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Abstract
This thesis presents exact solutions describing dynamics of N identical algebraic
solitons in the massive Thirring model. Each algebraic soliton corresponds to a
simple embedded eigenvalue in the Kaup–Newell spectral problem and attains the
maximal mass among solitary waves traveling with the same speed. In the case
of N = 2 solitons, we use expressions for two exponential solitons and find a new
solution in the singular limit for the algebraic double-soliton which corresponds
to a double embedded eigenvalue. To systematically derive the rational solutions
for N identical algebraic solitons for any N ≥ 1, we employ the double-Wronskian
method, a determinant-based approach that generates solitons to Hirota’s bilinear
equations. While traditional stability techniques fail for algebraic solitons due to
their embedded spectral nature, the exact solutions obtained here suggest persis-
tence of algebraic solitons under time evolution.
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Chapter 1

Introduction

The massive Thirring model (MTM) describes the interaction of two counter-
propagating waves and serves as a relativistically invariant analog of the Dirac
equation in one spatial dimension. It has been widely studied due to its integra-
bility and its applications in photonics, Bose–Einstein condensates, and nonlinear
optics. While conventional solitons in this model exhibit exponential spatial decay,
algebraic solitons arise as a special class of solutions characterized by power-law
asymptotics, raising significant questions regarding their stability and dynamical
behavior.

The spectral properties and stability of solitary waves in nonlinear Dirac equa-
tions have been the subject of extensive research. Monograph [3] provides a rig-
orous analysis of the spectral stability of solitary waves in nonlinear Dirac-type
models, developing a functional-analytic framework to examine the behavior of
localized structures in relativistic field theories. Monograph [25] provides a com-
prehensive study of the Gross–Pitaevskii equation in periodic potentials which
reduces to the nonlinear Dirac-type models for solitary waves.

This thesis is devoted to the algebraic solitons in the MTM written in laboratory
coordinates: {

i(ut + ux) + v = |v|2u
i(vt − vx) + u = |u|2v (1.1)

where (u, v) ∈ C2 and subscripts denote partial derivatives in (x, t) ∈ R2. The
MTM system (1.1) is a prototypical Dirac equation which belongs to the class of
integrable equations associated with the Kaup–Newell (KN) spectral problem [16,
20, 24].

Algebraic solitons are traveling solitary waves with the power rather than expo-
nential spatial decay rate at infinity. Such solutions are common for integrable non-
linear equations with nonlocal terms such as the Benjamin–Ono and Kadomtsev–
Petviashvili equations, where they are associated with isolated eigenvalues of the
linear Lax equations [1]. However, algebraic solitons are special for local integrable
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nonlinear equations since they arise as the limiting points in the family of exponen-
tial solitons and they are associated with embedded eigenvalues in the continuous
spectrum of the linear Lax equations [19, 26]. Physically relevant examples of the
algebraic solitons as special limits of exponential solitons appear in the modified
Korteweg–de Vries equation [6, 31], the derivative nonlinear Schrödinger equation
[11, 29, 32], and the nonlinear Dirac equation [12].

Stability of algebraic solitons is a notoriously difficult mathematical problem,
where every method of nonlinear analysis known in the theory of integrable sys-
tems fails. Coercivity of the energy function required for the proof of Lyapunov
stability holds for exponential solitons [28] but fails for algebraic solitons because
the spectral gap between the zero eigenvalue and the continuous spectrum in the
linearized MTM system closes up in the limit to the algebraic soliton. Stability of
exponential solitons in the MTM system can be proven with the Darboux transfor-
mation [7] which constructs exponential solitons from isolated eigenvalues of the
KN spectral problem. However, the Darboux transformation does not generate
algebraic solitons because the embedded eigenvalues have to be defined inside the
continuous spectrum of the KN spectral problem, where both eigenfunctions are
bounded. Finally, the inverse scattering transform (IST) method requires fast spa-
tial decay of solutions of the MTM system at infinity in order to ensure smoothness
properties of the scattering data and solvability of the associated Riemann–Hilbert
problems [14, 27]. Algebraic solitons decay too slowly and violate the requirements
of the fast spatial decay.

The modified Korteweg–de Vries (mKdV) equation

ut + 6u2ux + uxxx = 0 (1.2)

has the algebraic soliton

u1(x, t) = 1 − 4
1 + 4(x− 6t)2 (1.3)

which also emerge as the limiting case of exponential solitons, leading to its in-
stability under perturbations. Previous studies [9, 17] have demonstrated that
algebraic solitons in mKdV and NLS do not satisfy the standard stability condi-
tions. Further insight into this instability is provided by the second-order rational
solution of the mKdV equation (1.2) derived in [6]:

u2(x, t) = 1 + 12G
D
, (1.4)
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Figure 1.1: The solution surface for the second order mKdV ra-
tional solution (1.4).

where

G = 3 − 8(−x+ t)[2(−x+ t)3 + 3(−11
3 x+ t)],

D = −8x[48x4(−1
6x+ t) − 2x3(60t2 − 13) + 8x2t(20t2 − 9) − 1

2x(240t4 − 120t2 + 139)

+ t(48t4 − 8t2 + 51)] + 64t6 + 48t4 + 108t2 + 9.

This second-order rational solution exhibits a more complex dynamics shown in
Figure 1.1, featuring how the soliton is flipped due to the growth of perturbations.
The presence of such solutions implies that the algebraic soliton (1.3) of the mKdV
equation (1.2) is unstable.

Unlike the mKdV equation (1.2), where instability of the algebraic soliton has
been rigorously established, the orbital stability of the traveling algebraic soliton
in the MTM system (1.1) remains an open question. While algebraic solitons in
the mKdV equation is associated with the formation of higher-order rogue wave
structures, the MTM system exhibits distinct spectral and dynamical properties
that suggest a different stability behavior. In particular, the spectral analysis
in [19] suggests that the embedded eigenvalues characterizing algebraic solitons
in the MTM system do not necessarily induce instability. Unlike in the mKdV
equation, where embedded eigenvalues bifurcate into isolated eigenvalues for both
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exponential solitons and time-periodic breathers, in the MTM system embedded
eigenvalues only bifurcate into isolated eigenvalues for exponential solitons.

In this thesis, we derive exact solutions to the MTM system (1.1) which are
second-order and higher-order rational solutions generating the algebraic soliton.

In Chapter 2 we explore direct methods of solutions of the MTM system (1.1)
to study the interactions of two algebraic solitons. Hirota’s bilinear formulation
of the MTM system (1.1) was recently developed in [4, 5] to obtain exponential
multi-solitons. By using the analytical expressions for two exponential solitons, we
obtain the exact solutions for two algebraic solitons which scatter fast from each
other with two different wave speeds. In the limit when the wave speeds coincide,
we obtain the algebraic double-soliton solution which describes a slow interaction
of two identical algebraic solitons. The content of Chapter 2 was published in [13].

A powerful approach for constructing soliton solutions in integrable systems
involves the bilinear formalism and determinant-based methods. In Chapter 3, the
double-Wronskian representation provides a systematic framework for generating
higher-order rational solutions corresponding to algebraic solitons. This approach
has been used successfully in other integrable models, such as the derivative NLS
equation [30].

As the main outcome of the new rational solutions, we conclude in Chapter 4
that the algebraic solitons of the MTM system (1.1) display stable dynamics under
small perturbations. A rigorous proof of stability of the algebraic soliton in the
MTM system (1.1) is still open.
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Chapter 2

Algebraic Soliton Solutions via
Hirota Method

2.1 Preliminaries
To simplify the presentation of soliton solutions of the MTM system (1.1), we
shall use the basic symmetries of this Hamiltonian system. These include the
translational and rotational symmetries[

u(x, t)
v(x, t)

]
7→

[
u(x+ x0, t+ t0)eiθ0

v(x+ x0, t+ t0)eiθ0

]
, x0, t0, θ0 ∈ R, (2.1)

as well as the Lorentz symmetry

[
u(x, t)
v(x, t)

]
7→


(

1−c
1+c

)1/4
u
(

x+ct√
1−c2 ,

t+cx√
1−c2

)
(

1+c
1−c

)1/4
v
(

x+ct√
1−c2 ,

t+cx√
1−c2

)
 , c ∈ (−1, 1). (2.2)

Without loss of generality, each solution of the MTM system (1.1) can be extended
with three translational parameter in (2.1) and the speed parameter c ∈ (−1, 1)
in (2.2).

A general family of solitary waves of the MTM system (1.1) is obtained from
the normalized standing wave solutions

[
usol(x, t)
vsol(x, t)

]
= sin γ

sech
(
x sin γ + iγ

2

)
sech

(
x sin γ − iγ

2

) eit cos γ, γ ∈ (0, π), (2.3)

after the translations (2.1) and the Lorentz transformation (2.2). The family (2.3)
corresponds to the gap (−1, 1) in the frequency spectrum ω := cos(γ) of the linear
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Dirac operator

D :=
[
i∂x 1
1 −i∂x

]
which defines the time evolution of the MTM system (1.1).

The limits ω → ±1 are referred to as the nonrelativistic limits of the MTM
system (1.1). It is well-known (see, e.g., [2, 3, 8]) that the nonlinear Dirac equations
such as the MTM system (1.1) can be reduced to the focusing NLS equation as
ω → 1 and to the defocusing NLS equation as ω → −1 given in the normalized
form as

iψt + ψxx + σ|ψ|2ψ = 0, σ = sgn(ω) = ±1. (2.4)

The family (2.3) reduces to the small-amplitude, long-scale, sech-shaped soliton
of the focusing NLS equation (2.4) with σ = +1 as ω → 1 (γ → 0) and to the
finite-amplitude, finite-scale, algebraic soliton

γ = π :
[
ualg(x, t)
valg(x, t)

]
=


2

1 + 2ix
2

1 − 2ix

 e−it (2.5)

as ω → −1 (γ → π). Note that the algebraic soliton (2.5) does not satisfy the
defocusing NLS equation (2.4) with σ = −1 as ω → −1, because its amplitude is
finite (not small).

