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Abstract

We present a novel Transformer-based framework for low-light image enhancement,

Towards Scale-Aware Low-Light Enhancement via Structure-Guided Transformer De-

sign. Our model is built upon a U-Net-style encoder–decoder architecture, where we

introduce a customized Hybrid Structure-Guided Feature Extractor (HSGFE) at each

scale. The HSGFE integrates three key components: (1) a Dilated Residual Dense

Block (DRDB) for effective feature refinement, (2) a Structure-Guided Transformer

Block (SGTB) that incorporates structural priors to preserve edges and suppress

noise, and (3) a Semantic-Aligned Scale-Aware Module (SAM) to handle multi-scale

variations. This design enables our network to enhance low-light images while main-

taining structural integrity and reducing color distortion. Extensive experiments show

that our method achieves state-of-the-art performance in both quantitative metrics

and visual quality. Our approach also achieve top-tier results on standard LLIE

benchmarks and ranked second in the NTIRE 2025 Low-Light Image Enhancement

Challenge.
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Chapter 1

Introduction

Low Light Image Enhancement (LLIE) is an important task in computer vision.

Normally captured images in dark environments often suffer from poor visibility, low

contrast, and significant noise due to limited lighting conditions. These issues not

only lead to the degradation of image qualities, but also hinder the performance of

high-level vision tasks such as object detection, recognition, and tracking. There-

fore, extensive research has been conducted on this task, aiming to enhance low-light

images and make them appear as if captured under better lighting conditions.

Although many methods have been proposed in recent years, they still suffer from

several limitations. Most popular traditional methods for LLIE can be categorized

into two types. One is histogram equalization-based methods [1, 27] , which adopt

a straightforward strategy to perform gray-level remapping to enhance images with

low visibility and contrast. However, these methods tends to introduce artifacts into

the enhanced outputs. For example, in certain regions with uniform pixel values, the

remapping process may produce excessively high or low pixel intensities, resulting in

undesirably extremely bright or dark areas. Retinex-based approaches [32, 15, 55, 22,
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47, 34] represent another popular class of traditional methods for LLIE. According to

Retinex theory, a color image can be decomposed into two components: reflectance

and illumination. Thus, the estimated illumination is essentially utilized as a physical

prior to guide the enhancement process of the reflectance component. However, this

strategy assumes that the reflectance is noise-free, which is not realistic in practical

scenarios. Moreover, inaccurate illumination priors can lead to visual distortions and

color inconsistencies.

Recently, many deep learning models [23, 19, 8, 11, 61, 60, 6] based on Convo-

lutional Neural Network (CNN) and Transformers have been introduced for LLIE.

However, end-to-end CNN methods often come with limited transparency and lacks

solid theoretical backing, which can occasionally lead to unexpected or inconsistent

results. While Transformer-based models excel at modeling non-local dependencies,

directly applying Transformers [14] to LLIE does not necessarily yield satisfactory re-

sults. Therefore, dedicated architectural designs are essential. To this end, Retinex-

former [6] proposes to introduce the illumination prior into Transformers to guide

the reflectance enhancement process and ultimately produce impressive well-lit im-

ages, which demonstrates the significant potential of employing physical priors in

deep learning models. However, we observe that the illumination prior utilized in

Retinexformer is also learned from low light inputs via a lightweight neural network

and there are no ground truth of illumination component to supervise such learning.

Therefore, Retinexformer often struggles to generalize well in real-world scenarios

and tends to produce unnatural color intensity and contrast, as presented in Fig. 1.1,

which motivates us to explore and integrate other more robust physical priors into

deep learning models for LLIE.

2
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Figure 1.1: The enhancement results of Retinexformer (pre-trained on LOLv2-real
dataset) for real-world data.

