required information as possible, while filtering out any unnecessary details.

This meeting is directed by the developer using a set of proposed questions. These

questions are divided into the following categories: Problem Domain (Section 3.2.1)

helps the developer to understand the big picture of research field; Software Goals

(Section 3.2.2) focuses on what the software should achieve; Theoretical Model
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(Section 3.2.3) gathers the resources needed to implement the theory; Scale of the

Problem (Section 3.2.4) sets performance expectations for solving a typical problem;

Data and Inputs/Outputs (Section 3.2.5) is about how users can realistically

interact with the software; And Testing (Section 3.2.6) discuses possible ways to

verify and validate the software to build confidence in its correctness. The answers

to these questions will help elicit software requirements and testing plans. The full

details of the traceability between questions and documentation is shown in Table 3.1

and discussed in section 3.2.7.

Our envisioned meeting format is either in-person or virtual with screen shar-

ing. The developer should take notes under each question, in their own words

based on their understanding of the domain expert’s response. Questions and tips

are provided in the https://omltcat.github.io/research-software-template/

template/first-meeting/meeting agenda within our GitHub template (Figure 3.3

shows an excerpt of the agenda). The developer can simply edit this page to add their

meeting notes. The domain expert can give comments or corrections on-the-fly, but

they will also have a chance to review the notes at their own pace after the meeting

and provide any additional information or corrections via the quick GitHub issues

creation mechanism integrated into our template (Figure 1.3).

For simple problems, this meeting can be done in a single (one-hour) session. But

for more complex problems, it may be necessary to schedule a longer meeting or break

it down into multiple sessions, each focusing on different categories of questions.

The subsections below contain the list of questions that we propose to ask the

domain expert in this meeting, along with the rationale behind each question. Note,

not all questions may be applicable to all projects; it is acceptable to skip some
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Figure 3.3: An excerpt of the meeting agenda page from the GitHub template.

questions if they are not relevant.

If possible, the questions and answers of the first category (Section 3.2.1) should

be exchanged several days before the meeting (over email or other means) to give the

developer a head start in understanding the problem domain. This will potentially

improve the efficiency and focus of the information exchange during the meeting.
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3.2.1 Problem Domain

At the beginning of the meeting, after any necessary introduction of personnel, the

domain expert should give a brief presentation as an overview of their research field

and problems they are working on. After this presentation and any immediate Q&A,

the developer should start directing the meeting.

The first questions are to gather some resources for getting a basic understanding

of the problem domain. We should not spend too much time on this as more specific

questions will be asked later (Section 3.2.3).

• Q1.1: To understand more about the problem domain, what keyword should I

search for?

• Q1.2: Is there any literature review, general overview paper or book chapter

that you would recommend?

The keyword search does not necessarily mean scholarly sources, but can also in-

clude any web articles or videos that can quickly give a general idea of the problem

domain. They can be informal as they are only to facilitate the developer’s under-

standing and likely not to be cited in the final software documentation. These can

be stored as resources for the developer to refer back to as needed, not necessarily to

be read in full before starting the project. It is also an opportunity for the domain

expert to “unleash their firehose” before we start narrowing down the focus in the

following questions.
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3.2.2 Software Goals

Based on the presentation given by the domain expert and exchanges about the

problem domain, the developer may already have a general idea of what problem the

domain expert wants to solve with the software at this point. If so, the developer can

simply voice their understanding and ask for confirmation. Otherwise, they should

ask for a brief description of the problem.

• Q2.1: So my understanding is that you want to calculate/generate/analyze/etc

X. Is that correct?

• Q2.2: Can you clarify what are we trying to achieve with the software?

• Q2.3: Is there any research questions or hypotheses that we are trying to answer

with the software (if known at this point)?

• Q2.4: Other than yourself, who else might be the target audience of the soft-

ware?

• Q2.5: At the very minimum, what should the software be able to do to be useful

to its users?

• Q2.6: Are there any special requirements in terms of usage? Such as...

– A graphical user interface (GUI) is preferred over command line (CLI).

– The development goal is a library that is imported into other projects.

– Must be able to interface with certain software/workflow.

– Plan to run on computing clusters.
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Due to the uncertain nature of scientific research, it is possible that the domain

expert may not have a clear idea of what the software should exactly do at this point.

This is fine, and we have Q2.3 as optional. We will greatly narrow down the focus in

the following questions about the theoretical models (3.2.3) and user inputs/outputs

(3.2.5).

The initial goal of the elicitation is to acquire the information needed for a Mini-

mum Viable Product (MVP). This will help the developer scope their first version of

the software.

As for the research questions/hypotheses (Q2.3), they are not the same as the

software goals themselves, but rather what the domain expert hopes to do with the

software that is directly relevant to their research. This can potentially be an easier

question to answer than the straight-up software goals. However, the domain expert

may use the software in different ways than an external user, warranting additional

considerations if we were to generalize the software for broader use. We will discuss

this further in the requirements section (3.4).

The answer to Q2.6 can influence the choice of programming language, libraries,

and other software design decisions. The developer should also help the domain

expert to understand their expectations. For example, if the domain expert prefers

a GUI, the developer should explain the potential overhead in development time and

maintenance, and the potential limitations in functionality, such as that you cannot

run the GUI software on a computing cluster if that is also a requirement.
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3.2.3 Theoretical Models

Based on our experience with the previous projects, the domain expert has most

likely already extracted the most useful information of the theoretical models from

the literature to use in their own calculations. They may have developed their own

simple program or scripts using such models. The developer should specifically ask

for this information to avoid going over the same process in a domain where they may

not have a deep understanding.

• Q3.1: Regarding the model you are working on, is there a paper or book or

your own writing, that I should read to gain a basic understanding of WHAT

it is and HOW it works, without going into WHY it works? (Those answers

could already be included in the previous suggested readings, i.e. Q1.2.)

• Q3.2: Which chapters or sections should I focus on?

• Q3.3: Which equation or set of equations is the core of the model?

– If there are multiple equations, what are their relationships/order of cal-

culation?

– Are there any terms/symbols in the equations that are not defined in the

literature, because they are considered common knowledge in the field?

• Q3.4: Are there any variations (different forms) of these equations that I should

be aware of?

• Q3.5: For your own research or our software implementation, are there any

modification to the equations from the original literature?
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• Q3.6: Are there any simpler, better-understood models, perhaps less accurate

models for the same problem? We can potentially use them for testing purposes.

In the case with multiple equations, while their relationships may be obvious just

from observing the equations, it is still good practice to ask the domain expert to

confirm. Typical relationships include parallel (several equations can be calculated

independently and feed into one governing equation) and sequential (one equation

depends on the result of another) as shown in Figure 3.4.

A parallel relationship examples would be, in the 6DOF Trajectory project, the

governing velocity and rotation differential equations:

dV

dt
=
FD + FL + FNpα + FNq+α̇

m
+ g +Λ

dh

dt
=
Ma +MMpα +Mlp +MMq+α̇

IT

In the above equations, while every F and M term is a complicated function on

its own, none of them depends on each other within a single time step, and can be

calculated in parallel.

Note that this is purely a discussion of the theoretical models structure, and not

yet about software implementation (e.g. how to parallelize the calculations).

3.2.4 Scale of the Problem

These questions are to gather information on how the models fit into a usable software,

and how the software is expected to be used by the domain expert and other potential

users.
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Figure 3.4: Typical parallel and sequential relationships between equations in a
model

• Q4.1: When using the model for actual problem-solving, how is the model in-

voked? Once per input/data point or many times in series/parallel to approach

a solution?

• Q4.2: In a typical use case, what is the approximate scale of the problem.

Depending on the problem/model, this can be in terms of:

– Number of data points

– Matrix/vector/meshgrid size

– Simulation length and time step

– Data rate expected to flow through the software (for a real-time applica-

tion)

– Number of iterations/steps expected before the result can be considered

acceptable

• Q4.3: Given the problem scale, is there any performance expectations or metric
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that we should be aware of? (The domain expert may not have a clear idea of

this, and we may only be able to get a better picture after the proof of concept

phase. However, we should record the initial response.)