The algebraic soliton (2.5) has the largest mass among the exponential solitons
in the family (2.3), where the mass for the MTM system (1.1) is defined by

Q(u, v) :=
∫
R
(|u|2 + |v|2)dx. (2.6)

It follows from (2.3) that

|usol(x, t)|2 + |vsol(x, t)|2 = 4 sin2 γ

cos γ + cosh(2x sin γ) ,

which implies that Qsol(γ) := Q(usol, vsol) = 4γ with the largest mass at Qsol(π) =
Q(ualg, valg) = 4π.
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2.2 New parameterization of the exponential two-
soliton solutions

The MTM system (1.1) can be transformed to a system of bilinear equations by
the following transformation [4],

u = g

f̄
, v = h

f
, (2.7)

where f̄ is the complex conjugate of f . Substituting (2.7) into (1.1) yields the
following system of bilinear equations for f , h, and g:

if(gt + gx) − ig(ft + fx) + hf̄ = 0,
if̄(ht − hx) − ih(f̄t − f̄x) + gf = 0,
if̄(fx + ft) − if(f̄t + f̄x) − |h|2 = 0,
if(f̄t − f̄x) − if̄(ft − fx) − |g|2 = 0.

 (2.8)

It was proven in [4] that the system (2.8) is satisfied by the following two-soliton
solutions in the general form:

f = 1 + c11e
ζ1+ζ̄1 + c12e

ζ1+ζ̄2 + c21e
ζ̄1+ζ2 + c22e

ζ2+ζ̄2 + c1212e
ζ1+ζ̄1+ζ2+ζ̄2 ,

h = ᾱ1e
ζ1 + ᾱ2e

ζ2 + c121e
ζ1+ζ2+ζ̄1 + c122e

ζ1+ζ2+ζ̄2 ,

g = iᾱ1
p1
eζ1 + iᾱ2

p2
eζ2 − ip̄1

p1p2
c121e

ζ1+ζ2+ζ̄1 − ip̄2
p1p2

c122e
ζ1+ζ2+ζ̄2 ,

(2.9)

where
ζj = 1

2

(
pj + 1

pj

)
x+ 1

2

(
pj − 1

pj

)
t

and

cij = − ipiᾱiαj

(pi + p̄j)2 ,

c12j = (p1 − p2)p̄j

[
ᾱ2c1j

p1(p2 + p̄j)
− ᾱ1c2j

p2(p1 + p̄j)

]
,

c1212 = |p1 − p2|2
[

c11c22

(p1 + p̄2)(p2 + p̄1)
− c12c21

(p1 + p̄1)(p2 + p̄2)

]
,

whereas parameters p1, p2, α1, α2 ∈ C are arbitrary.

In order to represent the 2-soliton solutions in a meaningful way where each
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soliton resembles the 1-soliton solution (2.3), we will use the following parameter-
ization:

pj = iδje
−iγj , αj = 2

√
δj sin γje

iγj
2 +sin γjxj−i cos γjtj , j = 1, 2, (2.10)

with arbitrary parameters γj ∈ (0, π), δj > 0, and (xj, tj) ∈ R2. By using the
parameterization (2.10) for pj, we obtain

ζj = sin γj

[1
2(δj + δ−1

j )x+ 1
2(δj − δ−1

j )t
]

+ i cos γj

[1
2(δj − δ−1

j )x+ 1
2(δj + δ−1

j )t
]
.

This representation resembles the Lorentz transformation (2.2) with

1
2(δj + δ−1

j ) = 1√
1 − c2

j

,
1
2(δj − δ−1

j ) = cj√
1 − c2

j

,

where we have introduced the wave speeds

cj :=
δ2

j − 1
δ2

j + 1 ∈ (−1, 1), j = 1, 2. (2.11)

Due to parameterization (2.10), we obtain

cjj = e−iγj+2 sin γjxj , j = 1, 2,

and, more generally,

cij = −
4
√
δiδj sin γi sin γjδi

(δie
− i

2 (γi+γj) − δje
i
2 (γi+γj))2

e− i
2 (γi+γj)+sin γixi+sin γjxj+i cos γiti−i cos γjtj ,

so that we can introduce the following two real-valued coordinates

ξj := sin γj

 x+ cjt√
1 − c2

j

+ xj

 , ηj := cos γj

 t+ cjx√
1 − c2

j

+ tj

 ,
where (xj, tj) ∈ R2 play the role of translational parameters in (2.1).

Next, we deduce the explicit expressions with the parameterization (2.10) for
c12j and c1212. It follows from

c121 = (p1 − p2)p̄1

[
ᾱ2c11

p1(p2 + p̄1)
− ᾱ1c21

p2(p1 + p̄1)

]
= ip̄1|α1|2ᾱ2(p1 − p2)2

(p1 + p̄1)2(p̄1 + p2)2

8



that

c121 = (p1 − p2)2

(p̄1 + p2)2 ᾱ2e
iγ1+2 sin γ1x1 , c122 = (p1 − p2)2

(p1 + p̄2)2 ᾱ1e
iγ2+2 sin γ2x2 .

Similarly, we obtain

c1212 = e−iγ1−iγ2+2 sin γ1x1+2 sin γ2x2A12,

where

A12 = |p1 − p2|2

(p1 + p̄2)(p2 + p̄1)

[
1 − 16δ2

1δ
2
2 sin2 γ1 sin2 γ2

(p1 + p̄1)(p2 + p̄2)(p1 + p̄2)(p̄1 + p2)

]

= − |p1 − p2|2

(p1 + p̄2)2(p2 + p̄1)2

[
(δ1e

−iγ1 − δ2e
iγ2)(δ2e

−iγ2 − δ1e
iγ1) + 4δ1δ2 sin γ1 sin γ2

]

=
(
δ2

1 + δ2
2 − 2δ1δ2 cos(γ1 − γ2)

δ2
1 + δ2

2 − 2δ1δ2 cos(γ1 + γ2)

)2

.

This representation allows us to rewrite the three components of the 2-soliton
solution (2.9) in the explicit form:

f = 1 + e2ξ1−iγ1 + e2ξ2−iγ2 + A12e
2ξ1+2ξ2−iγ1−iγ2 − 4

√
δ1δ2 sin γ1 sin γ2e

ξ1+ξ2− i
2 γ1− i

2 γ2

×
[

δ1e
i(η1−η2)

(δ1e
− i

2 (γ1+γ2) − δ2e
i
2 (γ1+γ2))2

+ δ2e
−i(η1−η2)

(δ1e
i
2 (γ1+γ2) − δ2e

− i
2 (γ1+γ2))2

]
,

h = ᾱ1e
ζ1

1 +
(
p1 − p2

p1 + p̄2

)2

e2ξ2+iγ2

+ ᾱ2e
ζ2

1 +
(
p1 − p2

p̄1 + p2

)2

e2ξ1+iγ1

 ,
and

g = iᾱ1

p1
eζ1

1 +
(
p1 − p2

p1 + p̄2

)2

e2ξ2+3iγ2

+ iᾱ2

p2
eζ2

1 +
(
p1 − p2

p̄1 + p2

)2

e2ξ1+3iγ1

 .
The one-soliton solution appears from this formula by taking ξ2 → −∞:

u = lim
ξ2→−∞

g

f̄
= iᾱ1e

ζ1

p1(1 + e2ξ1+iγ1) = sin γ1δ
−1/2
1 sech

(
ξ1 + i

2γ1

)
eiη1

and similarly,

v = lim
ξ2→−∞

h

f
= ᾱ1e

ζ1

1 + e2ξ1−iγ1
= sin γ1δ

1/2
1 sech

(
ξ1 − i

2γ1

)
eiη1 ,

9



from which we recognize the exact solution (2.3) with the account of the symmetry
transformations (2.1) and (2.2).

2.3 Limit to the two algebraic solitons
Each soliton in the two-soliton solution has four arbitrary parameters δj > 0,
γj ∈ (0, π), and (xj, tj) ∈ R2 for j = 1, 2. In order to get two algebraic solitons,
we need to take the singular limit γj → π for each j = 1, 2. Hence, we set

γj = π − ϵj, j = 1, 2

and expand to the leading order

sin γj = ϵj + O(ϵ3
j), cos γj = 1 + O(ϵ2

j).

We can then define

Xj := x+ cjt√
1 − c2

j

+ xj, Tj := t+ cjx√
1 − c2

j

+ tj

and expand(
p1 − p2

p1 + p̄2

)2

=
(
δ1e

iϵ1 − δ2e
iϵ2

δ1eiϵ1 − δ2e−iϵ2

)2

= 1 − 4iϵ2δ2

δ1 − δ2
+ O(ϵ2

1, ϵ
2
2)

and

A12 =
(
δ2

1 + δ2
2 − 2δ1δ2 cos(ϵ1 − ϵ2)

δ2
1 + δ2

2 − 2δ1δ2 cos(ϵ1 + ϵ2)

)2

= 1 − 8δ1δ2ϵ1ϵ2

(δ1 − δ2)2 + O(ϵ2
1ϵ

2
2).

This yields the expansions:

f = 1 − eϵ1(2X1+i)+O(ϵ3
1) − eϵ2(2X2+i)+O(ϵ3

2) + A12e
ϵ1(2X1+i)+O(ϵ3

1)+ϵ2(2X2+i)+O(ϵ3
2)

+ 4
√
δ1δ2ϵ1ϵ2

[
δ1e

−i(T1−T2) + δ2e
i(T1−T2)

(δ1 − δ2)2 + O(ϵ1, ϵ2)
]
,

h = −2iδ1/2
1 ϵ1e

−iT1

1 −
(
p1 − p2

p1 + p̄2

)2

eϵ2(2X2−i)+O(ϵ3
2)

 [1 + O(ϵ2
1)
]

− 2iδ1/2
2 ϵ2e

−iT2

1 +
(
p1 − p2

p̄1 + p2

)2

eϵ1(2X1−i)+O(ϵ3
1)

 [1 + O(ϵ2
2)
]
,
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g = 2iδ−1/2
1 ϵ1e

−iT1

1 −
(
p1 − p2

p1 + p̄2

)2

eϵ2(2X2−3i)+O(ϵ3
2)

 [1 + O(ϵ2
1)
]

+ 2iδ−1/2
2 ϵ2e

−iT2

1 −
(
p1 − p2

p̄1 + p2

)2

eϵ1(2X1−3i)+O(ϵ3
1)

 [1 + O(ϵ2
2)
]
.

