ASSESSING THE ROBUSTNESS OF META-ANALYSIS FOR THE

FIXED-EFFECT MODEL



ASSESSING THE ROBUSTNESS OF META-ANALYSIS FOR THE FIXED-

EFFECT MODEL

By YUQING HUANG, B.Sc.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the

Requirements for the Degree Master of Science

McMaster University © Copyright by Yuqing Huang, April 2025



McMaster University
MASTER OF SCIENCE (2025)

Hamilton, Ontario, Canada (Department of Mathematics and Statistics)

TITLE: Assessing the Robustness of Meta-Analysis for the

Fixed-Effect Model

AUTHOR: Yuqing Huang

B.Sc. (Statistics)

SUPERVISOR: Dr. Stephen Walter

NUMBER OF PAGES: xxiii, 165

il



Abstract

The current meta-analysis methods for the fixed-effect model with continuous outcome
variables have been developed based on the assumption that the variation of the outcome
variable between patients within treatment groups for each study follows a normal
distribution. However, real-world data does not always follow a normal distribution,

which may lead to unreliable meta-analysis results.

This study uses the Monte Carlo simulation to evaluate robustness by comparing the
analysis results with the truth when the normal assumption is violated; performance
measures include the relative bias of the estimated treatment effect, the coverage
probability of the estimates, and the power and type I error rate of the test of the null
hypothesis. We simulate various non-normal outcome data, including a mixture of
normals, lognormal, gamma, and y? distributions. We examine the impact of the sample
size per study, the number of studies, the magnitude of skewness, and the effect sizes on

the results.

The results show that small studies with highly skewed data provide non-robust meta-
analysis results for a fixed-effect model. Moreover, increasing the number of studies
without sufficient sample sizes worsens the relative bias, coverage probability, and
power. Therefore, this simulation suggests that investigators must be cautious when
applying the fixed-effect model to small studies, particularly with respect to the potential

non-normality of the data.
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This study recommends that investigators include large trials whenever possible. If large
trials are not feasible, they should always assess the normality of the datasets and select
an appropriate meta-analysis method to obtain robust results. This will help ensure that
policies and guidelines are based on reliable evidence, thereby minimizing the risk of

implementing ineffective and harmful policies and guidelines.
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Chapter 1 Introduction

Meta-analysis is a statistical method for synthesizing data from various independent
studies (Higgins, et al., 2024). According to Borenstein, Hedges, Higgins, and Rothstein
(2009), meta-analysis aims to identify the consistency of effect sizes, accurately estimate
effect sizes, and measure the extent of variance across studies included in the synthesis.
They also noted that, compared to other synthesis methods, such as narrative reviews,
meta-analysis enhances transparency by systematically weighting studies and can manage
a large number of studies. Meta-analysis has been employed in many fields, including
medicine, psychology, and ecology (Weeks, George, Maclure, & Stewart, 2016; Roberts
et al., 2019; Plieninger, Hui, Gaertner, & Huntsinger, 2014). In the past 10 years, there
have been 174843 results found from searching Ovid MEDLINE(R) with the search
terms (“‘meta-analys®*.mp.” or “meta analys*.mp.”) and “systematic review/”, indicating a

great interest in conducting meta-analyses.

The fixed- and the random-effects models are the most widely used meta-analysis
methods. The fixed-effect model assumes all studies share the same true effect size and
that the observed effect sizes across individual studies differ solely due to within-study
variation, and the random-effects model accounts for both within- and between-study
variation (Borenstein, Hedges, Higgins, & Rothstein, 2009). These meta-analysis
methods with continuous outcome variables have been developed based on the
assumption that the variation of the outcome variable between patients within treatment

groups for each study follows a normal distribution (Jackson & White, 2018; Higgins,
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White, & Anzures-Cabrera, 2008). However, there are many situations where the
outcome data are non-normal, especially in the medical field, for example, blood
biomarker levels (C-reactive protein), scale questionnaires, and BMI (body mass index).
According to Higgins, White, and Anzures-Cabrera (2008), the Central Limit Theorem
ensures that the meta-analytical result remains valid with a sufficiently large sample size
per study with a skewed outcome variable. Unfortunately, many meta-analyses often
include small studies or a small number of studies. For example, a meta-analysis about
therapeutic options for rare rheumatic diseases included a study with only 22 patients
(Bender, et al., 2020). Moreover, one study shows that the median number of studies
included in a meta-analysis among 22435 eligible meta-analyses is 3 (Davey, Turner,
Clarke, & Higgins, 2011). Therefore, identifying violations of the normality assumption

and their impact on the meta-analysis is crucial for investigators to obtain robust results.

Two previous simulation studies have examined the impact of non-normality in primary
studies on the performance of meta-analysis, each with a distinct focus (Kontopantelis &
Reeves, 2010; Sun & Cheung, 2020). Kontopantelis and Reeves concentrated on
comparing the performance of different random-effects models, including DerSimonian
& Laird, Biggerstaff & Tweedie, Sidik and Jonkman, Q-based, maximum-likelihood,
profile-likelihood, and permutation methods. On the other hand, Sun and Cheung
explored the influence of the standardized mean difference as an estimate of effect size
using DerSimonian & Laird random-effects models. However, neither study paid much
attention to the fixed-effect model when the distribution of the study effect deviated from

normality. The details of these two studies will be presented in Chapter 2. Therefore, this
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thesis offers insights into the robustness of meta-analysis methods for fixed-effect models

with continuous outcome variables.

The study's primary objective is to evaluate the robustness of the meta-analysis for a
fixed-effect model when the normality assumption is violated. I explore how various non-
normal distributions of the outcome variable influence the estimation and inference of the
meta-analysis through a simulation study. Additionally, I investigate the impacts of the
magnitude of the effect size within each outcome variable distribution, the number of
studies, and the number of patients per group per study on the meta-analysis results. By
examining different conditions, we aim to inform investigators about when they should
take extra caution while interpreting the meta-analysis results so that they can make
policies and guidelines based on reliable evidence and reduce the risk of implementing

ineffective and harmful policies and guidelines.

The paper consists of five chapters. Chapter 1 explores the general concept of meta-
analysis and the issue of the normality assumption. Chapter 2 offers a concise
introduction to calculating a mean difference and a standardized mean difference, along
with the steps of meta-analysis within a fixed-effect model. Furthermore, it presents two
relevant previous simulation studies and discusses their limitations. Chapter 3 details the
simulation design, the selection of distributions for the outcome variable, and the
evaluation criteria. Chapter 4 showcases the simulation results based on different
distributions of the outcome variables. Finally, Chapter 5 summarizes the findings,
addresses the limitations of the simulation, and considers future directions for examining

the robustness of the meta-analysis.



Chapter 2 Literature Review

In this chapter, I first introduce two different effect size measures that researchers use for
continuous outcomes. Then, I present the standard procedure of meta-analysis for a fixed-
effect model. Lastly, I discuss the issues raised by the non-normality of the data and
describe two previous simulation studies in detail and how they considered non-

normality, particularly the differences in the deviations from normality from this thesis.

2.1 Mean Difference and Standardized Mean Difference

Borenstein (2009) introduces the effect size as “a number that reflects the magnitude of
the relationship between two variables.” In hypothesis testing, the effect size can be
treated as a parameter that takes 0 when the null hypothesis is true and any other values
to imply the degree of departure from the null hypothesis when false (Cohen, 1988).
Also, Cohen (1988, p11) stated that the effect size needs to be quantified and assessed
using a specific unit suitable for the statistical analysis. The mean difference (MD) and
the standardized mean difference (SMD) are two common effect sizes that measure
continuous outcomes in the meta-analysis. The details of these two effect size measures

are provided in the following sections.

2.1.1 Mean Difference (MD)

The MD is used when all studies report the continuous outcome using the same

measurement scales and units, and these units are meaningful in practice (Takeshima, et
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al., 2014). Moreover, MD is preferred because of its interpretability if the absolute

magnitude of the difference between groups is the main interest.

According to Borenstein (2009), for each study, the population mean difference is defined

as:
A=y — Uz, (1)

where |, and p, are the population means of the two independent groups. From statistical

algorithms in Review Manager (2022), to estimate A, we have:

with the standard error:

sd? sds
SE(MD) = |—+ —=. 3)
n n;

m, and m, is the sample mean of the two groups, sd; and sd, are the sample standard

deviations, and n; and n, are the sample size of the two groups.

2.1.2 Standardized Mean Difference (SMD)

In clinical trials, it is common that different instruments can measure essentially the same
outcome; for example, the most widely used assessments for the quality of life are MOS
SF-36 (Medical Outcomes Study Short-Form 36), Euro EQ-5D, SF-12 (12-Item Short-
Form Health Survey), and Visual Analogue Scale EQ-VAS (Pequeno, De Araujo Cabral,

Marchioni, Lima, & De Oliveira Lyra, 2020). Therefore, the SMD is introduced in
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situations where different studies use different measurement instruments. The difference
can be referred to as a different scale and direction. The SMD can also indicate the
magnitude of the effect when the scale is unfamiliar (Borenstein, 2009), since Cohen
(1988) suggests an SMD of 0.2 as a small effect, an SMD of 0.5 as a moderate effect, and

an SMD of 0.8 as a large effect.

2.1.2.1 Cohen’s d

According to Borenstein (2009), the population standardized mean difference is defined

as:

8:H1_H2, (4)
o

where 0; = 0, = 0, and 0, and o, are the population standard deviations of the two

groups. Therefore, Cohen’s d is estimated by:

d = w' (5)
Spool

where S0, is the sample pooled standard deviation,

ny, — 1)sd? + (n, — 1)sd?
Spool :\[( ! ) . (n, ) 2. (6)
Tl1 + le - 2
Also, the standard error of d is given by:
n, +n, d?
SE(d) = + . 7
() \[ nyn, 2(ny; +ny) 7
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2.1.2.2 Hedge’s g
Hedge’s g is introduced because the estimate of Cohen’s d gives a slight bias when
dealing with small samples, leading to an overestimation. From statistical algorithms in

Review Manager (2022), Hedge’s g is given by:

o my—m, <1 3 ) )
g Spool 4(111 + nz) -9/’
with the standard error:
n, +n, g°
SE = + . 9
(g) \[ n1n2 Z(Tll + le - 3.94) ( )

For both Cohen’s d and Hedge’s g, they assume the underlying population standard
deviations of the two groups are the same. Moreover, this thesis uses Hedge’s g to

estimate the SMD for the later simulation.

However, Hopkins and Rowlands (2024), noted that different SDs leads to different
estimation of the effect size. They introduced various pooled SDs (standard deviation)
including, post-only SDs (the outcome is measured only once after the intervention), pre

SDs and pre-post SDs (the outcome is measured before and after the intervention).

2.2 Meta-Analysis

As mentioned in Chapter 1, meta-analysis is a statistical synthesis method that pools
results from various independent studies (Higgins, et al., 2024). Two major meta-analysis

models are introduced: the fixed-effect model and the random-effects model. These
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models are based on different assumptions. The fixed-effect model assumes that all
studies share the same true effect size, considering only the within-study variation. In
contrast, the random-effects model assumes that the true effect size varies across all
studies, incorporating both within-study and between-study variation (Borenstein,
Hedges, Higgins, & Rothstein, 2009). Since this thesis exclusively considers the fixed-
effect model, I will only present the mathematics of the fixed-effect model in the

following section.
2.2.1 Fixed-Effect Model
In the fixed-effect model, let ¥; be the observed effect for the i*" study, then we have:
Y, =0+e¢, (10)

where 0 is the true effect, and ¢; is the sampling error for the it" study. €; is assumed to
follow a normal distribution, that €; ~ N (0, 6%), where o7 is the within-study variance.

Therefore, we have ¥;|@ ~ N(8, 6%) (Jackson & White, 2018; Hedges & Vevea, 1998).

According to statistical algorithms in Review Manager (2022), the estimated overall
effect is given by:

—~

k
- i—1W; Y,
Y — Zl—l l l’ (11)

i=1 Wi
where w; is the estimated weight for the i*" study, giving:

1

=, 12
Vi SR 42
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with

SE(Y) = #. (13)

,/Z{'cﬂ Wi

Then, we have the 100(1 — )% confidence interval for ¥ as follows:
Y + 24, xSE(Y) (14)

where a is the significance level and is usually set to 0.05. z,/, is the (1 — a/ 2)th
quantile of the standard normal distribution. Moreover, to test whether there is an overall
effect under the null hypothesis that there is no overall effect of the intervention, we have

the test statistic given by:

Z =—=. (15)

2.3 Non-normality

As mentioned, the fixed-effect model assumes that the between-patient study effects are
normally distributed around a common true effect with only within-study variance and no
systematic variation in the treatment effect among studies. However, real medical, social
science, and education data are not always normal. For instance, Micceri (1989)

evaluated different outcome measurements in psychology and found all of them
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statistically significantly non-normal, with a 0.01 significance level with the
Kolmogorov-Smirnov test of normality. Moreover, according to Blanca, Arnau, Lopez-
Montiel, Bono, & Bendayan (2013), among 693 measures used in psychological and
educational studies, 74.4% of them are slightly or moderately non-normal, with both
skewness and kurtosis ranging from 0.26 to 1.25. In addition, from a systematic review
by Bono, Blanca, Arnau, & Gémez-Benito (2017), the most common non-normal
distributions after screening 262 studies in the fields of health, education and social
science are gamma, negative binomial, multinomial, binomial, lognormal, and
exponential. In the following subsections, I introduce the possible sources of non-
normality of the data and the possible problems caused by the violation of non-normality

in meta-analysis provided with two simulation studies that tackle the similar issue.

2.3.1 Causes of Non-normality

The first possible reason for data to be non-normal is the nature of the outcome
measurements, including the design of the outcome measures and the ceiling or floor
effect. For example, a 7-point Global Overall Symptom scale results in discrete data
collection following a multinomial distribution (Micceri, 1989). Moreover, outcomes like
C-reactive protein (CRP) levels, blood pressure, and cholesterol levels have a lower
bound (greater than 0) but can also have extremely high values, leading to a right-skewed
distribution. A study examined the CRP levels of 2275 males and 3832 females and found
that the distribution of the CRP levels is highly skewed to the right, given that most CRP
values are less than 2mg/liter (Yamada, et al., 2001). Another reason might be that a

subgroup within a treatment group responds differently to the same intervention, leading

10
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to a bimodal distribution. For example, different genetic features might influence the

response of antihypertensive treatment (Mellen & Herrington, 2005).

2.3.2 Problems of Non-normality

First, Wilcox (2005) mentioned that the standard error estimation is not robust to non-
normality, followed by an example of heavy-tailed distributions giving an overestimation
of the standard error, leading to a wider confidence interval of the mean difference. Also,
existing studies have shown that the estimation of the SMD and its standard error is not
robust to non-normality in a single study (Kelley, 2005; Wilcox & Keselman, 2003).
Furthermore, they found that the coverage probability departs from the nominal level.
Therefore, when Sun and Cheung (2020) examined the effect of non-normality in primary
studies using the SMD in the meta-analysis, they summarized that the non-robustness of
the pooled effect size could result from the accumulation of the non-robustness of the
SMD estimator with non-normal data in the primary studies. Moreover, the non-
robustness of the pooled effect size may arise from incorrectly estimated pooled sample
standard errors, which in turn leads to biased study weights. In addition to non-normality,
Hopkins and Rowlands (2024) observed that most meta-analyses used either
inappropriate SDs or applied inconsistent SDs across studies, which introduces bias in

estimating the effect size even for normally distributed data.

