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Lay Abstract

A knot is a closed loop of string. This paper studies knots in a 3-
dimensional space called real projective space. We find that knots in real
projective space often behave very similarly to knots in Euclidean space
(the space you and I inhabit), and we unveil certain interesting phenomena
unique to real projective space.
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Abstract

The Gordon-Litherland pairing GF of a surface F generalizes the sym-
metrized Seifert pairing by allowing F to be nonorientable. The pairing GF

is developed for surfaces in real projective 3-space RP3, leading to signature
and determinant invariants of links L ⊆ RP3. The set of spanning surfaces
of L (i.e. surfaces in RP3 bounding L) is partitioned into two classes by
an equivalence relation called S∗-equivalence. It is shown that only one of
these classes contains orientable surfaces. Consequently, two distinct signa-
ture and determinant invariants arise. This contrasts the case of links in S3,
where the pairing GF determines a unique signature and determinant, and
the case of links in thickened surfaces, where signatures and determinants
come in unordered pairs. Explicit computational methods are given.
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Chapter 1

Introduction

In 1978, Gordon and Litherland introduced a symmetric bilinear map
GF (now called the Gordon-Litherland pairing) which generalizes the sym-
metrized Seifert pairing, thereby allowing for the computation of a link’s
signature from a possibly nonorientable surface [15]. The pairing GF has
garnered a lot of attention in recent years due to the work of Greene and
Howie who (independently) used it to give a topological characterization
of alternating links in S3 [9][10]. Even more recently, Boden and Karimi
extended this characterization to links in thickened surfaces [4].

The object of this paper is to develop the Gordon-Litherland pairing
in real projective 3-space RP3, highlighting certain interesting phenomena
unique to the projective setting. In particular, the pairing is seen to give
rise to two distinct sets of invariants (which contrasts the classical and
thickened surface settings).

An equivalence relation on spanning surfaces of a link L ⊆ RP3 (called
S∗-equivalence) is generated by ambient isotopies, attaching thin tubes,
and attaching small half-twisted bands. In §2.3, checkerboard surfaces are
used to show that to each link L is associated exactly two S∗-equivalence
classes. In §2.4, algorithm surfaces (a kind of orientable spanning surface)
are used to show that there is a preferred S∗-equivalence class. §3.2 devel-
ops an easily computed invariant, the parity of a surface, which picks out
the preferred S∗-equivalence class. The Gordon-Litherland pairing is devel-
oped in §4 and, as a consequence of the preferred S∗-equivalence class, two
distinct sets of link invariants arise. We discuss the elementary behaviour
of these invariants, and we generalize a handful of classical results. Finally,
we discuss alternating links in §4.4, where we establish one direction of a
Greene-Howie-type characterization of alternating links in RP3 (the easy
direction). This is applied to generalize Murasugi’s classical result on the
chirality of special alternating links [19].
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Links in RP3 were originally considered by Oleg Viro in 1985 [22], with
Julia Viro (who went by Julia Drobotukhina at the time) following up in
1990 with a generalization of the Jones polynomial, using it to prove the
Tate conjecture in RP3 [5]. We highlight some of the important work done
in projective link theory since then. The classifications of rational pro-
jective links and of projective links of at most six crossings were settled
by Julia Viro in 1991 [7][6]. In 2003, Mroczkowski studied the diagram-
matic unknotting of links in RP3 [17] and applied these results to develop
the HOMFLYPT and Kauffman bracket skein modules in RP3 [18]. The
study of polynomial invariants in RP3 was carried further by Huynh and
Le in 2008, who studied the twisted Alexander polynomial [11]. The next
natural step is to categorify these polynomials. Indeed, the 2004-2013
work of Asaeda-Przytycki-Sikora, Manturov, and Gabrovsek developed a
Khovanov-type homology for links in RP3 [1][14][8]. The study of links in
RP3 has been particularly popular in recent years, as illustrated by Viro and
Viro’s 2021 paper relating properties of a link to properties of its exterior’s
fundamental group [21], by Mishra and Narayanan’s 2023 work establish-
ing certain criteria for a link in RP3 to be affine [16], by Manolescu and
Willis’s 2023 work on the s-invariant in RP3 [13], by Kauffman, Mishra,
and Narayanan’s 2024 work on the Kauffman bracket polynomial in RP3

[12], and by the 2024 work of Purcell and Su on the hyperbolic structure
of alternating link complements in oriented thickenings of nonorientable
surfaces [20].
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Chapter 2

Spanning Surfaces

In §2.1 we describe diagrams of links in RP3, and in §2.2 we discuss the
many equivalent definitions of a nullhomologous link. In §2.3 we partition
the set of (possibly nonorientable) spanning surfaces of L into two distinct
classes, and in §2.4 we show that only one of these classes contains all
Seifert surfaces.

2.1 Link Diagrams

A closed 1-dimensional manifold L smoothly embedded in a 3-manifold
M is called a link (or a knot, if L is connected). The present paper is
primarily concerned with oriented links up to the equivalence relation of
ambient isotopy. The mapping class group of RP3 is isomorphic to Z/2
(generated by reflection about a projective plane), so for oriented links in
RP3, the equivalence relations of ambient isotopy and ambient orientation-
preserving homeomorphism are identical.

Let P ∈ RP3 denote the image of the north and south poles N,S ∈ S3.
Note that the projection map S3 ∖ {N,S} = S2 ×R → S2 commutes with
the antipodal map, thereby inducing a map p : RP3 ∖ {P} = RP2×̃R →
RP2 and allowing for the diagrammatic study of links in RP3.

In greater detail: let L ⊆ RP3 be a link. If necessary, perturb L via a
small ambient isotopy to ensure that L∩P = ∅ and L is in general position
with respect to p. In other words, the image D = p(L) ⊆ RP2 is a 4-valent
topological graph. The projective plane is nonorientable, so we ought to be
careful with our description of over/under information at the vertices (or
crossings) ofD. In a small disk neighborhood of a crossing c, the diagramD
is shaped like an X (i.e. the union of two open intervals A andB intersecting
once in a transverse double point). The over/under information is specified

3
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by a bijection {local orientations at c} → {A over B,B over A} (a local
orientation at c may be thought of as an isomorphism H2(RP2,RP2 ∖
{c};Z) → Z).

In this way, we may conceive of links in RP3 as compact 4-valent topo-
logical graphs embedded in RP2 with over/under information specified at
each vertex. The graph D is called a diagram of L. If RP1 is a homo-
logically nontrivial simple closed curve in RP2 intersecting D in general
position, then by cutting along RP1 we obtain a disk diagram of L (i.e.
a depiction of L as a topological graph D̃ ⊆ D2). While disk diagrams
provide a useful means of visualization (see Figure 2.1), whenever possible,
we opt to work instead with diagrams in RP2 as they are more intrinsic to
RP3.

Figure 2.1: Disk diagrams.

As in the classical and thickened surface settings, links L,L′ ⊆ RP3

with diagrams D,D′ ⊆ RP2 will be ambient isotopic if and only if D is
related to D′ via the three Reidemeister moves (see R1, R2, and R3 of
Figure 2.2).

R1−→ R2−→

R3−→

Figure 2.2: Reidemeister moves.

On the level of disk diagrams D̃ ⊆ D2, we need to introduce two gener-
alized Reidemeister moves to move across the boundary ∂D2 (see R4 and
R5 of Figure 2.3).

4
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R4−−→R5−−→

Figure 2.3: Generalized Reidemeister moves.

2.2 Nullhomologous Links

For a link L in a 3-manifold M , a spanning surface of L is a compact
surface F smoothly embedded in M and bounding L (note that F is not
necessarily orientable or connected). If L is oriented, then an oriented
spanning surface F whose orientation induces the orientation of L is called
a Seifert surface. An oriented link L ⊆ M is called nullhomologous if
[L] = 0 ∈ H1(M ;Z).