Hence, we get the power expansions

f = ϵ1ϵ2[F + O(ϵ1, ϵ2)], h = ϵ1ϵ2[H + O(ϵ1, ϵ2)], g = ϵ1ϵ2[G+ O(ϵ1, ϵ2)]

with

F = (2X1 + i)(2X2 + i) + 4
√
δ1δ2

(δ1 − δ2)2

[√
δ1e

− i
2 (T1−T2) −

√
δ2e

i
2 (T1−T2)

]2
, (2.12)

H = 2iδ1/2
1 e−iT1

[
2X2 − i − 4iδ2

δ1 − δ2

]
+ 2iδ1/2

2 e−iT2

[
2X1 − i + 4iδ1

δ1 − δ2

]
, (2.13)

and

G = −2iδ−1/2
1 e−iT1

[
2X2 + i − 4iδ1

δ1 − δ2

]
− 2iδ−1/2

2 e−iT2

[
2X1 + i + 4iδ2

δ1 − δ2

]
.

(2.14)

The algebraic two-soliton solution of the MTM system (1.1) appears in the
Hirota form as

u = G

F̄
, v = H

F
. (2.15)

It describes two algebraic solitons traveling with the speeds c1,2 obtained from δ1,2
by (2.11). A single algebraic solution appears by taking X2 → ∞:

u = lim
X2→∞

G

F̄
= 2δ−1/2

1
1 + 2iX1

e−iT1

and similarly,

v = lim
X2→∞

H

F
= 2δ1/2

1
1 − 2iX1

e−iT1 ,

from which we recognize the exact solution (2.5) with the account of the symmetry
transformations (2.1) and (2.2).
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Figure 2.1 shows the solution surfaces which suggest that the algebraic two-
soliton solution given by (2.15) describes normal scattering of two algebraic soli-
tons. When the wave speeds c1 and c2 are very different from each other (top
panels), the scattering is quick and the trajectories of the two solitons are almost
straight lines. When the wave speeds approach to each other (bottom panels), the
scattering becomes slow and the trajectories of the two solitons are curved near
the soliton overlapping regions.

Figure 2.1: The solution surface for |u|2 + |v|2 versus (x, t) for the
family (2.15) with x1 = x2 = t1 = t2 = 0 and δ1 = 1 + ε, δ2 = 1 − ε
with ε = 0.75 (top left), ε = 0.5 (top right), ε = 0.25 (bottom left),
and ε = 0.01 (bottom right).

2.4 Limit to the algebraic double-soliton
Each algebraic soliton in the two-soliton solution (2.15) has three arbitrary param-
eters δj > 0 and (xj, tj) ∈ R2 for j = 1, 2. We shall now consider the limit δ1 → δ2
to obtain the algebraic double-solitons. Due to the Lorentz transformation (2.2),
it is sufficient to set

δ1 = 1 + ε, δ2 = 1 − ε

12



and take the limit ε → 0, this gives the algebraic double-soliton with c = 0.
Expanding X1,2 and T1,2 in the first powers of ε, we write

X1 = x+ εt+ 1
2ε

2(x− t) − 1
2ε

3(x− t) + x1 + O(ε4),
X2 = x− εt+ 1

2ε
2(x− t) + 1

2ε
3(x− t) + x2 + O(ε4),

T1 = t+ εx− 1
2ε

2(x− t) + 1
2ε

3(x− t) + t1 + O(ε4),
T2 = t− εx− 1

2ε
2(x− t) − 1

2ε
3(x− t) + t2 + O(ε4).

In view of the translational symmetry (2.1), it is also sufficient to set
x1 = εa1 + 1

2ε
2a2 − 1

2ε
3a3,+O(ε4),

x2 = −εa1 + 1
2ε

2a2 + 1
2ε

3a3,+O(ε4),
t1 = εb1 − 1

2ε
2b2 + 1

2ε
3b3,+O(ε4),

t2 = −εb1 − 1
2ε

2b2 − 1
2ε

3b3,+O(ε4),

with arbitrary parameters a1, a2, a3, b1, b2, and b3. This gives the algebraic double-
soliton with zero translational parameters. The double-soliton can be extended to
three additional parameters by using (2.1) and (2.2).

For expansions of F , we use

(2X1 + i)(2X2 + i) = (2x+ i)2 + ε2[2(2x+ i)(x− t+ a2) − 4(t+ a1)2] + O(ε4)

and√
δ1e

− i
2 (T1−T2) −

√
δ2e

i
2 (T1−T2) = −2i

(
1 − ε2

8

)
sin

(
ε(x+ b1) + ε3

2 (x− t+ b3)
)

+ 2
(
ε

2 + ε3

16

)
cos (ε(x+ b1)) + O(ε5)

= ε(1 − 2i(x+ b1)) + ε3[ i
3(x+ b1)3 − i(x− t+ b3) + i

4(x+ b1)

− 1
2(x+ b1)2 + 1

8] + O(ε5).

Substituting expansions into (2.12) yields F = F0 + ε2F2 + O(ε4) with

F0 = −4b1(2x+ i + b1),

F2 = 2(2x+ i)(x− t+ a2) − 4(t+ a1)2 − 1
2(1 − 2i(x+ b1))2

+ 2(1 − 2i(x+ b1))
[ i
3(x+ b1)3 − i(x− t+ b3) + i

4(x+ b1) − 1
2(x+ b1)2 + 1

8

]
.
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If b1 ̸= 0, then the limit ε → 0 recovers the single algebraic soliton in the form
(2.5). However, if b1 = 0, then we get

F2 = (1 − 2ix)
[2i

3 x
3 + 3ix− x2 − 1

4 + 2i(a2 − b3)
]

− 4(t+ a1)2

= − 1
12
[
3 − 24ix− 24x2 − 32ix3 − 16x4 + 48(t+ a1)2 + 24(b3 − a2)(2x+ i)

]
.

For expansion of H, we use

δ
1/2
1 e−iT1(2X2 − i) + δ

1/2
2 e−iT2(2X1 − i) = e−it+ i

2 ε2(x−t+b2) {2(2x− i)
+ε2 [2(x− t+ a2) + 2(t+ a1)(2i(x+ b1) − 1)]

−ε2(2x− i)
[
(x+ b1)2 + i(x+ b1) + 1

4

]}
+ O(ε4)

and

δ
1/2
2 e−iT1 − δ

1/2
1 e−iT2 = e−it+ i

2 ε2(x−t+b2)×[
−2i

(
1 − ε2

8

)
sin

(
ε(x+ b1) + ε3

2 (x− t+ b3)
)

− 2
(
ε

2 + ε3

16

)
cos (ε(x+ b1)) + O(ε5)

]
= e−it+ i

2 ε2(x−t+b2) {−ε(1 + 2i(x+ b1))

+ε3
[ i
3(x+ b1)3 + i

4(x+ b1) − i(x− t+ b3) + 1
2(x+ b1)2 − 1

8

]
+ O(ε5)

}
.

Substituting expansions into (2.13) yieldsH = e−it+ i
2 ε2(x−t+b2) [H0 + ε2H2 + O(ε4)]

with

H0 = −8ib1,

H2 = 2i
[
2(x− t+ a2) + 2(t+ a1)(2i(x+ b1) − 1) − (2x− i)

[
(x+ b1)2 + i(x+ b1) + 1

4

]]
+ 4

[ i
3(x+ b1)3 + i

4(x+ b1) − i(x− t+ b3) + 1
2(x+ b1)2 − 1

8

]
+ 2 [1 + 2i(x+ b1)] .

We confirm again that if b1 ̸= 0, then the limit ε → 0 recovers the single algebraic
soliton in the form (2.5). However, if b1 = 0, then we get

H2 = 2i
[
2(a2 − b3) + 2(t+ a1)(2ix− 1) − 4

3x
3 − 2ix2 + x− i

2

]
= −1

3
[
−3 − 6ix− 12x2 + 8ix3 + 12(t+ a1)(2x+ i) + 12i(b3 − a2)

]
.
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Similarly, we obtain in the case of b1 = 0 that G = ε2e−itG2 + O(ε4) with

G2 = −1
3
[
−3 + 6ix− 12x2 − 8ix3 − 12(t+ a1)(2x− i) − 12i(b3 − a2)

]
.

The limit ε → 0 yields a new solution for the algebraic double-soliton in the form:

[
udouble(x, t)
vdouble(x, t)

]
=


4(−3 + 6ix− 12x2 − 8ix3 − 12(t+ α)(2x− i) − iβ)

3 + 24ix− 24x2 + 32ix3 − 16x4 + 48(t+ α)2 + 2β(2x− i)
4(−3 − 6ix− 12x2 + 8ix3 + 12(t+ α)(2x+ i) + iβ)

3 − 24ix− 24x2 − 32ix3 − 16x4 + 48(t+ α)2 + 2β(2x+ i)

 e−it.

(2.16)
where α := a1 and β := 12(b3 −a2) are two real-valued parameters of the solution.
Due to the symmetry transformation (2.1), the parameter α is trivial and can be
set to 0. The parameter β is nontrivial and gives the asymmetry of the algebraic
double-soliton.

Note that we have confirmed the validity of (2.16) by searching for polynomial
solutions of the bilinear equations (2.8) with f being polynomial in x of degree 4
and in t of degree 2 and with h and g being polynomials in x of degree 3 and in
t of degree 1. The only parameters of the polynomial solutions were found to be
α, β ∈ R as in (2.16) and the translational parameters in (2.1).

The algebraic double-soliton given by (2.16) describes a slow scattering of two
identical algebraic solitons. The parameter β describes the distance between the
two solitons. Figure 2.2 illustrates the solution surface for |u|2+|v|2 versus (x, t) for
the family of solutions (2.16) with β = 0, 1, 10, 100. The solution with β = 0 is sym-
metric with the global maximum at (0, 0). Since |udouble(0, 0)|2+|vdouble(0, 0)|2 = 32
for (2.16) and |ualg(0, 0)|2 + |valg(0, 0)|2 = 8 for (2.5), the double-soliton has the
quadruple magnification factor for the squared amplitudes compared to the single
algebraic soliton.

As β increases, the symmetry is broken and the magnification factor becomes
smaller. For sufficiently large β, the two solitons do not overlap but slowly scatter
at a distance from each other. As β → ∞, one soliton goes to infinity and the other
soliton is located near the origin. Indeed, the family of solutions (2.16) converges
as β → ∞ to a single algebraic soliton (2.5).

We will prove in the next section that

Q(udouble, vdouble) = 8π = 2Q(ualg, valg), (2.17)

which implies that the double-soliton (2.16) has a double mass compared to the
single algebraic soliton (2.5).
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Figure 2.2: The solution surface for |u|2 + |v|2 versus (x, t) for
the family (2.16) with β = 0 (top left), β = 1 (top right), β = 10
(bottom left), and β = 100 (bottom right).

