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Lay Abstract 
As the global population ages, the importance of addressing healthy aging, healthcare burdens, and 

continuous vital sign monitoring are becoming increasingly clear. Digital healthcare solutions, such as 

wearables and smartphone devices, provide a cost-effective, computational means to assess key health 

indicators.  

The initial focus of our research was on gait analysis, specifically investigating whether variations in 

walking patterns could be effectively used for diagnostic purposes in dementia. Through a systematic 

review and meta-analysis, we sought to establish a clear link between specific gait patterns and various 

subtypes of dementia. Our study revealed that distinct gait signatures not only differentiate dementia 

patients from healthy individuals but also vary significantly across different dementia subtypes, such as 

Alzheimer’s disease, Lewy body disease, frontotemporal dementia, and vascular dementia. 

To address the challenges inherent in conducting literature reviews—which are crucial for research teams 

and entrepreneurs in the medical device and digital technology sectors—we developed software tools to 

automate the systematic review and meta-analysis process. This development was propelled by the advent 

of new AI technologies, including the release of OpenAI's models in November 2022. Our software, 

which utilizes ChatGPT and GPT-3.5 Turbo, automates the inclusion and exclusion of articles, and 

explores various screening strategies with a focus on improving key performance metrics through an 

ordinal prompt. 

Next, we explored the feasibility of smartphones as health-monitoring tools. Although smartphones 

contain powerful inertial sensors—accelerometers, gyroscopes, and magnetometers—ensuring consistent 

data quality and avoiding manual labeling remain significant hurdles. We trained deep learning models to 

classify human activities from these sensors. While these models achieved strong accuracy in controlled 

datasets, we observed notable domain shift challenges when applying them to new data, hindering 

generalization. Nevertheless, our work here underscores the promise of refining data preprocessing and 

model adaptation techniques to improve consistency and applicability across diverse devices and settings. 

Overall, our findings underscore the promise of digital health technologies and AI-driven approaches to 

streamline research and improve real-world healthcare monitoring. By addressing obstacles in clinical 

gait analysis, systematic literature reviews, and smartphone-based activity recognition, we lay the 

groundwork for more accessible and efficient healthcare solutions in an aging society. 
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Abstract 
Background: As the global population ages, the imperative to address challenges related to healthy 

aging, healthcare burdens, and continuous vital sign monitoring intensifies. Despite numerous digital 

healthcare solutions, gaps persist in their effective implementation for diagnostic and monitoring 

applications. This thesis presents innovative tools designed to bridge these gaps, enhancing both the 

diagnostic capabilities and efficiency of health monitoring technologies. 

Objectives: The primary goals of this thesis are threefold: (1) to establish the diagnostic utility of gait 

signatures for identifying different subtypes of dementia; (2) to enhance the efficiency of systematic 

literature reviews through automated tools; and (3) to develop and validate models for human activity 

recognition using smartphone sensor data, addressing challenges such as manual annotation and sensor 

heterogeneity. 

Methods: We conducted a systematic review and meta-analysis to investigate specific gait patterns 

among individuals with dementia and healthy controls, thereby uncovering subtype-specific gait 

signatures. We also designed software, leveraging ChatGPT and GPT-3.5 Turbo, to automate critical 

steps of systematic reviews, optimizing for efficiency and screening performance via different prompting 

strategies. Finally, we created a smartphone application for gait and activity monitoring, training machine 

learning models on multi-sensor data to classify daily activities. 

Results: Our meta-analysis confirmed that gait parameters reliably distinguish dementia subtypes, 

including Alzheimer’s disease and vascular dementia. The AI-based systematic review tools significantly 

reduced screening time while maintaining acceptable accuracy, demonstrating the potential of automated 

evidence synthesis. In the realm of smartphone-based HAR, our models performed robustly in controlled 

datasets, yet encountered generalization challenges on new data due to sensor heterogeneity and domain 

shift. These findings highlight both the promise and the practical complexities of scaling smartphone-

based monitoring solutions. 

Conclusion: Integrating advanced computational approaches and AI into healthcare can enhance 

diagnostic precision, streamline systematic reviews, and expand smartphone-based health monitoring 

capabilities. While our models demonstrated strong initial performance, real-world applications require 

careful consideration of data variability and domain shift. Future research should focus on refining 

domain adaptation techniques, ensuring more diverse data coverage, and further validating these methods 

in clinical and community settings. 
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1. Thesis Introduction 
In the late 20th century, concerns about overpopulation were prominently featured in discussions and 

literature, notably in "The Population Bomb," a 1968 book by Stanford University professor Paul R. 

Ehrlich. This publication echoed Malthusian theory, which posited that population growth would outpace 

agricultural production, leading to widespread scarcity and hardship. While Malthusian predictions 

influenced policies like China's one-child policy, aimed at controlling population growth, these measures 

were part of a broader global response to the perceived consequences of unchecked population expansion. 

Today, however, the global demographic landscape tells a different story. Instead of 

overpopulation, many regions face what could be termed an "underpopulation cliff," characterized by 

declining birth rates and increased life expectancy. This shift is particularly pronounced in countries like 

Japan, where the number of older adults is projected to exceed that of young adults by as early as 2030. 

This trend threatens the balance of social support systems, as a smaller working-age population is left to 

support a growing number of elderly. 

In this chapter, we outline the motivations for this thesis, beginning with the pressing 

demographic and economic challenges associated with aging populations. We introduce the disparities 

between lifespan and healthspan, and explore the ongoing advancements in gait monitoring and digital 

wearable technologies. Next, we describe the current state of the art in implementing health policy and 

practice through systematic reviews, and distinguish these methods from more recent developments. 

Lastly, we highlight the contributions of our research and the structure of this thesis, indicating how our 

work intersects with these critical areas and serves to address key challenges. 

1.1 Research Motivations 
1.1.1 Global Responses to Aging Populations, Policy Initiatives and Research Funding: In developed 

countries, increased life spans have been largely achieved through advancements in medical science, 

enhanced childhood nutrition, and prolonged periods of peace [1], [2], [3]. These gains reflect significant 

progress in policy, public health, and technological development. However, these extended lifespans have 

been accompanied by declining birth rates, shifting demographic structures dramatically. Such 

demographic changes pose substantial challenges, as younger populations are crucial for sustaining labor 

markets, infrastructure development, pension contributions, and overall economic health [4], [5]. 

The trend towards an aging population carries significant public health implications as well, 

evident in the evolving demographic pyramids of various countries. In nations with large aging 

populations like Japan, Italy, and Germany, the pressure on healthcare systems is becoming increasingly 
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apparent [6], [7], [8], [9]. These pressures are characterized by rising healthcare costs, greater proportions 

of Gross Domestic Product (GDP) being allocated to healthcare services, and growing national debt 

driven by the need to support expansive social welfare systems [10]. 

Governments and international organizations are actively responding to these demographic shifts 

with a range of policy initiatives and increased funding for aging-related research. Japan’s "Society 5.0" 

initiative [11], for example, integrates advanced technologies like robotics and Artificial Intelligence (AI) 

to enhance elderly care. Similarly, countries like Germany and Italy are overhauling their pension systems 

and investing in community-based services to support active aging and manage healthcare expenditures 

effectively [12].  

On a broader scale, the European Union, through its Horizon Europe program, is increasing 

support for research aimed at improving elderly life quality and the sustainability of health systems [13]. 

In North America, the U.S. National Institute on Aging (NIA) and Canada’s Canadian Institutes of Health 

Research (CIHR) have expanded their funding focuses to encompass geriatrics and longevity studies, with 

CIHR’s "Healthy Aging" initiative specifically aimed to enhance the health span of older adults and 

support age-friendly communities [14], [15]. In Canada, seniors aged 65 and older represent nearly one in 

five people, a proportion expected to rise to nearly a quarter by 2030 [16]. This growing demographic is 

already placing pressure on healthcare and long-term care systems, prompting nationwide investments in 

assistive technologies, telehealth, and age-inclusive policy reforms. In response, governments and 

research agencies are increasingly exploring digital health tools, such as wearable sensors, remote 

monitoring systems, and artificial intelligence, as part of their aging strategies. These innovations offer 

not only a means to deliver more scalable care but also an opportunity to accelerate the translation of 

research into real-world clinical practice. 

1.1.2 Accelerating Health Research Translation with AI and Digital Technologies:  Despite the 

growing number of global initiatives aimed at addressing the challenges posed by aging populations, a 

critical gap remains in the speed at which research findings are translated into clinical practice and policy. 

Literature in implementation science highlights that the conventional pathway from discovery to practice 

extends up to 17 years, which is at increasing odds with the urgent needs of today's rapidly aging societies 

[16], [17]. This research seeks to expedite this process by leveraging advancements in digital wearables 

and science implementation technology. It focuses on developing practical solutions for gait monitoring, 

activity recognition, and automating the systematic review process—each a critical piece in addressing 

current demographic shifts. 
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1.2 Extending Healthspan Through Digital Monitoring and 

Prevention 
1.2.1 Introduction to Lifespan vs. Healthspan: The need to differentiate between 'lifespan'—the total 

number of years one lives—and 'healthspan'—the period during which an individual remains healthy and 

active—is crucial in addressing the challenges of an aging population [18], [19], [20].  While medical 

advancements have successfully extended lifespan, they have not equally improved healthspan. Many 

older adults endure debilitating conditions that impair their mobility, diminish their sense of agency, and 

reduce their overall life satisfaction. These issues are often compounded by chronic comorbidities, 

making the latter years of life less fulfilling and significantly more costly in terms of healthcare [21], [22]. 

1.2.2 Economic Implications of the Healthspan Gap: From an economic perspective, the costs 

associated with long-term care, chronic disease management, and end-of-life care are immense and 

growing, reflecting a significant burden on healthcare systems worldwide. For instance, the global cost of 

dementia care, including Alzheimer’s disease (AD), Lewy body dementia (LBD), frontotemporal 

dementia (FTD), and vascular dementia (VaD), is projected to reach 1.7 trillion by 2030, driven by the 

needs for continuous medical treatment, support systems for patients and caregivers, and specialized 

residential care facilities [23], [24]. These escalating costs highlight the urgent need for effective 

management strategies that extend healthspan and reduce the financial strain on public and private 

healthcare sectors. 

The World Health Organization (WHO) estimates that every dollar spent scaling up interventions 

to prevent noncommunicable diseases returns multiple folds in health cost savings and productivity gains 

[25]. Effective public health programs, such as childhood vaccinations and tobacco control, have 

demonstrated substantial economic benefits. For instance, the global polio eradication initiative has 

significantly reduced healthcare costs worldwide [26]. In the United States, routine childhood 

immunizations are estimated by the Centers for Disease Control and Prevention (CDC) to save about 

$3.24 trillion in direct and societal costs for cohorts born between 1994 and 2023 [27]. Additionally, 

California’s tobacco control program has dramatically lowered hospital admissions for heart attacks and 

strokes [28], saving billions in healthcare costs. These examples highlight the profound impact of 

preventive healthcare on both health outcomes and economic burdens. As these conditions progress, they 

often lead to notable declines in physical function, particularly mobility and balance, making them prime 

candidates for monitoring through digital tools like gait analysis. 
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1.2.3 Technological Innovations as Solutions: Just as policy adjustments are critical in managing the 

economic challenges of aging populations, technological innovations in healthcare represent a parallel 

strategy that has proven effective in mitigating health and financial burdens [29]. Research by [30] in 

Nature Reviews Cardiology demonstrates how smart wearables can reduce hospital readmissions for 

patients with coronary artery disease by facilitating continuous monitoring and timely interventions. 

Likewise, a study by [31] shows that wearables and digital devices can enhance medication adherence 

through timely reminders, thus minimizing future healthcare expenditure. 

Finally, the proliferation of computing devices has significantly enhanced the scope of digital 

health monitoring. State-of-the-art AI models, such as Convolutional Neural Networks (CNNs), now rival 

dermatologists in detecting melanoma—a capability enhanced by the widespread availability of 

smartphone cameras [32], [33]. Similarly, SpO2 sensors incorporated in smartwatches provide vital data 

on blood oxygen levels, aiding in the detection of respiratory or cardiovascular anomalies [34], [35]. 

These advancements and more exemplify a broader trend toward proactive and preventive healthcare, 

leveraging everyday technology to improve health outcomes and reduce systemic costs. 

1.3 Evolution of Gait Analysis in Dementia Research 
1.3.1 Connection Between Gait and Neurological Health: Gait serves as a functional indicator of 

neurological health due to its reliance on the brain's complex coordination. Walking engages multiple 

brain regions, including the motor cortex, cerebellum, and basal ganglia, each critical for orchestrating 

fluid motor activities [36]. Disturbances in these areas due to neurological disorders manifest as distinct 

changes in gait. For example, cerebellar neurodegeneration can lead to ataxia, characterized by unsteady 

and uncoordinated movements [37]. Similarly, impairments in the frontal lobe, often associated with 

various types of dementia, can affect executive functions and motor control, resulting in altered stride 

length, speed, and symmetry. Recent studies have even elevated the importance of walking speed, 

proposing it as the 'sixth vital sign' due to its strong correlation with critical health outcomes such as 

survival rates and recovery success [38]. 

1.3.2 Historical Overview and Technological Advancements: The well-established connection between 

neurology and gait analysis underpins our laboratory's research focus [39], [40], [41], [42]. Gait analysis 

has been a fundamental tool in neurology for decades, offering critical insights into the functionality of 

the central nervous system [43]. Traditionally, gait irregularities associated with neurological disorders 

like Parkinson’s disease, multiple sclerosis, and stroke were observed visually by clinicians [44]. 

However, methodological advancements have led to the adoption of more sophisticated techniques such 

as electronic walkways [45] and motion capture systems [46].  
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These improvements, driven by advancements in computational hardware and software, have 

significantly enhanced the precision of gait analysis systems [47], [48], [49], [50]. Modern gait analysis 

devices now employ a diverse array of sensors, wearables, and software algorithms to capture and analyze 

detailed gait parameters. Such technological progress has facilitated the detection of minute gait 

abnormalities, previously imperceptible, thereby enabling earlier and more accurate predictions. 

1.3.3 Heterogeneity in Gait Analysis Instrumentation and Outcome Data: The evolution of gait analysis 

tools over the past two decades is marked by increasingly sophisticated devices that offer greater 

precision and integration—from simple pedometers to complex motion capture systems that provide 3D 

kinematic and kinetic feedback. A table summarizing key advancements in gait analysis devices 

illustrates how each generation of technology has enhanced the utility and effectiveness of gait analysis in 

healthcare settings.  

Table 1.1 Advancements in Gait Analysis Devices Over the Past Two Decades. 

Device Type Technological Features  Application in healthcare 

Pedometers Basic Step Counting Initial quantitative assessment of 

walking activity 

Electronic Walkways Pressure sensors, integrated timing Detailed gait cycle analysis 

Wearable Sensors Accelerometers, gyroscopes Real-time gait monitoring 

Motion Capture Systems 3D kinematic and kinetic analysis Comprehensive gait analysis in 

research labs 

Smart Insoles Pressure distribution mapping, 

wireless data transmission 

Continuous monitoring, feedback 

for gait correction 

In addition to the diversity in instrumentation, gait analysis also encompasses a wide range of 

research focuses and outcomes that vary among studies. Clinicians and researchers often measure various 

aspects of mobility through different protocols, such as activity recognition, spatiotemporal parameters, 

the timed up and go test, as well as tasks performed under single and dual-task conditions. The table 

below demonstrates the variety of different gait analysis methods. 
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Table 1.2 Gait Analysis Outcomes Over the Past Two Decades. 

Outcome Type Measurement Protocol Relevance to Clinical Research 

Spatiotemporal Parameters Stride length, speed, cadence Fundamentals of gait mechanics 

Timed Up and Go (TUG) Test Time taken to stand up, walk, 

return, sit down 

Mobility and balance assessment 

Single-task Gait Testing Walking while performing no 

additional tasks 

Baseline mobility assessment 

Dual-task Gait Testing Walking while performing a 

cognitive or motor task 

Cognitive-motor interference 

assessment 

Activity Recognition Machine learning models 

analyzing sensor data 

Classifying types of physical 

activity 

1.3.4 From Laboratory to Everyday Use: Despite the advancements and diversification in gait analysis 

tools, traditional gait analysis has often been overlooked and remains confined to specialized settings with 

costly equipment. A shift to using ubiquitous technologies like smartphones, which are equipped with 

sensors such as accelerometers and gyroscopes, would make gait analysis more accessible, facilitating its 

application in more naturalistic and everyday environments. In later chapters, we will discuss the 

development of a smartphone application for gait and activity monitoring, an advancement that utilizes 

everyday technology to support health monitoring. This transition expands the potential for continuous, 

real-life data collection, which would enable early diagnosis and real-time disease progression 

monitoring. We also tackle challenges like manual data annotation and sensor heterogeneity, showing 

how AI can simplify and improve the efficiency of health data analysis. 

1.4 Advancements in Systematic Review Processes 
1.4.1 Introduction to Systematic Reviews in Biomedical Research: As we explore advancements in 

wearables and digital health technologies, it becomes essential to address how these innovations are 

integrated into healthcare practice. Systematic reviews, positioned at the top of the evidence hierarchy, 

are crucial for health research translation. These comprehensive analyses synthesize vast quantities of 

research publications, establishing clinical guidelines, informing policy decisions, and identifying areas 

needing further investigation [51]. Given the exponential growth in biomedical research, systematic 

reviews are more critical than ever in managing the deluge of information and ensuring that findings are 

accurately incorporated into medical practice and policy development. 

1.4.2 Variability in Systematic Review Approaches: Systematic reviews vary significantly in scope, 

methodology, and application, allowing researchers and policymakers to select a review type that best fits 
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their specific needs. For instance, a meta-analysis may be used to derive precise effect sizes from 

quantitative data in clinical trials, while a scoping review could be used to map out the breadth of research 

and identify gaps in a newly emerging field [52], [53], [54]. To illustrate the range and utility of these 

review types, the following table categorizes some of the most common systematic reviews utilized in 

biomedical research, showcasing their distinct methodologies and applications. 

Table 1.3 Types of Systematic Reviews in Biomedical Research 

Review Type Description 

Narrative Reviews Provide a qualitative synthesis and broad overview of a field, using less 

structured methodologies. 

Scoping Reviews Aim to map the key concepts, types of evidence, and main sources in a research 

area, often to identify gaps. 

Meta-Analyses Combine results from quantitative studies statistically to offer a precise estimate 

of treatment effects or risks. 

Rapid Reviews Offer a quicker, less comprehensive analysis, often employed in policy making 

during urgent situations. 

1.4.3 Evolution of Systematic Review Methodologies and Key Contributors: Systematic review 

methodologies are entrenched in the principles of evidence-based medicine, with the Cochrane 

Collaboration playing a pivotal role since its establishment in 1993. To date, the Cochrane Handbook has 

provided the most comprehensive and up-to-date guidelines on conducting extensive database searches, 

managing study selection, extracting data, and analyzing results [55]. Building on the Cochrane protocol, 

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines have 

improved the transparency and reproducibility of systematic reviews by mandating detailed flow 

diagrams for documentation–now a standard requirement for many journal submissions [56], [57]. For the 

specific needs of nursing and allied health fields, the Joanna Briggs Institute (JBI) tailors its protocols to 

encompass various forms of evidence synthesis, including guidelines for scoping reviews [58]. 

Meanwhile, the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) protocol focuses on 

observational studies and prescribes specific criteria for study selection and validity assessment that 

maintains the integrity of the overall findings [59].  

Technological advancements have complemented these structured methodologies to further 

streamline the systematic review process. At the outset, PROSPERO allows researchers to pre-register 

their review protocols, promoting transparency and reducing redundancy by preventing duplication. In the 

intermediary stage, tools like Covidence and Rayyan help with study screening and data management, 
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allowing multiple researchers to work on a single dataset [60]. Towards the final stages, Review Manager 

(RevMan, Cochrane Collaboration) handles data analysis and visualization [61]. The software supports 

the meta-analysis phase by providing statistical tools for calculating effect sizes, such as standard mean 

difference, odds ratio and risk ratio. 

1.4.4 Systematic Review Challenges and the Transformative Impact of AI Technologies: Despite the 

advancements in systematic review methodologies and supporting technologies, significant challenges 

persist. Traditional systematic reviews involve extensive manual efforts, from literature search and 

screening to data extraction and quality assessment [62]. Each step must be meticulously performed to 

ensure the reliability of the review, often requiring multiple reviewers and months of work [63]. This 

intensive nature poses significant barriers, particularly when rapid syntheses of research findings are 

necessary, as seen during health emergencies like pandemics [54]. Moreover, despite efforts to mitigate 

bias, the subjectivity inherent to manually screening thousands of studies can lead to inconsistencies in 

study selection and data interpretation, potentially affecting the outcome of the review. 

Given the extensive challenges inherent in traditional systematic review processes, the integration 

of AI, machine learning (ML) and natural language processing (NLP) offers a transformative shift. 

Initially, researchers tried techniques such as support vector machines (SVMs) and random forests (RFs) 

to automate parts of the screening process [47], but these early models often struggled with accuracy and 

scalability [64], [65]. Recently, it has become feasible to employ more sophisticated methods, driven by 

the release of Large Language Models (LLMs) by organizations such as OpenAI and Hugging Face [66], 

[67]. Looking ahead, as computational power becomes more accessible and model capabilities expand, 

extending AI to tasks such as literature screening, data extraction, and even the qualitative synthesis of 

studies will significantly reduce the time and labor required for research translation. 

1.5 Research Contributions 
1.5.1 A Convergent Approach to Digital Health: This thesis explores interconnected projects that 

advance healthcare delivery and research through the application of emerging technologies. Focused on 

developing practical solutions, this research aims to bridge the gap between lifespan and healthspan, 

aligning technological advancements with the immediate needs of an aging global population. The key 

contributions below highlight the impact and scope of this work. 