It is possible that the theoretical model does not represent the problem from

end to end. For example, if the model is a differential equation, it only describes

how the system should evolve at any given point in time, like in the case of the

trajectory simulation project. Or the model only represents a localized point in

space, and the solution would be the sum of influence of many such points, like in

the case of the SynthEddy project. In such cases, the model is invoked many times

to approach/generate a final solution.

Given Q4.1 and Q4.2, we may be able to perform some preliminary calculations

to get a rough performance implication at the expected problem scale, and if the

performance expectation from Q4.3 is feasible at all. This is a hard lesson learned from

the SynthEddy project, where the typical use case in terms of meshgrid size was not

clearly communicated between the developer and the domain expert, leading to the

developer to believe that it was feasible for the software to use minimum computing

resource. If the developer was aware of the generally accepted grid resolution for

publication, which was 10003 to 20003 at the time, a simple calculation would reveal

that if each node consisted of three floating point numbers (3D vector), the minimum

amount of data to be processed would be non-trivial, even after best efforts in memory

optimization:

10003 × 3× 8 bytes = 24 GB

20003 × 3× 8 bytes = 192 GB
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The scale of the problem and any performance expectations may therefore influ-

ence the software design, which we will discuss in more detail in the section 3.6.2.

Thus, it is important to gather this information early on so that the developer and

domain expert stays on the same page. This can avoid major redesign later on due to

performance issues, like what happened in the SynthEddy case regarding the afore-

mentioned memory management challenge (more details are in Section 2.2.4).

3.2.5 Data and Inputs/Outputs

These questions tell the developer what inputs and outputs the software should ex-

pect, and how the domain expert or other users would interact with the software. It

also helps the developer to understand where the theoretical model sits in the grand

scheme of the implementation with respect to the input/output.

• Q5.1: Does the model require any additional data to function? This can be

fixed or tabulated coefficients, tweaking parameters, etc.

– If so, is the user responsible to provide these for their specific use case, or

should we include them in the software?

– If we were to include them in the software, where do we get these data

from? Are they from any literature, your own experiments, etc.?

• Q5.2: Ideally, what should the user provide as inputs?

• Q5.3: Realistically, what can we currently expect the user to be able to provide

as inputs? If they have difficulty providing some inputs, what should we do

(e.g. default values, derive from other inputs, etc.)?
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– How does solution quality degrade if some inputs are not provided (if this

is known)?

– If the method to treat missing input is non-trivial, we should ask for ex-

amples, literatures, or even treat them a separate theoretical model.

• Q5.4: What does the user expect as output from the software? Does the user

want any additional information like accuracy, intermediate results or metrics,

etc.?

• Q5.5: Are the input and output directly to and from the model, or are there

any pre-processing or post-processing steps that the software needs to do? If

these are non-trivial steps, we should again ask for examples, literatures, or

even treat them a separate theoretical model.

Real world values can be messy and may not always be available in the format that

the model requires. Here we should direct the domain expert to consider when they

are using the software, what can they realistically provide as input. For example, in

the 6DOF trajectory project, users may face difficulties in providing all the required

inputs when switching to a different projectile type (Section 2.1.2). While the devel-

oper strives to make the software degrade gracefully when some inputs are missing,

the domain expert should be aware of the need for potential “educated guesses”. The

domain expert should be the one to provide guidance on how to make such guesses,

as their choice can inadvertently affect the results of their research and potentially

other people in their field. This information should be recorded as assumptions in

the requirements document. It should be noted that some of the research questions

themselves can be about the inputs, which the domain expert would rightfully not
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have a clear answer to at this point. We should simply record the possibilities now

and build the software to accommodate such exploration later on (Section 3.4.3).

The lack of data required to power the model can be a major roadblock in the

applicability of the software in more general use cases. In the 6DOF trajectory

project, the author was only able to find and clean up the set of required aerodynamic

coefficients for one type of projectile from the published literatures (Figure 3.5 shows

one of such coefficient as an example). While technically the user can bring in their

own coefficients, in reality this can be a very challenging task that require either

CFD simulations (for which a clearly documented process could not be found at the

time of that project) or real-life experiments (which is not possible for most users

or if the projectile is still hypothetical). These limitations should be made clear

to the domain expert and documented. However, if resources permit, more serious

consideration should be given to how to overcome these limitations.

3.2.6 Testing

As a part of the V-model, we should gather information on testing early on. As you

will see in the following sections, the availability of test cases can even influence the

software design, as we seek proof of correctness of the software implementation.

• Q6.1: If you were to use the software in your research, what would you give as

typical inputs (or input ranges)?

– It would be even better if expected output can also be provided, but this

will most likely not be the case, except for some very simple/degenerate

special cases which we will specifically ask for in Q6.5.
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Figure 3.5: A plot from the 6DOF Trajectory paper [4] showing the interpolation of
normal force (lift) coefficients at different mach number to be used in the program,

which is non-trivial if the user wants to use a different projectile type without
appropriate data.

• Q6.2: Are you aware of any (pseudo) oracles that we can use for testing? These

can be...

– Known to work implementations. If not on our main model of interest,

perhaps on a simpler model that you mentioned earlier.

– Analytical solutions, if they exist, even on a simpler model.

– Experimental data that we can adapt into input/output pairs.

• Q6.3: What are some general trends or patterns we can expect from the model

given different inputs?
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• Q6.4: If other models are provided, how do you expect the results to differ in

certain special cases?

• Q6.5: Are there any simple/degenerate/special cases that we can use to test

the software?

In Q6.2, a (pseudo) oracle is a source of truth that we can use to validate the

software against. This can be a known-to-work implementation (another piece of

software already developed), analytical solutions, or experimental data. For example,

in the 6DOF Trajectory project, the calculators publically provided by JBM Ballistics

were used as oracles to the simple point mass model.

Naturally, an oracle would ease our validation process immensely, but as discussed

in the literature review, this is more often than not unavailable in the case of research

software [9]. So we instead ask for other information that may help us build test

cases to increase our confidence in the software. One set of such information is trends

and patterns (Q6.3) that allows us to use strategies like Metamorphic Testing (MT),

which allows automated system testing in the absence of a oracle [24].

Information gathered here will be refined into test cases in the testing plan, which

will be discussed in the Testing section (3.5). The developer should note the sources

of any non-trivial test cases (whether they come from the domain expert’s own work

or other literatures) to maintain traceability in the testing documentation.

This is also a good opportunity to introduce the concept of continuous integration

(CI) to the domain expert. Without going into the technical details that they may not

be familiar or interested in (GitHub Actions, pull requests, etc.), we should explain

that if there are test cases that should always be true regardless how the software is

changed in the future, we can use them to set up an infrastructure that automatically
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run these tests whenever the software is updated.

3.2.7 Refining Gathered Information

When following the GitHub template, the end result of this meeting should be a

viewable webpage with the developer’s understanding of the answers to each appli-

cable question. The domain expert can give any immediate feedback either during

the meeting, or in the following days via GitHub issues, which can be linked to each

question thanks to the template. A ready-for-review meeting note excerpt from a

mock meeting using the 6DOF Trajectory project information is shown in Figure 3.6.

This mock meeting is later discussed in the Experiment Design section (4.3.1).

Figure 3.6: An excerpt of a filled-in meeting note using the GitHub template. In
this case the domain expert may want to create an issue regarding the “additional

data” question, as the developer did not write down an exhaustive list.

After the feedback is addressed, the developer will start gradually refining the

informal meeting note into more formal documents, which will be used in the software

development process. These documents include:
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• A background document defining problems and goals (3.3).

• A requirements document as the overall guide to development process (3.4).

• A testing plan to validate the software (3.5).

After this point, the developer should direct the attention of the domain expert

to these formal documents for further communications instead of lingering on the

informal meeting notes. Table 3.1 show the approximate relationships between the

question asked in the meeting and the documents/sections that they will be refined

into. Note that this is not a definitive mapping, as the responses given by the domain

expert may not fit neatly into these categories, and the developer may need to make

some judgment calls on how to best organize the information.