2.5 Mass of the algebraic double-soliton
It follows from (2.7) and (2.8) that

|u|2 + |v|2 = |g|2 + |h|2

|f |2
= 2i

(
fx

f
− f̄x

f̄

)
,

where
f = 16x4 + 32ix3 + 24x2 + 24ix− 3 − 48t2 − 2β(2x+ i),

where we have set α = 0. We claim that f has no zeros on R in x for every t ∈ R
and β ∈ R. Indeed, if x, t, β ∈ R, zeros of f must satisfy{

16x4 + 2x2 − 3 − 48t2 − 4βx = 0,
32x3 + 24x− 2β = 0.

Expressing β = 16x3 + 12x yields −48x4 − 24x2 − 3 − 48t2 = 0, which cannot be
satisfied for x, t ∈ R. Hence, there exist no roots of f on R in x for every t ∈ R
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and β ∈ R. This and the fast decay at infinity,

fx

f
− f̄x

f̄
= O

(
1

|x|2

)
as |x| → ∞,

justify the applications of Jordan’s lemma and the argument principle to compute
the integral on R with techniques of complex analysis:∫

R
(|u|2 + |v|2)dx = lim

R→∞

∫
[−R,R]∪C+

R

(|u|2 + |v|2)dz

= 2i lim
R→∞

∫
[−R,R]∪C+

R

(
fx

f
− f̄x

f̄

)
dz

= 4π(Nf̄ −Nf ),

where C+
R is a semicircle of radius R in the upper half of the complex extension of

x denoted by C+, Nf is the number of zeros of f in C+ and Nf̄ is the number of
zeros of f̄ in C+. Since f has no zeros on R, we have

Nf̄ = deg(f) −Nf .

Since deg(f) = 4, we only need to show that Nf = 1 to obtain (2.17). However,
this is true as |t| → ∞ due to the representation of f in the equivalent form

f = (2x+ i)4 + 12(2x+ i)2 − 4i(2x+ i) − 2β(2x+ i) + 4 − 48t2,

from which we have

(2x+ i) = 4
√

12
√

|t|e
iπn

2 + O

 1√
|t|

 as |t| → ∞,

where n = 0, 1, 2, 3. There is only one root in C+ which corresponds to n = 1.
Since the number Nf cannot change in the continuation of f in t ∈ R, we have
Nf = 1 for every t ∈ R and β ∈ R. Hence Q(udouble, vdouble) = 8π and (2.17) holds
for every β ∈ R.
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Figure 2.3: The contour plots for the solution surfaces from Fig.
2.1 with ε = 0.5 (left) and from Fig. 2.2 with β = 0 (right). The
red lines show the straight lines x + c1t = 0 and x + c2t = 0 (left)
and the parabolas x2 =

√
3|t| (right).

For the normal scattering of two algebraic solitons given by the two-soliton
solution (2.15), the algebraic solitons move along straight lines before and after
interaction in the overlapping region. No phase shift arises as a result of the soliton
interaction, which is a standard feature of algebraic multi-soliton solutions, see [10,
15]. This is illustrated on the contour plot of Figure 2.3 (left panel), where we
showed the solution from Figure 2.1 with ε = 0.5 together with the straight lines
x+c1t = 0 and x+c2t = 0. On the other hand, the slow scattering of two identical
solitons given by (2.16) results in the solitons propagating along a curve on the
(x, t) plane. Figure 2.3 (right panel) shows the solution from Figure 2.2 with β = 0
together with the parabolas x2 =

√
3|t|. The free solitons would be standing waves

with c = 0 but their slow interaction results in the dynamics along the trajectories
at x2 ≈

√
3|t| as |t| → ∞ with nonzero but asymptotically vanishing velocities

dx
dt

≈ ±
√

3
2
√√

3|t|
.
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Chapter 3

Algebraic Soliton Solutions via
Double-Wronskian

3.1 Preliminaries
The MTM system (1.1) is a compatibility condition for the Lax pair [24]:

∂xΦ⃗ + L(u, v, ζ)Φ⃗ = 0, ∂tΦ⃗ + A(u, v, ζ)Φ⃗ = 0, (3.1)

where ζ ∈ C is the spectral parameter, Φ⃗ = Φ⃗(x, t) ∈ C2 is the wave function, and
the 2-by-2 matrices L(u, v, ζ) and A(u, v, ζ) are given by

L = i
4
(
|u|2 − |v|2

)
σ3 + i

2ζ
(

0 v̄
v 0

)
+ i

2ζ

(
0 ū
u 0

)
+ i

4
(
ζ2 − ζ−2

)
σ3

and

A = − i
4
(
|u|2 + |v|2

)
σ3 + i

2ζ
(

0 v̄
v 0

)
− i

2ζ

(
0 ū
u 0

)
+ i

4
(
ζ2 + ζ−2

)
σ3.

For simplicity of computations, we rewrite the MTM system (1.1), the bilinear
equations (2.8), and the Lax pair (3.1) in the characteristic variablesξ = t+x

4 ,

η = t−x
4 ,

⇒

t = 2(ξ + η),
x = 2(ξ − η),

⇒

∂ξ = 2(∂t + ∂x),
∂η = 2(∂t − ∂x).

(3.2)

The MTM system (1.1) transforms intoiuξ + 2v = 2|v|2u,
ivη + 2u = 2|u|2v.

(3.3)
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The bilinear equations (2.8) transform into
iDξ(g · f) + 2hf̄ = 0,
iDη(h · f̄) + 2gf = 0,
iDξ(f · f̄) − 2hh̄ = 0,
iDη(f̄ · f) − 2gḡ = 0.

(3.4)

The Lax pair (3.1) transforms into

∂ξΦ⃗ +
(

−i|v|2σ3 + 2iζ
(

0 v̄
v 0

)
+ iζ2σ3

)
Φ⃗ = 0 (3.5)

and
∂ηΦ⃗ +

(
−i|u|2σ3 − 2iζ−1

(
0 ū
u 0

)
+ iζ−2σ3

)
Φ⃗ = 0. (3.6)

3.2 Double-Wronskian solutions
To construct the double-Wronskian solutions, we note that solutions of the linear
system (3.5)–(3.6) with (u, v) = (0, 0) are given in the explicit form

Φ⃗ = e−i(ζ2ξ+ζ−2η)σ3 c⃗, (3.7)

where c⃗ ∈ C2. By writing Φ⃗ = (ψ0, ϕ0)T , this yields

ψ0 = e−i(ζ2ξ+ζ−2η)c1, ϕ0 = ei(ζ2ξ+ζ−2η)c2. (3.8)

If ζ ∈ C is an eigenvalue in the first quadrant, so are ζ̄, −ζ, and −ζ̄ in the other
three quadrants of the complex plane. Hence, we also obtain another relevant
solution of the linear system (3.5)–(3.6) with (u, v) = (0, 0):

ψ̃0 = e−i(ζ̄2ξ+ζ̄−2η)c̃1, ϕ̃0 = ei(ζ̄2ξ+ζ̄−2η)c̃2. (3.9)

one-soliton solution (2.3) can be obtained from (3.8) and (3.9) with the one-fold
Darboux transformation. In order to obtain N -soliton solutions with N -fold Dar-
boux transformations and to degenerate the N -soliton solutions in the limit of
algebraic solitons, we introduce now the double-Wronskian solutions of the MTM
system (3.3) based on the functions generalizing (3.8) and (3.9).
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Let A ∈ M2N×2N be a complex-valued invertible matrix for N ∈ N. We define
two vectors ϕ, ψ ∈ C2N from solutions of the linear equations∂ξϕ = iAϕ,

∂ηϕ = iA−1ϕ,
and

∂ξψ = −iAψ,
∂ηψ = −iA−1ψ,

(3.10)

which generalize the solutions (3.8) and (3.9). We note that

∂η∂ξϕ = −ϕ, ∂η∂ξψ = −ψ.

We assume that A can be factorized by an invertible matrix S ∈ M2N×2N as follows

A = −SS̄, Ā = −S̄S. (3.11)

Furthermore, we related the two vectors ϕ, ψ ∈ C2N by using

ψ = Sϕ̄. (3.12)

It follows from (3.11) that AS = SĀ and −I = S̄A−1S. We recall the conventional
notations for double-Wronskian determinants of (2N) × (2N) matrices:

|N̂ − 1; N̂ − 1| := |ϕ, ϕ′, . . . , ϕ(N−1), ψ, ψ′, . . . , ψ(N−1)|,
|Ñ ; Ñ | := |ϕ′, ϕ′′, . . . , ϕ(N), ψ′, ψ′′, . . . , ψ(N)|,

|N + 1;N + 1| := |ϕ′′, ϕ′′′, . . . , ϕ(N), ψ′′, ψ′′′, . . . , ψ(N+1)|,

where |A| = det(A) and the prime stands for the derivative with respect to ξ.
Similarly, we introduce notations for modifications of the double-Wronskian deter-
minants, e.g.

|0, N ; N̂ − 1| = |ϕ, ϕ′′, . . . , ϕ(N), ψ, ψ′, . . . , ψ(N−1)|,

|Ñ ; −1, Ñ − 1| = |ϕ′, ϕ′′, . . . , ϕ(N), ∂−1
ξ ψ, ψ′, . . . , ψ(N−1)|.

The following theorem gives the double-Wronskian solutions of the bilinear equa-
tions (3.4).

Theorem 1. Under the assumptions (3.10), (3.11), and (3.12), the following
double-Wronskianf = |Ñ ; N̂ − 1|,

f̄ = C|Ñ ; Ñ |,

g = |N̂ ; Ñ − 1|,
ḡ = iC|N ; N̂ |,

h = iC−1|N̂ ; N̂ − 2|
h̄ = CC̄−1|Ñ − 1; N̂ |

(3.13)

represent exact solutions of the bilinear equations (3.4) with C := (−i)N/|S|.
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For the proof of Theorem 1, we recall the following two lemmas used in [23, 30].
Lemma 1 is a restatement of Liouville’s theorem for differential equations. Lemma
2 is proven by using properties of determinants.