1.5.2 Systematic Review and Meta-Analysis of Gait Signatures in Dementia Subtypes: This project 

uniquely contributes through the systematic review and meta-analysis of gait parameters across different 

dementia subtypes. Our findings revealed distinct gait patterns that could improve diagnostic precision 
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and facilitate the differentiation of subtypes. Notably, while the majority of recent studies have centered 

on Alzheimer's Disease (AD), our research highlighted a substantial gap concerning non-AD dementia 

subtypes. These subtypes remain understudied and susceptible to misdiagnosis, underscoring the urgent 

need for more focused research and increased funding to enhance diagnostic capabilities. 

1.5.3 Development and Validation of LLM Tools for Systematic Review Automation: This work 

uniquely contributes through the development and testing of automation tools for systematic review using 

low-cost LLMs. Our web application used Retrieval Augmented Generation (RAG) to automate several 

stages of article screening and data extraction. We evaluated the performance of the tool by comparing 

GPT-3.5 Turbo’s responses with manual responses obtained by human reviewers across three different 

systematic review topics. Notably, the model exhibited considerable efficiency gains and showed promise 

for handling both title-abstract and full-text articles, achieving high performance across a broad spectrum 

of evaluation metrics. Further work demonstrated the capability of specialized prompts to maximize the 

sensitivity and specificity of the generated responses. 

1.5.4 Smartphone Application for Gait and Activity Monitoring: This final project marks a significant 

contribution through the development of a smartphone application that captures naturalistic human gait 

data. Our application uses IMUs embedded in smartphones to collect data on user movement patterns and 

activities. We benchmarked our system against established market IMUs, and incorporated machine 

learning models—including densely connected networks, Long Short-Term Memory (LSTM), and Gated 

Recurrent Units (GRU)—to analyze data from embedded IMUs. Our proposed system demonstrated 

remarkable distinguishing power on training data, achieving high performance across multiple evaluation 

metrics, and shows strong promise for real-world, gait-based health monitoring applications. 

1.6 Thesis Organization 
1.6.1 Chapter 1. Introduction and Research Motivations: This chapter sets the stage for the thesis by 

introducing the evolving demographic trends, particularly the challenges posed by aging populations and 

the resultant health and economic impacts. It details the motivation behind the research, highlighting the 

need for advancements in health technology to address the disparities between lifespan and healthspan. 

The chapter also contextualizes the role of systematic reviews in translating health research into practice, 

paving the way for a discussion on the integration of AI technologies. 

1.6.2 Chapter 2. Dementia and Gait Systematic Review and Meta-Analysis: This chapter presents the 

systematic review and meta-analysis that underpins the thesis, outlining the methodology used to select 

and analyze studies investigating gait patterns in dementia patients versus healthy controls. The findings 
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from this review show signs of distinctive gait signatures associated with various dementia subtypes, 

highlighting the diagnostic potential of gait analysis. 

1.6.3 Chapter 3. Evaluating the Efficacy of Large Language Models for Systematic Review and Meta-

Analysis: Chapter 3 investigates the development and validation of AI tools aimed at automating the 

systematic review process. This section examines the use of LLMs to improve the efficiency and accuracy 

of literature screening, presenting comparative studies of AI and human performance in screening tasks. 

1.6.4 Chapter 4. Advancing Few-Shot Systematic Review Inclusion with GPT and Scalable Prompt 

Engineering: Building on the previous chapter, Chapter 4 examines advanced techniques in AI, 

specifically focusing on few-shot learning and scalable prompt engineering within GPT models. This 

chapter showcases how these technologies can further refine the systematic review process, making it 

even more efficient and adaptable to various scenarios. 

1.6.5 Chapter 5. Smartphone Application for Human Activity Recognition: Chapter 5 describes the 

development and implementation of the smartphone application designed to monitor gait and other 

physical activities. It covers the technical aspects of the app, including the use of smartphone sensors and 

the algorithmic processing of sensor data. The chapter also discusses the results of preliminary trials and 

the app’s potential in real-world settings for early diagnosis and continuous monitoring of neurological 

health. 

1.6.6 Chapter 6. Smartphone Sensor Data for Human Activity Recognition: Building on Chapter 5, 

Chapter 6 conducts a literature review of automated labeling methods and evaluates three deep learning 

models—feed-forward neural networks, LSTM, and GRU—using publicly available datasets. While these 

models show strong performance in controlled settings, the chapter also highlights the challenges of 

domain shift and sensor heterogeneity when applying them to new datasets. 

1.6.7 Chapter 7. Conclusion and Future Directions: The final chapter synthesizes the findings from all 

previous chapters, discussing the overall contributions of this thesis to the field of digital health and 

biomedical engineering. It reflects on the limitations encountered during the research and proposes future 

directions for expanding the scope of AI applications in healthcare, particularly in managing and 

monitoring age-related conditions. 
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2.  Systematic Review and Meta Analysis of Gait 
Signatures in Dementia Subtypes 

As established in the Introduction, this thesis aims to bridge multiple domains—gait analysis, systematic 

reviews, and human activity recognition (HAR)—through the lens of modern computational tools and AI-

driven approaches. 

The work in Chapter 2 serves as a critical baseline: it not only illustrates the complexity of 

extracting meaningful signals from clinical studies but also lays the groundwork for subsequent chapters, 

which will tackle the methodological hurdles of evidence synthesis and activity monitoring. Building on 

the broader motivations outlined in Chapter 1, this chapter focuses on identifying objective, quantifiable 

gait metrics that could differentiate dementia subtypes—such as Alzheimer’s disease, Lewy body 

dementia, frontotemporal dementia, and vascular dementia. By systematically reviewing and synthesizing 

the existing literature, we attempt to create a foundation of evidence that will later inform more 

technologically driven solutions. 

Having identified where the challenges lie—such as heterogeneity in measurement, differences in 

instrumentation, and the need for robust data analysis methods—this chapter paves the way for the 

innovations in systematic review automation and wearable solutions that follow in Chapters 3 through 6. 

It sets an anchor point that aligns clinical questions with practical patient outcomes *. 

2.1 Introduction 
In 2020, over six million Americans of all ages were living with Alzheimer's disease (AD), according to 

the Alzheimer's Association [68]. Globally, an estimated 55 million people have dementia, and 

projections indicate that the number of dementia cases in the U.S. could nearly double, rising from 

514,000 in 2020 to nearly 1 million by 2060 [69]. 

Dementia manifests in various forms, each with distinct symptoms and underlying causes. These 

symptoms can include memory loss, mood changes, communication difficulties, impaired executive 

function, and behavioral changes. Among the wide range of symptoms, movement disorders — 

particularly those associated with extrapyramidal signs — are notable [70]. Gait disturbances are also 

common, but can be caused by factors like vascular pathology, physical injury, or sensory deficits, often 

complicating the diagnosis by masking primary neurological symptoms. As a result, diagnosing dementia 

 
* In consideration for IEEE Journal of Biomedical and Health Informatics (Impact Factor 6.7) 
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remains a complex process, requiring a combination of medical history, physical examination, laboratory 

tests, and neuroimaging, as there is no single definitive test for dementia [71]. 

Vascular dementia (VaD) and Lewy body dementia (LBD), each account for about 20% of 

dementia cases, while Alzheimer's disease (AD) constitutes approximately 60% of all cases [72]. 

Frontotemporal dementia (FTD) is rarer, with an incidence of roughly 3.4 per 100,000 people [73]. 

Together, these four subtypes make up the majority of dementia cases. However, due to overlapping 

symptoms, misdiagnosis is common, with non-AD dementias sometimes mistaken for AD. Accurate early 

diagnosis is crucial, as each subtype may respond differently to treatments [72], [74]. 

Recent studies have highlighted gait deficits in the early stages of dementia, suggesting that gait 

analysis could be a useful diagnostic tool [70]. Advances in measuring techniques have identified distinct 

gait patterns across dementia subtypes. Recognizing these gait signatures offers the potential for a non-

invasive, easily administered diagnostic tool that could not only aid in early diagnosis and disease 

progression tracking, but also assist with financial planning, living arrangements, and legal matters for 

individuals with dementia [75]. 

While previous research has explored gait differences among dementia subtypes, there remains a 

lack of quantitative meta-analyses, particularly regarding LBD [76], [77]. This study aims to compare 

spatiotemporal gait parameters (which describe both spatial aspects, such as stride length, and temporal 

aspects, such as cadence) across the four most prevalent dementia subtypes (AD, LBD, FTD, and VaD), 

using data from instrumented gait analysis tools. Our goal is to determine whether distinct gait patterns 

can differentiate between dementia subtypes and healthy controls, addressing the need for more precise 

diagnostic tools in dementia care. 

Building on our laboratory's previous work, especially in wearable health analyzers for gait 

analysis [39], [40], [41], [42], [78] this systematic review and meta-analysis seeks to expand the 

knowledge base surrounding dementia diagnosis. By evaluating various instrumental approaches, our 

study could contribute to the development of more effective diagnostic tools for dementia, ultimately 

improving patient outcomes and quality of life. 

2.2 Methods 
2.2.1 Study Design: This systematic review and meta-analysis adhered to the study design guidelines 

recommended by the Cochrane Collaboration [55] and followed the Guidelines for Meta-Analysis and 

Systematic Reviews of Observational Studies (MOOSE) [59]. The study protocol was pre-registered with 

the International Prospective Register of Systematic Reviews (PROSPERO, Registration Number: 



MASc Thesis – R. Luo McMaster University - Biomedical Engineering 

13 

CRD42022295839). Additionally, the study followed the Preferred Reporting Items for Systematic 

Reviews and Meta-Analysis (PRISMA) statement [57]. As the study only used published data and did not 

involve confidential participant information or interventions, no ethical approval was required. The search 

timeline was adjusted from the original protocol due to logistical constraints, with an updated search 

being conducted in November 2024 instead of January 2022. 

2.2.2 Search Strategy: A comprehensive literature search was conducted in November 2024 across 

multiple databases, including Embase, CENTRAL, PubMed, Web of Science, and CINAHL. These five 

databases were chosen for their strong coverage of biomedical and dementia-related research. The search 

strategy was developed with input from a health sciences librarian. The search covered publications from 

1974 to 2024. A combination of relevant keywords and MeSH terms related to dementia and gait analysis 

were used, and the full search strategy can be found in Table 2.1 below. Title and abstract screening were 

carried out independently by two reviewers (R.L. and S.S.), with discrepancies resolved independently by 

a third reviewer (A.I.F.). Full-text screening followed the same process, with different pairs of reviewers 

(R.L. and A.I.F.). The research was overseen by experts in biomedical engineering and health research 

methods (L.M. and M.J.D.). 

Table 2.1 Keywords Used in Database Search 

Category Keywords 

Neurological "Alzheimer disease", "Alzheimer*", "dementia", "frontotemporal dementia", 

"lewy body", "diffuse Lewy body disease", "vascular dementia", "neurologic 

disease" 

Motor "gait analysis", "gait disorder", "mobility", "walk*", "walking" 

Spatiotemporal 

Parameters 

"cadence", "double support", "walking distance", "gait characteristics", "gait 

parameters", "range of motion", "stance time", "stride length", "stride 

velocity", "step time", "step length", "swing time", "single support", "single 

task", "walking speed" 
Note: The database search used OR operators within each concept and AND operators between concepts to refine results. MeSH 
(Medical Subject Headings) were used where possible, while keywords were applied across ALL FIELDS to maximize relevant 
study retrieval. 

2.2.3 Selection Criteria: The primary outcomes of interest were spatiotemporal gait parameters derived 

from natural walking and instrumented analysis. Studies eligible for meta-analysis were required to report 

descriptive statistics, such as mean, standard deviation, and sample size. All study designs were 

considered, provided the participants included individuals with AD, FTD, LBD, or VaD. Studies 

involving comorbid conditions were included, as per the protocol. For experimental studies, only baseline 
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measurements were analyzed. Only peer-reviewed English-language publications were included, while 

books, conference abstracts, and animal studies were excluded. Studies involving only treadmill walking 

or dual-task assessments were excluded based on protocol guidelines. Systematic reviews identified 

during screening were used to perform forward reference searching for additional relevant studies. 

2.2.4 Data Extraction: Study details (e.g., author, year, design), instrument used, walking protocol, 

dementia subtype, sample size, and key spatiotemporal gait parameters (e.g., cadence, gait velocity, stride 

length) were similarly extracted in pairs using a standardized form. These spatiotemporal parameters were 

standardized to common units for comparison. The protocol initially aimed to retrieve missing data by 

contacting study authors. In practice, sufficient data were available from extracted studies, and contacting 

authors for missing data was not required. Missing values were estimated from available statistics or 

excluded entirely. 

2.2.5 Data Synthesis, Analysis, and Statistics: Meta-analysis was performed to compare gait parameters 

between dementia subtypes and healthy controls, calculating standardized mean differences (SMD). 

Statistical analysis was conducted using Review Manager (RevMan 5.4) [61] with a significance level set 

at P < 0.05. Results were presented as forest plots with 95% confidence intervals, and effect sizes were 

interpreted using Cohen’s criteria (small: d > 0.20; medium: d > 0.50; large: d > 0.80) [79]. 

Subgroup analyses were performed based on dementia subtypes and geographical locations. Age-

, sex-, and severity-based subgroup analyses were not conducted due to inconsistencies in the reported 

data across studies. Heterogeneity was assessed using the Cochrane X² test and the I² statistic. A random-

effects model was applied due to anticipated variability across studies. Potential sources of heterogeneity, 

including measurement methods, geographic regions, and risk of bias (assessed using the Newcastle-

Ottawa Scale), were considered. Reporting bias was assessed using funnel plots and Egger’s tests.  

2.2.6 Study Risk of Bias Assessment: The Risk of Bias (ROB) of the included studies was assessed using 

the Newcastle-Ottawa Scale (NOS) for case-control studies [80], which evaluates selection, 

comparability, and exposure criteria, with a maximum score of eight stars. Although the protocol initially 

planned for the use of NOS for cohort studies, the case-control version was ultimately deemed most 

appropriate based on the study designs included in this review. The key domains assessed included case 

representativeness, control selection, exposure ascertainment, and comparability of groups. Two authors 

(R.L. and S.S.) independently conducted the ROB assessments, with a third reviewer (A.I.F.) 

independently resolving discrepancies. The results were presented in a stacked bar chart format. 
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Sensitivity analyses, initially planned to evaluate both study design and ROB, were limited to assessing 

bias risk due to data availability. 

2.3 Results 
2.3.1 Results of Database Search: Figure 2.1 illustrates the search results using a PRISMA flowchart. A 

total of 5,168 records were identified, with 5,159 from database searches and 9 from other sources. After 

removing 857 duplicate records, 4,311 studies remained for screening. Title and abstract screening led to 

the exclusion of 3,636 records. Among the 675 full-text articles assessed for eligibility, 633 were 

excluded based on predefined criteria, leaving 42 studies for inclusion in the final review. The primary 

reasons for exclusion were irrelevant study populations, lack of gait analysis data, and incomplete 

reporting of results. Our final review included 3,356 participants: 1,790 healthy controls, 1,264 

individuals with Alzheimer’s disease (AD), 186 with Lewy body dementia (LBD), 37 with 

frontotemporal dementia (FTD), and 265 with vascular dementia (VaD). The publication years of the 

studies ranged from 1983 to 2024, with a median year of 2015. 

3.3.2 Summary of Participant and Study Characteristics: Figure 2.2 provides a heatmap summarizing 

the characteristics of the studies included in the analysis, categorized into participant and study 

characteristics. Of the 42 studies, AD was the most frequently studied dementia subtype (92.9%), while 

LBD (14.3%), FTD (7.1%), and VaD (9.5%) were less commonly represented. Dementia severity was 

inconsistently reported, but mild cases were more frequently included (28.6%). The majority of studies 

(81.0%) focused on participants aged 65-80 years. Although participant sex distribution and mean age 

(with standard deviations) were consistently reported, data on walking aid usage and self-selected walking 

speed were available in only about a quarter of the studies. 

Regarding study characteristics, most investigations (88.1%) were conducted in laboratory settings, 

with fewer utilizing simulated (11.9%) or real-world environments (7.1%). Study designs varied, with 

88.1% being cross-sectional, 11.9% longitudinal, and 4.8% multicenter studies. Instrumentation used 

included standardized walkways (14.3%), electronic walkways (35.7%), inertial sensors (26.2%), camera, 

and force systems, although the latter two were less frequently used. Gait parameters such as cadence 

(40.5%), gait velocity (88.1%), and stride length (71.4%) were commonly assessed, while parameters like 

step width and swing time appeared in fewer studies. Traditional statistical methods were employed in all 

studies, with machine learning models used in 7.1% of the analyses. Clinical outcomes were inconsistently 

reported; cognitive function was assessed in 95.2% of studies, falls history in 42.9%, and quality of life 

metrics, such as mental health and Activities of Daily Living (ADL) indices, in 23.8%. These inconsistencies 
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highlight the variability in study focus and the need for standardized reporting to better capture the broader 

impact of dementia on patients' lives. 

 
Note: CENTRAL, Cochrane Central Register of Controlled Trials; CINAHL, Cumulative Index to Nursing and Allied Health 
Literature. 

Figure 2.1 PRISMA Flow Diagram of Study Selection Process 
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Note: AD, Alzheimer’s disease; LBD, Lewy body dementia; FTD, frontotemporal dementia; VaD, vascular dementia; RW, real-
world; ML, machine learning; CV, coefficient of variation. 

Figure 2.2 Summary of Study Characteristics and Reporting Trends 

2.3.3 Comparative Gait Patterns Between Dementia Subtypes and Controls: Figure 2.3 summarizes the 

effect estimates and confidence intervals for various spatiotemporal gait parameters. In interpreting these 

results, it is important to consider that standardized mean differences (SMDs) represent deviations from 

healthy controls, with negative values indicating reductions in gait parameters (e.g., lower gait velocity or 

shorter stride length) and positive values indicating increases (e.g., prolonged stance time or greater step 

width). Larger absolute values reflect greater deviations from control participants, suggesting more 

pronounced impairment. 

The results show that AD had the most robust reporting, with significant negative effect sizes 

observed for gait velocity (-1.20 [95% CI: -1.40, -1.01]), cadence (-0.65 [95% CI: -0.91, -0.39]), and stride 

length (-1.01 [95% CI: -1.23, -0.80]). LBD and VaD exhibited similar gait deficits in these parameters, but 

with wider confidence intervals and lower precision, suggesting a weaker evidence base. 

Swing time (AD: 0.32 [95% CI: 0.04, 0.61], LBD: 0.50 [95% CI: -0.42, 1.41]), stance time (AD: 

1.13 [95% CI: 0.42, 1.85], LBD: 0.71 [95% CI: 0.15, 1.26]), and the proportion of double support phase 

(AD: 0.68 [95% CI: 0.30, 1.07], LBD: 2.57 [95% CI: 0.40, 4.74]) showed significantly increased effect 
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sizes in both AD and LBD. Notably, the stance time result for LBD was based on a single study, highlighting 

the limited evidence and the need for cautious interpretation. 

 
Note: The figure shows effect estimates with 95% confidence intervals for non-CV (a) and CV-related (b) gait parameters across 
dementia subtypes. Larger effect sizes indicate greater gait impairments compared to controls. 

Figure 2.3 Effect Estimates of Spatiotemporal Gait Parameters Across Dementia Subtypes 

Stride time showed significantly increased effect sizes in AD (0.58 [95% CI: 0.41, 0.76]), LBD 

(0.92 [95% CI: 0.35, 1.49]), and FTD (0.87 [95% CI: 0.23, 1.52]), but not in VaD (-0.10 [95% CI: -0.60, 

0.41]). However, findings for LBD, FTD, and VaD were derived from a single study each, limiting the 

robustness of these results. Similarly, step width showed a significantly increased effect size only in VaD 

(4.63 [95% CI: 4.10, 5.17]), though this result was also supported by a single study, indicating the need for 

further validation. 

For coefficient of variation (CV)-related gait parameters, AD showed the most robust reporting. 

Significant increases in stride length CV (1.06 [95% CI: 0.53, 1.58]), swing time CV (0.73 [95% CI: 0.44, 

1.01]), and stride time CV (0.71 [95% CI: 0.39, 1.03]) were found. Stride time CV also showed significant 

increases in FTD (0.74 [95% CI: 0.11, 1.36]). The effect estimates for LBD (0.58 [95% CI: -0.05, 1.21]) 

and VaD (0.54 [95% CI: 0.04, 1.04]) were comparable, but both were based on data from a single study, 
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limiting the strength of the evidence. For full effect estimates and heterogeneity values, see Table 2.2 and 

Table 2.3. 

Table 2.2 Summary Effect Sizes of Single-study Dementia Subtypes Spatiotemporal Parameters 

Disorder k nD nC SMD p-value 95% CI 

Cadence[81],[82] 

AD(CV) 1 19 19 0.88 0.01 [0.21, 1.54] 

LBD 1 10 10 -0.57 0.03 [-1.47, 0.32] 

Stance Time/Percent [83],[84] 

LBD(s) 1 28 25 0.71 0.01 [0.15, 1.26] 

VaD(%) 1 32 32 0.84 0.001 [0.33, 1.35] 

Stride Length [85] 
 

FTD 1 8 8 -0.72 0.17 [-1.74, 0.30] 

Stride Time [83],[86],[84] 

LBD(s) 1 28 25 0.92 0.002 [0.35, 1.49] 

FTD(s) 1 19 22 0.87 0.008 [0.23, 1.52] 

VaD(CV) 1 32 32 0.54 0.04 [0.04, 1.04] 

Swing Time/Percent [84] 

VaD(%) 1 32 32 -0.85 0.001 [-1.36, -0.33] 
Note: Some spatiotemporal parameters in the "Disorder" column are denoted with (s) for absolute values, (%) for percentages, or 
(CV) for coefficients of variation. The selection of measurement type is based on the nature of the parameter being measured and 
the appropriate dimension (time or length). AD: Alzheimer’s disease; LBD: Lewy body dementia; FTD: frontotemporal 
dementia; VaD: vascular dementia; k: number of studies; nD: number of demented patients; nC: number of control patients; SMD: 
standard mean difference; CI: 95% confidence interval. 