In this paper, we propose a model titled Towards Scale-Aware Low-Light En-

hancement via Structure-Guided Transformer Design. Our network follows a U-Net-

like encoder–decoder architecture. At each level, we employ our customized Hybrid

Structure-Guided Feature Extractor (HSGFE), which leverages structural priors from

the input images to better preserve original details. Within the HSGFE, we first use

a Dilated Residual Dense Block (DRDB) [65] to refine the input features. Then, the

Structure-Guided Transformer Block (SGTB) is developed to incorporate structural

priors into the feature maps, enabling the use of invariant edge detectors [17]. Af-

ter the SGTB, a Semantic-Aligned Scale-Aware Module (SAM) [65] is integrated to

address scale variations. Additionally, skip connections are employed to preserve the

spatial information of the images.

To summarize, we highlight three key contributions of this work:

3
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 Input  Output  Input  Output  Input  Output

Figure 1.2: Our enhanced results on NTIRE 2025 Low Light Enhancement Chal-
lenge. Our method secures the highest PSNR value, achieves the second-best overall
performance, and effectively enhance low light inputs without over-exposed artifacts.

• First, we build an encoder–decoder-style network, similar to U-Net, using cus-

tomized Transformers.

• Second, We first extract robust structure priors from low light images and

then integrate these priors into our customized Transformer via structure-guided

cross-attention, providing more effective guidance for LLIE.

• Third, Our model shows solid performance in both quantitative metrics and vi-

sual results, taking the lead in the NTIRE 2025 Low-Light Image Enhancement

Challenge and staying competitive with other top solutions.

4
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Chapter 2

Related Work

2.1 Methods in LLIE

Histogram Equalization (HE) [1, 27] and gamma correction [24, 48] are widely used in

traditional techniques. These methods perform well under relatively uniform lighting

conditions. However, their effectiveness often degrades in real-world scenarios, where

illumination in low-light images is typically dynamic and diverse. Convolution Neural

Networks (CNNs) [23, 19, 8, 11, 61] really change how people would deal with low-light

images. LLNet [43] is the first to propose an autoencoder network, which enhances

low-light images without oversaturating the bright regions. Retinex theory are also

widely applied in the deep learning-based methods. Yang et al. [63] introduces SGM-

Net to combine priors and data-driven learning for LLIE, and effectively suppresses

noise and improve contrast. Guo et al. [21] propose Zero-DCE, a lightweight deep

learning method that enhances low-light images by estimating pixel-wise adjustment

curves without relying on paired or unpaired training data. Their approach uses

non-reference loss functions to guide learning and shows strong generalization across

5
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diverse lighting conditions. A brightness-aware network is proposed by Liu et al. [42],

which leverages normal-light priors and attention mechanisms to enhance low-light

images more naturally. By integrating a residual-quantized codebook and a fusion

module, their method effectively combines low-light and normal-light features, out-

performing prior approaches in both synthetic and real-world scenarios. Zhang et al.

[70] propose a highly efficient single convolutional layer model (SCLM) for low-light

image enhancement, utilizing structural re-parameterization for global enhancement.

To address uneven illumination, they incorporate a local adaptation module, achiev-

ing competitive results with minimal parameters and low computational complexity.

Makwana [44] et al. introduce LIVENet, a two-stage deep learning framework that

jointly performs noise reduction and low-light enhancement. By leveraging a denois-

ing block and an atmospheric scattering model, LIVENet enhances illumination and

texture while preserving natural appearance, achieving superior results across multi-

ple benchmarks. Wang et al. [54] propose BCNet, a “brighten-and-colorize” network

that treats LLIE as a multi-task problem by enhancing both lightness and chromi-

nance. Unlike prior methods, it enables user-customized color enhancements without

affecting image structure, achieving state-of-the-art results and offering flexible vi-

sual outputs. Shakibania et al. [52] present CDAN, an attention-guided autoencoder

network that enhances low-light images by combining convolutional and dense blocks

with skip connections. Through a composite loss and post-processing, CDAN effec-

tively restores brightness, texture, and color, achieving strong performance across

challenging low-light scenarios.

Due to the limitations of CNNs, these deep learning-based methods struggle to

capture non-local information in images.

