
COMMUNICATING STATECHARTS (CSC)

COMMUNICATING STATECHARTS (CSC)

By SHEIDA EMDADI, BEng

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfillment of the Requirements for

the Degree Master of Science - Computer Science

McMaster University © Copyright by Sheida Emdadi, April 2025

https://gs.mcmaster.ca/
http://www.mcmaster.ca/

McMaster University

MASTER OF SCIENCE - COMPUTER SCIENCE (2024)

Hamilton, Ontario, Canada (Dept of Computing and Software)

TITLE: Communicating Statecharts (CSC)

AUTHOR: Sheida Emdadi

BEng (Computer Engineering),

Islamic Azad University, Tehran, Iran

SUPERVISOR: Dr. Spencer Smith

Dr.Christopher Anand

NUMBER OF PAGES: xxv, 179

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Abstract

Concurrency is increasingly gaining importance due to the rapid development of net-

worked applications. However, concurrency comes with some complexities, including

handling race conditions or deadlocks. Therefore, learning this concept and under-

standing its correct implementation is challenging, even for experienced programmers.

This problem arises from the current practices of teaching concurrency because of the

focus on confusing details instead of necessary concepts.

We propose a new concurrency paradigm called Communicating StateCharts (CSC)

to simplify the teaching of concurrency to beginner programmers. CSC preserves five

main principles, aiming to make concurrency easier to learn and use for novices: soft-

ware visualization, Model-Driven Development (MDD), pure functions, separation of

concerns, and raising abstraction levels. In this regard, CSC adapts features from

existing concurrency models that aligned with our principles, namely process cal-

culi, the actor model, and Harel’s statecharts. This synthesis led to CSC’s atomic

statecharts, communicating through messages transmitted via channels.

To make CSC accessible for beginners, a visual MDD tool called CSCDraw is

designed and developed. The main requirements that guided the design of CSC-

Draw include enforcing CSC principles, considering beginner-friendly features, ensur-

ing faithful code generation, supporting conditional branches, and channel cardinality.

iii

We also present the design of a pilot study that investigates the most effective

way of teaching CSC to beginning programmers. This study serves as a prelude to

a more rigorous experiment to compare the effectiveness of CSC with the existing

paradigms.

iv

Dedication

I extend my heartfelt gratitude to my supervisors, Dr. Spencer Smith and Dr.Christopher

Anand. Dr. Smith’s dedication, insightful guidance, steadfast support, and encour-

agement have continually motivated me to aim high, even when I was struggling to

believe in myself. Dr.Anand’s unwavering support, motivating advice, and constant

belief in my capabilities and academic potential gave me the strength to persevere,

even during my lowest moments. Thank you both for being such dreamy, amazing

supervisors.

A special thanks to my friends Narges, her husband Omid, and Tina for their

wonderful friendships, and to my lifelong friends Bahar and Mahshid for always being

there for me and providing motivation when it felt impossible to continue.

I also want to express my deepest appreciation to my parents for their love and

support, especially to my Father, without whose unbounded support, I could never

dream so ambitiously.

Finally, I am sincerely grateful to my sweet little sister, Bahar, whose love and

presence in my life have always warmed my heart.

This thesis is a reflection of the love and support that I received from each of you.

Love you all!

v

Table of Contents

Abstract iii

Dedication v

Notation xxi

Abbreviations xxiv

Declaration of Academic Achievement xxvi

1 Introduction 1

1.1 Motivation . 3

1.2 Research Questions . 4

1.3 Principles for a Beginner-Friendly Concurrency Paradigm 5

1.4 Limitation of Existing Tools . 13

1.5 Communicating Statecharts (CSC) 16

1.6 Visual MDD Tool Requirements . 24

1.7 CSCDraw . 31

1.8 Evaluation . 31

1.9 Contributions . 34

vi

1.10 Thesis Structure . 36

2 Background 37

2.1 Event-Driven Programming . 39

2.2 Actor Model . 40

2.3 Process Calculi . 41

2.4 SCOOP . 43

2.5 Statecharts . 44

2.6 Semantics of Statecharts, UML State Machines, and Finite Automata 45

2.7 Programming Languages and Paradigms 46

2.8 Architectural Patterns . 53

2.9 Model-Driven Development (MDD) 56

2.10 SDDraw . 57

2.11 TEASync . 59

2.12 Separation of Concerns (SoC) . 62

3 Design of CSC 63

3.1 CSC Semantics . 63

3.2 Code Generation Preserves CSC Semantics 67

4 CSCDraw’s UI 76

4.1 Overall Mode . 80

4.2 SCEditing Mode . 88

4.3 Validation . 95

5 Pilot Study 103

vii

5.1 Learning Outcomes . 105

5.2 Experiment Details . 107

6 Conclusion 136

6.1 Summary . 136

6.2 Research Questions . 138

6.3 Next Steps . 142

6.4 Threats to Validity . 144

A Pilot Study Instruments 147

A.1 Pilot Study’s First Phase Scenarios and Figures 147

A.2 Pilot Study’s Second Phase Scenarios and Figures 157

viii

List of Figures

1.1 Principles for shaping our new paradigm. The first and second princi-

ples are tightly coupled. The dashed and solid arrows illustrate the is

a and implies relationships, respectively. The dotted arrows, connect-

ing the grey boxes, display that each principle considers the previous

implications while picking a consequent choice. 7

1.2 The principle P3, Pure Functions, leads to Consequence C3, using LG-

MVU which enforces a read-only access of the global statechart to the

local statecharts. 11

1.3 The isolation of statecharts in our proposed paradigm, as Consequence C4

of the Principle P4 (SoC). This isolation ensures that statecharts can-

not modify each other directly. The violating transition is highlighted

in red. Instead of direct modification, communication between state-

charts is through message-passing via channels. 12

1.4 The statechart of the Login System multi-user app generated using

TEASync, drawn in Microsoft Visio. This representation does not

satisfy any of our principles, and violates other models’ (UML or Harel

statecharts) conventions. 15

ix

1.5 Our proposed paradigm’s principle P3, Pure Functions, and its Con-

sequence C3, Read-Only Access, enforces the children statecharts to

have read-only access to the parent statechart. This flow is reversed in

conventional hierarchy flows (parents accessing children). 17

1.6 Lack of isolation in other modelling languages conflicts with the CSC

principle P4, Separation of Concerns (SoC), and its Consequence C4,

Isolation. Particularly, the interaction among statecharts in our paradigm

should be through message-passing via channels. 18

1.7 The example of introducing concurrency unnecessarily with the decom-

position of (nested) statecharts. This design is not allowed in CSC due

to Principle P5 (Abstraction). 20

1.8 The example design of a login system without introducing concurrency

unnecessarily. 21

1.9 The requirements and Implementation Decisions of a visual MDD tool

to support our proposed paradigm, CSC, outlined by squares and cir-

cles, respectively. The dashed and solid arrows represent the is-a and

the implies relationships, respectively. 25

x

1.10 The Overall Mode of CSCDraw, rendering models/statecharts and

their interfaces, as well as channels. Solid lines connect the chan-

nels to the statecharts. In this view, the contents of the channels are

editable, while states, transitions, and synchronizing messages inside

statecharts are visible. Dotted and dashed lines indicate read-only ac-

cess. The user appears as a peer of the statecharts in this overall view.

Code generation and switching to the Analogy Mode, where concepts

are visualized in real-world representations, is possible through this

view. 32

1.11 The SCEditing Mode of CSCDraw, which is reachable by clicking on

a statechart in the overall mode. This mode allows the modification

of each statechart, namely, addition, deletion, and renaming. State

instances can be dragged and dropped to add a state or make a state

the initial state. Elm types and subscriptions can be dragged and

dropped into the states and transitions. Synchronizing messages can be

connected to the corresponding messages through the inner interface.

A navigator button allows navigation between the two modes while

SCIndicator shows the name of the current statechart being edited. . 33

1.12 The revised version of Bloom’s Taxonomy [5], a framework to cate-

gorize the objective learning outcomes. The levels are ordered from

simple to complex, starting from remember. 35

xi

2.1 Time-data-flow diagram for Model-View-Update (MVU). The model is

used by the pure view function to render the application in the browser,

and messages (events sent by user interactions, e.g. mouse clicks) are

passed into the update function to produce new models, changing the

application state. 58

2.2 The state diagram, drawn with the MDD tool, SDDraw, and used to

generate code students were given as a starting point with the above

diagram on the exam. Transitions are narrow at the target, and wider

at the origin. The initial state is green. 58

2.3 The dataflow/timeline of two devices connected to a server in LG-MVU

architecture [78]. 60

3.1 CSC of a basic multi-user application. The local statechart contains

one state: MysteryRoom. The PressButton transition will send a syn-

chronizing message to the global statechart. That synchronizing mes-

sage will trigger the PlayMusic transition in the global model, which

changes the global state from MusicOFF to MusicON. 68

3.2 Algebraic Data Types generated from example Figure 3.1. The code

generator has converted the drawn CSC states and transitions into the

constructors of the corresponding Elm data types. 69

3.3 The generated code for the localUpdate function based on the local

statechart. This code first destructures the message and then the state

data type at the inner level. Synchronizing messages are also translated

as the output of their originating transition. 71

xii

3.4 The generated code for the globalUpdate function based on the global

statechart. When no synchronizing message is sent, Cmd.none will fill

the corresponding field. 71

3.5 The view function generated by the code generator. This function ren-

ders information on the current state of the app with buttons mapping

to local transitions. 72

3.6 The localInit generated by the CSCDraw’s code generator based on

the initial local state. 72

3.7 The globalInit generated by the CSCDraw’s code generator based on

the initial global state. 72

3.8 The local statechart of the Party game. A conditional is used when

the user wants to take a bus that has a money requirement to reach

the partyRoom. 74

3.9 The generated conditional code from the Party game. This code is

filled with default values so the skeleton code will compile. 75

3.10 The modified generated conditional code from the Party game. This

code is filled with appropriate condition and values. 75

4.1 The Overall mode of CSCDraw, rendering models and their interfaces,

as well as channels. Solid lines connect the channels with the state-

charts. In this view, the contents of the channels are editable. Dotted

and dashed lines indicate read-only access. The user appears as a peer

of the statecharts in this overall view. 81

4.2 Active elements in the Overall mode of CSCDraw, including models/s-

tatecharts, synchronizing messages, interfaces, and channels. 82

xiii

4.3 An instance of the state of a message being dragged to a channel in

the Overall mode of the CSCDraw. In this example, the Go2Jungle

message is being dragged from the local statechart’s input interface

and the potential paths in the channels are being highlighted. 84

4.4 Elements shaping the Overall mode of CSCDraw. 85

4.5 The Analogy mode of CSCDraw. Elements are conceptualized with

real-world objects. 87

4.6 The SCEditing mode allows the modification of a statechart. 88

4.7 An example of using conditional branches choosing transitions to a

state among a set of states based on meeting a condition. 89

4.8 An example of the generation of a Synchronizing Message in the SCEdit-

ing mode. 90

4.9 The UI elements active in SCEditing mode. 92

4.10 An example of a state storing a field of type Int. 93

4.11 Making a branch for a transition is possible by clicking on a diamond

and dragging the arrow onto the destination state. 96

4.12 An example of CSCDraw in StateRename mode. In this mode, the

state will be highlighted in blue and the cursor will be ready for re-

naming operations. 97

4.13 The statechart of the Login System written in TEASync, drawn in

Microsoft Visio. The solid and dashed yellow lines correspond to the

synchronizing messages to and from the global statechart, respectively.

The light blue lines show the read-only access of the global statechart

to the local statechart. This model does not satisfy our CSC principles. 98

xiv

4.14 The Login System redrawn in CSCDraw from Figure 4.13. The isola-

tion of statecharts is visible and the communication between them is

visualized in terms of synchronizing messages transmitted by channels.

Messages are organized into bipartite interfaces showing the flow of the

information. Channels will point out the possible paths when dragging

a synchronizing message. Code generation is also possible from the de-

signed CSCs. This model successfully preserves CSC principles. . . . 102

5.1 The state diagram of the Mood game, a mini-game to introduce SD-

Draw, used in Step 1 of the pilot study’s first phase. 109

5.2 The state diagram/map of the Hiking game, a mini-game to introduce

SDDraw, used in Step 2 of the first phase. 110

5.3 The state diagram solution to the challenge done in Step 3 of the first

phase (Santa game). 111

5.4 The solution state diagram to the challenge asked in Step 4 of the first

phase (Rope game). 112

5.5 The state of the lights being OFF for every client (global), while the

button highlight is private to each user (local), in the Lights Game.

This game is used in Step 1 of the study’s second phase. 120

5.6 The state of the lights being ON for every client in the Lights Game.

This game is used in Step 1 of the study’s second phase. 121

5.7 The Overall Mode of the CSCDraw for the Lights Game used in Step

1 of the second phase. 125

5.8 The Analogy Mode of the CSCDraw for the Lights Game used in Step

1 of the second phase. 126

xv

5.9 The Overall mode of the CSC solution to the MP-Hiking game chal-

lenge from Step 2 of the second phase. 127

5.10 The local statechart of the CSC solution to the MP-Hiking game chal-

lenge done in Step 2 of the second phase. This figure is provided for

better visibility of the details shown in the Overall mode. 128

5.11 The global statechart of the CSC solution to the MP-Hiking game

challenge from Step 2 of the second phase. This figure is provided for

better visibility of the details shown in the Overall mode. 129

5.12 The Overall Mode of the solution CSC to the challenge done in Step 3

of the second phase (Party Game). 130

5.13 The local statechart of the solution CSC to the challenge done in Step

3 of the second phase (Party Game). This figure is provided for better

visibility of the details shown in the Overall mode. 131

5.14 The global statechart of the solution CSC to the challenge done in Step

3 of the second phase (Party Game). This figure is provided for better

visibility of the details shown in the Overall mode. 132

5.15 The Overall Mode of the solution CSC to the challenge done in Step 4

of the second phase (MP-Rope Game). 133

5.16 The local statechart of the solution CSC to the challenge done in Step

4 of the second phase (MP-Rope Game). This figure is provided for

better visibility of the details shown in the Overall mode. 134

5.17 The global statechart of the solution CSC to the challenge done in Step

4 of the second phase (MP-Rope Game). This figure is provided for

better visibility of the details shown in the Overall mode. 135

xvi

A.1 The Happy state of the Mood game, a mini-game to introduce SDDraw,

used in Step 1 of the pilot study’s first phase. 148

A.2 The Sad state of the Mood game, a mini-game to introduce SDDraw,

used in Step 1 of the pilot study’s first phase. 148

A.3 The SantaHouse state of the Santa Game used in Step 3 of the pilot

study’s first phase. 150

A.4 The Stable state of the Santa Game used in Step 3 of the pilot study’s

first phase. 150

A.5 The LightsOff state of the CityCenter of the Santa Game used in Step

3 of the pilot study’s first phase. 151

A.6 The LightsOn state of the CityCenter of the Santa Game used in Step

3 of the pilot study’s first phase. 151

A.7 The Neighbourhood state of the Santa Game used in Step 3 of the pilot

study’s first phase. 152

A.8 The Porch state of the Santa Game used in Step 3 of the pilot study’s

first phase. 152

A.9 Santa has full energy in the Porch state of the Santa Game, used in

Step 3 of the pilot study’s first phase. 153

A.10 Santa has to deliver gifts after taking pictures with people in the Mall

state of the Santa Game, used in Step 3 of the pilot study’s first phase. 153

A.11 Santa can’t take his elves back due to low hunger points, so he has to

leave without his elves, after taking pictures with people. This is the

Mall state of the Santa Game, used in Step 3 of the pilot study’s first

phase. 154

xvii

A.12 Santa has enough energy to take his elves from the party cave and

leave the city after taking pictures with people. This is the Mall state

of the Santa Game, used in Step 3 of the pilot study’s first phase. . . 154

A.13 PartyCave of the Santa Game used in Step 3 of the pilot study’s first

phase. 155

A.14 Santa has successfully returned home with his elves. This is the San-

taHouse state of the Santa Game, used in Step 3 of the pilot study’s

first phase. 155

A.15 The initial local state of the Party Game: Home state, used in Step 3

of the pilot study’s second phase. 158

A.16 The PizzaHouse state of the Party Game, used in Step 3 of the pilot

study’s second phase. Players will lose fifty dollars by buying a pizza. 158

A.17 The Cake state of the Party Game, used in Step 3 of the pilot study’s

second phase. Players will lose thirty-five dollars by buying a cake. . 159

A.18 The GroceryStore state of the Party Game, used in Step 3 of the pilot

study’s second phase. Players will lose twenty dollars by buying groceries.159

A.19 The ATM state of the Party Game, used in Step 3 of the pilot study’s

second phase. Players can take forty dollars each time they visit the

ATM. 160

A.20 The BusStop state of the Party Game, used in Step 3 of the pilot

study’s second phase. Players will lose fifteen dollars to catch a bus. . 160

A.21 The BusStop state of the Party Game, used in Step 3 of the pilot

study’s second phase. Players will have to walk back home due to the

low money. This case will lead to the party getting cancelled. 161

xviii

A.22 The PartyCancelled state of the Party Game, used in Step 3 of the

pilot study’s second phase. 161

A.23 The Waiting state of the Party Game, used in Step 3 of the pilot

study’s second phase. Players who made it to the PartyRoom have to

wait until the number of guests reaches three. 162

A.24 The PartyStarted state of the Party Game, used in Step 3 of the pilot

study’s second phase. Reaching this state means at least three people

have managed their money to make it to the party. 162

xix

List of Tables

1.1 Equivalence of decompositions. The natural translations between rep-

resentations preserve compositions. 22

1.2 CSC adopts features from multiple concurrency models. 23

4.1 Overview of the relationship between CSCDraw requirements and its

implemented features. 79

5.1 Overview of the steps used in the first phase of the pilot study using

SDDraw. Learning Outcomes correspond to the first three levels of

Bloom’s Taxonomy (shown in Figure 1.12). 105

5.2 Overview of the steps used in the second phase of the pilot study using

CSCDraw. Learning Outcomes correspond to the first three levels of

Bloom’s Taxonomy (shown in Figure 1.12). 106

xx

Notation

Q A finite set of states, usually represented by circles labelled with

unique strings.

Σ A finite set of inputs that trigger a transition.

δ A transition function δ : Σ×Q→ Q.

q0 The initial state, q0 ∈ Q.

ε Element indicating that no synchronizing message is to be sent.

G A countable set of global states.

Γ A countable set of global messages that trigger a transition, ε /∈ Γ.

δG : Λ× L×G→ G× (ΛU ∪ {ε})

A transition function also called the “global update” function.

g0 ∈ G The initial global state.

L A countable set of local states.

Λ A countable set of local messages that trigger transitions.

xxi

ΛG The subset of messages which can be sent by δG.

ΛU The subset of messages which can be triggered by a user action.

δL : Λ×G× L→ L× (Γ ∪ {ε}):

A transition function also called the “local update” function.

ν : L→ 2ΛU A function that for each local state determines which local messages

could be generated by the user.

l0 ∈ L The initial local state.

Definitions

Beginner/Novice Programmer:

We define the term beginner/Novice Programmer as a subject who

• has completed no more than one programming course at the

university level, and is unable to write a program with at least

100 lines of code in a text-based programming language, or

• has completed no programming course at the university level,

and is unable to write a program with at least 100 lines of code

in a text-based programming language, or

• would take a first-year programming course in the next aca-

demic year, and is unable to write a program with at least 100

lines of code in a text-based programming language, or

• is unable to write a program with at least 100 lines of code in

a text-based programming language.

xxii

Concurrency Paradigm:

We define the term Concurrency Paradigm as a high-level abstract

definition of a model that describes the structure of a concurrent

system and the execution of its components. In other words, a con-

currency paradigm covers the definition of the interaction between

the components of a concurrent system, the actions that shape the

executions of different operations, and the mechanisms for synchro-

nization. This high-level definition captures the level of concurrency

models, such as the actor model, process calculi, or Petri nets.

xxiii

Abbreviations

CCS Communicating Systems

CSC Communicating Statecharts

CSP Communicating Sequential Processes

DbC Design by Contract

EDP Event-Driven Programming

FSM Finite State Machine

GUI Graphical User Interface

IDE Integrated Development Environment

LG-MVU Local-Global Model-View-Update

MDD Model-Driven Development

MP Multi-Player

MVU Model-View-Update

MVC Model-View-Controller

xxiv

OO Object-Oriented

OOP Object-Oriented Programming

SC StateChart

SCOOP Simple Concurrent Object-Oriented Programming

SoC Separation of Concerns

SOA Service-Oriented Architecture

xxv

Declaration of Academic

Achievement

I, Sheida Emdadi, confirm that the work presented in this thesis is mine. Wherever

information has been derived from other sources, I have cited those sources accord-

ingly.

xxvi

Chapter 1

Introduction

In today’s increasingly networked world, almost every application depends on con-

currency. However, using concurrency requires handling complexities such as race

conditions or deadlocks. This introduces challenges in learning this concept and im-

plementing it correctly, even for experienced programmers [68]. The Turing Award

winner, Lamport [46], says “I have worked with a number of computer engineers (both

hardware and software engineers), and I have seen what they knew and what they

didn’t know that I felt they should have. [...] I can’t claim to know the best way to

teach computer engineers how to cope with concurrency. I do know that what they

seem to be learning now is not helping them very much.” According to Lamport,

concurrency should not be as hard as it currently appears to computer engineers [46].

This is because they are focusing on the details of the programming language instead

of the important concepts. This problem motivated us to reduce the barrier for be-

ginner programmers. Therefore, in this thesis, we propose a new visual paradigm,

called Communicating StateCharts (CSC), that aims to simplify concurrency to the

level that even novice programmers can understand and use it.

1

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

CSC tries to achieve its goal of helping beginners by considering principles that

contribute to reducing complexities, including raising the abstraction levels, visual-

izing the system, and generating purely functional, event-driven skeleton code based

on the designed model. Event-Driven Programming (EDP) offers easier concurrency

by increasing abstraction through using events instead of threads, and allows pro-

grammers to make interactive applications such as games, which is a strategy used

to motivate beginners [50]. To further increase the engagement of EDP, and exploit

its success in making concurrency more straightforward, we put the focus of CSC

on allowing the visual design of event-driven multi-user, distributed applications in-

cluding multi-player games, and generate skeleton code from that graphical represen-

tation. We believe that visualization will help students with concurrency concepts

analogously to how visualization has helped students correct misconceptions about

object-oriented programming [85]. We anticipate that visualization will contribute

to smoothening the path toward learning concurrency for novice programmers by

reducing the cognitive load required to understand the behaviour of the concurrent

systems.

In this chapter, we describe how Lamport’s [46] criticism of the existing methods

of teaching concurrency inspired us to simplify concurrency for beginners. Then, we

introduce the three research questions that are used to structure and motivate the

research. The first question focuses on identifying the five principles of a concurrency

paradigm suitable for beginners. We show that the existing tools and frameworks do

not satisfy our paradigm’s principles. Then, we develop a new paradigm, called CSC,

that answers the five principles. CSC combines existing models of concurrency (i.e.,

2

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

process calculi and the actor model) in a visual language including modified state-

charts communicating asynchronously through channels, to satisfy those principles.

The second research question motivates the visual MDD tool, called CSCDraw.

This new tool aims to support CSC by considering the requirements necessary for

making it straightforward for beginning programmers to learn and use it.

The third research question inspires the design of a pilot study, which works

as a prelude to evaluating whether CSC really simplifies concurrency contrasted to

the existing frameworks. More specifically, this pilot study answers the question of

finding the best way to teach CSC, which is critical for us to learn before performing

a rigorous experiment. After that, we describe the contributions made through this

work.

1.1 Motivation

Concurrency is one of the necessary concepts that software engineers and computer

scientists need to master. It is increasingly important due to the development of

multi-core architectures and the proliferation of networked applications that require

concurrent programming in the software development process. However, concurrency

can be challenging to learn. As Nanz et al. [68] state “Concurrent programming is,

notoriously hard even for expert programmers”. There is a long history of attempts

to simplify concurrency—usually by raising the level of abstraction. In particular,

concurrency models such as Java Threads and SCOOP were designed for Object-

Oriented (OO) languages, Java and Eiffel, respectively [58, 70]. Also, there are several

attempts through functional programming languages, including Haskell [36, 51]. Al-

though these approaches were successful in making concurrency easier, concurrency is

3

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

still a challenge, and, not surprisingly, a particular challenge for beginners. Our goal

in this thesis is to lower the barrier to understanding and using concurrency to the

extent that it is feasible for beginners. As mentioned before, Lamport [46] believes

this complicacy can be handled by changing the way that concurrency is being taught.

This inspired us to move the focus from language details to higher-level concepts that

are necessary for effectively learning and using concurrency.

1.2 Research Questions

In this section, we present three research questions guiding the study of this thesis.

They will be referred to throughout the thesis by their RQ numbers.

RQ1

What does a beginner-friendly paradigm for distributed user-interface programs

look like?

This research question explores the features of a concurrency paradigm that is suit-

able for novice programmers to learn and use. This paradigm focuses on distributed

user-interface programs, e.g., multi-player games, since these interactive apps are mo-

tivating for beginners to learn. As mentioned in the previous section, the existing

frameworks improve the teaching of concurrency, but not to the extent that is easy

for beginners to learn.

RQ2

How best to implement a design tool for the paradigm from RQ1 to make it

accessible to beginners?

4

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

RQ3

How does the proposed paradigm from RQ1 compare to traditional paradigms

for teaching beginners?

RQ3.1

How to effectively teach the proposed paradigm?