Table 2.3 Summary Effect Sizes of Dementia Subtypes Spatiotemporal Parameters From Meta-analysis 

Disorder k nD nC SMD p-value 95% CI I² 

Meta Analysis of Cadence AD: [81], [82], [84], [87], [88], [89], [90], [91], [92], [93], [94], [95]; VaD: [84], [94], [96], [97] 

AD 12 406 325 -0.65 <0.001 [-0.91, -0.39] 46% 

VaD 4 121 265 -0.11 0.83 [-1.11, 0.90] 94% 

Meta Analysis of Double Support Time/Percent AD(s): [91], [93], [98], [99], [100]; AD(%): [81], [82], [101]; AD(CV): [81], [98], [101]; 

LBD(%): [82], [102] 

AD(s) 5 455 891 0.68 <0.001 [0.30, 1.07] 82% 

AD(%) 3 44 44 1.50 0.10 [-0.28, 3.27] 91% 

AD(CV) 3 230 769 -0.15 0.83 [-1.51, 1.21] 95% 

LBD(%) 2 18 20 2.57 0.02 [0.40, 4.74] 81% 
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Meta Analysis of Gait Velocity AD: [75], [81], [82], [83], [84], [85], [86], [87], [88], [91], [92], [93], [94], [95], [98], [99], 

[100], [101], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113], [114], [115], [116], [117], [118]; AD(CV): 

[81], [93], [98], [101]; LBD:[75], [82], [102], [111], [116], [119]; FTD: [85], [86], [111]; VaD: [84], [94], [96], [97] 

AD 34 1212 1649 -1.20 <0.001 [-1.40, -1.01] 76% 

AD(CV) 4 417 860 0.51 0.14 [-0.16, 1.18] 94% 

LBD 6 186 187 -1.45 0.001 [-2.34, -0.56] 89% 

FTD 3 37 121 -0.51 0.29 [-1.44, 0.43] 77% 

VaD 4 265 121 -1.80 0.05 [-3.59, -0.02] 97% 

Meta Analysis of Stance Time/Percent AD(s): [83], [88], [98], [107]; AD(%): [84], [88], [95]; AD(CV): [87], [88], [98] 

AD(s) 4 262 823 1.13 0.002 [0.42, 1.85] 88% 

AD(%) 3 93 123 0.62 <0.001 [0.34, 0.90] 0% 

AD(CV) 3 226 788 0.63 0.05 [-0.01, 1.27] 77% 

Meta Analysis of Step Width AD: [75], [81], [82], [91], [92], [93], [98], [99], [101], [103], [112], [120], [121]; AD(CV): [81], [98], 

[101], [120]; LBD: [82], [102] 

AD 13 614 1046 0.13 0.06 [0.00, 0.27] 14% 

AD(CV) 4 240 779 -0.11 0.13 [-0.26, 0.03] 0% 

LBD 2 18 20 0.65 0.25 [-0.45, 1.74] 62% 

Meta Analysis of Stride Length AD: [75], [81], [82], [83], [84], [85], [87], [88], [90], [91], [92], [93], [94], [95], [98], [99], 

[101], [103], [105], [107], [109], [112], [114], [120], [121]; AD(CV): [84], [89], [98], [101], [114], [120]; LBD: [75], [82], [83], 

[102]; VaD: [84], [94] 

AD 26 823 1280 -1.01 <0.001 [-1.23, -0.80] 68% 

AD(CV) 6 273 813 1.06 <0.001 [0.53, 1.59] 76% 

LBD 4 91 74 -1.88 0.005 [-3.21, -0.56] 90% 

VaD 4 265 121 -1.38 0.004 [-2.33, -0.43] 92% 

Meta Analysis of Stride Time AD(s): [81], [83], [84], [86], [88], [89], [93], [95], [98], [99], [101], [110], [121], [122]; AD(CV): [81], 

[84], [86], [88], [89], [95], [98], [101], [110], [111], [122]; FTD(CV): [86], [111] 

AD(s) 14 642 1104 0.58 <0.001 [0.41, 0.76] 42% 

AD(CV) 11 457 1043 0.71 <0.001 [0.39, 1.03] 79% 

FTD(CV) 2 29 113 0.74 0.02 [0.11, 1.36] 44% 

Meta Analysis of Swing Time/Percent AD(s): [75], [83], [88], [95]; AD(%): [84], [88], [95]; AD(CV): [88], [95], [98]; LBD(s): [75], [83] 

AD(s) 4 130 145 0.32 0.02 [0.04, 0.61] 24% 

AD(%) 3 93 123 -0.62 <0.001 [-0.90, -0.34] 0% 

AD(CV) 3 258 826 0.73 <0.001 [0.44, 1.01] 48% 

LBD(s) 2 73 54 0.50 0.29 [-0.42, 1.41] 84% 
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Note: Some spatiotemporal parameters in the "Disorder" column are denoted with (s) for absolute values, (%) for percentages, or 
(CV) for coefficients of variation. The selection of measurement type is based on the nature of the parameter being measured and 
the appropriate dimension (time or length). AD: Alzheimer’s disease; LBD: Lewy body dementia; FTD: frontotemporal 
dementia; VaD: vascular dementia; k: number of studies; nD: number of demented patients; nC: number of control patients; SMD: 
standard mean difference; CI: 95% confidence interval; I2: heterogeneity statistic. 

2.3.4 Risk of Bias Assessment Findings: Figure 2.4 presents the NOS assessment of study ROB across the 

included case-control studies, evaluating selection, comparability, and exposure criteria. The overall risk 

of bias was low, with a mean NOS score of 6.92 out of 8. The selection criteria had the most gaps, 

highlighting inconsistencies in case definitions, representativeness of cases, and control selection across 

studies. In contrast, most studies performed well in the comparability domain, showing adequate control 

for confounding factors, and in the exposure domain, which assessed exposure ascertainment and response 

rates. These findings emphasize the variability in study inclusion criteria and the importance of improving 

selection methods in future research.  

2.3.5 Assessment of Publication Bias: Figure 2.5 presents funnel plots assessing publication bias for six of 

the most frequently reported gait parameters: gait velocity, cadence, stride length, step width, stride time, 

and stride time CV. Stride length (-1.127, P < 0.001) and cadence (-0.506, P = 0.007) exhibited significant 

asymmetry, suggesting potential publication bias, likely due to missing studies with smaller effect sizes. 

Gait velocity (-0.019, P = 0.947) did not show statistically significant asymmetry, but it had a high number 

of barely significant studies (9 studies with p-values < 0.05), raising concerns of selective reporting. 

Conversely, step width (0.567, P = 0.550), stride time (-0.078, P = 0.752), and stride time CV (0.624, P = 

0.167) displayed more symmetrical distributions, indicating minimal bias. The exclusion of other gait 

parameters was due to limited data and reporting inconsistencies. While most parameters appeared robust, 

the strong asymmetry and high Egger’s significance in stride length and cadence warrant cautious 

interpretation. Funnel plots with fewer than 10 studies are illustrative, as small-sample effects can distort 

asymmetry. We excluded such outcomes to ensure reliability and avoid misleading interpretations. 

2.3.6 Subgroup Analysis of Measurement Instrumentation: Our analysis, which adjusted for different 

measurement devices, revealed differences in gait parameters among dementia participants. Notably, 

electronic walkways detected increases in step width and swing time — findings not observed with 

camera-based systems or inertial sensors. The influence of measurement tools was particularly evident in 

the variability of stride length across dementia subtypes, especially in VaD. However, given the high 

heterogeneity and limited study representation within subgroups, numerical estimates were not 

emphasized, as isolated effect sizes may not reliably reflect broader trends. Instead, as discussed in the 

next section, we present a narrative synthesis to better capture methodological differences and highlight 

key insights. These findings underscore the need for standardized methodologies in future research to 

improve consistency in gait analysis. 



MASc Thesis – R. Luo McMaster University - Biomedical Engineering 

22 

 
Note: (a) Newcastle-Ottawa Scale (NOS) scores for each study, categorized by Selection (green), Comparability (yellow, 
hatched), and Exposure (red) criteria. (b) Criterion-level breakdown showing the number and percentage of studies meeting each 
NOS criterion. 

Figure 2.4 Newcastle-Ottawa Scale Assessment of Study Risk of Bias 
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Note: Funnel plots show the standard error (SE) versus standardized mean difference (SMD) for six gait parameters across 
dementia subtypes. Subgroups: AD (brown circles), LBD (red diamonds), FTD (green squares), and VaD (purple triangles). 
Symmetry around the dashed line suggests minimal bias, while asymmetry may indicate potential bias or heterogeneity. 

Figure 2.5 Funnel Plots Assessing Publication Bias in Gait Parameters 

2.4 Discussion 

2.4.1 Findings Summary: This systematic review and meta-analysis confirm the substantial gait 

discrepancies across different dementia subtypes, supporting prior research [119], [123]. Our findings 

emphasize the potential of gait analysis as a valuable diagnostic and prognostic tool in dementia research, 

with important implications for therapeutic interventions. The majority of the included studies focused on 

Alzheimer’s disease (AD) (92.9%), with fewer studies examining Lewy body dementia (LBD), 

frontotemporal dementia (FTD), and vascular dementia (VaD), highlighting an imbalance in the available 

evidence across subtypes. Despite this, the overall risk of bias was low, with a mean NOS score of 6.92 out 

of 8, providing reasonable confidence in the results. 

2.4.2 Alzheimer’s Disease: In agreement with previous studies, our meta-analysis confirms that individuals 

with AD exhibit significant  alterations in gait parameters, particularly in walking speed, cadence, and stride 

length. Although our analysis did not specifically emphasize prolonged stance time, existing literature 

suggests that this may act as a compensatory mechanism for postural instability in AD [70]. These 
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adaptations underscore the connection between locomotion and cognitive function in AD, pointing to 

potential therapeutic targets. Furthermore, our findings reveal significant variability in gait patterns within 

the AD population, potentially influenced by differences in study methodologies and participant 

characteristics. 

2.4.3 Lewy Body Dementia: Our meta-analysis indicates that individuals with LBD may exhibit more 

pronounced gait deficits than those with AD, reflected in larger effect sizes. This aligns with previous 

studies highlighting the greater challenges faced by individuals with LBD [123], [124]. However, due to 

overlapping confidence intervals and high heterogeneity, direct statistical comparisons between subtypes 

should be interpreted cautiously. Rather than relying solely on significance testing, we emphasize the 

importance of effect size magnitude and consistency across studies. 

The observed variations in stride length, cadence, and walking speed reflect the unique 

pathophysiology of LBD, while also raising questions about potential compensation strategies. Specifically, 

our data suggest that individuals with LBD may adopt a wider base of support, indicated by increased step 

width, to maintain postural stability while walking. However, the results section showed that step width 

was significantly increased only in VaD, and the findings for LBD were inconsistent across studies [82], 

[102] warranting cautious interpretation. The observed heterogeneity in step width results underscores the 

need for further research to determine the clinical relevance of this measure in LBD populations. 

2.4.4 Frontotemporal Dementia: FTD, which typically presents at an earlier age [73], showed minimal 

gait disturbances in our meta-analysis. However, stride time was significantly increased in FTD, suggesting 

that while gait is generally preserved compared to other subtypes, certain gait parameters may still be 

affected. The preservation of most gait metrics despite cognitive decline suggests that FTD follows a 

different pathological pathway compared to other dementias. Autopsy studies have shown that FTD 

predominantly affects the frontal and temporal lobes, areas less involved in motor control, while AD affects 

regions such as the hippocampus and posterior parietal cortex, which are more directly associated with 

motor function and spatial navigation [125], [126]. Further research is needed to explore these anatomical 

differences and their functional implications for gait in dementia. 

2.4.5 Vascular Dementia: Our meta-analysis confirms that VaD is associated with distinct gait 

disturbances, particularly increased stance time [84]. This aligns with prior studies that link VaD to frontal 

gait disorders [70], [127]. Our findings primarily highlighted alterations in cadence, gait velocity, and stride 

length, though a shuffling gait pattern or episodic freezing was not consistently reported. These 

observations should be interpreted with caution, as the complexity of gait disturbances in VaD and the 

limited data on specific gait phenomena suggest that further detailed research is needed. Future studies 
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should focus on better understanding the relationship between gait alterations in VaD and more intricate 

gait phenomena to uncover their underlying neuropathological mechanisms. 

2.4.6 Instrument Choice and Subgroup Effects: The reliability of gait analysis can be influenced by the 

type of measurement instrument used. Stationary systems like force platforms and electronic walkways 

(e.g., the Kistler force platform [114] and the GAITRite system [75], [102], [111]) excel in controlled 

environments, accurately recording ground reaction forces and temporal gait parameters crucial for detailed 

gait cycle analysis. Our results indicated that stride length across dementia subtypes was more influenced 

by the choice of measurement device than by step width and swing time, which were previously thought to 

be more variable. 

In contrast, optoelectronic [99], [101] and camera-based systems [89], [94], [104] specialize in 

spatial tracking, capturing movement from multiple angles to provide a comprehensive three-dimensional 

reconstruction of the gait cycle. These systems are invaluable for understanding spatial gait abnormalities. 

Additionally, wearable sensors [83], [88], [108] represent another valuable tool for gait analysis and the 

final category of instruments used. Our experience with inertial measurement units (IMUs) and the 

development of smartphone sensor applications for gait analysis have enriched our perspective on these 

devices [39], [40], [41], [42], [78]. Wearable sensors, such as accelerometers, are particularly useful for 

capturing real-world, naturalistic gait data, offering complementary insights to those gathered from 

stationary systems. The variability in results across different instruments, along with the need to balance 

their respective trade-offs, presents a unique challenge in gait analysis research. To address these 

challenges, harmonizing data across instruments and establishing standardized methodologies are essential 

next steps for advancing this field. 

2.4.7 Strengths and Weaknesses: A key strength of this study is the comprehensive inclusion of studies 

reporting spatiotemporal gait parameters across multiple dementia subtypes. The use of subgroup analysis 

enabled a more detailed comparison of gait characteristics, facilitating the identification of distinct patterns 

across subtypes. 

However, several limitations must be acknowledged. First, the inclusion of only English-language 

publications may have introduced selection bias, potentially overlooking relevant studies in other 

languages. Second, the a priori exclusion of gray literature, including archives, preprints (e.g., arXiv, 

bioRxiv, medRxiv), and conference abstracts, may have led to the omission of relevant data, contributing 

to potential publication bias. Third, dementia severity was inconsistently reported across studies, with only 

28.6% focusing on mild cases, limiting the generalizability of findings across different disease stages. 

Fourth, there was a significant imbalance in study representation, with Alzheimer’s disease (AD) being far 

more extensively studied than Lewy body dementia (LBD), frontotemporal dementia (FTD), and vascular 
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dementia (VaD). As a result, findings for the less-represented subtypes should be interpreted with caution. 

Finally, while the overall risk of bias assessment suggested that most studies met methodological criteria, 

inconsistencies in study design and the limited availability of well-controlled research for certain subtypes 

highlight the need for more rigorous, standardized investigations. 

2.4.8 Implications for Practice, Policy, and Research: Gait analysis holds promise as a diagnostic tool for 

dementia, emphasizing the need for further exploration into the distinct gait characteristics of each dementia 

subtype and the role of demographic factors. To ensure more reliable results, future studies should aim for 

larger sample sizes, implement rigorous age and sex matching, and standardize methodologies. However, 

potential publication bias, particularly for cadence and stride length, as observed in our funnel plot analysis, 

should be considered when applying these results in clinical practice. As gait analysis becomes increasingly 

integrated into dementia diagnostics, it is crucial for research to carefully distinguish between symptoms 

and diagnostic criteria to avoid circular reasoning. This approach will be essential for developing unbiased 

and effective diagnostic tools in dementia care. 

2.5 Conclusion 

This meta-analysis of 42 studies and 3,356 participants confirms that distinctive spatiotemporal gait patterns 

can help differentiate dementia subtypes, including Alzheimer's disease (AD), Lewy body dementia (LBD), 

frontotemporal dementia (FTD), and vascular dementia (VaD). AD exhibited the most consistent gait 

deficits, with several gait parameters showing increased coefficient of variation (CV), reflecting greater 

gait inconsistency. However, data on CV measures were limited for other subtypes, highlighting the need 

for further investigation. Findings for other subtypes showed lower robustness and limited study 

representation. Despite methodological differences, gait analysis holds promise as a non-invasive 

diagnostic tool to support early detection and personalized care. However, inconsistencies in dementia 

severity reporting and study ROB underscore the need for standardized protocols and further high-quality 

research to improve its clinical applicability. 
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3. Large Language Models for Systematic Review 
Screening and Inclusion 

The previous chapter identified how dementia research, like so many areas of healthcare, is inundated 

with heterogeneous data and study designs. This brings us to the pressing question: how can researchers 

cope with the escalating volume of scientific literature, ensure timely syntheses of current knowledge, and 

maintain rigor in their findings? 

Chapter 3 introduces the first major computational pivot of this thesis: the development and 

evaluation of large language model (LLM) based approaches for accelerating systematic reviews. While 

Chapter 2 dealt with manually curated evidence and traditional meta-analytic methods, here we leverage 

recent advances in AI—particularly generative models like GPT-3.5 Turbo to automate labor-intensive 

aspects of literature screening and inclusion. 

This chapter explores the feasibility, efficiency, and reliability of AI-assisted screening. In doing 

so, it responds directly to the shortcomings identified previously slow review cycles, potential reviewer 

fatigue, and the risk of missing critical studies. Chapter 3 establishes a new paradigm: one where 

emerging language technologies can significantly reduce the time and cost of evidence synthesis without 

entirely replacing human expertise. This sets the stage for further refinements explored in Chapter 4, 

where we experiment with more nuanced prompt engineering and threshold settings *. 

3.1 Introduction 
3.1.1 Current Challenges of Conducting a Review: Systematic reviews and meta-analyses are 

cornerstone methodologies in evidence-based medicine, providing a comprehensive synthesis of research 

findings to inform clinical and policy decisions [128]. However, the traditional approach to conducting 

these reviews is labor-intensive and time-consuming, often requiring a year or more to complete and 

significant financial resources [62], [63], [129], [130]. The exponential growth in scientific publications 

further complicates the task, increasing both the complexity and the scope of reviews [64]. This scenario 

underscores a critical need for innovative methodologies that can streamline the review process without 

compromising its methodological rigor and accuracy. 

The challenges of conducting systematic reviews extend beyond mere resource allocation. The 

inherent delay in incorporating the latest research findings into reviews due to publication lags adversely 

affects the timeliness and relevance of the synthesized evidence [17], [64], [131], [132]. Additionally, the 

 
* In consideration for WIREs Data Mining and Knowledge Discovery (Impact Factor 6.4) 
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manual screening process, a key step in reviews, is not only time-consuming but also prone to 

inconsistencies and biases despite the expertise of reviewers [65], [133], [134]. The evolving landscape of 

systematic reviews, including rapid reviews and evidence synthesis for emergent health issues [64], 

further demands adaptive and efficient review processes that can cope with the dynamic nature of 

scientific research. 

3.1.2 Text Mining and Automation in Systematic Reviews: The integration of text mining and automated 

technologies provides valuable tools for overcoming the challenges inherent in systematic reviews. Text 

mining, a field within data science, involves analyzing unstructured text to extract meaningful 

information and supports various stages of the review process such as study identification, screening, and 

data extraction—stages that are traditionally manual and labor-intensive [56], [57], [65], [134], [135], 

[136], [137]. These advancements have the potential to not only speed up the review process but also 

enhance the accuracy and objectivity of the data extracted, thereby improving the quality of systematic 

reviews. 

Natural Language Processing (NLP), closely related to text mining, enables computers to 

understand and process human language, playing a crucial role in the automation of systematic reviews. It 

includes a range of tasks from information retrieval—where relevant articles are identified from large 

document collections—to document classification, which automates the inclusion or exclusion decisions 

in systematic reviews [64], [138]. With the advent of Large Language Models (LLMs) such as GPT 

[139], BERT [140], and their successors [139], [141], [142], [143], [144], [145], NLP has seen significant 

advancements, offering sophisticated capabilities for text analysis, and understanding that greatly enhance 

the review process [138]. These technologies allow for more nuanced and comprehensive analysis of 

scientific literature, leading to more sophisticated and scalable review methodologies. 

3.1.3 Role and Impact of AI and LLMs: The integration of Artificial Intelligence (AI) and LLMs into the 

domain of systematic reviews marks a significant shift towards more efficient and effective evidence 

synthesis [146]. AI and NLP technologies automate the extraction and analysis of data from vast amounts 

of literature, streamlining the review process while maintaining, if not enhancing, the depth and breadth 

of analysis. The role of LLMs, characterized by their large parameter spaces and capacity for 

unsupervised learning, is particularly noteworthy. These models have demonstrated exceptional ability in 

understanding context, semantics, and the subtleties of language [147], [148], [149], [150], [151], [152], 

[153], [154], [155], [156], [157], [158], making them well-suited for tasks such as literature screening and 

data extraction in systematic reviews. 
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This study focuses on the application of LLMs in the article screening process. By automating 

this initial screening, AI tools allow researchers to dedicate more time to the complex tasks of data 

synthesis and interpretation. Moreover, AI-driven processes can potentially enhance consistency and 

reduce bias by standardizing the application of inclusion and exclusion criteria. As the field progresses, 

the role of AI and LLMs in systematic reviews is increasingly becoming a cornerstone for enabling more 

accessible, timely, and rigorous evidence synthesis, which is critical for informing healthcare policy and 

practice. 

3.2 Methods 
3.2.1 Overview of Original Reviews: Our research team recently conducted three separate reviews, each 

varying in degree and scope, and meticulously adhered to protocols established by standardized reporting 

committees [55], [57]. The first review investigated the relationship between dementia and spatiotemporal 

gait patterns to identify distinctive gait signatures. The second examined the latest advancements in 

cuffless blood-pressure monitoring devices, while the third focused on the impact of aging and 

comorbidities on long-COVID [159], [160], [161]. The selection process for each review involved pairs 

of authors screening titles, abstracts, and full texts, with any discrepancies resolved by a third author. 

Original inclusion and exclusion data were processed and gathered in .csv files, serving as our ground 

truth for the subsequent comparative analysis and validation depicted in our figures.  