A previous simulation by Sun and Cheung (2020) assessed the meta-analysis's robustness
using SMD with the DerSiMonian-Laird (DL) random-effects models when the data from

the primary studies deviate from normal. They evaluated six combinations of
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distributions of two groups chosen from normal, exponential, and reversed exponential
distributions. In addition, they chose 6 effect sizes, 5 standard deviation ratios, 4 sample
sizes per study, 5 study sizes, and 7 heterogeneity variances, resulting in 4200 conditions
for each distribution combination, and each condition had 5000 replicates. They included
the bias, MSE, and coverage probability for outcome measures. They found that non-
normality increases the bias and MSE, especially when the distributions of the two
groups are oppositely skewed. In addition, the coverage probability deviated more from
the nominal levels with non-normal data, particularly with oppositely skewed data.
However, in this simulation, the authors did not cover other common distributions that
might occur in a study, such as gamma and lognormal distributions. Moreover, the cases
where the two groups are oppositely skewed are rare in the parallel intervention study
(e.g. randomized control trials). Another limitation of this study is that it did not

investigate the influence of the magnitude of the deviation from normality on the result.

Another simulation by Kontopantelis and Reeves (2010) assessed the performance of the
meta-analysis against the normality assumption and simulated the study's effect size
using various distributions instead of the primary data. Also, this study has a different
focus from Sun and Cheung’s study (2020), where Kontopantelis and Reeves (2010)
compared the performance of the fixed-effect model and seven other random-eftfects
models through the coverage probability, the power probability, and overall effect
estimation. They generated 25 different unimodal distributions through different
combinations of skewness and kurtosis, three different bimodal distributions of equal

probability (p = 0.5), and three extreme distributions such as uniform, ‘U shaped ’ beta,
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and ‘double spike’. The number of studies ranges from 2 to 35, each with 10000
replications. They did not include the results of cases where the effect size distributions
are non-normal with no between-study variation. However, with a slight between-study
variation of H? being 1.18, the coverage probability for the fixed-effect model is below
0.92 for effect sizes of all distributions, even when the number of studies exceeds 26,
where H? is defined as the heterogeneity measure least affected by the number of studies;
a value of 1 indicates homogeneity and a value greater than 1 indicates heterogeneity. The
major difference between Kontopantelis and Reeves’ simulation and this simulation is
that they focus more on violating the normality assumption on the between-study
variation by randomly simulating the effect size for each study by a non-normal
distribution. In addition, the simulation design cannot assess the impact of the different

degrees of effect size on the performance of meta-analysis.

Furthermore, neither simulation study investigated the robustness of the fixed-effect
models when the data from primary studies were non-normal. Also, these two studies did
not discuss the individual effect of the number of studies and sample size per study, nor
did they discuss more sample sizes or more studies when the total sample size is fixed.
Therefore, this thesis aims to address these questions and evaluate how the extent of non-
normality of each distribution of outcome variables impacts the bias, coverage
probability, power and type I error. In this simulation, I will include the distributions
commonly seen in health and social science studies, such as lognormal, gamma, and y?
distributions. The mixture of normal distributions is also included to mimic the situation

where two groups follow different distributions and a subgroup of non-responders is
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present in the intervention group. The next chapter illustrates the details of the simulation

design.
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Chapter 3 Method

3.1 Simulation

A Monte Carlo simulation is conducted by R to assess the robustness of the meta-analysis
against non-normality of the outcome variable. The simulation study considers the impact
of four factors for each distribution of the outcome variable: the number of studies, the
number of patients per group per study, the skewness of the outcome variable and the
effect sizes. We will vary the number of patients in each study group (assumed to be
equal between the treatment group and control group), n;. = n;; = 5,10, 20,50, where
n;c is the number of patients in the control group from the i study, and n;, is the
number of patients in the intervention group from the i*" study. We will also set up
different numbers of studies k =2, 5, 10, 20 to be included in the meta-analysis. For each
distribution, we will change the parameters to obtain the effect of skewness on the
estimated effect. Also, we will compare the impact of different effect sizes on the results
while keeping other parameters constant. The effect size will be defined to be 0.2 (small
effect), 0.5 (moderate effect), and 0.8 (large effect) by Cohen’s d, which is given by

Equation 5.

Moreover, we will calculate the overall effect size in a meta-analysis by the mean
difference and standardized mean difference using the generic inverse variance method

for the fixed-effect model. We include the standardized mean difference to represent the
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situation where the studies assess the same outcome using different measurement scales.

Each meta-analysis is replicated 10000 times.

3.2 Distributions

We will assess the following distributions for the outcome variable a mixture of normals,

log-normal, gamma, and x2.

3.2.1 The Mixture of Normal Distributions

The mixture of normal distributions represents the situation when a subgroup of patients
responds differently to the treatment in the intervention group. The patient outcomes of
the control group and the intervention group for the i*" study are generated via

N(uy,0) and p x N(uq, 0) + (1 — p) * N(u,, o) respectively, where p; is the mean of
the outcome for the patients in the control group and the subgroup of patients who do not
respond to the treatment in the intervention group, i, is the mean of the outcome for the
patients in the intervention group who respond to the treatment. p is the proportion of the
subgroup of patients which does not respond to the treatment in the intervention group
and o is the between-patient variance within those subgroups. Within a mixture of normal
distribution, we will set up the following: first, different values of p will be investigated
to show how the various magnitude of deviation from normality influences the results of
the analysis, and p will be set as 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1, while
other parameters will be kept constant. Second, the true overall effect will be considered
as 4, — py and (1 — p) * (u, — pq) separately for mean difference and d and (1 — p) * d

for standardized mean difference, where (1 — p) * (u, — 1, ) is the overall difference of
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the two groups. Meanwhile, u, — p; covers the difference between the two groups, but

also focuses on the responders of the intervention group.

3.2.2 Lognormal Distribution

We compare the deviation from the normal distribution through skewness and kurtosis.

From Johnson, Kotz, and Balakrishnan (1994), if X is followed by a lognormal (i, a2), it

has a PDF of
Py(x) = w%exp(—%). (16)
The expected value of X is
exp (,u + %2) @a7)
and the variance of X is
(exp(0?) — Dexp(u + a?2). (18)

For a log-normal distribution, the skewness and kurtosis change according to the o.

Skewness is

(exp(0?) + 2)/exp(02) — 1, (19)

and kurtosis is

exp(40?) + 2exp(302) + 3exp(20?%) — 3. (20)

Table 3.1 shows the corresponding skewness and kurtosis values for a given value of o.
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o skewness kurtosis
0.1 0.30 3.16
0.2 0.61 3.68
0.3 0.95 4.64
0.4 1.32 6.26
0.5 1.75 8.90
0.6 2.26 13.27
0.7 2.89 20.79
0.8 3.69 34.37
0.9 4.75 60.41

1 6.18 113.94

Table 3.1 value of skewness and kurtosis with give o for lognormal distribution

From Table 3.1, the shape is nearly symmetric when o approaches 0, and skewness and

kurtosis increase rapidly when o > 0.5; thus, we will focus on the cases with o < 0.5

when evaluating the results. In the simulation, we choose 0.1, 0.2, 0.3, 0.4, and 0.5 as the

values for o to indicate different magnitudes of deviation from a skewness of 0. The

simulation for lognormal distribution will be set up in two ways. The first method

simulates lognormal (0, 6?) for the control and intervention groups, then adds a constant

c for the intervention group. The constant ¢ is calculated below to match the

corresponding Cohen’s d values, and the true treatment effect is ¢, where c is

d *[{(exp(d2) — 1) exp(2u + 02)} (21)
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for mean difference and the true treatment effect is d for standardized mean difference.

The second method simulates lognormal (0, a2) for the control and lognormal (i, %) for

the intervention groups. u is calculated as

1n(1+ 1—(1—a)2>’ (22)

1—a

where

d?(exp(c?) — 1)
a = .

23
: 23)
The values of u for the corresponding values of o and d can be found in Table 3.2.
Therefore, the true treatment effect for the second method is
2
exp (%) (exp(w) — 1) (24)

for mean difference and d for standardized mean difference.

o u(d=0.2) u(d=05) u(d=0.8)
0.1 0.020 0.050 0.080
0.2 0.040 0.101 0.163
0.3 0.061 0.154 0.249
0.4 0.083 0.210 0.341
0.5 0.107 0.271 0.444

Table 3.2 values of u for different o,d values
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3.2.3 Gamma Distribution

Like lognormal distribution, we compare the deviation from the normal distribution
through skewness and kurtosis. From Johnson, Kotz, and Balakrishnan (1994), if X is

followed by a gamma (a, 8), it has a PDF of

1 -1
Py(x) = F(a)ﬁ“x e b, (25)

For the Gamma distribution, the skewness and kurtosis solely depend on the shape

parameter a. Skewness and kurtosis are shown below:
Skewness = 2//q, (26)
Kurtosis = 3 + 6/q, 27)

which means if a — oo, the skewness of gamma distribution is equivalent to the zero
skewness of the normal distribution. « is calculated to have the same skewness as a
lognormal distribution, to indicate different magnitudes of deviation from a normal
distribution. The values of skewness and corresponding a are listed in Table 3.3. Like the

simulation for the lognormal distribution, we will construct the simulation using the same

Skewness a
0.30 43.93
0.61 10.60
0.95 4.44
1.32 2.29
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1.75 1.31

Table 3.3 the value for a with given skewness

two methods: simulating gamma distribution with the same parameters for two groups,
then adding a constant c to the intervention group, and simulating two gamma

distributions with different parameters. The constant c is calculated as

d *+/(ap?) (28)

to match the required effect size values and c is also the true treatment effect when using
the mean difference. {3 is the scale parameter for the gamma distribution and is set to 1 in
both study groups for the first method. Also, the true treatment effect when using
standardized mean difference is d. For the second method, the outcome variable for the
control group will be simulated from gamma(a, B.), where B, is 1. The outcome

variable for the intervention group will be simulated from gamma(«, ;), where

(aBC + B, ’ond2 — %)
Be = — (29)
“=7

Thus, the true treatment effect for the second method is a(B; — B.) , with a(B; — Bc) > 0
for mean difference and d for standardized mean difference. The corresponding values of

B with different effect sizes and different skewness are shown in Table 3.4.

skewness  B.(d = 0.2) B:(d = 0.5) B:(d = 0.8)
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0.30 1.031 1.078 1.129
0.61 1.063 1.167 1.283
0.95 1.100 1.272 1.480
1.32 1.142 1.403 1,755
1.75 1.193 1.578 2.193

Table 3.4 values for B, with different effect sizes and skewness

3.2.4 x? Distribution

The x? distribution is a special case of the gamma distribution. If a random variable

follows a x? distribution with n degrees of freedom, then it is equivalent to following a
gamma (d'Tf', 2). The skewness depends on the degrees of freedom for the x? distribution.

For convenience, we will simulate two x?~(d. f.), and add a constant ¢ to the
intervention group to assess different effect sizes, where d.f. = 2a. Also, d. f. is rounded

to the nearest integer. The values for a are the same as the ones we use for the gamma

distribution, and ¢ = d * 1/ (2d. f.), where c is also the true effect for the mean

difference. The true effect for the standardized mean difference is d.

A summary table of all the algebra for different cases within the same distribution of the
outcome variables in terms of the skewness, parameters, and corresponding true effect for

mean difference and the standardized mean difference is provided in the Appendix.
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3.3 Evaluation Criteria

To assess robustness, we will look at the relative bias of the estimated treatment effect
from the true treatment effect, the coverage probability of the confidence interval for the
estimated treatment effect, the power, and the type I error of the hypothesis test of the

treatment effect.

3.3.1 Relative Bias

Relative bias is chosen to evaluate the accuracy of the estimated effect because it better
compares the estimated effect across difference effect sizes. The estimated relative bias is

the proportion of absolute bias to the true effect and is calculated as

lative bi —1§: 55 (30)
reiLative lClS—]Vl1 8
i=

in the simulation, where N is the number of replications, &, is the estimated effect of each

replication and 6 is the true effect. The further the relative bias is away from zero, the
worse the estimate is, and vice versa. A positive relative bias indicates an overestimation
of the true effect, and a negative relative bias indicates an underestimation of the true
effect. Negative relative bias would probably be preferred by investigators because it

gives more conservative treatment effect estimates and minimizes type I error rates.
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3.3.2 Coverage Probability

The estimated coverage probability is the proportion of the confidence intervals that
include the true effect in the 10000 replications, and it represents how well the confidence
interval captures the true effect. It is measured as follows in the simulation:

Y I <8< UY)
- .

(31)

coverage probability =

L; and U; are the lower and upper bound of the 95% confidence interval of the estimated
effect in the i*" replication respectively, and I(*) is the indicator function, which equals 1
if 5, falls between the confidence interval and equals 0 otherwise. The 95% coverage
probability is desired and any deviation from 95% indicates a potential issue. However,
an acceptable range of coverage probability is 92.5% to 97.5%, which is obtained from
Bradley (1978), and the coverage probability outside of this range represents insufficient

estimation of true effect.

3.3.3 Power

The power is the ability of a test to detect the true effect, also known as the probability of
rejecting the null hypothesis (§ = 0) when the alternative hypothesis (6 # 0) is true. In
our simulation, the power is estimated as

YL I(p <)
N )

(32)

power =
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where p; is the p-value of the i*" iteration, and « is the significance level, set to 0.05. The
acceptable range for power is 80% and above, which is usually the desired level when
calculating power for a clinical trial. The higher the power, the more sensitive the test is,

and vice versa.

3.3.4 Typel Error

Type I error rate is the proportion of times of rejecting the null hypothesis when it is true.
In the simulation, we calculate the type I error rate when the true effect is zero, as
follows:

YL I(p < @)
N )

(33)

typel error =

Ideally, the type I error rate should be close to 0.05. However, in this study, we will use a
more liberal criterion suggested by Bradley (1978) where 0.5a < type I error < 1.5a,
and is 0.25 to 0.75. A type I error rate greater than this range suggests an increased false
positive rate, and a type I error rate less than this range suggests that the test is

underpowered.
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Chapter 4 Results

This chapter contains the simulation results of different distributions of the outcome
variable. The results are presented by different distributions of the outcome variable.
Within each distribution, the results are separated into two parts, using the mean
difference and the standardized mean difference to estimate the overall treatment effect,
respectively. Furthermore, the relative bias and the coverage probability of the estimated
overall treatment effect, as well as the power and the type I error rate of the meta-
analysis, are presented in each section. As mentioned in Chapter 3, the coverage
probability is taken to be acceptable when it falls between 0.925 and 0.975; the power is
acceptable when greater than 0.8; and the acceptable range for the type I error rate is
between 0.025 to 0.075. In addition, the table of the results for the type I error rate of the

meta-analysis will be provided in the Appendix.

4.1 The Mixture of Normal Distributions

The relative bias is undefined when p=1, with (1 — p) * (u; — p.) being the true
treatment effect, given p, — p. # 0. Therefore, we will only investigate the cases when p

equals 0 to 0.9.
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4.1.1 Mean Difference

4.1.1.1 (1 — p) * (n; — n.) as the True Effect

From Figure 4.1.1 and Figure 4.1.2, the relative bias slightly decreases as the number of
studies and patients increases. A fluctuation of the relative bias with changing p is
observed for a small effect size, especially when p is greater than 0.5 and small sample
sizes (k=2, 5 or n=5, 10). The fluctuation disappears as the effect size increases. In most
cases where the relative bias is beyond 5%, the patients per group per study are 5 with
large p (0.8 and 0.9). As shown in Figure 4.1.3, with a fixed total sample size of 200,

different combinations of k and n do not noticeably impact the relative bias.