RQ3.2

How does the effectiveness of the proposed paradigm compare to Java

Threads with respect to teaching beginners?

RQ3 seeks to evaluate whether the proposed paradigm is more successful in removing

the complexities of concurrency in contrast with the previous works. This question

leads to two sub-questions: (1) identifying the best way to teach the paradigm, which

prepares us for conducting the evaluation; and, (2) comparing our paradigm with one

of the most commonly used concurrency frameworks, Java Threads, which builds the

bones for reasoning about the bigger question, RQ3. The evaluation suggested by

RQ3.2 is outside the scope of the work completed in this thesis.

1.3 Principles for a Beginner-Friendly Concurrency

Paradigm

To answer RQ1, we defined five principles to guide the design of a concurrency

paradigm suitable for beginners. Figure 1.1 illustrates these principles, shown in

squares, together with their consequent choices, outlined by circles. The first two

5

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

principles, Visualization and Model-Driven Development (MDD), are tied together to

maximize the benefits out of their combination. Additionally, each consequent choice

takes into account the previous principles and their implications. In this section, we

first describe the principles and then, their consequent choices. They will be referred

to throughout the thesis by their P and C numbers, respectively.

1.3.1 Principles

We now present the principles shaping our paradigm, shown in squares in Figure 1.1.

P1. Use Software Visualization: Many researchers have been studying the effec-

tiveness of visualization in supporting teaching software-related concepts. For

instance, in surveying the Literature on Event-Driven Programming (EDP),

Lukkarinen et al. [50] proposed a question: “How could software visualization

support learning EDP-related concepts? What concepts should be visualized

and how?” Reinforcing that question, Carro et al. [16] says: “Students often

face interaction and temporal issues for the first time in a concurrency course,

and many of them find it difficult to visualize concurrent execution.” This in-

spired us to exploit software visualization to support our goal of simplifying

concurrency for beginners.

P2. Use Model-Driven Development (MDD): Multiple authors have found

MDD to bring practical advantages [56, 79]. E. V. and Samuel [25] explains

this succinctly: “The concept of model compilation can reduce the effort we

put into coding and testing, and in turn, we can improve the quality of the

software. It can reduce the bugs in the developed products. It helps us to refine

the requirement specification.”

6

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

SoC

Isolation

Read-Only
Access

Principles

Pure
FunctionsVisualization MDD

LG-MVUStatecharts
Code

Generation

Abstraction

1 2 3 4 5

EDP

Figure 1.1: Principles for shaping our new paradigm. The first and second principles
are tightly coupled. The dashed and solid arrows illustrate the is a and implies
relationships, respectively. The dotted arrows, connecting the grey boxes, display
that each principle considers the previous implications while picking a consequent

choice.

7

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Our experience in teaching a first-year computer science course at McMaster,

Introduction to Software Design Using Web Programming, supports this. Par-

ticularly, we used the visual MDD tool, SDDraw [72] (see Section 2.10) to teach

students to make single-user games using EDP concepts. As observed by the

instructor, almost no students would start coding without first using SDDraw

to design the overall structure of their application through state diagrams, in-

cluding projects with over 10K lines of code.

We should, therefore, tie the Principle P1, Visualization, to the Principle P2,

MDD, resulting in taking the proposed visual model one step further by using

it for MDD.

P3. Use Pure Functions: Pure functions are mathematical functions, in which

outputs depend only on inputs. Functional programming languages are based

on this guarantee, and further benefit by treating functions as values, so they

can be both inputs and outputs of other functions. This allows patterns to be

explicitly programmed once [42]. A purely functional language is much easier to

reason about and design with, by virtue of eliminating side effects. Therefore,

the proposed concurrency paradigm should use pure functions.

P4. Separation of Concerns (SoC): The principle of Separation of Concerns

(SoC), as described in Section 2.12, is to divide the problem into separate sub-

problems that can be reasoned about and designed independently one at a time.

This principle is useful for all developers, but especially beginners. An example

of SoC would be modularization. Tarr et al. [81] says “separation of concerns

can provide many software engineering benefits, including reduced complexity,

improved reusability, and simpler evolution.” The proposed paradigm should

8

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

take advantage of SoC in handling the complexity of concurrency.

P5. Use Abstraction to Handle Complexities: As mentioned in the beginning

of this chapter, Lamport [46] thinks focussing on confusing details in teaching

concurrency has caused difficulties for computer engineers to learn and use this

concept. Inspired by his criticism of teaching methods of concurrency, our

paradigm should raise the abstraction levels and allow beginners to think above

the confusing details.

1.3.2 Principle Consequences

We now describe the consequences of each principle, shown in circles in Figure 1.1.

C1. Visualization through Statecharts: Addressing Principle P1, Use Software

Visualization, requires detecting an appropriate modelling language. Agreeing

with Pérez et al. [73] that “state machine specifications (including UML state

machines, finite state machines and Harel statecharts) are considered the most

widely used method to specify the dynamic behaviour of reactive systems,” our

proposed visual paradigm for concurrency, should be based on statecharts.

C2. Code Generation from Visual Models: The principle P2, Use Model-

Driven Development (MDD), comes with practically desirable code generation,

first used by the Executable UML [56]. Code generation not only relieves be-

ginners from coding drudgery but also protects them against making flawed

systems, preventing early frustration. As mentioned before, the Principle P1,

visualization, and P2, MDD, should be combined in our proposed paradigm to

maximize the benefits they can offer. This can be achieved by allowing the users

9

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

to design the structure and behaviour of the systems by drawing diagrams and

then generating code based on their models. Furthermore, a highly trustworthy

code generation is possible by using pure functions due to the absence of side

effects. This reliability is ensured in our proposed paradigm due to Principle P3,

Use Pure Functions.

C3. Read-Only Access to Models through Pure Functions: Multi-user con-

currency involving Principle P3, Use Pure Functions, can be achieved through

the newly introduced architecture, LG-MVU, described in Section 2.11, which

separates the program into local and global portions, all without losing the

transparency afforded by pure functions. A convenient feature of LG-MVU is

that the local view and update functions take both local and global models as

inputs. This gives the local statechart read-only access to the state of the global

statechart, as shown in Figure 1.2.

C4. Enforcing Isolation of Models to Achieve SoC: In our proposed con-

currency paradigm, the Principle P4, Separation of Concerns (SoC), can be

achieved by the isolation of statecharts. In other words, statecharts should not

be able to modify each other directly. They must communicate with each other

via messages transmitted through channels. Figure 1.3 illustrates this isolation

of the statecharts, through an example. In this figure, the transition highlighted

in red is an instance of communication not allowed among our statecharts.

C5. Using Event-Driven Programming (EDP) to Raise Abstraction: To

some extent, concurrency is involved in every interactive program, although it

plays a much larger role in multi-user applications. Event-Driven Programming

10

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Local A Local B

Global

read-only read-only

Figure 1.2: The principle P3, Pure Functions, leads to Consequence C3, using
LG-MVU which enforces a read-only access of the global statechart to the local

statecharts.

11

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Local

Global

Channel

Figure 1.3: The isolation of statecharts in our proposed paradigm, as
Consequence C4 of the Principle P4 (SoC). This isolation ensures that statecharts
cannot modify each other directly. The violating transition is highlighted in red.
Instead of direct modification, communication between statecharts is through

message-passing via channels.

12

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

(EDP) is a paradigm for programming interactive applications that was devel-

oped to simplify the process, by using events instead of threads. Dabek et al.

[21] says: “Programmers find programming with threads difficult, however, and

as a result, produce buggy software. [...] Event-based programming can provide

a convenient programming model, that it is naturally robust.” This makes it

very relevant to our goal. In particular, EDP handles the complexity of con-

currency by abstracting the confusing details such as threads. See Section 2.1.

This abstraction contributes to addressing our Principle P5, Use Abstraction

to Handle Complexities. Therefore, our paradigm should allow the design of

event-driven multi-user applications.

1.4 Limitation of Existing Tools

To evaluate whether existing tools can support our principles, we implemented a

multi-user application using TEASync (described in Section 2.11), a text-based MDD

framework, for LG-MVU, implemented in a purely functional language called Elm,

supporting Event-Driven Programming (EDP). The above-mentioned features of TEASync

help us adhere to the principles P3, P4, P5, Pure Functions, Separation of Concerns

(SoC), and Abstraction, respectively. The application we made is a Login System for

a virtual class, in which a teacher creates usernames and passwords allowing students

to subsequently log in.

The one principle not addressed by this approach was principle P1, Visualization.

In fact, the development process was more confusing than anticipated, with many

questions about the behaviour of the system being difficult to answer.

Subsequently, we looked into existing tools for visualization and tried to make

13

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

a graphical representation of our system using elements from UML statecharts as

supported by Microsoft Visio, resulting in Figure 1.4. This statechart, however,

required adding elements not included in the UML specification, namely:

• the lines highlighted in cyan, representing the Consequence C3, Read-Only Ac-

cess, of Principle P3, Pure Functions.

• the arrows highlighted in yellow, arising from a transition and entering another

transition in the other statechart. These arrows illustrate the messages that

need to be sent from one statechart to the other, as a communication means

among them. These direct arrows, however, violate the Consequence C4, isola-

tion, enforced by Principle P4, SoC.

This model did not meet any of our principles nor entirely following the rules of

previously known modelling languages, such as the UML or Harel’s statecharts. We

attribute these failures to four issues:

1. Object-Orientation: UML statecharts are object-based. This is in conflict with

our Principle P3, Pure Functions, and its Consequence C3, LG-MVU. This

fundamental difference caused difficulties in aligning the LG-MVU model with

object-oriented conventions.

2. Hierarchy: Other models enforce a hierarchy incompatible with LG-MVU and

its Consequence C3. Figure 1.5 compares the conventional hierarchy versus the

LG-MVU conventions. In particular, in our approach, if we consider the local

model as the sub-state of the global model, in terms of hierarchy, the flow of

access is opposite to the typical ones. In other words, the local statechart must

have read-only access to the global statechart. This flow, however, is reversed in

14

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

LocalStateLocalStateGlobalStateGlobalState

SplashScreen
(txt: String)

SettingAdmin
(user: String,
 pass: String,
 txt: String)

WaitingForAuth
(user: String,
pass: String,
txt: String)

EnterNewLogins
(user: String,

details: String)

Login
(user: String,
pass: String,

greetingOrError:
String)

WaitingForLogin
(txt: String)

Chatting
(isTyping: Bool,

user: String,
body: String)

WaitingForAdmin

WaitingForUse
rList

Setup

SubmitAdmin

AdminSet (adminReturned)

isAdmin

isNotAdmin

SubmitLogins

GoToChat

TryLogin

LoginResult
(isAdmin: bool,

userReturn: String,
success: Bool)

userReturn && success

userReturn

ClickLogout

GoToAddLogins

RegisterAdmin (id, pass)

AddLogins (Dict (admin, adminpass))

EndSplash

LoginResult
(isAdmin: bool,

userReturn: String,
success: Bool)

RegisterAdmin
(admin: String,

pass: String)

RegisterUserInput
(user: String)

RegisterPassInput
(pass: String)

LoginUserInput
 (user: String)

LoginPassInput
(pass: String)

LoginsListInput
(txt: String)

ChatInput
 (txt: String)

admin && adminPass

isEmpty admin || isEmpty adminPass

SendLogin
(username:String,
 password: String)

Logout
(user: String)

SendLogin
(loginUsername: String,

loginPass: String)

AddLogins
Dict ([admin, adminpass])

AddLogins
Dict ([admin, adminpass])

SendMsgChat

SendMsg
(sender: String,

body: String)

SendMsg
(sender: String,

body: String)

Figure 1.4: The statechart of the Login System multi-user app generated using
TEASync, drawn in Microsoft Visio. This representation does not satisfy any of our

principles, and violates other models’ (UML or Harel statecharts) conventions.

15

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

other models that allow the parent statechart to access and manipulate children

statecharts.

3. Lack of Isolation: Our principle P4, Separation of Concerns (SoC), necessitates

the isolation of the models, which is absent in other modelling languages.

Figure 1.6 shows the lack of isolation in the existing modelling languages.

Specifically, UML and Harel’s statecharts permit direct transitions between the

states of different models. In contrast, our model demands interactions through

message-passing via channels.

4. Unrestricted Modelling: Existing tools, such as Microsoft Visio, allow design-

ers to create models without enforcing a specific modelling language’s conven-

tions. While this flexibility is highly desirable for designers, it can introduce

challenges depending on the user’s expertise level. Notably, this lack of guided

constraints can cause difficulties for beginners who may get discouraged by er-

rors arising from the flaws embedded in their models.

1.5 Communicating Statecharts (CSC)

Since we could not find an existing paradigm that satisfies our principles, we ad-

dress the research question RQ1, by proposing a new beginner-friendly paradigm,

called Communicating Statecharts (CSC). CSC aims to simplify concurrency to a

level that is easy for novice programmers to learn and use. To find the answer to

the principles that shape CSC, described in Section 1.3, we surveyed the literature

on concurrency, and found partial solutions. Therefore, we borrowed the features of

each model that best aligned with our principles. Then, we synthesized those features

16

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

B C

A

Local A Local B

Global

A. Hierarchy in other models B. Read-only access in our Paradigm

read-only read-only

Figure 1.5: Our proposed paradigm’s principle P3, Pure Functions, and its
Consequence C3, Read-Only Access, enforces the children statecharts to have
read-only access to the parent statechart. This flow is reversed in conventional

hierarchy flows (parents accessing children).

17

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

A

B

Channel
B C

A

A. Lack of isolation in other models B. Isolation in our Paradigm

Figure 1.6: Lack of isolation in other modelling languages conflicts with the CSC
principle P4, Separation of Concerns (SoC), and its Consequence C4, Isolation.

Particularly, the interaction among statecharts in our paradigm should be through
message-passing via channels.

18

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

into our paradigm, CSC. See Chapter 2 for details on those concurrency models.

To address Principle P1, visualization, we began with Harel’s original statecharts [34].

However, Harel’s statecharts contain two types of decomposition: concurrent compo-

nents, and substates, together with unrestricted inter-component transitions break-

ing our Principle P4, SoC. Harel’s decompositions correspond to sum and product

datatypes, see Table 1.1. CSC does not contain this type of decomposition because

(1) they break SoC; (2) they introduce “concurrency” for all product types unneces-

sarily, making it harder to reason about necessary concurrency; and, (3) together the

resulting statecharts are harder to understand than they need to be. Necessary con-

currency includes user action, and network communication. Unnecessary concurrency

would be the decomposition of statecharts, mentioned above, which requires support-

ing nested statecharts that execute concurrently. This level of detail doesn’t belong

to the high-level specification that CSC should capture due to the Principle P5, Use

Abstraction to Handle Complexities. CSC’s focus is limited to the necessary concur-

rency to minimize the cognitive load required to understand where concurrency is not

needed. For example, in a login form with two fields for ID and PASS, If we allow the

decomposition of statecharts, a possible design would be dividing the Local statechart

into two concurrent sub-statecharts (one for ID and the other for PASS. Figure 1.7

illustrates this unnecessary concurrency, which translates into the product type as

follows:

1 type alias LocalState =

2 {

3 id : ID

4 pass : PASS

5 }

19

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Local

IDIsEmpty

IDIsFilled

en
te

rID

PassIsEmpty

PassIsFilled

en
te

rP
as

s

Figure 1.7: The example of introducing concurrency unnecessarily with the
decomposition of (nested) statecharts. This design is not allowed in CSC due to

Principle P5 (Abstraction).

6

7 type ID = IDIsFilled

8 | IDIsEmpty

9

10 type Pass = PassIsFilled

11 | PassIsEmpty

However, these fields do not need to be concurrent because the user first fills in

20

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Local

BothEmpty

IDIsFilled
enterID

BothFilled

PassIsFilled

fil
lID

enterPass

fillPass

Figure 1.8: The example design of a login system without introducing concurrency
unnecessarily.

the ID and then the PASS. This can be designed as illustrated in Figure 1.8, which

translates into the SUM type as follows:

1 type LocalState = IDIsFilled

2 | PassIsFilled

3 | BothEmpty

4 | BothFilled

Focusing on necessary concurrency prevents novices from early frustrations and

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Algebraic Datatypes State Diagrams Harel’s Statecharts
sum types OR composition substates

product types AND composition concurrent components

Table 1.1: Equivalence of decompositions. The natural translations between
representations preserve compositions.

prepares them for learning more advanced concurrency concepts in courses such as

Operating Systems.

To address Principle P2, Model-Driven Development (MDD), which is tied to the

Principle P1, Visualization, we need a visual MDD tool, which we present in the

following sections (Sections 1.6 and 1.7).

To address Principle P3, pure functions, we adopt pseudo-states from recent UML

standardizations, because they model case expressions, including pattern matching in

functional languages. To address P3’s Consequence C3, Read-Only Access, we model

Local-Global Model-View-Update (LG-MVU) using global and local statecharts with

one channel connecting them and a second channel connecting the local statechart to

the user. As described before, LG-MVU, is an architectural pattern that separates

the program into shared and private portions, allowing the creation of multi-user ap-

plications through pure functions. See Section 2.11 for more details. Perhaps unique

to our model, we will allow statecharts to include in their scope other statecharts as

read-only data, since this is a feature of LG-MVU.

To address Principle P4, Separation of Concerns (SoC), we adapted channels

from process calculi [14], explained in Section 2.3, connecting to statechart interfaces.

This makes it possible to understand one statechart on its own. For similar reasons,

from the actor model, introduced in Section 2.2, we adopt asynchronous messages

and their principle of atomicity (which says that actors can only modify their own

22

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

states). Sending messages through channels is the only way actions of one statechart

can modify the state of another. Table 1.2 summarizes the above-mentioned features

borrowed from the existing concurrency models to shape our Communicating State-

charts. This table doesn’t cover other concurrency models that we did not use in our

synthesis. Specifically, Petri Nets are absent in our model since they allow the system

to be in multiple states simultaneously [76]. This feature results in the system being

non-deterministic, which makes it harder to reason about, while statecharts allow the

system to be in only one state at a time.

Chapter 2 further describes these concurrency models and explains how CSC

adopts their features.

Model Atomicity Channels Async. message-passing
Actor Model ✓ - ✓

CSP - ✓ ✓
CCS - - ✓

π-Calculus - ✓ -
CSC ✓ ✓ ✓

Table 1.2: CSC adopts features from multiple concurrency models.

To address Principle P5, Abstraction, CSC takes a different approach from the

previous works, by using two languages, a visual language for high-level design, in-

cluding concurrency, and a textual language for low-level implementation, by using

event-driven concepts instead of threads, as well as, abstracting complications in code

including threads and locks to a visual higher level, i.e. channels and messages.

The development process using CSC proceeds from high-level to low-level, with

concurrency dealt with at the high level, as follows:

1. Designing local and global statecharts.

2. Choosing which messages can be sent in which channels.

23

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

3. Generating skeleton code using MDD.

4. Completing the skeleton by adding low-level implementation code.

1.6 Visual MDD Tool Requirements

To answer our research question RQ2, and support CSC, a visual MDD tool should be

developed. Figure 1.9 illustrates the requirements for such a tool, shown in squares,

and the implementation decisions derived from those requirements, outlined by circles.

In this section, we describe our tool’s requirements followed by the implementation

decisions derived from them. They will be referred to throughout the thesis by their

R and I numbers, respectively.

1.6.1 Tool Requirements

We now describe the requirements for our visual tool, shown in squares in Figure 1.9.

R1. Enforcing CSC Principles: The tool should prevent the designer from draw-

ing configurations that conflict with CSC principles, as described in Section 1.3.

R2. Beginner-Friendly: The tool should be easy to learn and use for beginners.

(Measurement and verification of this requirement are out of the scope of this

thesis.)

R3. Code Generator: To address Principle P2, MDD, the tool should support

code generation. The code generator should generate a skeleton program using

the LG-MVU framework to address the Principle P3, Pure Functions.

24

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Conditional
Branches

Tool
Requirements

Enforcing
CSC

Principles

Beginner-
Friendly

Isolation

Code
Generator

Cardinality

Elm

Code
Generation
Functionality

Distinct
Modes

Overall Mode
SCEditing

Mode

CSC
Modification

Renaming

User-Friendly
UI

SDDraw UI

Channel
Completion

Check

Order of
Creation

Undo/Redo

Pan/ZoomSCIndicator Navigator

Channel
Modification

Channel
Highlight

Synchronizing
Message

Modification

View
Function

Analogy
Mode

Figure 1.9: The requirements and Implementation Decisions of a visual MDD tool
to support our proposed paradigm, CSC, outlined by squares and circles,

respectively. The dashed and solid arrows represent the is-a and the implies
relationships, respectively.

25

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

R4. Conditional Branches: Conditional branches are supported in recent UML

State Machine Diagrams. They are equivalent to guarded transitions, but there

are practical differences. This is essentially the same as the use of guards in

Haskell, in addition to if-then-else and case expressions, versus the exclusive

support for case expressions in Elm, which enables the compiler to check that

case expressions—and therefore functions—are total. It is possible to express

complex control flow more compactly with guards, but it is easier to under-

stand that a case expression is total. Our goal is that conditional branches in

CSC will translate directly to total case expressions, and result in the same

increased transparency by gathering all the possibilities in one place, including

the possibility of returning to the originating state.

R5. Cardinality: In CSC, statecharts connected by channels have cardinality re-

lationships, i.e., many:one for local:global, and one:one for local:user. The tool

should represent this cardinality analogously to how cardinality is represented

on entity-relationship diagrams used in database design.

1.6.2 Tool Implementation Decisions

We now describe the implementation decisions derived from the gathered require-

ments, shown in circles in Figure 1.9.

I1. Isolation: Direct transitions between different statecharts should not be al-

lowed. This implementation decision supports Requirement R1, Enforcing CSC

Principles, protecting Principle P4, SoC and its consequence C4, Isolation.

26

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

I2. Synchronizing Message Modification: In CSC, communication among stat-

echarts must be possible through the transmission of synchronizing messages,

as a result of Principle P4, SoC. Therefore, the tool should support the addition

and deletion of synchronizing messages. This implementation decision supports

the above decision, I1, isolation.

I3. Distinct Modes: The tool should have distinct modes to visually and func-

tionally enforce the separation of concerns, Principle P4. This implementation

decision supports Requirement R1, Enforcing CSC Principles.

I4. Overall Mode: The tool should have an overall view where all of the state-

charts with their details are visible, to allow defining channel contents. This

implementation decision supports the above decision, I3, Distinct Modes.

I5. Channel Modification: The tool should allow the messages to be dragged

to the channels, in the overall view, where statecharts with their contents are

visible. This implementation decision supports the above decision,I4, Overall

Mode.

I6. SCEditing Mode: The tool should have an editing mode where only one

statechart should be visible, together with its interface. In this mode, details of

the statechart should be editable. This implementation decision supports the

above decision, I3, Distinct Modes.

I7. CSC Modification: The tool should allow the addition and deletion of states,

transitions, and branches. This implementation decision supports the above

decision, I6, SCEditing Mode.

27

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

I8. Renaming: The tool should allow the renaming of the created states, transi-

tions, and branches. This implementation decision supports the above decision,

I7, CSC Modification.

I9. Analogy Mode: The tool should provide an Analogy Mode which illustrates

the CSC concepts as real-world objects to help users better understand the

paradigm. This decision supports Requirement R2, the tool being beginner-

friendly.

I10. View Function: The tool should clearly represent the flow of the data from

the system to the user. In other words, it should graphically picture how the

user receives the app’s current state through the view function instead of re-

ceiving messages as a result of using LG-MVU from Principle P3. This decision

supports Requirement R2, the tool being beginner-friendly.

I11. User-Friendly UI: The tool should have an easy-to-learn and use user inter-

face. This is necessary to achieve Requirement R2, the tool being beginner-

friendly.

I12. SDDraw UI: SDDraw [72] has an interface successfully used by novice pro-

grammers as observed by the instructor of a first-year computer science course.

CSCDraw should adopt the visual appearance and conventions of SDDraw as

much as possible. Novices use SDDraw to explore and develop the structure

of their applications, rather than to encode applications for which they have

a design. Supporting this exploratory behaviour will be one measure of suc-

cess for CSC. This implementation decision supports the above decision, I11,

User-Friendly UI.

28

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

I13. Order of Creation: In SDDraw, states must be drawn before transitions, and

therefore the states must exist before the messages that label the transitions.

Taking into account the previous decision, I12, SDDraw UI, the new tool should

support the creation of synchronizing messages after the connected states have

been created. Once messages/transition labels are created, users can decide

which messages to add to which channels.

I14. SCIndicator: In the case of editing a statechart, the tool should have an

indicator that gives information on which statechart is being edited. This im-

plementation decision supports the above decision, I11, User-Friendly UI.

I15. Navigator: The tool should include a navigator button that allows the naviga-

tion between different views in the tool. This implementation decision supports

the above decision, I11, User-Friendly UI.

I16. Pan/Zoom: Pan and zoom mechanisms should be provided in CSCDraw to

enable drawing of large statecharts. This implementation decision supports the

above decision, I11, User-Friendly UI.

I17. Channel Highlight: To prevent the user from designing an impossible path

for messages, the possible routes for the transmission of the message should

be highlighted when dragging a message to a channel. This decision supports

Requirement R2, the tool being beginner-friendly, because it prevents designing

infeasible communications.

I18. Channel Completion Check: To make sure the users’ design is completely

covering every possible case, code generation should not be allowed until every

message is connected to a channel. This decision supports Requirement R2, the

29

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

tool being beginner-friendly, because it prevents unexpected behaviour of the

system due to uncovered cases.