Lemma 1. Let A ∈ Mn×n and {x1, x2, . . . , xn} ∈ Cn for any n ∈ N. Then

tr(A)|x1, x2, . . . , xn| = |Ax1, x2, . . . , xn| + |x1, Ax2, . . . , xn| + · · · + |x1, x2, . . . , Axn|
(3.14)

Lemma 2. Let M ∈ Mn×n−2 and {a, b, c, d} ∈ Cn for any n ∈ N. Then

|M,a, b||M, c, d| − |M,a, c||M, b, d| + |M,a, d||M, b, c| = 0. (3.15)

Proof of Theorem 1. Let us first verify the complex-conjugate symmetry in (3.13).
By using (3.12), we have

f = |Ñ ; N̂ − 1| = |ϕ′, ϕ′′, . . . , ϕ(N), Sϕ̄, Sϕ̄′, . . . , Sϕ̄(N−1)|

Taking complex conjugation and using (3.10), (3.11), and (3.12), we get

f̄ = |ϕ̄′, ϕ̄′′, . . . , ϕ̄(N), S̄ϕ, S̄ϕ′, . . . , S̄ϕ(N−1)|
= (−1)N |S̄ϕ, S̄ϕ′, . . . , S̄ϕ(N−1), ϕ̄′, ϕ̄′′, . . . , ϕ̄(N)|
= (−1)N |S|−1|SS̄ϕ, SS̄ϕ′, . . . , SS̄ϕ(N−1), Sϕ̄′, Sϕ̄′′, . . . , Sϕ̄(N)|
= (−1)N |S|−1| − Aϕ,−Aϕ′, . . . ,−Aϕ(N−1), ψ′, ψ′′, . . . , ψ(N)|
= (−i)N |S|−1|ϕ′, ϕ′′, . . . , ϕ(N), ψ′, ψ′′, . . . , ψ(N)|,

which confirms f̄ = C|Ñ ; Ñ | with C = (−i)N/|S|. Similarly, we start with

g = |N̂ ; Ñ − 1| = |ϕ, ϕ′, . . . , ϕ(N), Sϕ̄′, Sϕ̄′′, . . . , Sϕ̄(N−1)|

and obtain

ḡ = |ϕ̄, ϕ̄′, . . . , ϕ̄(N), S̄ϕ′, S̄ϕ′′, . . . , S̄ϕ(N−1)|
= (−1)N+1|S̄ϕ′, S̄ϕ′′, . . . , S̄ϕ(N−1), ϕ̄, ϕ̄′, . . . , ϕ̄(N)|
= (−1)N+1|S|−1|SS̄ϕ′, SS̄ϕ′′, . . . , SS̄ϕ(N−1), Sϕ̄, Sϕ̄′, . . . , Sϕ̄(N)|
= (−1)N+1|S|−1| − Aϕ′,−Aϕ′′, . . . ,−Aϕ(N−1), ψ, ψ′, . . . , ψ(N)|
= (−i)N−1|S|−1|ϕ′′, ϕ′′′, . . . , ϕ(N), ψ, ψ′, . . . , ψ(N)|,
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which yields ḡ = iC|N ; N̂ | with the same C = (−i)N/|S|. Finally, we start with

h = iC−1|N̂ ; N̂ − 2| = iC−1|ϕ, ϕ′, . . . , ϕ(N), Sϕ̄, Sϕ̄′, . . . , Sϕ̄(N−2)|

and obtain

h̄ = −iC̄−1|ϕ̄, ϕ̄′, . . . , ϕ̄(N), S̄ϕ, S̄ϕ, . . . , S̄ϕ(N−2)|
= −iC̄−1(−1)N+1|S̄ϕ, S̄ϕ′, . . . , S̄ϕ(N−2), ϕ̄, ϕ̄′, . . . , ϕ̄(N)|
= −iC̄−1(−1)N+1|S|−1|SS̄ϕ, SS̄ϕ′, . . . , SS̄ϕ(N−2), Sϕ̄, Sϕ̄′, . . . , Sϕ̄(N)|
= −iC̄−1(−1)N+1|S|−1| − Aϕ,−Aϕ′, . . . ,−Aϕ(N−2), ψ, ψ′, . . . , ψ(N)|
= (−i)N |S|−1C̄−1|ϕ′, ϕ′′, . . . , ϕ(N−1), ψ, ψ′, . . . , ψ(N)|,

which yields h̄ = CC̄−1|Ñ − 1; N̂ | with the same C = (−i)N/|S|. It remains to
check validity of the four bilinear equations (3.4).

Validity of iDη(f̄ · f) − 2gḡ = 0.

By using expression for f and f̄ in (3.13), we get

iDη(f̄ · f) = i(f̄ηf − f̄fη)

= iC|Ñ ; Ñ |
(

|0, N ; N̂ − 1| + |Ñ ; −1, Ñ − 1|
)

− iC|Ñ ; N̂ − 1|
(
|0, N ; Ñ | + |Ñ ; 0, N |

)
= 2iC|Ñ ; Ñ ||0, N ; N̂ − 1| − 2iC|Ñ ; N̂ − 1||0, N ; Ñ |.

To get the second equality, we have used

tr(A−1)|Ñ ; N̂ − 1| = i
(

|0, N ; N̂ − 1| − |Ñ ; −1, Ñ − 1|
)
,

tr(A−1)|Ñ ; Ñ | = i
(
|0, N ; Ñ | − |Ñ ; 0, N |

)
,

which follow from the identity (3.14) in Lemma 1 with A−1. Combining with −2gḡ
from (3.13), we get

iDη(f̄ · f) − 2gḡ = 2iC
(

|Ñ ; Ñ ||0, N ; N̂ − 1| − |Ñ ; N̂ − 1||0, N ; Ñ | − |N̂ ; Ñ − 1||N ; N̂ |
)
.

To show that the expression in brackets is identically zero, we use identity (3.15)
of Lemma 2 with M := |N ; Ñ − 1|, a = ϕ′ in the first column, b = ψ(N) in the
last column, c = ϕ in the first column, and d = ψ in the (N + 1)-th column. The
identity (3.15) holds after rearrangement of the columns provided that the order
of vector a, b, c, d appear to be the same in each determinant. Thus, the bilinear
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equation iDη(f̄ · f) − 2gḡ = 0 is verified for the double-Wronskian solution (3.13).

Validity of iDξ(g · f) + 2hf̄ = 0.
By using expression for g and f in (3.13), we have

iDξ(g · f) =i(gξf − gfξ)

=i|Ñ ; N̂ − 1|
(

|N̂ − 1, N + 1; Ñ − 1| + |N̂ ; Ñ − 2, N |
)

− i|N̂ ; Ñ − 1|
(

|Ñ − 1, N + 1; N̂ − 1| + |Ñ ; N̂ − 2, N |
)

=2i
(

|Ñ ; N̂ − 1||N̂ ; Ñ − 2, N | − |N̂ ; Ñ − 1||Ñ ; N̂ − 2, N |
)
.

To get the second equality, we have used

tr(A)|N̂ ; Ñ − 1| = −i
(

|N̂ − 1, N + 1; Ñ − 1| − |N̂ ; Ñ − 2, N |
)
,

tr(A)|Ñ ; N̂ − 1| = −i
(

|Ñ − 1, N + 1; N̂ − 1| − |Ñ ; N̂ − 2, N |
)
,

which follows from the identity (3.14). Together with 2hf̄ , we have

iDξ(g · f) + 2hf̄

= 2i
(

|Ñ ; N̂ − 1||N̂ ; Ñ − 2, N | − |Ñ ; N̂ − 2, N ||N̂ ; Ñ − 1| + |N̂ ; N̂ − 2||Ñ ; Ñ |
)
.

To show that the expression in brackets is identically zero, we use identity (3.15)
with M := (Ñ ; Ñ − 2), a = ψ in the (N + 1)-th column, b = ψ(N−1) in the
last column, c = ϕ in the first column, and d = ψ(N) in the last column. This
completes the verification of the bilinear equation iDξ(g · f) + 2hf̄ = 0 with the
double-Wronskian solution (3.13).

Validity of iDη(h · f̄) + 2gf = 0.
By using expression for h and f̄ in (3.13), we obtain

iDη(h · f̄) = i(hηf̄ − hf̄η)

= |Ñ ; Ñ |(| − 1, Ñ ; N̂ − 2| + |N̂ ; −1, Ñ − 2|) − |N̂ ; N̂ − 2|(|0, N ; Ñ | + |Ñ ; 0, N |)

= 2|Ñ ; Ñ ||N̂ ; −1, Ñ − 2| − 2|N̂ ; N̂ − 2||Ñ ; 0.N |
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To get the second equality, we have used

tr(A−1)|N̂ ; N̂ − 2| = i
(

| − 1, Ñ ; N̂ − 2| − |N̂ ; −1, Ñ − 2|)
)
,

tr(A−1)|Ñ ; Ñ | = i
(
|0, N ; Ñ | − |Ñ ; 0, N |

)
,

which follow from the identity (3.14) with A−1. Combining with 2gf , we get

iDη(h · f̄) + 2gf = 2
(

|N̂ ; −1, Ñ − 2||Ñ ; Ñ | − |N̂ ; N̂ − 2||Ñ ; 0, N | + |Ñ ; N̂ − 1||N̂ ; Ñ − 1|
)
.

To show that the expression in brackets is identically zero, we can not use identity
(3.15) directly. However, we can write

|N̂ ; −1, Ñ − 2| = |∂−1
ξ ϕ′, ∂−1

ξ ϕ′′, . . . , ∂−1
ξ ϕ(N+1); ∂−1

ξ ψ, ∂−1
ξ ψ′′, . . . , ∂−1

ξ ψ(N−1)|
= | − ∂ηϕ

′,−∂ηϕ
′′, . . . ,−∂ηϕ

(N+1); −∂ηψ,−∂ηψ
′′, . . . ,−∂ηψ

(N−1)|
= | − iA−1ϕ′,−iA−1ϕ′′, . . . ,−iA−1ϕ(N+1); iA−1ψ, iA−1ψ′′, . . . , iA−1ψ(N−1)|
= (−i)N+1iN−1|A−1||ϕ′, ϕ′′, . . . , ϕ(N+1);ψ, ψ′′, . . . , ψ(N−1)|

= −|A−1||Ñ + 1; 0, N − 1|

and similarly,

|N̂ ; N̂ − 2| = −|A−1||Ñ + 1; Ñ − 1|,

|N̂ ; Ñ − 1| = −|A−1||Ñ + 1;N |.