27



M.Sc. Thesis — Yuqing Huang McMaster — Mathematics and Statistics

relative bias with change in p with n=5,10,20,50 relative bias with change in p with n=5,10,20,50 relative bias with change in p with n=5,10,20,50
k=2, TE =0.2*(1-p) k=2, TE =0.5*(1-p) k=2, TE = 0.8*(1-p)
02 02 02
0.15 0.15 0.15
” 0.1 » 0.1 ” 0.1
2 0.05 2 0.05 £ 0.05
I 2 o 2 o —= <
5 008 So0s 0 01 02 03 04 05 05 07 S0 0 01 02 03 04 05 06 07 08 0o
= 01 B X | = 0
0.15 0.15 0.15
02 02 02
P P P
—a—tiasn-s —A—biasn-10 —A—bizsn-20 —8—biasn-50 —a—biasn-s —8—biasn10 —A—biasn-20 —&—biasn-50 —a—bigsn-s —8—biasn10 —A—biasn-20 —8—biasn-50
relative bias with change in p with n=5,10,20,50 relative bias with change in p with n=5,10,20,50 relative bias with change in p with n=5,10,20,50
k=5, TE =0.2*(1-p) k=5, TE =0.5*(1-p) k=5, TE =0.8*(1-p)
02 02 02
0.15 0.15 0.15
» 0.1 ” 0.1 ” 0.1
£ oo £ o0 £ o0s
E 2 o E o ﬁ
5 0.05 S.005s 0 01 02 03 04 05 06 07 08 S.00s 0 01 02 03 04 05 06 07 O ]
=01 =01 S o01
0.15 0.15 0.15
02 02 02
P P P
—#—biasn=s —8—biasn=10 —mbiasn=20 —embizsn<50 —e—biasne5 —8—biasne10 —mbiasn=20 =—emmbiasn=50 —#—biasn=5 —e=—biasn=10 =—mbiasn=20 =—embizsns50
relative bias with change in p with n=5,10,20,50 relative bias with change in p with n=5,10,20,50 relative bias with change in p with n=5,10,20,50
k=10, TE =0.2*(1-p) k=10, TE =0.5*(1-p) k=10, TE =0.8*(1-p)
02 02 02
0.15 0.15 0.15
L o1 L 01 L o1
£ oo £ oo £ oo
£ £ = .
5 005 S.00s 0 01 02 03 04 05 08 07 F.o0s 0 01 02 03 04 05 06 07 OBNLS
2 0.1 £ -0.1 £ 0.1 \
015 015 015
02 02 02
P P P
—#—biasn=s —e—biasn=10 —#mbiasn=20 —e=biasn=50 —e—biasne5 —8—biasn10 —#mbiasn=20 —#=bizsn=50 —e—biasn=5 —8—biasn=10 —#mbiasn=20 —e=biasn=50
relative bias with change in p with n=5,10,20,50 relative bias with change in p with n=5,10,20,50 relative bias with change in p with n=5,10,20,50
k=20, TE =0.2*(1-p) k=20, TE =0.5*(1-p) k=20, TE =0.8*(1-p)
0.2 0.2 0.2
0.15 0.15 0.15
L o1 L 01 Lot
£ o0 £ oo £ oo
g 0 g 0 2 [ —
%oos o 01 02 03 04 05 068 07 ) qus o 01 02 03 04 05 06 07 08 ;g _%qgg 0 01 02 03 04 05 06 07 OB —gs
S o1 =01 S o01
015 015 015
02 02 02
P P P
—e—biasn=5 —8=—biasn-10 —@mbiasne20 —#mbiasn=50 —e—biasn5 —e—biasnel0 —@mbiasn=20 —=biasn=50 —e—biasn=5 —8—biasn-10 =—@mbiasn=20 —#mbiasn=50

Figure 4.1.1The relative bias in the estimated treatment effect, as a function of p and n
across different effect sizes, with a mixture of normals data using the mean difference for
a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.1.2 The relative bias in the estimated treatment effect, as a function of p and k
across different effect sizes, with a mixture of normals data using the mean difference for
a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.1.3 The relative bias in the estimated treatment effect, as a function of p and the
different combinations of k and n across different effect sizes, with a mixture of normals
data using mean difference for a fixed total sample size of 200.

From Figure 4.1.4, with a fixed value of k at all levels, the coverage probability is the

closest to 0.95 when n increases. With a fixed value of n at 5, a smaller k gives better
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coverage probability, as shown in Figure 4.1.5. However, the impact of k on the coverage
probability gradually disappears as n increases. The effect size and p have a negligible
effect on the coverage probability. Whenever the coverage probability is below 0.925, n is
always equal to or less than 10. The coverage probability is closest to 0.95 when
including the fewest studies and most patients per study with a fixed total sample size of

200, which is shown in Figure 4.1.6.
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Figure 4.1.4 The coverage probability in the estimated treatment effect, as a function of p
and n across different effect sizes, with a mixture of normals data using the mean
difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.1.5 The coverage probability in the estimated treatment effect, as a function of p
and k across different effect sizes, with a mixture of normals data using the mean
difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.1.6 The coverage probability in the estimated treatment effect, as a function of p
and the different combinations of k and n across different effect sizes, with a mixture of
normals data using the mean difference for a fixed total sample size of 200.

As shown in Figure 4.1.7 and Figure 4.1.8, the power increases as the number of studies,

patients per study, and the effect size increases. The power declines as p increases and
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drops sharply from 1 when p > 0.5, especially with a larger sample size and effect size.
The power is greater than 0.8 when the sample size exceeds 800 for a small effect size.
With a moderate effect size, the power exceeds 0.8 when the total sample size exceeds
200. With a large effect size, the power exceeds 0.8 when the total sample size exceeds
50. In addition, when the power exceeds 0.8, the corresponding range of p increases as
sample sizes and effect sizes increase. Figure 4.1.9 shows that with a fixed total sample

size of 200, there is no detectable impact from varied combinations of k and n on power.
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Figure 4.1.7 The power in the test, as a function of p and n across different effect sizes,
with a mixture of normals data using the mean difference for a fixed value of k at all
levels of 2, 5, 10, and 20.
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Figure 4.1.8 The power in the test, as a function of p and k across different effect sizes,
with a mixture of normals data using the mean difference for a fixed value of n at all
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Figure 4.1.9 The power in the test, as a function of p and different combinations of k and
n across different effect sizes, with a mixture of normals data using the mean difference
for a fixed total sample size of 200.

The type I error rate falls outside the 0.025 and 0.075 range when n is 5 or 10 with

varying values of k. Moreover, it is above 0.05 in most cases.
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4.1.1.2 p; — Y. as the True Effect

Figure 4.1.10 and Figure 4.1.11 show a slight fluctuation in the relative bias with small k
and n for a small effect size (d=0.2). The relative bias moves farther from zero to 100%
as p increases. Moreover, the relative bias is mostly negative when p, — pc is the true
effect. The absolute value of relative bias is below 5% in the negative direction only
when p=0 for all values of n, k, and effect sizes. From Figure 4.1.12, there is no
detectable effect of different combinations of k and n on the relative bias when the total

effect size is fixed at 200.
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Figure 4.1.10 The relative bias in the estimated treatment effect, as a function of p and n
across different effect sizes, with a mixture of normals data using the mean difference for
a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.1.11 The relative bias in the estimated treatment effect, as a function of p and k
across different effect sizes, with a mixture of normals data using the mean difference for
a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.1.12 The relative bias in the estimated treatment effect, as a function of p and
different combinations of k and n across different effect sizes, with a mixture of normals
data using the mean difference for a fixed total sample size of 200.

Figure 4.1.13 and Figure 4.1.14 show that the coverage probability decreases as p

increases and decreases more rapidly as n, k, and the effect size increase. Most cases give
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a coverage probability below 0.925. Whenever the coverage probability is within the
acceptable range, p is equal to and less than 0.3, as long as the sample size is sufficiently
large. The coverage probability is below 0.95 in all situations. From Figure 4.1.15, with a
fixed total sample size of 200, a higher sample size per study led to coverage probability
closer to 0.95 for small p and smaller effect sizes. The coverage probability dropped

sharply from 0% to 100% with larger effect sizes as p changes.
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Figure 4.1.13 The coverage probability in the estimated treatment effect, as a function of
p and n across different effect sizes, with a mixture of normals data using the mean
difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.1.14 The coverage probability in the estimated treatment effect, as a function of
p and k across different effect sizes, with a mixture of normals data using the mean
difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.1.15 The coverage probability in the estimated treatment effect, as a function of
p and different combinations of k and n across different effect sizes, with a mixture of
normals data using the mean difference for a fixed total sample size of 200.

As shown in Figure 4.1.16, Figure 4.1.17, and Figure 4.1.18, the trend of power and type

I error rate is the same as when the true treatment effect is (1 — p) * (uy — Ue).
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Figure 4.1.16 The power in the test, as a function of p and n across different effect sizes,
with a mixture of normals data using the mean difference for a fixed value of k at all

levels of 2, 5, 10, and 20.
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Figure 4.1.17 The power in the test, as a function of p and k across different effect sizes,
with a mixture of normals data using the mean difference for a fixed value of n at all
levels of 5, 10, 20, and 50.
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Figure 4.1.18 The power in the test, as a function of p and different combinations of k and
n across different effect sizes, with a mixture of normals data using the mean difference
for a fixed total sample size of 200.
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4.1.2 Standardized Mean Difference

4.1.2.1 (1 — p) = d as the True Effect

Figure 4.1.19 shows that the relative bias approaches zero as n increases with a fixed
value of k at all levels. When n=5, the relative bias moves farther from zero as p

increases to 0.9 for a small effect size. There is a negligible effect of p on the relative bias
for moderate and large effect sizes. As shown in Figure 4.1.20, with a fixed value of n at
5, a smaller k gives a better relative bias as it is the closest to zero. However, with a larger
value of fixed n, the effect of k on the relative bias is minor. When n is 20 and 50, the
relative bias is the worst at p = 0.5 and is the best when p = 0 or 1. Whenever the relative
bias is greater than 10%, n is 5 for most cases. Moreover, most situations have a negative
relative bias. With a fixed total sample size of 200, fewer studies and more patients per

study give a better relative bias, as shown in Figure 4.1.21.
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Figure 4.1.19 The relative bias in the estimated treatment effect, as a function of p and n
across different effect sizes, with a mixture of normals data using the standardized mean
difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.1.20 The relative bias in the estimated treatment effect, as a function of p and k
across different effect sizes, with a mixture of normals data using the standardized mean
difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.1.21 The relative bias in the estimated treatment effect, as a function of p and
different combinations of k and n across different effect sizes, with a mixture of normals
data using the standardized mean difference for a fixed total sample size of 200.

As illustrated in Figure 4.1.22, with a fixed value of smaller k (k= 2, 5), a larger n gives

better coverage probability, and p does not impact the coverage probability. When with a

43



M.Sc. Thesis — Yuqing Huang McMaster — Mathematics and Statistics

fixed larger k, the trend of the coverage probability is similar to the smaller k with a small
effect size (d=0.2). However, the coverage probability increases from 0.95 as p increases
with a large effect size (d=0.8). From Figure 4.1.23, with a fixed value of n at all levels,
the coverage probability does not change much when changing k or p for small and
moderate effect sizes. When n is 5, the coverage probability falls outside the acceptable
range and is above 0.975 for most cases. The coverage probability is the closest to 0.95
and is the most stable with increasing p when the fewest studies and most patients are
included in the meta-analysis for a fixed total sample size of 200 as shown in Figure

4.1.24.
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Figure 4.1.22 The coverage probability in the estimated treatment effect, as a function of
p and n across different effect sizes, with a mixture of normals data using the
standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.1.23 The coverage probability in the estimated treatment effect, as a function of
p and k across different effect sizes, with a mixture of normals data using the
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.1.24 The coverage probability in the estimated treatment effect, as a function of
p and different combinations of k and n across different effect sizes, with a mixture of
normals data using the standardized mean difference for a fixed total sample size of 200.

The trend of power with changing n, k, effect sizes, and p is similar to the one using the

mean difference, which is presented in Figure 4.1.25 and Figure 4.1.26. However, the
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power is greater than 0.8 when the sample size exceeds 1000 for a small effect size. With
a large effect size, the power exceeds 0.8 when the total sample size exceeds 80. As
illustrated in Figure 4.1.27, with a fixed total sample size of 200, there is a slightly lower

power with k=20 and n=5 for moderate and large effect sizes.
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Figure 4.1.25 The power in the test, as a function of p and n across different effect sizes,
with a mixture of normals data using the standardized mean difference for a fixed value
of k at all levels of 2, 5, 10, and 20.
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Figure 4.1.26 The power in the test, as a function of p and k across different effect sizes,
with a mixture of normals data using the standardized mean difference for a fixed value
of n at all levels of 5, 10, 20, and 50.
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Figure 4.1.27 The power in the test as a function of p and different combinations of k and
n across different effect sizes, with a mixture of normals data using the standardized mean
difference for a fixed total sample size of 200.

When n is 5 and k is greater than 2, the type I error rate falls outside the acceptable range.

Moreover, it is below 0.05 in most cases.
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4.1.2.2 d as the True Effect

From Figure 4.1.28, the relative bias is slightly worse when n decreases with a fixed
value of k. k does not have a noticeable impact on the relative bias when n is fixed, as
shown in Figure 4.1.29. The relative bias moves away from 0 to 100% as p increases.
Furthermore, effect sizes have a negligible impact on relative bias. The relative bias is
less than 5% only when p = 0. In addition, the relative bias is negative in most cases. As
presented in Figure 4.1.30, with a fixed total sample size of 200, fewer studies and more

patients per study give better relative bias, but the effect is small.
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Figure 4.1.28 The relative bias in the estimated treatment effect, as a function of p and n
across different effect sizes, with a mixture of normals data using the standardized mean
difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.1.29 The relative bias in the estimated treatment effect, as a function of p and k
across different effect sizes, with a mixture of normals data using the standardized mean
difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.1.30 The relative bias in the estimated treatment effect, as a function of p and
different combinations of k and n across different effect sizes, with a mixture of normals
data using the standardized mean difference for a fixed total sample size of 200.

Figure 4.1.31 and Figure 4.1.32 indicate that the coverage probability declines as p

increases, and this effect is more obvious as n, k, and effect sizes grow larger. In addition,
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the coverage probability starts to drop at a lower p as n, k, and effect sizes increase. The
number of cases where the coverage probability falls in the acceptable range is less than
those outside. With a smaller p and a large total sample size, the coverage probability is
within the acceptable range. With a fixed total sample size of 200, the coverage
probability dropped sharply from 0% to 100% with larger effect sizes as p changes.
Different combinations of k and n have an undetectable effect on the coverage

probability, as illustrated in Figure 4.1.33.
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Figure 4.1.31 The coverage probability in the estimated treatment effect, as a function of
p and n across different effect sizes, with a mixture of normals data using the
standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.1.32 The coverage probability in the estimated treatment effect, as a function of
p and k across different effect sizes, with a mixture of normals data using the
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.1.33 The coverage probability in the estimated treatment effect, as a function of
p and different combinations of k and n across different effect sizes, with a mixture of
normals data using the standardized mean difference for a fixed total sample size of 200.

The power is the same when using (1 — p) * (4 — W), as shown in, Figure 4.1.34,

Figure 4.1.35, and Figure 4.1.36.
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Figure 4.1.34 The power in the test, as a function of p and n across different effect sizes,
with a mixture of normals data using the standardized mean difference for a fixed value
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Figure 4.1.35 The power in the test, as a function of p and k across different effect sizes,
with a mixture of normals data using the standardized mean difference for a fixed value
of n at all levels of 5, 10, 20, and 50.
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Figure 4.1.36 The power in the test, as a function of p and different combinations of k and
n across different effect sizes, with a mixture of normals data using the standardized mean
difference for a fixed total sample size of 200.
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4.2 Lognormal Distribution

4.2.1 Mean Difference

4.2.1.1 Adding a Constant

As shown in Figure 4.2.1, with a fixed value of k at 20, the absolute relative bias is below
1% in all cases. With a fixed value of n at 50, the relative bias is within 1% with different
values of k, effect sizes, and skewness, as presented in Figure 4.2.2. There is an
undetectable effect of skewness. The effect sizes have little impact, whereas the relative
bias is more stable and smaller with larger effect sizes. The absolute relative bias is below
3% in all cases. Figure 4.2.3 shows that different combinations of k and n do not have an

important impact on the relative bias with a fixed total sample size of 200.
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Figure 4.2.1 The relative bias in the estimated treatment effect, as a function of o and n
across different effect sizes, with adding a constant to lognormal data using the mean
difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.2.2 The relative bias in the estimated treatment effect, as a function of o and k
across different effect sizes, with adding a constant to lognormal data using mean
difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.2.3 The relative bias in the estimated treatment effect, as a function of o and
different combinations of k and n across different effect sizes, with adding a constant to
lognormal data using the mean difference for a fixed total sample size of 200.