I19. Undo/Redo: Undo and redo should also be provided to offer a straightforward

experience of using the tool. This decision supports Requirement R2, the tool

being beginner-friendly, because it allows reverting the design without worrying

about making mistakes.

I20. Elm: The Elm programming language, described in Section 2.7.4, promises pu-

rity together with immutable data types which means once a value is defined, it

will not be allowed to change. Elm also has an intentionally restricted type sys-

tem that ensures the minimization of type errors. Its static type-checking com-

piler promises the absence of run-time errors while providing easy-to-understand

error messages. All these features recommend Elm as a suitable language for

beginners. Therefore, the tool should use Elm for its code generation. This sup-

ports Requirement R3, Code Generator, and subsequently, Principle P2, MDD,

and P3, Pure Functions.

I21. Code Generation Functionality: All aspects of CSC including states, tran-

sitions, Elm Types and subscriptions, and synchronizing messages should be

functional. However, for conditionals, a default code should be generated, al-

lowing the skeleton to compile, while the branch labels are included as comments

in the generated code. This decision supports Requirement R3, Code Generator.

Chapter 4 describes how our tool addresses the above-mentioned requirements

and their implementation decisions.

30

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

1.7 CSCDraw

To answer RQ2, an MDD tool, called CSCDraw, has been designed and implemented.

CSCDraw considers the requirements, mentioned in Section 1.6, supporting CSC

in reaching its goal of simplifying concurrency for beginners and addresses those

requirements by applying the implementation decisions, described in that section.

A detailed introduction to the tool’s UI and a specific description of how each

CSCDraw element addresses those requirements are covered in Chapter 4. Addition-

ally, an example of the development process through CSCDraw using CSC concepts

is provided in this Demo1.

In a nutshell, CSCDraw has two modes:

1. The overall mode, as shown in Figure 1.10, illustrates the channels and

statecharts they connect, with their contents including states, transitions, and

synchronizing messages. This view displays both statecharts with their details

but only allows modification of channels, and code generation.

2. The SCEditing mode, shown in Figure 1.11, in which the states and transi-

tions within a statechart can be edited.

1.8 Evaluation

To answer RQ3, a rigorous experiment should be conducted that measures how suc-

cessful CSC and its tool are in simplifying concurrency compared to the existing

paradigms. This study can be done by comparing CSC and CSCDraw to one of the

1https://youtu.be/wPMjWU8C-x8

31

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://youtu.be/wPMjWU8C-x8

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Statechart
Interface

Channel

Synchronizing
Message

State

Transition

Read-Only
Access

Code Generator Analogy Mode

Figure 1.10: The Overall Mode of CSCDraw, rendering models/statecharts and
their interfaces, as well as channels. Solid lines connect the channels to the

statecharts. In this view, the contents of the channels are editable, while states,
transitions, and synchronizing messages inside statecharts are visible. Dotted and

dashed lines indicate read-only access. The user appears as a peer of the statecharts
in this overall view. Code generation and switching to the Analogy Mode, where
concepts are visualized in real-world representations, is possible through this view.

32

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Navigator

Inner Interface

State Instance

Initial State Instance

Elm Types

Elm Subscriptions

Bounding Box

SCIndicator

Zoom

Recenter

Figure 1.11: The SCEditing Mode of CSCDraw, which is reachable by clicking on a
statechart in the overall mode. This mode allows the modification of each

statechart, namely, addition, deletion, and renaming. State instances can be
dragged and dropped to add a state or make a state the initial state. Elm types and

subscriptions can be dragged and dropped into the states and transitions.
Synchronizing messages can be connected to the corresponding messages through
the inner interface. A navigator button allows navigation between the two modes

while SCIndicator shows the name of the current statechart being edited.

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

most commonly used existing frameworks used to teach concurrency, Java Threads.

However, before doing such a rigorous evaluation, we need to learn how to effectively

teach concurrency using CSC to users with no prior knowledge. Therefore, we de-

signed a pilot study, described in detail in Chapter 5, to prepare us for the later

experiment comparing CSC and Java Threads. This pilot study aims to accomplish

Bloom’s revised Taxonomy’s third level [5], illustrated in Figure 1.12, ordered from

simple to complex; from remember to create. Bloom’s Taxonomy is a framework that

is used for classifying educational goals into six groups that may be expected to be

learned by students in return for instructing them [11].

In this regard, the hoped-for learning outcomes of the designed pilot study are:

1. learning and remembering CSC concepts using CSCDraw,

2. understanding the translation of a multi-user application into a CSC and vice

versa,

3. and finally applying the concurrency concepts to make a multi-player game.

In the current work we plan the pilot study (RQ3.1), along with the comparison

between CSC and Java Threads for teaching effectiveness (RQ3.2).

1.9 Contributions

In this thesis, we made two main contributions aiming to simplify concurrency to a

level that is easy for beginners to understand and use.

1. CSC and CSCDraw: We have proposed a new paradigm, called Communicat-

ing Statecharts (CSC), together with its visual MDD tool, CSCDraw. CSC

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 1.12: The revised version of Bloom’s Taxonomy [5], a framework to
categorize the objective learning outcomes. The levels are ordered from simple to

complex, starting from remember.

aims to simplify concurrency by considering five main principles, such as rais-

ing the abstraction levels from complications in code including threads and

locks to a visual higher level, i.e. channels and messages. In this regard, we

adapted features of the existing concurrency models that aligned well with our

principles. Also, to support the principles of visualization and MDD, we de-

signed and implemented CSCDraw. Furthermore, we described our proposed

paradigm’s semantics and outlined how CSCDraw’s code generator preserves

those semantics. Then, we provided a detailed description of CSCDraw’s user

interface based on the gathered requirements.

2. Design of a Pilot Study: We designed a pilot study aiming to identify areas of

confusion and possible improvement before planning an evaluation experiment.

This pilot study helps us to detect the best way to teach CSC through CSCDraw,

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

as a prelude to measuring how successful CSC is in simplifying concurrency

compared to the existing paradigms.

1.10 Thesis Structure

The rest of this thesis is organized as follows:

• Chapter 2 outlines a literature review, discussing different concurrency models,

Event-Driven Programming, Programming languages paradigm, Architectural

Patterns, Model-Driven Development, and Separation of Concerns.

• Chapter 3 defines the CSC semantics and explains how our code generator

preserves CSC Semantics.

• Chapter 4 describes the user interface of CSCDraw, and explains how it meets

the tool’s requirements.

• Chapter 5 describes a pilot study designed to prepare us for future evaluations.

• Chapter 6 concludes the thesis, reviews the research question, and outlines

potential future research.

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 2

Background

To simplify concurrency for novice programmers, we established five principles, de-

scribed in Section 1.3. These principles are the basis of our proposed meta-model for

multi-client applications, CSC. In this chapter, we review the rich concurrency litera-

ture to borrow useful features that align best with these principles. In particular, we

describe Event-Driven Programming (EDP) in Section 2.1, which provides a model

for programming interactive applications. EDP’s success in simplifying the concur-

rency arising from single-user interaction by raising the abstraction levels through

using events instead of threads, which addresses our Principle P5, Abstraction. Ad-

ditionally, several parallel research threads explore practical and theoretical aspects

of multi-client (i.e., distributed) concurrency. In the middle sits the actor model

(Section 2.2), which is the basis for industrially important frameworks like the Er-

lang run-time. Atomicity in the Actor Model, helps us to achieve isolation, derived

from our Principle P4, Separation of Concerns (SoC). On the theoretical side, we

look into process calculi (Section 2.3) which promises to facilitate reasoning about

concurrent and distributed programs. By exploiting features from process calculi,

37

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

including channels and asynchronous message-passing, we try to achieve the isola-

tion, and subsequently, address our Principle P4, Separation of Concerns (SoC). We

also outline the key characteristics of a concurrency model called Simple Concur-

rent Object-Oriented Programming (SCOOP) in Section 2.4, because SCOOP was

an attempt to make concurrency easier by raising the level of abstraction, which is

in line with our Principle P5, Abstraction. From each of these, we take inspiration to

shape the answer to our research question RQ1, exploring the features of a beginner-

friendly concurrency paradigm. Furthermore, since statecharts are the most common

visual modelling language in the case of event-driven systems, they will be adapted

to address our Principle P1, visualization. Therefore, we look into the original model

introduced by Harel in Section 2.5, followed by the semantics of statecharts, state

machines, and finite automata in Section 2.6.

The use of Model-Driven Development (MDD) as Principle P2 of CSC, includes

code generation. Code generation requires an understanding of the programming

language paradigm and architectural pattern, which we review in Sections 2.7 and

2.8, respectively. In particular, we describe Object-Oriented Programming (OOP)

and Functional Programming (Principle P3) and explain our choice of the Elm pro-

gramming language and its architecture, Model-View-Update (MVU), for user in-

teraction, and SDDraw and TEASync for multi-user interaction. This is explained

in Sections 2.9, 2.10, and 2.11, for MDD, SDDraw and TEASync, respectively. In

addition, Separation of Concerns (SoC), Principle P4 to shape CSC, is described in

Section 2.12.

This background chapter does not cover concepts from concurrency and advanced

programs that are not needed for the CSC paradigm or for the implementation of

38

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

CSCDraw. Specifically, we do not cover such topics as Petri nets, linear logic and

related programming-language advances, or monads in functional programming.

2.1 Event-Driven Programming

Event-Driven Programming (EDP) is a programming paradigm that is based on re-

ceiving, processing, and reacting to events. In particular, the event refers to an oc-

currence in the software or hardware, e.g., clicking a button, or sensor outputs. The

key feature of EDP is that the corresponding subprograms, called event handlers

consistently listen to events and automatically react to them when they are received.

Therefore, unlike sequential programs, EDP can be used where concurrency matters.

Dabek et al. [21] describes EDP as a more convenient way to make interactive pro-

grams by using events instead of threads in managing concurrent IO. Concurrency is

achieved in threaded systems by pausing the current thread when it is blocked on IO

operations and switching to another thread. These systems rely on locks to protect

shared data structures. This is hard for programmers to handle, which results in the

production of error-prone systems. In contrast, Event-based programs offer an easier

programming experience by using a loop, the central event handler, that as mentioned

above, continuously listens for events and makes sure that it gets processed indivisi-

bly. When the system arrives at a point where it should wait for an event, the central

loop calls a new sub-event-handler for it. Consequently, using EDP leads naturally to

a more robust software system while relieving programmers from difficulties such as

handling threads. These benefits have caused the use of EDP to become ubiquitous

in the software realm, from Graphical User Interfaces (GUI)s to operating systems

and embedded systems.

39

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Their popularity has made learning EDP necessary for software developers. How-

ever, the EDP concept appears complicated to novice programmers. For instance,

they have the problem of determining what to put inside the event handlers, and at a

higher level, how to design handlers in a way that they can work together. This may

need an understanding of design patterns such as MVC, or MVU [50]. These design

patterns will be described in Section 2.8. Another difficulty students have with EDP

is testing the program, particularly, the use of both events and states, which also

requires tools to observe the state of events [33].

To exploit the ease of concurrent programming in EDP over threaded systems,

CSC uses EDP concepts such as events instead of threads, which addresses our Prin-

ciple P5, Abstraction. CSC also naturally addresses the need for learning a design

pattern, by using LG-MVU derived from its Principle P3, Pure Functions.

2.2 Actor Model

Hewitt et al. proposed a mathematical model for concurrency, in which actors can

interact with each other through asynchronous, one-way message passing, and respond

to the messages, concurrently [38]. This model offers the philosophy of “All physically

possible computations can be directly implemented using Actors,” as claimed by

the creator of this model. This is similar to the philosophy of “everything is an

object” in OO languages. In addition to physics, the Actor model was influenced by

programming languages such as Simula, Smalltalk, and Lisp [44, 53, 69].

Later on, packet-switching also influenced the Actor model, and addresses were

adopted to allow Actors to establish communications [7, 37].

Locality is another important feature of the Actor model. This ensures that

40

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

firstly, actors can only send messages to the addresses they know, and secondly,

no simultaneous changes occur in multiple locations, unlike some other concurrency

models, including Petri Nets [37].

Many programming languages are influenced by this model, namely Dart, Elixir,

and Erlang [13, 15, 83].

CSC reserves isolation of its statecharts, derived from the Principle P4, SoC,

inspired by the atomicity in the actor model. This feature ensures that actors in the

actor model can only modify their own states. The direct communication is replaced

by asynchronous message passing. However, unlike the actor model, in CSC, this

communication happens through channels.

2.3 Process Calculi

Process Calculi, also known as Process Algebra, is a family of mathematical theories

of concurrency [6, 9]. The key examples of this algebra include Communicating

Sequential Processes (CSP), Calculus of Communicating Systems (CCS), and most

recently π-calculus. Processes can be thought of as physical computers or threads of

execution. Particularly, processes are the formal abstraction of a computational entity

that can work concurrently and the interaction between them is possible through

message-passing. Although “process” is in the name, they are not unique to process

calculi, because actors are essentially processes. It is channels which distinguish

these models. Channels can be used to add a level of abstraction to inter-processes

communication, that can be visualized as wires connecting computers, or addresses of

mailboxes. In other words, they are the abstractions of communication links between

processes that allow processes to interact by sending and receiving messages.

41

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Therefore, the use of channels in CSP and π-calculus, and asynchronous message

passing in CSP and CCS, helped us to ensure the isolation of our statecharts and

address our Principle P4, SoC.

2.3.1 Communicating Sequential Processes (CSP)

Communicating Sequential Processes (CSP) was introduced by Hoare as a concur-

rent programming language that only allowed programs to be written as a parallel

composition of a fixed number of sequential processes [39, 40]. A noteworthy feature

of the original CSP is that processes’ communications were strictly synchronized and

linked by named channels [14]. CSP uses named channels [14], in contrast to the

Actor Model which has named processes. Theoretically, either system can simulate

the other, but named channels can be thought of as offering an abstract interface.

Behind the channel, the process handling the messages could be replaced by a new

process or group of processes. Languages influenced by CSP include Erlang, Go, and

Crystal [4, 17, 24].

2.3.2 Calculus of Communicating Systems (CCS)

Milner designed Calculus of Communicating Systems (CCS) to be the λ-calculus of

concurrency [61]. Expressions in CCS describe labelled transition systems. Dijkstra’s

work on guarded commands influenced both Hoare and Milner to support conditional

execution in CSP and CCS, respectively [6, 22, 40]. In CCS, communications are

atomic between sending and receiving processes (which could be the same) [60].

Some languages inspired by CCS are the Java Orchestration Language Interpreter

Engine (Jolie), and Language Of Temporal Ordering Specification (LOTOS) [48, 67].

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

2.3.3 π-Calculus

According to Milner’s Turing Award lecture, some works on the development of

the CCS, including the studies conducted by Kennaway and Sleep and also Eng-

berg and Nielsen’s work, CCS label-passing, led him to come up with the π-calculus

[26, 45, 63, 65]. He also argued that the development of π-calculus [66] was with

the goal of unifying values and processes in actors. This model’s basic action is to

communicate across an interface with a handshake, which enforces synchronization

among participants [62]. The Actor Model allows processes to be passed as values in

communication; while π-calculus instead allows references to processes, i.e., links, to

be communicated [63, 66], and computation is represented purely as the communi-

cation of names across links. π-calculus has influenced some programming languages

such as JoCaml. JoCaml further implements join-calculus which is a family member

of π-calculus. The benefit of this adoption over using π-calculus is the provision of

multi-way join patterns. This allows matching against messages from multiple chan-

nels, simultaneously [29, 30]. Also, two building blocks of JoCaml, processes and

expressions, are executed asynchronously, and evaluated in a synchronous manner,

respectively, as reported by Louis Mandel [49].

2.4 SCOOP

Eiffel programming language’s creator, Bertrand Meyer, designed a concurrency model

for this language, called SCOOP (Simple Concurrent Object Oriented Programming).

The key characteristic of this model is the use of the principles of Design by Contract

(DbC). Similar to a human contract, which consists of obligations and benefits for

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

both parties, in a software design the assertions include preconditions, postcondi-

tions, and invariants to specify the relationship between the client and the supplier,

as part of the SCOOP strategy for synchronizing access to shared separate resources

[57, 58]. Many languages utilize DbC to improve the reliability of their software,

namely Kotlin, Scala, and SPARK ADA [8, 19, 28].

SCOOP attempts to make concurrency easier by raising the abstraction levels

which is in line with our Principle P5, Abstraction. Particularly, SCOOP introduces

the concept of separate objects, which are objects accessed by different threads. When

the programmer defines an object to be separate, SCOOP automatically handles

the synchronization required to ensure “safe access”. This protects the program-

mer against low-level details such as locks for handling shared resources or condition

variables.

2.5 Statecharts

A Finite State Machine (FSM) is an abstract, mathematical model of computation

that consists of events, states, and transitions. State Diagrams, first introduced to vi-

sualize digital circuits, are a graphical representation in the form of a directed graph,

with nodes denoting states, and arrows denoting transitions [54]. Statecharts are an

extension of the formalism of FSM and state diagrams, and are used to visualize

complex systems. In particular, statecharts can describe concurrent state machines.

Transitions in statecharts are labelled with events and may be guarded by condi-

tions. Specifically, the event triggers the transition from one state to another, if the

corresponding condition evaluates to true.

This graphical model was first introduced by Harel [34], and many design and

44

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

development tools were built upon his visual language. The most commonly used

extension is UML’s version of statecharts, which is an object-based variant of the

original work. Recent versions of UML statechart specifications include conditional

pseudo-states which have similar semantics and look like conditional (diamond) bub-

bles in flowcharts [43].

Since statecharts and state diagrams are the most common modelling language,

in the case of interactive systems [73], CSC bases its Principle P1, Visualization, on

statecharts.

2.6 Semantics of Statecharts, UML State Machines,

and Finite Automata

After Harel introduced his visual language for statecharts, and other researchers in-

troduced variations, an effort was made to specify their semantics. Due to drawbacks

in other approaches and other issues arising, Harel and Naamad [35] updated the

official semantics for statecharts, bringing them up-to-date with their tool STATEM-

ATE. The authors described “STATEMATE is a commercial tool, designed for the

specification and design of real-life complex systems, coming from a variety of dis-

ciplines. Hence, the semantics are rich enough to support different models and to

generate useful hardware and software code out of those models.” [35].

Harel’s statecharts can be considered as a hierarchy of cross-functional state dia-

grams. In particular, in Harel’s model, multiple state diagrams can be contained in

a super-state and execute transitions independently.

The semantics of Harel and Naamad [35], however, were not readily formalizable.

45

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

On the other hand, the semantics of Deterministic Finite Automata (DFAs) are easier

to formalize and will be the basis for our design, following Shannon and Weaver [80]

and Booth [12]. These semantics are as follows:

State Diagrams are the graphical representations of a finite automata. A finite

automaton is a tuple (Q,Σ, δ, q0) where:

Q: A finite set of states, usually represented by circles labelled with unique strings.

Σ: A finite set of inputs that trigger a transition.

δ: A transition function δ : Σ×Q→ Q.

q0: The initial state, q0 ∈ Q.

Typical interpretations include finite state machines that recognize strings of sym-

bols (Σ) in a language, and states (Q) of an application that change based on user-

generated events (Σ).

2.7 Programming Languages and Paradigms

The high-level organization of programs can be classified according to paradigms.

There are multiple criteria used to identify paradigms, including program structure,

execution model, syntax and grammar. Programming languages can support one or

more paradigms, but most are known for one paradigm. The most popular paradigms

include Object-Oriented Programming (OOP), Functional Programming, Imperative

Programming, Logic Programming, Generic Programming, Structured Programming,

and Procedural Programming.

46

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

OOP appears most often in the concurrency models that we looked into, as well

as the most common modelling languages, such as UML statecharts. However, since

functional programming promises the absence of side effects, and ensures immutabil-

ity, CSC builds its Principle P3, Pure Functions, on functional programming lan-

guages. This choice can also help EDP to be implemented more conveniently. In

this section, we go through OOP, and Functional Programming, as well as pattern

matching, which is an important feature of functional languages including Elm, the

programming language used for code generation in CSC.

2.7.1 Object-Oriented Programming (OOP)

OOP is a programming paradigm that follows the philosophy of everything is an

object. In OOP, software objects interact much like physical objects interact in the

physical world. Particularly, in OOP, a program consists of objects and classes, where

the object refers to an abstract datatype or a collection of features and methods that

share a state, and a class refers to the template from which objects can be created

[84]. In other words, an object is an instance of a class.

Encapsulation ensures that the state of an object is not visible to the outside

world, and the objects can interact with each other solely through calling each other’s

methods and those methods can access the state by references to the object’s instance

variables.

A fundamental concept in OOP is inheritance. Inheritance is a form of abstrac-

tion that supports the management of classes by organizing them into hierarchies.

The base class is called a superclass (also known as a parent class), and the subclass

47

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

(or the child class) implements all the methods of the superclass and then may cus-

tomize them by adding new operations or new instance variables. Inheritance allows

separation of concerns, code reusability, and maintainability.

The Simula programming language is known as the first object-oriented (OO) lan-

guage that used objects, classes, and inheritance [69]. Influenced by the Simula, Alan

Kay developed the Smalltalk programming language [44] that allowed the dynamic

creation and modification of classes.

Nowadays, many widely-used languages implement the OO paradigm to a signif-

icant extent. Pure OO languages include Ruby, Scala, Smalltalk, and Eiffel. Other

languages designed mainly for OO programming are Java, Python, C++, and C#.

2.7.2 Functional Programming

Functional programming is a programming paradigm that uses functions entirely to

construct a program. The key characteristic of this paradigm is the ability for the

functions to be bound to names, passed as arguments, and returned from other func-

tions. This is due to the functions being considered as first-class citizens. In functional

programming, the main program itself is a function that receives the program’s inputs

and returns the result of the program.

Purely functional programming can be considered as a subset of functional pro-

gramming, in which all of the functions are pure functions or mathematical functions.

Purely functional programming offers less error-prone and easier to debug and test

programs. This is because a pure function with the same inputs always returns the

same result and no mutable state or other side effects can affect it. Also, assignment

statements are not supported in functional programming. So, the value of a variable

48

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

never changes once defined, which eliminates side effects. Thus, functional programs

are referentially transparent [42]. This also prevents the programmer from having to

keep track of the execution order. Due to the absence of side effects, nothing can

change the values, therefore, an expression can be evaluated at any time.

John McCarthy developed Lisp as the first high-level functional programming

language, influenced by Church’s lambda calculus [18, 52]. In particular, Lisp’s func-

tions extended the lambda calculus notation with labels, to support recursion which

also allows iteration (looping). Later on, Robin Milner created ML, which eventu-

ally developed into several dialects. The most common of them are now OCaml and

Standard ML [64].

Some of the most popular functional languages include Haskell, Miranda, and

Elm, which promise purity, while Erlang and Elixir do not offer purity. Also, many

other well-known, non-functional languages have adopted functional characteristics,

namely Kotlin, JavaScript, GO, Rust, Python, and Dart.

2.7.3 Pattern Matching

Pattern matching is one of the most appreciated features of modern functional pro-

gramming languages, such as Erlang, Scala, ML, Haskell, and Elm. Algebraic datatypes,

supported in such programming languages, can be destructured by pattern match-

ing. Pattern matching can be applied through case expressions, where some branches

containing free variables are defined, and the first branch that matches the expres-

sion being matched against will be chosen. Once a branch is taken, the value of the

expression will be bound to the free variable in that branch [41]. Similar to case

49

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

expressions are switch statements in OO languages, but switch statements are im-

perative, whereas case expressions are declarative. In some languages, a run-time

error will arise if no matching pattern is found. However, other languages support ex-

haustive pattern matching, meaning that the compiler will not accept code that does

not cover every possible pattern in the process of pattern matching. Therefore, no

run-time error will be caused by this process. However, this exhaustiveness may also

introduce difficulties in large projects where the number of branches to be handled

may grow dramatically. One possible solution is using wildcards that will serve as

the default branch and will capture any case that is not handled. The ease offered by

this solution may come at a price. If the programmer forgets to handle a case, since

the wildcard will catch that, no compile-time errors will be flagged, and therefore,

there will be no clues to track down the unexpected behaviour of the system.

There have been some attempts to address this issue. For example, Eremondi [27]

did an analysis and used Set Constraints to ensure that “missing branches of pattern

matches are always unreachable.” The author, as a possible solution proposes using

constraint-based pattern matching, meaning that the functions restrict their inputs

and hence, reject the impossible types.

Pattern matching in CSC is the translation of conditionals after code generation.

In other words, the conditional branches drawn in CSCDraw turn into a pattern in

the generated case expressions.

2.7.4 Elm

Elm is a purely functional programming language suitable for front-end web-based

applications, developed by Czaplicki [20]. There is only one implementation of Elm,

50

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

and it is almost exclusively run in a browser with a standard run-time library that

implements MVU. Elm uses a static type-checking compiler, which together with its

purity, promises the absence of run-time errors and side effects. Its powerful type

system helps programmers avoid unexpected behaviour of the system due to type

errors. Elm also preserves immutability, therefore, once a variable is defined its value

cannot be changed.

Elm belongs to the ML family, following its syntactic conventions. For example,

Elm’s standard library includes the forward pipe |>, as defined in the F# program-

ming language, inspired by Unix pipes. Particularly, |> is an operator for function

applications, feeding the output of one function as the input to the function on the

right-hand side of the pipe.