From the meeting notes and throughout the development process, the developer

should also maintain a list of useful resources (literature) and a quick reference with

common symbols, abbreviations, acronyms, mathematical notations and key con-

cepts used in the project. This page can be linked from any other page throughout

the documentation website, and may keep growing as the developer gains deeper un-

derstanding of the problem and writes more documentation. Throughout the project,

words and symbols on this page should be the standard way of communicating, doc-

umenting and code naming. This address the problem of the domain expert and

the developer not speaking the same language, and terminologies in communication

becoming disconnected from code, as mentioned in Domain-Driven Design [12].

As it is common for multiple sources to have different symbols and notations for

the same or similar concepts, it is important that standards in a project are established

early on to maintain consistency in all documentation, code and communication.
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Background Requirements Testing
Lt PS GS SH SS As SD TM IM FR NFR ST

Q1.1 X
Q1.2 X
Q2.1 X X
Q2.2 X X
Q2.3 X X
Q2.4 X
Q2.5 X X
Q2.6 X X
Q3.1 X X
Q3.2 X
Q3.3 X
Q3.4 X X
Q3.5 X
Q3.6 X X X
Q4.1 X
Q4.2 X X
Q4.3 X
Q5.1 X X
Q5.2 X
Q5.3 X X
Q5.4 X X
Q5.5 X X
Q6.* X

Abbreviations
Lt Literatures PS Problem Statement
GS Goal Statement SH Stakeholders
SS Software Scope As Assumptions
SD System Description TM Theoretical Models
IM Instance Models FR Functional Requirements
NFR Non-functional Requirements ST System Tests

Table 3.1: Traceability between meeting questions and document sections.
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3.3 Consolidating Background

After the technical meeting with the domain expert, ideally, the developer should

understand what they need to develop. However, this may not always be the case.

While most may point to the high specialization of the research field and worry about

the developer’s true understanding of the problem, we argue that an even greater

challenge is the open-ended nature of research, which can make it hard for the domain

expert themselves to articulate exactly what they were looking for in the software.

This was the case in the early phase of the SynthEddy project, where the domain

expert gave a good presentation on the theoretical side, but the developer then had

to gain a deeper understanding of the problem domain to dig out the practical use

case of the software. Fortunately in this instance, the end product was quite usable

by the domain expert. But naturally, we want to minimize the risk of not being on

the same page.

This challenge lead to the first formal writings that the developer should create

the Problem Statement and Project Goals. These should be born from the devel-

oper’s own understanding of both the meeting notes and any further reading that

they may have done. Even if the domain expert’s initial description is vague, the de-

veloper should make some best-effort guesses and let the domain expert review them.

This will likely spark further discussions with the domain expert to narrow-down the

understanding. One mistake that the developer of SynthEddy made was waiting too

long to discuss these with the domain expert, leading to misaligned expectations of

what the software was actually for, and by extension the performance problem as

discussed in Section 3.2.4.
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3.3.1 Feasibility Considerations

While a full-on feasibility study that include aspects like economic, legal or cultural

feasibility is out of scope of the methodology described in this thesis, some consid-

erations of technical feasibility should be made early on. Since we have a research

problem on our hand, it is unlikely that someone has already “invented the wheel” for

us. However, development will be more efficient if we do not have to make everything

from scratch. From the domain expert’s description of the problem, further literature

readings and looking at other open-source projects in similar fields, the developer

may be able to note some potential candidates of languages, libraries and tools (the

“tech stack”) that can mark an easier path to the final software.

While usually we think that the tools should adapt to the problem, and the above

discussion should happen much later in the development process (after requirement

and in the design or implementation phase), our experience shows that for research

software, such adaptation can work both ways. Often the problem of theoretical

model can take different forms, some easier to work with given existing tools than

others. For instance, writing all ODEs in the standard form of y′ = f(y, t) will

make later interfacing with a numerical ODE solver much easier. The tech stack

considerations here will provide some insights when we try to refine these models in

the requirements document and come up with the design, which we will discuss in

details in the section 3.4.4, with an example from the SynthEddy project regarding

choice of notations.
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3.4 Software Requirements

In this section we discuss some key considerations for the requirement document

and the rationale behind them. The full structure of this document in our GitHub

template is shown in Figure 3.7.

Figure 3.7: Structure of the requirements sections within all development
documents in the GitHub template

3.4.1 Inputs Values and Data

While is it common for software to only require a subset of the input values from the

user and populate the rest with default values, this takes on a different level of signifi-

cance in research software. When the input is related to certain physical/experimental

values, it is possible that the user may have some difficulty in providing them, as we
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have discussed in questions with the domain expert. When writing the requirement

document, not only should these default values be noted, but the sources of how these

values are decided should also be traced.

For some trivial values this can be a developer’s decision, such as the default

flow velocity being zero in SynthEddy. But for values that can potentially affect the

results of the research, the domain expert should be making the decision. If more

lengthy justifications of these values are needed, a “Default Value Decisions” or “Data

Sources” subsection should be added to the requirements document. Figure 3.8 shows

an example of how we can document the input values in our GitHub template.

Figure 3.8: An example input value table in our GitHub template. Note how we
include links on non-trivial default values (drag coefficient in this case) to further

explanations
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On a similar note, in most modern research, it is rare to have a model functioning

on its own without any external data. This can be in the form of tuning parameters,

coefficients (such as the aerodynamic coefficients in the trajectory project), or even

other models/functions that can plug into the main model (such as the eddy shape

function in SynthEddy). They can be datasets from other sources, or even the do-

main expert’s own experiments or calculations (such as the default eddy profile in

SynthEddy as shown in Figure 3.9). Unlike the inputs, these are usually not changed

from run to run, but can have a significant impact on the results.

Figure 3.9: Default eddy profile provided by the domain expert to be used in
SynthEddy. Without proper traceability, these are just opaque numbers.

If these are included in the software in case the user does not bring their own,

then in a way we are publishing/republishing the data. To be fully transparent, they
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should be added to Data Definitions (Section 3.4.4) in the requirements document,

with the source of the data cited.

3.4.2 Typical Use Cases

Just like a non-linear system is often linearized at a certain point before analysis, a

piece of research software may be developed to best serve a certain use case, as we

have tried to understand from the domain expert in the previously discussed meeting

questions (3.2.6, Q6.1). In the most ideal case, we are able to turn these use cases

into upper and lower bounds of each input value, within which the software should

be guaranteed to function correctly. This would vastly simplify the writing of test

cases later on. But it is possible that even the domain expert may not have a clear

idea of these bounds. Therefore, we instead ask for one or more typical use cases,

near which the software should stay trustworthy.

3.4.3 The Dual-Purpose of Research Software

We have mentioned that research software can have a dual-purpose: to aid the domain

expert in their immediate research, and to be used by other potential users in the

future after the relevant theory is fleshed out and has been published. For the latter

group, the software is more of a pre-programmed calculator: given a set of inputs, it

will return some outputs. This is more inline with traditional software. However, for

the domain experts, they may use the software in a more exploratory way, and ask

research questions like “If I change X, what will happen to the result?”.

For example, in the 6DOF trajectory study, one key research question that emerged
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was the effect of different physics simulation time step sizes on precision and comput-

ing time. This was a parameter of the differential equation solver, instead of a direct

input to the theoretical model. For a commercial ballistic calculator, this would be a

certain optimal value likely not exposed to the user, but it was exactly such research

question that would find this optimal value that was unknown at the beginning of

the project.

Thus, we propose a more “liberal” approach to defining the requirements for

software inputs. Instead of strictly adhering to the inputs of theoretical models,

we should leverage Q2.1-2.3 to include more parameters that tweak the software

behaviors that the domain expert may want to explore in their research, of which

they would potentially come back to change the default values once they have a

better understanding of the problem.

This would be two steps ahead of simply limiting the software with scope defi-

nitions and assumptions based on what is currently known, and one step ahead of

designing for change, which still requires the domain expert to come back and ask for

changes and the developer to modify the code.