A diagram D ⊆ RP2 of L is said to be checkerboard colourable if there
exists a map f : {components of RP2 ∖D} → {black,white} such that
components whose closures in RP2 intersect in a 1-dimensional cell complex
are mapped to different colours (see Figure 2.4). If D is checkerboard
coloured, then the black faces determine a spanning surface B, and the
white faces determine a spanning surface W . The surfaces B and W are
called checkerboard surfaces and are said to be dual to one another. Note,
in particular, that links admitting a checkerboard colourable diagram are
nullhomologous.

Figure 2.4: The left and middle diagrams depict checkerboard colourings.
The right diagram is not a checkerboard colouring.

5
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Proposition 2.1 (characterization of nullhomologous links). Let L ⊆ RP3

be an oriented link. The following are equivalent.

(1) [L] = 0 ∈ H1(RP3;Z).

(2) L admits a Seifert surface.

(3) L admits a spanning surface.

(4) The mod 2 intersection number of L with an embedded projective
plane RP2 ⊆ RP3 equals zero.

(5) L is checkerboard colourable.

Note that on the level of a disk diagram D̃ ⊆ D2, the equivalence
(1) ⇔ (4) says that D̃ represents a nullhomologous link if and only if
|D̃ ∩ ∂D2| is a multiple of 4 (for example, the diagrams on the left and in
the middle of Figure 2.1 depict nullhomologous links, while the diagram on
the right depicts a homologically nontrivial link).

Proof of Proposition 2.1. The implication (1) ⇒ (2) is a basic exercise in
algebraic topology, and the implication (2) ⇒ (3) is definitional. Next we
argue that (1) ⇔ (4).

Note that H2(RP3;Z/2) ∼= Hom(H1(RP3;Z),Z/2) by duality and the
universal coefficient theorem, with H2(RP3;Z/2) ∼= Z/2 generated by RP2,
and Hom(H1(RP3;Z),Z/2) generated by intersection with RP2. So, a link
L ⊆ RP3 is nullhomologous if and only if L has even intersection number
with a projective plane, as desired.

If L is checkerboard colourable, then L has a spanning surface (just
take a checkerboard surface), so [L] = 0 ∈ H1(RP3;Z/2). In the special
case of RP3, this is clearly equivalent to [L] = 0 ∈ H1(RP3;Z). This proves
(5) ⇒ (1). The proof will be complete when we establish the implication
(1) ⇒ (5).

If L ⊆ RP3 is nullhomologous and D ⊆ RP2 is a diagram of L, then
a checkerboard colouring is obtained as follows. Fix a component Y of
RP2 ∖D and colour Y black. For another component Y ′, fix points y ∈ Y
and y′ ∈ Y ′, as well as a path α ⊆ RP2 from y to y′ intersectingD in general
position. If α intersects D in an even number of points, colour Y ′ black.
Otherwise, colour Y ′ white. To see that this does not depend on our choice
of α, note that H1(RP2;Z/2) ∼= Hom(H1(RP2;Z),Z/2) by duality and the
universal coefficient theorem. Since L is nullhomologous, it follows that
D has even intersection number with every element of H1(RP2;Z). Two
paths α and α′ from y to y′ together determine an element of H1(RP2;Z),
so the parities of their intersection numbers with D must coincide.

6
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Moreover, we showed that if L ⊆ RP3 is nullhomologous, then every
diagram of L is checkerboard colourable.

2.3 S∗-Equivalence of Spanning Surfaces

Let L ⊆ RP3 be a nullhomologous link. We define S∗-equivalence to be
the equivalence relation on spanning surfaces of L generated by ambient
isotopies and the moves pictured in Figure 2.5.

→

→

Move 1: Attaching a thin tube.

Move 2: Attaching a small half-twisted band.

Figure 2.5: The moves generating S∗-equivalence.

By a thin tube, we mean a 1-handle which admits a filling in RP3. Although
Figure 2.5 only displays a small half-twisted band with a right-handed half-
twist, left-handed half-twists are also permitted.

Theorem 2.2. A nullhomologous link L ⊆ RP3 admits exactly two S∗-
equivalence classes of spanning surfaces. If B and W are the checker-
board surfaces of some diagram of L, then B and W represent the two
S∗-equivalence classes.

Our three-part proof of Theorem 2.2 mirrors [3], where the analogous
result is established for links in thickened surfaces. Part 1: every spanning
surface of L is S∗-equivalent to a checkerboard surface. We state this as a
lemma so that it may be used later.

7
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Lemma 2.3. Let L ⊆ RP3 be a nullhomologous link with spanning surface
F . Then F is S∗-equivalent through ambient isotopies and attaching thin
tubes to a checkerboard surface.

Proof. By attaching thin tubes, we may assume F does not have closed
components. So, there is a topological graph G contained in a small closed
neighborhood F ′ ⊆ F such that F is ambient isotopic to F ′. If necessary,
perturb F ′ via a small ambient isotopy to ensure that F ′ ∩ P = ∅ (here P
denotes the image of the north and south poles N,S ∈ S3 under the map
S3 → RP3). Take F ′ to be in general position with the respect to the pro-
jection map p : RP3 ∖ {P} → RP2. In other words, the self-intersections
of p(F ) occur in finitely many of the local configurations 1-3 pictured in
Figure 2.6. Turn each instance of Configuration 3 into an instance of Con-
figuration 4 by attaching a thin tube. Note that the resulting surface is a
checkerboard surface.

Configuration 1. Configuration 2. Configuration 3. Configuration 4.

Figure 2.6: Local configurations.

Part 2: If B and W are the checkerboard surfaces of a diagram D ⊆ RP2

of L, then every checkerboard surface of L is S∗-equivalent to B or to W .
Indeed, if D′ is another diagram of L, then D is related to D′ by a sequence
of Reidemeister moves (see Figure 2.2). The checkerboard colouring of D
determines a checkerboard colouring ofD′ in a natural way (see Figure 2.7).
Move 2 of Figure 2.5 illustrates the situation where D′ is obtained from D
by a Reidemeister 1 move. We see clearly that for the checkerboard surfaces
B′ and W ′ of D′, we have B′ obtained from B by attaching a small half-
twisted band, and W ′ obtained from W by an ambient isotopy. As shown
in [23], the Reidemeister 2 and 3 moves also correspond to S∗-equivalences

8



MSc Thesis – J. Marshall-Milne McMaster University – Math

on the level of checkerboard surfaces. This proves Part 2

R1−→ R2−→

R3−→

Figure 2.7: The checkerboard colouring of D determines a checkerboard
colouring of D′ in a natural way.

Part 3: If B and W are the checkerboard surfaces of a diagram D ⊆
RP2, then B is not S∗-equivalent to W . This is an easy consequence of the
following theorem.

Theorem 2.4. Let F and F ′ be spanning surfaces of link L ⊆ RP3.
The surfaces F and F ′ are S∗-equivalent if and only if [F ] = [F ′] ∈
H2(RP3, L;Z/2).

Proof. (⇒) The argument is identical to the proof of [3, Lemma 1.5] and
amounts to verifying the invariance of [F ] under the moves generating S∗-
equivalence. For example, certainly [F ] is invariant under ambient iso-
topies. Invariance under attaching a thin tube is seen just as easily: if F ′

is obtained from F by attaching a thin tube, then the difference [F ′]− [F ]
is a 2-sphere bounding a 3-ball.

(⇐) Assume [F ] = [F ′]. Note that H2(L;Z/2) = 0, so an injection
H2(RP3;Z/2) → H2(RP3, L;Z/2) falls out of the long exact sequence of the
pair (RP3, L) (see (1) below). It follows that [RP2] ̸= 0 ∈ H2(RP3, L;Z/2).