Elm also supports Algebraic Data Types, which are essentially the composition of

other types. Two main classes of algebraic data types are:

1. Sum types consist of at least one constructor that can contain several fields of

different types. For example, in the following Elm algebraic data type

1 type LocalState = SantaHouse

2 | Stable

3 | CityCenter

4 | NeighborHood

5 | Mall

the LocalState is defined by five constructors.

2. Product types can be constructed in three ways: as tuples, as data associated

with a constructor, or as records. Records are most suitable for large product

types, because fields have labels, and they will be familiar to programmers who

51

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

have used structures or objects. For instance, in the following Elm algebraic

data type

1 type alias LocalModel =

2 { time : Float

3 , state : LocalState

4 , hungerPoint : Int

5 , remainedGifts : Int

6 }

the LocalModel is defined by a record with four fields of different types. Note

that all of the fields are themselves sum types.

General Algebraic Data Types nest sums and products inside of each other. For

example,

1 type Colour = Red

2 | Purple

3 | Orange

4 | RGB Float Float Float

Elm also supports one of the most appreciated features of modern functional pro-

gramming languages, called Pattern Matching (Section 2.7.3). Algebraic datatypes

can be destructured by pattern matching. Pattern matching can be applied through

case expressions, where some branches containing free variables are defined, and the

first branch that matches will be chosen. Once a branch is taken, the value of the

expression will be bound to the free variable in that branch. For example, the fol-

lowing Elm code uses nested pattern matching, where the algebraic data type msg

is being destructured at the outer level, followed by the globalModel.state at the

52

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

inner level.

1 globalUpdate msg globalModel =

2 case msg of

3 PlayMusic ->

4 case globalModel.state of

5 MusicOFF ->

6 ({ globalModel | state = MusicON }, ←↩

Cmd.none , Cmd.none)

7 otherwise ->

8 (globalModel , Cmd.none , Cmd.none)

In the case of this example, if the system is in MusicOff state, and it receives the

PlayMusic message, the first branches in both levels will be taken.

2.8 Architectural Patterns

The fundamental features and the behaviour of an application can be defined through

a concept called Architectural patterns. The use of various architectural patterns

should be decided based on the project requirements and goals. “For example, some

architecture patterns naturally lend themselves toward highly scalable applications,

whereas other architecture patterns naturally lend themselves toward applications

that are highly agile.” [77].

The term pattern, is inspired by the work of Christopher Alexander on the concept

in the architecture of buildings [3]. Alexander and his students documented hundreds

of common design ideas for everything from communities to furniture. Their goal

was to enable people and communities to design their own built environment. The

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

goal for software patterns is to promote software maintainability, and scalability [77],

and improve the development process, in general, by making it easier to communi-

cate about design. Various architectures may implement the same pattern and use

common characteristics.

There are several popular architectural patterns, namely Layered Architecture (N-

Tier Architecture), Microservice Architecture, Event-Driven Architecture, Service-

Oriented Architecture (SOA), Model-View-Controller (MVC), and Model-View-Update

(MVU).

In this section, we will explain the latter two architectural patterns in detail, as

they are most relevant to our study since : (1) MVC is a popular architecture in the

case of interactive systems, and (2) MVU is the architecture used by Elm which is

used by CSC due to its Principle P3, Pure Functions.

2.8.1 Model-View-Controller (MVC)

MVC is a well-known architectural pattern highly suitable for interactive software

systems, particularly web applications [47].

The key idea is to separate software constructs based on their responsibilities; i.e.,

separating the User Interface (UI) from the information that is rendered by the user

interface.

The MVC architectural pattern divides the program into three components:

• Model is both the logic part of the software and the information that is rendered

by the View.

• View is the part of the software that displays the information to the user,

54

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

• Controller is the part of the software that links the model and the view,

by processing the user’s interaction. The controller receives and processes the

events caused by the user’s interactions, and turns them into a Model or View

command.

MVC was created by Trygve Reenskaug while he was working in Alan Kay’s lab

on Smalltalk-79. According to Reenskaug’s notes, his main motivation was to create a

pattern for large-scale projects that are made of complex tasks with a massive number

of interdependent details. The initial version of MVC consisted of four components:

Thing, Model, View, and Editor. Later, by consultation with other Smalltalk devel-

opers, Reenskaug changed the pattern to MVC [75].

Using the MVC design pattern boosts the software’s maintainability and ease of

development. For example, by making the data structure independent of the UI.

Many popular languages have MVC frameworks, such as ASP.NET in C#, Laravel

in PHP, Django in Python, Angular in JavaScript, and Ruby on Rails in Ruby.

2.8.2 Model-View-Update (MVU)

MVU architecture is an architectural pattern for GUI development that plays to the

strengths of functional programming. MVU is also known as The Elm Architecture

as this pattern owes its fame to the Elm functional programming language [20].

The MVU model contains four components:

• Model is a data type for encoding the application state.

• Msg is a data type for encoding transition labels.

55

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

• View is a pure function taking a model value and outputting a concrete ren-

dering of the application.

• Update is a pure function which takes model and message values and produces

a new model value.

Technologies such as Redux[1] that are used by the widely-used ReactJS frame-

work [2], have been inspired by MVU [31].

2.9 Model-Driven Development (MDD)

Mellor et al. [55] describe MDD, the CSC Principle P2, as “the notion that we can

construct a model of a system that we can then transform into the real thing” In other

words, in MDD the source code can be generated through model transformations, to

simplify and formalize (to allow automation of) complicated systems [32]. The model

can be generated through modelling languages such as UML through semantics like

statecharts for reactive systems and class diagrams for OO static design.

The business applications of MDD are generalizations of the Object Management

Group (OMG)’s Model-Driven Architecture (MDA) initiative [10]. Using MDD can

improve software’s maintainability and reusability by increasing the level of abstrac-

tion. As their name suggests, the OMG generated OO code, and this is still true of

the vast majority of MDD tools today.

56

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

2.10 SDDraw

For several years, our research team has used a web-based MDD tool, SDDraw1, to

introduce interaction [72]. In their first example, we have students create the map of

an adventure game and then generate Model-View-Update (MVU) code to render the

interface with a separate screen for each state and buttons for transitions to another

state. MVU can also be visualized in the time-data-flow diagram in Fig. 2.1.

The Elm runtime stores the model and handles the events (messages) and other

impure logic, allowing the user to write their code entirely as types and pure func-

tions, leading to code that is much easier to test and reason about. Although SDDraw

generates code from the diagram, saving them time, we still expect the students to

understand the code. For this reason, we teach them to map each state to an enu-

merated type with one constructor for each state, and similarly, map each transition

label to a constructor in an enumerated “message” type. This contrasts with the

unstructured way we have observed beginner programmers adding global variables to

try to capture components of the state, without having an overall design, resulting

in unexpected feature interactions (bugs). To reinforce this expectation, we included

Fig. 2.2 as part of a midterm test in a first-year computer science course, introduction

to Software Design Using Web Programming, in which students were asked to add

a hydration (health) system to the code generated from the state diagram, which

had a set of rules for the cost of different transitions and a method for replenishing

hydration points. Implementation required many simple changes, which would be

challenging to implement by searching through the code without being able to use

the state diagram to understand the overall structure.

1https://sddraw.STaBL.Rocks/

57

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

m1 : Model m2 : Model m3 : Model

msg1 :
Msgview

update

msg2 :
Msg

update

view view

Figure 2.1: Time-data-flow diagram for Model-View-Update (MVU). The model is
used by the pure view function to render the application in the browser, and

messages (events sent by user interactions, e.g. mouse clicks) are passed into the
update function to produce new models, changing the application state.

Figure 2.2: The state diagram, drawn with the MDD tool, SDDraw, and used to
generate code students were given as a starting point with the above diagram on the
exam. Transitions are narrow at the target, and wider at the origin. The initial

state is green.

58

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

2.11 TEASync

TEASync is a novel framework for developing concurrent web applications [78]. It is

an extension of the Elm’s Model-View-Update (MVU) architecture. Because it uses

two models, one local and one global, it is called Local-Global MVU (LG-MVU). It is

an extension in the sense that any MVU application is also a purely local LG-MVU.

The update in MVU has the signature

update : Msg→ Model→ Model (2.1)

which can be extended to a function

localUpdate : LocalMsg→ LocalModel→ GlobalModel

→ (LocalModel, Cmd LocalMsg, Cmd GlobalMsg)

(2.2)

by ignoring the GlobalModel input, which can be taken to be the unit type. Without

many changes, an Elm application can also be made into a purely global TEASync ap-

plication, in which all connected clients can interact with the application at the same

time. In general, the local model is private to each client, and the local update has

read-only access to the global model. The local model can be used for state that does

not need to be shared (e.g. highlighting moused-over buttons). The global portion is

shared amongst all clients, which allows programmers to make multi-user applications

entirely in the frontend language Elm. Figure 2.3 illustrates the dataflow/timeline of

two devices connected to a server in the LG-MVU architecture.

Specifically, one global model is shared amongst every client connected to the

server, while each client has its private MVU and read-only access to the global

59

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 2.3: The dataflow/timeline of two devices connected to a server in LG-MVU
architecture [78].

60

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

model. The Global Update function takes a Global Message and the Global model,

and updates the current model based on that message, and returns a new Global

Model. The view function will then render the user’s screen based on the updated

Global Model and the Local Model.

Although distributed applications require communication between the client and

the server, TEASync handles this for the programmer, from writing encoders and

decoders to establishing the connections. In other words, it allows so-called serverless

development for complete beginners. The TEASync server handles ordering and

broadcasting global messages, keeping all clients synchronized. Programmers can

also run their applications in an “offline mode” where virtual clients can be spawned

to test their programs with one or more clients without running a real server. This is

an MDD approach to distributed computation, in which the data structures are the

model. The system parses the data structures and generates server code and a shell

that wraps around the user’s client code.

Our team has used an online Integrated Development Environment (IDE), in-

cluding a collaborative project environment, called STaBL.Rocks to support coding

in Elm. TEASync adds code generation to this project system.

The above-mentioned features of TEASync made it a suitable framework for us

to implement a multi-client application, helping us to evaluate whether existing tools

can support our principles, as described in Chapter 1.4. In particular, by using LG-

MVU, it helps us to adhere to our Principles P3, P4, P5, Pure Functions, Separation

of Concerns (SoC), and Abstraction, respectively.

61

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

2.12 Separation of Concerns (SoC)

Separation of Concerns (SoC) refers to the ability to first identify the concerns, which

may be considered as an interest or purpose, then, divide the program into distin-

guished sections based on those concerns, and finally, encapsulate each section. In

other words, SoC can be considered as a form of abstraction. Therefore, due to its

promise of handling complexities, SoC constructs the Principle P4 of CSC.

Parnas [71] introduced the idea of SoC, with suggestions for how to do the sepa-

ration, but Dijkstra [23] either originated the term SoC, or led to its popularization.

By the time of Reade [74], the term Separation of Concerns was an accepted part of

software design.

Different programming languages offer different ways of implementing SoC. For

instance, object-oriented programming languages such as Java and C++ can separate

concerns into objects. Procedural programming languages including C can separate

concerns into procedures or functions. Also, design patterns like MVC provide SoC

by separating the logic, from the interface.

Concerns can be identified from different aspects which are called dimensions of

concern. In addition to the mentioned example, concern in object-oriented program-

ming can be the data or the class; each concern in this dimension is a data type

defined and encapsulated by a class. The program can be decomposed according to

one or more dimensions.

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 3

Design of CSC

In this chapter, we define our CSC semantics, based on the state diagram semantics,

described in Section 2.6, since the semantics of Harel and Naamad [35], were not

readily formalizable, and our CSC also consists of State Diagrams in the first level.

Finally, we explain how CSCDraw’s code generator preserves the semantics of CSC.

3.1 CSC Semantics

Our Communicating Statecharts (CSC) consist of the tuple:

(G,Γ, δG, g0, L,Λ, ν, δL, l0, ε) (3.1)

(Λ = ΛG ∪ ΛU) (3.2)

where

G: A countable set of global states, usually represented by circles labelled with unique

63

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

strings.

Γ: A countable set of global messages that trigger a transition, ε /∈ Γ.

δG : Γ×G→ G× (ΛG ∪ {ε}): A transition function also called the “globalUpdate”

function. Note that ε indicates that no synchronizing messages should be sent.

g0 ∈ G: The initial global state.

L: A countable set of local states, usually represented by circles labelled with unique

strings.

Λ: A countable set of local messages that trigger a transition. ΛG is the subset of

messages that can be sent by δG. ΛU is the subset of messages that can be

triggered by a user action. ε /∈ Λ.

δL : Λ×G× L→ L× (Γ ∪ {ε}): A transition function also called the “localUpdate”

function.

ν : L→ 2ΛU : A function that for each local state determines which local messages

could be generated by the user.

l0 ∈ L: The initial local state.

ε: an element not in any set listed above, indicating that no synchronizing messages

should be sent.

The current state of the system is the combination of a global model G, a queue

of global messages [Γ], together with N copies of the local model L and a queue of

local messages [Λ], corresponding to the number of connected clients N .

64

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Therefore, the current state of the system is

(n, g, qG, l1, q1, l2, q2, ..., ln, qn) ∈ N×G× [Γ]× Πi∈{1,2,...,n} (L× [Λ]) (3.3)

where the left-hand side of the notation defines the elements that appear in the

right-hand side sets. Also, [Θ] indicates a queue of elements of the set Θ, [] indicates

an empty queue, and we will use the function α : Θ× [Θ]→ [Θ] to append an element

to the end of a queue.

The initial state of the system is

(0, g0, []) (3.4)

which indicates that no clients have joined, and the empty message queue shows no

messages have been created so far.

The system state evolves through one of the following changes:

Process global message: If the global message queue qG is not empty, it has a first

element γ and a remainder q′G. Let (g
′, µ) = δG(γ, g) be the result of the update

function. If the triggered transition causes a synchronizing message to be sent,

then that synchronizing message will be added to every local message queue,

resulting in the new system state

(n, g′, q′G, l1, α(µ, q1), l2, α(µ, q2), ..., ln, α(µ, qn)) (3.5)

On the other hand, if µ = ε then no synchronizing message will be sent and the

65

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

new state is

(n, g′, q′G, l1, q1, l2, q2, ..., ln, qn) (3.6)

Process local message: If the local message queue qi nonempty for some 1 ≤ i ≤ n,

it has a first element λ and a remainder q′i. Let (l
′
i, µ) = δL(λ, li) be the result of

the update function. If the triggered transition causes a synchronizing message

to be sent, that synchronizing message will be added to the global message

queue. Therefore, if µ = ε then the new state is

(n, g, qG, l1, q1, ..., l
′
i, q

′
i, ..., ln, qn) (3.7)

otherwise, if a synchronizing message is created

(n, g, α(µ, qG), l1, q1, ..., l
′
i, q

′
i, ..., ln, qn) (3.8)

Accept user message: If there exists ν(li) nonempty for some 1 ≤ i ≤ n, the user

can send a message λ ∈ ν(li), and the new state is

(n, g, qG, l1, q1, ..., li, α(λ, qi), ..., ln, qn) (3.9)

Disconnection: If a user, 1 ≤ i ≤ n, loses connection to the server or intentionally

disconnects, that user’s state and message queue will be discarded, resulting in

the new state

(n− 1, g, qG, l1, q1, ..., li−1, qi−1, li+1, qi+1, ..., ln, qn) (3.10)

66

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Connection: When a new client connects to the system, the initial state of the local

model and an empty local message queue will be inserted into the system state:

(n+ 1, g, qG, l1, q1, l2, q2, ..., ln, qn, l0, []) (3.11)

Note that client number has no meaning in the system, and is not available for

use by the statecharts.

3.2 Code Generation Preserves CSC Semantics

Code generation is simplified due to the Principle P3, Pure Functions. In particular,

implementing code generation to preserve CSC semantics in an impure language with

side effects would be possible, but user additions to the generated skeleton could

accidentally break the semantics.

Figure 3.1 illustrates the CSC for a basic multi-user application. In this example,

a mystery button is inside of a MysteryRoom. The first user that presses the button

will cause music to be played for everybody. Other button clicks will not make a

change to the music being played. This example will be used in the following sections

to describe how CSCDraw’s code generator maps the CSC into the Elm code. The

implementation decision of using Elm, I20, is explained in Section 1.6.

3.2.1 Generating Algebraic Data Types

In the Elm code, both local and global models, as well as messages and states, are rep-

resented as algebraic data types. CSCDraw’s code generator preserves this structure

by translating each state into a constructor within the corresponding algebraic data

67

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

globalPlayMusic

PlayMusic

br
an
ch
13

Mus
icOFF

MusicON

local

PlayMusic

PressButton

Pr
es
sB
ut
to
n

lo
op
Ba
ck

My

steryRoom

user

PressButton

one

one

many

many

one

one

View

PressButton

PlayMusic

Figure 3.1: CSC of a basic multi-user application. The local statechart contains one
state: MysteryRoom. The PressButton transition will send a synchronizing message
to the global statechart. That synchronizing message will trigger the PlayMusic
transition in the global model, which changes the global state from MusicOFF to

MusicON.

68

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 3.2: Algebraic Data Types generated from example Figure 3.1. The code
generator has converted the drawn CSC states and transitions into the constructors

of the corresponding Elm data types.

type, LocalState and GlobalState, respectively. Similarly, each transition label will

be mapped to a constructor of the message data types, LocalMsg and GlobalMsg,

respectively. Each statechart is embedded into a record to facilitate the extension of

the code skeleton. In particular, the LocalState is embedded into LocalModel along

with a field to keep track of time : Float for animation and other timing purposes.

See Figure 3.2.

3.2.2 Generating Update Functions

Type signature 2.2 in Section 2.11 describes the purpose of the localUpdate function.

It takes a local message and the local model, and returns a triple of the new local

model and the synchronizing messages. Additionally, this function allows the local

69

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

model to have read-only access to the global model, addressing our Consequence C3

of Principle P3, Pure Functions. CSCDraw’s code generator generates nested case

expressions as the body of the update function. There are different ways to implement

those nested case expressions. For example, pattern matching can be done by first

destructuring the message data type, and, at the inner level, destructuring the state

data type, or vice versa. Our code generation follows Elm conventions, which leads

to the first scenario: pattern match on the message first. Furthermore, our code

generation behaves as a recursive mapping function to generate the branches in the

case expressions.

Moreover, in CSCDraw, when a synchronizing message, indicated by a ε in the

semantics (Section 3.1), is connected to its originating branch, the code generator

translates that as the output of the corresponding message together with the updated

model. The code generation process for the global update function is similar, with

the type

globalUpdate : GlobalMsg→ GlobalModel

→ (GlobalModel, Cmd GlobalMsg, Cmd LocalMsg)

(3.12)

Figures 3.3 and 3.4 illustrate how the code generator has made nested case expres-

sions, destructuring the message data type first and then the state data type. The

structure is used for the localupdate and globalUpdate functions. Note that Cmd.none

corresponds to the case where no synchronizing message is sent. Also, the synchro-

nizing message PlayMusic originating from the PressButton transition is translated

with default values as Task.perform(−− > PlayMusic)(Task.succeed 0).

70

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 3.3: The generated code for the localUpdate function based on the local
statechart. This code first destructures the message and then the state data type at
the inner level. Synchronizing messages are also translated as the output of their

originating transition.

Figure 3.4: The generated code for the globalUpdate function based on the global
statechart. When no synchronizing message is sent, Cmd.none will fill the

corresponding field.

3.2.3 Generating the View Function

The generated view function will contain buttons sending local messages based on the

transitions in the local statechart. Additionally, to provide information for debugging

reasons, it will render the current global and local state of the app. Figure 3.5 shows

the generated view function code, named as myShapes, ready to be compiled on our

online IDE, STaBL.Rocks.

3.2.4 Generating the Init Function

Our code generator forms the init functions in the Elm code from the initial states in

the CSC. Figures 3.6 and 3.7 illustrate the translated Elm code for the localInit and

globalInit functions, respectively.

71

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 3.5: The view function generated by the code generator. This function
renders information on the current state of the app with buttons mapping to local

transitions.

Figure 3.6: The localInit generated by the CSCDraw’s code generator based on the
initial local state.

Figure 3.7: The globalInit generated by the CSCDraw’s code generator based on the
initial global state.

72

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

3.2.5 Generating Conditionals

Conditional branches in CSCDraw are specified as comments. To make the generated

skeleton code compile, the default condition and patterns are filled with integers, and

therefore the asynchronous Task operations succeed with zero to match the first

branch of the case expression. After the code is generated, the programmer should

change the case expressions, as well as the Task operations appropriately.

Figure 3.8 illustrates an example of the Party game. Each player has a budget

of a hundred dollars. They can go around the town and buy things. When they

arrive at the BusStop, if they have enough money left they can take a bus to the

PartyRoom, otherwise they have to walk back Home. When at least three players

arrive at the party room, the party will start. Figure 3.9 illustrates the generated

conditional, filled with default values and containing comments. This skeleton code

will compile but to make it work reasonably, the user should fill out the condition

and branches appropriately. Figure 3.10 shows the modified condition. In the case of

this example, in the local model, a local variable budget of type Int is defined which

is initially set to 100. That budget variable is then used to complete the condition.

73

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

local SS
StartStart

Int

Float

Point

String

?

10:10
Sec

Bu
yP
iz
za

bra
nch

18

BuyCake

branch20

P2ATM

branch22

PS2
ATM

bra
nch

22

BuyGrocery

br
an
ch
27

BuyAPizza

br
an
ch
18

Bu
yA
Ca
ke

branch20

BuyAGrocery

branch27

GS2A
TM

branch22

Ta
ke
AB
us

branch31

HomeOrParty

NotEnoughMoney

En
ou
gh
Mo
ne
y

Home

Pi
zzaHouse

Pastry

ATM

Gr

oce
ryStore

BusStop

Par
tyRoom

Output
GuestArrived

PartyCancelled

Figure 3.8: The local statechart of the Party game. A conditional is used when the
user wants to take a bus that has a money requirement to reach the partyRoom.

74

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 3.9: The generated conditional code from the Party game. This code is filled
with default values so the skeleton code will compile.

Figure 3.10: The modified generated conditional code from the Party game. This
code is filled with appropriate condition and values.

75

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 4

CSCDraw’s UI

CSCDraw is a visual Model-Driven-Development (MDD) tool, developed to answer

our RQ2, and subsequently, provide support for CSC. Therefore, the bulk of the

interaction, in CSCDraw, has to do with visualizing and editing the diagram.

This chapter describes the specific features of CSCDraw that are designed and

implemented to address the user-interface requirements and their implementation

decisions mentioned in Section 1.6.

Table 4.1 summarizes how each CSCDraw feature addresses an implementation

decision and consequently, a requirement.

76

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Req# Requirement Imp-

Dec#

Implementation

Decision Name

Feat# FeatureName/

Description

R1
Enforcing CSC

Principles

I1 Isolation E3 Read-Only Access

- Also addressed by

OM1, OM2, OM3,

and OM4.

I2 Sync. Message

Modification

KF2 Sync. Messages

EM4 Inner Interface

I3 Distinct Modes - Addressed by I4, I6.

I4 Overall Mode OM1 Models

OM2 Sync. Messages

OM3 Model Interfaces

OM4 Channels

E1 User

E2 View Function

E3 Read-Only Access

E4 Cardinality

E5 Download Button

E7 Zoom Buttons

I5 Channel Modifi-

cation

OM4 Channels

77

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

I6 SCEditing Mode - Addressed by I7, I8,

I12, I14, I15, I16,

I19.

I7 CSCModification M1 State Modifications

M2 Transition Modifica-

tions

M3 Branch Modifica-

tions

EM5 State Instance

EM6 Init. State Instance

EM7 Elm Types

EM8 Elm Subscriptions

EM11 Trash Bin

I8 Renaming - Renaming states,

transitions, and

branches.

R2 Beginner-Friendly

I9 Analogy Mode E6 Analogy Mode

I10 View Function E2 View Function

I11 User-Friendly UI - Addressed by I12,

I13, I14, I15, I16.

I12 SDDraw UI M1 State Modifications

M2 Transition Modifica-

tions

EM5 State Instance

78

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

EM6 Init. State Instance

EM7 Elm Types

EM8 Elm Subscriptions

EM10 Help Button

EM11 Trash Bin

I13 Order of Creation - Addressed by I5 and

I6.

I14 SCIndicator EM2 SCIndicator

I15 Navigator EM1 Navigator

I16 Pan/Zoom E7 (in Overall Mode)

EM9 (in SCEditing Mode)

I17 Channel High-

light

OM4 Possible directions

will light up.

I18 Channel Comple-

tion Check

E5 Download Button

I19 Undo/Redo EM12 Undo/Redo

R3 Code Generator
I20 Elm E5 Download Button

I21 Code Generation

Functionality

E5 Download Button

R4 Conditional

Branches

- - KF1 Conditional

Branches

R5 Cardinality - - E4 Cardinality

Table 4.1: Overview of the relationship between CSCDraw requirements and its
implemented features.

79

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

To address the Implementation Decision I3, Distinct Modes, the editor provides two

modes: (1) an Overall mode, showing the channels and statecharts they connect, and

(2) an SCEditing mode, in which the states and transitions within a statechart can

be edited. The next two sections describe these modes in detail.

4.1 Overall Mode

CSCDraw allows users to have a total view of their CSCs, as shown in Figure 4.1,

addressing the Implementation Decision I4, Overall mode. In particular, the mod-

els/statecharts, interfaces, and channels would be visible in a unified view. In this

view, the contents of channels are editable, addressing Implementation Decision I5,

Channel Modification. Overall mode also addresses Implementation Decision I1, by

its structure of models interacting through channels.

