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Abstract 

The current meta-analysis methods for the fixed-effect model with continuous outcome 

variables have been developed based on the assumption that the variation of the outcome 

variable between patients within treatment groups for each study follows a normal 

distribution. However, real-world data does not always follow a normal distribution, 

which may lead to unreliable meta-analysis results.  

This study uses the Monte Carlo simulation to evaluate robustness by comparing the 

analysis results with the truth when the normal assumption is violated; performance 

measures include the relative bias of the estimated treatment effect, the coverage 

probability of the estimates, and the power and type I error rate of the test of the null 

hypothesis. We simulate various non-normal outcome data, including a mixture of 

normals, lognormal, gamma, and 𝜒! distributions. We examine the impact of the sample 

size per study, the number of studies, the magnitude of skewness, and the effect sizes on 

the results. 

The results show that small studies with highly skewed data provide non-robust meta-

analysis results for a fixed-effect model. Moreover, increasing the number of studies 

without sufficient sample sizes worsens the relative bias, coverage probability, and 

power. Therefore, this simulation suggests that investigators must be cautious when 

applying the fixed-effect model to small studies, particularly with respect to the potential 

non-normality of the data. 
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This study recommends that investigators include large trials whenever possible. If large 

trials are not feasible, they should always assess the normality of the datasets and select 

an appropriate meta-analysis method to obtain robust results. This will help ensure that 

policies and guidelines are based on reliable evidence, thereby minimizing the risk of 

implementing ineffective and harmful policies and guidelines. 
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Chapter 1 Introduction 

Meta-analysis is a statistical method for synthesizing data from various independent 

studies (Higgins, et al., 2024). According to Borenstein, Hedges, Higgins, and Rothstein 

(2009), meta-analysis aims to identify the consistency of effect sizes, accurately estimate 

effect sizes, and measure the extent of variance across studies included in the synthesis. 

They also noted that, compared to other synthesis methods, such as narrative reviews, 

meta-analysis enhances transparency by systematically weighting studies and can manage 

a large number of studies. Meta-analysis has been employed in many fields, including 

medicine, psychology, and ecology (Weeks, George, Maclure, & Stewart, 2016; Roberts 

et al., 2019; Plieninger, Hui, Gaertner, & Huntsinger, 2014). In the past 10 years, there 

have been 174843 results found from searching Ovid MEDLINE(R) with the search 

terms (“meta-analys*.mp.” or “meta analys*.mp.”) and “systematic review/”, indicating a 

great interest in conducting meta-analyses. 

The fixed- and the random-effects models are the most widely used meta-analysis 

methods. The fixed-effect model assumes all studies share the same true effect size and 

that the observed effect sizes across individual studies differ solely due to within-study 

variation, and the random-effects model accounts for both within- and between-study 

variation (Borenstein, Hedges, Higgins, & Rothstein, 2009). These meta-analysis 

methods with continuous outcome variables have been developed based on the 

assumption that the variation of the outcome variable between patients within treatment 

groups for each study follows a normal distribution (Jackson & White, 2018; Higgins, 
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White, & Anzures-Cabrera, 2008). However, there are many situations where the 

outcome data are non-normal, especially in the medical field, for example, blood 

biomarker levels (C-reactive protein), scale questionnaires, and BMI (body mass index). 

According to Higgins, White, and Anzures-Cabrera (2008), the Central Limit Theorem 

ensures that the meta-analytical result remains valid with a sufficiently large sample size 

per study with a skewed outcome variable. Unfortunately, many meta-analyses often 

include small studies or a small number of studies. For example, a meta-analysis about 

therapeutic options for rare rheumatic diseases included a study with only 22 patients 

(Bender, et al., 2020). Moreover, one study shows that the median number of studies 

included in a meta-analysis among 22435 eligible meta-analyses is 3 (Davey, Turner, 

Clarke, & Higgins, 2011). Therefore, identifying violations of the normality assumption 

and their impact on the meta-analysis is crucial for investigators to obtain robust results. 

Two previous simulation studies have examined the impact of non-normality in primary 

studies on the performance of meta-analysis, each with a distinct focus (Kontopantelis & 

Reeves, 2010; Sun & Cheung, 2020). Kontopantelis and Reeves concentrated on 

comparing the performance of different random-effects models, including DerSimonian 

& Laird, Biggerstaff & Tweedie, Sidik and Jonkman, Q-based, maximum-likelihood, 

profile-likelihood, and permutation methods. On the other hand, Sun and Cheung 

explored the influence of the standardized mean difference as an estimate of effect size 

using DerSimonian & Laird random-effects models. However, neither study paid much 

attention to the fixed-effect model when the distribution of the study effect deviated from 

normality. The details of these two studies will be presented in Chapter 2. Therefore, this 
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thesis offers insights into the robustness of meta-analysis methods for fixed-effect models 

with continuous outcome variables. 

The study's primary objective is to evaluate the robustness of the meta-analysis for a 

fixed-effect model when the normality assumption is violated. I explore how various non-

normal distributions of the outcome variable influence the estimation and inference of the 

meta-analysis through a simulation study. Additionally, I investigate the impacts of the 

magnitude of the effect size within each outcome variable distribution, the number of 

studies, and the number of patients per group per study on the meta-analysis results. By 

examining different conditions, we aim to inform investigators about when they should 

take extra caution while interpreting the meta-analysis results so that they can make 

policies and guidelines based on reliable evidence and reduce the risk of implementing 

ineffective and harmful policies and guidelines. 

The paper consists of five chapters. Chapter 1 explores the general concept of meta-

analysis and the issue of the normality assumption. Chapter 2 offers a concise 

introduction to calculating a mean difference and a standardized mean difference, along 

with the steps of meta-analysis within a fixed-effect model. Furthermore, it presents two 

relevant previous simulation studies and discusses their limitations. Chapter 3 details the 

simulation design, the selection of distributions for the outcome variable, and the 

evaluation criteria. Chapter 4 showcases the simulation results based on different 

distributions of the outcome variables. Finally, Chapter 5 summarizes the findings, 

addresses the limitations of the simulation, and considers future directions for examining 

the robustness of the meta-analysis.  



 

 4 

Chapter 2 Literature Review 

In this chapter, I first introduce two different effect size measures that researchers use for 

continuous outcomes. Then, I present the standard procedure of meta-analysis for a fixed-

effect model. Lastly, I discuss the issues raised by the non-normality of the data and 

describe two previous simulation studies in detail and how they considered non-

normality, particularly the differences in the deviations from normality from this thesis.  

2.1 Mean Difference and Standardized Mean Difference 

Borenstein (2009) introduces the effect size as “a number that reflects the magnitude of 

the relationship between two variables.” In hypothesis testing, the effect size can be 

treated as a parameter that takes 0 when the null hypothesis is true and any other values 

to imply the degree of departure from the null hypothesis when false (Cohen, 1988). 

Also, Cohen (1988, p11) stated that the effect size needs to be quantified and assessed 

using a specific unit suitable for the statistical analysis. The mean difference (MD) and 

the standardized mean difference (SMD) are two common effect sizes that measure 

continuous outcomes in the meta-analysis. The details of these two effect size measures 

are provided in the following sections. 

2.1.1 Mean Difference (MD) 

The MD is used when all studies report the continuous outcome using the same 

measurement scales and units, and these units are meaningful in practice (Takeshima, et 
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al., 2014). Moreover, MD is preferred because of its interpretability if the absolute 

magnitude of the difference between groups is the main interest.   

According to Borenstein (2009), for each study, the population mean difference is defined 

as: 

Δ = 𝜇" − 𝜇!,	 (1) 

where µ" and µ! are the population means of the two independent groups. From statistical 

algorithms in Review Manager (2022), to estimate Δ, we have: 

𝑀𝐷 = 𝑚" −𝑚!, (2) 

with the standard error: 

𝑆𝐸(𝑀𝐷) = ;
𝑠𝑑"!

𝑛"
+
𝑠𝑑!!

𝑛!
. (3) 

𝑚" and 𝑚! is the sample mean of the two groups, 𝑠𝑑" and 𝑠𝑑! are the sample standard 

deviations, and 𝑛" and 𝑛! are the sample size of the two groups. 

2.1.2 Standardized Mean Difference (SMD) 

In clinical trials, it is common that different instruments can measure essentially the same 

outcome; for example, the most widely used assessments for the quality of life are MOS 

SF-36 (Medical Outcomes Study Short-Form 36), Euro EQ-5D, SF-12 (12-Item Short-

Form Health Survey), and Visual Analogue Scale EQ-VAS (Pequeno, De Araújo Cabral, 

Marchioni, Lima, & De Oliveira Lyra, 2020). Therefore, the SMD is introduced in 
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situations where different studies use different measurement instruments. The difference 

can be referred to as a different scale and direction. The SMD can also indicate the 

magnitude of the effect when the scale is unfamiliar (Borenstein, 2009), since Cohen 

(1988) suggests an SMD of 0.2 as a small effect, an SMD of 0.5 as a moderate effect, and 

an SMD of 0.8 as a large effect.  

2.1.2.1 Cohen’s d 

According to Borenstein (2009), the population standardized mean difference is defined 

as: 

δ =
µ" − µ!
𝜎

, (4) 

where σ" = σ! = σ, and σ" and σ! are the population standard deviations of the two 

groups. Therefore, Cohen’s d is estimated by: 

𝑑 =
𝑚" −𝑚!

𝑆$%%&
, (5) 

where 𝑆$%%& is the sample pooled standard deviation,  

𝑆$%%& = ;
(𝑛" − 1)𝑠𝑑"! + (𝑛! − 1)𝑠𝑑!!

𝑛" + 𝑛! − 2
. (6) 

Also, the standard error of d is given by: 

𝑆𝐸(𝑑) = ;
𝑛" + 𝑛!
𝑛"𝑛!

+
𝑑!

2(𝑛" + 𝑛!)
. (7) 
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2.1.2.2 Hedge’s g 

Hedge’s g is introduced because the estimate of Cohen’s d gives a slight bias when 

dealing with small samples, leading to an overestimation. From statistical algorithms in 

Review Manager (2022), Hedge’s g is given by: 

𝑔 =
𝑚" −𝑚!

𝑆$%%&
G1 −

3
4(𝑛" + 𝑛!) − 9

I , (8) 

with the standard error: 

𝑆𝐸(𝑔) = ;
𝑛" + 𝑛!
𝑛"𝑛!

+
𝑔!

2(𝑛" + 𝑛! − 3.94)
. (9) 

For both Cohen’s d and Hedge’s g, they assume the underlying population standard 

deviations of the two groups are the same. Moreover, this thesis uses Hedge’s g to 

estimate the SMD for the later simulation. 

However, Hopkins and Rowlands (2024), noted that different SDs leads to different 

estimation of the effect size. They introduced various pooled SDs (standard deviation) 

including, post-only SDs (the outcome is measured only once after the intervention), pre 

SDs and pre-post SDs (the outcome is measured before and after the intervention).  

2.2 Meta-Analysis 

As mentioned in Chapter 1, meta-analysis is a statistical synthesis method that pools 

results from various independent studies (Higgins, et al., 2024). Two major meta-analysis 

models are introduced: the fixed-effect model and the random-effects model. These 
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models are based on different assumptions. The fixed-effect model assumes that all 

studies share the same true effect size, considering only the within-study variation. In 

contrast, the random-effects model assumes that the true effect size varies across all 

studies, incorporating both within-study and between-study variation (Borenstein, 

Hedges, Higgins, & Rothstein, 2009). Since this thesis exclusively considers the fixed-

effect model, I will only present the mathematics of the fixed-effect model in the 

following section.  

2.2.1 Fixed-Effect Model 

In the fixed-effect model, let 𝑌L' be the observed effect for the 𝑖() study, then we have: 

𝑌L' = θ + ϵ' , (10) 

where θ is the true effect, and ϵ' is the sampling error for the 𝑖() study. ϵ' is assumed to 

follow a normal distribution, that ϵ' ∼ 𝑁(0, σ'!), where σ'! is the within-study variance. 

Therefore, we have 𝑌L'|θ ∼ 𝑁(θ, σ'!) (Jackson & White, 2018; Hedges & Vevea, 1998). 

According to statistical algorithms in Review Manager (2022), the estimated overall 

effect is given by: 

𝑌L =
∑ 𝑤'*
'+" 𝑌,V
∑ 𝑤'*
'+"

, (11) 

where 𝑤' is the estimated weight for the 𝑖() study, giving: 

𝑤' =
1

W𝑆𝐸{𝑌L'}Z
! , (12) 
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with 

𝑆𝐸(𝑌L) =
1

[∑ 𝑤'*
'+"

. (13) 

 

Then, we have the 100(1 − α)% confidence interval for 𝑌L  as follows: 

𝑌L ± 𝑧-/! ∗ 𝑆𝐸W𝑌LZ (14) 

where α is the significance level and is usually set to 0.05. 𝑧-/! is the (1 − α/2)() 

quantile of the standard normal distribution. Moreover, to test whether there is an overall 

effect under the null hypothesis that there is no overall effect of the intervention, we have 

the test statistic given by: 

𝑍 =
𝑌L

𝑆𝐸W𝑌LZ
. (15) 

 

2.3 Non-normality 

As mentioned, the fixed-effect model assumes that the between-patient study effects are 

normally distributed around a common true effect with only within-study variance and no 

systematic variation in the treatment effect among studies. However, real medical, social 

science, and education data are not always normal. For instance, Micceri (1989) 

evaluated different outcome measurements in psychology and found all of them 
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statistically significantly non-normal, with a 0.01 significance level with the 

Kolmogorov-Smirnov test of normality. Moreover, according to Blanca, Arnau, López-

Montiel, Bono, & Bendayan (2013), among 693 measures used in psychological and 

educational studies, 74.4% of them are slightly or moderately non-normal, with both 

skewness and kurtosis ranging from 0.26 to 1.25. In addition, from a systematic review 

by Bono, Blanca, Arnau, & Gómez-Benito (2017), the most common non-normal 

distributions after screening 262 studies in the fields of health, education and social 

science are gamma, negative binomial, multinomial, binomial, lognormal, and 

exponential. In the following subsections, I introduce the possible sources of non-

normality of the data and the possible problems caused by the violation of non-normality 

in meta-analysis provided with two simulation studies that tackle the similar issue.   

2.3.1 Causes of Non-normality 

The first possible reason for data to be non-normal is the nature of the outcome 

measurements, including the design of the outcome measures and the ceiling or floor 

effect. For example, a 7-point Global Overall Symptom scale results in discrete data 

collection following a multinomial distribution (Micceri, 1989). Moreover, outcomes like 

C-reactive protein (CRP) levels, blood pressure, and cholesterol levels have a lower 

bound (greater than 0) but can also have extremely high values, leading to a right-skewed 

distribution. A study examined the CRP levels of 2275 males and 3832 females and found 

that the distribution of the CRP levels is highly skewed to the right, given that most CRP 

values are less than 2mg/liter (Yamada, et al., 2001). Another reason might be that a 

subgroup within a treatment group responds differently to the same intervention, leading 
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to a bimodal distribution. For example, different genetic features might influence the 

response of antihypertensive treatment (Mellen & Herrington, 2005). 

2.3.2 Problems of Non-normality 

First, Wilcox (2005) mentioned that the standard error estimation is not robust to non-

normality, followed by an example of heavy-tailed distributions giving an overestimation 

of the standard error, leading to a wider confidence interval of the mean difference. Also, 

existing studies have shown that the estimation of the SMD and its standard error is not 

robust to non-normality in a single study (Kelley, 2005; Wilcox & Keselman, 2003). 

Furthermore, they found that the coverage probability departs from the nominal level. 