· · · → H2(L;Z/2) → H2(RP3;Z/2) → H2(RP3, L;Z/2) → · · · (1)

LetB andW be the checkerboard surfaces of some diagram of L. By Parts 1
and 2 above, F is S∗-equivalent to B or toW , and similarly for F ′. Without
loss of generality, assume F is S∗-equivalent to B. Assume for contradiction
F ′ is S∗-equivalent to W . Then [F ] + [F ′] = [B] + [W ] = [RP2] ̸= 0 by
the first part of the proof (i.e. the ⇒ direction treated in the previous
paragraph), contradicting the fact that [F ] = [F ′]. We conclude that F ′

is S∗-equivalent to B, and therefore also to F , thereby completing the
proof.

9
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To prove Part 3, note that [B] + [W ] = [RP2] ̸= 0 ∈ H2(RP3, L;Z/2),
so B is not S∗-equivalent to W by Theorem 2.4.

Parts 1, 2, and 3 combine to prove Theorem 2.2.

2.4 S-Equivalence of Seifert Surfaces

S-equivalence is the equivalence relation on Seifert surfaces of F gener-
ated by ambient isotopies and attaching thin tubes (see Move 1 of Figure
2.5). Note that tube attachment is now required to preserve orientability.
The purpose of this subsection is to prove the following.

Theorem 2.5. If L ⊆ RP3 is a nullhomologous oriented link with Seifert
surfaces F and F ′, then F is S-equivalent to F ′.

We stress the importance that Seifert surfaces are not only orientable,
but come endowed with an orientation inducing the orientation of L. For
example, the oriented link in the middle of Figure 2.4 has both checkerboard
surfaces B and W being orientable, but only B can be oriented compatibly
with L.

The proof of Theorem 2.5 is in two parts and is entirely analogous to
the proof of Theorem 2.2 (we mirror the methods of [2] used for links in
S3). Just as we needed checkerboard surfaces to prove Theorem 2.2, we
will need algorithm surfaces (definition to come) to prove Theorem 2.5. Let
us start by recalling the Seifert algorithm for links in S3, which inputs a
diagram D ⊆ R2 of an oriented link L ⊆ S3, and outputs a Seifert surface
F (D) ⊆ S3 in a canonical way (see Figure 2.9).

Algorithm 2.6 (Seifert Algorithm in S3). Step 1. Perform an oriented
smoothing (see Figure 2.8) at each crossing of D to obtain a collection
of mutually disjoint oriented simple closed curves Ci ⊆ R2 (called Seifert
circles).

→

Figure 2.8: An oriented smoothing.

10
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Step 2. Each Ci bounds a unique closed disk Bi ⊆ R2 (called a Seifert
disk). Orient Bi by labeling one side as “up” and the other side as “down,”
with the convention that the orientation of Ci runs counterclockwise when
the up side is viewed from above.

Step 3. Let d(Ci) denote the depth of Ci (i.e. the number of Seifert disks
Bj containing Ci in their interior). Translate Bi by d(Ci) units in the
upwards direction (towards the reader).

Step 4. Attach half-twisted bands to the disks Bi in accordance with the
crossings of D to recover a Seifert surface F (D) of L.

Definition 2.7. A Seifert surface of L obtained via the Seifert algorithm
is called an algorithm surface.

→

Figure 2.9: The Seifert algorithm applied to a classical link diagram.

There are two issues one encounters in generalizing the algorithm to
nullhomologous oriented links in RP3. Issue 1. A priori, there is no guar-
antee that each of the Seifert circles Ci ⊆ RP2 will bound unique disks
Bi ⊆ RP2, thus complicating Step 2. Issue 2. RP2 is nonorientable, so
there is no globally defined “upwards direction,” thereby complicating Step
3.

To resolve Issue 1, assume for contradiction we have a nullhomologous
oriented link L ⊆ RP3 with diagram D ⊆ RP2, and one of the Seifert circles
Ci ⊆ RP2 obtained after an oriented smoothing at each crossings does not
bound a disk in RP2. It is not hard to see that up to ambient isotopy, there
are two types of simple closed curves in RP2: those which bound a unique
disk in RP2, and those which are nontrivial in H1(RP2;Z) ∼= Z/2 (to see
this, just look at preimages in S2). Since [Ci] ̸= 0 ∈ H1(RP2;Z), it follows
that the complement of Ci in RP2 is homeomorphic to the complement of
RP1 (i.e. homeomorphic to an open disk). Moreover Cj ⊆ RP2 ∖Ci for all
j ̸= i, so we must have [Cj] = 0 ∈ H1(RP2;Z). But L is nullhomologous, so

11
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[∪jCj] = 0 ∈ H1(RP2;Z). On the other hand, [∪jCj] = [Ci]+
∑

j ̸=i[Cj] ̸= 0,
a contradiction. We conclude that every Seifert circle Ci bounds a unique
disk Bi ⊆ RP2.

We now state the Seifert algorithm for links in RP3, which takes as an
input a diagram D ⊆ RP2 of a nullhomologous oriented link L ⊆ RP3,
and outputs a Seifert surface F (D) in a canonical way (Step 3 has been
modified to deal with Issue 2). See Figure 2.10 for an application of the
algorithm.

→

Figure 2.10: The Seifert algorithm applied to a diagram of a nullhomolo-
gous link.

Algorithm 2.8 (Seifert algorithm in RP3). Step 1. Perform oriented
smoothings (see Figure 2.8) to obtain the Seifert circles Ci.

Step 2. Let Bi ⊆ RP2 be the unique closed disk bounding Ci. Orient
Bi such that Ci runs counterclockwise when the “up” side is viewed from
above.

Step 3. Let d(Ci) denote the depth of Ci (defined as before). Let Bj be the
maximal Seifert disk containing Ci in its interior. Translate Bi by d(Ci)
units in the upwards direction assigned to Bj in Step 2.

Step 4. Attach half-twisted bands in accordance with the crossings of D.

With the Seifert algorithm at hand, we are now ready to prove Theorem
2.5.

Proof of Theorem 2.5. Part 1: Every Seifert surface of L is S-equivalent
to an algorithm surface. We follow the same lines as Lemma 2.3, putting a
Seifert surface F in general position with respect to the projection map p :
RP2×̃R → RP2 and attaching tubes to eliminate instances of Configuration
3 (see Figure 2.6). We must, however, be careful to ensure that these tube

12
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attachments preserve the orientability of F . So, if necessary, perform an
ambient isotopy of the type pictured in Figure 2.11 before resolving with a
tube. Note, in particular, that the resulting surface is not only an algorithm
surface, but also a checkerboard surface.

→

Figure 2.11: An ambient isotopy before attaching a thin tube.

Part 2: Any two algorithm surfaces F and F ′ of L are S-equivalent.
Let D be the diagram determining F and D′ the diagram determining F ′.
If D′ is obtained from D by a single Reidemeister 1 move (see Figure 2.2),
then clearly F ′ is ambient isotopic to F (see Move 2 of Figure 4, with F
the white surface). A simialr analysis reveals that the Reidemeister 2 and
3 moves also induce S-equivalences on the level of algorithm surfaces (see
[2]), hence completing the proof.

13



Chapter 3

The Parity of a Surface in RP3

§3.1 gives the basics of linking numbers in RP3, and §3.2 introduces
parity, an invariant of surfaces which determines whether a given surface
is S∗-equivalent to a Seifert surface.