Another realization of this philosophy is the eddy shape function (which defines

the tangential velocity distribution with respect to the eddy center) in the SynthEddy

project. Instead of forcing the domain expert to give us “the best one” (which they

may not be able to answer yet) to use in our calculation, we include this choice as an

input to the software, and even allowed user defined shape functions in a designated

file.
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3.4.4 Refining the Models

The goal of this refining step is to arrive at one or more “Instance Models” (IM) that

represent the specific calculations that the software should implement. An instance

models should be in the form of a mathematical function that take in some inputs to

come up with an output. This refinement starts from “Theoretical Models” (TM) as

seen in literatures, which may take a more “liberal” form such as a set of equations,

inequalities, or even a set of rules.

In the workflow originally proposed by Smith [2] and in Drasil [16], such refinement

should begin with the most basic physical laws and gradually build up to the domain

specific models for maximum traceability and reusability. We however, recognize that

this is likely not feasible in our typical development scenario, as it would require the

author of this requirements document, namely the developer, to have a deep, research-

level understanding of the problem domain to describe how the model are derived

step by step; even in the case of domain experts being the developers themselves, this

would be a time-consuming process and likely viewed negatively.

Instead, we propose a much shorter path of refinement: from the theoretical mod-

els as seen in the most relevant literature to the instance models that should eventually

be implemented in the software. The traceability in our case for how the original the-

oretical models is derived would be “out-sourced” to the literatures and cited instead.

Figure 3.10 shows an example of a theoretical model in our GitHub template,

which is an umbrella equation that describe the forces acting on a projectile. Figure

3.11 shows an example of an instance model, which is a more specific case of the

theoretical model, namely a simple point mass model. Links are used to provide

traceability between different pages.
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Figure 3.10: An example of theoretical model in our GitHub template.
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Figure 3.11: An example of derived instance model in our GitHub template.

It is possible that the theoretical models and the instance models are the same,

with minor modifications or rearrangements, etc. But more likely, the instance models

represent a more specific case of the theoretical models, refined by assumptions or

added information as discussed with the domain expert in the meeting. For example,
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in the trajectory project, if we were to put it into our template, the theoretical models

would contain all the forces and moments exerted onto a projectile. Then we take

the assumption that the Magnus force is too small thus negligible, and the instance

model would be the differential equations of motion without the Magnus force term.

Arguably, the model definitions are the most important part of the requirements

document, as the developer will keep referring back to them throughout the devel-

opment process. Therefore, the following subsections (Section 3.4.4 to 3.4.4) will

provide some key advices on how to complete this part with our template to better

serve development work down the line.

Assumptions vs. Scope Definitions

There is a potential confusion between assumptions and scope definitions. In our

template, assumptions are part of the refinement process that helps to shape the the-

oretical models into instance models. Some assumptions may also be marked as likely

changes as future version of the software may expand to accommodate other/more

general cases.

Scope definitions, on the other hand, are the boundaries of the software, before

even considering models. They represent decisions that we made for usually more

practical reasons. For example, in the SynthEddy project, we decided to only consider

3D space. Could models for 2D space be drawn? Yes, but such use case would likely

not be very useful for the domain expert or any other potential users, so there was

no reason to divert resources to implement them.
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Data Definitions

Most likely, the models in our requirements document will include a number of non-

trivial variables that are not taken directly as inputs, but rather require their own

calculations. We would record these as Data Definitions (DD), so that there is a clear

path from inputs to outputs with no ambiguous terms in between.

The difference between a data definition and a model is that the former is usually

simpler calculation, which is more or less considered “common knowledge” in the

field, while the latter are the more complex calculations that are the main focus of

the research.

Model Forms and Notations

In the meeting with the domain expert, we asked for different forms of the theoretical

models that we should be aware of. To be more specific, we are referring to different

mathematical representations of the same model (or with slight variations). In the

literature, these sometimes come in as several derivation steps to a final form preferred

by the author. The intermediate forms are just as valid.

When drafting the requirements document, we want to choose a form that is most

suitable for software implementation, which may not be the go-to form by the do-

main expert. We have experienced this in both the trajectory and turbulent projects,

which were both three-dimensional problems. Generally speaking, if the program-

ming language or libraries that a project intends to leverage have well-optimized

vector/matrix operations (such as MATLAB or Python with NumPy), then repre-

senting the model in vector form would likely lead to a more efficient implementation,
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compared to looping through each dimension. The domain experts however, may pre-

fer a different form in their own work that may help them control variables, ease hand

calculations/derivations/reasoning, etc. In the case of SynthEddy, the original gov-

erning equation in the paper by Poletto et al. for fluid velocity fluctuation was first

introduced in vector form (Equation 4 in [21]). It was then derived into Levi-Civita

notation (Equation 5 in [21]), enabling researchers to decompose the equations into

each component further in the paper. The developer eventually chose to use the vector

form before any derivation as a starting point in the software documentation (Fig-

ure 3.12) and implementation, to better leverage the aforementioned vector/matrix

optimizations.

Figure 3.12: The eventual chosen form of the theoretical model documented in the
SynthEddy project.

This model variation may also go another direction, namely being too abstract. In

the trajectory simulation project, the original author introduced terms like “specific
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moment” which lacks any direct physical meaning, but helps to reduce complexity of

the equations for hand calculation. As the developer may not have the same level of

domain expertise, such forms may pose a challenge to their understanding compared

to a form with more direct physical meaning.

Since our responsibility as software developers is only to implement the model and

not to do the research, we are not bound by the same constraints and preferences as

the domain expert. Instead, we should choose the form that is either most efficient

to run or easiest to understand and implement/maintain in the code.

While different forms and notations are equivalent in theory, the implication can go

beyond what is easy to read, understand, implement in code or performance impact.

The developer should give their reasons for choosing a certain form in the requirements

document for the domain expert to review and respond to. For example, in the case

of SynthEddy as mentioned above, while the vector form in the software requirements

and implementation is essentially equivalent to the Levi-Civita notation in the paper,

there was a future challenge on the horizon: Because the domain expert used the

paper format in his own work, it was easier to keep everything pointing upward

(positive-z), and then apply a transformation matrix. This is however not needed in

the code as a computer would have no problem calculating vectors in any arbitrary

direction. But because of this preference, the domain expert progressed his work

with the transformation matrix built-in. This could create a future challenge when

we want to integrate his new work into the existing codebase, as it is like a merge

conflict, but between theory and code.
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3.4.5 Requirements Validation

Because our requirements document consists of individual pages instead of a single

monolithic document, they can be reviewed piecemeal by the domain expert, sub-

mitting issues on each page and section as they see fit. If a more formal validation

is needed, this bite-sized structure also fits well into the Task Based Inspection pro-

cess that breaks down the review process into manageable tasks. This was done by

another developer-domain expert paired project [15] [25].

3.5 Testing

While all software requires some form of testing, however informal, to ensure that

it works as intended, for research software testing takes another level of significance.

Since we argue that research software should withstand the same level of scrutiny as

the research publication itself, proper testing routines provides not only confidence

in the software but also credibility to the research that uses it. Previous studies also

showed that this is also one aspect that is particularly challenging for the researchers

themselves due to lack of relevant knowledge [1], and thus requires more attention

from the developer’s side.

In this section, the focus of our discussion is on planning the “System Tests”

(ST) and setting up testing infrastructure, although ideas Continuous Integration

(CI) and related tools are also applicable (and highly recommended) for unit tests.

Irrespective of how exactly the software is implemented, the system tests view the

software as a whole and check if the requirements, as outlined above, are met. We can

defer the making of unit tests, which test individual components of the software, to
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the implementation phase as we write the code, since the requirements do not specify

the inner workings of the software.

3.5.1 Influence on Software Design

In a V-model, testing is considered before the actual design and implementation.

Based on Q6.* (Section 3.2.6) asked during our meeting with the domain expert, we

may have only so many resources at our disposal to create test cases. Thus, our later

design may be influenced by what CAN be tested, rather than blindly ask for what

SHOULD be tested. This necessitates a plan so that testing activities is optimized

to match available resources.

For example, in the trajectory project, for simpler point mass models, there were

plenty of oracles in the form of ballistic calculators available publically. But for the

more complex 6DOF model in question, none was available. Situations like this may

call for a modular design where different models can be plugged in over a common

interface. If tests over the simpler models pass, then we can at least draw the con-

clusion that everything surrounding the model interface is working correctly (input

pre-processing, output post-processing, etc.). The only unknown left is the model

itself, which may also be the research question that the domain expert is trying to

answer anyway, and thus is justifiable that we do not know the answer beforehand.