Therefore, when Sun and Cheung (2020) examined the effect of non-normality in primary 

studies using the SMD in the meta-analysis, they summarized that the non-robustness of 

the pooled effect size could result from the accumulation of the non-robustness of the 

SMD estimator with non-normal data in the primary studies. Moreover, the non-

robustness of the pooled effect size may arise from incorrectly estimated pooled sample 

standard errors, which in turn leads to biased study weights. In addition to non-normality, 

Hopkins and Rowlands (2024) observed that most meta-analyses used either 

inappropriate SDs or applied inconsistent SDs across studies, which introduces bias in 

estimating the effect size even for normally distributed data.   

 A previous simulation by Sun and Cheung (2020) assessed the meta-analysis's robustness 

using SMD with the DerSiMonian-Laird (DL) random-effects models when the data from 

the primary studies deviate from normal. They evaluated six combinations of 
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distributions of two groups chosen from normal, exponential, and reversed exponential 

distributions. In addition, they chose 6 effect sizes, 5 standard deviation ratios, 4 sample 

sizes per study, 5 study sizes, and 7 heterogeneity variances, resulting in 4200 conditions 

for each distribution combination, and each condition had 5000 replicates. They included 

the bias, MSE, and coverage probability for outcome measures. They found that non-

normality increases the bias and MSE, especially when the distributions of the two 

groups are oppositely skewed. In addition, the coverage probability deviated more from 

the nominal levels with non-normal data, particularly with oppositely skewed data. 

However, in this simulation, the authors did not cover other common distributions that 

might occur in a study, such as gamma and lognormal distributions. Moreover, the cases 

where the two groups are oppositely skewed are rare in the parallel intervention study 

(e.g. randomized control trials). Another limitation of this study is that it did not 

investigate the influence of the magnitude of the deviation from normality on the result.  

Another simulation by Kontopantelis and Reeves (2010) assessed the performance of the 

meta-analysis against the normality assumption and simulated the study's effect size 

using various distributions instead of the primary data. Also, this study has a different 

focus from Sun and Cheung’s study (2020), where Kontopantelis and Reeves (2010) 

compared the performance of the fixed-effect model and seven other random-effects 

models through the coverage probability, the power probability, and overall effect 

estimation. They generated 25 different unimodal distributions through different 

combinations of skewness and kurtosis, three different bimodal distributions of equal 

probability (p = 0.5), and three extreme distributions such as uniform, ‘U shaped ’ beta, 
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and ‘double spike’. The number of studies ranges from 2 to 35, each with 10000 

replications. They did not include the results of cases where the effect size distributions 

are non-normal with no between-study variation. However, with a slight between-study 

variation of 𝐻! being 1.18, the coverage probability for the fixed-effect model is below 

0.92 for effect sizes of all distributions, even when the number of studies exceeds 26, 

where 𝐻! is defined as the heterogeneity measure least affected by the number of studies; 

a value of 1 indicates homogeneity and a value greater than 1 indicates heterogeneity. The 

major difference between Kontopantelis and Reeves’ simulation and this simulation is 

that they focus more on violating the normality assumption on the between-study 

variation by randomly simulating the effect size for each study by a non-normal 

distribution. In addition, the simulation design cannot assess the impact of the different 

degrees of effect size on the performance of meta-analysis. 

Furthermore, neither simulation study investigated the robustness of the fixed-effect 

models when the data from primary studies were non-normal. Also, these two studies did 

not discuss the individual effect of the number of studies and sample size per study, nor 

did they discuss more sample sizes or more studies when the total sample size is fixed. 

Therefore, this thesis aims to address these questions and evaluate how the extent of non-

normality of each distribution of outcome variables impacts the bias, coverage 

probability, power and type I error. In this simulation, I will include the distributions 

commonly seen in health and social science studies, such as lognormal, gamma, and 𝜒! 

distributions. The mixture of normal distributions is also included to mimic the situation 

where two groups follow different distributions and a subgroup of non-responders is 
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present in the intervention group. The next chapter illustrates the details of the simulation 

design. 
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Chapter 3 Method 

3.1 Simulation 

A Monte Carlo simulation is conducted by R to assess the robustness of the meta-analysis 

against non-normality of the outcome variable. The simulation study considers the impact 

of four factors for each distribution of the outcome variable: the number of studies, the 

number of patients per group per study, the skewness of the outcome variable and the 

effect sizes. We will vary the number of patients in each study group (assumed to be 

equal between the treatment group and control group), 𝑛'/ = 𝑛'(	 = 	5, 10, 20, 50, where 

	𝑛'/ is the number of patients in the control group from the 𝑖() study, and  𝑛'( is the 

number of patients in the intervention group from the 𝑖() study. We will also set up 

different numbers of studies k = 2, 5, 10, 20 to be included in the meta-analysis. For each 

distribution, we will change the parameters to obtain the effect of skewness on the 

estimated effect. Also, we will compare the impact of different effect sizes on the results 

while keeping other parameters constant. The effect size will be defined to be 0.2 (small 

effect), 0.5 (moderate effect), and 0.8 (large effect) by Cohen’s d, which is given by 

Equation 5.  

Moreover, we will calculate the overall effect size in a meta-analysis by the mean 

difference and standardized mean difference using the generic inverse variance method 

for the fixed-effect model. We include the standardized mean difference to represent the 
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situation where the studies assess the same outcome using different measurement scales. 

Each meta-analysis is replicated 10000 times. 

3.2 Distributions 

We will assess the following distributions for the outcome variable a mixture of normals, 

log-normal, gamma, and χ!. 

3.2.1 The Mixture of Normal Distributions 

The mixture of normal distributions represents the situation when a subgroup of patients 

responds differently to the treatment in the intervention group. The patient outcomes of 

the control group and the intervention group for the 𝑖() study are generated via 

𝑁(𝜇", 𝜎)	and  𝑝 ∗ 𝑁(𝜇", 𝜎) + (1 − 𝑝) ∗ 𝑁(𝜇!, 𝜎) respectively, where 𝜇" is the mean of 

the outcome for the patients in the control group and the subgroup of patients who do not 

respond to the treatment in the intervention group, 𝜇! is the mean of the outcome for the 

patients in the intervention group who respond to the treatment. 𝑝 is the proportion of the 

subgroup of patients which does not respond to the treatment in the intervention group 

and 𝜎 is the between-patient variance within those subgroups. Within a mixture of normal 

distribution, we will set up the following: first, different values of p will be investigated 

to show how the various magnitude of deviation from normality influences the results of 

the analysis, and p will be set as 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1, while 

other parameters will be kept constant. Second, the true overall effect will be considered 

as 𝜇! − 𝜇" and (1 − 𝑝) ∗ (𝜇! − 𝜇") separately for mean difference and 𝑑 and (1 − 𝑝) ∗ 𝑑 

for standardized mean difference, where (1 − 𝑝) ∗ (𝜇! − 𝜇") is the overall difference of 
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the two groups. Meanwhile, 𝜇! − 𝜇" covers the difference between the two groups, but 

also focuses on the responders of the intervention group. 

3.2.2 Lognormal Distribution 

We compare the deviation from the normal distribution through skewness and kurtosis. 

From Johnson, Kotz, and Balakrishnan (1994), if 𝑋 is followed by a lognormal (𝜇, 𝜎!), it 

has a PDF of 

𝑃1(𝑥) =
1

𝑥𝜎i(2𝜋)
𝑒𝑥 𝑝 l−

(𝑙 𝑛 𝑥 − 𝜇)!

2𝜎!
n . (16) 

The expected value of 𝑋 is 

𝑒𝑥𝑝 o𝜇 + 2!

!
p.		 (17)

and the variance of 𝑋 is 

(𝑒𝑥𝑝(𝜎!) − 1)𝑒𝑥𝑝(2𝜇 + 𝜎!). (18)

For a log-normal distribution, the skewness and kurtosis change according to the 𝜎. 

Skewness is 

(𝑒𝑥𝑝(σ!) + 2)i𝑒𝑥𝑝(σ!) − 1, (19) 

and kurtosis is 

𝑒𝑥𝑝(4𝜎!) + 2𝑒𝑥𝑝(3𝜎!) + 3𝑒𝑥𝑝(2𝜎!) − 3. (20)

Table 3.1 shows the corresponding skewness and kurtosis values for a given value of 𝜎. 
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Table 3.1 value of skewness and kurtosis with give 𝜎 for lognormal distribution 

From Table 3.1, the shape is nearly symmetric when  𝜎 approaches 0, and skewness and 

kurtosis increase rapidly when 𝜎 > 0.5; thus, we will focus on the cases with σ	 < 0.5 

when evaluating the results. In the simulation, we choose 0.1, 0.2, 0.3, 0.4, and 0.5 as the 

values for 𝜎 to indicate different magnitudes of deviation from a skewness of 0. The 

simulation for lognormal distribution will be set up in two ways. The first method 

simulates lognormal (0, 𝜎!) for the control and intervention groups, then adds a constant 

c for the intervention group. The constant c is calculated below to match the 

corresponding Cohen’s 𝑑	values, and the true treatment effect is c, where c is  

𝑑 ∗ i{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)}	 (21) 

𝜎 skewness kurtosis 

0.1 0.30 3.16 

0.2 0.61 3.68 

0.3 0.95 4.64 

0.4 1.32 6.26 

0.5 1.75 8.90 

0.6 2.26 13.27 

0.7 2.89 20.79 

0.8 3.69 34.37 

0.9 4.75 60.41 

1 6.18 113.94 
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for mean difference and the true treatment effect is 𝑑 for standardized mean difference. 

The second method simulates lognormal (0, 𝜎!) for the control and lognormal (𝜇, 𝜎!) for 

the intervention groups. 𝜇 is calculated as  

l n x
1 + i1 − (1 − 𝑎)!

1 − 𝑎 z , (22) 

where 

𝑎 =
𝑑!(𝑒𝑥𝑝(𝜎!) − 1)

2
. (23) 

 

The values of 𝜇 for the corresponding values of 𝜎 and 𝑑 can be found in Table 3.2. 

Therefore, the true treatment effect for the second method is  

𝑒𝑥𝑝 o2
!

!
p (ex p(𝜇) − 1) (24)

for mean difference and 𝑑 for standardized mean difference. 

σ µ	(	𝑑 = 0.2) 𝜇	(𝑑 = 0.5) 𝜇	(𝑑 = 0.8) 

0.1 0.020 0.050 0.080 

0.2 0.040 0.101 0.163 

0.3 0.061 0.154 0.249 

0.4 0.083 0.210 0.341 

0.5 0.107 0.271 0.444 

Table 3.2 values of 𝜇 for different 𝜎, 𝑑 values 
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3.2.3 Gamma Distribution  

Like lognormal distribution, we compare the deviation from the normal distribution 

through skewness and kurtosis. From Johnson, Kotz, and Balakrishnan (1994), if  𝑋 is 

followed by a gamma (𝛼, 𝛽), it has a PDF of  

𝑃1(𝑥) =
1

Γ(𝛼)𝛽3 𝑥
34"𝑒

45
6 . (25) 

For the Gamma distribution, the skewness and kurtosis solely depend on the shape 

parameter α. Skewness and kurtosis are shown below: 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 2/√α, (26) 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 3 + 6/√α, (27) 

which means if α → ∞, the skewness of gamma distribution is equivalent to the zero 

skewness of the normal distribution. α is calculated to have the same skewness as a 

lognormal distribution, to indicate different magnitudes of deviation from a normal 

distribution. The values of skewness and corresponding α are listed in Table 3.3. Like the 

simulation for the lognormal distribution, we will construct the simulation using the same  

Skewness α 

0.30 43.93 

0.61 10.60 

0.95 4.44 

1.32 2.29 
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1.75 1.31 

Table 3.3 the value for  𝛼	with given skewness 

two methods: simulating gamma distribution with the same parameters for two groups, 

then adding a constant c to the intervention group, and simulating two gamma 

distributions with different parameters. The constant c is calculated as  

𝑑 ∗ i(αβ!)	 (28) 

to match the required effect size values and c is also the true treatment effect when using 

the mean difference. β is the scale parameter for the gamma distribution and is set to 1 in 

both study groups for the first method. Also, the true treatment effect when using 

standardized mean difference is 𝑑. For the second method, the outcome variable for the 

control group will be simulated from 𝑔𝑎𝑚𝑚𝑎(α, β/), where β/ is 1. The outcome 

variable for the intervention group will be simulated from 𝑔𝑎𝑚𝑚𝑎(α, β(), where  

β( =
lαβ/ + β/[α𝑑! −

𝑑7
4 n

α − 𝑑
!

2

. (29) 

Thus, the true treatment effect for the second method is α(β( − β/) , with α(β8 − β9) > 0 

for mean difference and 𝑑 for standardized mean difference. The corresponding values of 

β( with different effect sizes and different skewness are shown in Table 3.4. 

 

skewness β((𝑑 = 0.2) β((𝑑 = 0.5) β((𝑑 = 0.8) 
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0.30 1.031 1.078 1.129 

0.61 1.063 1.167 1.283 

0.95 1.100 1.272 1.480 

1.32 1.142 1.403 1,755 

1.75 1.193 1.578 2.193 

Table 3.4 values for 𝛽( with different effect sizes and skewness 

3.2.4 𝛘𝟐 Distribution 

The χ! distribution is a special case of the gamma distribution. If a random variable 

follows a χ! distribution with n degrees of freedom, then it is equivalent to following a 

gamma (:.<.
!

, 2). The skewness depends on the degrees of freedom for the χ! distribution. 

For convenience, we will simulate two χ!~(𝑑. 𝑓. ), and add a constant c to the 

intervention group to assess different effect sizes, where d. f. = 	2α. Also, 𝑑. 𝑓. is rounded 

to the nearest integer. The values for α are the same as the ones we use for the gamma 

distribution, and 𝑐 = 𝑑 ∗ i(2𝑑. 𝑓. ), where c is also the true effect for the mean 

difference. The true effect for the standardized mean difference is 𝑑.  

A summary table of all the algebra for different cases within the same distribution of the 

outcome variables in terms of the skewness, parameters, and corresponding true effect for 

mean difference and the standardized mean difference is provided in the Appendix.  
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3.3 Evaluation Criteria 

To assess robustness, we will look at the relative bias of the estimated treatment effect 

from the true treatment effect, the coverage probability of the confidence interval for the 

estimated treatment effect, the power, and the type I error of the hypothesis test of the 

treatment effect. 

3.3.1 Relative Bias 

Relative bias is chosen to evaluate the accuracy of the estimated effect because it better 

compares the estimated effect across difference effect sizes. The estimated relative bias is 

the proportion of absolute bias to the true effect and is calculated as 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑏𝑖𝑎𝑠 =
1
𝑁�l

δ=V − δ
δ n

>

?+"

	 (30) 

in the simulation, where N is the number of replications, 𝛿,V  is the estimated effect of each 

replication and 𝛿 is the true effect. The further the relative bias is away from zero, the 

worse the estimate is, and vice versa. A positive relative bias indicates an overestimation 

of the true effect, and a negative relative bias indicates an underestimation of the true 

effect.  Negative relative bias would probably be preferred by investigators because it 

gives more conservative treatment effect estimates and minimizes type I error rates. 
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3.3.2 Coverage Probability 

The estimated coverage probability is the proportion of the confidence intervals that 

include the true effect in the 10000 replications, and it represents how well the confidence 

interval captures the true effect. It is measured as follows in the simulation: 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
∑ 𝐼(𝐿' ≤ δ ≤ 𝑈')@
'+"

𝑁
. (31) 

𝐿' and 𝑈' are the lower and upper bound of the 95% confidence interval of the estimated 

effect in the 𝑖() replication respectively, and 𝐼(∙) is the indicator function, which equals 1 

if 𝛿,V  falls between the confidence interval and equals 0 otherwise. The 95% coverage 

probability is desired and any deviation from 95% indicates a potential issue. However, 

an acceptable range of coverage probability is 92.5% to 97.5%, which is obtained from 

Bradley (1978), and the coverage probability outside of this range represents insufficient 

estimation of true effect.  