To assess whether these reviews could be accelerated using LLMs, we developed a pipeline to 

recreate and evaluate the screening process using generative AI. The following sections outline our 

reasoning behind model selection and cost analysis before detailing how the screening was 

operationalized. 

3.2.2 Model Selection and Cost Analysis: Since the launch of ChatGPT in November 2022, the landscape 

of AI and language models has rapidly evolved, offering a range of options for various applications, 

including systematic reviews. During the planning phase of this study, back-of-the-envelope calculations 

identified GPT-3.5 Turbo as the most economical model, costing approximately $0.31 USD per 1,000 

studies for a single pass of title-abstract screening. In contrast, GPT-4 Turbo was estimated to cost about 

21 times more, at $6.61 USD per 1,000 studies. The newest model, GPT-4o, released in May 2024, is 

expected to cost $3.31 USD per 1,000 studies—about 50% less than GPT-4 Turbo—making it a 

promising candidate for future analysis. 

3.2.3 Recreating Title-Abstract Screening with AI Models: Utilizing the LangChain framework [162], 

the title and abstract screening process was replicated using the OpenAI model GPT-3.5-turbo-0125, 
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employing Retrieval Augmented Generation (RAG) to accurately reflect the inclusion and exclusion 

criteria of the original human reviewers. In this RAG setup, the application provided a user interface with 

a text box where reviewers could enter any prompt. This feature allowed the reviewer to design a single 

prompt that was applied consistently across all titles and abstracts. For our screening protocol, the model 

was fed prompts based on the inclusion criteria of each review, designed to elicit binary 'true' or 'false' 

responses, simulating the decision-making framework of systematic reviews. The responses, along with 

associated metadata, were captured, cleaned for accuracy, and then exported as .csv files. 

3.2.4 Recreating Full-Text Screening with AI Models: For the full-text screening, we adapted our 

approach to accommodate the OpenAI API's token limit of 4,096 tokens, roughly equivalent to 3,000 

words. This constraint defines how much text and prompt content can be processed in a single API call. 

To work around this, we split each full-text article into smaller overlapping segments (about 750 words 

each) and stored them in a searchable vector database, Hierarchical Navigable Small World (HNSW) 

using text embeddings. This setup employed the OpenAI model, text-embedding-ada-002-v2, functioning 

similarly to a search engine, that uses cosine similarity to rank all the generated text snippets based on 

their relevance to a user-generated query. 

In the full-text RAG setup, the same inclusion prompts designed to elicit binary ‘true’ and ‘false’ 

responses were used. Both the prompt and relevant text snippets were combined to form the input for 

GPT-3.5-turbo-0125. We configured the system to return three relevant snippets per query to effectively 

manage the constraints imposed by the API's token limit. This strategy leaves sufficient space 

(approximately 1,096 tokens) for users to employ complex query templates designed for either study 

screening or data extraction purposes. 

3.2.5 Comparison Criteria and Discrepancy Analysis: To assess the effectiveness of GPT-3.5 Turbo's 

screening against the original human reviewers, we employed confusion matrices for both the title-

abstract and full-text screening phases. Our comparison utilized key performance metrics such as 

accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), F1-

score, and the Matthews Correlation Coefficient (MCC). 

Discrepancy analysis was conducted by first identifying all true positives, true negatives, and 

false positives through a comparison of GPT-3.5 Turbo’s decisions against reviewer judgments during the 

title-abstract screening phase and securing the full texts for these articles. The analysis focused 

specifically on the subset of articles that were mutually recognized as 'included' by both the model and the 

reviewers at the title-abstract phase, ensuring that our evaluation of the model's full-text screening was 
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grounded in a directly comparable set of studies. Additionally, we assessed the consistency of the AI 

model by examining the remaining articles that GPT-3.5 Turbo initially classified as 'included' during the 

title-abstract phase but were later 'excluded' or continued to be 'included' in the full-text stage. 

3.2.6 Evaluation of ChatGPT-3.5 Turbo Performance and Validation Procedure: To assess the 

performance of the LLM against a standardized control, we established a baseline using random binary 

classification. In this control setup, studies were arbitrarily classified as 'included' or 'excluded,' 

mimicking the binary decision-making process typical in systematic reviews. Alongside this, we 

conducted a self-validation test with two prompts to assess internal consistency within the LLM's 

responses, comparing agreement between the model's decisions when operating in explanation mode 

versus non-explanation mode. 

To further evaluate our model, we adopted a permutation test similar to K-Folds Cross 

Validation. This involved shuffling the data and dividing both the model-generated dataset and the control 

dataset into K equal subsets. We computed standard performance metrics for each partition and then 

averaged the results across all partitions. Finally, to assess the statistical differences between the model 

and control, we conducted a One-way Analysis of Variance (ANOVA) comparing the mean performance 

metrics across the subsets and screening phases, using an alpha level of 0.05 to determine significance.   

3.2.7 Data Handling and Ethical Considerations: Our research uses data from studies with established 

ethical approvals. Full prompt templates are provided as supplementary material. Additional data is 

available upon request.  

3.3 Results 
3.3.1 Outcomes of the Original Review: In Figure 3.1, we provide a comprehensive summary of the 

screening process facilitated by GPT-3.5 Turbo for each of the three reviews. This figure includes the 

number of studies identified, screened, included, and excluded, offering a direct comparison and overview 

of the model's performance in the review process.  

3.3.2 Title-Abstract Confusion Matrices for each Review: Figure 3.2 showcases separate confusion 

matrices for the title-abstract inclusion task. These matrices illustrate the true positives, false positives, 

true negatives, and false negatives for GPT-3.5 Turbo in comparison to the original reviewers 

categorizations. 

3.3.3 Title-Abstract Performance Metrics for each Review: Table 3.1 displays the performance metrics 

of GPT-3.5 Turbo’s responses for each review. This table showcases the model's accuracy, sensitivity, 
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specificity, predictive values, F1 score, and MCC in comparison to the original human reviewers. It also 

highlights that GPT-3.5 Turbo significantly outperformed the random classification control in all but two 

performance metrics (sensitivity: p-value = 0.22; F1-score: p-value = 0.21) emphasizing its effectiveness 

in accurately identifying relevant studies. 

 
Figure 3.1 PRISMA Diagram of GPT-3.5 Turbo Screening Results Across Review Topics 

3.3.4 Title-Abstract Self-Validation of AI Model Responses: Figure 3.3 presents confusion matrices for 

the AI model's responses, comparing when explanations were provided to when they were not. The results 

show a high level of agreement between the two sets of responses, although not absolute. Notably, when 

the model's decisions were matched with those of human reviewers, asking the model for an explanation 
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resulted in a slight drop in performance. This indicates that requesting explanations may subtly affect the 

model's output, suggesting the need for further investigation into how such prompts might alter the 

precision of AI-driven selections. 

 
Note: Confusion Matrices Comparing GPT-3.5 Turbo Decisions Against Reviewer Judgments for Title-Abstract Screening Tasks 
in Dementia Gait, Cuffless Blood Pressure Monitoring, and Long-COVID Studies. 

Figure 3.2 Alignment of Model Predictions with Human Reviewers 

3.3.5 Confusion Matrices for Full-Text Screening: Figure 3.4 presents the data which compares the AI’s 

decisions against human reviewers’ judgments. We screened a total of 589 full-text articles on dementia 

and gait signatures, 64 on cuffless blood pressure monitoring, and 517 on Long-COVID outcomes. The 

upper section illustrates the alignment of full-text decisions for articles included by both the model and 

the reviewers in initial phases and the lower section highlights discrepancies for initially included studies. 

Table 3.1 Comparative Analysis of GPT-3.5 Turbo's Performance Metrics for Title-Abstract Inclusion 
Across Review Topics 

Metric 

Dementia and Gait 

Signatures (10-fold) 

Cuffless BP 

Monitoring (10-fold) 

Long-Covid 

Outcomes (10-fold) 

Control Model Control Model Control Model 

Accuracy 0.50 ± 0.03 0.81 ± 0.02 0.46 ± 0.09 0.65 ± 0.08 0.50 ± 0.01 0.87 ± 0.01 

Sensitivity 0.49 ± 0.09 0.69 ± 0.06 0.46 ± 0.12 0.40 ± 0.12 0.50 ± 0.02 0.57 ± 0.03 

Specificity 0.50 ± 0.02 0.83 ± 0.03 0.44 ± 0.10 0.88 ± 0.05 0.50 ± 0.01 0.90 ± 0.01 

PPV 0.14 ± 0.02 0.41 ± 0.05 0.43 ± 0.14 0.75 ± 0.11 0.10 ± 0.01 0.37 ± 0.04 

NPV 0.85 ± 0.03 0.94 ± 0.01 0.48 ± 0.10 0.62 ± 0.09 0.90 ± 0.01 0.95 ± 0.00 

F1 Score 0.22 ± 0.04 0.51 ± 0.05 0.44 ± 0.13 0.51 ± 0.11 0.16 ± 0.02 0.45 ± 0.04 

MCC -0.01 ± 0.07 0.43 ± 0.05 -0.10 ± 0.17 0.32 ± 0.14 0.00 ± 0.01 0.39 ± 0.04 
Note: Metrics were derived using a pseudo-K-folds cross-validation method. BP – Blood Pressure, PPV – Positive Predictive 
Value, NPV – Negative Predictive Value, MCC – Matthews Correlation Coefficient. Bolded values indicate a p-value < .05. 
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3.3.6 Performance Metrics for Full-Text Screening: Table 3.2 presents the performance metrics of the 

full-text screening protocol employed by GPT-3.5 Turbo. Sensitivity and MCC improved the most when 

model screening was applied. Notably, the model had significantly greater sensitivity in the full text 

screening phase compared to title and abstract screening, indicating a potential reduction in false 

negatives as more article content is assessed. While the model generally outperformed the control across 

metrics, many of these improvements did not reach statistical significance possibly due to the smaller full-

text sample size. 

 
Figure 3.3 Comparative Analysis of GPT-3.5 Turbo Model Performance Across Reviews 
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Note: The upper panel presents confusion matrices comparing the AI model's positive and negative labels against reviewers' 
labels. The lower panel (N = 291, N = 14 and N = 262 respectively) shows the percentage of contested decisions differentiating 
between contested inclusions (blue) and contested exclusions (green). 

Figure 3.4 Analysis of Full-Text Inclusion Task and Contested Decisions in AI-Assisted Review 
Screening 

 

 

 



MASc Thesis – R. Luo McMaster University - Biomedical Engineering 

36 

Table 3.2 Comparative Analysis of GPT-3.5 Turbo's Performance Metrics for Full-Text Inclusion Across 
Review Topics 

Metric 

Dementia and Gait 

Signatures (10-fold) 

Cuffless BP 

Monitoring (5-fold) 

Long-Covid 

Outcomes (10-fold) 

Control Model Control Model Control Model 

Accuracy 0.53 ± 0.09 0.62 ± 0.10 0.41 ± 0.17 0.56 ± 0.21 0.47 ± 0.12 0.49 ± 0.07 

Sensitivity 0.69 ± 0.27 0.69 ± 0.34 0.37 ± 0.42 0.95 ± 0.11 0.43 ± 0.42 0.89 ± 0.18 

Specificity 0.52 ± 0.10 0.61 ± 0.12 0.40 ± 0.17 0.49 ± 0.24 0.47 ± 0.11 0.45 ± 0.07 

PPV 0.14 ± 0.09 0.18 ± 0.12 0.14 ± 0.14 0.30 ± 0.15 0.08 ± 0.09 0.15 ± 0.08 

NPV 0.92 ± 0.09 0.95 ± 0.04 0.77 ± 0.19 0.95 ± 0.11 0.87 ± 0.09 0.97 ± 0.05 

F1 Score 0.22 ± 0.11 0.27 ± 0.16 0.20 ± 0.21 0.44 ± 0.17 0.14 ± 0.14 0.24 ± 0.12 

MCC 0.10 ± 0.16 0.20 ± 0.18 -0.16 ± 0.37 0.33 ± 0.22 -0.07 ± 0.28 0.20 ± 0.12 
Note: Metrics were derived using a pseudo-K-folds cross-validation method. BP – Blood Pressure, PPV – Positive Predictive 

Value, NPV – Negative Predictive Value, MCC – Matthews Correlation Coefficient. Bolded values indicate a p-value < .05. 

3.4 Discussion 
3.4.1 Role and Impact of AI and LLMs: The advent of AI and LLMs, epitomized by our LLM screening 

tool, marks a notable evolution in research methodologies for systematic reviews. LLMs such as BERT 

[140], Megatron-ML [145], GPT-3 [139], GPT-4 [143], and PaLM 2 [144], characterized by their large 

parameter sets and transformer architecture, have set new benchmarks in performance, illustrating the 

rapid evolution and potential of these models [64], [142]. Our protocol facilitates a paradigm shift, 

enabling more efficient screening and precise extraction of information from the expansive realm of 

scientific literature. This advancement not only speeds up the discovery process but also enriches the 

insights gained from data [146], aligning with the growing need for swift review methodologies amid the 

surge of preprint repositories [64]. 

Further enriching our understanding, our model's self-validation study offers a glimpse into the 

decision-making capabilities of AI. When comparing the model's internally consistent responses, whether 

reasoned or not, against human reviewers' decisions, a slight dip in performance was observed when the 

model explained its choices. This intriguing outcome hints at a complex, intuitive-like decision-making 

process within AI, akin to human cognition but distinct in its execution. These findings underscore the 

sophisticated nature of LLMs in systematic review processes and underscore the necessity for ongoing 

research to fully grasp AI's potential in enhancing both the efficiency and depth of research synthesis. 
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3.4.2 Integration with Existing Methodological Innovations and Tools: The introduction of LLM 

screening into the ecosystem of systematic review tools such as PICO Portal, DistillerSR, Covidence, and 

Rayyan exemplifies a leap forward in the automation of review workflows [60], [163], [164]. These tools, 

alongside innovations like RobotReviewer [165], TrialStreamer [166], and Abstrackr [167], have 

showcased their capability in extracting and evaluating information from scientific articles, thus aiding in 

judging study quality, and inferring treatment effects.  

Unlike traditional human review processes, which can be subject to subconscious biases and 

sometimes lack expert knowledge, LLMs provide a consistent and replicable framework for decision-

making and have demonstrated proficiency across various fields. However, our preliminary findings 

suggest that the wording of prompts can significantly impact the representation of articles included by the 

model, as illustrated by self-validation tasks and performance metrics of similar prompts (see eFigure 1). 

As other studies have indicated, integrating such AI technologies poses challenges, particularly in 

balancing effective filtering with accurate identification of pertinent studies [168]. This delicate 

equilibrium is crucial as we further incorporate AI into systematic reviews, ensuring that we harness both 

AI capabilities and human expertise without compromising the integrity and depth of research synthesis. 

To contextualize the model’s efficiency and effectiveness compared to traditional methods, it’s 

important to note that manual review typically requires locking in strict inclusion/exclusion criteria early 

on, since retraining reviewers or adjusting guidelines mid-process can introduce bias and inconsistencies. 

By contrast, LLM-based workflows allowed us to rapidly iterate on prompt phrasing and decision logic 

without restarting or retraining a team, effectively letting us “re-review” thousands of papers under new 

criteria in a matter of hours. This flexibility not only reduced workload and fatigue but also made it easier 

to explore edge cases and refine judgment without derailing progress. 

3.4.3 Cautious Reliance on Automated Screening Systems: The deployment of open-source frameworks 

like LangChain [162] have demonstrated the transformative potential of AI and LLMs in enhancing 

various tasks, including the efficiency, accuracy, and overall workload involved in systematic reviews. By 

leveraging automation for the initial screening of papers, the tool has markedly reduced the time and 

manual labor traditionally required. Yet, amidst these advancements, we acknowledge the inherent 

limitations of AI systems in detecting nuanced or edge-case studies, a domain where human reviewers' 

judgment and inclusivity play a crucial role. 

The inclination of human reviewers to err on the side of inclusivity during the initial screening 

phases, adopting a 'better safe than sorry' approach to minimize the risk of overlooking potentially 
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relevant studies, highlights a critical area where AI models may falter. GPT-3.5 Turbo, while adept at 

streamlining the review process, has exposed a vulnerability in terms of false negatives, underscoring the 

technology's current limitations in fully grasping the subtleties of the full review procedure. This 

observation serves as a reminder of the need for cautious integration of AI-based screening systems 

within the systematic review workflow. 

3.4.4 Data Validation and its Impact on Model Performance: Our evaluations have demonstrated GPT-

3.5 Turbo’s effectiveness in managing heterogeneous datasets and identifying opportunities for iterative 

enhancement. Recent studies have highlighted the susceptibility of LLMs to the "butterfly effect," where 

slight variations in input can precipitate significantly different outputs [169]. This sensitivity resonates 

with our findings from the self-validation tests, where subtle changes—such as requesting an explanation 

for decisions—markedly affected the model’s alignment between trials.  

Given these findings, a critical focus of our analysis was the examination of data integrity and its 

influence on the AI model's output. We observed minor inconsistencies in the reviewer-generated data, 

such as mismatches in titles, abstracts, and DOIs, which could potentially skew performance metrics. 

Manual restoration of these discrepancies had a negligible impact on the overall performance results, 

suggesting that the screening’s robustness extends to accommodating minor data inconsistencies.  

3.4.5 Impact on Policy and Practice: While the adoption of AI, particularly LLMs like GPT-3.5 Turbo, 

offers transformative potential for systematic review methodologies, it introduces new vulnerabilities that 

warrant careful consideration. Central among these concerns is the danger posed by reliance on a single 

AI model for all decision-making processes within reviews. The risks of such a dependency include 

vulnerability to adversarial attacks, where manipulated inputs could lead to inaccurate outcomes, and the 

presence of inherent biases within the AI model that could skew results in subtle yet significant ways. 

Addressing these risks involves not only technological solutions but also a broader 

reconsideration of how AI tools are integrated into the review ecosystem. It necessitates a balanced 

approach that leverages the strengths of AI for efficiency and scalability while maintaining a critical 

awareness of its limitations and potential pitfalls. As we advance, fostering a diversified toolkit of AI 

models and open-source methodologies will be paramount in mitigating the risks associated with 

overreliance on any single system. This strategy will enhance the resilience of the review process, 

ensuring that it remains robust, transparent, and adaptable to the evolving landscape of scientific inquiry. 

During data collection, we encountered several practical challenges that underscore the current 

barriers to automating systematic review processes. Our study screening protocol was constrained by 
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technical limitations, primarily due to reliance on textual inputs and difficulties handling multi-modal 

data, such as tables and figures. Additionally, even with access to institutional libraries, we faced 

obstacles in scraping for DOIs and accessing all relevant articles, hampered by publisher restrictions. 

These challenges highlight broader issues in the accessibility of scientific literature and point to the urgent 

need for infrastructural improvements. Such enhancements are crucial to support the seamless integration 

of AI tools in research synthesis and to ensure their effective utilization. 

3.4.6 Future Directions: As we continue to refine our novel screening protocol, striking a balance 

between the speed and thoroughness of the review process remains a central challenge. Efforts are 

currently directed towards prompt engineering and comparing various models to minimize the exclusion 

of relevant literature. Future research should focus on enhancing the system's ability to process multi-

modal inputs and expanding its capabilities for comprehensive, end-to-end review automation. Such 

advancements could optimize research synthesis and enable LLMs to assimilate findings across multiple 

disciplines. This could lead to unique and innovative insights, potentially revolutionizing the processing 

and utilization of complex, interdisciplinary information. 

As it stands, while we advocate for the use of AI in systematic reviews for its undeniable benefits, 

we also emphasize the importance of integrating these technologies judiciously, ensuring that they 

complement rather than replace the nuanced judgment of human reviewers. This approach aims to harness 

the strengths of both AI and human expertise, optimizing the systematic review process without 

compromising the integrity and depth of research synthesis. 

3.5 Conclusion 
The development and application of our LLM screening protocol signifies a milestone in research 

methodology. In our comprehensive work involving the screening and validation of GPT-3.5 Turbo 

across three review topics and 24,534 studies, the model has demonstrated its potential as a sophisticated, 

efficient, and reliable model for systematic reviews and meta-analyses automation. Its ongoing evolution 

and refinement are paramount to keep pace with the rapid progression of scientific and technological 

innovations. 
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4. Few-Shot Systematic Review Inclusion with GPT 
and Scalable Prompt Engineering 

Chapter 3 introduced the promise of LLMs as helpful assistants in the systematic review process, 

demonstrating that AI can indeed reduce workloads and improve efficiency. However, as we begin to rely 

on these models heavily, questions about precision, sensitivity, and the inherent trade-offs come to the 

forefront. How do we ensure that by increasing efficiency, we do not inadvertently exclude critical studies 

or introduce biases? How can we tune these advanced models to better balance the inclusion and 

exclusion of research? 

Chapter 4 takes a deeper dive into these issues by examining the concept of ordinal prompting. 

This approach builds directly on the foundational work from Chapter 3, where we first deployed LLMs in 

the systematic review workflow. Now, we shift from a binary viewpoint—simply including or excluding 

an article, toward a more granular method, assigning confidence scores and using these to fine-tune our 

decisions. 

By the end of Chapter 4, we will have a more sophisticated toolkit for harnessing AI in evidence 

synthesis, one that can adapt to different contexts and requirements. This methodological refinement is 

critical, as it sets the stage for tackling data-intensive problems outside the strict confines of literature 

reviews *. 

4.1 Introduction 
4.1.1 Traditional Systematic Review Processes and Recent Advances in Artificial Intelligence: 

Systematic reviews are essential to evidence-based practice [135], but they face considerable challenges 

due to their intensive labor requirements and extended timelines [62], [63], with costs potentially reaching 

up to $150,000 USD in labor alone [170]. These reviews involve multiple stages—including defining the 

research question, developing a protocol, conducting literature searches, screening titles and abstracts, 

full-text review, data extraction, and finally, data synthesis and reporting [55], [56], [57]—each of which 

requires meticulous effort and is vulnerable to human error and bias [171], [172], [173].  