3.1 Linking Number

Definition 3.1. Let K1, K2 ⊆ RP3 be disjoint oriented knots and denote
by q ∈ {1, 2} the quantity q = [K1] + 1 (here [K1] denotes the image of K1

in H1(RP3;Z) = {0, 1}). Let S ∈ C2(RP3;Z) be a 2-cycle bounding qK1

and intersecting K2 in general position. We define the linking number of
K1 and K2 to be the quantity

lk(K1, K2) = (S ·K2)/q ∈
{
n

2
: n ∈ Z

}
.

Standard arguments show that this quantity is independent of our
choice of S, is symmetric in K1 and K2, and extends by linearity to a
1
2
Z-valued function on pairs of disjoint oriented links [9, §2].

Definition 3.2. Let D ⊆ RP2 be a diagram of an oriented link L ⊆ RP3.
For a crossing c of D, define writhe(c) = +1 if the orientation of L satisfies
the right-hand rule at c, and define writhe(c) = −1 otherwise.

We open with two remarks.

Remark 3.3. Let p : S3 → RP3 be the 2-fold cover. Let L1 and L2 be
disjoint oriented links in RP3. Then

lk(L1, L2) =
1

2
lk(p−1L1, p

−1L2).

14



MSc Thesis – J. Marshall-Milne McMaster University – Math

Remark 3.4. LetD ⊆ RP2 be a disk diagram of an oriented link L ⊆ RP3.
Note that the inverse image of D in S2 is a diagram of p−1L. To each
crossing of D is associated two crossings of p−1D, each of the same writhe.

Combining Remarks 3.3 and 3.4 yields the following.

Remark 3.5. Returning to the situation where L1, L2 ⊆ RP3 are disjoint
oriented links, let D be a diagram of L1 ∪L2. Combining Remarks 3.3 and
3.4, we find that

lk(L1, L2) =
1

2

∑
writhe(c),

where the sum is taken over all crossings c of D involving both L1 and L2.

We illustrate these remarks with an example.

Example 3.6. Figure 3.1 depicts a diagram in S2 of the preimage in S3

of a 2-component oriented link L = L1 ∪ L2 ⊆ RP3. Each dotted circle Ci

encloses a disk diagram Di of L. We see that the singular crossing of Di has
exactly two preimages in S2, each of the same writhe (+1). Let L′

i denote
the preimage in S3 of Li. The singular crossing of Di has positive writhe,
so the linking number lk(L1, L2) is computed as lk(L1, L2) = (1

2
)(+1) =

1
2
. Working instead in S3, we see that lk(L′

1, L
′
2) = 1, so lk(L1, L2) =

1
2
lk(L′

1, L
′
2) =

1
2
.

Figure 3.1: A diagram of the preimage in S3 of a link in RP3.

Definition 3.7. A link L ⊆ RP3 is said to be affine if there exists an
embedded open 3-ball B ⊆ RP3 such that L ⊆ B.

Equivalently, L ⊆ RP3 is affine if there exists an embedded projective
plane RP2 ⊆ RP3 such that L ∩ RP2 = ∅. Note, in particular, that affine
links are necessarily nullhomologous.

From the preceding discussion, it should be clear that for affine links,
this notion of linking number agrees with the classical notion, and that
lk(L1, L2) ∈ (1

2
Z) ∖ Z if and only if L1 and L2 are both homologically

nontrivial.

15
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3.2 The Parity of a Surface in RP3

We motivate this subsection with the following problem. Consider the
leftmost diagram of Figure 2.4, which depicts a knotK ⊆ RP3 with checker-
board surfaces B and W . Theorems 2.2 and 2.5 imply that exactly one of
the surfaces B or W is S∗-equivalent to an orientable surface. Yet clearly B
and W are both nonorientable, so how do we deduce which is S∗-equivalent
to an orientable surface?

To this end, we briefly discuss Euler and Betti numbers, from which a
new invariant is defined: the parity of a surface.

3.2.1 Euler number

Definition 3.8. Let L ⊆ RP3 be an oriented link with spanning surface F .
Let L′ denote a parallel copy of L disjoint from F (i.e. L′ is the F -pushoff
of L). The Euler number e(F,L) is defined by e(F,L) = −lk(L,L′).

Since L and L′ are nullhomologous, one immediately deduces that the
Euler number of F is even. If F is a checkerboard surface, then to each
crossing is associated a type and an index according to Figure 3.2 (where
F is the shaded surface).

type I index = −1type II index = +1

Figure 3.2: Type and index of a crossing.

Note that the type and index of a crossing depend on the checkerboard
surface under consideration, and that if B and W are dual checkerboard
surfaces, then indexB(c) = −indexW (c) at every crossing c.

By Remark 3.5, the Euler number is calculated as a weighted sum of
crossings. In particular, the weight of a type I crossing equals 0 (see Figure
3.3), so

e(F,L) = −2
∑

index(c), (2)

with the sum being taken over all type II crossings c.

16
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Contribution: 0

Contribution: 0

Contribution: −1

Contribution: +1

Figure 3.3: Local contributions to 1
2
e(F,L) at a crossing (F is the shaded

surface).

3.2.2 Betti number

Recall that a checkerboard surface F can be conceived as a collection
of disjoint regions lying in RP2 (the so-called faces of F ) glued together
via half-twisted bands (one for each crossing). A diagram D is said to be
cellularly embedded if every component of RP2 ∖ D is an open disk. In
particular, when D is cellularly embedded, the faces of B and W will all
be disks.

Lemma 3.9. Let B and W be the checkerboard surfaces of a diagram
D ⊆ RP2. Say W has α faces, all disks. Then b1(B) = α. An explicit basis
of H1(B;Z) is found by fixing α − 1 faces of W and letting γi ∈ H1(B;Z)
be a simple closed curve wrapping once around the ith face, with the fi-
nal generator being any simple closed curve λ ∈ H1(B;Z) which does not
vanish under H1(B;Z) → H1(RP3;Z) and whose image in RP2 under the
projection map does not self-intersect.

Example 3.10. As an application of Lemma 3.9, let us consider the
checkerboard surfaces B and W of the leftmost diagram of Figure 2.4.
Appealing to Lemma 3.9, we see at a glance that b1(B) = 2 = b1(W )

17
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(bases are depicted in Figure 3.4 below).

Generators of H1(B;Z). Generators of H1(W ;Z).

Figure 3.4: Homology of checkerboard surfaces.

To compute e(B,K) and e(W,K), we start by orienting ∂B = K = ∂W
so that the type II crossings may be identified (see Figure 3.5). Figure 3.3
then computes e(B,K) = −4 and e(W,K) = +2.

type I

type II

type II

Crossing types with respect to B.

type II

type I

type I

Crossing types with respect to W .

Figure 3.5: Crossing types.

Proof of Lemma 3.9. Up to homotopy equivalence, B can be conceived as
a punctured RP2 (one puncture for each face of W ). Starting with RP2 and
introducing a single puncture yields a mobius band, hence the generator
λ. Every subsequent puncture introduces a new generator which simply
wraps once around said puncture, hence the generators γi.

18
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Definition 3.11. A link L ⊆ RP3 is called a split link if the exists an
embedded closed 3-ball B ⊆ RP3 whose interior and exterior both intersect
L, but whose boundary is disjoint from L.

The takeaway of the preceding discussion on Betti numbers should be
that when D is a cellularly embedded diagram of a nullhomologous link,
the first Betti numbers b1(B) and b1(W ) are easily computed, with ex-
plicit bases easily found. The following lemma shows that this covers all
interesting cases.

Lemma 3.12. Let D ⊆ RP2 be a diagram of a non-split and non-affine
link L ⊆ RP3. Then D is cellularly embedded.