The following elements, described in the order shown in Figure 4.2, shape the

Overall mode. These elements will be referred to throughout the thesis by their OM

numbers.

OM1. Models: The two models, local and global, required by Local-Global MVU

(LG-MVU), as a consequence of Principle P3, are rendered in a unified view

together with their contents, including states, transitions, and synchronizing

messages. Clicking on a statechart results in the navigation to the editing

state, as described in Section 4.2.

OM2. Synchronizing Messages: The orange lines indicate that a synchronizing

message will be transmitted to the channel when the originating branch of the

transition is taken.

80

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 4.1: The Overall mode of CSCDraw, rendering models and their interfaces,
as well as channels. Solid lines connect the channels with the statecharts. In this
view, the contents of the channels are editable. Dotted and dashed lines indicate

read-only access. The user appears as a peer of the statecharts in this overall view.

81

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 4.2: Active elements in the Overall mode of CSCDraw, including
models/statecharts, synchronizing messages, interfaces, and channels.

82

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

OM3. Model Interfaces: Messages generated from transitions in a statechart, will

wait in the source model’s interface to be dragged to a potential channel, mak-

ing them available as synchronizing messages to the connected statechart. Grey

arrows represent the direction in which messages are transmitted from one stat-

echart to the other through channels.

OM4. Channels: In CSC, interaction between statecharts is allowed through message-

passing via channels. CSCDraw uses grey arrows to visualize the direction of

the messages, for the channels, similar to the interfaces. Furthermore, when

dragging a message to a channel, green highlighting indicates legal destinations

within the channel, addressing Implementation Decision I17, Channel High-

light. Figure 4.3, illustrates an example in which the Go2jungle message is

being dragged from the local statechart’s input interface. Dropping the mes-

sage to the lower highlighted channel means that the message can be generated

through user interaction, while the upper highlighted channel would be used for

synchronizing messages sent from the global statechart to the local statechart.

This feature makes channel design possibilities clear, minimizing cognitive load.

Other elements of the Overall mode are described in the order shown in Figure 4.4.

They will be referred to throughout the thesis by their E numbers.

E1. User: A user plays the role of a black box statechart in CSC. Messages created

by user interactions, such as a button click, are represented as messages going

from the user’s interface to the local statechart.

E2. View Function: In CSC, due to using LG-MVU for Principle P3, Pure Func-

tions, the update function will update the state of the application when a user

83

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 4.3: An instance of the state of a message being dragged to a channel in the
Overall mode of the CSCDraw. In this example, the Go2Jungle message is being
dragged from the local statechart’s input interface and the potential paths in the

channels are being highlighted.

84

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

E2

E5

E6

E7

E1

E3

E4

Figure 4.4: Elements shaping the Overall mode of CSCDraw.

85

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

interacts with the app elements. Then, the view function renders the updated

model on the user’s screen. In CSCDraw, as shown in Figure 4.4, the user

sends messages to the local statechart while receiving no messages through its

interface. Therefore, the connection between the user’s input interface and the

channel is eliminated. Instead, the current state of the app will be drawn on the

user’s screen by the view function. Element E2 addresses the Implementation

Decision I10, View Function.

E3. Read-Only Access: In CSC, due to Read-Only Access, as Consequence C3

of Principle P3, Pure Functions, the local model has read-only access to the

global model. In other words, the global statechart is in the scope of the local

statechart. In CSCDraw, this access is visualized through a dotted line, showing

the flow of the data with an arrowhead, and containing an eye icon as a symbol

of read-only access. Element E3 contributes to the Implementation Decision I1,

Isolation.

E4. Cardinality: In CSC, statecharts connected by channels have cardinality rela-

tionships, i.e., many:one for local:global, and one:one for local:user. CSCDraw

visualizes this cardinality analogous to the entity-relationship diagrams used in

database design. Element E4 addresses Requirement R5, Cardinality.

E5. Download Button: Once statecharts are drawn, synchronizing messages are

connected and the the messages are dragged to the right channels, the code

generator would be ready to generate the skeleton code. Clicking on the Down-

load button leads it to check whether every message is connected to a channel. If

channels completely cover the messages, CSCDraw generates the Elm skeleton

86

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 4.5: The Analogy mode of CSCDraw. Elements are conceptualized with
real-world objects.

code, and gives access to it, either as a downloadable or copyable text. Element

E5 addresses the Requirement R3, Code Generator, and the Implementation

Decisions I18, I20, I21, Channel Completion Check, generate code in Elm, and

Functional Code with Comments.

E6. Analogy Mode: To help explain CSC’s message-passing concepts, Analogy

mode (Figure 4.5) can be activated, in which concepts are represented as real-

world objects. For example, messages are represented as envelopes and the

message-passing is pictured as a pneumatic pipe system. Element E6 addresses

the Implementation Decision I9, Analogy mode.

E7. Zoom Buttons: For easier usage, CSCDraw allows the screen to be zoomed in

87

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 4.6: The SCEditing mode allows the modification of a statechart.

or out. Element E7 addresses the Implementation Decision I16, Pan/Zoom.

4.2 SCEditing Mode

Clicking on a statechart in the Overall mode results in the transition from the Overall

mode to the SCEditing mode where model modification is possible, as shown in

Figure 4.6. This mode addresses Implementation Decision I6, SCEditing mode.

In teaching a first-year computer science course, the instructor reported the ea-

gerness of students in using SDDraw to build their projects’ skeletons. Due to this

success, CSCDraw follows the conventions established by SDDraw, addressing the

Implementation Decision I12, SDDraw UI. This section describes the key features, el-

ements, and possible modifications in this mode. They will be referred to throughout

the thesis by their KF, EM, and M numbers, respectively.

88

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

local SS
StartStart

Int

Float

Point

String

?

10:10
Sec

Bu
yP
iz
za

bra
nch

18

BuyCake

branch20

P2ATM

branch22

PS2
ATM

bra
nch

22

BuyGrocery

br
an
ch
27

BuyAPizza

br
an
ch
18

Bu
yA
Ca
ke

branch20

BuyAGrocery

branch27

GS2A
TM

branch22

Ta
ke
AB
us

branch31

HomeOrParty

NotEnoughMoney

En
ou
gh
Mo
ne
y

Home

Pi
zzaHouse

Pastry

ATM

Gr

oce
ryStore

BusStop

Par
tyRoom

Output
GuestArrived

PartyCancelled

Figure 4.7: An example of using conditional branches choosing transitions to a state
among a set of states based on meeting a condition.

KF1: Conditional Branches: Unlike the simple state diagrams, our statecharts

have conditional branching, shown as circles with inscribed yellow diamonds

from which multiple branches can lead to different states (in Figure 4.7). The

yellow diamond is always present on a transition to allow the addition of multiple

branches as needed. This models case expressions in pure functional languages.

Figure 4.7 pictures an example of CSCDraw allowing the transitions to differ-

ent states based on meeting a condition. In this example, the transition from

BusStop state can lead to either the PartyRoom or the Home.

KF1 addresses Requirement R4, Conditional Branches.

89

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

local SS
StartStart

Int

Float

Point

String

?

10:10
Sec

MouseOverOn

br
an
ch
15

Mo
us
eO
ve
rO
ff

branch20

MouseLeaveOn

br
an
ch
14

Sw
it
ch
On

lo
op
Ba
ck

Mo
us
eL
ea
ve
Of
f

branch14

Sw
it
ch
Of
f

loopBack

No

Highlight

On

Highlight

Of

fHi
ghlight

Output
TurnOn

TurnOff

Figure 4.8: An example of the generation of a Synchronizing Message in the
SCEditing mode.

KF2: Synchronizing Messages: CSC allows communication between different stat-

echarts by transmitting Synchronizing Messages via channels. In CSCDraw, a

Synchronizing Message can be sent by connecting the originating branch to the

list of messages available in the inner interface. Figure 4.8 shows an instance of

making a Synchronizing Message. Particularly, the SwitchOff transition causes

the TurnOff synchronizing message to be sent.

KF2 addresses Implementation Decision I2, Synchronizing Message Modifica-

tion.

We now describe each element of CSCDraw’s SCEditing mode, as enumerated in

90

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 4.9.

EM1. Navigator: Changing the state of the CSCDraw from the SCEditing mode

to the Overall mode is possible through the Navigator button. Element EM1

addresses the Implementation Decision I15, Navigator.

EM2. SCIndicator: This feature provides information on the statechart that is be-

ing edited. Element EM2 addresses the Implementation Decision I14, SCIndi-

cator.

EM3. Bounding Box: A Bounding Box indicates the space that the statechart will

occupy in the Overall mode.

EM4. Inner Interface: Synchronizing Messages are the transition labels of the

other statechart dragged by the user to the channel. They are duplicated in the

inner interface to define its originating branch. Figure 4.8 provides an exam-

ple of a synchronizing message being connected to its source branch. Element

EM4 supports the Implementation Decisions I1 and I2, Isolation, Synchronizing

Message Modification.

EM5. State Instance: A state can be created by dragging the State Instance and

dropping it on the screen. Element EM5 addresses Implementation Decisions I7

and I12, CSC Modification and SDDraw UI, respectively.

EM6. Initial State Instance: The first state that is created in a statechart is the

initial state by default in CSCDraw. Changing the starting state is possible by

dragging an Initial State Instance into the desired state. Element EM6 addresses

the Implementation Decisions I7 and I12, CSC Modification and SDDraw UI,

respectively.

91

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

1

2

3

4

5

6

7

8

9

10

11

12

Figure 4.9: The UI elements active in SCEditing mode.

92

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 4.10: An example of a state storing a field of type Int.

EM7. Elm Types: States and Transitions are represented as constructors for Al-

gebraic Datatypes in the generated code. Each constructor can have multiple

fields of associated data. Dragging the data types to the states or transitions

accomplishes this. Figure 4.10 illustrates an example where the Waiting state

stores a field of type Int. Element EM7 addresses the Implementation Deci-

sions I7 and I12, CSC Modification and SDDraw UI, respectively.

EM8. Elm Subscriptions: Elm subscriptions generate messages based on time in-

tervals or keyboard actions. They can be attached to transitions, which trans-

lates into that transition’s constructor of the corresponding Algebraic Datatype

in the generated code. Element EM8 addresses the Implementation Decision I7,

93

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

CSC Modification.

EM9. Pan/Zoom: For easier usage, CSCDraw allows the screen to be zoomed or

panned. Element EM9 addresses the Implementation Decision I16, Pan/Zoom.

EM10. Help: This button displays a help page. Element EM10 addresses the Im-

plementation Decision I12, SDDraw UI.

EM11. Trash Bin: State, Transition, and Branch deletion is possible by dropping

the item into the Trash Bin. To provide feedback, the Trash Bin will be high-

lighted in red and its lid will be opened when an item enters its region. Element

EM11 addresses the Implementation Decisions I7 and I12, CSC Modification

and SDDraw UI, respectively.

EM12. Undo/Redo: CSCDraw allows Undo and Redo actions while editing a stat-

echart. Element EM12 addresses the Implementation Decision I19, Undo/Redo.

To address the Implementation Decision I7, CSC Modification, CSCDraw allows

the addition and deletion of the statechart’s key elements, i.e. states, transitions, and

branches. The operations are as follows:

M1. State Modifications: CSCDraw allows State operations including addition,

deletion, and setting the initial state. A state can be created by dragging a

state instance, Element EM5 in Figure 4.9, and dropping it on the canvas.

A state can also be set as an initial state by dragging and dropping the Start

instance, Element EM6. Also, removing a state is possible by dragging the state

to the trash bin, Elment EM11. Operation M1 also addresses I12, SDDraw UI.

94

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

M2. Transition Modifications: In CSCDraw, a transition can be created by click-

ing on a source state, pulling the transition, and letting go of the mouse in a

destination state. When clicking on a state, an arrow would appear above the

state, as shown in Figure 4.12, which can be pulled to generate the transition.

Additionally, CSCDraw does not allow ambiguous design of statecharts, when

more than one transition with the same label are fired by the same state. Par-

ticularly, in the case of drawing such conflicting transitions, the new transition

will replace the previous one. The deletion of a transition works analogously.

Operation M2 also addresses I12, SDDraw UI.

M3. Branch Modifications: In CSCDraw, a branch can be created by clicking on

a conditional diamond, pulling the branch, and letting go of the mouse in a

destination state. When clicking on a diamond, an arrow would appear above

the diamond, as shown in Figure 4.11, which can be pulled to generate the

transition. The deletion of a branch works analogously.

To address Implementation Decision I8, Renaming, CSCDraw allows the renaming

of the statechart’s key elements, i.e. States, Transitions, and Branches. Clicking

on a state leads to the appearance of the cursor, ready to change the state name.

Figure 4.12 shows an example of a state, i.e. State12, ready to be renamed. The

renaming of a transition and a branch works analogously.

4.3 Validation

As mentioned in Section 1.4, the existing tools have limitations in supporting our

CSC principles. Therefore, to answer our proposed RQ2, we gathered requirements

95

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 4.11: Making a branch for a transition is possible by clicking on a diamond
and dragging the arrow onto the destination state.

for a suitable tool to support CSC, and implemented CSCDraw to satisfy those re-

quirements. Then, to validate CSCDraw’s support for those principles, we took the

statechart drawn in Microsoft Visio, Figure 4.13, for the Login System, and redrew it

in CSCDraw. Figure 4.14 illustrates the redrawn version.

The CSCDraw version of the diagram suggests six main benefits compared to the

statechart drawn in Microsoft Visio:

1. Separation of Concerns: Separation of Concerns (SoC) constructs CSC’s Prin-

ciples P4, which aims to handle complexities by dividing a problem into sub-

problems and solving them one at a time. SoC in CSCDraw is achieved by:

1.1. Isolation: CSC doesn’t allow direct modifications between different stat-

echarts, instead, they can communicate by sending synchronizing messages

96

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 4.12: An example of CSCDraw in StateRename mode. In this mode, the
state will be highlighted in blue and the cursor will be ready for renaming

operations.

97

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

LocalStateLocalStateGlobalStateGlobalState

SplashScreen
(txt: String)

SettingAdmin
(user: String,
 pass: String,
 txt: String)

WaitingForAuth
(user: String,
pass: String,
txt: String)

EnterNewLogins
(user: String,

details: String)

Login
(user: String,
pass: String,

greetingOrError:
String)

WaitingForLogin
(txt: String)

Chatting
(isTyping: Bool,

user: String,
body: String)

WaitingForAdmin

WaitingForUse
rList

Setup

SubmitAdmin

AdminSet (adminReturned)

isAdmin

isNotAdmin

SubmitLogins

GoToChat

TryLogin

LoginResult
(isAdmin: bool,

userReturn: String,
success: Bool)

userReturn && success

userReturn

ClickLogout

GoToAddLogins

RegisterAdmin (id, pass)

AddLogins (Dict (admin, adminpass))

EndSplash

LoginResult
(isAdmin: bool,

userReturn: String,
success: Bool)

RegisterAdmin
(admin: String,

pass: String)

RegisterUserInput
(user: String)

RegisterPassInput
(pass: String)

LoginUserInput
 (user: String)

LoginPassInput
(pass: String)

LoginsListInput
(txt: String)

ChatInput
 (txt: String)

admin && adminPass

isEmpty admin || isEmpty adminPass

SendLogin
(username:String,
 password: String)

Logout
(user: String)

SendLogin
(loginUsername: String,

loginPass: String)

AddLogins
Dict ([admin, adminpass])

AddLogins
Dict ([admin, adminpass])

SendMsgChat

SendMsg
(sender: String,

body: String)

SendMsg
(sender: String,

body: String)

Figure 4.13: The statechart of the Login System written in TEASync, drawn in
Microsoft Visio. The solid and dashed yellow lines correspond to the synchronizing
messages to and from the global statechart, respectively. The light blue lines show
the read-only access of the global statechart to the local statechart. This model

does not satisfy our CSC principles.

98

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

through channels. Hence, it forces statecharts to be isolated. This isola-

tion is obvious in CSCDraw’s interface, while the Visio version does not

offer such compartmentalization.

1.2. Distinct Modes: Two editing modes in CSCDraw reflect two types of

consistent views of the system: (1) the overall view showing the contents

and connections of channels, and (2) the SCEditing view, in which the

statechart can be modified and its interaction with the rest of the system

can be understood in terms of the interface. However, Visio does not offer

such separation; There is only one view for editing both statecharts.

2. Read-only Access: CSC gives read-only access from the global statechart to

the local statechart, as a result of using LG-MVU, due to Principle P3, Pure

Functions. However, this read-only access has no analogue in existing languages

such as UML state machines. Therefore, to represent the read-only access in

Visio, we used colour—the cyan lines. But this is still not easy to follow, and

conflicts with UML or Harel’s statecharts conventions in terms of the hierarchy,

where the parent statechart can see and modify the children statecharts. In

CSCDraw, the global statechart being in the scope of the local statechart is vi-

sualized through the dashed line containing an eye icon as a symbol of read-only

access. This way of representing the read-only access offers a more organized

and easier-to-understand visualization compared to the Visio version.

3. Code Generation: CSCDraw supports code generation from the designed CSCs,

which preserves Principle P2,Model-Driven-Development (MDD). However, this

code generation is not possible through Visio [59].

99

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Additionally, CSCDraw’s code generator has two features that distinguish it

from other MDD tools;

3.1. Pure Functions: Due to Principle P3, Pure Functions, the skeleton code

generated by CSCDraw promises the absence of side effects, resulting in

the faithful translation of models into a code that preserves CSC semantics.

3.2. Abstraction: CSCDraw’s code generator preserves the Principle P5, Ab-

straction, by using Event-Driven Programming (EDP) abstract concepts

including events instead of confusing details such as threads.

4. Enforcing CSC Principles: CSCDraw only allows syntactically correct actions

to be performed. In other words, in CSCDraw, there is no way to perform

actions violating CSC principles. This restriction helps beginners design less

error-prone systems and subsequently, prevent them from early frustrations.

In contrast, Visio offers freedom to the designers which may cause complexi-

ties depending on the expertise level. For instance, in Visio a user can easily

draw a direct transition from one statechart to another, which violates CSC’s

Principle 2.12, SoC, and its Consequence C4, isolation.

5. Preventing Ambiguity in Statecharts: CSCDraw does not allow multiple tran-

sitions with the same label to be sent from one source state to multiple desti-

nations. This restriction, however, is absent in Visio, which can lead to contra-

dictory designs and undesirable behaviour of the system.

6. Message Organization: In the Visio version, the difference between local mes-

sages and synchronizing messages is only noticeable by using different colours.

In contrast, CSCDraw uses different shapes and colours for different types of

100

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

messages, as well as, interfaces to organize synchronizing messages both in

SCEditing and Overall modes. In Overall mode, CSCDraw organizes a stat-

echart’s input and output messages into a bipartite interface containing grey

arrows to visualize the flow of the information. Furthermore, when connect-

ing messages to channels, the potential paths in channels will light up. This

prevents programmers from designing impossible interactions by mistake. This

message organization helps designers have an easier experience designing their

multi-user systems by reducing the cognitive load. Visio does not offer such an

organization due to the absence of interfaces and channels.

101

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

gl
ob
al

En
dS
pl
as
h

Lo
gi
nR

es
ul
t

R
eg
is
te
rA
dm

in

A
dd
Lo

gi
ns

A
dd
Lo

gi
n

Lo
gO

ut

Se
nd
Lo

gi
n

Se
nd
M
sg

Re
gi
st
er
Ad
mi
n

In
t

In
t

br
an
ch
11

Ad
dL
og
in
s

St
ri
ng

St
ri
ngbran

ch12

AddLogin
String
String

loopBack

Lo
gO
ut

St
ri
ng

lo
op
Ba
ck

Se
nd
Lo
gi
n

St
ri
ng

St
ri
ng

lo
op
Ba
ck

SendMsg
String
String

loopBa
ck

Wait

in
gF
or
Ad

min

Waitin
gF
or
Us
er

List

Se
tU
p

lo
ca
l

R
eg
is
te
rA
dm

in
A
dd
Lo

gi
ns

A
dd
Lo

gi
n

Lo
gO

ut
Se
nd
Lo

gi
n

Se
nd
M
sg

E
n
d
S
p
l
a
s
h

S
u
b
m
i
t
A
d
m
i
n

R
e
g
i
s
t
e
r
U
s
e
r
I
n

R
e
g
i
s
t
e
r
P
a
s
s
I
n

A
d
m
i
n
S
e
t

S
u
b
m
i
t
l
o
g
i
n
s

L
o
g
i
n
L
s
t
I
n

G
o
2
C
h
a
t

G
o
2
A
d
d
L
o
g
i
n
s

C
h
a
t
I
n
p
u
t

S
e
n
d
M
s
g
C

L
o
g
O
u
t

T
r
y
L
o
g
i
n

L
o
g
i
n
R
e
s
u
l
t

En
dS
pl
as
h

GW
ai
ti
ng
4U
Ls
t

GWait
ing4A

dmin

GS
et
UpSubmitAdmin

Empty

Fi
ll
ed

Re
gi
st
er
Us
er
In

St
ri
ng

lo
op
Ba
ck

Re
gi
st
er
Pa
ss
In

lo
op
Ba
ck

AdminSet
String

is
No
tA
dm
in

is
Ad
mi
n

Submitlogins

loopBack

LoginLstIn

loopBack

Go
2C
ha
t bra

nch
57

Go
2A
dd
Lo
gi
ns

br
an
ch
50

ChatInput

loopBack

SendMsgC

loopBack

Lo
gO
ut

br
an
ch
63

Tr
yL
og
in

br
an
ch
67

Lo
gi
nR
es
ul
t

St
ri
ng

Us
er
Re
tu
rn
Su
cc
es
s

Us
er
Re
tu
rn

St
ri

ng

Spl
as
hS
cr
ee

n

St
ri

ng
St

ri
ng

St
ri

ng

Set
ti
ng
Ad
mi

n

St
ri

ng
St

ri
ng

St
ri

ng

Wait

in
gF
or
Ad

min

St
ri

ng
St

ri
ng

Ente
rN
ew
Lo
gi

ns

Ch
at
ti
ng

St
ri

ng
St

ri
ng

St
ri

ng

Lo
gi
n

St
ri

ng

Wat
in
g4
Lo
gi

n

us
er

S
u
b
m
it
A
d
m
in

R
e
g
is
te
r
U
s
e
r
I
n

R
e
g
is
te
r
P
a
s
s
I
n

A
d
m
in
S
e
t

S
u
b
m
it
lo
g
in
s

L
o
g
in
L
s
tI
n

G
o
2
C
h
a
t

G
o
2
A
d
d
L
o
g
in
s

C
h
a
tI
n
p
u
t

S
e
n
d
M
s
g
C

L
o
g
O
u
t

T
r
y
L
o
g
in

on
e

on
e

m
an
y

m
an
y

on
e

on
e

Vi
ew

S
u
b
m
it
A
d
m
in

R
e
g
is
te
rU
s
e
rI
n

R
e
g
is
te
rP
a
s
s
In

A
d
m
in
S
e
t

S
u
b
m
it
lo
g
in
s

L
o
g
in
L
s
tI
n

G
o
2
C
h
a
t

G
o
2
A
d
d
L
o
g
in
s

C
h
a
tI
n
p
u
t

S
e
n
d
M
s
g
C

L
o
g
O
u
t

T
ry
L
o
g
in

En
dS
pl
as
h

Lo
gi
nR

es
ul
t

R
eg
is
te
rA
dm

in

A
dd
Lo

gi
ns

A
dd
Lo

gi
n

Lo
gO

ut

Se
nd
Lo

gi
n

Se
nd
M
sg

F
ig
u
re

4.
14
:
T
h
e
L
og
in

S
ys
te
m

re
d
ra
w
n
in

C
S
C
D
ra
w

fr
om

F
ig
u
re

4.
13
.
T
h
e
is
ol
at
io
n
of

st
at
ec
h
ar
ts

is
v
is
ib
le

an
d

th
e
co
m
m
u
n
ic
at
io
n
b
et
w
ee
n
th
em

is
v
is
u
al
iz
ed

in
te
rm

s
of

sy
n
ch
ro
n
iz
in
g
m
es
sa
ge
s
tr
an

sm
it
te
d
b
y
ch
an

n
el
s.

M
es
sa
ge
s
ar
e
or
ga
n
iz
ed

in
to

b
ip
ar
ti
te

in
te
rf
ac
es

sh
ow

in
g
th
e
fl
ow

of
th
e
in
fo
rm

at
io
n
.
C
h
an

n
el
s
w
il
l
p
oi
n
t
ou

t
th
e

p
os
si
b
le

p
at
h
s
w
h
en

d
ra
gg
in
g
a
sy
n
ch
ro
n
iz
in
g
m
es
sa
ge
.
C
o
d
e
ge
n
er
at
io
n
is
al
so

p
os
si
b
le

fr
om

th
e
d
es
ig
n
ed

C
S
C
s.

T
h
is
m
o
d
el

su
cc
es
sf
u
ll
y
p
re
se
rv
es

C
S
C

p
ri
n
ci
p
le
s.

102

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 5

Pilot Study

Evaluating CSC’s success in achieving its goal of making concurrency easy to learn

and use for beginners (answering RQ3) requires conducting a large-scale experiment.

For instance, this rigorous experiment could measure how well students perform in

making a multi-user application through CSCDraw (using CSC concepts) compared

to Java Threads.

However, before conducting such an experiment, we need to answer RQ3.1, which

requires investigating the best way of teaching CSC. Thabane et al. [82] defines a pilot

study, also known as a feasibility study, as a brief study to determine the feasibility

of a large-scale, confirmatory experiment. The main purpose of such a study is to

prevent researchers from spending time and money on an investigation likely to fail

due to insufficient data or time for assigned tasks, or other issues which are hard to

estimate without any experience. Therefore, we present the design of a pilot study

to prepare for the large-scale evaluation.