3.3.3 Power 

The power is the ability of a test to detect the true effect, also known as the probability of 

rejecting the null hypothesis (𝛿 = 	0) when the alternative hypothesis (𝛿 ≠ 0) is true. In 

our simulation, the power is estimated as  

𝑝𝑜𝑤𝑒𝑟 =
∑ 𝐼(𝑝' < α)@
'+"

𝑁
, (32) 
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where 𝑝' is the p-value of the 𝑖() iteration, and 𝛼 is the significance level, set to 0.05. The 

acceptable range for power is 80% and above, which is usually the desired level when 

calculating power for a clinical trial. The higher the power, the more sensitive the test is, 

and vice versa. 

3.3.4 Type I Error 

Type I error rate is the proportion of times of rejecting the null hypothesis when it is true. 

In the simulation, we calculate the type I error rate when the true effect is zero, as 

follows: 

𝑡𝑦𝑝𝑒	𝐼	𝑒𝑟𝑟𝑜𝑟	 = 	
∑ 𝐼(𝑝' < 𝛼)@
'+"

𝑁
. (33) 

Ideally, the type I error rate should be close to 0.05. However, in this study, we will use a 

more liberal criterion suggested by Bradley (1978) where 0.5α ≤ 𝑡𝑦𝑝𝑒	𝐼	𝑒𝑟𝑟𝑜𝑟	 ≤ 1.5α, 

and is 0.25 to 0.75. A type I error rate greater than this range suggests an increased false 

positive rate, and a type I error rate less than this range suggests that the test is 

underpowered. 
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Chapter 4 Results 

This chapter contains the simulation results of different distributions of the outcome 

variable. The results are presented by different distributions of the outcome variable. 

Within each distribution, the results are separated into two parts, using the mean 

difference and the standardized mean difference to estimate the overall treatment effect, 

respectively. Furthermore, the relative bias and the coverage probability of the estimated 

overall treatment effect, as well as the power and the type I error rate of the meta-

analysis, are presented in each section. As mentioned in Chapter 3, the coverage 

probability is taken to be acceptable when it falls between 0.925 and 0.975; the power is 

acceptable when greater than 0.8; and the acceptable range for the type I error rate is 

between 0.025 to 0.075. In addition, the table of the results for the type I error rate of the 

meta-analysis will be provided in the Appendix. 

4.1 The Mixture of Normal Distributions 

The relative bias is undefined when p=1, with (1 − 𝑝) ∗ (µ( − µ/) being the true 

treatment effect, given µ( − µ/ 	≠ 0. Therefore, we will only investigate the cases when p 

equals 0 to 0.9. 
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4.1.1 Mean Difference 

4.1.1.1 (𝟏 − 𝒑) ∗ (𝛍𝒕 − 𝛍𝒄) as the True Effect 

From Figure 4.1.1 and Figure 4.1.2, the relative bias slightly decreases as the number of 

studies and patients increases. A fluctuation of the relative bias with changing p is 

observed for a small effect size, especially when p is greater than 0.5 and small sample 

sizes (k=2, 5 or n=5, 10). The fluctuation disappears as the effect size increases. In most 

cases where the relative bias is beyond 5%, the patients per group per study are 5 with 

large p (0.8 and 0.9).  As shown in Figure 4.1.3, with a fixed total sample size of 200, 

different combinations of k and n do not noticeably impact the relative bias. 
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Figure 4.1.1The relative bias in the estimated treatment effect, as a function of p and n 

across different effect sizes, with a mixture of normals data using the mean difference for 
a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.1.2 The relative bias in the estimated treatment effect, as a function of p and k 

across different effect sizes, with a mixture of normals data using the mean difference for 
a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.1.3 The relative bias in the estimated treatment effect, as a function of p and the 
different combinations of k and n across different effect sizes, with a mixture of normals 

data using mean difference for a fixed total sample size of 200. 

From Figure 4.1.4, with a fixed value of k at all levels, the coverage probability is the 

closest to 0.95 when n increases. With a fixed value of n at 5, a smaller k gives better 
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coverage probability, as shown in Figure 4.1.5. However, the impact of k on the coverage 

probability gradually disappears as n increases. The effect size and p have a negligible 

effect on the coverage probability. Whenever the coverage probability is below 0.925, n is 

always equal to or less than 10. The coverage probability is closest to 0.95 when 

including the fewest studies and most patients per study with a fixed total sample size of 

200, which is shown in Figure 4.1.6. 

 
Figure 4.1.4 The coverage probability in the estimated treatment effect, as a function of p 

and n across different effect sizes, with a mixture of normals data using the mean 
difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.1.5 The coverage probability in the estimated treatment effect, as a function of p 

and k across different effect sizes, with a mixture of normals data using the mean 
difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.1.6 The coverage probability in the estimated treatment effect, as a function of p 

and the different combinations of k and n across different effect sizes, with a mixture of 
normals data using the mean difference for a fixed total sample size of 200. 

As shown in Figure 4.1.7 and Figure 4.1.8, the power increases as the number of studies, 

patients per study, and the effect size increases. The power declines as p increases and 
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drops sharply from 1 when p > 0.5, especially with a larger sample size and effect size. 

The power is greater than 0.8 when the sample size exceeds 800 for a small effect size. 

With a moderate effect size, the power exceeds 0.8 when the total sample size exceeds 

200. With a large effect size, the power exceeds 0.8 when the total sample size exceeds 

50. In addition, when the power exceeds 0.8, the corresponding range of p increases as 

sample sizes and effect sizes increase. Figure 4.1.9 shows that with a fixed total sample 

size of 200, there is no detectable impact from varied combinations of k and n on power. 

 
Figure 4.1.7 The power in the test, as a function of p and n across different effect sizes, 

with a mixture of normals data using the mean difference for a fixed value of k at all 
levels of 2, 5, 10, and 20. 
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Figure 4.1.8 The power in the test, as a function of p and k across different effect sizes, 
with a mixture of normals data using the mean difference for a fixed value of n at all 

levels of 5, 10, 20, and 50. 

 
Figure 4.1.9 The power in the test, as a function of p and different combinations of k and 
n across different effect sizes, with a mixture of normals data using the mean difference 

for a fixed total sample size of 200. 

The type I error rate falls outside the 0.025 and 0.075 range when n is 5 or 10 with 

varying values of k. Moreover, it is above 0.05 in most cases. 
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4.1.1.2 𝛍𝒕 − 𝛍𝒄 as the True Effect 

Figure 4.1.10 and Figure 4.1.11 show a slight fluctuation in the relative bias with small k 

and n for a small effect size (d=0.2). The relative bias moves farther from zero to 100% 

as p increases. Moreover, the relative bias is mostly negative when µ( − µ𝑐 is the true 

effect. The absolute value of relative bias is below 5% in the negative direction only 

when p=0 for all values of n, k, and effect sizes. From Figure 4.1.12, there is no 

detectable effect of different combinations of k and n on the relative bias when the total 

effect size is fixed at 200. 
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Figure 4.1.10 The relative bias in the estimated treatment effect, as a function of p and n 
across different effect sizes, with a mixture of normals data using the mean difference for 

a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.1.11 The relative bias in the estimated treatment effect, as a function of p and k 
across different effect sizes, with a mixture of normals data using the mean difference for 

a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.1.12 The relative bias in the estimated treatment effect, as a function of p and 
different combinations of k and n across different effect sizes, with a mixture of normals 

data using the mean difference for a fixed total sample size of 200. 

Figure 4.1.13 and Figure 4.1.14 show that the coverage probability decreases as p 

increases and decreases more rapidly as n, k, and the effect size increase. Most cases give 
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a coverage probability below 0.925. Whenever the coverage probability is within the 

acceptable range, p is equal to and less than 0.3, as long as the sample size is sufficiently 

large. The coverage probability is below 0.95 in all situations. From Figure 4.1.15, with a 

fixed total sample size of 200, a higher sample size per study led to coverage probability 

closer to 0.95 for small p and smaller effect sizes. The coverage probability dropped 

sharply from 0% to 100% with larger effect sizes as p changes. 

 
Figure 4.1.13 The coverage probability in the estimated treatment effect, as a function of 

p and n across different effect sizes, with a mixture of normals data using the mean 
difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.1.14 The coverage probability in the estimated treatment effect, as a function of 

p and k across different effect sizes, with a mixture of normals data using the mean 
difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.1.15 The coverage probability in the estimated treatment effect, as a function of 

p and different combinations of k and n across different effect sizes, with a mixture of 
normals data using the mean difference for a fixed total sample size of 200. 

As shown in Figure 4.1.16, Figure 4.1.17, and Figure 4.1.18, the trend of power and type 

I error rate is the same as when the true treatment effect is (1 − 𝑝) ∗ (𝜇( − 𝜇/). 
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Figure 4.1.16 The power in the test, as a function of p and n across different effect sizes, 

with a mixture of normals data using the mean difference for a fixed value of k at all 
levels of 2, 5, 10, and 20. 
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Figure 4.1.17 The power in the test, as a function of p and k across different effect sizes, 

with a mixture of normals data using the mean difference for a fixed value of n at all 
levels of 5, 10, 20, and 50. 

 
Figure 4.1.18 The power in the test, as a function of p and different combinations of k and 

n across different effect sizes, with a mixture of normals data using the mean difference 
for a fixed total sample size of 200. 
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4.1.2 Standardized Mean Difference 

4.1.2.1 (𝟏 − 𝒑) ∗ 𝒅 as the True Effect 

Figure 4.1.19 shows that the relative bias approaches zero as n increases with a fixed 

value of k at all levels. When n=5, the relative bias moves farther from zero as p 

increases to 0.9 for a small effect size. There is a negligible effect of p on the relative bias 

for moderate and large effect sizes. As shown in Figure 4.1.20, with a fixed value of n at 

5, a smaller k gives a better relative bias as it is the closest to zero. However, with a larger 

value of fixed n, the effect of k on the relative bias is minor. When n is 20 and 50, the 

relative bias is the worst at p = 0.5 and is the best when p = 0 or 1. Whenever the relative 

bias is greater than 10%, n is 5 for most cases. Moreover, most situations have a negative 

relative bias. With a fixed total sample size of 200, fewer studies and more patients per 

study give a better relative bias, as shown in Figure 4.1.21. 
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Figure 4.1.19 The relative bias in the estimated treatment effect, as a function of p and n 
across different effect sizes, with a mixture of normals data using the standardized mean 

difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.1.20 The relative bias in the estimated treatment effect, as a function of p and k 
across different effect sizes, with a mixture of normals data using the standardized mean 

difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.1.21 The relative bias in the estimated treatment effect, as a function of p and 
different combinations of k and n across different effect sizes, with a mixture of normals 

data using the standardized mean difference for a fixed total sample size of 200. 

As illustrated in Figure 4.1.22, with a fixed value of smaller k (k= 2, 5), a larger n gives 

better coverage probability, and p does not impact the coverage probability. When with a 
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fixed larger k, the trend of the coverage probability is similar to the smaller k with a small 

effect size (d=0.2). However, the coverage probability increases from 0.95 as p increases 

with a large effect size (d=0.8). From Figure 4.1.23, with a fixed value of n at all levels, 

the coverage probability does not change much when changing k or p for small and 

moderate effect sizes. When n is 5, the coverage probability falls outside the acceptable 

range and is above 0.975 for most cases. The coverage probability is the closest to 0.95 

and is the most stable with increasing p when the fewest studies and most patients are 

included in the meta-analysis for a fixed total sample size of 200 as shown in Figure 

4.1.24. 
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Figure 4.1.22 The coverage probability in the estimated treatment effect, as a function of 

p and n across different effect sizes, with a mixture of normals data using the 
standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.1.23 The coverage probability in the estimated treatment effect, as a function of 

p and k across different effect sizes, with a mixture of normals data using the 
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.1.24 The coverage probability in the estimated treatment effect, as a function of 

p and different combinations of k and n across different effect sizes, with a mixture of 
normals data using the standardized mean difference for a fixed total sample size of 200. 

The trend of power with changing n, k, effect sizes, and p is similar to the one using the 

mean difference, which is presented in Figure 4.1.25 and Figure 4.1.26. However, the 
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power is greater than 0.8 when the sample size exceeds 1000 for a small effect size. With 

a large effect size, the power exceeds 0.8 when the total sample size exceeds 80. As 

illustrated in Figure 4.1.27, with a fixed total sample size of 200, there is a slightly lower 

power with k=20 and n=5 for moderate and large effect sizes. 

 
Figure 4.1.25 The power in the test, as a function of p and n across different effect sizes, 
with a mixture of normals data using the standardized mean difference for a fixed value 

of k at all levels of 2, 5, 10, and 20. 



M.Sc. Thesis – Yuqing Huang  McMaster – Mathematics and Statistics 

 48 

 
Figure 4.1.26 The power in the test, as a function of p and k across different effect sizes, 
with a mixture of normals data using the standardized mean difference for a fixed value 

of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.1.27 The power in the test as a function of p and different combinations of k and 
n across different effect sizes, with a mixture of normals data using the standardized mean 

difference for a fixed total sample size of 200. 

When n is 5 and k is greater than 2, the type I error rate falls outside the acceptable range. 

Moreover, it is below 0.05 in most cases. 
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4.1.2.2 𝒅 as the True Effect 

From Figure 4.1.28, the relative bias is slightly worse when n decreases with a fixed 

value of k. k does not have a noticeable impact on the relative bias when n is fixed, as 

shown in Figure 4.1.29. The relative bias moves away from 0 to 100% as p increases. 

Furthermore, effect sizes have a negligible impact on relative bias. The relative bias is 

less than 5% only when p = 0. In addition, the relative bias is negative in most cases. As 

presented in Figure 4.1.30, with a fixed total sample size of 200, fewer studies and more 

patients per study give better relative bias, but the effect is small. 
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Figure 4.1.28 The relative bias in the estimated treatment effect, as a function of p and n 
across different effect sizes, with a mixture of normals data using the standardized mean 

difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.1.29 The relative bias in the estimated treatment effect, as a function of p and k 
across different effect sizes, with a mixture of normals data using the standardized mean 

difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.1.30 The relative bias in the estimated treatment effect, as a function of p and 
different combinations of k and n across different effect sizes, with a mixture of normals 

data using the standardized mean difference for a fixed total sample size of 200. 

Figure 4.1.31 and Figure 4.1.32 indicate that the coverage probability declines as p 

increases, and this effect is more obvious as n, k, and effect sizes grow larger. In addition, 
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the coverage probability starts to drop at a lower p as n, k, and effect sizes increase. The 

number of cases where the coverage probability falls in the acceptable range is less than 

those outside. With a smaller p and a large total sample size, the coverage probability is 

within the acceptable range. With a fixed total sample size of 200, the coverage 

probability dropped sharply from 0% to 100% with larger effect sizes as p changes. 

Different combinations of k and n have an undetectable effect on the coverage 

probability, as illustrated in Figure 4.1.33. 