Hence, we rewrite the formula in the equivalent way:

iDη(h · f̄) + 2gf

= −2|A−1|
(

|Ñ + 1; 0, N − 1||Ñ ; Ñ | − |Ñ + 1; Ñ − 1||Ñ ; 0, N | + |Ñ + 1;N ||Ñ ; N̂ − 1|
)
.

We can now use identity (3.15) with M := (Ñ ,N − 1), a = ϕ(N+1) in the (N + 1)-
th column, b = ψ in the (N + 2)-th column, c = ψ′ in the (N + 1)-th column, and
d = ψ(N) in the last column. This yields zero and verifies the bilinear equation
iDη(h · f̄) + 2gf = 0 with the double-Wronskian solution (3.13).
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Validity of iDξ(f · f̄) − 2hh̄ = 0.
By using expression for f and f̄ in (3.13), we find

iDξ(f · f̄) =i(fξf̄ − ff̄ξ)

=iC|Ñ ; Ñ |
(

|Ñ − 1, N + 1; N̂ − 1| + |Ñ ; N̂ − 2, N |
)

− iC|Ñ ; N̂ − 1|
(

|Ñ − 1, N + 1; Ñ | + |Ñ , Ñ − 1, N + 1|
)

=2iC
(

|Ñ ; Ñ ||Ñ − 1, N + 1; N̂ − 1| − |Ñ ; N̂ − 1||Ñ − 1, N + 1; Ñ |
)
.

To get the second equality, we have used

tr(A)|Ñ ; Ñ | = −i
(

|Ñ − 1, N + 1; Ñ | − |Ñ ; Ñ − 1, N + 1|
)
,

tr(A)|Ñ ; N̂ − 1| = −i
(

|Ñ − 1, N + 1; N̂ − 1| − |Ñ ; N̂ − 2, N |
)
,

which follow from the identity (3.14). Together with the term −2hh̄, we have

iDξ(f · f̄) − 2hh̄ = 2iC
(

|Ñ ; Ñ ||Ñ − 1, N + 1; N̂ − 1| − |Ñ ; N̂ − 1||Ñ − 1, N + 1; Ñ |
)

− 2iC̄−1|N̂ ; N̂ − 2||Ñ − 1; N̂ |

In order to use the identity (3.15), we need to rewrite the last term in the equivalent
way. Since

|N̂ ; N̂ − 2| = |ϕ, ϕ′, . . . , ϕ(N);ψ, ψ′, . . . , ψ(N−2)|
= |A−1|(−i)N+1iN−1|iAϕ, iAϕ′, . . . , iAϕ(N); −iAψ,−iAψ′, . . . ,−iAψ(N−2)|

= −|A−1||Ñ + 1; Ñ − 1|,

we use |A−1| = (|S||S̄|)−1 and C = (−i)N/|S| to rewrite

iDξ(f · f̄) − 2hh̄

= 2iC
(
|Ñ ; Ñ ||Ñ − 1, N + 1; N̂ − 1| − |Ñ ; N̂ − 1||Ñ − 1, N + 1; Ñ |

+ |Ñ + 1; Ñ − 1||Ñ − 1; N̂ |
)
.

We can now use identity (3.15) with M := (Ñ − 1; Ñ − 1), a := ϕ(N) in the N -th
column, b := ψ(N) in the last column, c := ϕ(N+1) in the N -th column, and d := ψ
in the (N + 1)-th column. This yields zero in the brackets and verifies the bilinear
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equation iDξ(f · f̄) − 2hh̄ = 0 with the double-Wronskian solution (3.13).

3.3 one-soliton solutions via double-Wronskian
We shall recover the one-soliton solution (2.3) by using the double-Wronskian
solutions (3.13) generated from (3.10), (3.11), and (3.12). For N = 1, we define

A :=
[
eiγ 0
0 e−iγ

]
, and S :=

[
0 e

iγ
2

−e−iγ
2 0

]
, (3.16)

where γ ∈ (0, π) is an arbitary parameter. The choice of A agrees with the solutions
(3.8) and (3.9) for ζ = e

iγ
2 in the first quadrant of the complex plane. We confirm

that S satisfies the identity A = −SS̄ in (3.11). Using (3.10) and (3.12), we get

ϕ =
[
c1e

ieiγξ+ie−iγη

c2e
ie−iγξ+ieiγη

]
and ψ =

[
c̄2e

iγ
2 −ieiγξ−ie−iγη

−c̄1e
− iγ

2 −ie−iγξ−ieiγη

]

Then, we get from (3.13) with C = −i/|S| = −i that
f = |ϕ′;ψ| = −i

(
|c1|2e

iγ
2 −2(ξ−η) sin γ + |c2|2e− iγ

2 +2(ξ−η) sin γ
)
,

g = |ϕ, ϕ′| = 2c1c2 sin γe2i(ξ+η) cos γ,
h = −|ϕ, ϕ′| = −2c1c2 sin γe2i(ξ+η) cos γ,

which generate due to (2.7) and (3.2) for c1 = 1 and c2 = i the exact solution
identical to (2.3). In addition, we check the validity of the complex-conjugate
equations (3.13):

f̄ = −i|ϕ′;ψ′| = i
(
|c1|2e− iγ

2 −2(ξ−η) sin γ + |c2|2e
iγ
2 +2(ξ−η) sin γ

)
,

ḡ = |ψ, ψ′| = 2c̄1c̄2 sin γe−2i(ξ+η) cos γ,

h̄ = −|ψ, ψ′| = −2c̄1c̄2 sin γe−2i(ξ+η) cos γ.

Thus, the validity of Theorem 1 for a diagonal 2 × 2 matrix A has been verified by
comparison with the exact one-soliton solutions obtained via exponential functions.

Remark 1. If A = diag(a, b) is a more general diagonal matrix with a, b ∈ C,
then we show that b = ā. Indeed, if

A :=
[
a 0
0 b

]
, and S :=

[
α β
γ δ

]
,
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then constraint A = −SS̄ implies

−a = |α|2 + βγ̄,

0 = αβ̄ + βδ̄,

0 = ᾱγ + γ̄δ,

−b = γβ̄ + |δ|2.

If β, γ ̸= 0, then the second and third equations imply that |α|2 = |δ|2. It follows
then from the first and fourth equations that a = b̄. By defining a = eiγ and
b = e−iγ as in (3.16), we satisfy this constraint and normalize |a| = |b| = 1 for
one-solitons with zero speed.

To recover the algebraic one-soliton solution (2.5) by using the double-Wronskian
solution (3.13) with N = 1, we define

A :=
[
−1 0
1 −1

]
, and S :=

[
1 0

−1
2 1

]
, (3.17)

which satisfies A = −SS̄. The choice of A agrees with the solution (3.8) and its
derivative with respect to ζ2 at ζ = i. Using (3.10) and (3.12) with these A and
S, we get

ϕ =
[

c1e
−i(ξ+η)

(c2 + i(ξ − η)c1)e−i(ξ+η)

]
and ψ =

[
c̄1e

i(ξ+η)

(c̄2 − i(ξ − η)c̄1 − 1
2 c̄1)ei(ξ+η)

]

Then, we get from (3.13) with C = −i/|S| = −i that
f = |ϕ′;ψ| = i(c̄1c2 − c1c̄2) − 2(ξ − η)|c1|2 − i

2 |c1|2,
g = |ϕ, ϕ′| = ic2

1e
−2i(ξ+η),

h = −|ϕ, ϕ′| = −ic2
1e

−2i(ξ+η),

which generate due to (2.7) and (3.2) for c1 = 1 and c2 = 0 the exact solution
identical to (2.5). The validity of the complex-conjugate equation (3.13) for f̄ , ḡ,
and h̄ is obtained by similar computations. Thus, the validity of Theorem 1 for
a 2 × 2 Jordan block of the matrix A associated with eigenvalue ζ = i has been
verified by comparison with the exact algebraic one-soliton solutions obtained via
polynomial functions.
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3.4 Hierarchy of rational solutions
For every N ≥ 1, let I be the identity (2N) × (2N) matrix and L be the nilpo-
tent (2N) × (2N) matrix with the only nonzero entries being ones on the first
lower diagonal. The j-th power of L has ones at the j-th lower diagonal for
j = 1, 2, . . . , 2N − 1, whereas L2N = 0.

For the Nth-order rational solution which corresponds to the N -multiple eigen-
value at ζ = i, we define

A = −I + L, A−1 = −I − L− L2 − · · · − L2N−1. (3.18)

This choice generalizes (3.17) for N ≥ 1.

Vector ϕ ∈ C2N satisfies the first system in (3.10), from which we derive the
following recurrent equations for components of ϕ:

∂ξϕj = −iϕj + iϕj−1, j = 1, 2, . . . , 2N (3.19)

closed with ϕ0 ≡ 0 and

∂ηϕj = −iϕj − iϕj−1 − iϕj−2 − · · · − iϕ1, j = 1, 2, . . . , 2N. (3.20)

The other vector ψ ∈ C2N is defined by ψ = Sϕ̄ as in (3.11) and (3.12), where the
matrix S is obtained in the following lemma.

Lemma 3. Solution of the matrix equation −S2 = A = −I + L is given by

S = I − 1
2L− 1

23L
2 − · · · − (2m− 3)!!

m!2m
Lm − · · · − (4N − 5)!!

(2N − 1)!22N−1L
2N−1. (3.21)

Proof. For the Jordan block J = λI + L ∈ Mn×n associated with any value of the
spectral parameter λ ∈ C, we use the following Taylor expansion for every smooth
function f : R → R extended to matrices as f : Mn×n → Mn×n:

f(J) = f(λ)I + f ′(λ)L+ 1
2!f

′′(λ)L2 + · · · + 1
m!f

(m)(λ)Lm + . . .

=



f(λ) 0 0 . . . 0
f ′(λ) f(λ) 0 . . . 0

1
2!f

′′(λ) f ′(λ) f(λ) . . . 0
... ... ... . . .

...
1

(n−1)!f
(n−1)(λ) 1

(n−2)!f
(n−2)(λ) 1

(n−3)!f
(n−3)(λ) . . . f(λ)


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We apply this formula for A = −I + L with f(λ) =
√
λ and λ = −1. We get

recursively

f(−1) = i, f ′(−1) = − i
2 , f ′′(−1) = − i

22 , f ′′′(−1) = − i3!!
23 , f ′′′′(−1) = − i5!!

24 ,

and generally,
f (m)(−1) = − i(2m− 3)!!