To pilot such a study, we can leverage our experience running summer camps

and coding workshops for senior primary students. Our base assumption is that

103

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

participants have no prior knowledge in coding with text-based languages such as

Elm. To ensure the study targets total beginners, data on participants’ background

in coding should be collected through a pre-quiz. Additionally, to prevent participants

from feeling overwhelmed by teaching them everything at once, we distribute the pilot

study into two main phases:

1. Teaching Event-Driven Programming (EDP) concepts through single-player ad-

venture games with SDDraw (introduced in Section 2.10).

2. Teaching CSC concepts through multi-player adventure games with CSCDraw.

Each phase consists of five main steps. The overall perspective of steps one to five

for the first and second phases are displayed in Table 5.1 and Table 5.2, respectively.

The tables include information on each step’s activities, game features, whether the

games store parameters in their models (such as an integer variable in a particular

state), and the desired learning outcomes for that step. Each phase includes two

challenges (in the first and third steps) and a quiz (in the fifth) step consisting of

multiple-choice questions. The participants’ answers to the challenges/quizzes will

be gathered anonymously through Google Forms. This means emails and identities

should not be collected. Analysis on the collected data will tell us how well the

students are learning EDP and CSC concepts. At the end of the pilot study, we may

repeat it if needed.

In the rest of this chapter, we describe the details of the hoped-for learning out-

comes and the activities done in each phase in Sections 5.1 and 5.2, respectively.

104

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Step StepName Game Parameterized Features Learning
Outcomes

1 Introduction
(Challenge)

Mood No Two states:
Happy/Sad

Remember
(SD, SD-
Draw, and
Case Expres-
sions)

2 Play and De-
sign

Hiking No Seven states,
SD includes
only states
and simple
transitions.

Understand
(How to de-
sign an SD.)

3 Play and
Choose
(Challenge)

Santa Yes Seven states,
SD includes
self-loops.

Understand
(Translating
a game to an
SD.)

4 Read, De-
sign, and
Code

Rope No Seven states,
SD includes
one tricky
transition.

Apply (The
creation of
an adventure
game.)

5 Evaluation Saving Swan No SD includes
six states,
transitions,
and a self-
loop.

Apply (An-
swer evalu-
ation ques-
tions.)

Table 5.1: Overview of the steps used in the first phase of the pilot study using
SDDraw. Learning Outcomes correspond to the first three levels of Bloom’s

Taxonomy (shown in Figure 1.12).

5.1 Learning Outcomes

The hoped-for learning outcome of this study is for participants to achieve the first

three levels of Bloom’s Taxonomy (Remember, Understand, and Apply). In particular,

the relation between each Bloom’s level and each study step is:

Remember: The first step tries to achieve the Remember level. Particularly, this

step provides an introduction to each phase’s required concepts. These concepts

105

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Step StepName Game Parameterized Features Learning
Outcomes

1 Introduction
(Challenge)

Lights No Two states:
LightsOn/-
LightsOff

Remember
(CSC and
CSCDraw.)

2 Play and De-
sign

MP-Hiking Yes At least
three play-
ers must
arrive at the
Terminal to
open gates
and return
home

Understand
(Translating
a game to a
CSC.)

3 Play and
Choose
(Challenge)

Party Yes At least
three play-
ers must
manage
their money
to start a
party.

Understand
(Translating
a game to a
CSC.)

4 Read, De-
sign, and
Code

MP-Rope Yes Only one
rope is avail-
able to climb
up both the
Pit and the
Trap.

Apply (The
creation
of an MP
adventure
game.)

5 Evaluation Open the Cave Yes Players col-
laborate on
collecting
150 sticks to
start a fire.

Apply
(Answer
evaluation
questions.)

Table 5.2: Overview of the steps used in the second phase of the pilot study using
CSCDraw. Learning Outcomes correspond to the first three levels of Bloom’s

Taxonomy (shown in Figure 1.12).

include state and transition in state diagrams, as well as, synchronizing mes-

sages, Local-Global portions, and channels in CSC. The first step also includes

a challenge to measure how well participants can Remember the concepts.

106

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Understand: The second and third steps of the study aim to achieve the Under-

stand level, by asking participants to play games and translate them into state

diagrams or CSCs. In particular, the second step focuses on describing the con-

cepts and discussions, while the third step evaluates how well they Understood

the concepts.

Apply: The fourth and fifth steps try to accomplish the Apply level. Specifically,

the fourth step requires the participants to interpret a scenario to the high-level

visual representation (SD/CSC), and its low-level implementation in code. The

fifth step includes a quiz that measures how well the Apply learning outcome is

achieved.

5.2 Experiment Details

First Phase: The first phase focuses on teaching EDP through SDDraw. In this

phase, the utilized apps are single-player games, and participants are expected

to eventually be able to apply what they learned in implementing a game ac-

cording to a given scenario. Figures and scenarios of the games used in this

phase can be found in Appendix A.1.

Referring to the Table 5.1, the detailed steps are as follows:

Step 1. Introduction: Participants will be provided with an introduction to

SDDraw’s interface and code generation, as well as, state diagram’s fun-

damental concepts such as state and transitions. This introduction uses a

simple mini-game called Mood, which consists of two states: Happy/Sad

107

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

and two transitions: Cry/CheerUp. Figure 5.1 demonstrates the state di-

agram of this game. The graphical interface of the Mood game can be

found in Appendix A.1.1.

To help participants better understand how to work with SDDraw, they

will be asked to implement the same map as the Mood game’s state di-

agram. Mentors will assist them with any potential problems that they

might have with this introductory task.

Thereafter, a multiple-choice question should be used to evaluate whether

they can define how the graphical representation (state diagram) translates

into the low-level generated code. In this regard, the question can include

the case expression of the app’s view function that needs to be completed.

In this case, the choices are the complete version of that case expression.

This task will measure how well they can remember the basic concepts.

Step 2. Play and Design: To make sure participants have a good under-

standing of state diagrams, they will be asked to first play a game called

Hiking, and then, draw the state diagram, accordingly. The Hiking game

consists of seven states and eleven transitions. Figure 5.2 represents the

map of this game. The player starts from the MainStreet and hikes through

other states until they reach the Terminal. They should be able to go back

and forth between different states, except for the Terminal. Once they ar-

rive at the Terminal the game is over. This step focuses on improving their

understanding of state diagrams and EDP-related concepts such as user

interaction. Evaluation of how well this learning outcome is achieved will

be done in Step 3. In this regard, after they finish their task of drawing

108

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 5.1: The state diagram of the Mood game, a mini-game to introduce
SDDraw, used in Step 1 of the pilot study’s first phase.

the state diagram, the correct solution (Figure 5.2) will be released and

any misconceptions will be discussed with mentors.

Step 3. Play and Choose: To measure how well participants understood state

diagrams and EDP-related concepts, they will be asked to translate a game

(called Santa) into a state diagram. Particularly, after they played the

Santa game, they will be provided with four different diagrams and be

asked to choose the one matching that game (Figure 5.3). The story of

the Santa Game and the figures illustrating its graphical interface can be

found in Appendix A.1.2.

Step 4. Read, Design, and Code: Prior to the evaluation of how well par-

ticipants can apply the materials they learned, in new situations, they will

109

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 5.2: The state diagram/map of the Hiking game, a mini-game to introduce
SDDraw, used in Step 2 of the first phase.

110

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 5.3: The state diagram solution to the challenge done in Step 3 of the first
phase (Santa game).

have an opportunity to implement a game themselves. They will be pro-

vided with the scenario of a game called Rope. The scenario can be found

in Appendix A.1.3. Then, they will be asked to interpret the English con-

text with respect to state diagrams and EDP concepts. The interpretation

consists of designing the state diagram of the game, comparing their design

with the revealed solution (shown in Figure 5.4), discussing any potential

questions with mentors, code generation, and compiling the code on the

web-based IDE (STaBL.Rocks).

Step 5. Evaluation: To measure how well participants can use their learned

information and apply them in solving new challenges, they will be asked to

do a quiz including four multiple-choice questions. The first three questions

evaluate the ability to design, after interpreting a scenario into a state

111

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 5.4: The solution state diagram to the challenge asked in Step 4 of the first
phase (Rope game).

diagram. The last question measures their ability to apply changes in the

low-level implementation code.

The questions and their answers (shown in bold font) are as follows:

Read the scenario of an adventure game called Saving Swan and answer

the questions.

112

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

A tundra swan has lost its family during migration. Right now, the

swan is swimming in a pond, calling out in search of its group. Our

team has tracked the location of the rest of the flock. Your mission

is to transport the swan to its family safely. In this regard, you

have first to visit our station to collect the necessary equipment.

Then, travel past Teddy Trail and cross Lily Bridge to reach the

pond. You should not have any trouble finding the swan, as it is

making loud calls. Once you’ve taken and secured the swan, head

north, where its family is waiting. You’ll need to pass through

Maple Jungle and find the Province’s Big Lake. Once you arrive

at the lake, release the swan so it can reunite with its group.

Good luck on your mission!

Q1. Consider the map (state diagram) of the Saving Swan Game.

Which state is the initial state?

a) Lily Bridge

b) Pond

c) Saviors’ Station

d) Province’s Big Lake

Q2. What can be a potential button in the game when the Savior is

in Teddy trail?

a) Go to Maple Jungle

b) Go to Lily Bridge

113

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

c) Take the Swan

d) Pond

Q3. In the state diagram, how can we represent the action of taking

the swan in the Pond?

a) A self-loop transition in the Pond state.

b) A transition from Lily Bridge to the Pond.

c) Just the Pond state.

d) none of the above.

Q4. Imagine you want to draw a bear in the Teddy Trail. Which code

snippet describes your implementation of the game?

a)1 myShapes model =

2 [

3 (case model.state of

4 SaviorsStation ->

5 [text "SaviorsStation"

6 |> centered

7 |> filled black

8 , bear

9 , group

10 [

11 roundedRect 40 20 5

12 |> filled green

13 , text "Go2TedT"

14 |> centered

114

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

15 |> size 8

16 |> filled black

17 |> move(0, -3)

18]

19 |> move (-25, -25)

20 |> notifyTap SS2TT

21]

22 (...)

b) (This is the answer.)

1 myShapes model =

2 [

3 (case model.state of

4 TeddyTrail ->

5 [text "TeddyTrail"

6 |> centered

7 |> filled black

8 , bear

9 , group

10 [

11 roundedRect 40 20 5

12 |> filled green

13 , text "Go2LB"

14 |> centered

15 |> size 8

115

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

16 |> filled black

17 |> move(0, -3)

18]

19 |> move (-25, -25)

20 |> notifyTap TT2LB

21

22]

23 (...)

c)1 myShapes model =

2 [

3 (case model.state of

4 LilyBridge ->

5 [text "LilyBridge"

6 |> centered

7 |> filled black

8 , bear

9 , group

10 [

11 roundedRect 40 20 5

12 |> filled green

13 , text "Go2P"

14 |> centered

15 |> size 8

16 |> filled black

116

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

17 |> move(0, -3)

18]

19 |> move (-25, -25)

20 |> notifyTap LB2P

21

22]

23 (...)

d)1 myShapes model =

2 [

3 (case model.state of

4 MapleJungle ->

5 [text "MapleJungle"

6 |> centered

7 |> filled black

8 , bear

9 , group

10 [

11 roundedRect 40 20 5

12 |> filled green

13 , text "Go2PL"

14 |> centered

15 |> size 8

16 |> filled black

17 |> move(0, -3)

117

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

18]

19 |> move (-25, -25)

20 |> notifyTap MJ2PL

21

22]

23 (...)

We then, will move on to the next phase, where they go through the same steps

with multi-player games.

Second Phase: The second phase focuses on teaching CSC concepts through CSC-

Draw. In this regard, the activities used in this phase include multi-player

games. By the end of this phase, we expect participants to be able to apply

CSC concepts in solving new challenges. Figures and scenarios of the games

used in this phase can be found in Appendix A.2.

Referring to the Table 5.2, the detailed steps are as follows:

Step 1. Introduction: In this step, participants will be provided with an in-

troduction to the Local-Global Model-View-Update (LG-MVU). In this re-

gard, a basic multi-player game, called Lights is used to conceptualize the

private and shared portions of the system. Particularly, in this game, when

a player hovers over a button it will light up only for them (local) (as shown

in Figure 5.5), and when they click on a button, it will switch ON/OFF

the lights for everybody connected to the server (global) (as shown in Fig-

ure 5.6). Therefore, this game consists of two global states: LightsOFF

and LightsON, and three local states: NoHighlight (When no button is

118

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

being hovered over), HighlightONBtn (When the TurnONLights button is

being hovered over), HighlightOFFBtn (When the TurnOFFLights button

is being hovered over).

After introducing the concepts, the mentor will show the CSC of the Lights

game (Figure 5.7), and will discuss the core ideas such as the separation

of models into local and global and the synchronizing message causing the

lights to turn ON/OFF for every user.

The mentor may also switch to the Analogy mode of the CSCDraw (Fig-

ure 5.8) to better conceptualize the materials. The analogy can be as

follows:

Santa is trying to turn the lights ON for everybody, so he clicks on the

TurnONLights button, which causes a message to be sent from Santa’s

shelf (where he puts his messages) to the local statechart. Channels

are here to help Santa transmit his messages. This message will trigger

the TurnONLights transition in the local statecharts, which leads to a

synchronizing message (SwitchON) being sent to the global statechart.

Then, that synchronizing message will trigger the transition from the

LightsOFF state to the LightsON state.

To measure how well participants can remember the CSC concepts, they

will be asked to do a challenge which determines whether they are able to

separate the program into local and global portions in a given scenario.

The challenge and its solution (shown in bold) are as follows:

119

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 5.5: The state of the lights being OFF for every client (global), while the
button highlight is private to each user (local), in the Lights Game. This game is

used in Step 1 of the study’s second phase.

120

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 5.6: The state of the lights being ON for every client in the Lights Game.
This game is used in Step 1 of the study’s second phase.

121

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Imagine we have a festival and we want to play the music for the whole

town. The first facilitator who arrives at the concert hall can turn the

speakers ON. Which option describes the scenario best in terms of a

CSC?

a) The facilitator walking in town is the global portion and the music

being played or not is the local portion.

b) The facilitator walking in town is the local portion and

the music being played or not is the global portion.

c) The facilitator walking in town and the musing being played or not

are both local.

d) The facilitator walking in town and the musing being played or not

are both global.

Step 2. Play and Design: To allow participants to better understand the

CSC concepts introduced in the previous step, they will be asked to design

the CSC of the multi-player version of the Hiking game (used in Step 2 of

the first phase) after playing it (Figure 5.9).

The MP-Hiking game’s difference from the single-player one is the addition

of the condition where the Terminal gates are closed until three players fin-

ish the hike and arrive at the Terminal. Therefore, the local statechart has

the same states and transitions as the single-player version (Figure 5.10),

and the global statechart has two new states: Waiting (for three players

to arrive) and GatesOpened, (Figure 5.11). Also, a synchronizing message

will be sent to the global statechart once a player arrives at the Terminal.

122

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

This step focuses on improving their understanding, and the measurement

of how well this learning outcome is achieved will be done in Step 3. In

this regard, after they finish their task of drawing the state diagram, the

correct solution will be released and any misconceptions will be discussed

with mentors.

Step 3. Play and Choose: In this step, participants will first play a game

(called Party), and then, they will be asked to choose the exact mapping

CSC of that game out of four different CSCs. This challenge measures how

well participants understood CSC concepts, namely Local/Global models,

synchronizing messages, conditionals, and interactive design. Next, the

correct answer (shown in Figure 5.12) will be released and any misconcep-

tions or questions will be discussed with mentors.

The Party game is a multiplayer game that requires players to manage

their money to go to a party. In particular, the party will start only if at

least three players successfully arrive at the PartyRoom. If a player fails

to manage their money, then the party will be cancelled.

Figures 5.13 and 5.14 are provided for better visibility of the details. The

detailed story of the game and its graphical figures can be found in Ap-

pendix A.2.1.

Step 4. Read, Design, and Code: Prior to the evaluation of how well par-

ticipants can apply the covered CSC materials in new situations, they

will have the opportunity to implement a multi-player game themselves.

Therefore, they will be provided with a scenario of a game called MP-Rope.

This scenario is the multi-player version of the game used in Step 4 of the

123

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

first phase. Then, they will be asked to interpret the English context with

respect to CSC concepts. The scenario can be found in Appendix A.2.2.

This task includes designing the CSC of the scenario they read, comparing

their design with the revealed solution, discussing any potential questions

with mentors, code generation, and compiling the code on the web-based

IDE (STaBL.Rocks). Figure 5.15 illustrates the overall mode of the solu-

tion CSC, while Figures 5.16, and 5.17 are provided to make the details

more visible.

Step 5. Evaluation: As the final step of the experiment, we evaluate how well

participants can use their learned information and apply them in solving

new challenges. In this regard, they will be asked to do a quiz including four

multiple-choice questions. The quiz questions and answers can be found in

Appendix A.2.3. In particular, the first two questions evaluate their ability

to design the statecharts, as well as distinguish the local and global portions

of the app, after interpreting a scenario into a CSC. The third question

evaluates their ability to design the communication of statecharts through

channels. The last question measures their ability to apply changes in the

low-level implementation code.

124

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

gl
ob
al

Sw
itc
hO

N

Sw
itc
hO

FF

Sw
it
ch
ON

br
an
ch
20

Sw
it
ch
OF
F

br
an
ch
19

Li
gh
ts
OF

F

Li
gh
ts
ON

lo
ca
l

Sw
itc
hO

N
Sw

itc
hO

FF

H
ov
er
O
N
B
tn

H
ov
er
O
FF

B
tn

Le
av
eO

N
B
tn

Le
av
eO

FF
B
tn

Tu
rn
O
N
Li
gh
ts

Tu
rn
O
FF

Li
gh
ts

Ho
ve
rO
NB
tn

br
an
ch
11 Ho

ve
rO
FF
Bt
n

br
an
ch
12

Le
av
eO
NB
tn

br
an
ch
10

TurnONLights

loopBack

Le
av
eO
FF
Bt
n

br
an
ch
10

TurnOFFLights

loopBa
ck

NoH
ig
hl
ig

ht

High
li
gh
tO
NB

tn

High

li
gh
tO
FF

Btn

us
er

H
ov
er
O
N
B
tn

H
ov
er
O
FF

B
tn

Le
av
eO

N
B
tn

Le
av
eO

FF
B
tn

Tu
rn
O
N
Li
gh
ts

Tu
rn
O
FF

Li
gh
ts

on
e

on
e

m
an
y

m
an
y

on
e

on
e

Vi
ew

H
ov
er
O
N
B
tn

H
ov
er
O
FF

B
tn

Le
av
eO

N
B
tn

Le
av
eO

FF
B
tn

Tu
rn
O
N
Li
gh
ts

Tu
rn
O
FF

Li
gh
ts

Sw
itc
hO

N

Sw
itc
hO

FF

F
ig
u
re

5.
7:

T
h
e
O
ve
ra
ll
M
o
d
e
of

th
e
C
S
C
D
ra
w

fo
r
th
e
L
ig
h
ts

G
am

e
u
se
d
in

S
te
p
1
of

th
e
se
co
n
d
p
h
as
e.

125

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

gl
ob
al

Sw
itc
hO

N

Sw
itc
hO

FF

Sw
it
ch
ON

br
an
ch
20

Sw
it
ch
OF
F

br
an
ch
19

Li
gh
ts
OF

F

Li
gh
ts
ON

lo
ca
l

Sw
itc
hO

N
Sw

itc
hO

FF

H
ov
er
O
N
B
tn

H
ov
er
O
FF

B
tn

Le
av
eO

N
B
tn

Le
av
eO

FF
B
tn

Tu
rn
O
N
Li
gh
ts

Tu
rn
O
FF

Li
gh
ts

Ho
ve
rO
NB
tn

br
an
ch
11 Ho

ve
rO
FF
Bt
n

br
an
ch
12

Le
av
eO
NB
tn

br
an
ch
10

TurnONLights

loopBack

Le
av
eO
FF
Bt
n

br
an
ch
10

TurnOFFLights

loopBa
ck

NoH
ig
hl
ig

ht

High
li
gh
tO
NB

tn

High

li
gh
tO
FF

Btn

us
er

H
ov
er
O
N
B
tn

H
ov
er
O
FF

B
tn

Le
av
eO

N
B
tn

Le
av
eO

FF
B
tn

Tu
rn
O
N
Li
gh
ts

Tu
rn
O
FF

Li
gh
ts

🎄

on
e

on
e

m
an
y

on
e

on
e

m
an
y

F
ig
u
re

5.
8:

T
h
e
A
n
al
og
y
M
o
d
e
of

th
e
C
S
C
D
ra
w

fo
r
th
e
L
ig
h
ts

G
am

e
u
se
d
in

S
te
p
1
of

th
e
se
co
n
d
p
h
as
e.

126

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

gl
ob
al

O
pe
nG

at
es

Op
en
Ga
te
s

br
an
ch
12

In
t

Wa
it
in
g

Ga
te
Op
en
ed

lo
ca
l

O
pe
nG

at
es

G
o
2
P
a
r
k

B
a
c
k
2
M
S

G
o
2
J
u
n
g
le

B
a
c
k
2
P
a
r
k

G
o
2
W
F

B
a
c
k
2
J
u
n
g
le

G
o
2
P
o
n
d

B
a
c
k
2
W
F

G
o
2
L
a
k
e

B
a
c
k
2
P
o
n
d

G
o
2
T
e
r
m
in
a
l

Go2Park

br
an
ch
15

Back2MS

br
an
ch
14

Go2
Jun

gle

br
an
ch
18

Bac
k2P

ark

br
an
ch
15

Go
2W
F

bra
nch

21

Ba
ck
2J
un
gl
e

br
an
ch
18

Go
2P
on
d

branch
24

Ba
ck
2W
F

branch21

Go
2L
ak
e

br
an
ch
27

Ba
ck
2P
on
d

br
an
ch
24

Go
2T
er
mi
na
l

br
an
ch
30

Ma
in
St
re
et

Pa
rk

Ju
ng
le

Wa
te
rF
al

l

Po
nd

La
ke

Te
rm
in
al

us
er

G
o
2
P
a
r
k

B
a
c
k
2
M
S

G
o
2
J
u
n
g
le

B
a
c
k
2
P
a
r
k

G
o
2
W
F

B
a
c
k
2
J
u
n
g
le

G
o
2
P
o
n
d

B
a
c
k
2
W
F

G
o
2
L
a
k
e

B
a
c
k
2
P
o
n
d

G
o
2
T
e
r
m
in
a
l

on
e

on
e

m
an
y

m
an
y

on
e

on
e

Vi
ew

G
o
2
P
a
rk

B
a
c
k
2
M
S

G
o
2
Ju
n
g
le

B
a
c
k
2
P
a
rk

G
o
2
W
F

B
a
c
k
2
Ju
n
g
le

G
o
2
P
o
n
d

B
a
c
k
2
W
F

G
o
2
L
a
k
e

B
a
c
k
2
P
o
n
d

G
o
2
T
e
rm
in
a
l

O
pe
nG

at
es

F
ig
u
re

5.
9:

T
h
e
O
ve
ra
ll
m
o
d
e
of

th
e
C
S
C

so
lu
ti
on

to
th
e
M
P
-H

ik
in
g
ga
m
e
ch
al
le
n
ge

fr
om

S
te
p
2
of

th
e
se
co
n
d

p
h
as
e.

127

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

lo
ca
l

SS St
ar
t

S
t
a
r
t

In
t

Fl
oa
t

Po
in
t

St
ri
ng ?10

:1
0

Se
c

Go2Park

br
an
ch
15

Back2MS

br
an
ch
14

Go2
Jun

gle

br
an
ch
18

Bac
k2P

ark

br
an
ch
15

Go
2W
F

bra
nch

21

Ba
ck
2J
un
gl
e

br
an
ch
18

Go
2P
on
d

branch
24

Ba
ck
2W
F

branch21

Go
2L
ak
e

br
an
ch
27

Ba
ck
2P
on
d

br
an
ch
24

Go
2T
er
mi
na
l

br
an
ch
30

Ma
in
St
re
et

Pa
rk

Ju
ng
le

Wa
te
rF
al

l

Po
nd

La
ke

Te
rm
in
al

O
ut
pu
t

O
pe
nG

at
es

F
ig
u
re

5.
10
:
T
h
e
lo
ca
l
st
at
ec
h
ar
t
of

th
e
C
S
C

so
lu
ti
on

to
th
e
M
P
-H

ik
in
g
ga
m
e
ch
al
le
n
ge

d
on

e
in

S
te
p
2
of

th
e

se
co
n
d
p
h
as
e.

T
h
is
fi
gu

re
is
p
ro
v
id
ed

fo
r
b
et
te
r
v
is
ib
il
it
y
of

th
e
d
et
ai
ls
sh
ow

n
in

th
e
O
ve
ra
ll
m
o
d
e.

128

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure 5.11: The global statechart of the CSC solution to the MP-Hiking game
challenge from Step 2 of the second phase. This figure is provided for better

visibility of the details shown in the Overall mode.