With a fixed value of k at all levels, the coverage probability is the closest to 0.95 when

n=50 and is the farthest from 0.95 when n=5, as illustrated in Figure 4.2.4. Figure 4.2.5
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shows that with a fixed value of n at 5, the coverage probability increases as k decreases.
However, when n=5, the coverage probability is below 0.925 in all cases. With other
values of n, k does not have an important change in the coverage probability. Skewness
and effect sizes have an undetectable impact on the coverage probability. In all cases, the
coverage probability is below 0.95. With a fixed total sample size of 200, the coverage
probability is ideal (closest to 0.95) when k=2 and n=50 and is below the acceptable

range when k=10, n=10, and k=20, n=5, as shown in Figure 4.2.6.
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Figure 4.2.4 The coverage probability in the estimated treatment effect, as a function of ¢
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and n across different effect sizes, with adding a constant to lognormal data using the
mean difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.2.6 The coverage probability in the estimated treatment effect, as a function of ¢
and different combinations of k and n across different effect sizes, with adding a constant
to lognormal data using the mean difference for a fixed total sample size of 200.

Figure 4.2.7 and Figure 4.2.8 indicate that the power increases as the number of studies,

patients per study, and the effect size increases. With a fixed value of k, there is a slight
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increase in power as skewness grows when n=5 with moderate and large effect sizes.
With a fixed value of n, there is a slight increase in power as skewness increases with
smaller k values. With a small effect size, the power exceeds 0.8 when the total sample
size exceeds 800. With a moderate effect size, the power exceeds 0.8 when the total
sample size exceeds 200. With a large effect size, the power exceeds 0.8 when the total
sample size exceeds 50. With a fixed total sample size of 200, there is no detectable
impact from varied combinations of k and n on power with moderate and large effect

sizes, as shown in Figure 4.2.9.
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Figure 4.2.7 The power in the test, as a function of o and n across different effect sizes,
with adding a constant to lognormal data using the mean difference for a fixed value of k
at all levels of 2, 5, 10, and 20.
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Figure 4.2.8 The power in the estimated treatment effect, as a function of o and k across
different effect sizes, with adding a constant to lognormal data using the mean difference
for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.2.9 The power in the test, as a function of o and different combinations of k and
n across different effect sizes, with adding a constant to lognormal data using the mean
difference for a fixed total sample size of 200.

If n=20, 50, the type I error rate is acceptable. The type I error rate are above 0.05 in all

situations.
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4.2.1.2 Both Lognormal with Different ps

With a fixed value of k at all levels, the relative bias moves away from zero as n
decreases and skewness increases; moreover, the relative bias goes worse faster with
smaller n (n=5, 10), shown in Figure 4.2.10. In Figure 4.2.11, with a fixed value of small
n (n=5, 10), the relative bias is better when k is small. With other fixed values of n, the
relative bias has a negligible change with k. Whenever the absolute value of relative bias
is greater than 10%, n is 5, and skewness is the largest. Effect sizes have an unimportant
impact on relative bias. With a fixed total sample size of 200, the relative bias is more
robust around zero against skewness when k=2, n=50, and is the worst when k=20, n=5,

as presented in Figure 4.2.12.
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Figure 4.2.10 The relative bias in the estimated treatment effect, as a function of ¢ and n
across different effect sizes, with simulating two lognormal distributions with different
parameters using the mean difference for a fixed value of k at all levels of 2, 5, 10, and
20.
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Figure 4.2.11 The relative bias in the estimated treatment effect, as a function of ¢ and k
across different effect sizes, with simulating two lognormal distributions with different
parameters using the mean difference for a fixed value of n at all levels of 5, 10, 20, and
50.
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Figure 4.2.12 The relative bias in the estimated treatment effect, as a function of ¢ and
different combinations of k and n across different effect sizes, with simulating two
lognormal distributions with different parameters using the mean difference for a fixed
total sample size of 200.
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As shown in Figure 4.2.13, with a fixed value of k at all levels, the coverage probability
increases as n increases. With a fixed value of n at 5, the coverage probability increases
as k decreases. The same trend is observed with all n values at a large effect size (d=0.8),
as presented in Figure 4.2.14. The effect of skewness on the coverage probability is minor
for a small effect size. However, the coverage probability decreases as skewness
increases with larger k, smaller n for moderate and large effect sizes (d=0.5, 0.8). When
n=>5, the coverage probability is below 0.925 in all cases. From Figure 4.2.15, with a
fixed total sample size of 200, the coverage probability is closest to 0.95 when k=2 and

n=50 and is below the acceptable range when k=20 and n=5.
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Figure 4.2.13 The coverage probability in the estimated treatment effect, as a function of
o and n across different effect sizes, with simulating two lognormal distributions with
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10, and 20.
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Figure 4.2.15 The coverage probability in the estimated treatment effect, as a function of
o and different combinations of k and n across different effect sizes, with simulating two
lognormal distributions with different parameters using the mean difference for a fixed
total sample size of 200.
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Figure 4.2.16 and Figure 4.2.17 show that the power increases as the number of studies,
patients per study, and the effect size increases. There is no important effect of skewness
on the power. With a small effect size, the power exceeds 0.8 when the total sample size
exceeds 1000. With a moderate effect size, the power exceeds 0.8 when the total sample
size exceeds 200. With a large effect size, the power exceeds 0.8 when the total sample
size exceeds 50. As illustrated in Figure 4.2.18, with a fixed total sample size of 200,
varied combinations of k and n do not have an important impact on the power with

moderate and large effect sizes.
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Figure 4.2.16 The power in the test, as a function of ¢ and n across different effect sizes,
with simulating two lognormal distributions with different parameters using the mean
difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.2.17 The power in the test, as a function of ¢ and k across different effect sizes,
with simulating two lognormal distributions with different parameters using the mean
difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.2.18 The power in the test, as a function of ¢ and different combinations of k
and n across different effect sizes, with simulating two lognormal distributions with
different parameters using the mean difference for a fixed total sample size of 200.
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4.2.2 Standardized Mean Difference

4.2.2.1 Adding a Constant

From Figure 4.2.19, with a fixed value of k at all levels, the relative bias is closest to zero
as n increases. With a fixed value of n at all levels, the relative bias is closest to zero as k
decreases with skewness less than 1 (¢ = 0.1, 0.2, and 0.3), as shown in Figure 4.2.20.
The skewness has a greater effect on the relative bias with smaller n (n=5), and the
relative bias moves closer to zero as the skewness increases. Effect sizes have an
undetectable effect on the relative bias. There are only 4 cases where the absolute relative
bias is more than 5%, when k=5 and n=5, with one case having a moderate effect with
skewness of 0.3 (o = 0.1), and three cases having a large effect with skewness of 0.3,
0.61 (0 = 0.2), and 0.95 (o = 0.3) respectively. Most relative bias is negative, indicating
an underestimation of the estimated effect. As presented in Figure 4.2.21, with a fixed

total sample size of 200, the relative bias is the farthest from 0 when k=20 and n=5.
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Figure 4.2.19 The relative bias in the estimated treatment effect, as a function of ¢ and n
across different effect sizes, with adding a constant to lognormal data using the
standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.2.20 The relative bias in the estimated treatment effect, as a function of o and k
across different effect sizes, with adding a constant to lognormal data using the
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.2.21 The relative bias in the estimated treatment effect, as a function of ¢ and

different combinations of k and n across different effect sizes, with adding a constant to

lognormal data using the standardized mean difference for a fixed total sample size of
200.

With a fixed value of k at all levels, the coverage probability is closest to 0.95 with larger

n and smaller skewness, as shown in Figure 4.2.22. The skewness does not noticeably
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affect the coverage probability when the effect size is small (d=0.2). For moderate and
large effect sizes (d=0.5, 0.8), the coverage probability increases as skewness increases
when n =5, but it decreases as skewness increases for other n values. As presented in
Figure 4.2.23, with a fixed value of small n, a larger k results in a less stable coverage
probability as skewness changes. Conversely, with a fixed value of large n, the coverage
probability remains stable across all k values as skewness increases at a small effect size.
When n =20 and 50, the coverage probability decreases from 0.95 as skewness increases
for moderate and large effect sizes. Whenever the coverage probability is outside the
acceptable range, n = 5, and d = 0.2. Furthermore, the coverage probability does not drop
below 0.925 when it falls outside the acceptable range. From Figure 4.2.24, with a fixed
total sample size of 200, the coverage probability is closest to 0.95 whenk =2 and n =
50, given small and moderate effect sizes. Additionally, when k = 10 and n = 10, the

coverage probability is robust against changes in skewness for a large effect size.
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Figure 4.2.23 The coverage probability in the estimated treatment effect, as a function of
o and k across different effect sizes, with adding a constant to lognormal data using the
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.2.24 The coverage probability in the estimated treatment effect, as a function of
o and different combinations of k and n across different effect sizes, with adding a
constant to lognormal data using the standardized mean difference for a fixed total

sample size of 200.

Figure 4.2.25 and Figure 4.2.26 indicate that the power increases with the number of

studies, patients per study, and effect size. Skewness has a negligible effect on the power.
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For a small effect size, the power exceeds 0.8 when the total sample size is 800 or more.
For a moderate effect size, the power exceeds 0.8 when the total sample size is 200 or
more. For a large effect size, the power exceeds 0.8 when the total sample size exceeds

80.
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Figure 4.2.25 The power in the test, as a function of ¢ and n across different effect sizes,
with adding a constant to lognormal data using the standardized mean difference for a
fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.2.26 The power in the test, as a function of ¢ and k across different effect sizes,
with adding a constant to lognormal data using the standardized mean difference for a
fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.2.27 The power in the test, as a function of ¢ and different combinations of k
and n across different effect sizes, with adding a constant to lognormal data using the
standardized mean difference for a fixed total sample size of 200.

80



M.Sc. Thesis — Yuqing Huang McMaster — Mathematics and Statistics

When using SMD, if k =2 and n = 5 and 10, the type I error rate is above 0.075, and if k
=5, 10, 20, and n = 5, it is below 0.025. Skewness has no undetectable effect on the type

I error rate.

4.2.2.2 Both Lognormal with Different ps

From Figure 4.2.28, with a fixed value of k at all levels, a larger n gives better relative
bias. With a fixed value of n at all levels, a smaller k gives better relative bias, as shown
in Figure 4.1.29. The skewness does not have a detectable effect on the relative bias with
a small effect size and larger n (n=20, 50). There is a negligible trend of relative bias with
effect sizes. Whenever the absolute relative bias is greater than 10%, n is 5. Moreover,
most cases give a negative relative bias. With a fixed total sample size of 200, the relative
bias is closest to zero when k=2 and n=50 and is the farthest from zero when k=20 and

n=>5, as presented in Figure 4.2.30.
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Figure 4.2.28 The relative bias in the estimated treatment effect, as a function of ¢ and n
across different effect sizes, with simulating two lognormal distributions with different
parameters using the standardized mean difference for a fixed value of k at all levels of 2,

5, 10, and 20.
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Figure 4.2.29 The relative bias in the estimated treatment effect, as a function of o and k
across different effect sizes, with simulating two lognormal distributions with different
parameters using the standardized mean difference for a fixed value of n at all levels of 3,
10, 20, and 50.
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Figure 4.2.30 The relative bias in the estimated treatment effect, as a function of ¢ and
different combinations of k and n across different effect sizes, with simulating two
lognormal distributions with different parameters using the standardized mean difference
for a fixed value of n at all levels of 200.
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From Figure 4.2.31, with a fixed value of k at all levels, the coverage probability is
around 0.95 with large n. Moreover, it increases from 0.95 as n decreases and skewness
increases, especially for a large effect size. From Figure 4.2.32, with a fixed value of n at
all levels, the larger k results in a better coverage probability and more stable against
skewness for small and moderate effect sizes (d=0.2, 0.5). The coverage probability
increases from 0.95 for a large effect size as skewness increases when n =20 and 50.
Whenever the coverage probability is above 0.975 or below 0.925, n is 5. The coverage
probability is usually above 0.975 if it falls outside of the acceptable range. Figure 4.2.33
indicates that the coverage probability is ideal for a fixed total sample size of 200 when

more patients per study and fewer studies are included.
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Figure 4.2.31 The coverage probability in the estimated treatment effect, as a function of
o and n across different effect sizes, with simulating two lognormal distributions with
different parameters using the standardized mean difference for a fixed value of k at all
levels of 2, 5, 10, and 20.
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Figure 4.2.32 The coverage probability in the estimated treatment effect, as a function of
o and k across different effect sizes, with simulating two lognormal distributions with
different parameters using the standardized mean difference for a fixed value of n at all
levels of 5, 10, 20, and 50.
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Figure 4.2.33 The coverage probability in the estimated treatment effect, as a function of
o and different combinations of k and n across different effect sizes, with simulating two
lognormal distributions with different parameters using the standardized mean difference
for a fixed total sample size of 200.
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As shown in Figure 4.1.34 and Figure 4.1.35, the power increases as the number of

studies, patients per study, and effect size increase. Skewness has a negligible effect on

the power. For a small effect size, the power exceeds 0.8 when the total sample size is

1000 or more. For a moderate effect size, the power exceeds 0.8 when the total sample

size is 200 or more. For a large effect size, the power exceeds 0.8 when the total sample

size exceeds 80.
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Figure 4.2.35 The power in the test, as a function of ¢ and k across different effect sizes,
with simulating two lognormal distributions with different parameters using the
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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4.3 Gamma Distribution

4.3.1 Mean Difference

4.3.1.1 Adding a Constant

From Figure 4.3.1, with a fixed value of k at 2 and 5, the absolute relative bias is slightly
greater when n=5 and 10 with a small effect size. The relative bias becomes smaller and
more stable when k=10, 20 and the effect size increases. From Figure 4.3.2, with a fixed
value of n = 5 and 10, the absolute relative bias is larger when k=2 and shows greater
fluctuation with the change in skewness. When n=20, 50 and the effect size increases,
there is a negligible effect of k on the relative bias. From Figure 4.3.3, with a fixed total
sample size of 200, the absolute relative bias is below 2% and is slightly smaller with
moderate and large effect sizes. There is an undetectable effect of different combinations
of k and n and skewness on the relative bias for a fixed total sample size of 200. When
the effect size is 0.8, the relative bias is below 1% for all cases. When two identical
gamma distributions are simulated and a constant is added to the treatment group, the

skewness has an undetectable effect on the relative bias for most cases.
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Figure 4.3.1 The relative bias in the estimated treatment effect, as a function of @ and n
across different effect sizes, with adding a constant to gamma data using the mean
difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.3.2 The relative bias in the estimated treatment effect, as a function of a and k
across different effect sizes, with adding a constant to gamma data using the mean
difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.3.3 The relative bias in the estimated treatment effect, as a function of @ and
different combinations of k and n across different effect sizes, with adding a constant to
gamma data using the mean difference for a fixed total sample size of 200.