2m
, m ∈ N.

Defining S = −i
√
A and dividing f (m)(−1) by m! yields (3.21).

Let us define the fundamental solution of equations (3.19) and (3.20) by using
the generating function as in

ϕj = 1
(j − 1)!∂

j−1
ζ2 ei(ζ2ξ+ζ−2η)|ζ2=−1, j = 1, 2, . . . , 2N. (3.22)

The example for N = 3 yields

ϕ1 = e−i(ξ+η),

ϕ2 = i(ξ − η)e−i(ξ+η),

ϕ3 =
[

i2
2!(ξ − η)2 − iη

]
e−i(ξ+η),

ϕ4 =
[

i3
3!(ξ − η)3 + η(ξ − η) − iη

]
e−i(ξ+η),

ϕ5 =
[

i4
4!(ξ − η)4 + i

2!η(ξ − η)2 + η(ξ − η) − 1
2!η

2 − iη
]
e−i(ξ+η),

ϕ6 =
[

i5
5!(ξ − η)5 + i2

3!η(ξ − η)3 + i
2!η(ξ − η)2 − i

2!η
2(ξ − η) + η(ξ − η) − η2 − iη

]
e−i(ξ+η).

For parameterization of a general rational solution, we take a linear combination
of the fundamental solutions (3.22) with 2N complex parameters:

ϕj =
j∑

k=1

ck

(j − k)!∂
j−k
ζ2 ei(ζ2ξ+ζ−2η)|ζ2=−1, j = 1, 2, . . . , 2N. (3.23)

The following lemma gives the exact count of arbitrary real parameters in the
general rational solution.

Lemma 4. Let ϕ be defined by (3.23) with c1, c2, . . . , c2N ∈ C and ψ = Sϕ̄ be
defined by (3.21). The double-Wronskian solutions (3.13) depend on 2N arbitrary
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real parameters.

Proof. The representation (3.23) can be rewritten in the equivalent form

ϕj = 1
(j − 1)!∂

j−1
ζ2

 j∑
k=1

ak(ζ2 + 1)k−1

 ei(ζ2ξ+ζ−2η+
∑j

k=1 bk(ζ2+1)k−1)|ζ2=−1, (3.24)

where a1, a2, . . . , a2N , b1, b2, . . . , b2N ∈ R. Without loss of generality, we can set
a1 = 1 because a1 can be scaled out by choosing aj = a1ãj with new ãj for
j = 2, 3, . . . , 2N and the parameter a1 is canceled in the quotients (2.7) with
(3.13). With a1 = 1, we have the recursive structure

ϕj = ϕ̃j + a2ϕ̃j−1 + · · · + ajϕ̃1, j = 1, 2, . . . , 2N,

where ϕ̃j is obtained from (3.24) with a1 = 1 and a2 = · · · = a2N = 0. Similarly,
we have

ψj = ψ̃j + a2ψ̃j−1 + · · · + ajψ̃1, j = 1, 2, . . . , 2N,

where ψ̃j = S ˜̄ϕj. Due to the row structure of the double-Wronskian solutions,
all terms with a2, . . . , a2N give no contribution in the determinants. Hence, we
can set a2 = · · · = a2N = 0 without loss of generality. The double-Wronskian
solutions only depends on 2N real parameters b1, b2, . . . , b2N which are generally
irreducible.
Remark 2. The result of Lemma 4 suggests that the N th-order rational solution
represents N copies of identical algebraic solitons, where each soliton has its own
pair of two translational parameters generated by the translational symmetries in
(x, t). No additional parameters arise due to the rotational phase symmetry, see
(2.1).

The following theorem characterizes the Nth-order rational solution obtained
from the fundamental solution (3.22) with zero values of the arbitrary parameters
in Lemma 4.

Theorem 2. Let A and S be given by (3.18) and (3.21) with ϕ defined by (3.22)
and ψ = Sϕ̄. The double-Wronskian solutions (3.13) generate the rational solu-
tions of the MTM system (1.1) in the form:

u = QN(x, t)
P̄N(x, t)

e−it, v = RN(x, t)
PN(x, t) e

−it, (3.25)

where PN is a polynomial of degree N2 in x and QN , RN are polynomials of degree
N2 − 1 in x.
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Proof. We observe from (3.22) that

ϕj(ξ, η) =
[

ij−1

(j − 1)!(ξ − η)j−1 + ηpj−3(ξ − η, η)
]
e−i(ξ+η), j = 1, 2, . . . , 2N,

(3.26)
where pj−3 is a polynomial in variables ξ − η = 1

2x and η = 1
4(t − x). The degree

of polynomials PN , QN , RN in x can be obtained by inspecting the leading order
of f , g, h with the first dominant term in (3.26). By (3.13) with (3.18), we have

f = |ϕ′, ϕ′′, . . . , ϕ(N), ψ, ψ′, . . . , ψ(N−1)|
= |ϕ′,−iϕ′ + iLϕ′, . . . , ϕ(N), ψ, iψ − iLψ, . . . , ψ(N−1)|
= |ϕ′, Lϕ′, . . . , ϕ(N), ψ, Lψ, . . . , ψ(N−1)|.

where the factor i disappears due to compensation between iLϕ′ and −iLψ. Con-
tinuing by induction, we reduce this expression to

f = |ϕ′, Lϕ′, . . . , LN−1ϕ′, ψ, Lψ, . . . , LN−1ψ′|.

Similarly, we reduce g and h to

g = |ϕ, ϕ′, . . . , ϕ(N), ψ′, ψ′′, . . . , ψ(N−1)|
= i2N−1|ϕ, Lϕ, . . . , LNϕ, ψ′, Lψ′, . . . , LN−2ψ′|

and

h = iC−1|ϕ, ϕ′, . . . , ϕ(N), ψ, ψ′, . . . , ψ(N−2)|
= iC−1i2N−1|ϕ, Lϕ, . . . , LNϕ, ψ, Lψ, . . . , LN−2ψ|,

where the factor i2N−1 is due to the two columns with ϕ(N−1) and ϕ(N) which are
not compensated by the columns from ψ.

Since Sϕ̄ = ϕ̄ + O(Lϕ̄) and ϕ′ = (−i)ϕ + O(Lϕ) at the leading polynomial
order, see (3.21) and (3.26), the leading-order part of the polynomial f in variable
z := i(ξ − η) = i

2x is given by

f = (−i)N |BN(z);BN(−z)|
[
1 + O(z−1)

]
,
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where BN(z) is the block of size 2N ×N given by

BN(z) :=



1 0 0 0 . . .
z 1 0 0 . . .

1
2!z

2 z 1 0 . . .
1
3!z

3 1
2!z

2 z 1 . . .
... ... ... ... ...

 .

Due to the hierarchic structure of BN(±z) in powers of z, it follows that

(BN(z);BN(−z)) = D−(z) (BN(1);BN(−1))D+(z),

where

D− = diag(z−N+1, z−N+2, . . . , 1; z, z2, . . . , zN),
D+ = diag(zN−1, zN−2, . . . , 1; zN−1, zN−2, . . . , 1).

This yields the result

|BN(z);BN(−z)| = zN2|BN(1);BN(−1)|

since
N∑

j=1
j +

N−1∑
j=1

j = N(N + 1)
2 + N(N − 1)

2 = N2.

If the numerical coefficient |BN(1);BN(−1)| is nonzero, the degree of PN in x is
given by the leading-order term zN2 , which completes the proof of the assertion.

To show that |BN(1);BN(−1)| ≠ 0, we use elementary row operations:

|BN(1);BN(−1)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 . . . 1 0 0 0 . . .
1 1 0 0 . . . −1 1 0 0 . . .
1
2! 1 1 0 . . . 1

2! −1 1 0 . . .
1
3!

1
2! 1 1 . . . − 1

3!
1
2! −1 1 . . .

... ... ... ... ... ... ... ... ... ...

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 2N(−1)N

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 . . . 0 0 0 0 . . .
0 1 0 0 . . . 1 0 0 0 . . .
1
2! 0 1 0 . . . 0 1 0 0 . . .
0 1

2! 0 1 . . . 1
3! 0 1 0 . . .

... ... ... ... ... ... ... ... ... ...

∣∣∣∣∣∣∣∣∣∣∣∣∣
where we first added each j-th and (N + j)-th columns for 1 ≤ j ≤ N , then
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extracted the factor of 2 from the first N columns, and finally subtracted the
resulting j-th column from the (N+j)-th column for 1 ≤ j ≤ N and multiplied the
last N columns by the negative signs. Continuing the elementary row operations
we obtained a general formula:

|BN(1);BN(−1)| = 2N(−1)N

12N−132N−352N−572N−7 . . . (2N − 1)1 , (3.27)

which was confirmed for 1 ≤ N ≤ 15 by using numerical computations.

Expressions for g and h are not polynomials but they are given by the polyno-
mial multiplied by e−2i(ξ+η) = e−it. Therefore, we can compute the leading-order
parts of g and h as

g = i3N−2e−it |BN+1(z);BN−1(−z)|
[
1 + O(z−1)

]
and

h = i2NC−1e−it |BN+1(z);BN−1(−z)|
[
1 + O(z−1)

]
,

with the same determinants which consist of two blocks of nonequal sizes (2N) ×
(N + 1) and (2N) × (N − 1). Again, we can factorize the matrix as

(BN+1(z);BN−1(−z)) = D̃−(z) (BN+1(1);BN−1(−1)) D̃+(z),

where

D̃− = diag(z−N , z−N+1, . . . , 1; z, z2, . . . , zN−1),
D̃+ = diag(zN , zN−1, . . . , 1; zN , zN−1, . . . , z2).

This yields the result

|BN+1(z);BN−1(−z)| = zN2−1 |BN+1(1);BN−1(−1)|

since
N−1∑
j=1

j +
N∑

j=1
j − 1 = N(N − 1)

2 + N(N + 1)
2 − 1 = N2 − 1.