The “untestable” part in this case should be designed as small as possible, containing

little information beyond what is outlined in the models section of the requirements

document, which would allow us to isolate it and potentially validate it via alternative,

manual techniques, such as via code walkthroughs, code inspections, etc. [2].

This practice of keep the models concentrated to themselves, away from the rest
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of the code is similar to the idea of a dedicated “Domain Layer” in Domain-Driven

Design [12]. Evans strongly discourages “diffusing” domain-related code throughout

the software, although his reasoning went beyond just testing.

As mentioned in section 3.2.6, the domain expert may also suggest some simpler

(degenerate) cases that can be used for testing (Q6.5). For example, in SynthEddy

testing, several test cases used a single large eddy in the center of the entire field.

Cases like this may not be part of the general use cases, but to allow such tests,

the design needs to either support them natively or allows for easy modification of

relevant data from the test scripts.

In our GitHub template, we include a “Connection to Test Cases” section in the

design document, with some hints on how to design the software to facilitate testing

(Figure 3.13)

3.5.2 Testing Tools and Continuous Integration

As mentioned above, while the domain expert may in general support the idea of

rigorous testing, they could lack the technical knowledge of the exact practices. To

future-proof the eventuality that the developer may leave the team and the domain

expert take over, or the software is forked by other potential users, the developer

should set up a robust testing infrastructure as part of the initial development process.

In other words, continuous integration (CI) become a necessity for research software.

Luckily, there are plenty of tools available these days. Our suggested go-to pairing

is GitHub Actions and a testing framework for the programming language of choice.

Some resources include:

• GitHub Actions: Quickstart
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Figure 3.13: The Design Decisions section in our GitHub template, with hints for
the developers.

• For Python: pytest and pytest-cov (for code coverage)

• For MATLAB: Official GitHub Actions

• For C++: GoogleTest or doctest for smaller projects

The actual test cases run with GitHub Actions may be a subset of all the cases,

since for some projects, a full-scale system test may take too long or use more resources

than what is feasible with GitHub Actions (free tier limit). The slower cases can be

included to run on the developer’s local machine, or on a cluster, if that is part of

the plan. Among the SynthEddy test cases, we marked some as “slow” so they are

excluded from the CI workflow.

The GitHub template of this thesis shows an example of how GitHub Actions can

be set up for continuous integration, as it automatically builds the documentation
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website when a commit is made to the “docs” directory. The related instructions

inclined in our template is shown in Figure 3.14. For actual project code, we suggest

having GitHub Action run on every pull requests to the main/master branch.

Figure 3.14: Instructions and further resources on how to set up GitHub Actions for
continuous integration in our template.

3.6 Design and Implementation

The design document is the final piece of the puzzle that the developer should cre-

ate before starting the actual initial implementation. In this section we discuss the

documentations as well as some suggestions on the design itself.

3.6.1 Design Document

The original template by Smith [2] asked for two pieces of design documents: Module

Guide (MG) and Module Interface Specification (MIS), both originally proposed by
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Parnas [26][27]. The MG is a high-level view of the software structure and roles of

each module, while the MIS is a detailed view of the input, output and transitions of

the functions/methods in each module. In practice, our experience with SynthEddy

found that while the MG provided a useful outline (Figure 3.15 as an example), the

MIS was too much overhead for the developer. Moreover, the MIS was only relevant

at the very beginning, since as the project progressed, the implementation diverged

from the MIS, because rather than to first update the documentation, the first instinct

of the developer was to modify the code.

Figure 3.15: An example module as seen in the SynthEddy Module Guide.

For the domain expert, their involvement is already diminishing at this stage.

They may need to review the module layout to get an overall understanding of the

software design, but they are unlikely to go through a design as detailed as the MIS.

Thus, in the spirit of making a more lightweight process, we propose to drop the

MIS entirely, and instead fully leverage the in-code documentation (such as Python

docstrings) functionalities of modern programming languages and integrated devel-

opment environments (IDEs). During the design phase, the developer should create

code files for the planned modules, and populate the function headers along with their

documentations. In a unified format, the function header documentations should in-

clude:

• A brief description of the function
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• The parameters, types and default values (if applicable)

• The return and their types

• If in a class, the states that it modifies (transitions)

• The calculation that it performs, referring to requirements document if neces-

sary

Since the these files are now part of the formal documentation, they also include

author and creation/modification date information at the top.

While some languages are not strongly typed, their documentations can include

formatted type hints, which can be used by linters to catch potential bugs. Examples

include JavaScript in VSCode and the extension for Lua by sumneko.

Figure 3.16 shows an example of such an in-code documentation in SynthEddy.

Since it is good practice to include documentation of each function in the code anyway,

expanding it to serve as part of the design document avoids redundancy and keeps

the documentation up-to-date with the code. The result is that when the design

phase ends, the developer already has a good code skeleton in-hand to start the

implementation.

Another added benefit of this approach, which is becoming increasingly relevant

these days, is that such detailed in-code documentation can provide better context

to AI coding assistants such as GitHub Copilot and Codeium, should the devel-

oper choose to use them. While we should always check and never blindly trust the

suggestions/auto-completions from these tools, especially in the highly specialized

field of research software, they can be a good starting point for the developer in the

implementation phase. This is especially useful in the case when the domain expert
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Figure 3.16: A detailed docstring example in SynthEddy.

who is not that familiar with code takes up the responsibility of development.

3.6.2 Modularity and Performance Advices

A natural way of organizing the software is to mirror the models listed in the require-

ments document, i.e. if something has a physical significance, then we are inclined to

construct it into a module as a class or object. This is inline with the object-oriented
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programming (OOP) paradigm, and supports the idea of encapsulation and informa-

tion hiding. Doing so comes with the benefit of making the software structure more

intuitive to a different reader (including the domain expert), and also future proofs

it to be more easily extendable. However, it may come with a performance cost. Not

only does an overhead exist in creating and calling objects, but it may also be harder

to optimize to work with existing libraries and tools.

This is a hard lesson learned in the SynthEddy project, as mentioned previously

(Section 2.2.4). While the initial design (Figure 3.17) was very easy to understand, as

each “eddy” was an encapsulated object within the “flow field”, faithfully recreating

the physical system, the sheer number of eddies and the number of time each eddy

need to be called made the software impractically slow and memory hungry.

Figure 3.17: The use hierarchy showing the original modular design of SynthEddy,
with each “eddy” being an object use by the “flow field”.

This is the reason why we ask questions like Q4.1-4.2 in the meeting. If we have

determined that the scale of the problem is large enough that may lead to performance

issues, then a proof of concept (PoC) may be necessary to further examine this aspect
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and experiment with different design choices.

Our eventual choice is to break the perfect encapsulation, so that we can arrange

eddy data and write heavily called functions in a way that supports broadcast opera-

tions by NumPy, a library that is optimized for vector/matrix operations. The eddy

“class” then became the eddy “library” module that houses such functions without

holding data itself. Similar measures may be needed if the use of such optimizable

libraries or tools are required.

To salvage some “future-proofing merits” of this new design when the encapsu-

lation is gone, we suggest writing example functions with detailed explanations so

that future developers can take advantage of the optimization the same way you have

done, such as what we have done for the shape functions in SynthEddy, shown in

Figure 3.18.

3.7 User Guide and “Advertising”

As mentioned in the literature review (Section 1.4.1), the domain expert may lack the

interest to commit much time and energy into the software development process, as

they see little benefit beyond the immediate publication. This limits the accessibility

of the software to other potential users, leading to less publicity of the software, and

thus a downward spiral.

3.7.1 Publications

As developers, we understand that the “rite of passage” in the software world is not

always the citation count, but also the number of users, GitHub stars and forks, etc.

79



M.Sc. Thesis—A. Du McMaster University—Software Engineering

Figure 3.18: An example function with detailed explanation in SynthEddy.

While we can certainly communicate this to the domain expert, it is also prudent

that we take some actions to satisfy their academic needs.

An inspiration can be drawn from some recent computer science publications,

where the paper and the software were amalgamated into a single, inseparable entity.