Completing a systematic review can be a lengthy process; a survey of 195 registered reviews 

found that the average review took 67.3 weeks to complete, with some extending as long as 186 weeks 

[63]. Moreover, despite the Cochrane Collaboration’s recommendation to update reviews every two 

 
* In consideration for the Journal of the American Medical Informatics Association (Impact Factor 7.9) 
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years, many remain outdated, limiting their relevance to current practice [174]. As scientific literature 

continues to grow exponentially, these traditional methods increasingly struggle with data saturation and 

reviewer fatigue, both of which threaten the timeliness and applicability of findings. 

While a 2014 study identified fifteen stages in the systematic review process with potential for 

automation, significant advancements have been made over the past decade to realize this potential [175]. 

In 2024, Artificial Intelligence (AI) driven text mining techniques now allow for the transformation of 

unstructured text into machine-readable formats compatible with machine learning (ML) models, 

establishing a solid foundation for more efficient and effective automation in systematic reviews. 

4.1.2 Text Mining Techniques and Tools in Systematic Review Automation: Before text data can be 

used with ML algorithms, it must first be converted into suitable formats. This begins with tokenization, 

where text is broken into smaller units or "tokens," such as words, characters, or groups of consecutive 

words (N-grams). A recent 2024 scoping review [176] identified 123 studies focused on automation 

technology for systematic reviews. N-grams were a popular method within the bag-of-words framework 

for capturing local context within text sequences, which counts token occurrences without regard to order 

[177].  

Beyond bag-of-words, advanced feature extraction methods included word and sentence 

embeddings [178], [179], term frequency-inverse document frequency (TF-IDF) [180], and Latent 

Dirichlet Allocation (LDA) [181]. Embeddings capture semantic relationships in high-dimensional space, 

as shown by [182], [183], [184]. TF-IDF assigns weights to words by balancing document frequency with 

corpus-wide prevalence, allowing researchers to highlight distinctive terms for classification [185], [186]. 

Meanwhile, LDA groups words into topics based on co-occurrence patterns, helping to identify thematic 

structures within texts [187], [188], [189].  

After transforming text into feature representations, ML models classify documents based on 

these features. Support Vector Machines (SVM) [190], for instance, handle high-dimensional, sparse 

datasets, and remain a popular choice for binary tasks like inclusion and exclusion in systematic reviews 

[187], [189], [191]. Naive Bayes [192] is another example that works well with bag-of-words features, 

assuming conditional independence between terms [193], [194]. Logistic regression [195] on the other 

hand, offers interpretability and adjustable thresholds, making it particularly useful with N-grams or 

embeddings [196], [197]. 

The ML and feature extraction techniques described above underpin a range of semi-automated 

methods designed to streamline systematic review screening by reducing manual effort and improving 
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efficiency. Software tools like Rayyan [198], Abstrackr [191], RobotAnalyst [199], and others [184], 

[200], [201], [202], [203] incorporate methods such as N-grams, TF-IDF, and SVM classifiers to 

transform text into numeric representations, enabling early identification of relevant studies. For instance, 

Rayyan uses N-grams and SVM to classify studies based on keywords and citations. Abstrackr and 

RobotAnalyst both utilize TF-IDF for feature extraction, with Abstrackr applying SVM for classification, 

while RobotAnalyst also combines bag-of-words and LDA. For a more detailed analysis of these tools, 

along with their underlying methods, see [200]. 

4.1.3 Machine Learning Tools and AI Applications in Systematic Review Screening: Since its launch in 

November 2022, OpenAI's ChatGPT has shown potential for use in a number of applications, though its 

performance varies across domains and may be subject to limitations, as noted in existing literature [139], 

[149], [150], [151], [152], [153], [156]. Yet, despite these limitations, the performance and reduced cost 

of AI tools in recent years, especially Large Language Models (LLMs), continue to hold promise for 

transforming fields such as biomedicine and informatics. Recent advancements in language models, such 

as GPT-3.5 Turbo, GPT-4, and newer models like 4o-mini and the o1 series, have expanded the potential 

for data-intensive tasks, analysis, synthesis, and interpretation within systematic review processes [168], 

[204], [205], [206]. These models represent a promising evolution in ML tools for evidence synthesis, 

with potential to bridge the science-policy gap, renew public trust, and reduce delays in implementing 

research findings into practice [17], [170]. 

Building on recent advancements, the application of LLMs offers a novel approach to systematic 

review automation [130], [168], [184]. Unlike traditional ML, which requires extensive labeled data and 

manual feature engineering, LLMs can interpret screening criteria with minimal training data. Our lab’s 

pre-print study showed that GPT-3.5 Turbo performed well in article screening across topics, though 

sensitivity was a challenge [206]. To address this, we introduced an ordinal prompting strategy, where the 

model rates its confidence in including each article, allowing for finer adjustments in sensitivity and 

specificity. This few-shot approach uses minimal contextual information, setting it apart from earlier 

methods [65]. Additionally, this is the first application of ordinal prompting for review automation, 

offering a more adaptable tool for data management in systematic reviews. Further details are in the 

methods and results sections. 

4.2 Methods 
4.2.1 Overview of Review Data: This dataset comprises 24,534 research articles previously pooled from 

three systematic reviews across medical and health science domains: Gait and Dementia Signatures (N = 

3,245) [159], Cuffless Blood Pressure Monitoring Devices (N = 422) [160], and the Impact of Age and 



MASc Thesis – R. Luo McMaster University - Biomedical Engineering 

43 

Comorbidities on Long-COVID (N = 20,867) [161]. These reviews were conducted prior to our 

introduction to ML tools, with pairs of human reviewers responsible for screening titles, abstracts, and 

full-text articles. A third reviewer resolved any discrepancies, and we adhered to the guidelines set out by 

the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) [55], [57]. 

4.2.2 Article Screening Protocol and Prompt Templates: We utilized OpenAI’s GPT-3.5-turbo-0125 

model, integrated with the open-source framework LangChain [162] to automate the article screening 

phase. Table 4.1 compares the layouts of the two prompt templates used as a substitute for manual 

selection. These templates, along with the study titles and abstracts, were fed into the model, and the 

responses cleaned for further evaluation. 

Table 4.1  Binary and Ordinal Prompts Used to Elicit Model Responses 

Binary Prompt Ordinal Prompt 
Criteria: {criteria}  
Should this study be included in the systematic 
review based on the criteria provided? Answer 
with True (for inclusion) or False (for exclusion) 
Title: {title} 
Abstract: {abstract} 
Inclusion: [True/False] 

Criteria: {criteria}  
On a scale of 1 to 10, where 1 is least likely and 
10 is very likely, how suitable is this study for 
inclusion in the review based on the listed 
criteria? 
Title: {title} 
Abstract: {abstract} 
Inclusion: [Rating/10] 

Note: Please see supplementary files for full prompt templates used. 

4.2.3 Few-Shot Evaluation Protocol and Performance Metrics for LLM Screening: We evaluated the 

model’s ability to identify relevant articles using only the titles and abstracts, a technique we refer to as 

"few-shot" screening. Unlike traditional few-shot learning, which involves training models with a limited 

number of examples [139], our approach leverages a pre-trained model to make inclusion decisions based 

on minimal contextual information. 

The model’s performance was assessed using accuracy, sensitivity, specificity, precision (PPV), Negative 

Predictive Value (NPV), F1 Score, and Matthews Correlation Coefficient (MCC). To validate these 

metrics, we used a "pseudo-K-folds" cross-validation approach, a modified K-fold method involving 

stratified shuffling and partitioning of data into balanced subsets [177]. This approach, similar to a 

permutation test, was chosen to provide more nuanced control over validation by minimizing bias and 

variation across data partitions [207], [208]. We then applied bootstrap resampling to calculate standard 
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deviations for the various metrics. The performance was analyzed using a one-way Analysis of Variance 

(ANOVA) with an alpha level of 0.05 to determine statistical significance. 

4.2.4 Evaluating Ordinal Prompting with Receiver Operator Characteristic Curves: In a typical ML 

binary classification workflow, a model’s output probability lies on a continuous scale, and an activation 

function maps it to one of two classes. Receiver Operating Characteristic (ROC) curves plot the True 

Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold settings, helping to assess 

the effectiveness of different classification cut-offs. 

We used ROC curves to evaluate the effectiveness of ordinal prompting by systematically adjusting the 

threshold from 1 to 10. The Area Under the Curve (AUC) for each review topic was calculated using the 

Python Scikit-Learn library. The optimal threshold was determined by locating the point on the ROC plot 

closest to (0,1), indicating the best balance of sensitivity and specificity [209]. Performance metrics for 

these settings are provided in the supplementary materials as eFigure 2. 

4.2.5 Data Transparency and Handling in AI Models: Ethics board approval was not required because 

the source data was derived from studies with their own ethical approvals. 

4.3 Results 
4.3.1 Results of LLM-Assisted Study Screening: The PRISMA flow chart in Figure 4.1 shows the steps 

involved in screening studies using GPT-3.5 Turbo and ordinal prompting. After removing duplicates and 

conducting few-shot screenings, the process excluded a number of irrelevant studies and minimized false 

positives and false negatives. The bottom panel displays confusion matrices associated with the screening 

protocol. This streamlined approach ultimately matched a considerable number of studies with author 

selections, highlighting the potential of LLMs to reduce manual workload in systematic reviews. 

4.3.2 Evaluation of Ordinal Prompting: Figure 4.2 displays ROC curves for various review topics. The 

AUCs for ordinal prompting ranged from 0.83 to 0.91, demonstrating robust performance across reviews 

while random classifications did no better than chance. The optimal performance, indicated by the point 

closest to the top-left [209], consistently ranged between thresholds 7 and 8, and were used as thresholds 

for the subsequent analysis.  
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Note: PRISMA flow diagram representing model selections for article screening. Data show results using thresholds T=7, T=7, 
T=8 respectively. BP: Blood Pressure; FP: False Positive; FN: False Negative; T: Threshold. 

Figure 4.1 PRISMA Flow Diagram and Confusion Matrices set at Optimal Threshold for Each Review 

In most metrics, no significant improvement was observed over the binary prompt; however, 

accuracy and specificity were notably greater in one review. It is also worth noting that in the Cuffless BP 

Monitoring review, the binary prompt achieved a significantly higher specificity than the ordinal prompt, 

highlighting the mixed results across different scenarios. 
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Note: Receiver Operator Characteristic (ROC) curves with Area Under the Curve (AUC) representing performance. The red trace 
represents a single trial from a random multi-class classification control. 

Figure 4.2 ROC Curves for Evaluating Optimal Ordinal Threshold Compared to Random Multi-Class 
Control 

4.3.3 Presentation of Optimal Performance Metrics: Table 4.2 presents a comparison of performance 

metrics for the binary and ordinal prompting strategies. While the ordinal prompting strategy 

demonstrated a trend toward less variability in sensitivity across topics, the extent of this variability 

reduction was not uniform and would benefit from quantification in future work.  

Table 4.2 Performance Metrics Comparing Optimal Ordinal Threshold to Binary Prompt 

Metric 

Dementia and Gait 

Signatures (10-fold) 

Cuffless BP 

Monitoring (10-fold) 

Long-Covid 

Outcomes (10-fold) 

Binary Ordinal Binary Ordinal Binary Ordinal 

Accuracy 0.77 ± 0.02 0.85 ± 0.02 0.79 ± 0.05 0.75 ± 0.05 0.87 ± 0.01 0.87 ± 0.01 

Sensitivity 0.95 ± 0.16 0.87 ± 0.16 0.75 ± 0.21 0.81 ± 0.22 0.86 ± 0.08 0.82 ± 0.07 

Specificity 0.76 ± 0.02 0.85 ± 0.02 0.80 ± 0.05 0.74 ± 0.05 0.87 ± 0.01 0.87 ± 0.01 

PPV 0.04 ± 0.02 0.05 ± 0.02 0.29 ± 0.15 0.25 ± 0.09 0.11 ± 0.03 0.11 ± 0.02 

NPV 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.03 0.97 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 

F1 Score 0.08 ± 0.03 0.10 ± 0.03 0.39 ± 0.16 0.37 ± 0.13 0.20 ± 0.05 0.20 ± 0.04 

MCC 0.16 ± 0.05 0.19 ± 0.04 0.36 ± 0.14 0.34 ± 0.14 0.28 ± 0.05 0.27 ± 0.04 
Note: Metrics were derived using a pseudo-K-folds cross-validation method. BP – Blood Pressure, PPV – Positive Predictive 
Value, NPV – Negative Predictive Value, MCC – Matthews Correlation Coefficient. Optimal threshold scores were used as cut-
off (T=7, T=7, T=8 respectively). Bolded values indicate a p-value < .05. 

4.3.4 Analysis of Model Predictions and Confidence Scores: Figure 4.3 presents confusion matrices 

along with histograms of the model's confidence scores, which tended to be right-skewed. The mean 

confidence scores, ranging between 3.3 and 4.7, were utilized as the cut-off thresholds for the confusion 

matrices depicted in the upper panel. 
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4.3.5 Assessing Few-Shot Performance Using Mean Score: Table 4.3 presents a detailed comparison 

based on the mean scores for the two different prompting strategies. The results for ordinal prompting 

were mixed. Although sensitivity consistently showed significant improvement, both accuracy and 

specificity were lower, suggesting a steep trade-off between sensitivity and specificity. 

Note: Upper panel includes confusion matrices with T as the average confidence score. Bottom panel includes histograms of 
model decisions. 

Figure 4.3 Confusion Matrices set at Average Threshold and Histogram of Confidence Scores 

4.3.6 Quantifying Screening Workload Reduction: To quantify the screening workload reduction while 

ensuring relevant studies were not excessively excluded, we applied the mean threshold and maximized 

sensitivity. For each review topic, the workload reduction, 𝑊, was calculated using the following 

formula: 

𝑊 = 100%	 ×	(1 −
𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑑	𝑆𝑡𝑢𝑑𝑖𝑒𝑠	𝐴𝑓𝑡𝑒𝑟	𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔

𝑇𝑜𝑡𝑎𝑙	𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝑆𝑡𝑢𝑑𝑖𝑒𝑠
) 

Substituting the relevant values from Figure 3, our method yielded workload reductions of 

approximately 65%, 49%, and 60%, while maintaining sensitivity scores above 93%. Alternatively, 

applying a higher threshold like those shared in Figure 4.1 could increase workload savings further to 

approximately 84%, 69%, and 78%, though this would come at the expense of lower sensitivity. 
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Table 4.3 Performance Metrics of Average Threshold for Ordinal Compared to Binary Prompt 

Metric 

Dementia and Gait 

Signatures (10-fold) 

Cuffless BP 

Monitoring (10-fold) 

Long-Covid 

Outcomes (10-fold) 

Binary Ordinal Binary Ordinal Binary Ordinal 

Accuracy 0.76 ± 0.02 0.66 ± 0.01 0.79 ± 0.05 0.58 ± 0.07 0.87 ± 0.01 0.62 ± 0.01 

Sensitivity 0.95 ± 0.16 0.98 ± 0.05 0.75 ± 0.21 0.93 ± 0.16 0.86 ± 0.08 0.96 ± 0.03 

Specificity 0.76 ± 0.02 0.66 ± 0.01 0.70 ± 0.05 0.54 ± 0.06 0.87 ± 0.01 0.61 ± 0.01 

PPV 0.04 ± 0.02 0.03 ± 0.02 0.29 ± 0.15 0.19 ± 0.09 0.11 ± 0.03 0.05 ± 0.01 

NPV 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.03 0.99 ± 0.02 1.00 ± 0.00 1.00 ± 0.00 

F1 Score 0.08 ± 0.03 0.06 ± 0.03 0.39 ± 0.16 0.31 ± 0.12 0.20 ± 0.05 0.08 ± 0.01 

MCC 0.16 ± 0.05 0.13 ± 0.03 0.36 ± 0.14 0.29 ± 0.12 0.28 ± 0.05 0.16 ± 0.01 
Note: Metrics were derived using a pseudo-K-folds cross-validation method. BP – Blood Pressure, PPV – Positive Predictive 
Value, NPV – Negative Predictive Value, MCC – Matthews Correlation Coefficient. Mean threshold scores were used as cut-off 
(T=3.34, T=4.66, and T=3.74 respectively). Bolded values indicate a p-value < .05. 

4.3.7 Summary of Model Inclusion Scoring for Long-COVID Studies: Table 4.4 provides inclusion 

scores, S, assigned by GPT-3.5 Turbo, with the review on long-COVID health outcomes used to illustrate 

our approach. Each score reflects how well a study meets eligibility criteria, including focus, design, and 

relevance to long-term COVID effects, with greater scores being more relevant. The rationale explains the 

model's assessment for each score, supporting a clearer selection process for the review. 

4.4 Discussion 
4.4.1 Overview of Findings: This study builds on prior work [206] exploring LLMs in systematic review 

automation, where initial findings showed both potential and limitations, with error rates around 35% and 

some relevant studies excluded. Here, we introduce a refined prompting strategy that enhances the 

model’s capacity to prioritize relevant articles, addressing prior limitations by improving filtering 

accuracy and usability in systematic review contexts. This advancement supports efficient and dependable 

literature screening, potentially expediting systematic review workflows, increasing reliability, and aiding 

in the timely integration of research findings into practice. 
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Table 4.4 Rationale for Inclusion Scores Assigned by GPT-3.5 Turbo in Systematic Review Screening of 
Long-COVID Health Outcomes 

S Ordinal Prompt GPT-3.5 Turbo Reasoning 
2 Title: Late onset infectious complications and 

safety of tocilizumab in the management of 
COVID-19. [210] 
 
Abstract: BACKGROUND: Tocilizumab (TCZ) 
has been used in the management of COVID-19-
related cytokine release syndrome (CRS). Concerns 
exist regarding the risk of infections and drug-
related toxicities. We sought... 

This study does not meet the eligibility criteria for inclusion in a systematic 
review focused on long COVID health outcomes. The study primarily 
focuses on the safety and complications of tocilizumab in the management of 
COVID-19, rather than reporting on health effects or symptoms occurring at 
least four weeks after a COVID-19 diagnosis. Additionally, the study design 
does not align with the acceptable study designs for inclusion in the 
systematic review. 

4 Title: Histopathologic evaluation of placentas after 
diagnosis of maternal severe acute respiratory 
syndrome coronavirus 2 infection. [211] 
 
Abstract: BACKGROUND: The impact of 
maternal severe acute respiratory syndrome 
coronavirus 2 infection on placental histopathology 
is not well known. OBJECTIVE: To determine if 
any significant placental... 

While the study focuses on the impact of maternal SARS-CoV-2 infection on 
placental histopathology, it does not specifically address long COVID health 
outcomes as required for inclusion in a systematic review focused on this 
topic. The study design is a retrospective cohort study, which is an 
acceptable design for inclusion. However, the study only looks at placentas 
from patients diagnosed with SARS-CoV-2 infection during the third 
trimester of pregnancy and does not report on health effects or symptoms 
occurring at least four weeks after a COVID-19 diagnosis. Therefore, this 
study may not be suitable for inclusion in a systematic review focused on 
long COVID health outcomes. 

6 Title: Follow-Up of Coronavirus Infected Patients 
Using Telemedicine in a Referral Pulmonary 
Center. [212] 
 
Abstract: BACKGROUND: Telemedicine is 
considered an innovative approach for management 
and follow up of communicable diseases, when 
person to person contact has the risk of disease 
dissemination, such as the... 

While this study focuses on follow-up of coronavirus-infected patients using 
telemedicine, it does not explicitly mention long-term health effects or 
symptoms occurring at least four weeks after COVID-19 diagnosis. The 
study design is not specified, and there is limited information on the specific 
health outcomes being measured. Additionally, the abstract does not indicate 
whether the study is peer-reviewed. However, the use of telemedicine for 
patient follow-up in the context of a communicable disease like COVID-19 
could potentially provide valuable insights into long COVID health 
outcomes. More details from the full study would be needed to make a final 
determination on its eligibility for inclusion in a systematic review on long 
COVID health outcomes. 

8 Title: Echocardiographic Characteristics of 
Subjects With COVID-19: A Case Series. [213] 
 
Abstract: Although coronavirus disease 2019 
(COVID-19) manifests in most cases with 
respiratory symptoms, other presentations can 
occur. Direct damage to the cardiovascular system 
has been reported and recently... 

This study on echocardiographic characteristics of subjects with COVID-19 
seems suitable for inclusion in a systematic review focused on long COVID 
health outcomes. The study reports on cardiovascular manifestations of 
COVID-19, which may be relevant to long-term health effects. It is a peer-
reviewed original research case series, providing valuable data on 
echocardiographic findings in patients with COVID-19. The study design is 
appropriate for the scope of the systematic review. The study utilizes 
echocardiography as a method of symptom measurement, which is 
acceptable. Overall, this study appears to be a strong candidate for inclusion 
in a systematic review on long COVID health outcomes. 

10 Title: Post-discharge health status and symptoms in 
patients with severe COVID-19 [214] 
 
Abstract: BACKGROUND: Little is known about 
long-term recovery from severe COVID-19 
disease. Here, we characterize overall health, 
physical health and mental health of patients one 
month after discharge for severe... 

This study meets the criteria for inclusion in a systematic review on long 
COVID health outcomes. It reports on health effects occurring at least four 
weeks after a COVID-19 diagnosis, is peer-reviewed original research, and 
utilizes longitudinal data collection methods through a cohort study design. 
The study provides relevant data on post-discharge health status and 
symptoms in patients with severe COVID-19, including physical and mental 
health outcomes. The data collected through validated survey instruments 
meets the criteria for acceptable methods of symptom measurement. Overall, 
this study is highly suitable for inclusion in a systematic review on long 
COVID health outcomes. 

Note: S denotes the inclusion suitability score assigned by GPT-3.5 Turbo based on study relevance to long-COVID health 
outcomes; the full prompt template is provided in the supplementary materials. 
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4.4.3 Addressing Resource Allocation and Cost-Efficiency: Systematic reviews traditionally require 

considerable time and resources, which can lead to redundancy in certain research areas while other topics 

remain under-researched. Our system, costing approximately $0.31 per 1000 studies screened, 

demonstrates an economical approach that supports sustainable replication at scale, addressing wasteful 

resource use. This method empowers reviewers to maintain high standards with lower costs, enhancing 

the accessibility and reliability of systematic reviews. By reducing the dependency on extensive 

computational resources and specialized training, we enable researchers to fact-check critical review areas 

more readily, reducing inefficiencies without compromising rigor. 