6
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2.2 Transformers in Image Restoration

Vision Transformers (ViTs) [14] are widely adopted in modern computer vision tasks,

and the self-attention mechanism is utilized to capture global dependency within im-

ages. Many researches have integrated or customized vision transformers in their

networks for low-level tasks [5, 7, 68, 25]. For example, Chen et al. [7] introduces a

vision transformer named image processing transformer (IPT), a pre-trained trans-

former model for low-level vision tasks like denoising, super-resolution, and deraining.

Trained on corrupted image pairs from ImageNet with a multi-head, multi-tail struc-

ture and contrastive learning, IPT can be fine-tuned for various tasks, not limited

to image restoration. Conde et al. [10] proposes a network called Swin2SR, which

builds upon SwinIR [38] by incorporating Swin Transformer v2 to enhance perfor-

mance on compressed image super-resolution. This approach addresses key chal-

lenges in training vision transformers—such as instability and resolution gaps, and

achieves impressive results on JPEG artifact removal and lightweight super-resolution

tasks. Zhang et al. [71] propose an efficient Transformer-based approach for image

restoration that captures superpixel-wise global dependencies through a coarse-to-fine

design. Their method uses condensed attention and dual adaptive blocks to transfer

global context to the pixel level, achieving competitive results with significantly lower

computational cost compared to SwinIR. Ren et al. [49] introduce the Key-Graph

Transformer (KGT), which reduces the computational burden of global attention by

constructing a sparse key-graph that connects only essential nodes. This selective at-

tention mechanism enables efficient image restoration with strong performance across

multiple tasks. Yang et al. [64] propose the Region Attention Transformer (RAT),

which performs self-attention within semantically segmented regions rather than fixed

7

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – Y. Min; McMaster University – Electrical and Computer Engineering

patches, reducing interference from unrelated areas. By leveraging dynamic region

partitioning and a focal region loss, RAT achieves strong results across various med-

ical image restoration tasks. Jiang et al. [28] present SFHformer, a dual-domain

Transformer that integrates Fast Fourier Transform for global frequency modeling

alongside spatial domain processing for local features. This hybrid design enables

robust performance across diverse image restoration tasks, including low-light en-

hancement, while maintaining efficiency in terms of parameters and computation.

Wang et al. [57] propose Uformer, a Transformer-based encoder-decoder architecture

for image restoration that introduces a locally-enhanced window attention mecha-

nism to balance efficiency and context modeling. A learnable multi-scale spatial

bias further enhances detail restoration, enabling strong performance across multiple

restoration tasks with minimal computational overhead. Chen et al. [9] propose the

Cross Aggregation Transformer (CAT), which enhances long-range dependency mod-

eling through a novel Rectangle-Window Self-Attention mechanism and axial-shift

operations. By combining global attention with local inductive biases via a Locality

Complementary Module, CAT achieves state-of-the-art performance across various

image restoration tasks. Xiao et al. [59] propose Stoformer, a Transformer-based

model that introduces a stochastic window shifting strategy to enhance translation

invariance and better preserve local relationships in image restoration. By combining

random window partitioning with a layer expectation propagation algorithm, their

method achieves notable improvements across tasks like deraining, denoising, and

deblurring.

In this work, we aim to combine CNN and Transformer to develop a hybrid net-

work, which is capable of effectively capturing local and long range dependency.

8
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2.3 Structure Prior

In recent years, image structure priors have been increasingly utilized in various low-

level vision tasks, including image inpainting [13, 45, 50], depth enhancement [20,

26, 37], and image restoration [12, 36, 35, 46]. In a different line of work, Lengyel

et al. [33] proposes the integration of trainable, color-invariant edge detection lay-

ers into neural architectures to increase resilience to illumination variations. Their

approach demonstrated that leveraging such structure-based priors can mitigate the

distribution gap between day and night scenes, leading to improved generalization

across multiple tasks (e.g., classification, segmentation, and place recognition) with-

out relying on any target domain data. Alshammari et al. [2] introduces the use

of illumination-invariant image transforms to enhance scene understanding and seg-

mentation in challenging lighting conditions. By combining invariant representations

with chromatic cues, the approach improves the robustness of deep networks with-

out altering their architecture, highlighting the value of pre-processing for handling

illumination variation. Ulyanov et al. [53] demonstrate that the architecture of a

convolutional generator network itself—without any learning—can serve as a pow-

erful image prior. Their method leverages randomly initialized networks to perform

tasks like denoising and super-resolution, revealing the strong inductive bias inher-

ent in CNN structures and bridging the gap between learned and handcrafted priors.