129

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

gl
ob
al

G
ue
st
A
rr
iv
ed

Pa
rty
C
an
ce
lle
d

GuestArrived

LessThanT
hree

Th
re
eJ
oi
ne
d

Par
tyC

anc
ell

ed

br
an
ch
15

In
t

Wa
it
in
g

Par
ty
St
ar
te

d

Par
ty
Fa
il

ed

lo
ca
l

G
ue
st
A
rr
iv
ed

Pa
rty
C
an
ce
lle
d

B
u
y
P
iz
z
a

B
u
y
C
a
k
e

B
u
y
A
P
iz
z
a

P
2
A
T
M

B
u
y
A
C
a
k
e

P
S
2
A
T
M

B
u
y
G
r
o
c
e
r
y

G
S
2
A
T
M

B
u
y
A
G
r
o
c
e
r
y

T
a
k
e
A
B
u
s

H
o
m
e
O
r
P
a
r
ty

BuyPizza

br
an
ch
18

Bu
yC
ak
e

br
an
ch
20

P2A
TM

bra
nch

22

PS
2A
TM

br
an
ch
22

Buy
Gro

cer
y

bra
nch

27

Bu
yA
Pi
zz
a

branch1
8

BuyACake

br
an
ch
20

Bu
yA
Gr
oc
er
y

br
an
ch
27

GS
2A
TM

bran
ch22

Ta
ke
AB
us

br
an
ch
31

Ho
me
Or
Pa
rt
y

NotEno
ughMon

ey

Eno
ugh

Mon
ey

Ho
me

Pi
zz
aH
ou
se

Pa
st
ry

AT
M

Gro
ce
ry
St
or

e

Bu
sS
to
p

Pa
rt
yR
oo

m

us
er

B
u
y
P
iz
z
a

B
u
y
C
a
k
e

B
u
y
A
P
iz
z
a

P
2
A
T
M

B
u
y
A
C
a
k
e

P
S
2
A
T
M

B
u
y
G
r
o
c
e
r
y

G
S
2
A
T
M

B
u
y
A
G
r
o
c
e
r
y

T
a
k
e
A
B
u
s

H
o
m
e
O
r
P
a
r
ty

on
e

on
e

m
an
y

m
an
y

on
e

on
e

Vi
ew

B
u
y
P
iz
z
a

B
u
y
C
a
k
e

B
u
y
A
P
iz
z
a

P
2
A
T
M

B
u
y
A
C
a
k
e

P
S
2
A
T
M

B
u
y
G
ro
c
e
ry

G
S
2
A
T
M

B
u
y
A
G
ro
c
e
ry

T
a
k
e
A
B
u
s

H
o
m
e
O
rP
a
rt
y

G
ue
st
A
rr
iv
ed

Pa
rty
C
an
ce
lle
d

F
ig
u
re

5.
12
:
T
h
e
O
ve
ra
ll
M
o
d
e
of

th
e
so
lu
ti
on

C
S
C

to
th
e
ch
al
le
n
ge

d
on

e
in

S
te
p
3
of

th
e
se
co
n
d
p
h
as
e
(P

ar
ty

G
am

e)
.

130

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

lo
ca
l

SS St
ar
t

S
t
a
r
t

In
t

Fl
oa
t

Po
in
t

St
ri
ng ?10

:1
0

Se
c

BuyPizza

br
an
ch
18

Bu
yC
ak
e

br
an
ch
20

P2A
TM

bra
nch

22

PS
2A
TM

br
an
ch
22

Buy
Gro

cer
y

bra
nch

27

Bu
yA
Pi
zz
a

branch1
8

BuyACake

br
an
ch
20

Bu
yA
Gr
oc
er
y

br
an
ch
27

GS
2A
TM

bran
ch22

Ta
ke
AB
us

br
an
ch
31

Ho
me
Or
Pa
rt
y

NotEno
ughMon

ey

Eno
ugh

Mon
ey

Ho
me

Pi
zz
aH
ou
se

Pa
st
ry

AT
M

Gro
ce
ry
St
or

e

Bu
sS
to
p

Pa
rt
yR
oo

m

O
ut
pu
t

G
ue
st
A
rr
iv
ed

Pa
rty

C
an
ce
lle
d

F
ig
u
re

5.
13
:
T
h
e
lo
ca
l
st
at
ec
h
ar
t
of

th
e
so
lu
ti
on

C
S
C

to
th
e
ch
al
le
n
ge

d
on

e
in

S
te
p
3
of

th
e
se
co
n
d
p
h
as
e
(P

ar
ty

G
am

e)
.
T
h
is
fi
gu

re
is
p
ro
v
id
ed

fo
r
b
et
te
r
v
is
ib
il
it
y
of

th
e
d
et
ai
ls
sh
ow

n
in

th
e
O
ve
ra
ll
m
o
d
e.

131

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

global SS
StartStart

Int

Float

Point

String

?

10:10
Sec

GuestArrived

LessThanThree
ThreeJoined

PartyCancelled branch1
5

Int

Waiting

Pa

rty
Started

Pa
rtyFailed

Output

Figure 5.14: The global statechart of the solution CSC to the challenge done in Step
3 of the second phase (Party Game). This figure is provided for better visibility of

the details shown in the Overall mode.

132

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

gl
ob
al

R
op
e2
Tr
ap

R
op
e2
Pi
t

Ro
pe
2T
ra
p

br
an
ch
11

Ro
pe
2P
it

br
an
ch
10

Ro
pe
In
Pi

t

Ro
pe
In
Tr
ap

lo
ca
l

R
op
e2
Tr
ap

R
op
e2
Pi
t

G
o
2
Ju
n
g
le

G
o
2
P
o
n
d

G
o
2
B
u
rr
o
w

F
al
lI
n
P
it

F
al
lI
n
T
ra
p

G
o
U
p
R
o
ck

G
o
2
R
o
ck

G
o
2
W
F

Go2Jungle

br
an
ch
15

Go2
Pon

d

br
an
ch
17

Go
2B
ur
ro
w

br
an
ch
19

Fa
ll
In
Pi
t

branch
21

Fa
ll
In
Tr
ap

branch22

Go2Rock

br
an
ch
25

GoUpRock

br
an
ch
25

Go
2W
F

br
an
ch
28

Ho
te
l

Ju
ng
le

Po
nd

Bu
rr
ow

Pi
t

Tr
ap

Ro
ck

Wa
te
rF
al

l

us
er

G
o
2
Ju
n
g
le

G
o
2
P
o
n
d

G
o
2
B
u
rr
o
w

F
al
lI
n
P
it

F
al
lI
n
T
ra
p

G
o
U
p
R
o
ck

G
o
2
R
o
ck

G
o
2
W
F

on
e

on
e

m
an
y

m
an
y

on
e

on
e

Vi
ew

G
o2
Ju
ng
le

G
o2
Po
nd

G
o2
B
ur
ro
w

Fa
llI
nP
it

Fa
llI
nT
ra
p

G
oU

pR
oc
k

G
o2
R
oc
k

G
o2
W
F

R
op
e2
Tr
ap

R
op
e2
Pi
t

F
ig
u
re

5.
15
:
T
h
e
O
ve
ra
ll
M
o
d
e
of

th
e
so
lu
ti
on

C
S
C

to
th
e
ch
al
le
n
ge

d
on

e
in

S
te
p
4
of

th
e
se
co
n
d
p
h
as
e

(M
P
-R

op
e
G
am

e)
.

133

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

lo
ca
l

SS St
ar
t

S
t
a
r
t

In
t

Fl
oa
t

Po
in
t

St
ri
ng ?10

:1
0

Se
c

Go2Jungle

br
an
ch
15

Go2
Pon

d

br
an
ch
17

Go
2B
ur
ro
w

br
an
ch
19

Fa
ll
In
Pi
t

branch
21

Fa
ll
In
Tr
ap

branch22

Go2Rock

br
an
ch
25

GoUpRock
br
an
ch
25

Go
2W
F

br
an
ch
28

Ho
te
l

Ju
ng
le

Po
nd

Bu
rr
ow

Pi
t

Tr
ap

Ro
ck

Wa
te
rF
al

l

O
ut
pu

t
R
op

e2
Tr
ap

R
op

e2
Pi
t

F
ig
u
re

5.
16
:
T
h
e
lo
ca
l
st
at
ec
h
ar
t
of

th
e
so
lu
ti
on

C
S
C

to
th
e
ch
al
le
n
ge

d
on

e
in

S
te
p
4
of

th
e
se
co
n
d
p
h
as
e

(M
P
-R

op
e
G
am

e)
.
T
h
is
fi
gu

re
is
p
ro
v
id
ed

fo
r
b
et
te
r
v
is
ib
il
it
y
of

th
e
d
et
ai
ls
sh
ow

n
in

th
e
O
ve
ra
ll
m
o
d
e.

134

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

global SS
StartStart

Int

Float

Point

String

?

10:10
Sec

Ro
pe
2T
ra
p

branch11

Ro
pe
2P
itbranch10

Rop
eInPit Ro

peInTrap

Output

Figure 5.17: The global statechart of the solution CSC to the challenge done in Step
4 of the second phase (MP-Rope Game). This figure is provided for better visibility

of the details shown in the Overall mode.

135

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 6

Conclusion

This chapter provides the summary of the work presented in this thesis, dis-

cusses the answers to the research questions, suggests potential future directions,

and explains potential threats to validity of this study.

6.1 Summary

The increasing importance of concurrency and the problems associated with

learning and using this concept, requires rethinking the current practices of

teaching it [46, 68]. This thesis aims to simplify concurrency even for beginners

by making three main contributions:

1. Proposing a beginner-friendly concurrency paradigm called Communicat-

ing Statecharts (CSC).

2. Designing and developing CSCDraw, a visual Model-Driven Development

(MDD) tool to support CSC.

136

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

3. Designing a pilot study to learn the most effective way of using CSCDraw

to teach CSC to beginners.

CSC was designed based on five main principles chosen to reduce the barriers

for beginners, including using software visualization and MDD, pure functions,

Separation of Concerns (SoC), and raising the level of abstraction. To address

these principles, we adopted features from existing concurrency models (i.e.,

process calculi and the actor model), resulting in CSC’s atomic statecharts,

communicating through channels.

CSCDraw supports CSC by addressing the requirements necessary for making

this new paradigm accessible to beginners. In particular, in CSCDraw, be-

ginners cannot violate CSC principles (unintentionally) by drawing conflicting

configurations such as direct communication between statecharts. Other re-

quirements include the tool being beginner-friendly (easy to learn and use for

novices), supporting faithful code generation, conditional branches, and channel

cardinality.

The development process in CSCDraw using the CSC paradigm proceeds from

high level to low level; first, designing visual models/CSCs, then, defining the

communication among statecharts through messages and channels, followed by

generating the skeleton code from the designed models, and finally, completing

the generated code. In this regard, beginners face concurrency at a high-level

of abstraction, instead of dealing with it at the low-level while implementing

code.

Validating the usability of this paradigm is out of the scope of this thesis. How-

ever, a pilot study is designed to identify the most effective way of teaching CSC

137

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

to novice programmers. This short study is preliminary to more rigorous exper-

iments, and measures how well participants can achieve the hoped-for learning

outcomes. These learning outcomes include the first three levels of Bloom’s

Taxonomy (Remember, Understand, and Apply), as illustrated in Figure 1.12.

6.2 Research Questions

In this section, we discuss the answers to the research questions presented in

Section 1.2. The first two questions are answered, while answering the third

question is out of the scope of this thesis and is suggested as a future step in

Section 6.3.

6.2.1 RQ1. What does a beginner-friendly paradigm for

distributed user-interface programs look like?

Section 1.3 of this thesis investigates five main principles that contribute to sim-

plifying concurrency. Since we could not find any existing framework that ad-

dresses all of the identified principles, we propose a new concurrency paradigm,

called Communicating Statecharts (CSC) (presented in Section 1.5). Partic-

ularly, CSC puts together the features from existing paradigms that met our

principles as follows:

P1. Visualizing the system through adapting Harel’s statecharts, the most

commonly used modelling language in the case of interactive applica-

tions [34, 73]. We believe that visualization will contribute to simplification

138

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

by reducing the cognitive load, analogous to how it has helped students

correct misconceptions about object-oriented programming [85].

P2. Using Model-Driven Development (MDD) to generate code from visual

models. This code generation relieves beginners from repetitive coding

and can protect them from many flaws caused by typos and incomplete

understanding, preventing early frustration.

P3. Using pure functions and generating purely functional skeleton code based

on the designed models. Distributed concurrency can be expressed using

pure functions in the recently introduced architecture, Local-Global Model-

View-Update (LG-MVU) [78]. LG-MVU separates the program into local

(private to each user) and global (shared among every client connected to

the server) portions, all without losing the transparency afforded by pure

functions.

P4. Separation of Concerns (SoC) through isolation of models. In particular,

CSC uses message passing via channels. This method of communication

replaces direct transitions between statecharts. To achieve this isolation,

CSC adapts channels from process calculi [14] and asynchronous messages

with atomic models from the actor model [38].

P5. Raise abstraction to handle complexities by using Event-Driven Program-

ming (EDP). Specifically, EDP offers easier concurrency by increasing ab-

straction through using events instead of threads, and allows programmers

to make interactive applications such as games, which is a frequent strat-

egy used to motivate beginners [50]. CSC puts its focus on the design

of multi-player games, to further increase the engagement of EDP, and

139

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

exploit its success in making concurrency easier.

6.2.2 RQ2. How best to implement a design tool for the

paradigm from RQ1 to make it accessible to beginners?

Section 1.4 explains how existing tools could not address our principles. There-

fore, we gathered requirements for supporting CSC (described in Section 1.6).

Section 1.7 presents CSCDraw, our visual MDD tool that is designed and de-

veloped to address those requirements.

Specifically, CSCDraw address the requirements by:

R1. Enforcing CSC principles by preventing novices from drawing mod-

els conflicting with those principles, such as direct transitions between

different statecharts, which conflicts with Principle P3 (Pure Functions).

Furthermore, to both visually and functionally enforce Principle P4 (SoC)

CSCDraw provides two modes:

1. The overall mode illustrates the channels connected to a statecharts’

interfaces, with the model contents including states, transitions, and

synchronizing messages (as shown in Figure 1.10). This view allows

message specification and code generation.

2. The SCEditing mode, that allows the modification of states and tran-

sitions within a statechart (as shown in Figure 1.11).

R2. The tool being beginner-friendly by providing a user-friendly UI, sup-

porting modification guides, such as channel completion check, view func-

tion representation, and Analogy mode. (Measurement of this criteria is

140

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

out of the scope of this thesis.)

R3. Faithful code generation from the visual models (as proven in Chap-

ter 3).

R4. Supporting conditional branches similar to recent UML state machine

diagrams. These branches will translate into case expressions in the gen-

erated code.

R5. Visualizing cardinality of channels analogous to entity-relationship dia-

grams used in database design.

6.2.3 RQ3. How does the proposed paradigm from RQ1

compare to traditional paradigms for teaching beginners?

Answering this question requires a large-scale experiment that is planned to

be conducted in the future. In this regard, two sub-questions can help us to

prepare for this experiment:

RQ3.1: Chapter 5 presents the design of a pilot study that aims to answer

RQ3.1. In other words, this study works as a prelude to a more rigorous

experiment, suggested by RQ3.2, and targets identifying the best way of

teaching CSC through CSCDraw to beginning programmers.

More specifically, the designed pilot study assumes participants have no

prior coding knowledge in a text-based language including Elm. There-

fore, to prevent beginners from facing overwhelming materials at once, the

study is divided into two main phases. The first phase focuses on teaching

141

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

EDP-related concepts and state diagrams, while the second phase teaches

distributed concurrency through CSC and CSCDraw.

This study helps participants to reach the third level of Bloom’s Taxonomy

(Apply), as illustrated in Figure 1.12. The evaluation of this study is based

on measuring how well the expected learning outcomes are achieved.

RQ3.2: After learning the most effective way of teaching CSC by answering

RQ3.1, a more rigorous experiment can be conducted to answer RQ3.2.

Particularly, this bigger study can compare CSC’s effectiveness in teaching

beginners with one of the most commonly used concurrency frameworks,

Java Threads.

6.3 Next Steps

In this section, we discuss the future research directions and areas of improve-

ment.

6.3.1 Experiments on the Proposed Paradigm

The next step for this research is to measure CSC’s effectiveness in simplifying

concurrency for beginners which would be the answer to RQ3. This research

question inspires the sequence of the next steps as follows:

1. Conducting a pilot study that answers RQ3.1, which investigates the most

effective way of teaching CSC to novice programmers.

142

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

2. Conducting a more rigorous experiment that answers RQ3.2, which mea-

sures how effective CSC is in making concurrency easier to learn and use

for beginners compared to one of the most commonly used concurrency

frameworks, Java Threads.

3. Conducting a large-scale experiment that answers RQ3, which explores

whether the proposed paradigm is more successful in removing barriers in

concurrency contrasted to the previous works.

4. After validating the usability of the proposed paradigm, an interesting area

of research would be measuring the engagement of novice programmers in

implementing concurrent distributed applications using CSC and its tool.

6.3.2 Future Technical Steps

Once the efficacy of CSC and its tool is established through the experiments

suggested above, more generalizations can be included in the paradigm. For

example, different user types could appear as peers with different read-only

access levels to different statecharts. For instance, in the case of designing an

app for a virtual classroom, the messages a teacher can send to the statecharts

would be different than the messages a student can generate. In this case, a

database interface should be provided to store client/user information including

their accessibility permissions.

Additionally, complex applications could be decomposed into more than two iso-

lated statecharts, communicating through channels. The decomposition should

still keep the paradigm easy to learn and use by considering CSC principles.

143

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Furthermore, in future implementations, CSCDraw can be integrated into a

text-based structure editor. The main benefit of this integration is preventing

the graphical “documentation” from getting out-of-sync with the “implementa-

tion” code.

6.4 Threats to Validity

In this section, we first discuss the threats to the validity of the requirements

gathered for the design of CSCDraw (discussed in Section 1.6), then, we go

through the threats to the validity of the designed pilot study (presented in

Chapter 5).

6.4.1 Threats to Validity of the Proposed Tool

CSCDraw builds its SCEditing mode’s interface on the bones of our lab’s MDD

tool, SDDraw (introduced in Section 2.10). This implementation decision (I12.

SDDraw UI), which is implied from Requirement R2 (the tool being beginner-

friendly), is made based on the instructor’s report of successfully teaching a first-

year computer science course at McMaster University. The instructor mentioned

that once the students found out about SDDraw, they would not stop using it to

make the bones of their systems that were launched reaching over ten thousand

lines of code. The validity of the decision of expanding the SDDraw UI may be

threatened by:

External Validity: This observation is limited to the instructor’s report of

144

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

teaching a first-year computer science course at McMaster University. Sub-

sequently, the identified requirement might not apply to a broader student

population.

Internal Validity: The students’ eagerness to use SDDraw inspired us to ex-

pand the same UI. However, no data is collected to be analyzed and the

validity of this success is limited to the instructor’s observation. Addition-

ally, this observation may have been biased since the instructor also leads

the lab where SDDraw was created.

6.4.2 Threats to Validity of the Pilot Study

The designed pilot study involves two potential threats that may impact its

validity.

External Validity: Since the participants are self-selected to the study, i.e. by

registering themselves in a summer camp, there might be a bias on moti-

vated students participating in the experiment. Subsequently, the results

may not generalize to a broader beginner population. To mitigate this

threat, the summer camps should be advertised to diverse schools (with

different backgrounds), through online social media, and our outreach pro-

gram that engages teachers who can motivate a wider range of students to

participate.

Internal Validity: The gathered data might be affected by the challenge/quiz

difficulty levels, instead of their actual learning outcomes. However, to mit-

igate this threat, we ensured that the designed evaluations were consistent

145

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

in complexity.

146

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Appendix A

Pilot Study Instruments

This Appendix contains the scenarios and figures of the games and the eval-

uation questions used in the first (Appendix A.1) and second (Appendix A.1)

phases of the pilot study, described in Chapter 5.

A.1 Pilot Study’s First Phase Scenarios and

Figures

A.1.1 First Step Figures

Figures A.1, and A.2 illustrate the game used in Step 1 of the first phase.

A.1.2 Third Step Scenario and Figures

The story of the Santa Game used in Step 3 of the first phase is:

147

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.1: The Happy state of the Mood game, a mini-game to introduce SDDraw,
used in Step 1 of the pilot study’s first phase.

Figure A.2: The Sad state of the Mood game, a mini-game to introduce SDDraw,
used in Step 1 of the pilot study’s first phase.

148

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

The Christmas season has arrived and Santa has to deliver gifts to six

children. Santa starts his journey from his house (Figure A.3). He first

goes to the stable to get on his sleigh with the toys and flies to the city

center with his six elves (Figure A.4). Once he arrives at the city center

(Figure A.5), he turns on the Christmas tree’s lights to be able to see the

neighbourhoods (Figure A.6). Then, he flies to deliver the toys. Each time

he delivers a toy, one of his elves can join the party. After delivering a toy,

Santa can either go to the house’s porch, to refresh his energy levels, or to

the mall to take pictures with families during the day. Santa has to also

take care of his health. He will lose 20 or 50 hunger points when he delivers

a gift or meets people (Figure A.7). To get his full hunger points back he

can go to the porch of the house after delivering a toy and eat the cookies

and milk that the children left for him (Figure A.8). After refreshing, he can

either go to the mall, or keep delivering gifts (Figure A.9). After meeting

people in the mall, if Santa has some remaining toys, he will keep delivering

them (Figure A.10). Otherwise, if he has no toys remaining and also his

hunger points are not negative (Figure A.12), he can go to the party cave

to take his elves back home (Figure A.13). Otherwise, if he is hungry, he

can’t visit the party cave and he has to leave the city without his elves

(Figure A.11). Finally, he parks his reindeer in the stable and goes back to

meet Mrs. Claus at his house (Figure A.14).

149

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.3: The SantaHouse state of the Santa Game used in Step 3 of the pilot
study’s first phase.

Figure A.4: The Stable state of the Santa Game used in Step 3 of the pilot study’s
first phase.

150

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.5: The LightsOff state of the CityCenter of the Santa Game used in Step 3
of the pilot study’s first phase.

Figure A.6: The LightsOn state of the CityCenter of the Santa Game used in Step 3
of the pilot study’s first phase.

151

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.7: The Neighbourhood state of the Santa Game used in Step 3 of the pilot
study’s first phase.

Figure A.8: The Porch state of the Santa Game used in Step 3 of the pilot study’s
first phase.

152

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.9: Santa has full energy in the Porch state of the Santa Game, used in
Step 3 of the pilot study’s first phase.

Figure A.10: Santa has to deliver gifts after taking pictures with people in the Mall
state of the Santa Game, used in Step 3 of the pilot study’s first phase.

153

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.11: Santa can’t take his elves back due to low hunger points, so he has to
leave without his elves, after taking pictures with people. This is the Mall state of

the Santa Game, used in Step 3 of the pilot study’s first phase.

Figure A.12: Santa has enough energy to take his elves from the party cave and
leave the city after taking pictures with people. This is the Mall state of the Santa

Game, used in Step 3 of the pilot study’s first phase.

154

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.13: PartyCave of the Santa Game used in Step 3 of the pilot study’s first
phase.

Figure A.14: Santa has successfully returned home with his elves. This is the
SantaHouse state of the Santa Game, used in Step 3 of the pilot study’s first phase.

155

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

A.1.3 Fourth Step Scenario

The scenario used in Step 4 of the first phase is as follows:

We have a friend who has recently come back from an adventurous trip.

She describes an incident that she managed to tackle as follows:

From my hotel room, I had a breathtaking view of a lush jungle. Inspired

by its beauty, I decided to dedicate one of my days to exploring it. One day,

I was walking in the jungle, and taking pictures of the beautiful landscape

there. I passed through a pond covered with eye-catching lilies. A rabbit

jumped rapidly next to a tree that I was taking a snap of. When I moved

closer, I saw a burrow where that rabbit jumped into. Just then, I heard a

distant sound—something like rushing water. Intrigued, I moved forward,

scanning my surroundings carefully. Before long, a breathtaking waterfall

came into view. Excited, I hurried toward it, completely unaware of my

surroundings. Suddenly, a hidden pit appeared in my path, and I fell into

that. Luckily, there was a rope left in that hole, probably from people who

had encountered this situation before. Using the rope, I climbed up and

pulled myself onto a nearby rock. Finally, I accomplished taking a picture

of that amazing scenery gifted by nature, the waterfall. As the sun began

to set, I retraced my steps back through the jungle. This time, I was careful

to avoid the pit, and I made it safely back to the hotel.

156

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

A.2 Pilot Study’s Second Phase Scenarios and

Figures

A.2.1 Third Step Scenario and Figures

The story of the Party Game used in Step 3 of the second phase is as follows:

Each player starts from their home and initially has a hundred dollars

(Figure A.15). Before going to the party, each player can buy pizza (Fig-

ure A.16), cake (Figure A.17), or groceries (Figure A.18), which will cost

fifty, thirty-five, and twenty dollars, respectively. They can also access the

ATM, Figure A.19, from wherever they are, before going to the BusStop.

Each time they visit the ATM, they withdraw forty dollars. Going to the

party requires taking a bus which will cost them fifteen dollars, so they

won’t be able to catch the bus unless they have that money when they ar-

rive at BusStop (Figure A.20). If they don’t have the required money they

will have to walk back home (Figure A.21), and the party will be cancelled

(Figure A.22). Once a player arrives at the party room, they will wait until

two other people join them (Figure A.23). The party will start when the

third player arrives at the party room (Figure A.24).

A.2.2 Fourth Step Scenario

The scenario used in the Step 4 of the second phase is as follows:

157

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.15: The initial local state of the Party Game: Home state, used in Step 3
of the pilot study’s second phase.