Proof. Assume D is not cellularly embedded. Then for some component Y
of RP2 ∖D, we have H1(Y ;Z) ̸= 0. Let γ ∈ H1(Y ;Z) be a homologically
nontrivial simple closed curve. If γ vanishes underH1(Y ;Z) → H1(RP3;Z),
then γ expresses L as a split link. Otherwise, γ expresses L as an affine
link.

3.2.3 Parity

Definition 3.13. Let L ⊆ RP3 be an oriented link with spanning surface
F . Define the parity of F to be the mod 2 quantity Parity(F,L) ∈ {0, 1}
given by

Parity(F,L) =

(
b1(F ) +

1

2
e(F,L)

)
mod 2.

As seen in §3.2.1, the quantity e(F,L) is necessarily even, so parity
is well-defined. Moreover, it is not hard to see that parity is invariant
under S∗-equivalence of connected spanning surfaces. Indeed, it is clear
that b1(F ) and e(F,L) are both invariant under ambient isotopies. As for
attaching a thin tube, this move increases b1(F ) by 2 but does not affect
e(F,L). To complete the proof of S∗-invariance, note that attaching a small
half-twisted band increases b1(F ) by 1, and changes 1

2
e(F,L) by ±1. We

are now ready to address the motivating problem introduced at the start
of this subsection.

Theorem 3.14. Let L ⊆ RP3 be a nullhomologous oriented link with con-
nected spanning surface F . The following are equivalent.

(1) F is S∗-equivalent to a Seifert surface.

(2) Parity(F,L) = 1 + |{components of L}| mod 2.
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Example 3.15. We can now complete our investigation of the surfaces
B and W of the leftmost diagram of Figure 2.4. In Example 3.10, we
computed b1(B) = 2 = b1(W ), e(B,K) = −4, and e(W,K) = +2. So,
Parity(B,K) = 0 and Parity(W,K) = 1. By Theorem 3.14, the surface B
is S∗-equivalent to an orientable spanning surface (and W is not). Note
that we only require knowledge of the parity of one of the surfaces B or W
to determine which one is S∗-equivalent to an orientable spanning surface.

Proof of Theorem 3.14. (1) ⇒ (2) : Since parity is invariant under S∗-
equivalence of connected spanning surfaces, there is no harm in assum-
ing F is a connected Seifert surface. Then certainly b1(F ) equals 1 +
|{components of L}| mod 2, and e(F,L) = 0, completing this direction of
the proof.

(2) ⇒ (1) : Assume L is nonaffine. Since parity is invariant under S∗-
equivalence of connected spanning surfaces and every spanning surface is
S∗-equivalent to a checkerboard surface (Lemma 2.3), there is no harm
in assuming F is a checkerboard surface. Then certainly there is some
projective plane RP2 ⊆ RP3 whose intersection with F is ribbon (see Figure
3.6–left). Let n denote the number of ribbon intersections (i.e. the number
of components of F ∩ RP2). Recall that L is nonaffine, so n > 0. At each
ribbon intersection, modify F as in Figure 3.6.

F

RP2

F♯RP2

→

Figure 3.6: Resolving a ribbon intersection.

Denote by F♯RP2 the spanning surface of L so obtained. If L is affine,
let RP2 ⊆ RP3 be an embedded projective plane missing L, and de-
note by F♯RP2 the surface obtained by connecting F to RP2 via a thin
tube. In either case, an Euler characteristic computation reveals that
b1(F♯RP2) ≡ b1(F ) + 1 mod 2, while certainly e(F♯RP2, L) = e(F,L). So,
Parity(F♯RP2, L) = Parity(F,L) + 1. Having already established the im-
plication (1) ⇒ (2), it follows that F♯RP2 is not S∗-equivalent to a Seifert
surface. Since parity is invariant under S∗-equivalence of connected span-
ning surfaces, we also know that F♯RP2 is not S∗-equivalent to F . By
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Theorems 2.2 and 2.5, we conclude that F is S∗-equivalent to a Seifert
surface, as desired.

21



Chapter 4

The Gordon-Litherland
Pairing

§4.1 introduces the Gordon-Litherland pairing, a symmetric bilinear
map on the first homology group of a surface GF : H1(F ) ⊗ H1(F ) → Z.
This pairing leads to numerical invariants of nullhomologous oriented links
in RP3. In §4.2 we discuss the elementary behaviour of these invariants,
for example under reflections or connected sums. §4.3 describes an algo-
rithm for computing the invariants, thereby revealing a plethora of new
behaviours. Finally, the special case of alternating links is analyzed in
§4.4. It is shown that alternating links admit definite spanning surfaces of
opposite sign, and that special alternating links are chiral.

4.1 The Gordon-Litherland Pairing

Definition 4.1. Let F ⊆ RP3 be a smoothly embedded compact surface
without closed components. For a 1-cycle a ∈ C1(F ;Z), let τa ∈ C1(RP3∖
F ;Z) denote the 1-cycle obtained by pushing a off of F in both normal
directions. The symmetric bilinear map GF : H1(F ;Z) ⊕ H1(F ;Z) → Z
defined by GF (α, β) = lk(τα, β) is called the Gordon-Litherland pairing of
F .

Note that τα = 0 ∈ H1(RP3;Z) for all α ∈ H1(F ;Z), so GF is integer-
valued. To see that GF is well-defined, assume a, a′ ∈ C1(F ;Z) are 1-
cycles representing α, and b, b′ ∈ C1(F ;Z) are 1-cycles representing β. Let
F → F be the orientation double cover. Conceiving of τ as the transfer
map H1(F ) → H1(F ), we see that a being homologous to a′ implies τa
is homologous to τa′ as cocycles in RP3 ∖ F . It follows that lk(τa, b) =
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lk(τa′, b). But b is homologous to b′ within F , so lk(τa′, b) = lk(τa′, b′),
proving that GF is well-defined. Symmetry will be demonstrated later on.

Definition 4.2. Let F a connected spanning surface of an oriented link
L ⊆ RP3. The integer σF (L) = sgn(GF ) +

1
2
e(F,L) is called the F -

signature of L (here sgn(GF ) denotes the signature of GF , calculated as
the number of positive eigenvalues minus the number of negative eigen-
values). We also define the F -determinant and F -nullity by the formulas

detF (L) = ib1(F )+ 1
2
e(F,L) det(GF ) and nullF (L) = null(GF ) (here i ∈ C de-

notes the imaginary unit). It is often convenient to discuss all three quanti-
ties simultaneously. To this end, we define the Gordon-Litherland numbers
of L determined by F to be the triple

gF (L) = (σF (L), detF (L), nullF (L)).

Proposition 4.3. The Gordon-Litherland numbers gF (L) are invariant
under S∗-equivalence of connected spanning surfaces.

Proof. Suppose F and F ′ are connected spanning surfaces and F ′ is ob-
tained from F by attaching a thin tube. The tube introduces two new gen-
erators to H1(F

′;Z) not present in H1(F ;Z): a meridian m and a longitude
l. So with respect to some basis a1, ..., am of H1(F ), and an appropriately
chosen basis a′1, ..., a

′
m,m, l of H1(F

′), we have

GF ′ =

GF 0 ∗
0 0 1
∗ 1 ∗

 .

Let a′′i = a′i−GF (a
′
i, l)m. With respect to the basis a′′1, ..., a

′′
m,m, l, we have

GF ′ =

GF 0 0
0 0 1
0 1 ∗

 . (4.1)

In other words, GF ′ is a direct sum

GF ′ = GF ⊕
[
0 1
1 ∗

]
.