We have again verified numerically for 1 ≤ N ≤ 15 that

|BN+1(1);BN−1(−1)| = N

2 |BN(1);BN(−1)|

= 2N−1(−1)NN

12N−132N−352N−572N−7 . . . (2N − 1)1 . (3.28)
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Since the numerical coefficients |BN(1);BN(−1)| and |BN+1(1);BN−1(−1)| are
nonzero, the degrees of PN , QN and RN in x are given by the leading-order terms
zN2 and zN2−1.
Remark 3. By using expressions in the proof of Theorem 2, we can compute the
leading-order behavior of the N th-order rational solutions in (3.25) as |x| → ∞.
Since z = i

2x, we get

QN(x, t)
P̄N(x, t)

∼ i3N−2zN2−1|BN+1(1);BN−1(−1)|
iN z̄N2|BN(1);BN(−1)|

= 2i|BN+1(1);BN−1(−1)|
|BN(1);BN(−1)|x

= iN
x
.

This agrees with the particular result (2.16) for N = 2. In view of the theory of
embedded eigenvalues in [19], the leading-order behavior of |u(x, t)| ∼ N

|x| as |x| →
∞ suggests that the corresponding rational solutions are related to the multiple
embedded eigenvalue λ = i of geometric multiplicity one and algebraic multiplicity
N . For N = 2, this has been proven in [22].

The following lemma ensures that the Nth-order rational solution of Theorem
2 is bounded for all real values of (x, t).

Lemma 5. Let PN , QN , and RN be polynomials in the solution (3.25) of Theorem
2. Then, (u, v) are real analytic functions of (x, t).

Proof. If PN(x, t) ̸= 0 for all (x, t) ∈ R × R, then zeros of the polynomial PN of
degree N2 in x are bounded away from the real axis for every t ∈ R so that (u, v)
are real analytic functions of (x, t).

Assume now that PN has a zero at (x, t) = (x0, t0) ∈ R × R of multiplicity
M . Without loss of generality, we can fix η = η0 and consider the behavior of
PN = (ξ−ξ0)M P̃N , where P̃N is a polynomial of degree N2−M and P̃N(ξ0, η0) ̸= 0.
Due to reality of (ξ0, η0), both f = PN and f̄ = P̄N have a zero at (ξ0, η0) of
the same multiplicity M so that iDξ(f · f̄) in the third bilinear equation of the
system (3.4) has a zero at (ξ0, η0) of multiplicity 2M . Hence, h = RNe

−it has
a zero at (ξ0, η0) of multiplicity M . The first bilinear equation in the system
(3.4) implies that g = QNe

−it has also a zero at (ξ0, η0) of multiplicity N . Thus,
QN = (ξ − ξ0)MQ̃N and Rn = (ξ − ξ0)M R̃N with polynomial Q̃N , R̃N satisfying
Q̃N(ξ0, η0) ̸= 0 and R̃N(ξ0, η0) ̸= 0. Hence ξ0 is a removable singularity of the
rational functions QN/P̄N and RN/PN so that (u, v) are real analytic functions
of (x, t). The same analysis holds for fixed ξ = ξ0 with respect to η, but we use
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the second and fourth bilinear equations in the system (3.4) to prove that η0 is a
removable singularity of the rational functions.
Remark 4. We have conjectured that PN(x, t) ̸= 0 for all (x, t) ∈ R × R but we
were not able to prove it directly for N ≥ 3. As Lemma 5 shows, this property is
not important since the bilinear equations (3.4) ensure that even if PN vanishes at
some (x0, t0) ∈ R × R, then (x0, t0) is a removable singularity of the real analytic
functions of (x, t).

3.5 Examples for N = 2, 3
Based on the explicit computations of the rational solutions with N = 2, 3, we con-
jecture that the Nth-order rational solution describes an interaction of N identical
algebraic solitons for every N ∈ N. Moreover, for every t ∈ R, PN admits no zeros
on the real axis of x, N(N−1)

2 poles in the upper half-plane, and N(N+1)
2 poles in the

lower half-plane. The argument principle used in Section 2.5 for N = 2 suggests
that the mass conservation yields∫

R
(|u|2 + |v|2)dx = 4πN, (3.29)

which is exactly N multiple of the mass of a single algebraic soliton. Moreover,
as |t| → ∞, we have exactly N algebraic solitons diverging from each other with
the distance growing as

√
|t|. These conjectures are illustrated with the explicit

examples for N = 2, 3.

3.5.1 Double algebraic solitons with N = 2
To recover the algebraic double solitons (2.16) by using the double-Wronskian
solution (3.13) with N = 2, we define

A :=


−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1

 , S :=


1 0 0 0

−1
2 1 0 0

−1
8 −1

2 1 0
− 1

16 −1
8 −1

2 1

 ,

which satisfies A = −SS̄. Using (3.10) and (3.12) with these A and S, we get

ϕ =


ϕ1
ϕ2
ϕ3
ϕ4

 and ψ =


ψ1
ψ2
ψ3
ψ4


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Then, we get from (3.13) with C = (−i)2/|S| = −1 that
f = |ϕ′, ϕ′′;ψ, ψ′|,
g = |ϕ, ϕ′, ϕ′′;ψ′|,
h = −i|ϕ, ϕ′, ϕ′′;ψ|,

which generate due to (2.7) and (3.2) for c1 = 1 and cj = 0 for j = 2, 3, 4.

u = g(x, t)
f̄(x, t)

, v = h(x, t)
f(x, t)

where

f(x, t) = 1
192(−16x4 − 32ix3 − 24x2 − 24ix+ 48t2 + 3),

g(x, t) = − 1
48(−8ix3 − 12x2 + 6ix− 24tx+ 12it− 3)e−it,

h(x, t) = 1
48(−8ix3 + 12x2 + 6ix− 24tx− 12it+ 3)e−it.

This exact solution recovers the expressions in (2.16) for α = β = 0. Conse-
quently, the solution surface is shown in Figure 2.2 (top left), and the contour plot
is shown in Figure 2.3 (right).

3.5.2 Triple algebraic solitons with N = 3
We set N = 3 to derive the triple soliton solution. In this case, we construct the
matrices:

A :=



−1 0 0 0 0 0
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1


, S :=



1 0 0 0 0 0
−1

2 1 0 0 0 0
−1

8 −1
2 1 0 0 0

− 1
16 −1

8 −1
2 1 0 0

− 5
128 − 1

16 −1
8 −1

2 1 0
− 7

256 − 5
128 − 1

16 −1
8 −1

2 1


,
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which satisfies A = −SS̄. The components of ϕ and ψ are given by

ϕ =



ϕ1
ϕ2
ϕ3
ϕ4
ϕ5
ϕ6


and ψ =



ψ1
ψ2
ψ3
ψ4
ψ5
ψ6


Using the Wronskian determinant (3.13) with C = (−i)3/|S| = i, we obtain

f = |ϕ′, ϕ′′, ϕ′′′;ψ, ψ′, ψ′′|,
g = |ϕ, ϕ′, ϕ′′, ϕ′′′;ψ′, ψ′′|,
h = |ϕ, ϕ′, ϕ′′, ϕ′′′;ψ, ψ′|,

which yield the exact triple algebraic soliton solution. For c1 = 1 and cj = 0 for
j = 2, . . . , 6, the exact solution is given by

u = g(x, t)
f̄(x, t)

, v = h(x, t)
f(x, t) (3.30)

where

f(x, t) = 1
4423680

(
− 135i + 512x9 + 2304ix8 + 4608x7 + 23808ix6 + 576(−16t2 − 21)x5

+ 1440i(−16t2 + 15)x4 + 1440(48t2 − 19)x3 + 2160i(16t2 + 3)x2

+ 270(−256t4 + 32t2 − 9)x− 34560it4 − 12960it2
)
,

g(x, t) = − 1
64e

−it
(

ix8

45 + 4x7

45 + ( i
15 + 8t

45)x6 + (−8it
15 + 7

15)x5 + (−2it2
3 + 3i

8 − 2t
3 )x4

+ (−4t2
3 + 3

4)x3 + (−it2 − 5i
16 − t

2)x2 + (− it
2 − t2 − 1

16)x+ it4 + it2
8 − 3i

256 − t

8

)
,

h(x, t) = 1
64e

−it
(

i
45x

8 − 4x7

45 + ( i
15 + 8t

45)x6 + (8it
15 − 7

15)x5 + (−2it2
3 + 3i

8 − 2t
3 )x4

+ (4t2
3 − 3

4)x3 + (−it2 − 5i
16 − t

2)x2 + (it
2 + t2 + 1

16)x+ it4 + it2
8 − 3i

256 − t

8

)
.
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Figure 3.1: The solution surface for |u|2 + |v|2 versus (x, t) for
the solution (3.30) (left). The contour plot for the 3-soliton solution
surface together with x2 =

√
9 + 6

√
6|t| (right).

Figure 3.1 illustrates the solution surface for |u|2 + |v|2 versus (x, t) for the
solution (3.30) and the contour plot for the solution surface together with the
parabolas x2 =

√
9 + 6

√
6|t|. The explicit expressions for the parabolas is given

by the leading-order terms in the denominator of (3.30), which are

512x9 − 9216t2x5 − 69120t4x.

Making this equal to zero yields three solutions: x = 0, x4 = (9 + 6
√

6)t2, x4 =
(9 − 6

√
6)t2, where the last solution only gives complex values of x, whereas the

second solution yields x2 =
√

9 +
√

6|t|. The solution is symmetric with the global
maximum |u(0, 0)|2 + |v(0, 0)|2 = 72, which is nine times larger than the squared
amplitudes of the single algebraic soliton (2.5). The algebraic solitons exhibit
slower separation of the individual algebraic solitons, implying their long-range
interactions. The solitons do not exhibit phase shift after the interaction.
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Chapter 4

Conclusion and Open Questions

We have constructed the exact solutions of the MTM system (1.1) which describe
the dynamics of algebraic solitons. By employing both the Hirota bilinear method
and the double-Wronskian approach, we have systematically derived the Nth-order
rational solutions. The exact solutions suggest that the algebraic solitons are stable
coherent structures arising in a more complicated evolution of the MTM system
(1.1).

The functional-analytic proof for orbital stability of algebraic solitons is still
open with only partial progress obtained within the derivative NLS equation in
[21] and recently in [18]. Beyond the stability proof, several open questions arise
from this work. First, a similar algebraic double-soliton and a similar hierarchy of
higher-order rational solutions must exist in other nonlinear equations associated
with the KN spectral problem, among which the most significant model is the
derivative NLS equation [11, 32]. Second, development of the IST methods and
the Darboux transformation methods for the algebraic solitons associated with
the embedded eigenvalues is still a challenging mathematical problem for future
research. Third, the analytical proof of the general expressions (3.27) and (3.28)
requires advanced combinatorial analysis and is left open.
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