Figure A.16: The PizzaHouse state of the Party Game, used in Step 3 of the pilot
study’s second phase. Players will lose fifty dollars by buying a pizza.

158

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.17: The Cake state of the Party Game, used in Step 3 of the pilot study’s
second phase. Players will lose thirty-five dollars by buying a cake.

Figure A.18: The GroceryStore state of the Party Game, used in Step 3 of the pilot
study’s second phase. Players will lose twenty dollars by buying groceries.

159

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.19: The ATM state of the Party Game, used in Step 3 of the pilot study’s
second phase. Players can take forty dollars each time they visit the ATM.

Figure A.20: The BusStop state of the Party Game, used in Step 3 of the pilot
study’s second phase. Players will lose fifteen dollars to catch a bus.

160

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.21: The BusStop state of the Party Game, used in Step 3 of the pilot
study’s second phase. Players will have to walk back home due to the low money.

This case will lead to the party getting cancelled.

Figure A.22: The PartyCancelled state of the Party Game, used in Step 3 of the
pilot study’s second phase.

161

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Figure A.23: The Waiting state of the Party Game, used in Step 3 of the pilot
study’s second phase. Players who made it to the PartyRoom have to wait until the

number of guests reaches three.

Figure A.24: The PartyStarted state of the Party Game, used in Step 3 of the pilot
study’s second phase. Reaching this state means at least three people have managed

their money to make it to the party.

162

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Remember our adventurous friend from the Rope game in the previous

phase? A group of friends, inspired by her story, sought her advice before

setting out to see the waterfall. She shared her guidance with them:

When you leave the hotel you will see the jungle right in front of you. As

you enter, the first thing that will catch your attention is a beautiful pond.

If you look carefully, you will spot a rabbit burrow beneath an old oak tree.

That is the only oak tree there, so you will find it easily. By then, you will

probably hear the sound of the waterfall. Be careful about the pit in your

way, and then you can find the waterfall.

The group of friends started their journey and everything happened as

planned, until they arrived at the burrow. They heard the sound of the

waterfall, and they started approaching, carefully. They were walking gin-

gerly, and finally, they saw the pit. They changed their path to avoid falling

down, but there was a trap dug by hunters on the other side. Some of them

fell into the trap and the others fell into the pit while they were panicking.

Fortunately, the rope was still inside the pit, so they could climb up and

stand on a big rock that was in between the trap and the pit. Then, they

threw the rope into the pit to allow the others to get out of that trap.

Thereafter, they moved forward to reach the waterfall.

A.2.3 Evaluation Quiz

The quiz used in Step 5 of the second phase consists of four multiple-choice

questions.

163

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

The questions and their answers (shown in bold font) are as follows:

Read the scenario of a multi-player adventure game called Open the Cave

and answer the questions.

A cave’s entrance is frozen because of the polar vortex, and our adven-

ture pieces of equipment are trapped. We had to leave them behind,

when we received the weather alert. Now, we need a team to gather

wooden sticks to build a fire and melt the ice. At least 150 sticks are

required to start the fire. The sticks can be collected from the jungle.

The team must start from our station, cross the lake, river, and castle,

and then reach the jungle. Each team member can carry up to 5 pieces

of stick each time they visit the jungle. After collecting sticks, they

must pass the old train station and the mountain, before reaching the

cave. Once 150 sticks are gathered, the fire will start and melt the ice.

Once the ice melts, we can retrieve our equipment pieces!

Q1. Consider the CSC of the Open the Cave Game. What are the global

state(s)?

a) Cave Blocked and Cave Opened

b) Cave and Jungle

c) Just Jungle

d) None of the above

Q2. Which transition can trigger a synchronizing message from the local

statechart to the global statechart?

164

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

a) Collect Sticks

b) Drop Sticks (in front of the cave)

c) Go to Jungle

d) None of the above

Q3. Choose the correct sentence.

a) Starting the fire is a local transition.

b) Going to the Jungle is a global transition.

c) The number of collected sticks is local.

d) The number of collected sticks is global.

Q4. Which code snippet refers to a correct conditional state in the global

statechart?

a)1 case globalModel.state of

2 CaveOpened ->

3 case globalModel.sticks >= 150 of

4 False ->

5 ({ globalModel | state = ←↩

CaveOpened }, Cmd.none , ←↩

Cmd.none)

6

7 True ->

8 ({ globalModel | state = ←↩

CaveBlocked }, Cmd.none ,←↩

Cmd.none)

165

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

9

10 otherwise ->

11 (globalModel , Cmd.none , Cmd.none)

b)1 case globalModel.state of

2 CaveBlocked ->

3 case localModel.sticks >= 150 of

4 False ->

5 ({ globalModel | state = ←↩

CaveBlocked }, Cmd.none ,←↩

Cmd.none)

6

7 True ->

8 ({ globalModel | state = ←↩

CaveOpened }, Cmd.none , ←↩

Cmd.none)

9

10 otherwise ->

11 (globalModel , Cmd.none , Cmd.none)

c) (This is the answer.)

1 case globalModel.state of

2 CaveBlocked ->

3 case globalModel.sticks >= 150 of

4 False ->

166

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

5 ({ globalModel | state = ←↩

CaveBlocked }, Cmd.none ,←↩

Cmd.none)

6

7 True ->

8 ({ globalModel | state = ←↩

CaveOpened }, Cmd.none , ←↩

Cmd.none)

9

10 otherwise ->

11 (globalModel , Cmd.none , Cmd.none)

d) None of the above.

167

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Bibliography

[1] D. Abramov. Redux: a framework in JavaScript, 2015. URL https:

//redux.js.org/. [Online; accessed 26-July-2024].

[2] S. Aggarwal et al. Modern web-development using ReactJS. International

Journal of Recent Research Aspects, 5(1):133–137, 2018.

[3] C. Alexander. The pattern of streets. Journal of the American Institute of

Planners, 32(5):273–278, 1966. doi: 10.1080/01944366608978208.

[4] J. Armstrong. CSP and Erlang Concurrency Model, 2018. URL

https://elixirforum.com/t/does-earlier-erlang-concurrency-

model-stem-from-csp/16905/5. [Online; accessed 22-May-2024].

[5] P. Armstrong. Bloom’s taxonomy. Vanderbilt University Center for Teach-

ing, pages 1–3, 2010.

[6] J. C. Baeten. A brief history of process algebra. Theoretical Computer

Science, 335(2-3):131–146, 2005.

[7] P. Baran. On distributed communications networks. IEEE Transactions

on Communications Systems, 12(1):1–9, 1964.

168

https://redux.js.org/
https://redux.js.org/
https://elixirforum.com/t/does-earlier-erlang-concurrency-model-stem-from-csp/16905/5
https://elixirforum.com/t/does-earlier-erlang-concurrency-model-stem-from-csp/16905/5

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

[8] H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace

analysis. In International Symposium on Formal Methods, pages 57–72.

Springer, 2011.

[9] J. A. Bergstra, A. Ponse, and S. A. Smolka. Handbook of Process Algebra.

Elsevier, 2001.

[10] J. Bézivin and O. Gerbé. Towards a precise definition of the OMG/MDA

framework. In Proceedings 16th Annual International Conference on Au-

tomated Software Engineering (ASE 2001), pages 273–280. IEEE, 2001.

[11] B. S. Bloom, M. D. Engelhart, E. J. Furst, W. H. Hill, and D. R. Krathwohl.

Taxonomy of Educational Objectives: The Classification of Educational

Goals. Handbook 1: Cognitive Domain. David McKay, New York, 1956.

[12] T. L. Booth. Sequential machines and automata theory / [by] Taylor L.

Booth. New York : Wiley, 1967.

[13] G. Bracha. The Dart programming language. Addison-Wesley Professional,

2015.

[14] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communi-

cating Sequential Processes. J. ACM, 31(3):560–599, jun 1984. ISSN 0004-

5411. doi: 10.1145/828.833. URL https://doi.org/10.1145/828.833.

[15] S. Callan. Concurrency in Elixir, 2021. URL https://elixirschool.com/

en/lessons/intermediate/concurrency. [Online; accessed 22-May-

2024].

169

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://doi.org/10.1145/828.833
https://elixirschool.com/en/lessons/intermediate/concurrency
https://elixirschool.com/en/lessons/intermediate/concurrency

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

[16] M. Carro, A. Herranz, and J. Marino. A model-driven approach to teaching

concurrency. ACM transactions on computing education, 13(1):1–19, 2013.

ISSN 1946-6226.

[17] M. C. Chen. Transformations of Parallel Programs in Crystal. In IFIP

Congress, pages 455–462, 1986.

[18] A. Church. A formulation of the simple theory of types. Journal of Symbolic

Logic, 5(2):56–68, 1940. doi: 10.2307/2266170.

[19] D. Crocker. Safe object-oriented software: the verified design-by-contract

paradigm. In Practical Elements of Safety: Proceedings of the Twelfth

Safety-critical Systems Symposium, Birmingham, UK, 17–19 February

2004, pages 19–41. Springer, 2004.

[20] E. Czaplicki. Elm: Concurrent FRP for functional GUIs. Senior thesis,

Harvard University, 30, 2012.

[21] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazieres, and R. Morris. Event-

driven programming for robust software. In Proceedings of the 10th work-

shop on ACM SIGOPS European workshop, pages 186–189, 2002.

[22] E. W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-

tion of programs. Communication of the ACM, 18(8):453–457, aug 1975.

ISSN 0001-0782. doi: 10.1145/360933.360975. URL https://doi.org/

10.1145/360933.360975.

[23] E. W. Dijkstra. On the Role of Scientific Thought, pages 60–66.

Springer New York, New York, NY, 1982. ISBN 978-1-4612-5695-3. doi:

170

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

10.1007/978-1-4612-5695-3 12. URL https://doi.org/10.1007/978-1-

4612-5695-3 12.

[24] N. Dilley and J. Lange. An Empirical Study of Messaging Passing Con-

currency in Go Projects. In 2019 IEEE 26th International Conference on

Software Analysis, Evolution and Reengineering (SANER), pages 377–387,

2019. doi: 10.1109/SANER.2019.8668036.

[25] S. E. V. and P. Samuel. Automatic Code Generation From UML State

Chart Diagrams. IEEE Access, 7:8591–8608, 2019. doi: 10.1109/

ACCESS.2018.2890791.

[26] U. Engberg and M. Nielsen. A Calculus of Communicating Systems

with Label Passing. DAIMI Report Series, 15, 07 2000. doi: 10.7146/

dpb.v15i208.7559.

[27] J. Eremondi. Set Constraints, Pattern Match Analysis, and SMT, pages

121–141. 05 2020. ISBN 978-3-030-47146-0. doi: 10.1007/978-3-030-47147-

7 6.

[28] D. R. Ferreira, A. Mendes, and J. F. Ferreira. How are contracts used

in android mobile applications? In Proceedings of the 2024 IEEE/ACM

46th International Conference on Software Engineering: Companion Pro-

ceedings, ICSE-Companion ’24, page 400–401, New York, NY, USA, 2024.

Association for Computing Machinery. ISBN 9798400705021. doi: 10.1145/

3639478.3643536. URL https://doi.org/10.1145/3639478.3643536.

[29] Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In

171

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1145/3639478.3643536

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, POPL ’96, page 372–385, New York, NY,

USA, 1996. Association for Computing Machinery. ISBN 0897917693. doi:

10.1145/237721.237805. URL https://doi.org/10.1145/237721.237805.

[30] C. Fournet, F. Le Fessant, L. Maranget, and A. Schmitt. JoCaml: A lan-

guage for concurrent distributed and mobile programming. In International

School on Advanced Functional Programming, pages 129–158. Springer,

2002.

[31] S. Fowler. Model-view-update-communicate: Session types meet the Elm

architecture. arXiv preprint arXiv:1910.11108, 2019.

[32] B. Hailpern and P. Tarr. Model-driven development: The good, the bad,

and the ugly. IBM systems journal, 45(3):451–461, 2006.

[33] S. Hansen and T. Fossum. Events not equal to GUIs. ACM SIGCSE

Bulletin, 36(1):378–381, 2004.

[34] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Com-

put. Program., 8(3):231–274, jun 1987. ISSN 0167-6423. doi: 10.1016/0167-

6423(87)90035-9. URL https://doi.org/10.1016/0167-6423(87)90035-

9.

[35] D. Harel and A. Naamad. The statemate semantics of statecharts. ACM

Transactions on Software Engineering and Methodology (TOSEM), 5(4):

293–333, Oct. 1996. ISSN 1049-331X. doi: 10.1145/235321.235322. URL

https://doi.org/10.1145/235321.235322.

172

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://doi.org/10.1145/237721.237805
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1145/235321.235322

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

[36] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable mem-

ory transactions. In Proceedings of the tenth ACM SIGPLAN symposium

on Principles and practice of parallel programming, pages 48–60, 2005.

[37] C. Hewitt. Actor model of computation: scalable robust information sys-

tems. arXiv preprint arXiv:1008.1459, 2010.

[38] C. Hewitt, P. B. Bishop, I. Greif, B. C. Smith, T. Matson, and R. Steiger.

Actor Induction and Meta-Evaluation. In P. C. Fischer and J. D. Ull-

man, editors, Conference Record of the ACM Symposium on Principles

of Programming Languages, Boston, Massachusetts, USA, October 1973,

pages 153–168. ACM Press, 1973. doi: 10.1145/512927.512942. URL

https://doi.org/10.1145/512927.512942.

[39] C. A. R. Hoare. Communicating sequential processes. Communication

of the ACM, 21(8):666–677, aug 1978. ISSN 0001-0782. doi: 10.1145/

359576.359585. URL https://doi.org/10.1145/359576.359585.

[40] C. A. R. Hoare et al. Communicating sequential processes, volume 178.

Prentice-hall Englewood Cliffs, 1985.

[41] P. Hudak. Conception, evolution, and application of functional program-

ming languages. ACM Computing Surveys (CSUR), 21(3):359–411, 1989.

[42] J. Hughes. Why functional programming matters. The Computer Journal,

32(2):98–107, 1989.

[43] Y. Jin, R. Esser, and J. W. Janneck. A method for describing the syntax

173

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://doi.org/10.1145/512927.512942
https://doi.org/10.1145/359576.359585

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

and semantics of UML statecharts. Software & Systems Modeling, 3:150–

163, 2004.

[44] A. C. Kay. The early history of smalltalk. SIGPLAN Not., 28(3):69–95,

Mar 1993. ISSN 0362-1340. doi: 10.1145/155360.155364. URL https:

//doi.org/10.1145/155360.155364.

[45] R. Kennaway and M. R. Sleep. Syntax and informal semantics of dyne, a

parallel language. In The Analysis of Concurrent Systems, page 222–230,

Berlin, Heidelberg, 1983. Springer-Verlag. ISBN 3540160477.

[46] L. Lamport. Teaching concurrency. SIGACT news, 40(1):58–62, 2009.

ISSN 0163-5700.

[47] A. Leff and J. Rayfield. Web-application Development using the Mod-

el/View/Controller Design Pattern. In Proceedings fifth IEEE International

Enterprise Distributed Object Computing Conference, volume 2001, pages

118 – 127, 02 2001. ISBN 0-7695-1345-X. doi: 10.1109/EDOC.2001.950428.

[48] L. Logrippo, M. Faci, and M. Haj-Hussein. An introduction to LOTOS:

learning by examples. Computer Networks and ISDN systems, 23(5):325–

342, 1992.

[49] Louis Mandel, Luc Maranget. JoCaml Manual, 2014. URL http://

jocaml.inria.fr/doc/concurrent.html. [Online; accessed 02-May-2024].

[50] A. Lukkarinen, L. Malmi, and L. Haaranen. Event-driven programming in

programming education: a mapping review. ACM Transactions on Com-

puting Education (TOCE), 21(1):1–31, 2021.

174

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://doi.org/10.1145/155360.155364
https://doi.org/10.1145/155360.155364
http://jocaml.inria.fr/doc/concurrent.html
http://jocaml.inria.fr/doc/concurrent.html

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

[51] S. Marlow. Parallel and concurrent programming in haskell. In Central

European Functional Programming School, pages 339–401. Springer, 2011.

[52] J. McCarthy. History of LISP, page 173–185. Association for Computing

Machinery, New York, NY, USA, 1978. ISBN 0127450408. URL https:

//doi.org/10.1145/800025.1198360.

[53] J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I. Levin.

LISP 1.5 programmer’s manual. MIT press, 1962.

[54] G. H. Mealy. A method for synthesizing sequential circuits. Bell System

Technical Journal, 34(5):1045–1079, 1955. ISSN 0005-8580.

[55] S. Mellor, T. Clark, and T. Futagami. Model-driven development - guest

editor’s introduction. Software, IEEE, 20:14– 18, 10 2003. doi: 10.1109/

MS.2003.1231145.

[56] S. J. Mellor, M. Balcer, and I. Jacoboson. Executable UML: A Foundation

for Model-Driven Architectures. Addison-Wesley Longman Publishing Co.,

Inc., USA, 2002. ISBN 0201748045.

[57] B. Meyer. Applying ‘Design by Contract’. Computer, 25(10):40–51, 1992.

doi: 10.1109/2.161279.

[58] B. Meyer. Systematic Concurrent Object-Oriented Programming. Com-

munication of the ACM, 36(9):56–80, sep 1993. ISSN 0001-0782. doi:

10.1145/162685.162705. URL https://doi.org/10.1145/162685.162705.

[59] Microsoft Agent. Microsoft Visio Code Generation Query, 2018. URL

https://answers.microsoft.com/en-us/msoffice/forum/all/how-

175

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://doi.org/10.1145/800025.1198360
https://doi.org/10.1145/800025.1198360
https://doi.org/10.1145/162685.162705
https://answers.microsoft.com/en-us/msoffice/forum/all/how-do-i-generate-code-from-visio-class-diagrams/39e26ef9-3b94-4687-a18e-e01417f30b53
https://answers.microsoft.com/en-us/msoffice/forum/all/how-do-i-generate-code-from-visio-class-diagrams/39e26ef9-3b94-4687-a18e-e01417f30b53

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

do-i-generate-code-from-visio-class-diagrams/39e26ef9-3b94-

4687-a18e-e01417f30b53. [Online; accessed 28-Jan-2025].

[60] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer, 1980. ISBN 3-540-10235-3. doi:

10.1007/3-540-10235-3. URL https://doi.org/10.1007/3-540-10235-3.

[61] R. Milner. Lectures on a calculus for communicating systems. In Interna-

tional Conference on Concurrency, pages 197–220. Springer, 1984.

[62] R. Milner. The Polyadic π-Calculus: a Tutorial. In F. L. Bauer, W. Brauer,

and H. Schwichtenberg, editors, Logic and Algebra of Specification, pages

203–246, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg. ISBN 978-

3-642-58041-3.

[63] R. Milner. Elements of interaction: Turing award lecture. Commu-

nication of the ACM, 36(1):78–89, Jan 1993. ISSN 0001-0782. doi:

10.1145/151233.151240. URL https://doi.org/10.1145/151233.151240.

[64] R. Milner. The definition of standard ML: revised. MIT press, 1997.

[65] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge

University Press, USA, 1999. ISBN 0521658691.

[66] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I.

Information and computation, 100(1):1–40, 1992.

[67] F. Montesi, C. Guidi, R. Lucchi, and G. Zavattaro. JOLIE: a Java Or-

chestration Language Interpreter Engine. Electronic Notes in Theoretical

Computer Science, 181:19–33, 06 2007. doi: 10.1016/j.entcs.2007.01.051.

176

https://answers.microsoft.com/en-us/msoffice/forum/all/how-do-i-generate-code-from-visio-class-diagrams/39e26ef9-3b94-4687-a18e-e01417f30b53
https://answers.microsoft.com/en-us/msoffice/forum/all/how-do-i-generate-code-from-visio-class-diagrams/39e26ef9-3b94-4687-a18e-e01417f30b53
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://answers.microsoft.com/en-us/msoffice/forum/all/how-do-i-generate-code-from-visio-class-diagrams/39e26ef9-3b94-4687-a18e-e01417f30b53
https://answers.microsoft.com/en-us/msoffice/forum/all/how-do-i-generate-code-from-visio-class-diagrams/39e26ef9-3b94-4687-a18e-e01417f30b53
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1145/151233.151240

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

[68] S. Nanz, F. Torshizi, M. Pedroni, and B. Meyer. Empirical assessment

of languages for teaching concurrency: Methodology and application. In

2011 24th IEEE-CS Conference on Software Engineering Education and

Training (CSEET), pages 477–481. IEEE, 2011. ISBN 9781457703492.

[69] K. Nygaard and O.-J. Dahl. The development of the SIMULA lan-

guages, page 439–480. Association for Computing Machinery, New York,

NY, USA, 1978. ISBN 0127450408. URL https://doi.org/10.1145/

800025.1198392.

[70] S. Oaks and H. Wong. Java Threads. O’Reilly Media, Inc., 2004. ISBN

0596007825.

[71] D. L. Parnas. On the criteria to be used in decomposing systems into

modules. Communication of the ACM, 15(12):1053–1058, Dec 1972. ISSN

0001-0782. doi: 10.1145/361598.361623. URL https://doi.org/10.1145/

361598.361623.

[72] P. Pasupathi, C. W. Schankula, N. DiVincenzo, S. Coker, and C. K. Anand.

Teaching Interaction using State Diagrams. Electronic Proceedings in The-

oretical Computer Science, 363:132–152, July 2022. ISSN 2075-2180. doi:

10.4204/eptcs.363.8. URL http://dx.doi.org/10.4204/EPTCS.363.8.

[73] B. Pérez, A. Rubio, and M. Zapata. A systematic review of code genera-

tion proposals from state machine specifications. Information and Software

Technology, 54:1045–1066, 10 2012. doi: 10.1016/j.infsof.2012.04.008.

177

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://doi.org/10.1145/800025.1198392
https://doi.org/10.1145/800025.1198392
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
http://dx.doi.org/10.4204/EPTCS.363.8

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

[74] C. Reade. Elements of functional programming. Addison-Wesley Longman

Publishing Co., Inc., USA, 1989. ISBN 0201129159.

[75] T. Reenskaug. MVC XEROX PARC 1978-79, 1979. URL https:

//folk.universitetetioslo.no/trygver/themes/mvc/mvc-index.html.

[Online; accessed 26-July-2024].

[76] W. Reisig. Petri nets: an introduction, volume 4. Springer Science &

Business Media, 2012.

[77] M. Richards. Software architecture patterns, volume 4. O’Reilly Media,

Incorporated 1005 Gravenstein Highway North, Sebastopol, CA, 2015.

[78] C. Schankula, S. Smith, and C. Anand. A functional event-driven frame-

work for simplified concurrent applications. In CASCON 2024, November

2024.

[79] S. Sendall and W. Kozaczynski. Model transformation: the heart and soul

of model-driven software development. IEEE Software, 20(5):42–45, 2003.

doi: 10.1109/MS.2003.1231150.

[80] C. Shannon and W. Weaver. The Mathematical Theory of Communication.

University of Illinois Press, Urbana, 1964.

[81] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr. N degrees of separa-

tion: Multi-dimensional separation of concerns. In Proceedings of the 21st

international conference on Software engineering, pages 107–119, 1999.

[82] L. Thabane, J. Ma, R. Chu, J. Cheng, A. Ismaila, L. P. Rios, R. Robson,

M. Thabane, L. Giangregorio, and C. H. Goldsmith. A tutorial on pilot

178

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://folk.universitetetioslo.no/trygver/themes/mvc/mvc-index.html
https://folk.universitetetioslo.no/trygver/themes/mvc/mvc-index.html

M.Sc. Thesis – S. Emdadi; McMaster University – Dept of Computing and Software

studies: the what, why and how. BMC medical research methodology, 10:

1–10, 2010.

[83] R. Virding, C. Wikström, M. Williams, and J. Armstrong. Concurrent

programming in ERLANG (2nd ed.). Prentice Hall International (UK)

Ltd., GBR, 1996. ISBN 013508301X.

[84] P. Wegner. Concepts and paradigms of object-oriented programming. ACM

Sigplan Oops Messenger, 1(1):7–87, 1990.

[85] I. Çetin. Visualization: a tool for enhancing students’ concept images of

basic object-oriented concepts. Computer Science Education, 23:1 – 23,

2013. doi: 10.1080/08993408.2012.760903.

179

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

	Abstract
	Dedication
	Notation
	Abbreviations
	Declaration of Academic Achievement
	Introduction
	Motivation
	Research Questions
	Principles for a Beginner-Friendly Concurrency Paradigm
	Limitation of Existing Tools
	Communicating Statecharts (CSC)
	Visual MDD Tool Requirements
	CSCDraw
	Evaluation
	Contributions
	Thesis Structure

	Background
	Event-Driven Programming
	Actor Model
	Process Calculi
	SCOOP
	Statecharts
	Semantics of Statecharts, UML State Machines, and Finite Automata
	Programming Languages and Paradigms
	Architectural Patterns
	Model-Driven Development (MDD)
	SDDraw
	TEASync
	Separation of Concerns (SoC)

	Design of CSC
	CSC Semantics
	Code Generation Preserves CSC Semantics

	CSCDraw's UI
	Overall Mode
	SCEditing Mode
	Validation

	Pilot Study
	Learning Outcomes
	Experiment Details

	Conclusion
	Summary
	Research Questions
	Next Steps
	Threats to Validity

	Pilot Study Instruments
	Pilot Study's First Phase Scenarios and Figures
	Pilot Study's Second Phase Scenarios and Figures