From Figure 4.3.4, with a fixed value of k at all levels, the coverage probability is the

lowest when n=5 and is lower than 0.9. There is a slight increase in coverage probability
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with increasing skewness when n=5. As presented in Figure 4.3.5, with a fixed value of n
at 5, the coverage probability falls below 0.925 and increases as k decreases. For other
fixed n values, there is no important trend in coverage probability with k, skewness and
effect sizes. There are only three cases when the coverage probability is around 0.95,
which are k=2, 10, n=50, d=0.2 and k=5, n=50, d=0.8. These three cases all have a small
skewness. Except for these three cases, the coverage probability is all below 0.95.
Moreover, whenever the coverage probability is below 0.925, n =5 and 10. With a fixed
total sample size of 200, the coverage probability is the best (closest to 0.95) with the

least number of studies and the most patients per study, as shown in Figure 4.3.6.
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Figure 4.3.5 The coverage probability in the estimated treatment effect, as a function of a
and k across different effect sizes, with adding a constant to gamma data using the mean
difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.3.6 The coverage probability in the estimated treatment effect, as a function of a
and different combinations of k and n across different effect sizes, with adding a constant
to gamma data using the mean difference for a fixed value of k at all levels of 200.

The power increases as the number of studies, patients per study, and the effect size

increases. As shown in Figure 4.3.7, with a fixed value of k, there is a slight increase in
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power as skewness increases when n=5 for moderate and large effect sizes. As presented
in Figure 4.3.8, with a fixed value of n, there is a slight increase in power as skewness
increases with different values of k. With a small effect size, the power exceeds 0.8 when
the total sample size equals or exceeds 800. With a moderate effect size, the power
exceeds 0.8 when the total sample size equals or exceeds 200. With a large effect size, the

power exceeds 0.8 when the total sample size exceeds 50.
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Figure 4.3.7 The power in the test, as a function of a and n across different effect sizes,
with adding a constant to gamma data using the mean difference for a fixed value of k at
all levels of 2, 5, 10, and 20.
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Figure 4.3.8 The power in the test, as a function of « and k across different effect sizes,
with adding a constant to gamma data using the mean difference for a fixed value of n at
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Figure 4.3.9 The power in the test, as a function of a and different combinations of k and
n across different effect sizes, with adding a constant to gamma data using the mean
difference for a fixed total sample size of 200.

The type I error rate is acceptable if k=5, 10, 20 and n=20, 50. When k=2, n=50, with

skewness greater than 1 and when k=5, n=10, with skewness greater than 0.05, the type |

96



M.Sc. Thesis — Yuqing Huang McMaster — Mathematics and Statistics

error rate is also in the acceptable range. The type I error rate are above 0.05 in all

situations. In addition, the type I error rate decreases as the skewness increases.

4.3.1.2 Both Gamma with Different 3s

From Figure 4.3.10, with a fixed value of k at all levels, the relative bias is closer to zero
with larger n. From Figure 4.3.11, with a fixed value of n at all levels, more studies
introduce a greater relative bias. When n=20 and 50, the absolute relative bias is below
10% for all k and effect sizes. In other situations, the absolute relative bias can reach 30%
with highly skewed (a = 1.31) outcome variables. As shown in Figure 4.3.12, with a
fixed total sample size of 200, the relative bias is closer to zero with fewer studies and
more patients per study included. The relative bias is negative when the effect size is

small and moderate (d=0.2, 0.5) and is positive when the effect size is large in all cases.
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Figure 4.3.10 The relative bias in the estimated treatment effect, as a function of a and n
across different effect sizes, with simulating two gamma distributions with different
parameters using the mean difference for a fixed value of k at all levels of 2, 5, 10, and
20.
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Figure 4.3.11 The relative bias in the estimated treatment effect, as a function of a and k
across different effect sizes, with simulating two gamma distributions with different
parameters using the mean difference for a fixed value of n at all levels of 5, 10, 20, and
50.
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Figure 4.3.12 The relative bias in the estimated treatment effect, as a function of a and
different combinations of k and n across different effect sizes, with simulating two gamma
distributions with different parameters using the mean difference for a fixed total sample

size of 200.

With a fixed value of k at all levels, the coverage probability increases towards 0.95 as n

increases, as illustrated in Figure 4.3.13. With a fixed value of n at all levels, the coverage
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probability increases with smaller k as shown in Figure 4.3.14. For all cases, there is a
negligible trend in the coverage probability with increasing skewness for a small effect
size. However, with moderate and large effect sizes, the coverage probability decreases as
skewness increases. Whenever the coverage probability is below 0.925, n=5 and 10 for
most cases. With other values of n and a skewness greater than 1 (o = 2.29, 1.31), the
coverage probability is below 0.925. The lowest coverage probability can be as low as 0.4
with k=20, n=5, and d=0.8, with the largest skewness. All the cases have a coverage
probability under 0.95. Given in Figure 4.3.15, with a fixed total sample size of 200, the
coverage probability is ideal and does not change with skewness when k=2, n=50. When

k=20, n=5 and k=10, n=10, the coverage probability decreases as the skewness increases.
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Figure 4.3.13 The coverage probability in the estimated treatment effect, as a function of
a and n across different effect sizes, with simulating two gamma distributions with
different parameters using the mean difference for a fixed value of k at all levels of 2, 5,
10, and 20.
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Figure 4.3.14 The coverage probability in the estimated treatment effect, as a function of
a and k across different effect sizes, with simulating two gamma distributions with
different parameters using the mean difference for a fixed value of n at all levels of 5, 10,
20, and 50.
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Figure 4.3.15 The coverage probability in the estimated treatment effect, as a function of

a and different combinations of k and n across different effect sizes, with simulating two

gamma distributions with different parameters using the mean difference for a fixed total
sample size of 200.

The power increases as the number of studies, patients per study, and the effect size

increases. As shown in Figure 4.3.16, with a fixed value of k, there is a slight decrease in
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power as skewness increases when n=>5 for all effect sizes. Given in Figure 4.3.17, With a
fixed value of n, there is an undetectable trend in power as skewness increases with
different values of k. With a small effect size, the power exceeds 0.8 when the total
sample size equals or exceeds 800. With a moderate effect size, the power exceeds 0.8
when the total sample size equals or exceeds 200. With a large effect size, the power

exceeds 0.8 when the total sample size exceeds 50.
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Figure 4.3.16 The power in the test, as a function of @ and n across different effect sizes,
with simulating two gamma distributions with different parameters using the mean
difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.3.17 The power in the test, as a function of a and k across different effect sizes,
with simulating two gamma distributions with different parameters using the mean
difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.3.18 The power in the test, as a function of a and different combinations of k

and n across different effect sizes, with simulating two gamma distributions with different

parameters using the mean difference for a fixed total sample size of 200.
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4.3.2 Standardized Mean Difference

4.3.2.1 Adding a Constant

From Figure 4.3.19, with a fixed value of k at all levels, the relative bias approaches zero
as n and skewness increase. As shown in Figure 4.3.20, when n is fixed at 5 and 10, the
relative bias approaches zero with a smaller k. There is no noticeable trend in the relative
bias with effect sizes. When n = 20 and 50, the absolute relative bias is below 5% with
different values of k. n=5 whenever the absolute relative bias is greater than 10%. When
the skewness is greater than 1, the relative bias is positive, indicating an overestimation
of the relative bias with a greater skewness. With a fixed total sample size of 200, the
relative bias is the farthest from 0, with the most studies and the least number of patients

per study, as presented in Figure 4.3.21.
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Figure 4.3.19 The relative bias in the estimated treatment effect, as a function of a and n
across different effect sizes, with adding a constant to gamma data using the standardized
mean difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.3.20 The relative bias in the estimated treatment effect, as a function of a and k
across different effect sizes, with adding a constant to gamma data using the standardized
mean difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.3.21 The relative bias in the estimated treatment effect, as a function of a and
different combinations of k and n across different effect sizes, with adding a constant to
gamma data using the standardized mean difference for a fixed total sample size of 200.

With a fixed value of k for all levels, the coverage probability increases as n decreases for
all effect sizes, as illustrated in Figure 4.3.22. When n=5, 10, the coverage probability is

above 0.95 and closest to 0.95 when n=20 and 50. With moderate and large effect sizes,
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the coverage probability inflates when the skewness increases with n=5 and decreases as
skewness increases with other n. In Figure 4.3.23, with a fixed value of n for all levels,
the coverage probability increases when k decreases with n=5 for a large effect size. The
skewness does not noticeably impact the coverage probability for a small effect size.
When n=5, the coverage probability falls outside of 0.925 and 0.975; Moreover, they are
all above 0.975. In Figure 4.3.24, with a fixed total sample size of 200, the coverage
probability is not robust with the changing skewness when k=20, n=5, and is far from

0.95 compared with other combinations of k and n.
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Figure 4.3.23 The coverage probability in the estimated treatment effect, as a function of
a and k across different effect sizes, with adding a constant to gamma data using the
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.3.24 The coverage probability in the estimated treatment effect, as a function of
a and different combinations of k and n across different effect sizes, with adding a
constant to gamma data using the standardized mean difference for a fixed total sample
size of 200.

The power increases as the number of studies, patients per study and effect sizes increase.

There is an unimportant impact of skewness on power. However, in Figure 4.3.25, with a
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fixed value of k, there is a slight increase of power with the skewness when n=>5 for

moderate and large effect sizes. With a small effect size, the power exceeds 0.8 when the

total sample size equals or exceeds 1000. With a moderate effect size, the power exceeds

0.8 when the total sample size equals or exceeds 200. With a large effect size, the power

exceeds 0.8 when the total sample size exceeds 80.
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Figure 4.3.25 The power in the test, as a function of @ and n across different effect sizes,
with adding a constant to gamma data using the standardized mean difference for a fixed

value of k at all levels of 2, 5, 10, and 20.

111



M.Sc. Thesis — Yuqing Huang

McMaster — Mathematics and Statistics

power with change in alpha withk =2, 5, 10, 20
n=5, effect size = 0.2, adding a constant

power with change in alpha with k=2, 5, 10, 20
n=5, effect size = 0.5, adding a constant

power with change in alpha withk =2, 5, 10, 20
n=>5, effect size = 0.8, adding a constant

—
08 08 08
—t
< < e .
gos goe gos
204 o4 o4
-_————————* e
02 — 02 02
0 0 0
a0 106 aaa 229 131 4.9 106 au 2.29 131 4393 106 4 229 131
alpha alpha alpha

®mpowerke2 elmmpowerks5 e@mmpowerke10  em@mmpowerks20

power with change in alpha with k= 2, 5, 10, 20
n=10, effect size = 0.2, adding a constant

U 1 KD el pOW K5 e DO €1 K710 el pW 1 k=20

power with change in alpha withk =2, 5, 10, 20
n=10, effect size = 0.5, adding a constant

—®mpowerks2 emmpowerks5 e@mmpowerkel0  emmmpowerke20

power with change in alpha withk =2, 5, 10, 20
n=10, effect size = 0.8, adding a constant

08 08 08
— —
506 508 508
H — z H
204 204 204
02 02 02
3 0 o
axn 108 aaa 220 131 s 106 o 220 131 asn 106 aa 220 131
alpha alpha alpha
B DOW @I K*2 el DOW @F k*5 el DOW @1 k10 wmempOW of k=20 B DOW T K2 e DOW RF K®E el DOW €1 K*10 el pOW €F K*20 e DOW RF K2 el DOW BT K*5 el DOW €1 K#10 il DOW €1 k20
power with change in alpha withk =2, 5, 10, 20 power with change in alpha withk =2, 5, 10, 20 power with change in alpha withk =2, 5, 10, 20
n=20, effect size = 0.2, adding a constant n=20, effect size = 0.5, adding a constant n=20, effect size = 0.8, adding a constant
$ —
08 08 08
506 506 506
Roa Roa Boa
02 02 02
0 ° 0
a8 108 waa 220 131 4393 106 aaa 22 13 453 108 “an 220 13
alpha alpha alpha

—e—powerk=2 —8—poworkss —8—powerk=10 —8—powerks=20

power with change in alpha withk =2, 5, 10, 20
n=50, effect size = 0.2, adding a constant

—®—powerk=2 —8—powerks5 =—@=powerk=10 == pawerk=20

power with change in alpha withk =2, 5, 10, 20
n=50, effect size = 0.5, adding a constant

—8—powerks2 —8—powerk=5 —@—powerk«10 —8—powerk=20

power with change in alpha withk =2, 5, 10, 20
n=50, effect size = 0.8, adding a constant

08 08 08
506 508 508
H H H
8o4 Qo4 804
02 02 02

a8 106 aaa 229 131
alpha

2.9 106 444 2.29 131
alpha

4.9 106 444 229 131
alpha

@O erked  mpow erkeh  emmpowerke10  embmmpower ke20 —®powerks2 —empowerks5 em@empowerke10 e power k=20 a®mpowerks2 =@mmpowerksS =@mpowerks10 e@mmpowerks20

Figure 4.3.26 The power in the test, as a function of a and k across different effect sizes,
with adding a constant to gamma data using the standardized mean difference for a fixed
value of n at all levels of 5, 10, 20, and 50.
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Figure 4.3.27 The power in the test, as a function of a and different combinations of k
and n across different effect sizes, with adding a constant to gamma data using the
standardized mean difference for a fixed total sample size of 200.

When using SMD, when k=2 and n=5 and 10, the type I error rate is unacceptable.

Skewness has no undetectable effect on type I error rate.
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4.3.2.2 Both Gammas with Different 8s

With a fixed value of k at all levels, the relative bias approaches zero as n increases, as
illustrated in Figure 4.3.28. The relative bias moves farther from zero as skewness
increases when n=5, 10 for small and moderate effect sizes with k= 10, 20. The relative
bias approaches zero for a large effect size as the skewness increases when n=>5 for a
large k. With a fixed value of small n, small k results in better relative bias, as shown in
Figure 4.3.29. The absolute relative bias is below 5% when n equals 20 and 50.
Whenever the relative bias is more than 10%, n = 5. The relative bias for all the situations
is negative except for one case where k=2, n=50, d=0.8, with the largest skewness. In
Figure 4.3.30, with a fixed total sample size of 200, the relative bias is the worst, with the

greatest number of studies and the least patients per study.
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Figure 4.3.28 The relative bias in the estimated treatment effect, as a function of a and n
across different effect sizes, with simulating two gamma distributions with different

5, 10, and 20.
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parameters using the standardized mean difference for a fixed value of n at all levels of 3,
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Figure 4.3.30 The relative bias in the estimated treatment effect, as a function of @ and
different combinations of k and n across different effect sizes, with simulating two gamma
distributions with different parameters using the standardized mean difference for a fixed

total sample size of 200.
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In Figure 4.3.31, with a fixed value of k at all levels, the coverage probability is the worst
when n=5 and is robust around 0.95 with other n for a small effect size. In Figure 4.3.32,
with a fixed value of n at all levels, the coverage probability increases as k decreases and
skewness increases for moderate and large effect sizes. The coverage probability is robust
around 0.95 against the skewness with a small effect size and is robust when the
skewness is less than 1 for moderate and large effect sizes. Most situations where the
coverage probability is outside the acceptable range are either with small total sample
sizes or large skewness. With a fixed total sample size of 200, the coverage probability is

the worst when k=20 and n=5, as given in Figure 4.3.33.
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Figure 4.3.31 The coverage probability in the estimated treatment effect, as a function of
a and n across different effect sizes, with two gamma distributions with different
parameters using the standardized mean difference for a fixed value of k at all levels of 2,
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Figure 4.3.33 The coverage probability in the estimated treatment effect, as a function of
a and different combinations of k and n across different effect sizes, with simulating two

gamma distributions with different parameters using the standardized mean difference for
a fixed total sample size of 200.