It follows that sgn(GF ′) = sgn(GF ), det(GF ′) = − det(GF ), and null(GF ′) =
null(GF ). Also, b1(F

′) = b1(F ) + 2 and e(F ′, L) = e(F,L). Putting it all
together, we see that gF (L) is invariant under attaching thin tubes.
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Now suppose F ′ is obtained from F by attaching a small half-twisted
band. Then either GF ′ = GF ⊕ [1], in which case b1(F

′) = b1(F ) + 1 and
e(F ′, L) = e(F,L)−2; or GF ′ = GF ⊕ [−1], in which case b1(F

′) = b1(F )+1
and e(F ′, L) = e(F,L) + 2. So, gF (L) is invariant under attaching small
half-twisted bands.

Definition 4.4. Let F be a connected spanning surface of an oriented link
L ⊆ RP3. If Parity(F,L) = 0, then define g0(L) = gF (L). Otherwise,
define g1(L) = gF (L). In view of Theorems 2.5, 2.2, and 3.14, as well as
Proposition 4.3, we see that to each nullhomologous oriented link L ⊆ RP3

is associated two sets of invariants: the 0-signature, 0-determinant, and 0-
nullity, given by the triple g0(L); and the 1-signature, 1-determinant, and
1-nullity, given by the triple g1(L).

As an unordered pair, we have {g0(L), g1(L)} = {gB(L), gW (L)} for any
dual checkerboard surfaces B and W . If we wish to compute the ordered
pair (g0(L), g1(L)), we need only compute the parity of one of the surfaces
B or W by the method described in §3.2.

Previous authors have considered the invariant | det(GF )| (see, for ex-
ample, [15] or [3]). Our sign-corrected determinant, which encodes the
parity of F , is slightly stronger. For example, the checkerboard surfaces of
the link depicted in the middle diagram of Figure 2.4 are distinguished by
detF (L), but not by | det(GF )|.

4.2 Elementary Properties

Fix L ⊆ RP3 a nullhomologous oriented link, n = |{components of L}| mod 2,
and F a connected spanning surface.

4.2.1 Reflection

Let L′ and F ′ be obtained by reflection through a projective plane
RP2 ⊆ RP3. Note that GF ′ = −GF , b1(F

′) = b1(F ), and e(F ′, L′) =
−e(F,L). It follows that

gF ′(L′) = (−σF (L), i
2b1(F )− 1

2
e(F,L)detF (L), nullF (L)).

Note, moreover, that the parities of F and F ′ coincide.

Definition 4.5. An oriented link L ⊆ RP3 is said to be achiral if L
is ambient isotopic to its reflection about an embedded projective plane
RP2 ⊆ RP3. Otherwise, L is said to be chiral.
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Corollary 4.6. Let L ⊆ RP3 be a nullhomologous oriented link. If σ0(L) ̸=
0 or σ1(L) ̸= 0, then L is chiral.

4.2.2 Split links

Let us now consider the case where our nullhomologous oriented link
L ⊆ RP3 is split. That is, there is some 3-ball D3 ⊆ RP3 whose boundary
is disjoint from L, but whose interior and exterior both intersect L. Let
L0 = L ∩ D3, such that L = L0 ⊔ L1. Let F0 ⊆ int(D3) be a connected
spanning surface of L0, and let F1 ⊆ RP3 ∖ D3 be a connected spanning
surface of L1. Any two spanning surfaces in R3 of the same link are S∗-
equivalent [23], so Parity(F0, L0) = 1 + |{components of L0}|. Obtain a
connected spanning surface F of L by connecting F0 and F1 via a thin
tube. Then e(F,L) = e(F0, L0) + e(F1, L1) and GF decomposes as a direct
sum GF = GF0 ⊕ GF1 ⊕ 0. So,

gF (L0 ⊔ L1) =

(
σF0(L0) + σF1(L1), 0, nullF0(L0) + nullF1(L1) + 1

)
.

In view of Theorem 3.14, we see that Parity(F,L) = 1 + n if and only if
Parity(F1, L1) = 1 + |{components of L1}|.

Corollary 4.7. If det0(L) ̸= 0 and det1(L) ̸= 0, then L is not split.

Definition 4.8. A link L ⊆ RP3 is called a boundary link if L admits a
disconnected spanning surface without closed components.

Remark 4.9. The same method used to prove Corollary 4.7 can also be
used to prove that if an oriented link L is a boundary link, then det0(L) = 0
or det1(L) = 0.

4.2.3 Connected sums

Take Li and Fi as above, again noting that Parity(F0, L0) = 1 +
|{components of L0}|. Consider the connected sum L0#L1. This construc-
tion depends on a choice of diagram D expressing the link L0⊔L1 as a split
link, and on a choice of two edges of D involved in the connected sum (one
edge coming from L0, the other from L1). The Fi’s determine a spanning
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surface F of L0#L1 in a natural way (see Figure 4.1).

→F0 F1 F

L0 L1 L0#L1

Figure 4.1: Connect sum link.

This time, e(F,L0#L1) = e(F0, L0) + e(F1, L1) and GF decomposes as
GF = GF0 ⊕ GF1 . So, gF (L0#L1) equals(

σF0(L0) + σF1(L1), detF0(L0)detF1(L1), nullF0(L0) + nullF1(L1)

)
.

Theorem 3.14 now dictates that Parity(F,L) = 1 + n if and only if the
parity of F1 equals the number of components of L1 mod 2.

4.2.4 Affine links

Suppose now that our oriented link L ⊆ RP3 is affine. Let RP2 ⊆ RP3

be a projective plane missing L, and let F ⊆ RP3 ∖ RP2 be a spanning
surface of L. Note that RP3 ∖ RP2 ∼= R3, and that any two spanning
surfaces in R3 of the same link are S∗-equivalent [23]. So, Parity(F,L) =
1 + n. Let F ′ be the spanning surface obtained by connecting F to RP2

via a thin tube. Then certainly Parity(F ′, L) = Parity(F,L) + 1, so that
Parity(F ′, L) = n. Note, moreover, that GF ′ = GF ⊕ 0, which implies

gn(L) =

(
σ1+n(L), 0, null1+n(L) + 1

)
.

Corollary 4.10. Let L ⊆ RP3 be a nullhomologous oriented link. If any
of the following conditions are satisfied, then L is nonaffine.

(1) σ0(L) ̸= σ1(L)

(2) detn(L) ̸= 0

(2) nulln(L) = 0.
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4.3 Computing the Gordon-Litherland Pair-

ing

Let D ⊆ RP2 be a cellularly embedded diagram of a nullhomologous
oriented link L ⊆ RP3 (by Lemma 3.12, this covers all interesting cases).
Let B and W be the checkerboard surfaces of D. Fix α, β ∈ H1(B, ;Z)
cycles intersecting in general position and away from crossings. Note that
local contributions to GB(α, β) are made only when α crosses over β or
vice versa (i.e. only at crossings). In particular, when an arc of α and
an arc of β pass through a common crossing in the same direction, the
local contribution to GB(α, β) is precisely the B-index of the crossing (see
Figure 3.2). Bilinearly extending this observation allows us to compute
GB(α, β) as the sum of local contributions at each crossing. Since the local
contributions observed are symmetric in α and β, we have the following.

Corollary 4.11. The Gordon-Litherland pairing is symmetric.

Proof. Let F be a connected spanning surface of L. Then F is S∗-equivalent
to a checkerboard surface F ′ (see Lemma 2.3). By the local contributions
to GF ′ observed above, GF ′ is symmetric. By the behaviour of GF under
S∗-equivalence noted in §4.1, we see that GF is also symmetric.

So, we have a definitive algorithm for computing the invariants g0(L)
and g1(L) from a given diagram D. Start by checkerboard colouring D to
obtain the dual checkerboard surfaces B and W (see §2.2). Next, compute
the Betti numbers b1(B) and b1(W ) by invoking Lemma 3.9, as well as the
Euler numbers e(B,L) and e(W,L) (see §3.2.1). Use the bases provided by
Lemma 3.9, as well as the computation of the Gordon-Litherland pairing
as a weighted sum of crossings just discussed, to compute explicit matrices
representing GB and GW . The data collected up to this point is enough to
compute the unordered pair {g0(L), g1(L)}. Computing the ordered pair
(g0(L), g1(L)) is now just a matter of computing the parity of one of the
surfaces B or W .