For example, in the GitHub repository of v2e [28], a software for converting con-

ventional videos into “fake” event-based camera videos (which is needed for certain

machine learning scenarios), the README file includes the following section:

Citation

If you use v2e, we appreciate a citation to the paper below. See the v2e

home page for further background papers.
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Y. Hu, S-C. Liu, and T. Delbruck. v2e: From Video Frames to Realistic

DVS Events. In 2021 IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW).

URL: https://arxiv.org/abs/2006.07722, 2021

To reproduce the experiments of the paper, please find this repository.

This way, to reproduce or build upon the research is not only possible, but also

encouraged, and the software is more likely to be used by other researchers in the

field. On the other side, if someone wants to know more about the software and how

it has been used in practice, they can refer to the paper. A win-win scenario for both

the software usage and academic recognition can be achieved.

3.7.2 Quick Start

Beyond the domain experts, other potential users are not going to have the luxury of

“first-party tech support” from the developer. To encourage potential users to try out

the software, we can also draw some inspiration from the Self-Hosting community,

where people host software on their own servers instead of relying on commercial

services. A common theme among many successful self-hosting oriented software is

to include a “Quick Start” section in the documentation, such as in the case of Jellyfin

(a media server), Nginx Proxy Manager (a reverse proxy with GUI), and Vaultwarden

(a password manager). In that community, a quick start is often provided in the form

of a Docker Compose file, so potential users can easily spin up a containerized version

of the software, often with the recommended configurations.

While Docker and Makefile are go-to choices for quick trials in the software realm,

we should recognize that our domain expert and other potential users, should they
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come from a different background, may not be familiar with command line tools or

Linux environments. More likely, they have Windows or MacOS machines, and are

more comfortable with “clicking” things.

For compiled languages like C++, this can be easily solved by providing a pre-

compiled binary for download, but it is a bit more challenging for interpreted lan-

guages like Python or JavaScript, as they usually require a runtime environment (e.g.

conda/pip, Node.js). In the case of SynthEddy, we provided a step-by-step guide to

setting up a conda environment to run the software (Figure 3.19), which the domain

expert, who had never used Python before, was able to successfully follow.

Figure 3.19: An excerpt of the installation guide of SynthEddy.

However, an even easier approach that we learned later (at the cost of some

flexibility), is to package the entire environment with the release, and provide a batch

script to run the software. This has been the case of many recent open-source AI tools

written in Python for a wider, less technical target audience, such as GPT-SoVITS

82

https://github.com/RVC-Boss/GPT-SoVITS


M.Sc. Thesis—A. Du McMaster University—Software Engineering

(a text to speech tool) used by many video creators.

As a part of the quick start, we should also provide some example inputs that

represent the typical use cases, but with expected resource usage within what is

feasible on a personal computer.

After these preparations, the domain expert, as a typical user themselves, can

be invited to test drive the software, with minimum interference from the developer,

which helps validate and improve both the software usability and the documentation.

This also help the developer avoid being trapped in the endless “tech-support” as

mentioned in some developer’s feedback in the literature review (Section 1.4.1).
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Chapter 4

Preliminary Experiment Design

Given the timeframe of this thesis work, we are unable to conduct a full experiment

to evaluate the effectiveness of the proposed framework. Instead, we will propose an

experiment design that can be used to validate our proposal in the future if time and

resources permit. We were, however, able to perform a preliminary validation of the

proposed developer-domain expert meeting, which we will discuss more later in this

chapter (Section 4.3.1).

4.1 Overview

The experiments will attempt to answer the following Research Questions (RQ) re-

garding our proposed framework:

• RQ1: Does it ease communication between domain experts and developers,

especially when there is a knowledge gap between the two parties?
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• RQ2: Can the information gathering process capture most of the immedi-

ately relevant information needed for developing the first version of the soft-

ware/Minimum Viable Product (MVP).

• RQ3: Can a successful piece of software can be developed without requiring sig-

nificant time investment or prior software knowledge from the domain experts?

• RQ4: Does it minimize back-and-forth revisions/rewrites?

We will discuss the Built-in Evaluation (Section 4.2) as part of the framework

itself to help us gauge its effectiveness. Case Studies and Focus Groups (Section

4.3) would be suitable for more in-depth evaluation, while Mock Meetings (Section

4.3.1) can be used to obtain more feedback if commitments to full case studies are

hard to come by. Finally, we also considerComparison to Other Projects (Section

4.4) that use different framework (or lack thereof) using more objective metrics like

code churn rate and the implications.

4.2 Built-in Evaluation

The GitHub repository template allows us to embed some process evaluation questions

(listed below) for the domain experts and developers that use our framework, as

presented in Figure 4.1.
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Figure 4.1: Example Built-in Evaluation page at the end of testing documents in
the GitHub template.

The questions are asked at the end of the major milestones in the development

process of the minimum viable product (MVP), after any issues about the relevant

writings have been raised. Answering “no” to any of the yes/no questions indicates a

major problem; a major problem means a failure of our process, because the problem

cannot be quickly addressed with individual issues, and may require additional time

to be allotted from both parties for further discussions, a situation that we hope to

avoid.

Even without considering the evaluation of our framework, these questions provide
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immediate feedback to the project teams, which should help them improve their soft-

ware development process. For any open-source project that adopts our framework,

the response is public and can then be polled and used to evaluate the effectiveness

of our framework. Since the information is public, the researchers likely do not need

ethics approval.

The Built-In Questions (BIQ) are as follows. The Research Questions (RQ, as in

Section 4.1) that each group of BIQ traces to are listed in parentheses:

• At the end of the information gathering meeting note (RQ1, RQ2):

– For the domain experts:

∗ BIQ1.1: Based on all the questions asked and information you have

provided, are you confident that the developer will have a good un-

derstanding of the problem domain and the model to implement the

software? (yes/no)

∗ BIQ1.2: (optional) If you think there are major information gaps that

you wish to discuss further, please list them as bullet points.

– For the developers:

∗ BIQ1.3: Based on all the information you have collected, do you have

a good picture of what the domain expert wants and your work ahead?

(yes/no)

∗ BIQ1.4: (optional) If there are aspects not covered in the template

that you need to know more about, please list them as bullet points.

• At the end of the requirements document (RQ2):

– For the domain experts:
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∗ BIQ2.1: Do you think this requirements document is a good represen-

tation of what you want the software to do? (yes/no)

∗ BIQ2.2: (optional) If there are any major misunderstanding or omis-

sions, please list them as bullet points.

• At the end of the system testing documentation (RQ2):

– For the domain experts:

∗ BIQ3.1: If the software passes all the system tests listed, would you

be confident to use it in your research and publications? (yes/no)

∗ BIQ3.2: (optional) If you do not think the tests cover all the important

aspects, please list any concerns as bullet points.

• After the minimum viable product is implemented, at the end of the user guide

(RQ3):

– For the domain experts:

∗ BIQ4.1: Were you able to get the software up and running with only

the resources provided in the user guide? (yes/no)

∗ BIQ4.2: (optional) If you had to look for additional resources to get

the software running, or encountered major obstacles, please list them

as bullet points. These may be...

· I had to Google for...

· I asked for help from the developer to...

· It was not working on my computer at all because...
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Note that there are no built-in questions about the design document, as we expect

the involvement of the domain experts to be minimal at this stage.

We will collect the responses from all open-source projects that adopt our frame-

work. For each question, the ratio of “yes” to total responses will be calculated, as

well as the number of bullet points listed for the optional questions if the previous

question was answered “no”. A high ratio of “yes” from any question indicates that

the likelihood of encountering a major hiccup at that stage is low. If the number

of bullet points listed is high, it may indicate that critical information is missing

from the template, and we may need to identify common themes in the responses to

improve our template.