Arjomand et al. [3] introduce a restoration method that builds on a smoothed ap-

proximation of natural image statistics, enabling image enhancement without explicit

noise level input. Their approach leverages denoising autoencoders to estimate gradi-

ents of this prior, guiding a gradient-based optimization process that restores images

9
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effectively across various tasks such as super-resolution, deblurring, and demosaic-

ing. To improve generalization in image restoration, Liu et al. [39] propose TAPE,

a transformer-based framework that first learns a task-independent representation of

natural image statistics through pretraining. This prior is later adapted to specific

restoration tasks via fine-tuning, allowing the model to handle diverse degradations

effectively and even outperform task-specific methods in certain cases.

In this work, we first extract robust structure priors from low light inputs and

then integrate these priors to modulate the LLIE process.

10
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Chapter 3

Method

The contribution of our work mainly lies in the integration of illumination-invariant

structure priors and the design of multi-scale CNN-Transformer hybrid network. The

framework of our method is illustrated in Figure 3.1, where an encoder–decoder UNet

architecture is designed. At each hierarchical level, the proposed Hybrid Structure-

Guided Feature Extractor (HSGFE) functions as the core module, leveraging struc-

tural cues from the input image to facilitate the preservation of fine-grained details.

In this section, We first discuss the structure prior extraction in Sec. 3.1. Then,

we introduce the details of our developed HSGFE module including the Structure-

Guided Transformer Block (SGTB) and Structure-Guided Cross Attention (SGCA)

in Sec. 3.2. Finally, the multi-scale loss functions are specified in Sec. 3.3.

3.1 Structure Prior Extraction

To extract the structure prior, we adopt the Color Invariant Convolution (CIConv)

proposed in [33], which serves as a task-adaptive edge detector. CIConv applies

11
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Figure 3.1: The overall framework of our propose method. We develop our method
based on ESDNet [65] and adopt a similar UNet architecture. At each level of the
encoder and decoder, our customized Hybrid Structure-Guided Feature Extractor
(HSGFE) module is employed. Within each HSGFE, besides the Dilated Residual
Dense Block (DRDB) and Semantic-Aligned Scale-Aware Module (SAM) proposed
in ESDNet [65], we first extract structure priors based on color invariant layers [33]
and then develop the Structure-Guided Transformer Block (SGTB) to integrate these
priors as guidance. With the integration of illumination-invariant structure priors and
our designed CNN-Transformer hybrid network, our method effectively improve the
visibility and contrast with good noise suppression for diverse low light images.

a learnable scale-aware transformation to the color-invariant representation of the

input, producing a normalized edge response map that reflects task-relevant structure.

Among the derived color-invariant representations—E, W, C, N, and H—based on the

Kubelka-Munk (KM) reflection model [51, 18, 16], we adopt W as it provides robust

edge detection under varying illumination, shading, and reflectance conditions:

Wout = CIConv(Iin) (3.1.1)

Here, Iin denotes the input image, specifically the low-light image to be enhanced.

Wout represents the structural prior, which is later integrated into the Structure-

Guided Transformer Block (SGTB) for guidance. Regarding to CIConv, the fomular

is like following:

CIConv(Iin) =
log
(
W2(Iin) + ε

)
− µS

σS
(3.1.2)

12
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Low-light Input  Low-light Prior       Normal-light Input    Normal-light Prior 
Figure 3.2: Example visualization of the extracted structure priors.