 
Figure 4.1.31 The coverage probability in the estimated treatment effect, as a function of 

p and n across different effect sizes, with a mixture of normals data using the 
standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.1.32 The coverage probability in the estimated treatment effect, as a function of 

p and k across different effect sizes, with a mixture of normals data using the 
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.1.33 The coverage probability in the estimated treatment effect, as a function of 

p and different combinations of k and n across different effect sizes, with a mixture of 
normals data using the standardized mean difference for a fixed total sample size of 200. 

The power is the same when using (1 − 𝑝) ∗ (µ( − µ/), as shown in, Figure 4.1.34, 

Figure 4.1.35, and Figure 4.1.36. 



M.Sc. Thesis – Yuqing Huang  McMaster – Mathematics and Statistics 

 54 

 
Figure 4.1.34 The power in the test, as a function of p and n across different effect sizes, 
with a mixture of normals data using the standardized mean difference for a fixed value 

of k at all levels of 2, 5, 10, and 20. 
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Figure 4.1.35 The power in the test, as a function of p and k across different effect sizes, 
with a mixture of normals data using the standardized mean difference for a fixed value 

of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.1.36 The power in the test, as a function of p and different combinations of k and 
n across different effect sizes, with a mixture of normals data using the standardized mean 

difference for a fixed total sample size of 200. 
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4.2 Lognormal Distribution 

4.2.1 Mean Difference 

4.2.1.1 Adding a Constant 

As shown in Figure 4.2.1, with a fixed value of k at 20, the absolute relative bias is below 

1% in all cases. With a fixed value of n at 50, the relative bias is within 1% with different 

values of k, effect sizes, and skewness, as presented in Figure 4.2.2. There is an 

undetectable effect of skewness. The effect sizes have little impact, whereas the relative 

bias is more stable and smaller with larger effect sizes. The absolute relative bias is below 

3% in all cases. Figure 4.2.3 shows that different combinations of k and n do not have an 

important impact on the relative bias with a fixed total sample size of 200. 
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Figure 4.2.1 The relative bias in the estimated treatment effect, as a function of 𝜎 and n 
across different effect sizes, with adding a constant to lognormal data using the mean 

difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.2.2 The relative bias in the estimated treatment effect, as a function of 𝜎 and k 

across different effect sizes, with adding a constant to lognormal data using mean 
difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.2.3 The relative bias in the estimated treatment effect, as a function of 𝜎 and 

different combinations of k and n across different effect sizes, with adding a constant to 
lognormal data using the mean difference for a fixed total sample size of 200. 

With a fixed value of k at all levels, the coverage probability is the closest to 0.95 when 

n=50 and is the farthest from 0.95 when n=5, as illustrated in Figure 4.2.4. Figure 4.2.5 
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shows that with a fixed value of n at 5, the coverage probability increases as k decreases. 

However, when n=5, the coverage probability is below 0.925 in all cases. With other 

values of n, k does not have an important change in the coverage probability. Skewness 

and effect sizes have an undetectable impact on the coverage probability. In all cases, the 

coverage probability is below 0.95. With a fixed total sample size of 200, the coverage 

probability is ideal (closest to 0.95) when k=2 and n=50 and is below the acceptable 

range when k=10, n=10, and k=20, n=5, as shown in Figure 4.2.6. 

 
Figure 4.2.4 The coverage probability in the estimated treatment effect, as a function of 𝜎 

and n across different effect sizes, with adding a constant to lognormal data using the 
mean difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.2.5 The coverage probability in the estimated treatment effect, as a function of 𝜎 

and k across different effect sizes, with adding a constant to lognormal data using the 
mean difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.2.6 The coverage probability in the estimated treatment effect, as a function of 𝜎 
and different combinations of k and n across different effect sizes, with adding a constant 

to lognormal data using the mean difference for a fixed total sample size of 200. 

Figure 4.2.7 and Figure 4.2.8 indicate that the power increases as the number of studies, 

patients per study, and the effect size increases. With a fixed value of k, there is a slight 
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increase in power as skewness grows when n=5 with moderate and large effect sizes. 

With a fixed value of n, there is a slight increase in power as skewness increases with 

smaller k values. With a small effect size, the power exceeds 0.8 when the total sample 

size exceeds 800. With a moderate effect size, the power exceeds 0.8 when the total 

sample size exceeds 200. With a large effect size, the power exceeds 0.8 when the total 

sample size exceeds 50. With a fixed total sample size of 200, there is no detectable 

impact from varied combinations of k and n on power with moderate and large effect 

sizes, as shown in Figure 4.2.9. 
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Figure 4.2.7 The power in the test, as a function of 𝜎 and n across different effect sizes, 

with adding a constant to lognormal data using the mean difference for a fixed value of k 
at all levels of 2, 5, 10, and 20. 
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Figure 4.2.8 The power in the estimated treatment effect, as a function of 𝜎 and k across 
different effect sizes, with adding a constant to lognormal data using the mean difference 

for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.2.9 The power in the test, as a function of 𝜎 and different combinations of k and 
n across different effect sizes, with adding a constant to lognormal data using the mean 

difference for a fixed total sample size of 200. 

If n=20, 50, the type I error rate is acceptable. The type I error rate are above 0.05 in all 

situations. 
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4.2.1.2 Both Lognormal with Different 𝛍s 

With a fixed value of k at all levels, the relative bias moves away from zero as n 

decreases and skewness increases; moreover, the relative bias goes worse faster with 

smaller n (n=5, 10), shown in Figure 4.2.10. In Figure 4.2.11, with a fixed value of small 

n (n=5, 10), the relative bias is better when k is small. With other fixed values of n, the 

relative bias has a negligible change with k. Whenever the absolute value of relative bias 

is greater than 10%, n is 5, and skewness is the largest. Effect sizes have an unimportant 

impact on relative bias. With a fixed total sample size of 200, the relative bias is more 

robust around zero against skewness when k=2, n=50, and is the worst when k=20, n=5, 

as presented in Figure 4.2.12. 
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Figure 4.2.10 The relative bias in the estimated treatment effect, as a function of 𝜎 and n 

across different effect sizes, with simulating two lognormal distributions with different 
parameters using the mean difference for a fixed value of k at all levels of 2, 5, 10, and 

20. 
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Figure 4.2.11 The relative bias in the estimated treatment effect, as a function of 𝜎 and k 
across different effect sizes, with simulating two lognormal distributions with different 

parameters using the mean difference for a fixed value of n at all levels of 5, 10, 20, and 
50. 

 
Figure 4.2.12 The relative bias in the estimated treatment effect, as a function of 𝜎 and 

different combinations of k and n across different effect sizes, with simulating two 
lognormal distributions with different parameters using the mean difference for a fixed 

total sample size of 200. 
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As shown in Figure 4.2.13, with a fixed value of k at all levels, the coverage probability 

increases as n increases. With a fixed value of n at 5, the coverage probability increases 

as k decreases. The same trend is observed with all n values at a large effect size (d=0.8), 

as presented in Figure 4.2.14. The effect of skewness on the coverage probability is minor 

for a small effect size. However, the coverage probability decreases as skewness 

increases with larger k, smaller n for moderate and large effect sizes (d=0.5, 0.8). When 

n=5, the coverage probability is below 0.925 in all cases. From Figure 4.2.15, with a 

fixed total sample size of 200, the coverage probability is closest to 0.95 when k=2 and 

n=50 and is below the acceptable range when k=20 and n=5.  
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Figure 4.2.13 The coverage probability in the estimated treatment effect, as a function of 
𝜎 and n across different effect sizes, with simulating two lognormal distributions with 

different parameters using the mean difference for a fixed value of k at all levels of 2, 5, 
10, and 20. 
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Figure 4.2.14 The coverage probabilities in the estimated treatment effect, as a function 
of 𝜎 and k across different effect sizes, with simulating two lognormal distributions with 
different parameters using the mean difference for a fixed value of n at all levels of 5, 10, 

20, and 50. 

 
Figure 4.2.15 The coverage probability in the estimated treatment effect, as a function of 
𝜎 and different combinations of k and n across different effect sizes, with simulating two 
lognormal distributions with different parameters using the mean difference for a fixed 

total sample size of 200. 
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Figure 4.2.16 and Figure 4.2.17 show that the power increases as the number of studies, 

patients per study, and the effect size increases. There is no important effect of skewness 

on the power. With a small effect size, the power exceeds 0.8 when the total sample size 

exceeds 1000. With a moderate effect size, the power exceeds 0.8 when the total sample 

size exceeds 200. With a large effect size, the power exceeds 0.8 when the total sample 

size exceeds 50. As illustrated in Figure 4.2.18, with a fixed total sample size of 200, 

varied combinations of k and n do not have an important impact on the power with 

moderate and large effect sizes. 
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Figure 4.2.16 The power in the test, as a function of 𝜎 and n across different effect sizes, 

with simulating two lognormal distributions with different parameters using the mean 
difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.2.17 The power in the test, as a function of 𝜎 and k across different effect sizes, 

with simulating two lognormal distributions with different parameters using the mean 
difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.2.18 The power in the test, as a function of 𝜎 and different combinations of k 

and n across different effect sizes, with simulating two lognormal distributions with 
different parameters using the mean difference for a fixed total sample size of 200. 



M.Sc. Thesis – Yuqing Huang  McMaster – Mathematics and Statistics 

 73 

4.2.2 Standardized Mean Difference 

4.2.2.1 Adding a Constant 

From Figure 4.2.19, with a fixed value of k at all levels, the relative bias is closest to zero 

as n increases. With a fixed value of n at all levels, the relative bias is closest to zero as k 

decreases with skewness less than 1 (σ = 0.1, 0.2, 𝑎𝑛𝑑	0.3), as shown in Figure 4.2.20. 

The skewness has a greater effect on the relative bias with smaller n (n=5), and the 

relative bias moves closer to zero as the skewness increases. Effect sizes have an 

undetectable effect on the relative bias. There are only 4 cases where the absolute relative 

bias is more than 5%, when k=5 and n=5, with one case having a moderate effect with 

skewness of 0.3 (σ = 0.1), and three cases having a large effect with skewness of 0.3, 

0.61 (σ = 0.2), and 0.95 (σ = 0.3) respectively. Most relative bias is negative, indicating 

an underestimation of the estimated effect. As presented in Figure 4.2.21, with a fixed 

total sample size of 200, the relative bias is the farthest from 0 when k=20 and n=5.  
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Figure 4.2.19 The relative bias in the estimated treatment effect, as a function of 𝜎 and n 

across different effect sizes, with adding a constant to lognormal data using the 
standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.2.20 The relative bias in the estimated treatment effect, as a function of 𝜎 and k 

across different effect sizes, with adding a constant to lognormal data using the 
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.2.21 The relative bias in the estimated treatment effect, as a function of 𝜎 and 
different combinations of k and n across different effect sizes, with adding a constant to 
lognormal data using the standardized mean difference for a fixed total sample size of 

200. 

With a fixed value of k at all levels, the coverage probability is closest to 0.95 with larger 

n and smaller skewness, as shown in Figure 4.2.22. The skewness does not noticeably 
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affect the coverage probability when the effect size is small (d=0.2). For moderate and 

large effect sizes (d=0.5, 0.8), the coverage probability increases as skewness increases 

when n = 5, but it decreases as skewness increases for other n values. As presented in 

Figure 4.2.23, with a fixed value of small n, a larger k results in a less stable coverage 

probability as skewness changes. Conversely, with a fixed value of large n, the coverage 

probability remains stable across all k values as skewness increases at a small effect size. 

When n = 20 and 50, the coverage probability decreases from 0.95 as skewness increases 

for moderate and large effect sizes. Whenever the coverage probability is outside the 

acceptable range, n = 5, and d = 0.2. Furthermore, the coverage probability does not drop 

below 0.925 when it falls outside the acceptable range. From Figure 4.2.24, with a fixed 

total sample size of 200, the coverage probability is closest to 0.95 when k = 2 and n = 

50, given small and moderate effect sizes. Additionally, when k = 10 and n = 10, the 

coverage probability is robust against changes in skewness for a large effect size. 
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Figure 4.2.22 The coverage probability in the estimated treatment effect, as a function of 
𝜎 and n across different effect sizes, with adding a constant to lognormal data using the 

standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.2.23 The coverage probability in the estimated treatment effect, as a function of 
𝜎 and k across different effect sizes, with adding a constant to lognormal data using the 

standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.2.24 The coverage probability in the estimated treatment effect, as a function of 

𝜎 and different combinations of k and n across different effect sizes, with adding a 
constant to lognormal data using the standardized mean difference for a fixed total 

sample size of 200. 

Figure 4.2.25 and Figure 4.2.26 indicate that the power increases with the number of 

studies, patients per study, and effect size. Skewness has a negligible effect on the power. 
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For a small effect size, the power exceeds 0.8 when the total sample size is 800 or more. 

For a moderate effect size, the power exceeds 0.8 when the total sample size is 200 or 

more. For a large effect size, the power exceeds 0.8 when the total sample size exceeds 

80.  

 
Figure 4.2.25 The power in the test, as a function of 𝜎 and n across different effect sizes, 
with adding a constant to lognormal data using the standardized mean difference for a 

fixed value of k at all levels of 2, 5, 10, and 20. 



M.Sc. Thesis – Yuqing Huang  McMaster – Mathematics and Statistics 

 80 

 
Figure 4.2.26 The power in the test, as a function of 𝜎 and k across different effect sizes, 
with adding a constant to lognormal data using the standardized mean difference for a 

fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.2.27 The power in the test, as a function of 𝜎 and different combinations of k 
and n across different effect sizes, with adding a constant to lognormal data using the 

standardized mean difference for a fixed total sample size of 200. 
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When using SMD, if k = 2 and n = 5 and 10, the type I error rate is above 0.075, and if k 

= 5, 10, 20, and n = 5, it is below 0.025. Skewness has no undetectable effect on the type 

I error rate. 

4.2.2.2 Both Lognormal with Different 𝛍s 

From Figure 4.2.28, with a fixed value of k at all levels, a larger n gives better relative 

bias. With a fixed value of n at all levels, a smaller k gives better relative bias, as shown 

in Figure 4.1.29. The skewness does not have a detectable effect on the relative bias with 

a small effect size and larger n (n=20, 50). There is a negligible trend of relative bias with 

effect sizes. Whenever the absolute relative bias is greater than 10%, n is 5. Moreover, 

most cases give a negative relative bias. With a fixed total sample size of 200, the relative 

bias is closest to zero when k=2 and n=50 and is the farthest from zero when k=20 and 

n=5, as presented in Figure 4.2.30. 
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Figure 4.2.28 The relative bias in the estimated treatment effect, as a function of 𝜎 and n 

across different effect sizes, with simulating two lognormal distributions with different 
parameters using the standardized mean difference for a fixed value of k at all levels of 2, 

5, 10, and 20. 
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Figure 4.2.29 The relative bias in the estimated treatment effect, as a function of 𝜎 and k 
across different effect sizes, with simulating two lognormal distributions with different 

parameters using the standardized mean difference for a fixed value of n at all levels of 5, 
10, 20, and 50. 

 
Figure 4.2.30 The relative bias in the estimated treatment effect, as a function of 𝜎 and 

different combinations of k and n across different effect sizes, with simulating two 
lognormal distributions with different parameters using the standardized mean difference 

for a fixed value of n at all levels of 200. 
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From Figure 4.2.31, with a fixed value of k at all levels, the coverage probability is 

around 0.95 with large n. Moreover, it increases from 0.95 as n decreases and skewness 

increases, especially for a large effect size. From Figure 4.2.32, with a fixed value of n at 

all levels, the larger k results in a better coverage probability and more stable against 

skewness for small and moderate effect sizes (d=0.2, 0.5). The coverage probability 

increases from 0.95 for a large effect size as skewness increases when n = 20 and 50. 