4.4.4 Adjustability and Context-Specific Application in Research: Given the breadth of topics in medical 

and scientific literature, systematic review tasks demand adaptable screening tools that can be tailored to 

diverse sensitivity and specificity requirements. A key advantage of our approach lies in its adjustability, 

allowing users to balance inclusion sensitivity with specificity according to the review context. For 

instance, in infectious disease monitoring, prioritizing higher sensitivity ensures potential cases are not 

overlooked, while in systematic reviews focused on niche medical treatments, high specificity can help 

exclude irrelevant studies. By leveraging an ordinal prompting strategy, our model fine-tunes responses 

for relevance, aligning well with real-world needs where context-specific flexibility is needed. 

4.4.5 Strengths and Comparison with Existing Screening Tools: Traditional ML approaches, while 

effective, often rely on large, annotated datasets, which limits their scalability across varied topics. 

Moreover, ML screening algorithms with heuristic stopping criteria reduce workload but depend on 

supervised data, which limits flexibility in adapting to new research questions [215]. For example, 

Rayyan, a widely used semi-automated screening tool, applies fixed thresholds for inclusion/exclusion 

decisions. While such thresholds help standardize decisions, they may reduce precision in complex 

reviews where nuanced interpretation is required [216]. Similarly, Abstrackr achieves high accuracy with 

extensive training on established topics, but its reliance on annotated data restricts adaptability for 

emerging areas [167], [217]. RobotReviewer, used in clinical trial bias assessment, requires manually 

labeled data for initial training, reducing its generalizability outside clinical contexts [203].  

In contrast, LLMs using few-shot or ordinal prompting can adapt more easily to evolving criteria 

or subtle differences in study relevance. However, this flexibility introduces its own risks, particularly the 

possibility of subjective bias in prompt engineering or inconsistent behavior across different topics. As 

such, while our results demonstrate the potential for more context-sensitive interpretation, we caution that 

LLM outputs should be treated as decision support tools, not replacements for reviewer judgment. 

Acknowledging these trade-offs is essential to responsibly integrating AI into evidence synthesis. 
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4.4.6 Weaknesses, Constraints and Methodological Considerations: Our approach, while adaptive, has 

limitations. Given the rapid release of new models and frequent changes to meta-parameters such as 

temperature and other settings, performance outcomes are not readily generalizable across contexts. The 

LLMs discussed here are largely black-box and closed-source models, presenting challenges for thorough 

evaluation and interpretability by researchers. Additionally, our use of bootstrap sampling and 

permutation testing though helpful for estimating variability, may elevate the risk of Type I errors (false 

positives) and may not fully capture population variance [207], [208].  

To support generalizability, we validated our protocol across three distinct review topics, 

encompassing a total of 24,534 articles. We used a 10-fold partitioning scheme during validation for 

better power analysis, testing different fold counts internally. Finally, we interpreted performance in 

conjunction with ground truth reviewer data and qualitative inspection of false positives and negatives, 

reducing the likelihood of over-interpreting noise as signal. Despite these safeguards, some caution is still 

warranted when interpreting results across different datasets and model contexts. Future studies may 

benefit from using ensemble models across different LLM providers (e.g., OpenAI, Meta, Google, 

DeepSeek) and varied prompt designs to better assess consistency and reduce the risk of model-specific 

bias. 

4.4.7 Future Research Directions: Emerging models such as GPT-4o and the o1 series offer new 

directions for improving cost-efficiency and reasoning capabilities in review workflows. GPT-4o, 

released in mid-2024, is approximately 60% cheaper than GPT-3.5 Turbo [218], making large-scale 

deployment more accessible. Meanwhile, the o1 series, currently in preview, adapts computational load 

based on task complexity, potentially making it better suited for high-variance research tasks [219]. 

Although these models are still being rolled out, their evolution signals the growing feasibility of end-to-

end AI-assisted systematic reviews. 

Current efforts are focused on evaluating LLMs for full-text data extraction. Future research 

should explore integrating AI across all phases of systematic reviews, extending beyond initial screening 

to include end-to-end analysis. Complementary methods like the utilization of grey literature [220] or 

publication type tagging [221] could also contribute to the improvement of review automation. Future 

steps to better identify and synthesize information, particularly from the former could potentially 

transform the systematic review process by incorporating a broader range of data.  
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4.5 Conclusion 
This study demonstrates the potential of LLMs, particularly GPT-3.5 Turbo, to enhance systematic review 

processes by using scalable prompting strategies that balance sensitivity and workload reduction. Our 

application of binary and ordinal prompts achieved substantial screening efficiency gains, reducing 

manual workload by 49-65% across three large systematic reviews without compromising sensitivity. 

Additionally, the innovative use of ordinal prompts allowed for nuanced control over study inclusion, 

facilitating greater adaptability in diverse review contexts. This adaptability, combined with the capacity 

of LLMs to handle large-scale data with minimal training, positions LLMs as valuable tools for 

accelerating evidence synthesis in systematic reviews. Finally, we highlight a practical pathway for AI 

integration that not only reduces resource strain but also improves transparency and replicability in 

evidence-based research. 
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5. Algorithms, Architecture, and Design Patterns for 
Smartphone-Based Mobility Tracking 

The previous two chapters demonstrated how large language models can streamline and enhance evidence 

synthesis, providing a scalable approach to managing the extensive corpus of biomedical literature. With 

these advancements, we now shift focus to tangible, everyday technologies that translate personalized 

health monitoring from theory to practice. 

Chapter 5 turns to smartphones—ubiquitous, sensor-rich devices that hold immense potential in 

healthcare monitoring. If Chapter 2 highlighted gait analysis as a diagnostic tool and Chapters 3 and 4 

focused on improving the evidence landscape, this chapter grounds our discussion in the reality of 

implementation. Specifically, it details the design and development of a smartphone application for 

collecting and managing data from built-in sensors. 

In doing so, we lay the groundwork for smartphone-based human activity recognition (HAR) as a 

solution that can bridge the gap between research findings and patient-level health insights. While the 

system was developed with older adult populations in mind, early testing was conducted using a 

convenience sample of younger participants. As such, this chapter emphasizes system feasibility and 

design rather than clinical validation. Future studies will be needed to evaluate usability and model 

performance in aging populations under real-world conditions. 

5.1 System Overview 
5.1.1 System Design and Architecture Choices: Our application architecture consisted of three main 

components: the client device, the backend server, and the database. We opted for a React Native [222] 

client using Expo [223] for frontend development to allow for cross-platform compatibility between iOS 

and Android. The backend API endpoints followed RESTful design principles and were implemented 

using the Next.js framework [224]. We also used a(n) SQLite database for the data storage schema and 

models, with Prisma ORM [225] serving as the object-relational mapping tool. During deployment, we 

migrated the database to PostgreSQL, which was better suited for cloud and edge computing 

environments. Finally, the backend server was hosted on Vercel [224], chosen particularly for its Next.js 

ecosystem support. Our software architecture is illustrated in Figure 5.1 below. 

5.1.2 User Authentication and Security Concerns: Our security architecture was designed with three 

primary goals: verifying the identity of real individuals, eliminating the risks of password storage, and 
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enabling secure communication with study participants. To achieve these objectives, we implemented a 

cellular two-factor authentication (2FA) system, as illustrated in Figure 5.2.  

 
Note: Communication between the client and the backend occurs via HTTP methods such as GET, POST, and PUT requests, 
with the backend processing these requests and interacting with the PostgreSQL database for data persistence. 

Figure 5.1 Architecture Component Diagram 

 
Note: This diagram illustrates the three-step user authentication process: (A) Registration using Twilio to send a 2FA code via 
SMS, (B) Verification where the user enters the code to receive an encrypted authentication token, and (C) Authenticated 
Requests where the token validates user identity and retrieves user-specific resources securely. 

Figure 5.2 Registration, Verification, and Authentication Flow 

The process begins with registration (Figure 5.2A). For this purpose, Twilio sends a randomly 

generated four-digit code via SMS to the user's phone number at a cost of just $0.0079 per message. Upon 

receiving the code, the user verifies device ownership (Figure 5.2B) by entering the code into the 
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application. Then, the backend server issues a personalized, encrypted authentication token, which the 

device stores and uses to authenticate the user's identity in future requests. These tokens contain identity 

information but are encrypted with a server-privileged key. During subsequent interactions, the backend 

server acts as an intermediary to the database, using the token to ensure that queries retrieve data specific 

to the authenticated user (Figure 5.2C). 

5.1.3 Data Collection and Sensor Support: Client data collection and sensor support were divided into 

two distinct services. The first service managed the sampling of IMU sensors, specifically the three-axis 

accelerometer, gyroscope, and magnetometer. The second service handled data collection from the GPS 

module.  

To manage the high-frequency data generated by these services, we implemented a buffering 

mechanism. This approach avoided the inefficiencies of frequent read/write operations to the device's 

storage, which would occur at sampling rates of roughly 20 to 50Hz. Instead, incoming data points were 

temporarily stored in a buffer. Once the buffer reached a predefined threshold, the data was written to 

storage in batches (Figure 5.3). 

 
Note: This diagram illustrates the batching mechanism used to save sensor data to local device storage. GPS: Global Positioning 
System; IMU: Inertial Measurement Unit; Async Storage: Asynchronous Device Storage. 

Figure 5.3 Client Buffering and Storage Infrastructure 

Our design logic extended to the API endpoints and data schema. For example, each activity was 

represented as a SensorSession, which encapsulated SensorData and LocationData. These components 

were managed through dedicated API endpoints, enabling independent uploads of SensorData and 

LocationData while maintaining their association within the same session. 
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This design also accounted for two critical requirements: the potential loss of internet 

connectivity and the need to handle large and frequent data transfers. In the case of a stable internet 

connection, the system would allow for pseudo-streaming by sending batched SensorData and 

LocationData packets to the server. In the case of unstable or no internet connection, data could be stored 

locally and synced with the server upon a re-established connection.  

5.1.4 Database Schema and Back-of-the-Envelope Calculations: The database schema (Figure 5.4) 

contained five interrelated tables: Participant, SensorSession, SensorData, HealthMetrics, and 

LocationData. The SensorData table, storing high-frequency readings, was the largest contributor to 

storage requirements, while other tables provided essential metadata, participant details, and contextual 

information for activity tracking. 

To estimate the data storage requirements for the system, we performed simple calculations based 

on the schema in Figure 5.4. Below, we focus on SensorData since it constituted the largest storage 

requirements. 

Assuming a sampling rate of 50Hz, each second of data collected from the three-axis IMU 

sensors (accelerometer, gyroscope, magnetometer) would include 450 floating-point values. Assuming 

each value to be about 4 bytes, each second would contain 1.8 KB of sensor data. Over a typical 20-

minute activity, this amounts to approximately 2.16 MB of sensor data, with an additional 116 bytes for 

metadata fields such as timestamps, activity labels, and session identifiers. For a single user recording one 

session per day, the total storage requirement is approximately 2.16 MB per day. 

Extrapolating to 100 users over 30 days, the total storage requirement was estimated to be 

approximately 6.48 GB. Extending this to a year, the requirement scales to approximately 78.84 GB. 

Additionally, given Vercel’s pricing model of $0.12 per GB for read and write operations, the cost of 

supporting 100 users for 30 days was estimated to be $1.56. For a full year, this would amount to 

approximately $18.92 in storage costs. These estimates demonstrate the cost-effectiveness of supporting 

small to medium-scale studies and research projects. 

5.2 Software Validation Methodologies 
5.2.1 Device and Environment Testing: To ensure compatibility across both Android and iOS platforms, 

we tested the application on two smartphone devices: a Samsung Galaxy S10e (2019) and an iPhone 14 

Pro (2022). Testing on devices released three years apart provided confidence that our software would 

function effectively on both newer and older hardware. Additionally, we compared the results to a third-

party IMU device [226] (MetaMotionS; MbientLab) to confirm the accuracy of the smartphone sensors 
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against a reliable benchmark. However, due to differences in configurable sampling frequencies, 

comparisons with the IMU device were limited to motion-related tests. 

 
Note: This diagram shows the database schema, where Primary Keys (PK) uniquely identify records across tables such as 
Participant, SensorSession, SensorData, HealthMetrics, and LocationData. 

Figure 5.4 Entity Relationship Diagram of Postgres Database 
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Our testing methodology followed a tiered deployment strategy, in which different environments 

were used for iterative testing and validation. In the context of our application, "staging" referred to a pre-

production environment where new features were deployed and tested before being released to 

production. This setup allows for thorough evaluation without affecting the live environment. However, 

as the application is still under review and a production environment does not yet exist, all tests described 

in this chapter were performed in the staging environment. Furthermore, while the application collects 

both IMU and GPS data, this chapter primarily focuses on IMU data from the smartphones. GPS data was 

excluded from analysis due to privacy concerns. 

5.2.2 Data Sampling Validation: Sensor readings are processed as asynchronous calls, meaning they may 

not always align precisely with the desired sampling frequency due to variations in hardware, software, 

and background processes. To validate the actual sampling rate against the set rate, both devices were laid 

flat on a surface and set to record for 30 seconds. The sampling frequency in the application was 

controlled by specifying the time elapsed between sensor readings. For instance, a sampling rate of 20Hz 

corresponds to a sensor interval of 50ms, calculated using the formula: 

𝑓 =
1000𝑚𝑠
𝛥𝑠

 

where 𝑓 is the desired sampling frequency in Hz, and Δ𝑠 is the sampling interval in milliseconds. 

After recording, the actual sampling frequency was determined using the equation: 

𝑓!"#$!% =	
𝑛
𝑡

 

where 𝑛 represents the total number of samples recorded, and 𝑡 is the total elapsed time of the 

session in seconds. This stationary test was repeated for five trials at different sampling frequencies and 

analyzed using a two-sample T-test with unequal variance to identify any significant discrepancies 

between the devices. 

5.2.3 Drop Test Methodology: Accelerometers on the devices measure acceleration in terms of g values, 

where 1g (9.81 m/s²) represents the gravitational force exerted by Earth's gravity. The true acceleration 

(𝑎actual) can be calculated using the equation: 

𝑎!"#$!% = 𝑔 ⋅ 𝑠 

where 𝑔 is the gravitational acceleration (9.81 m/s²), and 𝑠 is the scale factor reported by the 

accelerometer. To supplement our stationary test, we conducted a motion test by dropping both devices 
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from a height of ~2 meters onto a soft surface. Free fall provided a consistent and reliable test condition 

for repeated motion experiments, as we know gravitational acceleration to be approximately 9.81 m/s².  

Finally, while we tested the devices at sampling frequencies between 20 and 100Hz, no 

significant differences were observed across frequencies; therefore, our results are primarily reported at 

50Hz. To ensure consistency, the devices were oriented in the same direction throughout the test to avoid 

variations due to external magnetic fields. 

5.2.4 Motion and Stability Testing: Building on the stationary and drop tests, we extended our 

methodology to include real-life examples of gait to simulate everyday activity. To achieve this, both 

devices were placed in the right pant pocket and set to record during an ~8-meter walk. Each walking trial 

lasted 15 to 20 seconds and included deliberate pauses at the start and end of the activity to distinguish the 

walking motion from noise artifacts. 

The 𝑥, 𝑦, and 𝑧 components of each sensor were combined to calculate the resultant vector 

magnitude, which provides a scalar representation of overall motion. The resultant was computed using 

the equation: 

𝑅 = S𝑥& + 𝑦& + 𝑧& 

where 𝑥, 𝑦, and 𝑧 are the acceleration, angular velocity, or magnetic field strength components 

measured along the three axes. For qualitative analysis, a representative example of the recorded data was 

selected to highlight key observations and validate the system's ability to capture meaningful walking 

patterns. 

5.3 Performance Metrics 
5.3.1 Sampling Frequency Validation: The data revealed that the newer-generation iOS device generally 

achieved higher and more consistent sampling rates compared to the older Android device, which 

struggled at higher input frequencies (Table 5.1). 

Interestingly, the iOS device exhibited notable variability at specific frequencies, particularly 

40Hz and 80Hz. For instance, when the input sampling frequency was set to 80Hz, the accelerometer and 

gyroscope achieved rates as low as 49Hz in some trials and up to 79Hz in others. While this may be due 

to intermittent factors or system-level differences, the large variation highlights the potential for 

occasional inconsistencies even in newer devices. 
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5.3.2 Drop Test Analysis: The drop test among the test devices showed similar results for the 

accelerometer (Figure 5.5). For all devices, a resultant acceleration of approximately 1g was recorded at 

the start of the experiment. At different time points during the trials, the resultant acceleration dropped to 

0g, indicating free fall. This was followed by sharp spikes upon impact, caused by the sudden 

deceleration of the devices hitting the surface. Interestingly, the gyroscope data revealed an upside-down 

U-shaped pattern during free fall, followed by a sharp spike upon impact, capturing the rotational force 

experienced during the collision.  

Table 5.1 Sampling Rate Discrepancies for Smartphone IMU Sensors at Different Input Frequencies 

Note: Cells display mean ± standard deviation of sampling rates of five trials across accelerometer, gyroscope, and 
magnetometer sensors on the Samsung Galaxy S10e (2019) and iPhone 14 Pro (2022). Bolded values indicate significant 
differences (p-value < 0.05) from a Student's t-test. 

In contrast, the magnetometer data returned to baseline immediately after impact, showing no 

significant spike. During free fall, all three devices displayed a U-shaped pattern in the magnetometer 

readings, though the IMU device exhibited an inverted U-shape compared to the smartphones, likely due 

to differences in sensor calibration or sensitivity. Additionally, the third-party device measured gyroscope 

data in degrees per second (deg/s), while the smartphone sensors reported angular velocity in radians per 

second (rad/s). For the magnetometer, the third-party device provided readings in a scaled format (e.g., 

teslas with scientific notation), whereas the smartphones reported values directly in microteslas. 

5.3.3 Motion and Stability Testing: Illustrated in Figure 5.6, the test devices showed cyclical traces 

during walking trials, reflecting their ability to capture natural gait patterns. The accelerometer and 

gyroscope readings demonstrated similar magnitudes of the resultant across all devices, indicating 

consistent performance in capturing dynamic motion across platforms. However, notable differences were 

observed in the magnetometer readings among the devices. One device recorded resultant magnitudes 

Input 

Freq 

(Hz) 

Accelerometer Freq (Hz) Gyroscope Freq (Hz) Magnetometer Freq (Hz) 

Samsung 

Galaxy S10e 

2019 

Apple 

iPhone 14 

Pro 2022 

Samsung 

Galaxy S10e 

2019 

Apple 

iPhone 14 

Pro 2022 

Samsung 

Galaxy S10e 

2019 

Apple 

iPhone 14 

Pro 2022 

20 18.58 ± 0.08 19.83 ± 0.02 18.6 ± 0.07 19.82 ± 0.01 17.31 ± 0.07 19.82 ± 0.02 

40 32.13 ± 0.24 33.68 ± 8.11 32.11 ± 0.28 33.69 ± 8.12 30.32 ± 0.24 39.49 ± 0.19 

60 46.82 ± 0.51 60.79 ± 4.90 46.87 ± 0.57 63.21 ± 2.67 40.63 ± 0.22 65.87 ± 0.23 

80 55.84 ± 0.31 61.37 ± 16.18 55.98 ± 0.34 61.36 ± 16.19 45.66 ± 0.26 49.49 ± 0.09 

100 59.14 ± 0.32 98.30 ± 0.21 59.30 ± 0.25 98.29 ± 0.20 49.28 ± 0.42 98.27 ± 0.19 
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nearly double those of the others, which may stem from differences in hardware calibration, sensitivity, or 

the influence of external magnetic fields on the devices. 

 
Note: Raw accelerometer, gyroscope, and magnetometer readings during free fall drop tests on the Samsung Galaxy S10e (2019), 
iPhone 14 Pro (2022), and MetaMotionS IMU. The drop event is marked by the near-zero resultant magnitude during free fall, 
followed by sharp spikes at impact. 

Figure 5.5 Sensor Responses During Free Fall and Impact Across Test Devices 
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5.4 Challenges and Solutions 
5.4.1 Managing High Frequency Sensor Data: The sensors on each smartphone exhibited inherent 

limitations, as demonstrated in our stationary sampling frequency experiment. For instance, while both 

devices were set to sample at 100 Hz, the Android device consistently maxed out at around 60 Hz, while 

the newer iOS device achieved up to 98 Hz. Variability too, was observed both between trials, with 

differences of up to 30 Hz recorded at the same settings. Between sensors, the magnetometer also 

displayed lower variability across trials compared to the accelerometer and gyroscope. These 

inconsistencies were likely influenced by a combination of hardware capabilities, sensor throttling, and 

software limitations. 

One contributing factor may be the asynchronous nature of sensor sampling, where the specified 

interval represents the minimum time between samples, leading to actual frequencies that are often lower 

than expected. Additionally, to mitigate battery drain and prolong device usability, operating systems may 

intentionally throttle high-frequency sensor sampling, particularly for power-intensive sensors. 

5.4.2 Device and Platform Heterogeneity: Another challenge involved managing differences between 

operating systems. React Native and Expo simplified development by allowing a single codebase to be 

used for both iOS and Android. However, this approach introduced new challenges when features were 

implemented differently or were available on one platform but not the other. A notable example was how 

native pedometer modules were implemented. On iOS, we could input two date fields to retrieve the 

number of steps taken between those times. In contrast, the Android pedometer module functioned more 

like a live sensor, providing step data only while actively subscribed and recording.  