Figure 4.3.34 and Figure 4.3.35 show that the power increases as the number of studies,

patients per study, and effect sizes increase. There is a negligible effect of skewness on
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power. With a small effect size, the power exceeds 0.8 when the total sample size equals
or exceeds 1000. With a moderate effect size, the power exceeds 0.8 when the total
sample size equals or exceeds 200. With a large effect size, the power exceeds 0.8 when

the total sample size exceeds 80.
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Figure 4.3.34 The power in the test, as a function of @ and n across different effect sizes,
with simulating two gamma distributions with different parameters using the
standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.3.35 The power in the test, as a function of a and k across different effect sizes,
with simulating two gamma distributions with different parameters using the
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.3.36 The power in the test, as a function of a and different combinations of k
and n across different effect sizes, with simulating two gamma distributions with different
parameters using the standardized mean difference for a fixed total sample size of 200.
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4.4 x? Distribution

4.4.1 Mean Difference

As shown in Figure 4.4.1, with a fixed value of k at all levels, the relative bias fluctuates
more with a small effect size (d= 0.2) and a smaller sample size per study (n=5, 10). The
relative bias is more stable with larger effect sizes (d=0.5, 0.8) and a larger sample size
per study (n=20, 50). Similarly, as shown in Figure 4.4.2, with a fixed n of all levels, the
relative bias fluctuates more with a small effect size (0.2) and fewer studies (k=2, 5). For
both fixed k and n, the relative bias fluctuates less with smaller skewness (d. f.=

88, 21). Fewer relative biases of less than 1% are observed with more sample sizes per
study and more studies. When the d. f. is 3,5, and 9 and the number of studies is 2, the
absolute relative bias is greater than 1% in most cases. With a fixed total sample size of
200, the relative bias fluctuates more with a small effect size, as shown in Figure 4.4.3.
Still, there is no noticeable difference in relative bias with different combinations of k and

n. When the total sample size is fixed at 200, the relative bias is less than 1.5%.
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Figure 4.4.2 The relative bias in the estimated treatment effect, as a function of d. f. and
k across different effect sizes, with adding a constant to y? data using the mean difference
for a fixed value of n at all levels.
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Figure 4.4.3 The relative bias in the estimated treatment effect, as a function of d. f. and
different combinations of k and n across different effect sizes, with adding a constant to
x? data using the mean difference for a fixed total sample size of 200.

In Figure 4.4.4, with a fixed value of k at all levels, the coverage probability is less than

92.5% when n=5 for all effect sizes and skewness. The coverage probability increases to
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the acceptable range as sample sizes per study increase. There is an unimportant trend in
coverage probability with increasing skewness. In Figure 4.4.5, with a fixed n of all
levels, there is a slight increase in coverage probability with increasing skewness when
n=5, 10, 20 for moderate and large effect size. The coverage probability is more stable
when skewness increases at n=50. Whenever the coverage probability is outside the
acceptable range, n=5 and 10. All coverage probability is less than 0.95 except when k=5,
n=10 with a large effect size and the smallest skewness. There is a negligible trend in
coverage probability with increasing skewness. With a fixed total sample size of 200, the
coverage probability is the lowest, less than 90%, with the smallest sample size per study
and the largest number of studies, as presented in Figure 4.4.6. When k=5, n=20, and

k=2, n=50, the coverage probability is between 92.5% and 97.5%.
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Figure 4.4.4 The coverage probability in the estimated treatment effect, as a function of
d. f. and n across different effect sizes, with adding a constant to y* data using the mean
difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.4.5 The coverage probability in the estimated treatment effect, as a function of
d.f.and k across different effect sizes, with adding a constant to x? data using the mean
difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.4.6 The coverage probability in the estimated treatment effect, as a function of
d. f. and different combinations of k and n across different effect sizes, with adding a
constant to y? data using the mean difference for a fixed total sample size of 200.

Figure 4.4.7 and Figure 4.4.8 show that the power increases as the sample size per study,
the number of studies and the effect sizes increase. The skewness does not have an

important impact on power. With a small effect size, the power is greater than 0.8 when
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the total sample size exceeds 800. The power is greater than 0.8 with a moderate effect

size when the total sample size exceeds 100. With a large effect size, the power is greater

than 0.8 in most cases except when k=2, n=5 and k=2, n=10.
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Figure 4.4.7 The power in the test, as a function of d. f. and n across different effect

sizes, with adding a constant to x* data using the mean difference for a fixed value of k at
all levels of 2, 5, 10, and 20.
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Figure 4.4.8 The power in the test, as a function of d. f. and k across different effect sizes,
with adding a constant to x? data using the mean difference for a fixed value of n at all
levels of 5, 10, 20, and 50.
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Figure 4.4.9 The power in the test, as a function of d. f. and different combinations of k
and n across different effect sizes, with adding a constant to x* data using the mean
difference for a fixed total sample size of 200.

The type I error rate is acceptable when k exceeds 2 and n>10. The skewness does not

have an important impact on the type I error rate.
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4.4.2 Standardized Mean Difference

In Figure 4.4.10, with a fixed k at all levels, the relative bias approaches zero as n
increases and skewness decreases. There is no noticeable relationship between the
relative bias and the effect size. In Figure 4.4.11, with a fixed n at all levels, the relative
bias is closer to zero with a larger k, and when d. f.= 5. More fluctuation in relative bias
1s observed with a small effect size. Minimal fluctuation of the absolute relative bias,
within 2%, is found when n = 50. With a fixed total sample size of 200, the relative bias
is the closest to zero when k=2, n=50, and farthest from zero when k=20, n=5, as given in
Figure 4.4.12. When the skewness is large (d. f.= 5, 3), the relative bias is likely to be
positive. However, in most situations, the relative bias is negative, showing an

underestimation of the treatment effect using SMD.
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Figure 4.4.11 The relative bias in the estimated treatment effect, as a function of d. f. and
k across different effect sizes, with adding a constant to y?* data using the standardized
mean difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.4.12 The relative in the estimated treatment effect, as a function of d. f. and
different combinations of k and n across different effect sizes, with adding a constant to
x? data using the standardized mean difference for a fixed total sample size of 200.

Figure 4.4.13 indicates that when k is fixed at all levels, the coverage probability

increases with skewness for n=5. However, for n=20 and n=50, the coverage probability
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decreases with skewness when k=10 and k=20, particularly for moderate to large effect
sizes. There is a worse coverage probability with smaller n, as the coverage probability
exceeds 0.97, while improved coverage is noted with larger n, where the coverage
probability is around 0.95. As presented in Figure 4.4.14, the coverage probability rises
with increased skewness when k=20 and n=5 for both moderate and large effect sizes and
when k=20 and n=10 with a large effect size. Conversely, the coverage probability
decreases as skewness increases for n=20 and 50 with a large effect size. In addition, for
a fixed value of n, the largest k results in a lower coverage probability for moderate and
large effect sizes. Nonetheless, k does not have a noticeable impact on the coverage
probability for a small effect size across all n values, nor does it affect coverage
probability with moderate and large effect sizes as long as the sample size is efficiently
large. There are no situations where the coverage probability is less than the lower bound
of the acceptable range. In Figure 4.4.15, with a fixed total sample size, the coverage
probability is between 0.94 and 0.97 for all effect sizes and combinations of n and k.
More variability of coverage probability with more skewness (d. f.= 9,5, 3). Effect
sizes do not directly influence the coverage probability when the total sample size is

fixed.

132



M.Sc. Thesis — Yuqing Huang McMaster — Mathematics and Statistics

cp with change in d.f. with n=5, 10, 20, 50 k=2, cp with change in d.f. with n=5, 10, 20, 50 k=2, cp with change in d.f. with n=5, 10, 20, 50 k=2,
effect size = 0.2, adding a constant effect size = 0.5, adding a constant effect size = 0.8, adding a constant,
0.99 0.98 0.98
z z -— z
H 0.9 — gow HE —_— . .
8 07 809 a———"\‘——‘\. 8o
4 0.96 —‘\‘——/\‘ a a
B 005 — g 085 '_*‘.Qu__. g oo
2 oo 2 os oo
° 0.93 ° 0.93 ° 0.93
88 21 9 5 3 88 21 9 5 3 88 21 9 5 3
d.f. d.f. d.f.
—e—pn=5 —e—cpne10 —8mmcpN=20 —8mcpn =50 —e—Cpn=5 —8—cpnrl) =8mcpn=20 —8mcpn=50 pn=s —e—cpn=10 » »
cp with change in d.f. with n=5, 10, 20, 50 k=5, cp with change in d.f. with n=5, 10, 20, 50 k=5, cp with change in d.f. with n=5, 10, 20, 50 k=5,
effect size = 0.2, adding a constant effect size = 0.5, adding a constant effect size = 0.8, adding a constant
0.98 S 0.98 0.98
0.97 0.97 w 0.97 pe S o
0.96

&

coverage probability

coverage probability
2

coverage probability

8

88 21 9 5 3 88 21 9 5 3 88 21 9 5 3
d.f. d.f. d.f.
—e—pn=5 —e—cpne10 —8mcpN=20 —8mcpn=5O —e—Cpn=5 —8—cpn+l) —8mcpn=20 —8—cpn=50 pnes —e—cpn=10 . .
cp with change in d.f. with n=5, 10, 20, 50 k=10, cp with change in d.f. with n=5, 10, 20, 50 k=10, cp with change in d.f. with n=5, 10, 20, 50 k=10,
effect size = 0.2, adding a constant effect size = 0.5, adding a constant effect size = 0.8, adding a constant

0.98 0.98 0.97
2oy 2o O — Zo9%
H H H
I ———— e S go=
B o0 & o0 ®os
g om HZ gow

0.92 0.92 0.91

88 21 9 5 3 88 21 9 5 3 88 21 9 5 3
d.f. d.f. d.f.
—8—cpn=5 —8—cpn=10 —B=cpn=20 —8=cpn=50 8PN =5 PN =10 emmCPN =20 e CPII=50 pNe5 —@mmcpn=10 pn=: pn=
cp with change in d.f. with n=5, 10, 20, 50 k=20, cp with change in d.f. with n=5, 10, 20, 50 k=20, cp with change in d.f. with n=5, 10, 20, 50 k=20,
effect size = 0.2, adding a constant effect size = 0.5, adding a constant effect size = 0.8, adding a constant

0.8 0.9 0.9
Zose 0s8 Zose
] 097
2 0% g

overage
overage probability
Beige
overage probab

0.92 0.92 0.92
88 21 9 5 3 88 21 9 5 3 88 21 9 5 3
d. df. d.
—8—cpne5 —8—cpn=10 —8—cpn-20 —8=—cpn =50 ——pNs5 —8mcpn=10 =—8mcpn=20 =—8mcpn=50 pn=5 —e—cpn=10 » p

Figure 4.4.13 The coverage probability in the estimated treatment effect, as a function of
d.f.and n across different effect sizes, with adding a constant to x*? data using the
standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20.
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Figure 4.4.14 The coverage probability in the estimated treatment effect, as a function of
d.f.and k across different effect sizes, with adding a constant to y? data using the
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.4.15 The coverage probability in the estimated treatment effect, as a function of
d. f. and different combinations of k and n across different effect sizes, with adding a

constant to x? data using the standardized mean difference for a fixed total sample size of
200.

More sample sizes per study, more studies and larger effect sizes lead to greater power, as

shown in Figure 4.4.16 and Figure 4.4.17. There is no noticeable trend of power with
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changing skewness. The power is greater than 0.8 when the total sample size exceeds 800
for a small effect size. The power is greater than 0.8 when the total sample size exceeds
200 for a moderate effect size. The power is greater than 0.8 when the total sample size
exceeds 80 for a large effect size. In Figure 4.4.18, with a fixed total sample size of 200,

the power is lowest when k is the largest and n is the lowest for small and moderate effect
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Figure 4.4.16 The power in the test, as a function of d. f. and n across different effect

sizes, with adding a constant to x* data using the standardized mean difference for a
fixed value of k at all levels of 2, 5, 10, and 20.

135



M.Sc. Thesis — Yuqing Huang

McMaster — Mathematics and Statistics

power with change in d.f. with k=2, 5, 10, 20 n=5,
effect size = 0.2, adding a constant

08
506
H
204
02 —
0
88 2 ] 5 3

—e—powerk=2 —8—powerk=5 —#=powerk=10 =—8=—powerk=20

power with change in d.f. with k=2, 5, 10, 20 n=10,
effect size = 0.2, adding a constant

08

506

804

02 —

—e—powerk=2 —8—powerk=5 —#=powerk=10 =—8=—powerk=20

power with change in d.f. with k=2, 5, 10, 20 n=20,
effect size = 0.2, adding a constant

08
506

2 e
804
02
0

8 2 9 5 3

df.

—A—powerk=2 —8—powerk=5 —Mmpowerk=10 =—B—powerk=20

power with change in d.f. withk =2, 5, 10, 20 n=50,
effect size = 0.2, adding a constant

08
506
3
804
02
0
8 2 9 5 3
d.

power with change in d.f. withk =2, 5, 10, 20 n=5,
effect size = 0.5, adding a constant

08
5 06 e
H
o4
02 .
0
88 2 9 5 3

—e—powerk-2 —8—powerks5 ——#=powerk=10 == powerk=20

power with change in d.f. with k=2, 5, 10, 20 n=10,
effect size = 0.5, adding a constant

5 06
3
204
0.2
0
88 21 9 5 3
d.f.
—e—powerks2 —8—powerkes e—mpowerke10 =—mpowerk=20
power with change in d.f. with k=2, 5, 10, 20 n=20,
effect size = 0.5, adding a constant
1
0.8
5 06
3
204
0.2
0
88 21 9 5 3
df.
—8—powerks2 —8—powerkss eMmpowerke10 =—=powerk=20
power with change ind.f. withk =2, 5, 10, 20 n=50,
effect size = 0.5, adding a constant
1
0.8
506
3
204
0.2
0
8 21 9 5 3
d.f.

power with change in d.f. withk =2, 5, 10, 20 n=5,
effect size = 0.8, adding a constant

08

E—
506
3
804
02
0
88 2 9 5 3

—s—powerk=2 —#—powerk=5 —8=powerk=10 —8—powerk=20

power with change in d.f. with k=2, 5, 10, 20 n=10,
effect size = 0.8, adding a constant

08
506
H
804
02
0
88 2 9 5 3
df.

—s—powerk=2 —#—powerk=5 —8=powerk=10 —8—powerk=20

power with change in d.f. with k=2, 5, 10, 20 n=20,
effect size = 0.8, adding a constant

08
506
H
804
02
0
£ 2 9 5 3
df.

—a—powerk=2 —S—powerk=5 —@—powerk=10 —8—powerk=20

power with change in d.f. withk =2, 5, 10, 20 n=50,
effect size = 0.8, adding a constant

506

204

—e—powerks2 —8—powerk=5 e—Smmpowerk=10 == powerk=20 —e—powerks2 —8—powerks5 =—#mpowerk=10 == powerk=20 —e—powerk=2 —e—powerk=5 —s—powerk=10 —e—powerk=20

Figure 4.4.17 The power in the test, as a function of d. f. and k across different effect

sizes, with adding a constant to x*? data using the standardized mean difference for a
fixed value of n at all levels of 5, 10, 20, and 50.
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Figure 4.4.18 The power in the test, as a function of d. f. and different combinations of k
and n across different effect sizes, with adding a constant to x* data using the
standardized mean difference for a fixed total sample size of 200.