Whenever the coverage probability is above 0.975 or below 0.925, n is 5. The coverage 

probability is usually above 0.975 if it falls outside of the acceptable range. Figure 4.2.33 

indicates that the coverage probability is ideal for a fixed total sample size of 200 when 

more patients per study and fewer studies are included. 
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Figure 4.2.31 The coverage probability in the estimated treatment effect, as a function of 
𝜎 and n across different effect sizes, with simulating two lognormal distributions with 

different parameters using the standardized mean difference for a fixed value of k at all 
levels of 2, 5, 10, and 20. 
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Figure 4.2.32 The coverage probability in the estimated treatment effect, as a function of 
𝜎 and k across different effect sizes, with simulating two lognormal distributions with 

different parameters using the standardized mean difference for a fixed value of n at all 
levels of 5, 10, 20, and 50. 

 
Figure 4.2.33 The coverage probability in the estimated treatment effect, as a function of 
𝜎 and different combinations of k and n across different effect sizes, with simulating two 

lognormal distributions with different parameters using the standardized mean difference 
for a fixed total sample size of 200. 
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As shown in Figure 4.1.34 and Figure 4.1.35, the power increases as the number of 

studies, patients per study, and effect size increase. Skewness has a negligible effect on 

the power. For a small effect size, the power exceeds 0.8 when the total sample size is 

1000 or more. For a moderate effect size, the power exceeds 0.8 when the total sample 

size is 200 or more. For a large effect size, the power exceeds 0.8 when the total sample 

size exceeds 80.  

 
Figure 4.2.34 The power in the test, as a function of 𝜎 and n across different effect sizes, 

with simulating two lognormal distributions with different parameters using the 
standardized mean difference for a fixed value of k at all levels. of 2, 5, 10, and 20 
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Figure 4.2.35 The power in the test, as a function of 𝜎 and k across different effect sizes, 

with simulating two lognormal distributions with different parameters using the 
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.2.36 The power in the test, as a function of 𝜎 and different combinations of k 

and n across different effect sizes, with simulating two lognormal distributions with 
different parameters using the standardized mean difference for a fixed total sample size 

of 200. 
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4.3 Gamma Distribution 

4.3.1  Mean Difference 

4.3.1.1 Adding a Constant 

From Figure 4.3.1, with a fixed value of k at 2 and 5, the absolute relative bias is slightly 

greater when n=5 and 10 with a small effect size. The relative bias becomes smaller and 

more stable when k=10, 20 and the effect size increases. From Figure 4.3.2, with a fixed 

value of n = 5 and 10, the absolute relative bias is larger when k=2 and shows greater 

fluctuation with the change in skewness. When n=20, 50 and the effect size increases, 

there is a negligible effect of k on the relative bias. From Figure 4.3.3, with a fixed total 

sample size of 200, the absolute relative bias is below 2% and is slightly smaller with 

moderate and large effect sizes. There is an undetectable effect of different combinations 

of k and n and skewness on the relative bias for a fixed total sample size of 200. When 

the effect size is 0.8, the relative bias is below 1% for all cases. When two identical 

gamma distributions are simulated and a constant is added to the treatment group, the 

skewness has an undetectable effect on the relative bias for most cases. 
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Figure 4.3.1 The relative bias in the estimated treatment effect, as a function of 𝛼 and n 

across different effect sizes, with adding a constant to gamma data using the mean 
difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.3.2 The relative bias in the estimated treatment effect, as a function of 𝛼 and k 

across different effect sizes, with adding a constant to gamma data using the mean 
difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.3.3 The relative bias in the estimated treatment effect, as a function of 𝛼 and 

different combinations of k and n across different effect sizes, with adding a constant to 
gamma data using the mean difference for a fixed total sample size of 200. 

From Figure 4.3.4, with a fixed value of k at all levels, the coverage probability is the 

lowest when n=5 and is lower than 0.9. There is a slight increase in coverage probability 
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with increasing skewness when n=5. As presented in Figure 4.3.5, with a fixed value of n 

at 5, the coverage probability falls below 0.925 and increases as k decreases. For other 

fixed n values, there is no important trend in coverage probability with k, skewness and 

effect sizes. There are only three cases when the coverage probability is around 0.95, 

which are k=2, 10, n=50, d=0.2 and k=5, n=50, d=0.8. These three cases all have a small 

skewness. Except for these three cases, the coverage probability is all below 0.95. 

Moreover, whenever the coverage probability is below 0.925, n = 5 and 10. With a fixed 

total sample size of 200, the coverage probability is the best (closest to 0.95) with the 

least number of studies and the most patients per study, as shown in Figure 4.3.6. 
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Figure 4.3.4 The coverage probability in the estimated treatment effect, as a function of 𝛼 
and n across different effect sizes, with adding a constant to gamma data using the mean 

difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.3.5 The coverage probability in the estimated treatment effect, as a function of 𝛼 
and k across different effect sizes, with adding a constant to gamma data using the mean 

difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.3.6 The coverage probability in the estimated treatment effect, as a function of 𝛼 
and different combinations of k and n across different effect sizes, with adding a constant 

to gamma data using the mean difference for a fixed value of k at all levels of 200. 

The power increases as the number of studies, patients per study, and the effect size 

increases. As shown in Figure 4.3.7, with a fixed value of k, there is a slight increase in 
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power as skewness increases when n=5 for moderate and large effect sizes. As presented 

in Figure 4.3.8, with a fixed value of n, there is a slight increase in power as skewness 

increases with different values of k. With a small effect size, the power exceeds 0.8 when 

the total sample size equals or exceeds 800. With a moderate effect size, the power 

exceeds 0.8 when the total sample size equals or exceeds 200. With a large effect size, the 

power exceeds 0.8 when the total sample size exceeds 50.  

 
Figure 4.3.7 The power in the test, as a function of 𝛼 and n across different effect sizes, 

with adding a constant to gamma data using the mean difference for a fixed value of k at 
all levels of 2, 5, 10, and 20. 
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Figure 4.3.8 The power in the test, as a function of 𝛼 and k across different effect sizes, 

with adding a constant to gamma data using the mean difference for a fixed value of n at 
all levels of 5, 10, 20, and 50. 

 
Figure 4.3.9 The power in the test, as a function of 𝛼 and different combinations of k and 

n across different effect sizes, with adding a constant to gamma data using the mean 
difference for a fixed total sample size of 200. 

The type I error rate is acceptable if k=5, 10, 20 and n=20, 50. When k=2, n=50, with 

skewness greater than 1 and when k=5, n=10, with skewness greater than 0.05, the type I 
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error rate is also in the acceptable range. The type I error rate are above 0.05 in all 

situations. In addition, the type I error rate decreases as the skewness increases. 

4.3.1.2 Both Gamma with Different 𝛃s 

From Figure 4.3.10, with a fixed value of k at all levels, the relative bias is closer to zero 

with larger n. From Figure 4.3.11, with a fixed value of n at all levels, more studies 

introduce a greater relative bias. When n=20 and 50, the absolute relative bias is below 

10% for all k and effect sizes. In other situations, the absolute relative bias can reach 30% 

with highly skewed (α = 1.31) outcome variables. As shown in Figure 4.3.12, with a 

fixed total sample size of 200, the relative bias is closer to zero with fewer studies and 

more patients per study included. The relative bias is negative when the effect size is 

small and moderate (d=0.2, 0.5) and is positive when the effect size is large in all cases.  
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Figure 4.3.10 The relative bias in the estimated treatment effect, as a function of 𝛼 and n 

across different effect sizes, with simulating two gamma distributions with different 
parameters using the mean difference for a fixed value of k at all levels of 2, 5, 10, and 

20. 
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Figure 4.3.11 The relative bias in the estimated treatment effect, as a function of 𝛼 and k 

across different effect sizes, with simulating two gamma distributions with different 
parameters using the mean difference for a fixed value of n at all levels of 5, 10, 20, and 

50. 

 
Figure 4.3.12 The relative bias in the estimated treatment effect, as a function of 𝛼 and 

different combinations of k and n across different effect sizes, with simulating two gamma 
distributions with different parameters using the mean difference for a fixed total sample 

size of 200. 

With a fixed value of k at all levels, the coverage probability increases towards 0.95 as n 

increases, as illustrated in Figure 4.3.13. With a fixed value of n at all levels, the coverage 
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probability increases with smaller k as shown in Figure 4.3.14. For all cases, there is a 

negligible trend in the coverage probability with increasing skewness for a small effect 

size. However, with moderate and large effect sizes, the coverage probability decreases as 

skewness increases. Whenever the coverage probability is below 0.925, n=5 and 10 for 

most cases. With other values of n and a skewness greater than 1 (α = 2.29, 1.31), the 

coverage probability is below 0.925. The lowest coverage probability can be as low as 0.4 

with k=20, n=5, and d=0.8, with the largest skewness. All the cases have a coverage 

probability under 0.95. Given in Figure 4.3.15, with a fixed total sample size of 200, the 

coverage probability is ideal and does not change with skewness when k=2, n=50. When 

k=20, n=5 and k=10, n=10, the coverage probability decreases as the skewness increases. 
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Figure 4.3.13 The coverage probability in the estimated treatment effect, as a function of 
𝛼 and n across different effect sizes, with simulating two gamma distributions with 

different parameters using the mean difference for a fixed value of k at all levels of 2, 5, 
10, and 20. 
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Figure 4.3.14 The coverage probability in the estimated treatment effect, as a function of 
𝛼 and k across different effect sizes, with simulating two gamma distributions with 

different parameters using the mean difference for a fixed value of n at all levels of 5, 10, 
20, and 50. 

 
Figure 4.3.15 The coverage probability in the estimated treatment effect, as a function of 
𝛼 and different combinations of k and n across different effect sizes, with simulating two 
gamma distributions with different parameters using the mean difference for a fixed total 

sample size of 200. 

The power increases as the number of studies, patients per study, and the effect size 

increases. As shown in Figure 4.3.16, with a fixed value of k, there is a slight decrease in 
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power as skewness increases when n=5 for all effect sizes. Given in Figure 4.3.17, With a 

fixed value of n, there is an undetectable trend in power as skewness increases with 

different values of k. With a small effect size, the power exceeds 0.8 when the total 

sample size equals or exceeds 800. With a moderate effect size, the power exceeds 0.8 

when the total sample size equals or exceeds 200. With a large effect size, the power 

exceeds 0.8 when the total sample size exceeds 50.  

 
Figure 4.3.16 The power in the test, as a function of 𝛼 and n across different effect sizes, 

with simulating two gamma distributions with different parameters using the mean 
difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.3.17 The power in the test, as a function of 𝛼 and k across different effect sizes, 

with simulating two gamma distributions with different parameters using the mean 
difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.3.18 The power in the test, as a function of 𝛼 and different combinations of k 

and n across different effect sizes, with simulating two gamma distributions with different 
parameters using the mean difference for a fixed total sample size of 200. 
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4.3.2  Standardized Mean Difference 

4.3.2.1 Adding a Constant  

From Figure 4.3.19, with a fixed value of k at all levels, the relative bias approaches zero 

as n and skewness increase. As shown in Figure 4.3.20, when n is fixed at 5 and 10, the 

relative bias approaches zero with a smaller k. There is no noticeable trend in the relative 

bias with effect sizes. When n = 20 and 50, the absolute relative bias is below 5% with 

different values of k. n=5 whenever the absolute relative bias is greater than 10%. When 

the skewness is greater than 1, the relative bias is positive, indicating an overestimation 

of the relative bias with a greater skewness. With a fixed total sample size of 200, the 

relative bias is the farthest from 0, with the most studies and the least number of patients 

per study, as presented in Figure 4.3.21. 
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Figure 4.3.19 The relative bias in the estimated treatment effect, as a function of 𝛼 and n 
across different effect sizes, with adding a constant to gamma data using the standardized 

mean difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.3.20 The relative bias in the estimated treatment effect, as a function of 𝛼 and k 
across different effect sizes, with adding a constant to gamma data using the standardized 

mean difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.3.21 The relative bias in the estimated treatment effect, as a function of 𝛼 and 
different combinations of k and n across different effect sizes, with adding a constant to 
gamma data using the standardized mean difference for a fixed total sample size of 200. 

With a fixed value of k for all levels, the coverage probability increases as n decreases for 

all effect sizes, as illustrated in Figure 4.3.22. When n=5, 10, the coverage probability is 

above 0.95 and closest to 0.95 when n=20 and 50. With moderate and large effect sizes, 
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the coverage probability inflates when the skewness increases with n=5 and decreases as 

skewness increases with other n. In Figure 4.3.23, with a fixed value of n for all levels, 

the coverage probability increases when k decreases with n=5 for a large effect size. The 

skewness does not noticeably impact the coverage probability for a small effect size. 

When n=5, the coverage probability falls outside of 0.925 and 0.975; Moreover, they are 

all above 0.975. In Figure 4.3.24, with a fixed total sample size of 200, the coverage 

probability is not robust with the changing skewness when k=20, n=5, and is far from 

0.95 compared with other combinations of k and n. 
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Figure 4.3.22 The coverage probability in the estimated treatment effect, as a function of 
𝛼 and n across different effect sizes, with adding a constant to gamma data using the 
standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.3.23 The coverage probability in the estimated treatment effect, as a function of 
𝛼 and k across different effect sizes, with adding a constant to gamma data using the 
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.3.24 The coverage probability in the estimated treatment effect, as a function of 

𝛼 and different combinations of k and n across different effect sizes, with adding a 
constant to gamma data using the standardized mean difference for a fixed total sample 

size of 200. 

The power increases as the number of studies, patients per study and effect sizes increase. 

There is an unimportant impact of skewness on power. However, in Figure 4.3.25, with a 
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fixed value of k, there is a slight increase of power with the skewness when n=5 for 

moderate and large effect sizes. With a small effect size, the power exceeds 0.8 when the 

total sample size equals or exceeds 1000. With a moderate effect size, the power exceeds 

0.8 when the total sample size equals or exceeds 200. With a large effect size, the power 

exceeds 0.8 when the total sample size exceeds 80. 

 
Figure 4.3.25 The power in the test, as a function of 𝛼 and n across different effect sizes, 
with adding a constant to gamma data using the standardized mean difference for a fixed 

value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.3.26 The power in the test, as a function of 𝛼 and k across different effect sizes, 
with adding a constant to gamma data using the standardized mean difference for a fixed 

value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.3.27 The power in the test, as a function of 𝛼 and different combinations of k 

and n across different effect sizes, with adding a constant to gamma data using the 
standardized mean difference for a fixed total sample size of 200. 

When using SMD, when k=2 and n=5 and 10, the type I error rate is unacceptable. 

Skewness has no undetectable effect on type I error rate. 
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4.3.2.2 Both Gammas with Different 𝛃s 

With a fixed value of k at all levels, the relative bias approaches zero as n increases, as 

illustrated in Figure 4.3.28. The relative bias moves farther from zero as skewness 

increases when n=5, 10 for small and moderate effect sizes with k= 10, 20. The relative 

bias approaches zero for a large effect size as the skewness increases when n=5 for a 

large k. With a fixed value of small n, small k results in better relative bias, as shown in 

Figure 4.3.29. The absolute relative bias is below 5% when n equals 20 and 50. 