Here, µS , σS and ε refer to the sample mean, standard deviation, and small perbuta-

tion. To compute W(Iin), we first use the Gaussian Color Model [17] to obtain the

initial edge detectors, denoted as E. Then, we use E to derive the second phase of

edge detectors, denoted as W, as follows:

W =
√
W 2
x +W 2

λx +W 2
λλx +W 2

y +W 2
λy +W 2

λλy, (3.1.3)

Wx =
Ex
E
, Wλx =

Eλx
E

, Wλλx =
Eλλx
E

(3.1.4)

Finally, we obtain the structure prior map based on the above formulas and the input

image Iin. This structure prior is then used to guide our customized attention block

in Section 3.2.

13
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Physical Explanation These equations mathematically indicates that W charac-

terizes the spatial derivatives of spectral intensity. We visualize our extracted struc-

ture prior W for low-light and normal-light in Fig. 3.2. It is clear that W represents

the stable edge and structure map across images with differing illumination condi-

tions, highlighting its great potential to guide the enhancement process.

3.2 Model Architecture

As illustrated in Fig. 3.1, our model adopts the encoder-decoder architecture. The

PixelShuffule and several convolutional layers (denoted as “Down” in Fig. 3.1) are

utilized for down-sampling, and the PixelShuffle or Interplation process are used for

up-sampling. Throughout the network, skip connections bridge corresponding en-

coder and decoder stages to maintain spatial coherence and support feature fusion.

In each level in the encoding and decoding process, the Hybrid Structure-Guided

Feature Extractor (HSGFE) module is proposed for representation learning.

3.2.1 HSGFE Module

HSGFE Module is designed to exploit structural cues inherent in the input for en-

hanced detail retention. The HSGFE begins by processing features through a Di-

lated Residual Dense Block (DRDB) [65], which enhances local representations. This

is followed by a Structure-Guided Transformer Block (SGTB), where structural pri-

ors in Section 3.1 are explicitly injected into the feature flow, guided by invariant

edge descriptors [17]. Moreover, the Semantic-Aligned Scale-Aware Module (SAM)

is incorporated to further accommodate scale diversity across scenes.
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3.2.2 Structure-Guided Transformer Block (SGTB)

As shown in Figure 3.1, our SGTB is composed of three main components: a Channel-

wise Self-Attention (CSA), a Structure-Guided Cross Attention (SGCA), and a Feed-

Forward Network (FFN). In addition, Layer Normalization is applied before each of

these mechanisms, and three residual connections are applied to preserve residual

information and support stable feature learning. Therefore, the feature flow for CSA

can be represented as:

Fout = CSA(LN(Fin)) + Fin, (3.2.1)

where Fin ∈ RH×W×C and Fout ∈ RH×W×C represent the input and output feature

maps. We apply channel-wise attention here to let the model exchange information

across channels, which facilitates capture long-range dependence while ensuring model

efficiency. Then, the processed representations are passed into the SGCA for further

refinement.

3.2.3 Structure-Guided Cross Attention (SGCA)

This mechanism firstly reshape the input features Fin ∈ RH×W×C into X ∈ RHW×C .

Then, the resulting sequence XF is linearly projected to generate the Query (Q)

representation:

Q = XFW>
Q. (3.2.2)

We observe that conventional low-light image enhancement models often distort

the original structural details of input images. To address this issue, we incorporate

structural priors into our attention mechanism to better preserve spatial consistency.

15
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Specifically, structural priors are introduced into the Structure-Guided Cross Atten-

tion (SGCA) block to provide the Key and Value elements, denoted as Kp and

Vp, where the subscript p refers to structure priors. These two representations are

obtained by:

Kp = XsW
>
Kp
, Vp = XsW

>
Vp , (3.2.3)

where WKp ∈ RC×C and WVp ∈ RC×C are learnable parameter matrice, and Xs

stands for the structure priors at corresponding levels. We then formulate our structure-

guided attention mechanism as follows:

Attention(Q,Kp, Vp) = softmax(
Q ·Kp

λ
) · Vp, (3.2.4)

where λ is a learnable parameter that adaptively adjusts the scale of the matrix

multiplication. To this end, we design our cross-attention mechanism to not only

gather long-range dependencies but also blend structural cues directly into the current

feature representations.