When k=2, n=5, 10, the type I error rate exceeds 0.075. When n=5, and k=5, 10, 20, the

type I error rate is below 0.025.
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Chapter S Conclusion and Discussion

5.1 Summary of the Results

A central finding from the simulation is that larger sample sizes per group lead to a more
robust overall estimated effect against non-normality, even when only a few studies are
included. This results in improved relative bias, coverage probability of the overall
estimated effect, power, and type I error rate of the meta-analysis. Another important
finding is that in most situations, more studies with a smaller sample size per group lead
to worse relative bias, coverage probability and power if the total sample size is fixed.
Furthermore, the effects of skewness and effect sizes vary among different distributions
of the outcome variable and methods of considering the effect size. The relative bias of
the overall estimated effect is mostly negative, particularly with smaller skewness when
using the standardized mean difference. Moreover, when using the standardized mean
difference, the absolute relative bias is bigger than the mean difference in most cases
across all distributions, which is consistent with Lin’s study (2018), and this suggests that
one should use the mean difference when possible. In addition, a larger relative bias of
SMD may result from the inappropriate choice of SDs (standard deviation), according to
Hopkins and Rolands (2024). They also stated that using inappropriate SDs, for example,
failing to remove technical errors, can introduce heterogeneity, which makes the fixed-
effect model less appropriate. The coverage probability is below the nominal level (95%)

when using the mean difference and exceeds the nominal level with small sample sizes
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per group in most cases when using the standardized mean difference. Additionally, at
least a total sample size of 800 is required to have a power greater than 0.8 for a small
effect size (d = 0.2), and the total sample size can be decreased when the effect size
increases. However, the estimation of the power is biased whenever the type I error rate is
not at the nominal level, which is 0.05 in our study, as well as due to the bias from the
overall effect estimation. The type I error rate of the meta-analysis is generally unaffected
by skewness for most of the distributions we examined, except for the gamma

distribution.

5.1.1 The Mixture of Normal Distributions

Non-robust results are observed for the mixture of normal distributions when a large
number of studies are included with a sample size per group of less than 10, or with a
large proportion of non-responders in the intervention group, or with a small effect size.
With a fixed total sample size, fewer studies with more samples per group are preferred
as they provide a better relative bias, coverage probability and power. When using the
mean difference, the sample size per group has a greater effect than the number of studies
on the coverage probability. When n < 10, coverage probability is less than 0.925. Power
drops sharply when more than half of the sample in the intervention group are non-
responders. The type I error rate is generally acceptable except when the sample size per
study is 5 and 10. When the sample size per group is 5, a smaller k gives a better relative
bias as it is the closest to zero. When the sample size per group is 5, the worst relative
bias and unacceptable coverage probability are observed, given the acceptable range for

the coverage probability is between 0.925 and 0.975. In addition, the type I error rate is
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not between 0.025 and 0.075 when the sample size per group is 5 and the number of

studies is greater than 2.

5.1.2 Lognormal Distribution

More samples per study and fewer studies provide better relative bias and coverage
probability for lognormal distributions. In addition, the coverage probability and the type
I error are unacceptable when the sample size per group is 5. When simulating two same
distributions, adding a constant to one group and using the mean difference, a negligible
effect of skewness is observed on the absolute relative bias, which remains below 3% and
improves with larger effect sizes but moves closer to zero as the skewness increases with
a small effect size for the standardized mean. The coverage probability increases as the
number of studies decreases for small n. There is a slight increase in power as skewness
grows with the sample size per group at 5; as mentioned before, this increase could result
from the bias of the overall effect estimation and an incorrect type I error. The type I error
rate is above 0.05 in all situations when using the mean difference and is less than 0.025
when the sample size per group is 5 and less than the number of studies with the
standardized mean difference. When simulating two lognormal distributions with
different p, the relative bias moves away from zero as n decreases and skewness
increases for the mean difference and moves towards zero as skewness increases for the
standardized mean difference. Fewer studies give better relative bias for a fixed value of a
small sample size per group. Coverage probability moves away from higher skewness

and larger k for moderate and large effect sizes.
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5.1.3 Gamma Distribution

For gamma distributions, larger sample sizes per group and fewer studies give better
relative bias and coverage probability, and the coverage probability is outside the
acceptable range with small samples per study. When simulating two same distributions
and adding a constant to one group, the relative bias and the coverage probability
increase as k decreases with a fixed sample size per group of 5. When using the mean
difference, a small sample size (n=5,10, and k=2) shows greater fluctuation of the relative
bias with the change in skewness. when using the mean difference. Power increases as
skewness increases. In addition, the type I error rate decreases as the skewness increases.
When using the standardized mean difference, the relative bias is only positive with a
skewness greater than 1. The coverage inflates when the skewness increases for larger
effect sizes with small samples per study. When only two studies with a sample size per
group of 5 and 10, the type I error rate is unacceptable. When simulating two gamma
distributions with different 3; and using the mean difference, more studies introduce a
greater absolute relative bias with a fixed sample size per group, and it can reach 30%
with highly skewed outcome variables. The coverage probability increases with skewness
and different effect sizes. Moreover, when skewness is greater than 1, the coverage
probability is unacceptable. There is a slight decrease in power as skewness increases
with a small sample size per group. When using the standardized mean difference, the
relative bias moves farther from zero as skewness increases with group size of 5 and 10

for small and moderate effect sizes with 10 and 20 studies. The coverage probability is
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robust around 0.95 against the skewness with a small effect size and is robust when the

skewness is less than 1 for moderate and large effect sizes.

5.1.4 x? Distribution

For x? distribution, when using the mean difference, the relative bias fluctuates more with
increasing skewness with a small effect size, a smaller sample size per study and fewer
studies. Whenever the coverage probability is outside the acceptable range, the sample
size per study is 5 and 10. There is a negligible trend in coverage probability with
increasing skewness when using the mean difference. However, when using the
standardized mean difference, the coverage probability behaves oppositely when the
sample size is small or large, respectively, and more studies result in a lower coverage
probability for moderate and large effect sizes with a fixed sample size per group. The
skewness does not have an important impact on power. The type I error rate is

unacceptable when the sample size per group is less than 5.

The above findings suggest that investigators should preferably include large trials when
conducting a meta-analysis, as our simulation indicates that fewer studies with larger
sample sizes yield more robust results, even when the primary data are highly skewed. If
large trials are uncommon in the research topic, the investigator should seek to obtain the
raw data and assess the normality of the dataset, especially when dealing with data with a
lower bound, such as volume distribution, blood concentration, and scale outcomes
(Deeks, Higgins, & Group, 2022). If the data is skewed, transforming the primary data,

such as through log transformation, is recommended. However, if investigators cannot

141



M.Sc. Thesis — Yuqing Huang McMaster — Mathematics and Statistics

obtain the raw data, considering a nonparametric meta-analysis method (Michiels &
Onghena, 2018) or converting data from a continuous to a binary outcome by setting a

threshold can be an option.

5.2 Limitations

A few limitations of this simulation can be acknowledged. In this simulation, the sample
size is the same across two groups in each study. However, in real life, there are situations
where the ratio of sample sizes of the control and intervention can be 2:1 or 1:2, for
instance. Moreover, we only investigate situations where the studies are of the same size
in each meta-analysis, which may not be realistic. Also, using the standardized mean
difference is not the most appropriate in cases where the variance of the two groups is not
the same, such as simulating two lognormal and gamma distributions with different
parameters, as the pooled standard deviation method used in the primary study assumes
the variance of the two groups are the same. In addition, we assume the distribution of the
outcome variables for two groups are the same, except when examining the mixture of
normal distributions, in which case the control group follows a normal distribution, and
the intervention group follows a mixture of normal distributions. Moreover, in practice,
obtaining the raw data from each study may be challenging since they usually provide
summary statistics, and assessing normality from the summary statistics can be difficult.

Another limitation of this simulation is that the random-effects model is not included.

Therefore, these limitations suggest several directions for future research on the fixed-

effect meta-analysis model. Firstly, we could examine more complex scenarios where the
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sample size per group within the same study and the sample size across studies vary.
Secondly, when using the standardized mean difference as the effect size, we could
evaluate whether the variances of the two groups within the same study vary and then
select the appropriate variance pooling methods accordingly. Thirdly, we could
investigate more cases where the two groups in a study follow different distributions and
studies with various distributions. Moreover, more distributions, such as multinomial and
negative binomial distributions, could be assessed. Also, we could simulate the effect size
for each study directly instead of using the raw data, which may more accurately reflect
reality when conducting a meta-analysis. Lastly, different random-effects models can be

investigated in future studies with this simulation framework.

5.3 Conclusion

To conclude, small studies with highly skewed data provide non-robust meta-analysis
results for a fixed-effect model. Moreover, when conducting meta-analyses, larger sample
sizes per study with fewer studies are preferred, compared to having a smaller sample
size per study with more studies. Therefore, this simulation suggests that investigators
need to be cautious with the distribution of the raw data when conducting meta-analysis

using the fixed-effect model.
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Appendix

The appendix provides a summary table of all the algebra for different cases within the
same distribution of the outcome variables in terms of the skewness, parameters, and
corresponding true effect for mean difference and the standardized mean difference. Also,
the type I error rate results for different distributions of the outcome variable with

different skewness, the number of studies, and the number of individuals per group are

provided.
Distribution ~ Skewness  Effect Parameters Formulas of the True Effect for MD True True
SMD
Size MD
the mixture of NA 0.2 p=0 A —p)* (U — 1) 0.2 0.2
normals
the mixture of NA 0.2 p=0.1 A—p)* (U — 1) 0.18 0.18
normals
the mixture of NA 0.2 p=0.2 A—p)* (U — 1) 0.16 0.16
normals
the mixture of NA 0.2 p=0.3 A—p)* (U — 1) 0.14 0.14
normals
the mixture of NA 0.2 p=0.4 A —p)* (U — 1) 0.12 0.12
normals
the mixture of NA 0.2 p=0.5 A—p)* (U — 1) 0.1 0.1
normals
the mixture of NA 0.2 p=0.6 A—p)* (U — 1) 0.08 0.08
normals
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the mixture of

normals

the mixture of

normals

the mixture of

normals

the mixture of

normals

the mixture of

normals

the mixture of

normals

the mixture of

normals

the mixture of

normals

the mixture of

normals

the mixture of

normals

the mixture of

normals

the mixture of

normals

the mixture of

normals

the mixture of

normals

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

0.2

0.2

0.2

0.2

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

p=0.7 A=p)* (u2 — 1) 0.06
p=0.8 A-p)* (u2 — 1) 0.04
p=0.9 1 =p)*(uz — p1) 0.02
p=1 A-p)* (U2 — 1) 0
p=0 (1 —p)* (uz — 1) 0.5
p=0.1 A-p)* (u2 — 1) 0.45
p=0.2 1 =p)* (U2 — p1) 0.4
p=0.3 (1 —p)* (uz — 1) 0.35
p=0.4 A-p)* (u2 — 1) 0.3
p=0.5 (1 —p)* (uz — 1) 0.25
p=0.6 A-p)* (U2 — 1) 0.2
p=0.7 A=-p)* (U2 — 1) 0.15
p=0.8 A-p)* (u2 — 1) 0.1
p=0.9 1 —p)* (uz — p1) 0.05

0.06

0.04

0.02

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05
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the mixture of NA 0.5 p=1 A—p)* (U — 1) 0 0
normals

the mixture of NA 0.8 p=0 A —p)* (U — 1) 0.8 0.8
normals

the mixture of NA 0.8 p=0.1 (1 —p)* Uy — 1y) 0.72 0.72
normals

the mixture of NA 0.8 p=0.2 (1 —p)* (uy — 1) 0.64 0.64
normals

the mixture of NA 0.8 p=0.3 (1 —p)* Uy — 1y) 0.56 0.56
normals

the mixture of NA 0.8 p=0.4 (1 —p)* Uy — 1) 0.48 0.48
normals

the mixture of NA 0.8 p=0.5 A —p)* Uy — Uyp) 0.4 0.4
normals

the mixture of NA 0.8 p=0.6 (1 —p)* Uy — 1y) 0.32 0.32
normals

the mixture of NA 0.8 p=0.7 A —p)* (U — 1) 0.24 0.24
normals

the mixture of NA 0.8 p=0.8 (1 —p)* Uy — 1) 0.16 0.16
normals

the mixture of NA 0.8 p=0.9 A —p)* Uy — Uyp) 0.08 0.08
normals

the mixture of NA 0.8 p=1 A —p)* (U — 1) 0 0
normals

the mixture of NA 0.2 all p values Uy — Uy 0.2 0.2
normals

the mixture of NA 0.5 all p values Uy — Uy 0.5 0.5
normals
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the mixture of NA 0.8 all p values Uy — Uy 0.8 0.8
normals
lognormal 0.3 0.2 =01 d * \/{(exp(O-Z) —Dexp(2u + 02)} 0.02 0.2
lognormal 0.61 0.2 oc=02 d * \/{(exp(O-Z) —Dexp(2u+02)} 004 0.2
lognormal 0.95 0.2 oc=203 d * \/{(exp(O-Z) —Dexp(2u + 02)} 0.06 0.2
lognormal 1.32 0.2 c=04 d * \/{(exp(O-Z) —Dexpu+0o2)} 009 0.2
lognormal 1.75 0.2 oc=05 d * \/{(exp(O-Z) —Dexpu+o2)} 012 0.2
lognormal 0.3 0.5 =01 d * \/{(exp(O-Z) —Dexp(2u + 02)} 0.05 0.5
lognormal 0.61 0.5 o=02 d * \/{(exp(O-Z) —Dexp(2u + 02)} 0.10 0.5
lognormal 0.95 0.5 oc=203 d * \/{(exp(O-Z) —Dexp(2u + 02)} 0.16 0.5
lognormal 1.32 0.5 c=04 d * \/{(exp(O-Z) —Dexp(2u+o02)} 023 0.5
lognormal 1.75 0.5 oc=05 d * \/{(exp(O-Z) —Dexp(2u + 02)} 0.30 0.5
lognormal 0.3 0.8 =01 d * \/{(exp(O-Z) —Dexp(2u + 02)} 0.08 0.8
lognormal 0.61 0.8 o=02 d * \/{(exp(O-Z) —Dexp(2u+02)} 0.16 0.8
lognormal 0.95 0.8 oc=203 d * \/{(exp(O-Z) —Dexp(2u + 02)} 0.26 0.8
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lognormal 1.32 0.8 oc=04 d * \/{(exp(O-Z) —Dexp(2u+02)} 036 0.8
lognormal 1.75 0.8 c=05 d * [{(exp(02) — 1) exp(2u + 0'2)} 0.48 0.8
lognormal 0.3 0.2 u=0.02, 2 0.02 0.2

lognormal 0.61 0.2 u = 0.04, 0.04 0.2

lognormal 0.95 0.2 u = 0.061, 0.07 0.2
lognormal 1.32 0.2 u = 0.083, 0.09 0.2
lognormal 1.75 0.2 u = 0.107,