4.2.1 Threat to Validity

Although we cannot require all project teams that come across and adopt our frame-

work to answer these questions (unless they are specifically recruited for our exper-

iment, which we will discuss later), we hope that the usefulness of these questions

will encourage the project teams to answer them. But nonetheless, the response is

entirely voluntary. In addition to a potentially low response rate, we run the risk of a

biased result. To save time, the domain experts and developers may be more inclined

to answer “yes” to the yes/no questions so that they can move on to the next phase

of their projects, unless they feel the problem is severe enough to warrant a “no”

answer and more detailed feedback.
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4.3 Case Study and Focus Group

More focused efforts can be directed toward a few selected projects that are willing

to participate in a more in-depth evaluation. For these projects, we will be in direct

communication with the project teams, similar to how the series of case studies were

conducted by Carver et al. [22]. One such opportunity find candidate projects is on

the CAS 741 course (Development of Scientific Computing Software) at McMaster

University, with additional ethics approval. A pilot study can be conducted with

limited project teams, before expanding to a large data collection exercise.

Our goal is to follow each project team from the initial contact between the do-

main expert and the developer, to the release of MVP, and possibly further versions

with added features or improvements. We will collect incremental feedback from both

parties via a series of questions (aside from the built-in questions) to both gauge the

effectiveness of our framework, and to better understand the dynamics and interac-

tions between the domain experts and developers in general. The full list of questions

will be detailed in Section 4.3.2, which covers every phase of the development process.

We also propose a shortened version of such experiment (Section 4.3.1) that focus on

the beginning (information gathering) to potentially gather data from larger pool of

participants.

4.3.1 Mock Meeting

We realize that participating project teams for our case studies may be hard to come

by. Unlike the studies by Carver et al. [22] where the researchers contacted already

formed, mature teams, we need to target potential candidates that have not yet

started the software development work, and ask them to commit months of their
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effort to use our framework. The willingness by the domain experts, availability of

the developers, and the timing of the project must all align to make this work.

To work around this challenge, we first propose a series of mock information

gathering meetings according to practices detailed in Section 3.2. This meeting is

a new process introduced by our framework and not present in previous works. We

believe the information gathering meeting is a critical step in the success of a research

software project.

Despite calling them “mock meetings,” the participants will still be real domain

experts with problems at hand, and real developers who are interested in writing

research software. The only difference is that (in most cases) they will not proceed

to actually develop the software after the meeting, as it is much easier to recruit

participants who can spare just a few hours of their time to prepare and conduct the

meeting, review the meeting notes, answer BIQ1.1-1.4, and have a discussion with

the organizers about their experience.

This does not preclude the possibilities that some participants, with their sched-

ules permitting, will be interested in continuing the project (or just to finish the

requirements document). In which case, they will be asked to participate the full

case study until at least the release of an MVP.

Trial Run and Threat to Validity

This mock meeting format has already been tested by the author of this thesis, act-

ing as the domain expert of his previous trajectory research project [4]. The mock

developer, who did not have previous knowledge of the meeting template, was asked

to direct the meeting and complete the meeting notes. Due to time constraints, the
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meeting lasted less than an hour with most of the questions covered. The mock

developer reported confidence in gathering the necessary information for the project.

This test run did come with the threat to validity that, while the author pretended

to let the other party direct the meeting, he nevertheless was familiar with the ques-

tions and what “good answers” would look like. The mock developer also identified

that the author’s above average ability to explain technical details in layman’s terms

(as he had previous experience in making educational videos) was a significant factor

in the success of the meeting. This makes us more interested in conducting more mock

meetings with a variety of pairings between real domain experts and developers.

4.3.2 Full Experiment Questions

The following is a list of questions for the full-scale experiment. Part 1 (Team Back-

ground) and 2 (Information Gathering) are also applicable to the mock meetings.

Some of these questions are inspired by [29]. The brackets after the question num-

bers indicate if the question is intended for only the domain experts (DE), only the

developers (Dev), or otherwise both. There questions are supplementary to the Built-

In Questions in the framework (Section 4.2), instead of replacing them.

Team Background

These questions are to be asked at the very beginning of the experiment. Beside

providing demographic information for the experiment, they help us identify if a

knowledge gap exists between the domain expert and the developer in a team (RQ1),

and the level software engineering expertise from the domain expert (RQ3).

• FEQ1.1: What is your current position/title/degrees?
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• FEQ1.2 [DE]: What is your research domain?

• FEQ1.3 [DE]: How long have you been working on this research?

• FEQ1.3 [DE]: Did you have any related publications or other substantial work

prior to this point?

• FEQ1.4 [Dev]: What prior knowledge/experience do you have in the research

domain or its broader field of study (biology, physics, mechanical engineering...),

if any?

• FEQ1.5: What software developing/programming experience do you have, if

any? As in..

– Previous projects and their size (lines of code, number of contributors,

etc.)

– Programming Languages and years of experience.

• FEQ1.6: Are you familiar with any software development tools (e.g. Git,

GitHub, Docker, etc.)?

• FEQ1.7: Are you familiar with any general models or practices in software

development (e.g. waterfall, agile, etc.)?

• FEQ1.8: In the project participating our experiment, how many domain experts

and developers are there? Are there any overlaps?

Information Gathering

These questions are to be asked sometime following the initial technical meeting

between the domain experts and developers, after any lingering issues are addressed
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regarding the meeting notes. They allow us to examine if the communication is

successful (RQ1) and the amount of information passed on to the developer (RQ2).

• FEQ2.1 [DE]: What challenges did you encounter when trying to convey your

research problem to the developer, if any?

• FEQ2.2 [Dev]: What challenges did you encounter when trying to understand

the needs of the domain expert and recording them in the meeting notes, if any?

• FEQ2.3 [Dev]: After following our meeting template, are there any aspects that

you think are missing/lacking?

• FEQ2.4: Did you face any obstacles raising and addressing issues regarding the

meeting notes after the meeting?

• FEQ2.5: What is your overall opinion on the information gathering meeting +

meeting note format? Do you think it saves time, or can it be improved?

Software Requirements and Tests

After the requirements document and system tests are drafted by the developer and

reviewed by the domain expert, the following questions shall be asked. These will

help us evaluate if the information gathered in the previous phase is indeed sufficient

for the developer to proceed with the software development (RQ2), or if the domain

expert and developer still need more back and forth before coming to a mutually

agreed upon document (RQ4).

• FEQ3.1 [Dev]: Was the information gathered previously sufficient for you to

draft the requirements document and system tests? If not, what additional

information did you request from the domain expert?
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• FEQ3.2 [Dev]: Was there any significant piece of information missing due to

the domain expert not being able to realistically provide it (research not done

yet, lack of data, etc.)? Were you able to work around it (e.g. document as-

sumptions/educated guesses, leaving as inputs, etc.)?

• FEQ3.3 [Dev]: What disagreements between you and the domain expert ran

into when drafting the requirements document and system tests, if any? Did

you find common ground and how?

• FEQ3.4 [DE]: At this stage, did you still need to spend any significant amount

of time helping the developer to revise the requirements document or coming

up with test cases? If so, what were the major issues?

• FEQ3.5 [DE]: Do you think these documents are a good format to communicate

and arrive on the same page with the developer in terms of what to build and

how to test it? If not, what format would you prefer or what changes would

you suggest?

Design and Implementation

For the sake of the experiments (RQ3), we should clarify that the domain experts

involvement is entirely optional at this stage until a release is ready for them to trial.

The questions are more focused on the developers, if they can smoothly proceed

with the software development (RQ4), but we will still record the involvement of the

domain expert, if any.

• FEQ4.1 [Dev]: Were you able to design and implement the software solely based

on everything you have so far, or did you need to consult the domain expert for
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additional information? If so, about what?

• FEQ4.2 [Dev]: Did you ever need to go back and revise the requirements doc-

ument or system tests during design or implementation? If so, what were the

issues?

• FEQ4.3 [Dev]: Did you ever need to significantly change the software design

after you started the implementation? If so, what were the issues?

• FEQ4.4 [DE]: Were you in any way involved in the design and implementa-

tion process (e.g. read the design document, discussed architecture with the

developer, etc.)? If so, why did the necessity arise and did you find it helpful?

Released Product

After a Minimum Viable Product (MVP) is released accepted by the domain expert,

the following questions shall be asked. These questions evaluate if the software is

ultimately considered “successful” (RQ3), and whether there were major issues needed

to be ironed out (RQ4) before that point.