3.2.4 Scale-Adaptive Neural Architecture

Inspired by the approach in Yu et al. [65], we integrate a Semantic-Aligned Scale-

Aware Module (SAM) following the SGTB within our HSGFE module to effectively

extract features across multiple scales. In real-world scenarios, images are often cap-

tured at varying resolutions (e.g., 6000×4000 or 2992×2000), which poses challenges

for consistent feature representation. To address this, SAM leverages a combination

of pyramid-based feature extraction and cross-scale dynamic fusion.

16
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Initially, the input feature map Fin,0 ∈ RH×W×C undergoes bilinear interpola-

tion to produce two additional versions at coarser scales: Fin,1 ∈ RH
2
×W

2
×C and

Fin,2 ∈ RH
4
×W

4
×C . These multi-resolution feature maps are then processed indepen-

dently through convolutional layers to yield the corresponding pyramid representa-

tions: Yin,0, Yin,1, and Yin,2.

Subsequently, cross-scale fusion is performed to integrate the multi-resolution fea-

ture maps. To achieve this, each scale-specific feature map is assigned a learnable

weight matrix αi, where i = 0, 1, 2. These weights are derived by applying global av-

erage pooling to each of the three feature maps independently. The resulting pooled

features are then passed through a multi-layer perceptron (MLP), which facilitates

adaptive and effective cross-scale interaction. This process can be formulated as fol-

lows:

[β0, β1, β2 = MLP (α0, α1, α2)]. (3.2.5)

Finally, the fused feature map Ffused is obtained as follows:

Ffused = Fin,0 + β1 � Yin,1 + β2 � Yin,2. (3.2.6)

Additionally, skip connections are incorporated within this module to retain more

information from the input feature maps.

3.3 Loss Function

As Figure 3.1 shows, for network training, we design the loss function based on three

levels of output images—Î1, Î2, and Î3—which correspond to the output images at

17
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Figure 3.3: The architecture of the Dilated Residual Dense Block, originally proposed
by [65], is modified for use in our network model.

three different resolutions from the respective levels of our decoder:

Ltotal =
3∑
i=1

LC

(
Ii, Îi

)
+ λ ·

3∑
i=1

LP

(
Ii, Îi

)
+ γ ·

3∑
i=1

LMS-SSIM

(
Ii, Îi

)
(3.3.1)

Here, L1, LP, and LMS-SSIM represent the Charbonnier loss [31], perceptual loss [29],

and Multi-Scale SSIM (MS-SSIM) loss, respectively. The weighting factors are set as

λ = 0.01 and γ = 0.4.
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Chapter 4

Experiments

4.1 Performance on NTIRE 2025 LLIE Challenge

4.1.1 Chanllenge Details

This project was undertaken as part of the Low-Light Image Enhancement (LLIE)

challenge [41], a globally recognized competition track hosted by the NTIRE workshop

alongside CVPR. Widely respected in the computer vision community, the challenge

draws participation from diverse research teams worldwide, all aiming to push the

limits of visual enhancement in dim lighting scenarios. The track offers a shared

testing ground that promotes creativity while enabling fair performance comparisons

among different approaches.

4.1.2 Dataset Details

We use the dataset provided by the NTIRE 2025 Low Light Image Enhancement

Challenge [41]. This dataset consists of 219 training images, 46 validation images, and

19
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Figure 4.1: Example training pairs from the subset of the NTIRE 2025
dataset. Each pair includes a low-light input and its corresponding high-quality
ground truth image.