Whenever the relative bias is more than 10%, n = 5. The relative bias for all the situations 

is negative except for one case where k=2, n=50, d=0.8, with the largest skewness. In 

Figure 4.3.30, with a fixed total sample size of 200, the relative bias is the worst, with the 

greatest number of studies and the least patients per study. 
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Figure 4.3.28 The relative bias in the estimated treatment effect, as a function of 𝛼 and n 

across different effect sizes, with simulating two gamma distributions with different 
parameters using the standardized mean difference for a fixed value of k at all levels of 2, 

5, 10, and 20. 
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Figure 4.3.29 The relative bias in the estimated treatment effect, as a function of 𝛼 and k 

across different effect sizes, with simulating two gamma distributions with different 
parameters using the standardized mean difference for a fixed value of n at all levels of 5, 

10, 20, and 50. 

 
Figure 4.3.30 The relative bias in the estimated treatment effect, as a function of 𝛼 and 

different combinations of k and n across different effect sizes, with simulating two gamma 
distributions with different parameters using the standardized mean difference for a fixed 

total sample size of 200. 
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In Figure 4.3.31, with a fixed value of k at all levels, the coverage probability is the worst 

when n=5 and is robust around 0.95 with other n for a small effect size. In Figure 4.3.32, 

with a fixed value of n at all levels, the coverage probability increases as k decreases and 

skewness increases for moderate and large effect sizes. The coverage probability is robust 

around 0.95 against the skewness with a small effect size and is robust when the 

skewness is less than 1 for moderate and large effect sizes. Most situations where the 

coverage probability is outside the acceptable range are either with small total sample 

sizes or large skewness. With a fixed total sample size of 200, the coverage probability is 

the worst when k=20 and n=5, as given in Figure 4.3.33. 
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Figure 4.3.31 The coverage probability in the estimated treatment effect, as a function of 

𝛼 and n across different effect sizes, with two gamma distributions with different 
parameters using the standardized mean difference for a fixed value of k at all levels of 2, 

5, 10, and 20. 
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Figure 4.3.32 The coverage probability in the estimated treatment effect, as a function of 
𝛼 and k across different effect sizes, with simulating two gamma distributions with 

different parameters using the standardized mean difference for a fixed value of n at all 
levels of 5, 10, 20, and 50. 

 
Figure 4.3.33 The coverage probability in the estimated treatment effect, as a function of 
𝛼 and different combinations of k and n across different effect sizes, with simulating two 

gamma distributions with different parameters using the standardized mean difference for 
a fixed total sample size of 200. 

Figure 4.3.34 and Figure 4.3.35 show that the power increases as the number of studies, 

patients per study, and effect sizes increase. There is a negligible effect of skewness on 



M.Sc. Thesis – Yuqing Huang  McMaster – Mathematics and Statistics 

 119 

power. With a small effect size, the power exceeds 0.8 when the total sample size equals 

or exceeds 1000. With a moderate effect size, the power exceeds 0.8 when the total 

sample size equals or exceeds 200. With a large effect size, the power exceeds 0.8 when 

the total sample size exceeds 80. 

 
Figure 4.3.34 The power in the test, as a function of 𝛼 and n across different effect sizes, 

with simulating two gamma distributions with different parameters using the 
standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.3.35 The power in the test, as a function of 𝛼 and k across different effect sizes, 

with simulating two gamma distributions with different parameters using the 
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.3.36 The power in the test, as a function of 𝛼 and different combinations of k 

and n across different effect sizes, with simulating two gamma distributions with different 
parameters using the standardized mean difference for a fixed total sample size of 200. 
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4.4 𝛘𝟐 Distribution 

4.4.1  Mean Difference 

As shown in Figure 4.4.1, with a fixed value of k at all levels, the relative bias fluctuates 

more with a small effect size (d= 0.2) and a smaller sample size per study (n=5, 10). The 

relative bias is more stable with larger effect sizes (d=0.5, 0.8) and a larger sample size 

per study (n=20, 50). Similarly, as shown in Figure 4.4.2, with a fixed n of all levels, the 

relative bias fluctuates more with a small effect size (0.2) and fewer studies (k=2, 5). For 

both fixed k and n, the relative bias fluctuates less with smaller skewness (𝑑. 𝑓. =

	88, 21). Fewer relative biases of less than 1% are observed with more sample sizes per 

study and more studies. When the 𝑑. 𝑓. is 3,5, and 9 and the number of studies is 2, the 

absolute relative bias is greater than 1% in most cases. With a fixed total sample size of 

200, the relative bias fluctuates more with a small effect size, as shown in Figure 4.4.3. 

Still, there is no noticeable difference in relative bias with different combinations of k and 

n. When the total sample size is fixed at 200, the relative bias is less than 1.5%. 
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Figure 4.4.1 The relative bias in the estimated treatment effect, as a function of 𝑑. 𝑓. and 

n across different effect sizes, with adding a constant to 𝜒! data using the mean 
difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.4.2 The relative bias in the estimated treatment effect, as a function of 𝑑. 𝑓. and 

k across different effect sizes, with adding a constant to 𝜒! data using the mean difference 
for a fixed value of n at all levels. 

 
Figure 4.4.3 The relative bias in the estimated treatment effect, as a function of 𝑑. 𝑓. and 
different combinations of k and n across different effect sizes, with adding a constant to 

𝜒! data using the mean difference for a fixed total sample size of 200. 

In Figure 4.4.4, with a fixed value of k at all levels, the coverage probability is less than 

92.5% when n=5 for all effect sizes and skewness. The coverage probability increases to 



M.Sc. Thesis – Yuqing Huang  McMaster – Mathematics and Statistics 

 124 

the acceptable range as sample sizes per study increase. There is an unimportant trend in 

coverage probability with increasing skewness. In Figure 4.4.5, with a fixed n of all 

levels, there is a slight increase in coverage probability with increasing skewness when 

n=5, 10, 20 for moderate and large effect size. The coverage probability is more stable 

when skewness increases at n=50. Whenever the coverage probability is outside the 

acceptable range, n=5 and 10. All coverage probability is less than 0.95 except when k=5, 

n=10 with a large effect size and the smallest skewness. There is a negligible trend in 

coverage probability with increasing skewness. With a fixed total sample size of 200, the 

coverage probability is the lowest, less than 90%, with the smallest sample size per study 

and the largest number of studies, as presented in Figure 4.4.6. When k=5, n=20, and 

k=2, n=50, the coverage probability is between 92.5% and 97.5%. 



M.Sc. Thesis – Yuqing Huang  McMaster – Mathematics and Statistics 

 125 

 
Figure 4.4.4 The coverage probability in the estimated treatment effect, as a function of 
𝑑. 𝑓. and n across different effect sizes, with adding a constant to 𝜒! data using the mean 

difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.4.5 The coverage probability in the estimated treatment effect, as a function of 
𝑑. 𝑓. and k across different effect sizes, with adding a constant to 𝜒! data using the mean 

difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.4.6 The coverage probability in the estimated treatment effect, as a function of 
𝑑. 𝑓. and different combinations of k and n across different effect sizes, with adding a 

constant to 𝜒! data using the mean difference for a fixed total sample size of 200. 

Figure 4.4.7 and Figure 4.4.8 show that the power increases as the sample size per study, 

the number of studies and the effect sizes increase. The skewness does not have an 

important impact on power. With a small effect size, the power is greater than 0.8 when 
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the total sample size exceeds 800. The power is greater than 0.8 with a moderate effect 

size when the total sample size exceeds 100. With a large effect size, the power is greater 

than 0.8 in most cases except when k=2, n=5 and k=2, n=10. 

 
Figure 4.4.7 The power in the test, as a function of 𝑑. 𝑓. and n across different effect 

sizes, with adding a constant to 𝜒! data using the mean difference for a fixed value of k at 
all levels of 2, 5, 10, and 20. 
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Figure 4.4.8 The power in the test, as a function of 𝑑. 𝑓. and k across different effect sizes, 

with adding a constant to 𝜒! data using the mean difference for a fixed value of n at all 
levels of 5, 10, 20, and 50. 

 
Figure 4.4.9 The power in the test, as a function of 𝑑. 𝑓. and different combinations of k 

and n across different effect sizes, with adding a constant to 𝜒! data using the mean 
difference for a fixed total sample size of 200. 

The type I error rate is acceptable when k exceeds 2 and n>10. The skewness does not 

have an important impact on the type I error rate. 
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4.4.2  Standardized Mean Difference 

In Figure 4.4.10, with a fixed k at all levels, the relative bias approaches zero as n 

increases and skewness decreases. There is no noticeable relationship between the 

relative bias and the effect size. In Figure 4.4.11, with a fixed n at all levels, the relative 

bias is closer to zero with a larger k, and when 𝑑. 𝑓. = 5. More fluctuation in relative bias 

is observed with a small effect size. Minimal fluctuation of the absolute relative bias, 

within 2%, is found when n = 50. With a fixed total sample size of 200, the relative bias 

is the closest to zero when k=2, n=50, and farthest from zero when k=20, n=5, as given in 

Figure 4.4.12. When the skewness is large (𝑑. 𝑓. = 	5, 3), the relative bias is likely to be 

positive. However, in most situations, the relative bias is negative, showing an 

underestimation of the treatment effect using SMD. 
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Figure 4.4.10 The relative bias in the estimated treatment effect, as a function of 𝑑. 𝑓. and 

n across different effect sizes, with adding a constant to 𝜒! data using the standardized 
mean difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.4.11 The relative bias in the estimated treatment effect, as a function of 𝑑. 𝑓. and 

k across different effect sizes, with adding a constant to 𝜒! data using the standardized 
mean difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.4.12 The relative in the estimated treatment effect, as a function of 𝑑. 𝑓. and 

different combinations of k and n across different effect sizes, with adding a constant to 
𝜒! data using the standardized mean difference for a fixed total sample size of 200. 

Figure 4.4.13 indicates that when k is fixed at all levels, the coverage probability 

increases with skewness for n=5. However, for n=20 and n=50, the coverage probability 
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decreases with skewness when k=10 and k=20, particularly for moderate to large effect 

sizes. There is a worse coverage probability with smaller n, as the coverage probability 

exceeds 0.97, while improved coverage is noted with larger n, where the coverage 

probability is around 0.95. As presented in Figure 4.4.14, the coverage probability rises 

with increased skewness when k=20 and n=5 for both moderate and large effect sizes and 

when k=20 and n=10 with a large effect size. Conversely, the coverage probability 

decreases as skewness increases for n=20 and 50 with a large effect size. In addition, for 

a fixed value of n, the largest k results in a lower coverage probability for moderate and 

large effect sizes. Nonetheless, k does not have a noticeable impact on the coverage 

probability for a small effect size across all n values, nor does it affect coverage 

probability with moderate and large effect sizes as long as the sample size is efficiently 

large. There are no situations where the coverage probability is less than the lower bound 

of the acceptable range. In Figure 4.4.15, with a fixed total sample size, the coverage 

probability is between 0.94 and 0.97 for all effect sizes and combinations of n and k. 

More variability of coverage probability with more skewness (𝑑. 𝑓. = 	9, 5, 3). Effect 

sizes do not directly influence the coverage probability when the total sample size is 

fixed. 



M.Sc. Thesis – Yuqing Huang  McMaster – Mathematics and Statistics 

 133 

 
Figure 4.4.13 The coverage probability in the estimated treatment effect, as a function of 
𝑑. 𝑓. and n across different effect sizes, with adding a constant to 𝜒! data using the 
standardized mean difference for a fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.4.14 The coverage probability in the estimated treatment effect, as a function of 
𝑑. 𝑓. and k across different effect sizes, with adding a constant to 𝜒! data using the 
standardized mean difference for a fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.4.15 The coverage probability in the estimated treatment effect, as a function of 
𝑑. 𝑓. and different combinations of k and n across different effect sizes, with adding a 

constant to 𝜒! data using the standardized mean difference for a fixed total sample size of 
200. 

More sample sizes per study, more studies and larger effect sizes lead to greater power, as 

shown in Figure 4.4.16 and Figure 4.4.17. There is no noticeable trend of power with 
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changing skewness. The power is greater than 0.8 when the total sample size exceeds 800 

for a small effect size. The power is greater than 0.8 when the total sample size exceeds 

200 for a moderate effect size. The power is greater than 0.8 when the total sample size 

exceeds 80 for a large effect size. In Figure 4.4.18, with a fixed total sample size of 200, 

the power is lowest when k is the largest and n is the lowest for small and moderate effect 

sizes. 

 
Figure 4.4.16 The power in the test, as a function of 𝑑. 𝑓. and n across different effect 
sizes, with adding a constant to 𝜒! data using the standardized mean difference for a 

fixed value of k at all levels of 2, 5, 10, and 20. 
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Figure 4.4.17 The power in the test, as a function of 𝑑. 𝑓. and k across different effect 
sizes, with adding a constant to 𝜒! data using the standardized mean difference for a 

fixed value of n at all levels of 5, 10, 20, and 50. 

 
Figure 4.4.18 The power in the test, as a function of 𝑑. 𝑓. and different combinations of k 

and n across different effect sizes, with adding a constant to 𝜒! data using the 
standardized mean difference for a fixed total sample size of 200. 

When k=2, n=5, 10, the type I error rate exceeds 0.075. When n=5, and k=5, 10, 20, the 

type I error rate is below 0.025.  
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Chapter 5 Conclusion and Discussion 

5.1 Summary of the Results 

A central finding from the simulation is that larger sample sizes per group lead to a more 

robust overall estimated effect against non-normality, even when only a few studies are 

included. This results in improved relative bias, coverage probability of the overall 

estimated effect, power, and type I error rate of the meta-analysis. Another important 

finding is that in most situations, more studies with a smaller sample size per group lead 

to worse relative bias, coverage probability and power if the total sample size is fixed. 

Furthermore, the effects of skewness and effect sizes vary among different distributions 

of the outcome variable and methods of considering the effect size. The relative bias of 

the overall estimated effect is mostly negative, particularly with smaller skewness when 

using the standardized mean difference. Moreover, when using the standardized mean 

difference, the absolute relative bias is bigger than the mean difference in most cases 

across all distributions, which is consistent with Lin’s study (2018), and this suggests that 

one should use the mean difference when possible. In addition, a larger relative bias of 

SMD may result from the inappropriate choice of SDs (standard deviation), according to 

Hopkins and Rolands (2024). They also stated that using inappropriate SDs, for example, 

failing to remove technical errors, can introduce heterogeneity, which makes the fixed-

effect model less appropriate. The coverage probability is below the nominal level (95%) 

when using the mean difference and exceeds the nominal level with small sample sizes 
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per group in most cases when using the standardized mean difference. Additionally, at 

least a total sample size of 800 is required to have a power greater than 0.8 for a small 

effect size (𝑑 = 0.2), and the total sample size can be decreased when the effect size 

increases. However, the estimation of the power is biased whenever the type I error rate is 

not at the nominal level, which is 0.05 in our study, as well as due to the bias from the 

overall effect estimation. The type I error rate of the meta-analysis is generally unaffected 

by skewness for most of the distributions we examined, except for the gamma 

distribution.  

5.1.1 The Mixture of Normal Distributions 

Non-robust results are observed for the mixture of normal distributions when a large 

number of studies are included with a sample size per group of less than 10, or with a 

large proportion of non-responders in the intervention group, or with a small effect size. 

With a fixed total sample size, fewer studies with more samples per group are preferred 

as they provide a better relative bias, coverage probability and power. When using the 

mean difference, the sample size per group has a greater effect than the number of studies 

on the coverage probability. When n < 10, coverage probability is less than 0.925. Power 

drops sharply when more than half of the sample in the intervention group are non-

responders. The type I error rate is generally acceptable except when the sample size per 

study is 5 and 10. When the sample size per group is 5, a smaller k gives a better relative 

bias as it is the closest to zero. When the sample size per group is 5, the worst relative 

bias and unacceptable coverage probability are observed, given the acceptable range for 

the coverage probability is between 0.925 and 0.975. In addition, the type I error rate is 
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not between 0.025 and 0.075 when the sample size per group is 5 and the number of 

studies is greater than 2. 