5.4.3 User Interface and Flow: The application was designed for use across a wide range of ages and 

health contexts, and therefore prioritized accessibility and usability. While primarily intended as a 

research and IMU data collection tool, the user interface and experience (UI/UX) drew inspiration from 

fitness and running applications to provide additional utility beyond data collection (Figure 5.7). The 

inclusion of GPS alongside IMU data enhances its potential for sophisticated analyses, such as correlating 

walking quality with specific locations. This could enable features like heatmaps to highlight areas that 

may require accessibility improvements or urban planning updates. 
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Note: Raw accelerometer, gyroscope, and magnetometer readings during walking trials on the Samsung Galaxy S10e (2019), 
iPhone 14 Pro (2022), and MetaMotionS IMU showing x, y, z components and the resultant magnitude. Pauses at the start and 
end of the activity were used to isolate walking motion from noise artifacts. 

Figure 5.6 Sensor Data During 10-Meter Walking Trials with Smartphone in Pocket 

The app was designed with features that encourage user engagement without feeling 

manipulative. For instance, the application is fully functional both offline and online, but cloud storage is 

only available to users who create an account. This approach balances financial considerations with user 

incentives. To further encourage account creation, a banner is displayed on the homepage, linking to a 

call-to-action (CTA) for signing up (Figure 5.7; Home Tab). The banner disappears once an account is 

created, providing a subtle but effective "negative reinforcement" by removing a persistent element in 
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exchange for user engagement. These design choices aim to strike a balance between functionality, user 

experience, and research goals. 

 
Note: Displays key application screens, including the Home Tab, Record Tab, History Tab, Profile Tab, and Recording Screen 

Figure 5.7 Application Screens 

5.4.4 Interface for Heterogeneous Health Data: To support the collection of health data for future 

studies, the app included input fields designed to record information about comorbidities, other health 

factors, and participant consent (Figure 5.8). While open-ended questions could provide flexibility, they 

risked introducing significant data heterogeneity, as varied responses would be difficult to standardize for 

modeling or reporting. 

To address this, the app was designed to offer predefined response options for questions where 

standardization was critical. For instance, in the case of walking aids, participants could select from 

common options, with additional choices for "None of the above" and "Other" to maintain flexibility 

while promoting consistency. Other fields, such as age, weight, or height, were designed to use a numeric 

input interface with a numpad and appropriate range limitations to ensure accuracy and prevent erroneous 

entries. 

5.4.5 Strengths and Limitations: Our system demonstrated several strengths, including cross-platform 

compatibility through React Native, scalable architecture for managing high-frequency sensor data, and a 

user-friendly interface designed for accessibility and usability. Offline functionality ensures reliability of 

data collection in real-world environments, and the integration of IMU and GPS data offers novel 

analyses, such as gait assessment and location-based insights. 
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Note: Illustrates intuitive user experience for input and consent flow, featuring Numeric Data Entry, Choice Selections, Open 
Text Input, and Decision Confirmation. 

Figure 5.8 User Info and Consent Flow 

However, there were notable limitations. Hardware and software variability presented challenges, 

particularly with inconsistent sampling rates for accelerometer and gyroscope sensors. Additionally, 

relying on a single device sensor, while practical, may lack the resolution required for certain outcomes, 

such as step width, which typically requires multiple sensor placements in biomechanical studies. 

Finally, although our testing was limited to a small number of development devices and 

personnel, the wide variety of smartphones on the market and the diversity in their usage and placement 

(e.g., pockets, bags) introduce substantial heterogeneity. While modern smartphones are computationally 

powerful, fully harnessing their potential will require advanced models capable of accommodating these 

variations. 

5.5 Conclusion 
This chapter outlined the design, implementation, and validation of a smartphone-based data collection 

system for mobility tracking. By integrating IMU and GPS sensors with scalable data storage and an 

accessible user interface, the system was designed to facilitate health data collection across diverse 

contexts. However, the inherent heterogeneity in smartphone hardware, user behavior, and environmental 

conditions presents significant challenges, particularly for standardization and modeling. Addressing this 

complexity requires advanced analytical approaches, as it is not feasible to rely solely on algorithmic 

programming to account for such variability. This chapter sets the stage for the next, where human 

activity recognition (HAR) techniques are introduced. These methods leverage deep learning to manage 

the heterogeneity observed in sensor data, enabling robust and scalable solutions for personalized health 

monitoring.  
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6. Deep Learning Models with Smartphone Sensor 
Data for Human Activity Recognition: Literature 
Review and Case Study 

In Chapter 5, we demonstrated how smartphone devices serve as practical and efficient tools for 

collecting movement and activity data. Their real-time capabilities, scalability, and ease of use make them 

valuable for various applications. However, challenges remain, particularly those stemming from sensor 

heterogeneity. Variations in sensor placement, smartphone models, and operating systems (e.g., iOS vs. 

Android) can significantly affect data quality and consistency. 

Chapter 6 builds on this foundation by addressing these challenges and expanding the scope to 

tackle the issue of manual activity labeling. First, we conduct a literature review of automated activity 

labeling technologies designed for wearable devices. Then, we pretrain and compare three deep learning 

models—densely connected feed-forward networks, Long Short-Term Memory (LSTM) networks, and 

Gated Recurrent Units (GRU)—to evaluate their effectiveness in low-cost activity classification. This 

chapter serves as a bridge to Chapter 7, where we will integrate insights from various domains, including 

gait analytics, systematic reviews, and Human Activity Recognition (HAR) technologies, 

6.1 Introduction 
6.1.1 The Growing Potential of Smartphone Sensors: The increasing proliferation of smartphones—

approximately 5 billion devices globally in 2024 alone—has ushered in unprecedented opportunities for 

human activity recognition (HAR) through embedded sensor technology [227]. These devices, equipped 

with accelerometers, gyroscopes, magnetometers, GPS, and other advanced sensors, enable the 

continuous collection of detailed data on human movement and behavior. Smartphones’ ubiquity, 

computational power, and accessibility have transformed them from mere communication tools into 

robust platforms for health monitoring and activity tracking. 

Their accessibility also makes them ideal for large-scale health initiatives. Unlike niche wearable 

devices, smartphones are globally pervasive and widely accepted across age groups. This ubiquity 

minimizes barriers to adoption and allows researchers to leverage a familiar platform for collecting and 

analyzing sensor data. Their potential for HAR is further amplified by advancements in computational 

techniques and AI algorithms, which allow smartphones to process complex sensor data efficiently in real 

time. 
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6.1.2 Challenges in Human Activity Recognition: Despite their promise, smartphones face several 

challenges in HAR. Sensor heterogeneity—variations in smartphone models, operating systems, and 

sensor placements—complicates data consistency and quality. These differences can result in noise, 

missing data, and biased results, particularly in diverse real-world environments. Moreover, manual 

activity labeling for training HAR models remains a significant bottleneck due to its labor-intensive 

nature and susceptibility to subjectivity [228], [229]. 

To overcome these challenges, researchers have explored automated annotation techniques and 

robust preprocessing methods. Techniques like sensor fusion and orientation-invariant preprocessing have 

shown promise in mitigating inconsistencies caused by heterogeneous devices. Additionally, leveraging 

semi-supervised and transfer learning approaches has the potential to scale HAR applications, addressing 

data scarcity while improving model generalizability across diverse datasets. 

6.1.3 Innovations in Data Annotation and Classification: To address the bottleneck of manual data 

annotation, we conducted a literature review of automated annotation techniques, exploring methods such 

as active learning, transfer learning, and sensor fusion. These approaches reduce the reliance on human 

annotators, enabling scalable and efficient data labeling processes. Automated annotation systems are 

particularly valuable for large-scale studies in free-living conditions, where traditional manual labeling is 

impractical [229]. 

In addition to literature review, we evaluated three deep learning architectures—densely 

connected feed-forward networks (FFN), Long Short-Term Memory (LSTM) networks [230], and Gated 

Recurrent Units (GRU) [231]—for activity classification using publicly available HAR datasets. Pre-

trained models may offer a cost-effective solution for activity classification and serve as a strong baseline 

for integrating more contextual features, such as GPS data, to enhance resolution and accuracy [232]. 

These innovations align with broader efforts to advance AI-driven healthcare solutions. By 

addressing critical gaps in annotation and classification, this work contributes to the development of 

scalable, real-time HAR systems capable of supporting preventative health monitoring and disease 

management. 

6.2 Methodology 
6.2.1 Database Search of Automated HAR Labelling: To supplement our results, we performed a 

literature review of automated labelling methods for the purpose of HAR, following PRISMA guidelines 

and registered with PROSPERO (registration number CRD42024538078). Database search was 

conducted in April 2024, covering studies published within the last ten years. We searched the following 
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databases: Embase, CENTRAL, PubMed, Web of Science, and CINAHL and utilized a comprehensive 

set of keywords and MeSH terms as outlined in Table 6.1. 

Table 6.1 Keywords Used in Database Search 

Category Keywords 
Wearable Sensor 
Technology 

Wearable*, Sensor*, Accelerometer, Gyroscope, Magnetometer, 
Barometer, Smartphone, Smartwatch, “Inertial Sensor”, "Inertial 
Measurement Unit (IMU)", "Global Positioning System (GPS)", 
“Wearable Sensor”, "Wearable Computer", “Activity Tracker”, "Fitness 
Tracker", "Body Area Network" 

Human Activity 
Recognition (HAR) 

Activity*, Task*, Recognition*, Classification*, “Human Activities”, 
"Human Activity Recognition (HAR)", “Daily Life Activity”, "Activities 
of Daily Living (ADL)", "Physical Activity", "Motor Activity", 
"Behavioral Monitoring" 

Data Preprocessing 
and Feature Extraction 

Denoising, Normalization, Segmentation, Pre-processing, "Sensor 
fusion", "Time-Frequency Analysis", "Signal Processing", "Fourier 
Transform", "Feature Extraction" 

Labelling Automatic*, Label*, Labelling*, Annotate*, Annotation*, "Automatic 
Annotation", "Data Annotation", "Crowdsourcing" 

Machine Learning 
Techniques and 
Algorithms 

Supervised*, Self-Supervised*, Unsupervised*, 
Reinforcement*,"Machine Learning", “Artificial Intelligence” “Artificial 
Neural Network”, “Supervised Machine Learning”, “Unsupervised 
Machine Learning”, "Deep Learning", "Decision tree", "K-nearest 
neighbors", "Support Vector Machine", "Convolutional Neural 
Network",  “Recurrent Neural Network”, "Semi-Supervised Machine 
Learning", “Automated Pattern Recognition”, "Self-training" 

Note: In the database search, categories were combined using the AND operator, and keywords within each category were 
combined using the OR operator. 

While the methodology was informed by systematic review principles, certain elements, such as 

the PRISMA flow diagram, risk-of-bias assessment, and quality scoring, were omitted to better align with 

the objectives and scope of the project. 

6.2.2 Screening and Data Extraction: Title and abstract screening was automated through our custom 

web application using the OpenAI API with the GPT-3.5 Turbo model. This application used a tailored 

prompt template to classify studies as 'include' or 'exclude'. Subsequently, full texts of included studies 

were segmented into 1000-token chunks with 100-token overlaps and indexed using Hierarchical 

Navigable Small World (HNSW) vector stores for efficient querying. Data was exported in .csv format.  
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Note: The figure illustrates three neural network architectures: a densely connected network (FFN), a gated recurrent unit (GRU) 
network, and a long short-term memory (LSTM) network. The FFN model includes multiple fully connected layers with 
specified kernel and bias sizes. The GRU and LSTM models incorporate recurrent layers to handle sequential data, with dropout 
layers for regularization 

Figure 6.1 Deep Learning Model Architectures 

To simulate the systematic review guidelines of having two independent reviewers, we conducted 

two separate runs of the classification process using the same model. The first run used the standard 
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prompt, while the second run incorporated a modified prompt that asked the model to provide an 

explanation for its classification. Additionally, we validated the screening process using an ordinal 

prompt, instructing the model to rate each study on a 1–10 scale to provide more nuanced insights. 

Conflicts and final inclusion decisions were made through human judgment. 

6.2.3 Description of Preliminary Models and Model Architecture: We compared three deep learning 

models: a densely connected feed-forward network (FFN), gated recurrent unit network (GRU) [231], and 

long short-term memory network (LSTM) [230]. FFNs were included as a control; they process data in a 

single direction and are effective for pattern recognition but lack mechanisms to model temporal 

dependencies. GRUs and LSTMs were chosen for their feedback loops, which allow them to capture 

temporal relationships, making them ideal for activity recognition tasks with sensor data. The 

architectures of the chosen models are shown in Figure 6.1. 

6.2.4 Training Dataset Description and Preprocessing: We utilized the Heterogeneity Activity 

Recognition dataset from the University of California, Irvine Machine Learning Repository [233]. The 

dataset comprised six labeled activities: Biking, Sitting, Standing, Walking, Stair Up, and Stair Down. It 

contained maximum sampling frequency readings from the tri-axial accelerometer and gyroscope of eight 

different smartphone devices. The inclusion of data from multiple devices was particularly relevant in our 

circumstance, where variations in hardware and sensor placement can significantly impact model 

performance. 

Summary statistics (mean, standard deviation, quartiles) were computed for each sensor and 

visualized as frequency histograms. Data segmentation was then performed using a sliding window 

approach with a window size of 128 data points and a step size of 64. The segmented data was randomly 

shuffled and split into training (70%), validation (15%), and test (15%) sets. To standardize the data and 

account for variations between devices, Z-score normalization was applied using the formula: 

𝑍' =
𝑥' − 𝑥
𝜎

 

where 𝑍' represents the normalized value, 𝑥' represents the sensor reading at each index, 𝑥 

represents the mean sample sensor value, and 𝜎 represents the sample standard deviation. Activities were 

one-hot encoded for categorical representation. 

6.2.5 Model Training: Models were trained separately on accelerometer and gyroscope data to evaluate 

their individual contributions to activity recognition. We employed categorical cross-entropy as the loss 

function and ReLU activation functions for intermediate layers. Training was conducted over 20 epochs 
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with a batch size of 64, using the Adam optimizer with the default learning rate of 0.001 [234]. Early 

stopping and dropout regularization [235] was assessed in both recurrent models with a dropout rate of 

0.5 to mitigate overfitting and prevent the network from relying too heavily on any one feature. 

To further optimize performance, we experimented with various architectures, including CNN-

LSTM and CNN-GRU hybrids, batch normalization [236], and adjustments to the number of units and 

layers in the recurrent models. However, these configurations did not yield significant improvements over 

the simpler architectures and were thus excluded from the final results for brevity. 

6.2.6 Supplementary Dataset Preparation, Evaluation Metrics and Analysis: New supplementary 

activity data was collected from two researchers performing the same activities as those in the training 

dataset. Each activity was performed for 15-30 seconds and subsequently combined, with the first and last 

5 seconds of data removed to ensure consistency for automated labeling. Data collection utilized a 

Samsung Galaxy S10e (2019), iPhone 14 Pro (2022), and MetaMotion IMU [226] at a sampling rate of 50 

Hz. To account for variations in sensor output, all readings were converted to common units prior to 

analysis. 

To address differences in sampling rates, models were retrained on a subsampled version of the 

original dataset. Pre-trained model predictions were applied to this supplementary dataset for labeling, 

with ground truth determined through manual annotation. Confusion matrices were analyzed to identify 

common misclassifications, including overlaps between similar activities. Additionally, the performance 

of the pre-trained model was evaluated on its own test set as well as the original dataset, with a focus on 

F1-score as the primary metric, while accuracy, precision, and recall were also assessed. 

6.3 Results 
6.3.1 Literature Review Results: The results of the initial database search are summarized in Figure 6.2. 

The analysis highlights a growing interest in HAR and wearable technologies, particularly within the last 

five years. This trend is visualized in the accompanying heatmap, which illustrates a significant rise in 

relevant publications and research activity over this period. 

Particularly over the last five years, studies have expanded beyond simple daily activity 

monitoring to include specialized medical and occupational tasks, drawing on works that date back more 

than a decade. In particular, there is growing emphasis on continuously monitoring free-living conditions 

for individuals with Parkinson’s disease [237], [238], [239], [240], epilepsy [241], frailty [242], autism 
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spectrum disorder stereotypies [243], as well as on designing semi- and fully-automated annotations for 

large-scale datasets [244], [245], [246], [247].  

 
Note: Depicts a heatmap showing the distribution of GPT relevance ratings against the year of publication. Darker regions 
indicate a higher density of articles with greater relevance scores, suggesting trends over time. Marginal histograms on the top 
and right display the frequency of publications per year and the distribution of relevance ratings, respectively. 

Figure 6.2 Year of Publication Plotted Against Article Topic Relevance 

Recent work reveals a diverse array of devices and sensor types employed to capture human 

motion and physiological states, ranging from simple accelerometers to multimodal suites that include 

gyroscopes, magnetometers, and even electrocardiogram (ECG) and electromyography (EMG) sensors 

[241], [248], [249], [250], [251], [252], [253]. Some rely on smartphones with embedded IMUs [247], 

[254], [255], [256] while others leverage wrist-worn devices or smartwatches (e.g., Apple Watch or 

custom wristbands) [238], [239], [242], [257]. Meanwhile, other specialized setups attach IMUs at the 

waist, ankles, or shoes for gait analysis [237], [258], [259], and construction or rehabilitative scenarios 

may involve thigh- and calf-mounted sensors [249], [260].  

In terms of activities studied, most investigations included a baseline set of daily living tasks 

(e.g., walking, running, sitting, and standing) as fundamental benchmarks for HAR [244], [246], [247], 

[248], [250], [255], [261], [262], [263]. Many have also focused on stair climbing to evaluate more 

challenging transitions [247], [248], [250], [254], [255], [256], while others included specialized tasks 
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such as race walking [256], industrial tasks like kneeling or picking up loads [249], [260], or 

compensatory balance responses for fall-risk assessment [264]. In each scenario, attention is given to 

collecting realistic data—often indoors for controlled assessments [257], or in free-living and outdoor 

contexts to improve ecological validity [237], [239], [265]. 

From a modeling and automatic labeling perspective, recent literature demonstrates a significant 

push toward deep learning, including CNN+LSTM hybrids [248], [249], [266], transformers [267], and 

self-supervised frameworks such as contrastive learning or masked autoencoders [246], [254]. Classical 

ML algorithms remain prevalent, particularly SVMs, random forests, and k-nearest neighbors, either for 

baseline comparisons or in hybrid pipelines [240], [247], [256], [268], [269]. Moreover, semi-supervised 

approaches (e.g., adversarial autoencoders) [245] and unsupervised methods (e.g., clustering or hidden 

Markov model regression) [255], [270] address the costly challenge of manual annotations, sometimes 

leveraging video-based synthetic data [244]. Additional feature extraction methods ranged from wavelet 

transforms [248], and Fourier approximations [240] to more direct end-to-end learned features [271]. 

Novel feature-extraction techniques have also come to light, such as symbolic approximations [240], 

contrastive learning [254], and codebook-based approaches [272]. 

6.3.2 Training Dataset Description: The training dataset consisted of raw accelerometer and gyroscope 

sensor readings collected from smartphones, categorized by labeled activities such as walking, sitting, and 

biking (Figure 6.3). The data consisted of tri-axial accelerometer and gyroscope readings collected at 

~159 Hz (accelerometer) and ~170 Hz (gyroscope) from eight different smartphone devices. 
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Note: Resultant and raw accelerometer and gyroscope sensor data collected from smartphone devices, organized by labeled 
activities. The data, sourced from the UCI Machine Learning Repository, provides a basis for activity recognition. 

Figure 6.3 Resultant Smartphone Sensor Data Sorted by Activity 

6.3.3 Model Performance Across Accelerometer and Gyroscope Data: Figure 6.4 illustrates the 

performance of three models trained on accelerometer data to classify activities. The performance was 

generally good, as indicated by the strong diagonal patterns in the confusion matrix heatmaps. However, 

overfitting was observed in the DNN, as evident from the divergence between training and validation 

accuracy curves in the lower panel. The LSTM and GRU models demonstrated superior performance, 

effectively capturing temporal dependencies with higher accuracy and better generalization compared to 

the other model. 

Across all models, classification performance was particularly strong for static activities, such as 

"Sit" (F1-score: 0.98-0.99) and "Stand" (F1-score: 0.97-0.99). Temporal activities, such as "Stairs Up" 
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(F1-score; DNN: 0.87, GRU: 0.95, LSTM: 0.94) and "Stairs Down" (F1-score; DNN: 0.86, GRU: 0.95, 

LSTM: 0.94), posed greater challenges, with the DNN exhibiting noticeable limitations due to its inability 

to model sequential patterns effectively. GRU achieved the highest overall accuracy at 0.98, followed by 

LSTM at 0.96 and DNN at 0.92, highlighting the advantages of recurrent architectures in leveraging 

temporal dependencies for accelerometer data. 

 
Note: Performance of three models (Dense Neural Network, GRU, and LSTM) for classifying accelerometer data, shown 
through confusion matrices and performance metrics. The top half shows confusion matrices, where darker diagonal cells 
indicate higher classification accuracy across activities. The bottom half illustrates training and validation loss, as well as 
accuracy trends, across 20 epochs for each model. 

Figure 6.4 Comparison of Accelerometer Based Performance Using Confusion Matrices and Model 
Metrics 

Similarly, Figure 6.5 presents the performance of the same models trained on gyroscope data. 

While the confusion matrices show generally strong performance, the gyroscope-trained models exhibited 

more confusion between sitting and standing activities compared to the accelerometer models. As with 

the accelerometer data, overfitting was observed in the DNN, while the LSTM and GRU models again 

demonstrated superior generalization and more stable learning patterns across 20 epochs. 

Across all models, gyroscope data classification showed strong performance overall but slightly 

lower metrics compared to accelerometer data, particularly for static activities like "Sit" (F1-score: 0.76-

0.81) and "Stand" (F1-score: 0.73-0.80). Temporal activities like "Stairs Up" (F1-score;  DNN: 0.90, 

GRU: 0.94, LSTM: 0.93) and "Stairs Down" (F1-score;  DNN: 0.88, GRU: 0.93, LSTM: 0.91) 

demonstrated better classification compared to static activities. Overall, the GRU achieved the highest 

accuracy at 0.90, followed by the LSTM at 0.87, and the DNN at 0.86. 
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Note: Performance of three models (Dense Neural Network, GRU, and LSTM) for classifying gyroscope data, shown through 
confusion matrices and performance metrics. The top half shows confusion matrices, where darker diagonal cells indicate higher 
classification accuracy across activities. The bottom half illustrates training and validation loss, as well as accuracy trends, across 
20 epochs for each model.  