• FEQ5.1 [DE]: Were you satisfied with the first version of the software provided

to you, or did you ask for more revisions before accepting it as an MVP? What

were the issues if any?

• FEQ5.2 [Dev]: Did the domain expert ask for any revisions before accepting the

MVP? If so, were they minor changes or did you need to significantly rework

the software or even the requirements document?

• FEQ5.3 [DE]: Is the released software true to your requirements such that it

will aid your research? If not, what deviates from your expectations?

96



M.Sc. Thesis—A. Du McMaster University—Software Engineering

• FEQ5.4 [DE]: Did you find the software easy to use? What would you suggest

improving?

• FEQ5.5 [DE]: Do you think another researcher with similar knowledge as you,

but who is otherwise not affiliated with you or the developer, would be able to

use the software solely based on the user guide provided?

Sustainability

These questions are about what happens after the MVP is released. Given what

possible timeframe that the experiment may run, we might not be able to touch on

this phase.

• FEQ 6.1 [DE]: What additional features or improvements did you request from

the developer after the MVP was released? Were they implemented to your

satisfaction?

• FEQ 6.2 [Dev]: When additional request came, was the whole software, from re-

quirements to design to implementation, more or less prepared for the changes?

If not, what major rework was needed?

• FEQ 6.3: Did the software gain any additional recognition beyond the domain

expert? If so, what feedback was received, if any?

Overall

These questions are to be asked at the end of the experiment to gain some summa-

rizing insights from the participants.
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• FEQ7.1: What was the biggest challenge during the whole development process?

What would you change to remove or mitigate the obstacles?

• FEQ7.2: What is your opinion on various pieces of documents? Do you think

they are helpful or was the overhead too onerous?

• FEQ7.3: What is your overall opinion on the framework? Do you think it saves

time or there can be improvements/more effective ways?

• FEQ7.4: Would you use this framework (with some improvements if necessary)

again for future projects or recommend it to others? Why or why not?

4.3.3 Extended Experiment

If our framework and experiment catches enough interests from potential participants,

we can expand the experiment with controlled variables to evaluate the effectiveness of

specific parts within our framework. For example, some groups may be asked to meet

in a more ad-hoc manner without using our information gathering meeting template.

Other groups may be asked to skip the requirements document (or make a much

simpler version without formally documenting the models), or the Module Guides,

etc. This would allow us to further determine if any of our specific practices are

indeed effective, or if they are overheads without clear benefits and can be simplified

or removed.
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4.4 Comparison to Other Projects

While it can be hard to get a straightforward measurement of the software quality,

especially for research software with a relatively small user base, we can still try

to compare our process to software developed by traditional means. To compare

projects, we propose code churn rate, which is the ratio of lines modified/deleted to

total lines written in a codebase. Sometimes this metric is bracketed within a certain

time frame or between two builds to investigate if there are frequent rewrites. A low

churn rate between requirements being drawn up and the MVP being accepted by

the domain expert can indicate that the requirements are well understood to begin

with, and there is little back and forth or communication breakdowns between the

domain expert and the developer.

It has been shown that metrics such as code churn may be used when software

quality cannot be directly measured [30]. One study has found that high cumulative

code churn negatively impacts maintainability [31]. This is especially relevant for us,

to prepare for the eventuality that the original developer may leave the project, or if

the project is adapted by another team in the future.

The GitHub template includes a script that can quickly calculate the churn rate

with instructions provided. It can also easily be used on other open-source codebases.

For the experiment, we will compare the churn rate for the first release version of the

software that uses our framework, the previous framework proposed by Smith et al. [3]

that we aim to improve upon, and more general research software projects that do not

use any framework. We wish to examine if there is a statistically significant difference

(reduction) in the churn rate (RQ4) between different development processes.

For projects with texted based documentations (e.g. Markdown and LaTeX) in
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their repository, we can also expand the churn rate comparison to the requirements

and design documents. However, such projects would be harder to come by, as not

all projects are documented as rigorously during their development.
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Chapter 5

Conclusion

In this thesis, we examined the pain points existing in today’s research software

development process as shown by several previous studies. These include:

• Lack of software engineering knowledge by the domain experts (researchers),

especially areas like testing and project management [1] [8].

• “Feature creep” as the research evolves and hard to define requirements [8][9][6].

• Poor documentations and little interest in making the software sustainable, due

to lack of recognition and outside user feedback [8].

• Knowledge gap and communication breakdown between the developer and the

domain expert, making it difficult for the developer to grasp the requirements

[9].

As part of the work toward this thesis, a substantial piece of research software,

namely SynthEddy, was presented and discussed. Working with a domain expert in

turbulent flow research, we developed SynthEddy and learned some valuable lessons
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in the process, some echoing the aforementioned pain points. For example, the early

communications between the developer and the domain expert (who was not that well-

versed in software engineering) focused more on getting the theory right. This gave

the developer a false understanding of what would be the typical problem scale when

in use. This information was never well corroborated, leading to initial performance

issues and major redesigns.

These experiences led us to propose an improved research software development

framework in the form of a GitHub template, with its guiding practices discussed in

Chapter 3, which in summary are:

• Taking a pragmatic stance overall, recognizing that the research is evolving and

not everything can be known initially.

• Focusing on the Minimum Viable Product (MVP), and gather the right infor-

mation that would directly contribute to the MVP from the domain expert,

including:

– The problem domain and theory itself.

– Scale of the problem and typical use cases.

– Availability of test cases and data.

• The above allows us to plan for decreasing involvement of the domain expert

as development progresses to avoid taking too much of their time. They would

be more involve in the requirements phase and less so in the design and imple-

mentation phases.

• Spec for the exploratory nature of the research, and design around available

test cases.
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• Measures to ease accessibility for potential future users, and gain more academic

recognition.

This framework, tailored toward smaller research teams with limited resources,

focuses on facilitating communication between the developer and the domain expert,

potentially arriving at requirements and minimum viable product faster, and cutting

down overhead in the development process, which would otherwise discourage the use

of a document driven approach. Possible experiments to evaluate our framework are

laid out in Chapter 4.

5.1 Potential Adoption

We do recognize that the adoption of such a framework is entirely voluntary in the

present days, and most likely out of internal motivations instead of any external

academic needs. The current academic landscape usually does not require the release

and scrutiny of any software that aids the research as part of the publication process.

One may argue that this is a bizarre reality as more and more research projects outside

of computer and software realm are becoming increasingly dependent on software

tools to produce their results, raising questions of their reproducibility. The act of

publishing a research paper itself (as opposed to keeping the knowledge proprietary)

is also more or less inline with the spirit of open-source software, with peer-review and

future works similar to reporting bugs and forking in the software world. Nonetheless,

unless there is a big push from the academic community to change the status quo,

the adoption of such a framework may be slow in the foreseeable future.

We do believe there exists a particular group of stakeholders that would benefit

from the work presented in this thesis: research organizations, such as laboratories and
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university departments. The reason is that individual researchers, such as graduate

students, come and go, but the tools they use for their works, namely the research

software, can be relevant for years. In the case of the author previous trajectory

research project, if there were an agreed-upon standard for him to develop, document

and pass on the software, later researchers could have a much easier time to adapt

it to their needs, instead of having to contact the author years later, with the risk

of not getting a response. Thus, we implore such organizational stakeholders to take

a deeper look at either ours or similar frameworks, and consider adopting them as a

standard practice for research projects with substantial software components.

5.2 Future Work

The most direct future work coming from this thesis is to evaluate our proposed frame-

work by recruiting real research project teams and following their journey through

the software development process. This would allow us to gather real data on the

effectiveness of our framework, and potentially lead to a more refined version of it.

While this thesis focuses on the developer and domain expert pairing scenario,

another possible direction is to explore more on the case where the developer is the

domain expert themselves. This is increasingly more relevant these days as rapid

advancement in tools to assist software development has made it easier than ever for

people with diverse backgrounds to dip their toes into software development to suit

their specific needs. If their goal is to develop sustainable software, what would be the

most effective practices with the least overhead? This need to take into consideration

that they may be developing and learning on an ad-hoc basis at the same time. It

could be a waterfall approach, or an agile one, or something even less rigid, as there
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is no longer a separation between the developer and the domain expert.
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