5.1.2 Lognormal Distribution 

More samples per study and fewer studies provide better relative bias and coverage 

probability for lognormal distributions. In addition, the coverage probability and the type 

I error are unacceptable when the sample size per group is 5. When simulating two same 

distributions, adding a constant to one group and using the mean difference, a negligible 

effect of skewness is observed on the absolute relative bias, which remains below 3% and 

improves with larger effect sizes but moves closer to zero as the skewness increases with 

a small effect size for the standardized mean. The coverage probability increases as the 

number of studies decreases for small n. There is a slight increase in power as skewness 

grows with the sample size per group at 5; as mentioned before, this increase could result 

from the bias of the overall effect estimation and an incorrect type I error. The type I error 

rate is above 0.05 in all situations when using the mean difference and is less than 0.025 

when the sample size per group is 5 and less than the number of studies with the 

standardized mean difference. When simulating two lognormal distributions with 

different 𝜇C, the relative bias moves away from zero as n decreases and skewness 

increases for the mean difference and moves towards zero as skewness increases for the 

standardized mean difference. Fewer studies give better relative bias for a fixed value of a 

small sample size per group. Coverage probability moves away from higher skewness 

and larger k for moderate and large effect sizes. 
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5.1.3 Gamma Distribution 

For gamma distributions, larger sample sizes per group and fewer studies give better 

relative bias and coverage probability, and the coverage probability is outside the 

acceptable range with small samples per study. When simulating two same distributions 

and adding a constant to one group, the relative bias and the coverage probability 

increase as k decreases with a fixed sample size per group of 5. When using the mean 

difference, a small sample size (n=5,10, and k=2) shows greater fluctuation of the relative 

bias with the change in skewness. when using the mean difference. Power increases as 

skewness increases. In addition, the type I error rate decreases as the skewness increases. 

When using the standardized mean difference, the relative bias is only positive with a 

skewness greater than 1. The coverage inflates when the skewness increases for larger 

effect sizes with small samples per study. When only two studies with a sample size per 

group of 5 and 10, the type I error rate is unacceptable. When simulating two gamma 

distributions with different βC and using the mean difference, more studies introduce a 

greater absolute relative bias with a fixed sample size per group, and it can reach 30% 

with highly skewed outcome variables. The coverage probability increases with skewness 

and different effect sizes. Moreover, when skewness is greater than 1, the coverage 

probability is unacceptable. There is a slight decrease in power as skewness increases 

with a small sample size per group. When using the standardized mean difference, the 

relative bias moves farther from zero as skewness increases with group size of 5 and 10 

for small and moderate effect sizes with 10 and 20 studies. The coverage probability is 



M.Sc. Thesis – Yuqing Huang  McMaster – Mathematics and Statistics 

 141 

robust around 0.95 against the skewness with a small effect size and is robust when the 

skewness is less than 1 for moderate and large effect sizes.  

5.1.4 𝝌𝟐 Distribution 

For χ! distribution, when using the mean difference, the relative bias fluctuates more with 

increasing skewness with a small effect size, a smaller sample size per study and fewer 

studies. Whenever the coverage probability is outside the acceptable range, the sample 

size per study is 5 and 10. There is a negligible trend in coverage probability with 

increasing skewness when using the mean difference. However, when using the 

standardized mean difference, the coverage probability behaves oppositely when the 

sample size is small or large, respectively, and more studies result in a lower coverage 

probability for moderate and large effect sizes with a fixed sample size per group. The 

skewness does not have an important impact on power. The type I error rate is 

unacceptable when the sample size per group is less than 5. 

The above findings suggest that investigators should preferably include large trials when 

conducting a meta-analysis, as our simulation indicates that fewer studies with larger 

sample sizes yield more robust results, even when the primary data are highly skewed. If 

large trials are uncommon in the research topic, the investigator should seek to obtain the 

raw data and assess the normality of the dataset, especially when dealing with data with a 

lower bound, such as volume distribution, blood concentration, and scale outcomes 

(Deeks, Higgins, & Group, 2022). If the data is skewed, transforming the primary data, 

such as through log transformation, is recommended. However, if investigators cannot 
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obtain the raw data, considering a nonparametric meta-analysis method (Michiels & 

Onghena, 2018) or converting data from a continuous to a binary outcome by setting a 

threshold can be an option.  

5.2 Limitations 

A few limitations of this simulation can be acknowledged. In this simulation, the sample 

size is the same across two groups in each study. However, in real life, there are situations 

where the ratio of sample sizes of the control and intervention can be 2:1 or 1:2, for 

instance. Moreover, we only investigate situations where the studies are of the same size 

in each meta-analysis, which may not be realistic. Also, using the standardized mean 

difference is not the most appropriate in cases where the variance of the two groups is not 

the same, such as simulating two lognormal and gamma distributions with different 

parameters, as the pooled standard deviation method used in the primary study assumes 

the variance of the two groups are the same. In addition, we assume the distribution of the 

outcome variables for two groups are the same, except when examining the mixture of 

normal distributions, in which case the control group follows a normal distribution, and 

the intervention group follows a mixture of normal distributions. Moreover, in practice, 

obtaining the raw data from each study may be challenging since they usually provide 

summary statistics, and assessing normality from the summary statistics can be difficult. 

Another limitation of this simulation is that the random-effects model is not included. 

Therefore, these limitations suggest several directions for future research on the fixed-

effect meta-analysis model. Firstly, we could examine more complex scenarios where the 
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sample size per group within the same study and the sample size across studies vary. 

Secondly, when using the standardized mean difference as the effect size, we could 

evaluate whether the variances of the two groups within the same study vary and then 

select the appropriate variance pooling methods accordingly. Thirdly, we could 

investigate more cases where the two groups in a study follow different distributions and 

studies with various distributions. Moreover, more distributions, such as multinomial and 

negative binomial distributions, could be assessed. Also, we could simulate the effect size 

for each study directly instead of using the raw data, which may more accurately reflect 

reality when conducting a meta-analysis. Lastly, different random-effects models can be 

investigated in future studies with this simulation framework. 

5.3 Conclusion 

To conclude, small studies with highly skewed data provide non-robust meta-analysis 

results for a fixed-effect model. Moreover, when conducting meta-analyses, larger sample 

sizes per study with fewer studies are preferred, compared to having a smaller sample 

size per study with more studies. Therefore, this simulation suggests that investigators 

need to be cautious with the distribution of the raw data when conducting meta-analysis 

using the fixed-effect model. 
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Appendix 

The appendix provides a summary table of all the algebra for different cases within the 

same distribution of the outcome variables in terms of the skewness, parameters, and 

corresponding true effect for mean difference and the standardized mean difference. Also, 

the type I error rate results for different distributions of the outcome variable with 

different skewness, the number of studies, and the number of individuals per group are 

provided. 

Distribution Skewness Effect 

Size 

Parameters Formulas of the True Effect for MD True 

MD 

 

True 
SMD 

the mixture of 

normals 

NA 0.2 p=0 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.2 0.2 

the mixture of 

normals 

NA 0.2 p=0.1 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.18 0.18 

the mixture of 

normals 

NA 0.2 p=0.2 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.16 0.16 

the mixture of 

normals 

NA 0.2 p=0.3 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.14 0.14 

the mixture of 

normals 

NA 0.2 p=0.4 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.12 0.12 

the mixture of 

normals 

NA 0.2 p=0.5 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.1 0.1 

the mixture of 

normals 

NA 0.2 p=0.6 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.08 0.08 
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the mixture of 

normals 

NA 0.2 p=0.7 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.06 0.06 

the mixture of 

normals 

NA 0.2 p=0.8 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.04 0.04 

the mixture of 

normals 

NA 0.2 p=0.9 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.02 0.02 

the mixture of 

normals 

NA 0.2 p=1 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0 0 

the mixture of 

normals 

NA 0.5 p=0 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.5 0.5 

the mixture of 

normals 

NA 0.5 p=0.1 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.45 0.45 

the mixture of 

normals 

NA 0.5 p=0.2 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.4 0.4 

the mixture of 

normals 

NA 0.5 p=0.3 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.35 0.35 

the mixture of 

normals 

NA 0.5 p=0.4 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.3 0.3 

the mixture of 

normals 

NA 0.5 p=0.5 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.25 0.25 

the mixture of 

normals 

NA 0.5 p=0.6 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.2 0.2 

the mixture of 

normals 

NA 0.5 p=0.7 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.15 0.15 

the mixture of 

normals 

NA 0.5 p=0.8 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.1 0.1 

the mixture of 

normals 

NA 0.5 p=0.9 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.05 0.05 
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the mixture of 

normals 

NA 0.5 p=1 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0 0 

the mixture of 

normals 

NA 0.8 p=0 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.8 0.8 

the mixture of 

normals 

NA 0.8 p=0.1 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.72 0.72 

the mixture of 

normals 

NA 0.8 p=0.2 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.64 0.64 

the mixture of 

normals 

NA 0.8 p=0.3 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.56 0.56 

the mixture of 

normals 

NA 0.8 p=0.4 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.48 0.48 

the mixture of 

normals 

NA 0.8 p=0.5 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.4 0.4 

the mixture of 

normals 

NA 0.8 p=0.6 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.32 0.32 

the mixture of 

normals 

NA 0.8 p=0.7 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.24 0.24 

the mixture of 

normals 

NA 0.8 p=0.8 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.16 0.16 

the mixture of 

normals 

NA 0.8 p=0.9 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0.08 0.08 

the mixture of 

normals 

NA 0.8 p=1 (1 − 𝑝) ∗ (𝜇! − 𝜇") 0 0 

the mixture of 

normals 

NA 0.2 all p values 𝜇! − 𝜇" 0.2 0.2 

the mixture of 

normals 

NA 0.5 all p values 𝜇! − 𝜇" 0.5 0.5 
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the mixture of 

normals 

NA 0.8 all p values 𝜇! − 𝜇" 0.8 0.8 

lognormal 0.3 0.2 𝜎 = 0.1 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.02 0.2 

lognormal 0.61 0.2 𝜎 = 0.2 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.04 0.2 

lognormal 0.95 0.2 𝜎 = 0.3 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.06 0.2 

lognormal 1.32 0.2 𝜎 = 0.4 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.09 0.2 

lognormal 1.75 0.2 𝜎 = 0.5 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.12 0.2 

lognormal 0.3 0.5 𝜎 = 0.1 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.05 0.5 

lognormal 0.61 0.5 𝜎 = 0.2 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.10 0.5 

lognormal 0.95 0.5 𝜎 = 0.3 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.16 0.5 

lognormal 1.32 0.5 𝜎 = 0.4 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.23 0.5 

lognormal 1.75 0.5 𝜎 = 0.5 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.30 0.5 

lognormal 0.3 0.8 𝜎 = 0.1 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.08 0.8 

lognormal 0.61 0.8 𝜎 = 0.2 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.16 0.8 

lognormal 0.95 0.8 𝜎 = 0.3 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 0.26 0.8 
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lognormal 1.32 0.8 𝜎 = 0.4 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.36 0.8 

lognormal 1.75 0.8 𝜎 = 0.5 𝑑 ∗ -{(exp(𝜎!) − 1) exp(2𝜇 + 𝜎!)} 

 

0.48 0.8 

lognormal 0.3 0.2 𝜇 = 0.02, 

𝜎 = 0.1 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.02 0.2 

lognormal 0.61 0.2 𝜇 = 0.04, 

𝜎 = 0.2 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.04 0.2 

lognormal 0.95 0.2 𝜇 = 0.061, 

𝜎 = 0.3 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.07 0.2 

lognormal 1.32 0.2 𝜇 = 0.083, 

𝜎 = 0.4 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.09 0.2 

lognormal 1.75 0.2 𝜇 = 0.107, 

𝜎 = 0.5 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.13 0.2 

lognormal 0.3 0.5 𝜇 = 0.05, 

𝜎 = 0.1 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.05 0.5 

lognormal 0.61 0.5 𝜇 = 0.101, 

𝜎 = 0.2 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.11 0.5 

lognormal 0.95 0.5 𝜇 = 0.154, 

𝜎 = 0.3 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.17 0.5 

lognormal 1.32 0.5 𝜇 = 0.210, 

𝜎 = 0.4 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.25 0.5 

lognormal 1.75 0.5 𝜇 = 0.271, 

𝜎 = 0.5 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.35 0.5 

lognormal 0.3 0.8 𝜇 = 0.08, 

𝜎 = 0.1 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.08 0.8 

lognormal 0.61 0.8 𝜇 = 0.163, 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.18 0.8 
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𝜎 = 0.2 

lognormal 0.95 0.8 𝜇 = 0.249, 

𝜎 = 0.3 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.30 0.8 

lognormal 1.32 0.8 𝜇 = 0.341, 

𝜎 = 0.4 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.44 0.8 

lognormal 1.75 0.8 𝜇 = 0.444, 

𝜎 = 0.5 
𝑒𝑥𝑝;

𝜎!

2 <
(ex p(𝜇) − 1) 

0.63 0.8 

gamma 0.3 0.2 𝛼 = 	43.93 𝑑 ∗ -(αβ!) 1.33 0.2 

gamma 0.61 0.2 𝛼 = 	10.60 𝑑 ∗ -(αβ!) 0.65 0.2 

gamma 0.95 0.2 𝛼 = 	4.44 𝑑 ∗ -(αβ!) 0.42 0.2 

gamma 1.32 0.2 𝛼 = 	2.29 𝑑 ∗ -(αβ!) 0.30 0.2 

gamma 1.75 0.2 𝛼 = 	1.31 𝑑 ∗ -(αβ!) 0.23 0.2 

gamma 0.3 0.5 𝛼 = 	43.93 𝑑 ∗ -(αβ!) 3.31 0.5 

gamma 0.61 0.5 𝛼 = 	10.60 𝑑 ∗ -(αβ!) 1.63 0.5 

gamma 0.95 0.5 𝛼 = 	4.44 𝑑 ∗ -(αβ!) 1.05 0.5 

gamma 1.32 0.5 𝛼 = 	2.29 𝑑 ∗ -(αβ!) 0.76 0.5 

gamma 1.75 0.5 𝛼 = 	1.31 𝑑 ∗ -(αβ!) 0.57 0.5 

gamma 0.3 0.8 𝛼 = 	43.93 𝑑 ∗ -(αβ!) 5.30 0.8 

gamma 0.61 0.8 𝛼 = 	10.60 𝑑 ∗ -(αβ!) 2.60 0.8 

gamma 0.95 0.8 𝛼 = 	4.44 𝑑 ∗ -(αβ!) 1.69 0.8 

gamma 1.32 0.8 𝛼 = 	2.29 𝑑 ∗ -(αβ!) 1.21 0.8 

gamma 1.75 0.8 𝛼 = 	1.31 𝑑 ∗ -(αβ!) 0.92 0.8 

gamma 0.3 0.2 𝛼 = 43.93, 

𝛽# = 1, 

𝛽$ = 1.031 

α(β$ − β#) 1.35 0.2 

gamma 0.61 0.2 𝛼 = 10.60,	 

𝛽# = 1, 

α(β$ − β#) 0.67 0.2 
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𝛽$ = 1.063 

gamma 0.95 0.2 𝛼 = 	4.44, 

	𝛽# = 1, 

𝛽$ = 1.100 

α(β$ − β#) 0.44 0.2 

gamma 1.32 0.2 𝛼 = 	2.29, 

𝛽# = 1, 

𝛽$ = 1.142 

α(β$ − β#) 0.32 0.2 

gamma 1.75 0.2 𝛼 = 	1.31, 

	𝛽# = 1, 

𝛽$ = 1.193 

α(β$ − β#) 0.25 0.2 

gamma 0.3 0.5 𝛼 = 	43.93, 

𝛽# = 1, 

𝛽$ = 1.078 

α(β$ − β#) 3.45 0.5 

gamma 0.61 0.5 𝛼 = 	10.60, 

𝛽# = 1, 

𝛽$ = 1.167 

α(β$ − β#) 1.77 0.5 

gamma 0.95 0.5 𝛼 = 	4.44, 

𝛽# = 1, 

𝛽$ = 1.273 

α(β$ − β#) 1.21 0.5 

gamma 1.32 0.5 𝛼 = 	2.29, 

𝛽# = 1, 

𝛽$ = 1.403 

α(β$ − β#) 0.92 0.5 

gamma 1.75 0.5 𝛼 = 	1.31, 

𝛽# = 1, 

𝛽$ = 1.578 

α(β$ − β#) 0.76 0.5 

gamma 0.3 0.8 𝛼 = 	43.93, 

𝛽# = 1, 

𝛽$ = 1.129 

α(β$ − β#) 5.65 0.8 
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gamma 0.61 0.8 𝛼 = 	10.60, 