Example 4.12. Recall the bases of the checkerboard surfaces B and W
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obtained in Example 3.10 (see Figure 4.2).

Generators of H1(B;Z). Generators of H1(W ;Z).

Figure 4.2: Dual checkerboard surfaces and their bases.

For the basis of H1(B;Z), let b1 be the curve in red, and let b2 be the curve
in blue. Note that b1 and b1 have two crossings in common. Both crossings
have B-index +1 (see Figure 3.2 for the defintion of index) and are crossed
by b1 and b1 in the same direction. So, GB(b1, b1) = (+1) + (+1) = 2.
Similarly, b1 and b2 have a single crossing in common. It has positive index
and is passed through by both cycles in the same direction, so GB(b1, b2) =
1. By symmetry, GB(b2, b1) = 1. Finally, let us consider the self-linking
GB(b2, b2). The cycle b2 passes through two crossings. Both crossings have
positive index, so GB(b2, b2) = 2. We conclude that with respect to the
basis b1, b2, we have

GB =

[
2 1
1 2

]
.

Similarly,

GW =

[
−1 −1
−1 −3

]
.

In Example 3.10 we computed b1(B) = 2 = b1(W ), e(B,K) = −4, and
e(W,K) = +2. So Parity(B,K) = 0 and we have all the information
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needed to compute the Gordon-Litherland numbers g0(K) and g1(K). Namely:

g0(K) = gB(K)

=

 σB(K)
detB(K)
nullB(K)


=

 sgn(GB) +
1
2
e(B,K)

ib1(B)+ 1
2
e(B,K)det(GB)

null(GB)



=


sgn

[
2 1
1 2

]
+ 1

2
(−4)

i2+
1
2
(−4)det

[
2 1
1 2

]
null

[
2 1
1 2

]


=

03
0

 .

By a similar computation, g1(K) = gW (K) = (−1,−2i, 0). In fact, it is no
coincidence that σ0(K) is even, det0(K) is odd, and |det1(K)| is even. In
§4.3.1 we will see that these properties hold for any nullhomologous knot.

4.3.1 Consequences for knots

Lemma 4.13. Let D ⊆ RP2 be a diagram of a nullhomologous oriented
link L ⊆ RP3. If D′ is obtained from D by crossing changes, then we have
mod 2 congruences | det0(L)| ≡ | det0(L′)| and | det1(L)| ≡ | det1(L′)|.

Proof. Let B,W be checkerboard surfaces of D. Observe that B andW de-
termine checkerboard surfaces B′ and W ′ of D′ in a natural way. Certainly,
b1(B) = b1(B

′) (see Lemma 3.9) and the local contribution to e(B,L) at a
crossing turns into its negative after a crossing change (see §3.2.1). So, the
parities of B and B′ coincide. Similarly, the local contribution to GB(α, β)
at a crossing turns into its negative after a crossing change. Thus, with
respect to an appropriate choice of bases, we have an entry-wise mod 2
congruence GB ≡ GB′ , so that det(GB) ≡ det(GB′). The same argument
works with W and W ′, so the proof is complete.

Theorem 4.14. Let K ⊆ RP3 be a nullhomologous knot. Then |det0(K)|
is odd and |det1(K)| is even.
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Proof. It is easily seen that for the affine unknot U ⊆ RP3, we have
det0(U) = 1 and det1(U) = 0. According to [17], there exists a sequence of
crossing changes taking a diagram of K to a diagram of U . So, the result
follows by Lemma 4.13.

We observe two interesting corollaries of Theorem 4.14.

Corollary 4.15. Let K ⊆ RP3 be a nullhomologous knot. Then σ0(K) is
even.

Proof. Let F be a connected and orientable spanning surface of K. Then
b1(F ) is even and (by Theorem 4.14) det(GF ) is nonzero. It follows that
sgn(GF ) is even. But F is orientable, so

σ0(K) = σF (K) = sgn(GF ) +
1

2
e(F,K) = sgn(GF ) + 0,

completing the proof.

Corollary 4.16. Let K+ ⊆ RP3 be a nullhomologous knot and let K− ⊆
RP3 be a knot obtained from K+ by turning a positive-writhe crossing c+
into a negative-writhe crossing c−. Then

σ0(K−)− σ0(K+) ∈ {0, 2}.
Proof. Let B− (respectively, B+) be an algorithm surface of K− (respec-
tively, K+). Choose a basis of H1(B−;Z) such that the half-twisted band
determined by c− is crossed by exactly one basis element, exactly once.
Call the basis element in question α−. Note that the matrices GB− and
GB+ will be identical in every entry save one. In particular, GB−(α−, α−)−
GB+(α+, α+) = 2. Both GB− and GB+ are non-degenerate by Theorem
4.14, so

σ0(K−)− σ0(K+) = sgn(GB−) +
1

2
e(B−, K−)− (sgn(GB+) +

1

2
e(B+, K+))

= sgn(GB−) + 0− (sgn(GB+) + 0)

= sgn(GB−)− sgn(GB+)

≤ 2.

Definition 4.17. For a nullhomologous oriented knotK ⊆ RP3, let u(K) ∈
Z≥0 denote the minimum number of times K must pass through itself to
obtain an affine unknot. By [17], the natural number u(K) exists.

As an immediate consequence of 4.16, we have the following.

Proposition 4.18. If K ⊆ RP3 is a nullhomologous knot, then

|σ0(K)| ≤ 2u(K).
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4.3.2 Consequences for links of two homologically non-
trivial components

The methods of §4.3.1 can be adapted to obtain a plethora of similar
results. For example, consider a nullhomologous oriented link L ⊆ RP3

comprised of two homologically nontrivial components L = L0 ∪ L1. Let
U2 denote oriented link depicted in Figure 4.3.

Figure 4.3: Diagram of U2.

According to [17], a diagram of L can be turned into a diagram of U2

via crossing changes. Replicating the proof of Theorem 4.14, we obtain the
following.

Theorem 4.19. Let L ⊆ RP3 be an oriented link comprised of two homo-
logically non-trivial components. Then |det0(L)| and |det1(L)| are both odd
numbers.

Replicating the proofs of Corollaries 4.15 and 4.16 yields the following.

Corollary 4.20. Let L ⊆ RP3 be an oriented link comprised of two homo-
logically nontrivial components. Then σ1(L) is odd.

Corollary 4.21. Let L+ ⊆ RP3 be an oriented link comprised of two homo-
logically nontrivial components. Let L− ⊆ RP3 be an oriented link obtained
from L+ by turning a positive-writhe crossing into a negative writhe cross-
ing. Then

σ1(L−)− σ1(L+) ∈ {0, 2}.

Definition 4.22. For an oriented link L ⊆ RP3 of two homologically non-
trivial components, let u(L) denote the minimum number of times L must
pass through itself to obtain the link U2 of Figure 4.3. The natural number
u(L) ∈ Z≥0 exists by [17].

Proposition 4.23.

|σ1(L)| ≤ 2u(L) + 1.
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4.3.3 Unoriented links

The author has restricted the scope of the present paper to oriented
links, but it is worth noting that much of the theory developed up to this
point works just as well for unoriented links. For example, Theorem 2.2
has no dependence on the orientation of our link L. On the other hand,
Theorem 2.5 depends vitally on the orientation of our link, as demonstrated
by the middle diagram in Figure 2.4 (whose checkerboard surfaces are both
orientable). One can, however, still distinguish the two S∗-equivalence
classes using parity.