0.13 0.2

lognormal 0.3 0.5 u = 0.05, 0.05 0.5

9]
=
=
0|
~
@
]
=]
=
=
=
|
-
—

lognormal 0.61 0.5 u = 0.101,
lognormal 0.95 0.5 u = 0.154,

0.17 0.5

lognormal 1.32 0.5 u=0.210, 0.25 0.5

9]
=
=
0|
~
@
<
=]
=
=
=
|
-
—

lognormal 1.75 0.5 u=0.271, 0.35 0.5

lognormal 0.3 0.8 u = 0.08, 0.08 0.8

lognormal 0.61 0.8 u=0.163, 0.18 0.8

)
)
)
)
)
)
)
)
)
)
)
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oc=02
lognormal 0.95 0.8 u = 0.249, a? 0.30 0.8
exp <7> (exp(w)—1)
0c=03
lognormal 1.32 0.8 pu = 0.341, a? 0.44 0.8
exp <7> (exp(w)—1)
c=04
lognormal 1.75 0.8 u = 0.444, a? 0.63 0.8
exp <7> (exp(w)—1)
c=0.5
gamma 0.3 0.2 a = 4393 d *m 1.33 0.2
gamma 0.61 0.2 a = 10.60 d *m 0.65 0.2
gamma 0.95 0.2 a= 444 d *m 0.42 0.2
gamma 1.32 0.2 a= 229 d *m 0.30 0.2
gamma 1.75 0.2 a= 131 d *m 0.23 0.2
gamma 0.3 0.5 a = 4393 d *m 3.31 0.5
gamma 0.61 0.5 a = 10.60 d *m 1.63 0.5
gamma 0.95 0.5 a= 444 d *m 1.05 0.5
gamma 1.32 0.5 a= 229 d *m 0.76 0.5
gamma 1.75 0.5 a= 131 d *m 0.57 0.5
gamma 0.3 0.8 a = 4393 d *m 5.30 0.8
gamma 0.61 0.8 a = 10.60 d *m 2.60 0.8
gamma 0.95 0.8 a= 444 d *m 1.69 0.8
gamma 1.32 0.8 a= 229 d *m 1.21 0.8
gamma 1.75 0.8 a= 131 d *m 0.92 0.8
gamma 0.3 0.2 a =43.93, aBs — Be) 1.35 0.2
Be=1,
p, =1.031
gamma 0.61 0.2 a = 10.60, a(B: —Bo) 0.67 0.2
Be=1,
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B = 1.063
gamma 0.95 0.2 a = 444, aBs — Be) 0.44 0.2
Be=1,
B = 1.100
gamma 1.32 0.2 a= 229, aBs — Be) 0.32 0.2
Be=1,
By = 1.142
gamma 1.75 0.2 a= 131, aBs — Be) 0.25 0.2
Be=1,
B = 1.193
gamma 0.3 0.5 a = 43.93, a(B: —Bo) 3.45 0.5
Be=1,
B = 1.078
gamma 0.61 0.5 a = 10.60, aBs — Be) 1.77 0.5
Be=1,
B = 1.167
gamma 0.95 0.5 a = 4.44, aBs — Be) 1.21 0.5
Be=1,
By = 1.273
gamma 1.32 0.5 a= 229, aBs — Be) 0.92 0.5
Be=1,
B = 1.403
gamma 1.75 0.5 a= 131, aBs — Be) 0.76 0.5
Be=1,
B = 1.578
gamma 0.3 0.8 a = 4393, aBs — Be) 5.65 0.8
Be=1,
B = 1.129
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gamma 0.61 0.8 a = 10.60, aBs — Be) 3.00 0.8
Be=1,
B, = 1.283
gamma 0.95 0.8 a= 444, a(B, = B) 213 08
Be=1,
B. = 1.480
gamma 1.32 0.8 a= 229, aB: —Bo) 1.73 0.8
Be=1,
B, = 1.755
gamma 1.75 0.8 a= 131, aBs — Be) 1.56 0.8
Be=1,
B = 2.193
chi-square 0.3 0.2 d.f.= 88 d * \/Z*Tf 2.65 0.2
chi-square 0.61 0.2 d.f.=21 d * \/Z*Tf 1.30 0.2
chi-square 0.95 0.2 d.f.=9 d * \/Z*Tf 0.85 0.2
chi-square 1.32 0.2 d.f.=5 d * \/Z*Tf 0.63 0.2
chi-square 1.75 0.2 d.f.=3 d * \/Z*Tf 0.49 0.2
chi-square 0.3 0.5 d.f.= 88 d * \/Z*Tf 6.63 0.5
chi-square 0.61 0.5 d.f.=21 d * \/Z*Tf 3.24 0.5
chi-square 0.95 0.5 d.f.=9 d * \/Z*Tf 2.12 0.5
chi-square 1.32 0.5 d.f.=5 d * \/Z*Tf 1.58 0.5
chi-square 1.75 0.5 d.f.=3 d * \/Z*Tf 1.22 0.5
chi-square 0.3 0.8 d.f.= 88 d * \/Z*Tf 10.61 0.8
chi-square 0.61 0.8 d.f.=21 d * \/Z*Tf 5.18 0.8
chi-square 0.95 0.8 d.f.=9 d * \/Z*Tf 3.39 0.8
chi-square 1.32 0.8 d.f.=5 d * \/Z*Tf 2.53 0.8
chi-square 1.75 0.8 d.f.=3 d * \/Z*Tf 1.96 0.8
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Table A.1 a summary of all the algebra for different cases within the same distribution of
the outcome variables in terms of the skewness, parameters, and corresponding true
effect for mean difference and the standardized mean difference
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The Number of Studies The Number of Individuals per Group Mean Standardized Mean
Difference Difference

2 5 0.1031 0.0264
2 10 0.0764 0.0403
2 20 0.0591 0.0468
2 50 0.0554 0.0511
5 5 0.1285 0.0192
5 10 0.0809 0.037

5 20 0.0619 0.0465
5 50 0.0529 0.0455
10 5 0.1398 0.023

10 10 0.081 0.0346
10 20 0.0613 0.046

10 50 0.0542 0.0488
20 5 0.1475 0.0212
20 10 0.0854 0.0385
20 20 0.0614 0.0427
20 50 0.0578 0.0489
2 5 0.1084 0.0275
2 10 0.0759 0.0393
2 20 0.0573 0.0486
2 50 0.0568 0.0468
5 5 0.1177 0.0226
5 10 0.0738 0.0345
5 20 0.0594 0.0455
5 50 0.0576 0.0467
10 5 0.1452 0.0225
10 10 0.0838 0.0397
10 20 0.0619 0.047
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10 50 0.0539 0.0486
20 5 0.1473 0.0221
20 10 0.0777 0.0409
20 20 0.0638 0.0464
20 50 0.0523 0.0479
2 5 0.1061 0.0301
2 10 0.0736 0.0383
2 20 0.0552 0.0425
2 50 0.0517 0.0496
5 5 0.1247 0.0217
5 10 0.078 0.0393
5 20 0.0628 0.0414
5 50 0.0578 0.0492
10 5 0.139 0.021
10 10 0.0807 0.0355
10 20 0.0661 0.044
10 50 0.0568 0.0457
20 5 0.1474 0.0246
20 10 0.0817 0.0352
20 20 0.0631 0.044
20 50 0.0557 0.0449

Table A.2 the type I error rate for the mixture of normal distributions of the outcome
variable with the different number of studies, and the number of individuals per group
when using the mean difference and the standardized mean difference as the effect sizes
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Skewness The Number of The Number of lognormal Gamma x?
Studies Individuals per
Group
0.3 2 5 0.1019 0.949 0.9954
0.61 2 5 0.1042 0.6547 0.945
0.95 2 5 0.1122 0.3982 0.8048
1.32 2 5 0.1111 0.2617 0.613
1.75 2 5 0.1186 0.1786 0.4414
0.3 2 10 0.0774 0.91 0.9982
0.61 2 10 0.0783 0.4634 0.8969
0.95 2 10 0.0796 0.2511 0.6449
1.32 2 10 0.078 0.1672 0.4282
1.75 2 10 0.0835 0.1204 0.2982
0.3 2 20 0.0585 0.7421 0.9932
0.61 2 20 0.0567 0.2764 0.715
0.95 2 20 0.0575 0.1567 0.4239
1.32 2 20 0.0613 0.1057 0.266
1.75 2 20 0.0696 0.0875 0.1906
0.3 2 50 0.0593 0.4125 0.8976
0.61 2 50 0.0527 0.1513 0.389
0.95 2 50 0.0558 0.0977 0.2065
1.32 2 50 0.0535 0.0699 0.1436
1.75 2 50 0.0536 0.0647 0.1101
0.3 5 5 0.1263 0.125 0.1231
0.61 5 5 0.1297 0.1289 0.1299
0.95 5 5 0.1275 0.1232 0.1219
1.32 5 5 0.1245 0.1164 0.1224
1.75 5 5 0.1155 0.1213 0.1125
0.3 5 10 0.0753 0.0785 0.0797

160



M.Sc. Thesis — Yuqing Huang McMaster — Mathematics and Statistics

0.61 5 10 0.0785 0.0727 0.0773
0.95 5 10 0.0785 0.0739 0.0762
1.32 5 10 0.0757 0.0749 0.0781
1.75 5 10 0.0725 0.0721 0.076
0.3 5 20 0.0579 0.06 0.062
0.61 5 20 0.0576 0.0582 0.0659
0.95 5 20 0.0598 0.0587 0.0611
1.32 5 20 0.055 0.0625 0.0637
1.75 5 20 0.0582 0.0642 0.0602
0.3 5 50 0.0544 0.0546 0.0543
0.61 5 50 0.0538 0.0527 0.0544
0.95 5 50 0.0545 0.0565 0.0522
1.32 5 50 0.0515 0.0531 0.05

1.75 5 50 0.053 0.0517 0.0543
0.3 10 5 0.1372 0.1375 0.1401
0.61 10 5 0.1373 0.1381 0.1396
0.95 10 5 0.1386 0.1366 0.1356
1.32 10 5 0.1299 0.1324 0.1354
1.75 10 5 0.1294 0.1262 0.1327
0.3 10 10 0.079 0.0856 0.0824
0.61 10 10 0.0806 0.0797 0.0802
0.95 10 10 0.0825 0.082 0.0758
1.32 10 10 0.077 0.0739 0.0777
1.75 10 10 0.0812 0.0762 0.0767
0.3 10 20 0.0617 0.0605 0.0607
0.61 10 20 0.0604 0.0619 0.0633
0.95 10 20 0.0635 0.0654 0.064
1.32 10 20 0.0627 0.0607 0.0633
1.75 10 20 0.0628 0.0593 0.0599

161



M.Sc. Thesis — Yuqing Huang McMaster — Mathematics and Statistics

0.3 10 50 0.0536 0.057 0.0541
0.61 10 50 0.0573 0.0569 0.0565
0.95 10 50 0.0564 0.0546 0.0537
1.32 10 50 0.0529 0.0575 0.0493
1.75 10 50 0.0547 0.0566 0.0543
0.3 20 5 0.1474 0.1467 0.1449
0.61 20 5 0.149 0.1454 0.1399
0.95 20 5 0.1507 0.1459 0.148
1.32 20 5 0.143 0.1409 0.1493
1.75 20 5 0.1458 0.1345 0.1439
0.3 20 10 0.0776 0.0793 0.0843
0.61 20 10 0.0794 0.0809 0.0813
0.95 20 10 0.0797 0.0823 0.0851
1.32 20 10 0.0806 0.0774 0.0826
1.75 20 10 0.0764 0.0802 0.0794
0.3 20 20 0.0628 0.0632 0.0649
0.61 20 20 0.066 0.0613 0.0622
0.95 20 20 0.0614 0.0606 0.0648
1.32 20 20 0.0631 0.0595 0.0608
1.75 20 20 0.0625 0.0615 0.0625
0.3 20 50 0.0577 0.0547 0.0602
0.61 20 50 0.0578 0.0514 0.0543
0.95 20 50 0.054 0.0547 0.0567
1.32 20 50 0.0543 0.0579 0.0538
1.75 20 50 0.0555 0.0551 0.0581

Table A.3 the type I error rate for the lognormal, gamma, and x? distributions of the
outcome variable with different skewness, the number of studies, and the number of
individuals per group when using the mean difference as the effect sizes
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Skewness The Number of ~ The Number of lognormal Gamma x?
Studies Individuals per
Group
0.3 2 5 0.1183 0.1186 0.1127
0.61 2 5 0.1189 0.111 0.117
0.95 2 5 0.1135 0.1173 0.1147
1.32 2 5 0.117 0.1117 0.1207
1.75 2 5 0.1142 0.1143 0.119
0.3 2 10 0.081 0.0831 0.0896
0.61 2 10 0.0808 0.084 0.0854
0.95 2 10 0.084 0.0854 0.0859
1.32 2 10 0.0841 0.0865 0.0898
1.75 2 10 0.082 0.0862 0.088
0.3 2 20 0.0663 0.0672 0.0684
0.61 2 20 0.063 0.0669 0.062
0.95 2 20 0.0691 0.0654 0.0638
1.32 2 20 0.0656 0.0689 0.0677
1.75 2 20 0.0721 0.0625 0.0663
0.3 2 50 0.0611 0.0573 0.0543
0.61 2 50 0.0566 0.0583 0.0563
0.95 2 50 0.0558 0.0532 0.0633
1.32 2 50 0.0543 0.0553 0.0537
1.75 2 50 0.0564 0.0574 0.0593
0.3 5 5 0.0237 0.0198 0.0228
0.61 5 5 0.0243 0.0221 0.0217
0.95 5 5 0.0236 0.0238 0.0223
1.32 5 5 0.0219 0.0218 0.0232
1.75 5 5 0.022 0.0224 0.0212
0.3 5 10 0.04 0.038 0.0368
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0.61 5 10 0.0356 0.0357 0.0388
0.95 5 10 0.0371 0.036 0.039
1.32 5 10 0.0417 0.0365 0.0358
1.75 5 10 0.0364 0.0365 0.0408
0.3 5 20 0.043 0.044 0.0409
0.61 5 20 0.0426 0.0453 0.0402
0.95 5 20 0.0461 0.0424 0.044
1.32 5 20 0.0428 0.0438 0.0459
1.75 5 20 0.043 0.0464 0.0454
0.3 5 50 0.0467 0.0456 0.0536
0.61 5 50 0.0471 0.0492 0.0481
0.95 5 50 0.0455 0.044 0.0486
1.32 5 50 0.049 0.0487 0.0425
1.75 5 50 0.0457 0.0488 0.0501
0.3 10 5 0.0201 0.022 0.0216
0.61 10 5 0.0218 0.0217 0.0203
0.95 10 5 0.0216 0.0235 0.0205
1.32 10 5 0.0239 0.0224 0.0211
1.75 10 5 0.022 0.023 0.022
0.3 10 10 0.0353 0.0403 0.0354
0.61 10 10 0.0366 0.0358 0.0373
0.95 10 10 0.0368 0.0362 0.0358
1.32 10 10 0.0369 0.0349 0.0351
1.75 10 10 0.0368 0.0372 0.0369
0.3 10 20 0.0437 0.0406 0.0452
0.61 10 20 0.0433 0.0469 0.0474
0.95 10 20 0.0459 0.0428 0.0467
1.32 10 20 0.0434 0.0445 0.0421
1.75 10 20 0.0451 0.0423 0.0453

164



M.Sc. Thesis — Yuqing Huang McMaster — Mathematics and Statistics

0.3 10 50 0.0475 0.045 0.0413
0.61 10 50 0.0477 0.048 0.0498
0.95 10 50 0.0503 0.0469 0.0478
1.32 10 50 0.0489 0.0436 0.0494
1.75 10 50 0.0436 0.0481 0.0479
0.3 20 5 0.0193 0.0216 0.0215
0.61 20 5 0.0219 0.019 0.0239
0.95 20 5 0.019 0.0232 0.0225
1.32 20 5 0.0219 0.0197 0.0216
1.75 20 5 0.0239 0.0223 0.0226
0.3 20 10 0.0342 0.0357 0.0407
0.61 20 10 0.0372 0.0362 0.0387
0.95 20 10 0.0396 0.036 0.0379
1.32 20 10 0.0396 0.0405 0.0424
1.75 20 10 0.0381 0.0371 0.0341
0.3 20 20 0.0436 0.046 0.0407
0.61 20 20 0.041 0.0405 0.0413
0.95 20 20 0.0448 0.0432 0.0391
1.32 20 20 0.0451 0.0418 0.0439
1.75 20 20 0.0468 0.0446 0.0445
0.3 20 50 0.0488 0.0457 0.0444
0.61 20 50 0.0427 0.0426 0.0464
0.95 20 50 0.0451 0.0496 0.0508
1.32 20 50 0.0464 0.0454 0.0488
1.75 20 50 0.0479 0.0472 0.0463

Table A.4 the type I error rate for the lognormal, gamma, and y*distributions of the
outcome variable with different skewness, the number of studies, and the number of
individuals per group when using the standardized mean difference as the effect sizes
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