𝛽# = 1, 

𝛽$ = 1.283 

α(β$ − β#) 3.00 0.8 

gamma 0.95 0.8 𝛼 = 	4.44, 

𝛽# = 1, 

𝛽$ = 1.480 

α(β$ − β#) 2.13 0.8 

gamma 1.32 0.8 𝛼 = 	2.29, 

𝛽# = 1, 

𝛽$ = 1.755 

α(β$ − β#) 1.73 0.8 

gamma 1.75 0.8 𝛼 = 	1.31, 

𝛽# = 1, 

𝛽$ = 2.193 

α(β$ − β#) 1.56 0.8 

chi-square 0.3 0.2 𝑑. 𝑓.= 	88 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 2.65 0.2 

chi-square 0.61 0.2 𝑑. 𝑓.= 	21 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 1.30 0.2 

chi-square 0.95 0.2 𝑑. 𝑓.= 	9 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 0.85 0.2 

chi-square 1.32 0.2 𝑑. 𝑓.= 	5 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 0.63 0.2 

chi-square 1.75 0.2 𝑑. 𝑓.= 	3 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 0.49 0.2 

chi-square 0.3 0.5 𝑑. 𝑓.= 	88 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 6.63 0.5 

chi-square 0.61 0.5 𝑑. 𝑓.= 	21 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 3.24 0.5 

chi-square 0.95 0.5 𝑑. 𝑓.= 	9 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 2.12 0.5 

chi-square 1.32 0.5 𝑑. 𝑓.= 	5 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 1.58 0.5 

chi-square 1.75 0.5 𝑑. 𝑓.= 	3 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 1.22 0.5 

chi-square 0.3 0.8 𝑑. 𝑓.= 	88 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 10.61 0.8 

chi-square 0.61 0.8 𝑑. 𝑓.= 	21 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 5.18 0.8 

chi-square 0.95 0.8 𝑑. 𝑓.= 	9 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 3.39 0.8 

chi-square 1.32 0.8 𝑑. 𝑓.= 	5 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 2.53 0.8 

chi-square 1.75 0.8 𝑑. 𝑓.= 	3 𝑑 ∗ -2 ∗ 𝑑. 𝑓. 1.96 0.8 
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Table A.1 a summary of all the algebra for different cases within the same distribution of 
the outcome variables in terms of the skewness, parameters, and corresponding true 

effect for mean difference and the standardized mean difference 
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The Number of Studies The Number of Individuals per Group Mean 

Difference 

Standardized Mean 

Difference 

2 5 0.1031 0.0264 

2 10 0.0764 0.0403 

2 20 0.0591 0.0468 

2 50 0.0554 0.0511 

5 5 0.1285 0.0192 

5 10 0.0809 0.037 

5 20 0.0619 0.0465 

5 50 0.0529 0.0455 

10 5 0.1398 0.023 

10 10 0.081 0.0346 

10 20 0.0613 0.046 

10 50 0.0542 0.0488 

20 5 0.1475 0.0212 

20 10 0.0854 0.0385 

20 20 0.0614 0.0427 

20 50 0.0578 0.0489 

2 5 0.1084 0.0275 

2 10 0.0759 0.0393 

2 20 0.0573 0.0486 

2 50 0.0568 0.0468 

5 5 0.1177 0.0226 

5 10 0.0738 0.0345 

5 20 0.0594 0.0455 

5 50 0.0576 0.0467 

10 5 0.1452 0.0225 

10 10 0.0838 0.0397 

10 20 0.0619 0.047 
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10 50 0.0539 0.0486 

20 5 0.1473 0.0221 

20 10 0.0777 0.0409 

20 20 0.0638 0.0464 

20 50 0.0523 0.0479 

2 5 0.1061 0.0301 

2 10 0.0736 0.0383 

2 20 0.0552 0.0425 

2 50 0.0517 0.0496 

5 5 0.1247 0.0217 

5 10 0.078 0.0393 

5 20 0.0628 0.0414 

5 50 0.0578 0.0492 

10 5 0.139 0.021 

10 10 0.0807 0.0355 

10 20 0.0661 0.044 

10 50 0.0568 0.0457 

20 5 0.1474 0.0246 

20 10 0.0817 0.0352 

20 20 0.0631 0.044 

20 50 0.0557 0.0449 

Table A.2 the type I error rate for the mixture of normal distributions of the outcome 
variable with the different number of studies, and the number of individuals per group 

when using the mean difference and the standardized mean difference as the effect sizes 
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Skewness The Number of 

Studies 

The Number of 

Individuals per 

Group 

lognormal Gamma 𝜒! 

 

0.3 2 5 0.1019 0.949 0.9954 

0.61 2 5 0.1042 0.6547 0.945 

0.95 2 5 0.1122 0.3982 0.8048 

1.32 2 5 0.1111 0.2617 0.613 

1.75 2 5 0.1186 0.1786 0.4414 

0.3 2 10 0.0774 0.91 0.9982 

0.61 2 10 0.0783 0.4634 0.8969 

0.95 2 10 0.0796 0.2511 0.6449 

1.32 2 10 0.078 0.1672 0.4282 

1.75 2 10 0.0835 0.1204 0.2982 

0.3 2 20 0.0585 0.7421 0.9932 

0.61 2 20 0.0567 0.2764 0.715 

0.95 2 20 0.0575 0.1567 0.4239 

1.32 2 20 0.0613 0.1057 0.266 

1.75 2 20 0.0696 0.0875 0.1906 

0.3 2 50 0.0593 0.4125 0.8976 

0.61 2 50 0.0527 0.1513 0.389 

0.95 2 50 0.0558 0.0977 0.2065 

1.32 2 50 0.0535 0.0699 0.1436 

1.75 2 50 0.0536 0.0647 0.1101 

0.3 5 5 0.1263 0.125 0.1231 

0.61 5 5 0.1297 0.1289 0.1299 

0.95 5 5 0.1275 0.1232 0.1219 

1.32 5 5 0.1245 0.1164 0.1224 

1.75 5 5 0.1155 0.1213 0.1125 

0.3 5 10 0.0753 0.0785 0.0797 
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0.61 5 10 0.0785 0.0727 0.0773 

0.95 5 10 0.0785 0.0739 0.0762 

1.32 5 10 0.0757 0.0749 0.0781 

1.75 5 10 0.0725 0.0721 0.076 

0.3 5 20 0.0579 0.06 0.062 

0.61 5 20 0.0576 0.0582 0.0659 

0.95 5 20 0.0598 0.0587 0.0611 

1.32 5 20 0.055 0.0625 0.0637 

1.75 5 20 0.0582 0.0642 0.0602 

0.3 5 50 0.0544 0.0546 0.0543 

0.61 5 50 0.0538 0.0527 0.0544 

0.95 5 50 0.0545 0.0565 0.0522 

1.32 5 50 0.0515 0.0531 0.05 

1.75 5 50 0.053 0.0517 0.0543 

0.3 10 5 0.1372 0.1375 0.1401 

0.61 10 5 0.1373 0.1381 0.1396 

0.95 10 5 0.1386 0.1366 0.1356 

1.32 10 5 0.1299 0.1324 0.1354 

1.75 10 5 0.1294 0.1262 0.1327 

0.3 10 10 0.079 0.0856 0.0824 

0.61 10 10 0.0806 0.0797 0.0802 

0.95 10 10 0.0825 0.082 0.0758 

1.32 10 10 0.077 0.0739 0.0777 

1.75 10 10 0.0812 0.0762 0.0767 

0.3 10 20 0.0617 0.0605 0.0607 

0.61 10 20 0.0604 0.0619 0.0633 

0.95 10 20 0.0635 0.0654 0.064 

1.32 10 20 0.0627 0.0607 0.0633 

1.75 10 20 0.0628 0.0593 0.0599 
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0.3 10 50 0.0536 0.057 0.0541 

0.61 10 50 0.0573 0.0569 0.0565 

0.95 10 50 0.0564 0.0546 0.0537 

1.32 10 50 0.0529 0.0575 0.0493 

1.75 10 50 0.0547 0.0566 0.0543 

0.3 20 5 0.1474 0.1467 0.1449 

0.61 20 5 0.149 0.1454 0.1399 

0.95 20 5 0.1507 0.1459 0.148 

1.32 20 5 0.143 0.1409 0.1493 

1.75 20 5 0.1458 0.1345 0.1439 

0.3 20 10 0.0776 0.0793 0.0843 

0.61 20 10 0.0794 0.0809 0.0813 

0.95 20 10 0.0797 0.0823 0.0851 

1.32 20 10 0.0806 0.0774 0.0826 

1.75 20 10 0.0764 0.0802 0.0794 

0.3 20 20 0.0628 0.0632 0.0649 

0.61 20 20 0.066 0.0613 0.0622 

0.95 20 20 0.0614 0.0606 0.0648 

1.32 20 20 0.0631 0.0595 0.0608 

1.75 20 20 0.0625 0.0615 0.0625 

0.3 20 50 0.0577 0.0547 0.0602 

0.61 20 50 0.0578 0.0514 0.0543 

0.95 20 50 0.054 0.0547 0.0567 

1.32 20 50 0.0543 0.0579 0.0538 

1.75 20 50 0.0555 0.0551 0.0581 

Table A.3 the type I error rate for the lognormal, gamma, and 𝜒! distributions of the 
outcome variable with different skewness, the number of studies, and the number of 

individuals per group when using the mean difference as the effect sizes 



M.Sc. Thesis – Yuqing Huang  McMaster – Mathematics and Statistics 

 163 

Skewness The Number of 

Studies 

The Number of 

Individuals per 

Group 

lognormal Gamma 𝜒! 

 

0.3 2 5 0.1183 0.1186 0.1127 

0.61 2 5 0.1189 0.111 0.117 

0.95 2 5 0.1135 0.1173 0.1147 

1.32 2 5 0.117 0.1117 0.1207 

1.75 2 5 0.1142 0.1143 0.119 

0.3 2 10 0.081 0.0831 0.0896 

0.61 2 10 0.0808 0.084 0.0854 

0.95 2 10 0.084 0.0854 0.0859 

1.32 2 10 0.0841 0.0865 0.0898 

1.75 2 10 0.082 0.0862 0.088 

0.3 2 20 0.0663 0.0672 0.0684 

0.61 2 20 0.063 0.0669 0.062 

0.95 2 20 0.0691 0.0654 0.0638 

1.32 2 20 0.0656 0.0689 0.0677 

1.75 2 20 0.0721 0.0625 0.0663 

0.3 2 50 0.0611 0.0573 0.0543 

0.61 2 50 0.0566 0.0583 0.0563 

0.95 2 50 0.0558 0.0532 0.0633 

1.32 2 50 0.0543 0.0553 0.0537 

1.75 2 50 0.0564 0.0574 0.0593 

0.3 5 5 0.0237 0.0198 0.0228 

0.61 5 5 0.0243 0.0221 0.0217 

0.95 5 5 0.0236 0.0238 0.0223 

1.32 5 5 0.0219 0.0218 0.0232 

1.75 5 5 0.022 0.0224 0.0212 

0.3 5 10 0.04 0.038 0.0368 
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0.61 5 10 0.0356 0.0357 0.0388 

0.95 5 10 0.0371 0.036 0.039 

1.32 5 10 0.0417 0.0365 0.0358 

1.75 5 10 0.0364 0.0365 0.0408 

0.3 5 20 0.043 0.044 0.0409 

0.61 5 20 0.0426 0.0453 0.0402 

0.95 5 20 0.0461 0.0424 0.044 

1.32 5 20 0.0428 0.0438 0.0459 

1.75 5 20 0.043 0.0464 0.0454 

0.3 5 50 0.0467 0.0456 0.0536 

0.61 5 50 0.0471 0.0492 0.0481 

0.95 5 50 0.0455 0.044 0.0486 

1.32 5 50 0.049 0.0487 0.0425 

1.75 5 50 0.0457 0.0488 0.0501 

0.3 10 5 0.0201 0.022 0.0216 

0.61 10 5 0.0218 0.0217 0.0203 

0.95 10 5 0.0216 0.0235 0.0205 

1.32 10 5 0.0239 0.0224 0.0211 

1.75 10 5 0.022 0.023 0.022 

0.3 10 10 0.0353 0.0403 0.0354 

0.61 10 10 0.0366 0.0358 0.0373 

0.95 10 10 0.0368 0.0362 0.0358 

1.32 10 10 0.0369 0.0349 0.0351 

1.75 10 10 0.0368 0.0372 0.0369 

0.3 10 20 0.0437 0.0406 0.0452 

0.61 10 20 0.0433 0.0469 0.0474 

0.95 10 20 0.0459 0.0428 0.0467 

1.32 10 20 0.0434 0.0445 0.0421 

1.75 10 20 0.0451 0.0423 0.0453 
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0.3 10 50 0.0475 0.045 0.0413 

0.61 10 50 0.0477 0.048 0.0498 

0.95 10 50 0.0503 0.0469 0.0478 

1.32 10 50 0.0489 0.0436 0.0494 

1.75 10 50 0.0436 0.0481 0.0479 

0.3 20 5 0.0193 0.0216 0.0215 

0.61 20 5 0.0219 0.019 0.0239 

0.95 20 5 0.019 0.0232 0.0225 

1.32 20 5 0.0219 0.0197 0.0216 

1.75 20 5 0.0239 0.0223 0.0226 

0.3 20 10 0.0342 0.0357 0.0407 

0.61 20 10 0.0372 0.0362 0.0387 

0.95 20 10 0.0396 0.036 0.0379 

1.32 20 10 0.0396 0.0405 0.0424 

1.75 20 10 0.0381 0.0371 0.0341 

0.3 20 20 0.0436 0.046 0.0407 

0.61 20 20 0.041 0.0405 0.0413 

0.95 20 20 0.0448 0.0432 0.0391 

1.32 20 20 0.0451 0.0418 0.0439 

1.75 20 20 0.0468 0.0446 0.0445 

0.3 20 50 0.0488 0.0457 0.0444 

0.61 20 50 0.0427 0.0426 0.0464 

0.95 20 50 0.0451 0.0496 0.0508 

1.32 20 50 0.0464 0.0454 0.0488 

1.75 20 50 0.0479 0.0472 0.0463 

Table A.4 the type I error rate for the lognormal, gamma, and 𝜒!distributions of the 
outcome variable with different skewness, the number of studies, and the number of 

individuals per group when using the standardized mean difference as the effect sizes 