To define the parity of a surface without invoking an orientation on its
boundary, we must first define an “unoriented Euler number.” Let F be a
spanning surface of an unoriented link L ⊆ RP3. Write L = K1 ∪ · · · ∪Kn.
Endow each Ki with an orientation and let K ′

i denote a parallel copy of
Ki missing F (i.e. K ′

i is the F -pushoff of Ki). Let e(F ) = −
∑

i lk(Ki, K
′
i)

(note that this does not depend on how we have oriented the Ki’s). One
is then naturally inclined to define Parity(F ) = b1(F ) + 1

2
e(F ) mod 2. As

before, this quantity is easily computed when F is a checkerboard surface.
Now, although Seifert surfaces can no longer distinguish the two S∗-

equivalence classes in the case of an unoriented link L, parity does the job
just fine. Indeed, it is easily checked that Parity(F ) is invariant under S∗-
equivalence of connected spanning surfaces, and the proof of Theorem 3.14
translates seamlessly to prove that the two S∗-equivalence classes will have
different parities.

As for the Gordon-Litherland numbers, one defines σF (L) = sgn(GF ) +
1
2
e(F ), detF (L) = ib1(F )+ 1

2
e(F ) det(GF ), and nullF (L) = null(GF ). As before,

we denote by gF (L) the triple gF (L) = (σF (L), detF (L), nullF (L)) and we
define gi(L) = gF (L) if F is a connected spanning surface with Parity(F ) =
i (here i = 0, 1).

The computation of these unoriented invariants is just as easy as the
oriented case. Much of the behaviour observed in §4.2 and §4.3 admits an
unoriented analogue. We highlight, in particular, Corollaries 4.6, 4.7, and
4.10, as well as Lemma 4.13 and Theorems 4.14 and 4.19, which admit
obvious unoriented analogues.

4.4 Alternating Links

Let L ⊆ RP3 be a link with diagramD ⊆ RP2. Recall that a local orien-
tation at a crossing c can be thought of as an isomorphism H2(RP2,RP2∖
{c}) → Z. Let c and c′ be crossings which cobound an edge e of D. Choose
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a local orientation at c such that e is an overpass at c. This choice, together
with the edge e, determines a local orientation at c′. We say that D satisfies
the alternating condition at e if e is an underpass at c′ with respect to this
choice of local orientation. D is an alternating diagram if the alternating
condition is satisfied at every edge. L is alternating if L admits an alternat-
ing diagram. The left and middle diagrams of Figure 2.1 depict alternating
diagrams, while the right diagram depicts a non-alternating diagram.

As observed in [5], alternating links in RP3 are necessarily nullhomol-
ogous. This can be seen by combining the alternating condition with the
fact that a pair of simple closed curves in RP2 will intersect in an odd
number of points if and only if both curves are homologically nontrivial (a
basic exercise in algebraic topology). In particular, alternating diagrams
are checkerboard colourable. Let B and W be the checkerboard surfaces
of a diagram D ⊆ RP2. Note that if L is non-split, then D is alternating
if and only if indexB(c) is constant as c ranges over all crossings of D (see
Figure 3.2 for the definition of the index at a crossing). In view of the
local contributions to the Gordon-Litherland pairing observed in §4.3, the
following theorem should therefore come as no surprise.

Theorem 4.24. Let D ⊆ RP2 be an alternating diagram of a non-split
and non-affine link L ⊆ RP3. If B and W are the checkerboard surfaces of
D, then B and W are definite and of opposite sign.

That is, GB is positive-definite and GW is negative-definite, or vice-versa.

Proof. Without loss of generality, take every crossing to have B-index +1
and W -index −1. By Lemma 3.12, the faces of B are all disks. So, B may
be conceived as a collection of disjoint disks in RP2 glued together via half-
twisted bands (in particular, right-handed half-twists). An arc a passing
through one of these half-twisted bands will have a local contribution of
+1 to GB(a, a). Similarly, two arcs, a and b, passing in the same direction
through a half-twisted band will have a local contribution of +1 to GB(a, b).

Let γ ∈ H1(B;Z) be nonzero. We may express γ as a sum of simple
closed curves γ = γ1 + · · ·+ γm such that for i ̸= j, we have γi intersecting
γj finitely many times, always in transverse double points and away from
crossings. Moreover, each γi is nonzero as an element of H1(B;Z). Now
allowing i = j, note that if an arc a of γi and an arc b of γj cross the same
half-twisted band in opposite directions, then we can modify γ as in Figure
4.4 without affecting the image of γ in H1(B;Z). So, we may assume that
any time γi and γj cross the same half-twisted band, they do so in the
same direction. Since the local contributions to GB(γi, γj) occur only at
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crossings, it follows that GB(γi, γj) ≥ 0. Hence,

GB(γ, γ) =
∑
i,j

GB(γi, γj) ≥
∑
i

GB(γi, γi).

So, it suffices to argue that GB(γi, γi) > 0 for some i. By our discussion of
local contributions at the start of this proof, this is equivalent to arguing
that γi passes through at least one half-twisted band. Assume for con-
tradiction γi does not pass through any half-twisted bands. If γi vanishes
under H1(B;Z) → H1(RP3;Z), then γi expresses L as a split link. Oth-
erwise, γi expresses L as an affine link. We conclude that GB(γi, γi) > 0
for all i, and thus GB(γ, γ) > 0. In other words, B is positive-definite. An
identical argument shows that W is negative-definite.

→

Figure 4.4: On the left, a is in red and b is in blue. The curve on the right
has the same image in H1(B;Z) as the curve on the left.

A special alternating link in RP3 is an oriented link L ⊆ RP3 admitting
an alternating diagram D such that one of the checkerboard surfaces of D
is a Seifert surface of L.

Corollary 4.25. Let L ⊆ RP3 be a special alternating link. If L is not the
affine unknot, then L is chiral.

Proof. Let F be the checkerboard Seifert surface of the alternating diagram
D. Since L is not the affine unknot, b1(F ) ̸= 0. By Theorem 4.24, we
have sgn(GF ) ̸= 0. Since F is a Seifert surface, e(F,L) = 0. So, σF (L) =
sgn(GF ) ̸= 0. By Corollary 4.6, we conclude that L is chiral, as desired.
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Chapter 5

Discussion

The Greene-Howie Characterization Theorem asserts that a non-split
link in S3 is alternating if and only if it admits a pair of definite spanning
surfaces of opposite sign [9][10]. In other words, it is a strong converse to
(the S3 analogue of) Theorem 4.24. The Greene-Howie Theorem has also
been established for links in thickened surfaces [4]. A vital ingredient in
the proofs of Greene, Howie, and Boden and Karimi is a certain inequality
involving a difference of signatures. In particular, if it were known that
for nullhomologous oriented links L ⊆ RP3, we have |σ0(L) − σ1(L)| ≤ 1,
then the arguments of Greene and Howie should translate to the projective
setting (modulo certain minor modifications). In fact, it would suffice to
prove that |σF (L) − σF ′(L)| ≤ 1 in the special case where F and F ′ are
definite spanning surfaces of opposite sign. Unfortunately, the classical and
thickened surface methods are quickly seen to be insufficient for establishing
such an inequality in RP3.

It is natural to dream of an extension of the Characterization Theorem
to all 3-manifolds admitting a nice diagrammatic theory of links (i.e. ori-
ented thickenings of closed surfaces). It is therefore desirable to establish
the Characterization Theorem in RP3, as the twisted I-bundle RP2×̃I is
the simplest example of an oriented thickening of a closed nonorientable
surface. The author hopes that this paper will lay the foundation for a
proof of the Greene-Howie Characterization Theorem in RP3.
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