Figure 6.5 Comparison of Gyroscope Based Performance Using Confusion Matrices and Model Metrics 

6.3.4 Supplementary Dataset Description: Figure 6.6 compares the distributions of accelerometer and 

gyroscope magnitude readings between the training dataset and the Supplementary Dataset. The 

accelerometer data exhibited a normal distribution in both datasets, while the gyroscope data showed a 

distinct right skew. A notable discrepancy was observed in the gyroscope magnitude: the training dataset 

reached up to 2.5, whereas the Supplementary Dataset only extended to 0.075. This difference likely 

reflects variations in data collection or sensor behavior between the two datasets, potentially influencing 

model performance when applied to the Supplementary Dataset. 

6.3.5 Supplementary Dataset Results: Figure 6.7 presents the performance of trained models when 

applied to the Supplementary Dataset, using resultant accelerometer, gyroscope, and magnetometer 

signals segmented by activities. The confusion matrices in the bottom rows reveal poor performance 

across all models for both accelerometer and gyroscope data. The highest F1-score achieved was 0.66 for 

the accelerometer LSTM model on the "sit" activity, while overall accuracy ranged from 0.23 to 0.33. 

These results indicate significant challenges in generalizing the trained models to the new dataset, likely 

due to discrepancies in data distributions or sensor characteristics. 
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Note: Shows the distributions of accelerometer and gyroscope magnitude readings for both training (left) and supplementary 
(right) datasets. The top row illustrates the distribution of acceleration magnitude, while the bottom row shows gyroscope 
magnitude distributions. 

Figure 6.6 Training and Supplementary Distributions of Accelerometer and Gyroscope Sensor Readings 

6.4 Discussion 
6.4.1 Generalization Challenges in HAR Models: Despite recent innovations, challenges remain in 

achieving robust HAR across diverse users, contexts, and sensor noise levels [230,231,234,253]. 

Variations in device placement, inter-person motion differences, and limited labeled datasets continue to 

hamper model generalization [239,256,258,266]. Clinical populations, such as individuals with 

Parkinson’s disease, COPD, or autism, introduce further variability in motor profiles that can confound 

algorithm performance [233,236,258]. Additionally, the move toward real-world “free-living” monitoring 

imposes additional constraints on battery life, comfort, and compliance [232,267]. Nevertheless, ongoing 

efforts that emphasize multi-sensor fusion, self-supervised or semi-supervised learning, and carefully 

curated benchmark datasets for open comparison are expected to drive more reliable and scalable HAR 

solutions for both healthy and clinical populations [233,235,241,246]. 

The results from this work highlight the significant challenges of generalizing deep learning 

models for HAR across diverse datasets. While the trained models demonstrated strong performance on 

the original training and test datasets, with high classification accuracy and stable training curves, their 
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performance on the unseen Supplementary Dataset was notably poor. The highest F1-score achieved on 

the Supplementary Dataset was only 0.66 (accelerometer LSTM for "sit"), and total accuracy ranged from 

0.23 to 0.33 across models. These findings suggest a clear domain shift between the original training data 

and the Supplementary Dataset, which is a well-documented problem in HAR research. 

 
Note: The top row shows resultant accelerometer, gyroscope, and magnetometer signals segmented by activities. The bottom 
rows include confusion matrices for Dense Neural Network, GRU, and LSTM models applied to accelerometer and gyroscope 
data.  

Figure 6.7 Test Set Resultant Sensor Readings and Confusion Matrices 

6.4.2 Implications for HAR Research and Applications: The poor performance of trained models on the 

Supplementary Dataset emphasizes the critical need for addressing domain shift in HAR research. These 

findings align with broader challenges in the field, where variations in sensor hardware, data collection 
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protocols, and participant behaviors often hinder generalization to unseen environments. For real-world 

applications such as health monitoring or activity tracking, deploying HAR systems trained on limited 

datasets without thorough validation poses significant risks. Misclassifications in critical activities, such 

as "stairsdown," could have safety implications in healthcare or assistive technologies. 

At the same time, this study highlights the strong performance of models trained on raw sensor 

signals, even without explicit feature engineering. This demonstrates the potential of deep learning 

models to learn meaningful patterns directly from raw data, reducing reliance on manual preprocessing 

steps. However, while the models performed well on their original test sets, their inability to generalize 

effectively to the Supplementary Dataset raises important questions about the role of domain shift and 

data representation in HAR research. 

Our additional experimentation, including hybrid models (e.g., CNN-LSTM, CNN-GRU), batch 

normalization, layer normalization, hyperparameter tuning, and regularization techniques, further 

reinforces these findings. Despite these efforts, no significant improvements in performance were 

observed. This suggests that the primary limitation lies not in model architecture but in the variability and 

inconsistency of the data itself. Addressing these domain shifts, rather than solely refining model 

architectures, may hold the key to improving generalization in HAR systems. 

6.4.3 Dataset Discrepancies and Study Limitations: A closer examination of the dataset distributions 

reveals critical differences between the training and Supplementary Datasets that likely contributed to 

poor generalization. Specifically, while the accelerometer data showed consistent normal distributions in 

both datasets, the gyroscope data displayed a pronounced right skew in the Supplementary Dataset, with 

magnitudes only reaching 0.075 compared to 2.5 in the training data.  

However, the poor performance of accelerometer-based predictions suggests that these 

discrepancies alone do not fully account for the observed generalization issues. If the mismatch in 

gyroscope data were the sole factor, we would expect the accelerometer models to perform significantly 

better on the Supplementary Dataset. Instead, both sensor types demonstrated poor generalization, 

indicating that domain shift extends beyond individual sensor discrepancies and encompasses broader 

issues in data representation and collection protocols. 

Finally, the lack of specific details about the activities in the training dataset—such as differences 

in bicycle type (e.g., stationary bike), staircase design, and phone placement—combined with the need to 

subsample sensor readings for the Supplementary Dataset (50 Hz compared to ~159–170 Hz in the 

training data), may have further impacted the models' ability to extract meaningful temporal patterns. 
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6.4.4 Future Directions: Improving the generalizability of HAR models requires addressing the 

challenges posed by domain shift and variability in sensor data. One promising avenue is the use of 

domain adaptation techniques, which allow models to adjust to the specific characteristics of new 

datasets. For example, fine-tuning pre-trained models on small subsets of new data could help mitigate 

domain shift by aligning the model with the features and distributions of the Supplementary Dataset. 

Complementary to this, data augmentation techniques, such as adding noise, simulating variations in 

device orientation, or scaling sensor readings, could improve model robustness to sensor variability and 

better prepare models for real-world conditions. 

In addition to these model-level strategies, future efforts should focus on the collection of larger 

and more diverse datasets. Datasets that incorporate a variety of devices, environments, and activity 

scenarios will enable the development of models capable of handling the complex variability encountered 

in real-world applications. Publicly available datasets could serve as valuable resources for transfer 

learning, where pre-trained models are fine-tuned on domain-specific datasets to improve performance 

under unseen conditions. 

Finally, integrating additional contextual features, such as GPS, environmental data, or user 

metadata, may enhance activity recognition by providing complementary information to resolve 

ambiguities in activity transitions. These approaches, combined with robust validation across diverse 

settings, will be crucial for advancing HAR systems toward reliable deployment in real-world 

applications. 

6.5 Conclusion 
In this chapter, we explored the potential of deep learning models for Human Activity Recognition (HAR) 

using smartphone sensor data, addressing challenges such as manual labeling and domain shift. While 

recurrent models like GRU and LSTM demonstrated strong performance on the training dataset, 

achieving high F1-scores without explicit feature engineering, their poor generalization to the 

Supplementary Dataset highlighted the critical impact of domain variability. Key issues included 

discrepancies in sensor distributions, sampling rates, and activity protocols, which architectural 

adjustments alone could not resolve. These findings emphasize the need for domain adaptation, data 

augmentation, and diverse dataset collection to improve robustness. By addressing these challenges, 

future HAR systems can achieve greater reliability and scalability for real-world applications. 
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7. Conclusion and Future Directions 
This thesis has examined the integration of advanced computational tools and artificial intelligence (AI) 

across multiple healthcare domains. The overarching objective was to address fundamental challenges in 

(1) identifying distinct gait signatures associated with dementia subtypes, (2) accelerating and improving 

the systematic review process through large language models (LLMs), and (3) leveraging smartphone-

based sensors to facilitate human activity recognition (HAR) with minimal manual annotation and 

reduced sensor heterogeneity. Taken together, these contributions highlight the potential of AI and digital 

health technologies to enhance diagnosis, research translation, and long-term monitoring within 

healthcare. 

Although gait analysis, systematic reviews, and HAR might initially appear as distinct areas, this 

thesis has illustrated the synergistic potential of integrating AI-driven methods across these domains. The 

improved diagnostic precision in dementia research could inform targeted interventions, and tools for 

automated screening of research literature can expedite the adoption of new scientific evidence into 

clinical practice. Meanwhile, smartphone-based HAR solutions can serve as frontline data-collection 

platforms, providing continuous, real-world measurements that complement clinical insights. Taken 

together, these contributions form a feedback loop: as evidence accumulates and clinical insights evolve, 

AI-driven systematic reviews can incorporate fresh data from new sensor-based studies, fostering a 

continuously improving ecosystem of research, practice, and patient-centered care. 

7.1 Summary of Key Findings 
7.1.1 Gait Signatures in Dementia: Chapter 2 examined gait parameters, such as stride length, walking 

speed, and stance time, across Alzheimer’s disease (AD), Lewy body dementia (LBD), frontotemporal 

dementia (FTD), and vascular dementia (VaD). LBD often showed the most pronounced disruptions, 

while FTD presented milder variations. These findings suggest that gait evaluation might serve as a non-

invasive marker for early and subtype-focused interventions, although inconsistencies in measurement 

protocols can complicate interpretation. 

Efforts to standardize data collection and apply strategies like individual participant data analyses 

may address this variability [273]. More unified approaches to instrument calibration and study design 

could clarify which gait metrics reliably track disease onset or progression. By refining these protocols, 

future research may yield more robust conclusions about the clinical role of gait-based indicators in 

dementia care. 
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7.1.2 Systematic Review Automation with LLMs: Chapters 3 and 4 explored large language models as a 

way to streamline screening in systematic reviews, revealing a notable reduction in manual workload 

when ordinal prompting was used. Although these automated methods helped balance sensitivity and 

specificity, human oversight remained essential for identifying critical studies that models might miss 

[274]. This highlights the importance of rigorous validation metrics and transparent reporting of model 

details. Recent work has also shown that machine learning contributes to diverse clinical tasks, from 

diagnostic image analysis to broader data mining [275], [276]. Such a setup could further expand the 

scope and reliability of AI-driven systematic reviews. Moving toward semi- or fully automated workflows 

will depend on open collaboration, reproducible results, and continued refinement of both model 

interpretability and user acceptance. 

7.1.3 Smartphone-Based Human Activity Recognition: Chapters 5 and 6 introduced a smartphone-based 

system that classifies daily activities, such as walking, sitting, and standing, using built-in inertial sensors. 

Controlled tests showed promising accuracy and a practical route toward continuous monitoring of 

mobility and possible early signs of functional decline. However, sensor heterogeneity and domain shift 

can reduce performance when transitioning from a laboratory to real-world scenarios. 

Developers can mitigate these challenges through standardized calibration, data augmentation, 

and on-device processing that preserves user privacy. These adaptations could help align the technology 

with clinical demands, particularly for older adults or those with chronic conditions. By refining 

smartphone-based monitoring and validating it under diverse field conditions, the approach may become a 

scalable option for real-time health tracking. 

7.2 Limitations and Challenges 
7.2.1 Gait and Meta-Analysis Challenges: Analyses in Chapter 2 showed that diverse instruments 

(inertial measurement units, camera-based systems, force plates) and uneven protocols often yield high I² 

values, complicating the interpretation of pooled effect sizes. Although I² is widely used, it does not 

always reflect the actual range of effects and must be approached with caution [277]. Reliance on 

techniques like median-imputation can further skew comparisons between dementia subtypes if data are 

missing or inconsistently reported. More uniform procedures for gait measurement, including 

standardized walking distances and environmental conditions, could reduce this variability. Meta-

regression and individual participant data methods [273] may also help clarify whether disease severity or 

the type of measuring device influences outcomes. Shared repositories of raw gait data, organized under 

consistent formats, could improve reproducibility and support more robust biomarkers for clinical 

applications. Finally, federated learning may also support multi-site data sharing while preserving local 

privacy, offering one potential approach to building scalable AI solutions [278]. 
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7.2.2 AI Model Specificity and Technological Limitations: Chapters 3 and 4 demonstrated that LLMs 

can automate parts of the systematic review process, but their effectiveness and trustworthiness hinge on 

transparent reporting. Many studies do not disclose training data, model architectures, or validation 

protocols, making it difficult to assess potential biases or replicate results [279].  

For HAR, classical architectures like long short-term memory (LSTM) networks have been 

widely used [230], and although studies sometimes omit hyperparameter details, the overall approach is 

generally more transparent than LLM-based screening. In contrast, LLMs suffer from limited 

architectural disclosure and opaque training datasets, making reproducibility and evaluation more 

difficult. 

Adhering to guidelines and consensus statements on AI in medicine can further standardize how 

models are reported [280]. Studies specifically measuring recall and precision in automated screening 

show that high recall remains paramount for systematic reviews [274], [281]. By combining rigorous 

architecture disclosure, open-source practices, and privacy-preserving data exchanges, AI-based 

workflows could reach broader clinical acceptance without compromising security or reproducibility. 

7.2.3 Data Inclusivity and Bias: Many gait and AI-oriented dementia studies predominantly address 

Alzheimer’s disease or rely on English-language data from high-income regions, narrowing their 

relevance for other populations. For instance, non-AD conditions like Lewy body dementia and 

frontotemporal dementia can be overlooked, with fewer datasets available for rigorous analysis [282], 

[283]. In addition, language barriers may exclude valuable findings if research is not published in English, 

a gap that multilingual natural language processing methods like mBERT could help close [140]. 

Recent advances have also explored using AI to automate quality assessments in systematic 

reviews, which may help standardize evaluation and reduce variability when assessing non-English or 

underrepresented data sources [284]. Some clinical trials also face patterns of participant exclusion, 

potentially omitting older adults or specific racial/ethnic groups [285]. Expanding collaborations with 

low- and middle-income countries, along with broader data repositories, would create more representative 

clinical and observational samples. Without these measures, geographical and demographic biases can 

skew results and limit the applicability of findings to real-world healthcare contexts. 

7.3 Future Directions 
7.3.1 Refining Gait Diagnostics: Future work can explore advanced sensing technologies, such as 

pressure insoles or smart textiles, to capture subtle gait indicators like balance, stride symmetry, and foot 
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clearance. These methods could offer more precise assessments and possibly reveal early markers of 

neurological change. Standardizing study designs and establishing open-access repositories for gait data 

would also help unify sampling strategies and support reproducible research. Shared frameworks, 

including open-source modeling platforms [286], might further improve cross-study comparisons and 

strengthen the role of gait metrics in identifying different stages or subtypes of dementia. 

7.3.2 Advancing Systematic Review Automation: Large language models have shown strong potential to 

reduce screening workloads by categorizing relevant articles more efficiently. However, many studies 

applying AI to systematic reviews lack technical specificity, often omitting details about their data 

sourcing, training protocol, and optimization strategies. Without transparency in model design and 

performance metrics like precision, recall, and F1-score, reproducibility and trust remain limited.  

Ongoing efforts to document model architectures, validation metrics, and training data in a 

transparent manner would build confidence in these AI-driven workflows [274]. Developers might also 

align with emerging standards like CONSORT-AI and TRIPOD-AI, which provide guidelines for 

reporting AI in medical research [287]. Additionally, integrating explainable AI (XAI) [288] techniques 

such as SHAP or Grad-CAM [289] can help clarify model decision-making, fostering greater clinician 

confidence in automated screening tools. Open-source frameworks and shared datasets will further 

support reproducibility and comparison across tools. 

7.3.3 Expanding Smartphone HAR to Clinical Settings: Smartphone-based activity recognition has 

demonstrated reliable detection of movements like walking, sitting, and standing, yet moving from pilot 

tests to real-world usage introduces new challenges. Domain shift can occur when participants use 

different phone brands, operating systems, or sensor settings, leading to inconsistent performance. 

Techniques like data augmentation and routine calibration may lessen these gaps [290]. Including 

wearable heart rate or EMG sensors can also broaden the scope of monitoring, offering more 

comprehensive insights into patient mobility and health. 

Practical deployment in clinical environments calls for consistent documentation of sampling 

rates, battery demands, and hardware variations. Ensuring data privacy remains a priority; on-device 

processing can limit the transmission of raw sensor data, reducing security concerns. As sensor-based 

analytics develop further, applying sensor fusion techniques, such as Kalman filtering, to reduce 

measurement noise and harmonize data sources may help standardize protocols and facilitate comparisons 

among different research groups [290]. Federated learning also offers the option to pool insights across 
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multiple institutions without disclosing sensitive data [278]. These refinements may encourage broader 

adoption of smartphone-based assessments in routine healthcare. 

7.3.4 Cross-Cutting Integration: Bridging Digital Health and Clinical Decision-Making: Combining 

gait diagnostics, AI-assisted reviews, and smartphone activity monitoring into routine clinical workflows 

will likely require cohesive data pipelines and interdisciplinary collaboration among engineering, 

medicine, and policy specialists. Real-time notifications could highlight emerging evidence from 

automated reviews or detect shifts in a patient’s mobility status, prompting earlier interventions. 

Federated learning can coordinate these efforts at a larger scale [278], although privacy regulations may 

necessitate adaptive approaches to data governance. By harmonizing clinical needs with evolving 

technical standards, these integrated digital health tools may help deliver more responsive and person-

centered care. 

7.4 Concluding Remarks 
This thesis has shown how computational approaches and emerging technologies can converge to address 

both diagnostic and translational challenges in healthcare. By analyzing gait patterns in dementia, 

applying large language models to systematic reviews, and developing smartphone-based human activity 

recognition, we have explored multiple, complementary avenues for improving patient outcomes. These 

methods can identify subtle mobility changes, automate parts of the research synthesis process, and 

provide continuous monitoring, respectively. Each domain stands to benefit from more consistent data 

collection, thoughtful model design, and cooperative research environments that share findings and 

methodologies. 

Progress in these areas will require collaboration among engineers, clinicians, computer scientists, 

and policy specialists. Gait assessments may become more clinically relevant by adopting uniform 

measurement protocols and shared data repositories, while AI-assisted reviews can gain credibility 

through open reporting and reproducible studies. Likewise, smartphone-based tools must address sensor 

variability and protect personal information through privacy-aware architectures. By coordinating efforts 

and ensuring that ethical standards guide innovation, this multi-domain framework can help deliver 

proactive, person-centered care that adapts to the evolving needs of an aging and increasingly diverse 

population. 
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Appendix 

 
Note: The optimized prompt, refined by removing overly stringent phrases from the original template, demonstrates a notable 
increase in true positives and a reduction in false negatives, leading to a doubled sensitivity in the title-abstract screening phase. 

eFigure 1 Impact of Prompt Optimization on Model Performance: Enhanced Sensitivity in Dementia and 

Gait Signatures Review 
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Note: Bar charts show performance metrics like accuracy, sensitivity, and specificity for GPT-3.5 Turbo and a control group 
across different thresholds for three medical topics. Controls represent random multi-class classifier with bars denoting mean and 
standard deviation. 

eFigure 2 Threshold Settings For GPT-3.5 Turbo Compared Against Random Multi-Class Control 
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Prompt Templates (Chapter 3 and 4) 

1. Dementia and Gait Signatures 

Evaluate the suitability of this study for inclusion in a meta-analysis focused on gait parameters in 
dementia. Studies should be observational, clinical, cross-sectional, or cohort, targeting Alzheimer's 
Disease (AD), Frontotemporal Dementia (FTD), Lewy Body Dementia (LBD), or Vascular Dementia 
(VaD). Exclude studies that are non-English publications, animal research, are review articles, books, 
conference abstracts, or lack a dementia population. 

[1] or [2] 

2. Cuffless Blood Pressure Monitoring 

Evaluate the eligibility of this study for inclusion in a systematic review focused on cuffless BP 
monitoring technologies. Eligible studies must be based on Photoplethysmography (PPG), non-invasive, 
cuff-less, and tested against a reference device on human vital signs. Include devices and methods for BP 
estimation that are validated against standards such as ANSI/AAMI/ISO, with mean bias ≤ 5mm Hg and 
SD ≤ 8mm Hg for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) or have received 
an A or B grade from the European Hypertension Society (EHS). Additionally, studies should report a 
Mean Absolute Error (MAE) < 7mmHg, as per IEEE recommendations. Studies that achieved standard 
measurement accuracy in one database, supplemented by results from other databases, are also 
considered, even if those additional results fall outside standard ranges. Inclusion requires a minimum of 
10 human participants. 

[1] or [2] 

3. Long-Covid Outcomes 

Evaluate the eligibility of this study for inclusion in a systematic review focused on long COVID health 
outcomes. Eligible studies should report on health effects or symptoms that occur at least four weeks (28 
days) after a COVID-19 diagnosis and must be peer-reviewed original research. Acceptable study designs 
include longitudinal, cohort, and cross-sectional studies that offer relevant data. Various methods for 
symptom measurement are permitted, including self-report, hospital equipment, and wearable 
technologies. Exclude meta-analyses, systematic reviews, case studies, and non-English publications due 
to translation barriers. 

[1] or [2] 

 
1 Should this study be included in the systematic review based on the criteria provided? Answer with True (for 
inclusion) or False (for exclusion) 
2 On a scale of 1 to 10, where 1 is least likely and 10 is very likely, how suitable is this study for inclusion in the 
review based on the listed criteria? 