30 test images. Most images have a resolution of 2992×2000, with several reaching

up to 6000×4000. Compared to other low-light image datasets, such as LOL [58]

and FiveK [4], the NTIRE dataset offers higher-resolution images and more diverse

content, better reflecting real-world captures from modern smartphones. Both indoor

and outdoor scenes are included. Besides, we also use the training set from the NTIRE

2024 Low-Light Image Enhancement Challenge [40] for fine-tuning.

4.1.3 Implementation Details

We develop our model using PyTorch and train it on a single A100 GPU. Regarding

the competition [41], the model is trained on paired data from the NTIRE 2025 LLIE

Challenge [41] dataset, without any pretrained weights. The model is optimized with

the Adam optimizer [30] (lr = 2× 10−4, β1 = 0.9, β2 = 0.999), and gradient clipping

is applied. Training runs for 15,000 iterations with a fixed patch size of 1600×1600

and a batch size of 1 per GPU. We adopt a two-stage learning rate schedule using

CosineAnnealingRestartCyclicLR: an initial phase of 46,000 iterations at a constant

20
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rate of 3×10−4, followed by cosine annealing down to 1×10−6 over 104,000 iterations.

The loss function is described in Sec. 3.3. Data augmentation includes geometric

transforms and mixup with β = 1.2 and identity mapping enabled.

4.1.4 Quantitative and Qualitative on NTIRE 2025 LLIE

Challenge

As presented in Tab. 4.4, our method achieves the highest PNSR score, the third

best SSIM in NTIRE 2025 LLIE Challenge. Overall, our method ranks 2nd out of 28

teams from around the world, highlighting the outstanding performance of our pro-

posed approach. The enhancement outputs of our method are presented in Fig. 1.2,

which demonstrate that our method can handle diverse low light images captured

with varying illuminations and indoor or outdoor scenarios. Both quantitative and

qualitative results demonstrate the effectiveness of our proposed method.

4.2 Performance on LLIE Benchmark Datasets

4.2.1 Datasets

LOL-v1 This dataset includes a total of 500 image pairs—485 for training and

15 for testing. All images were taken with DSLR cameras in genuinely low-light

conditions, mostly capturing indoor scenes. The average resolution is around 400

× 600 pixels, which makes the dataset suitable for GPU-based training and testing

without needing to crop or resize the input. LOL-v1 [58] has become a widely used

benchmark in the field of low-light image enhancement. Training pairs of examples

are given in Figure 4.3.
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Input SNR SYSU RetinexFormer Ours GT

Figure 4.2: Qualitative comparisons on the NTIRE 2025 LLIE Challenge dataset.
We compare our model with SNR [60], UHDM (SYSU) [40], and Retinexformer [6].
Our model consistently performs best or comparably well. Please zoom in for a better
view.

Figure 4.3: Example training pairs from the LOL-v1 dataset. Each pair con-
sists of a low-light input and its corresponding well-lit ground truth image.
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Input OursSNR Retinexformer UHDM(SYSU)

Figure 4.4: Additional examples of our results compared to other state-of-the-art
(SOTA) methods.(1)

Input OursSNR Retinexformer UHDM(SYSU)

Figure 4.5: Additional examples of our results compared to other state-of-the-art
(SOTA) methods.(2)
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Figure 4.6: Example training pairs from the real subset of the LOL-v2
dataset. Each pair includes a low-light input and its corresponding high-quality
ground truth image.

Figure 4.7: Example training pairs from the synthetic subset of the LOL-
v2 dataset. Each pair includes a low-light input and its corresponding high-quality
ground truth image.
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LOL-v2 This dataset is another well-known benchmark for low-light image en-

hancement, and it serves as an extension of LOL-v1. LOL-v2 introduces both real

and synthetic scenes, covering a mix of indoor and outdoor environments. Compared

to LOL-v1, it offers a larger number of high-resolution image pairs—689 for training

and 100 for testing. First introduced by Yang et al. [62] in 2020, it has since become

one of the most widely used benchmarks in the low-light enhancement field. Both real

and synthetic subsets of LOL-v2 are shown in Figure 4.6 and Figure 4.7, respectively.

4.2.2 Experiment Settings

To comprehensively evaluate the performance of our method, we compare our method

with KinD [69], MIRNet [66], Restormer [68], LLFlow [56], Retinexformer [6], SNR

[60], UHDM (refined by Team SYSU-FVL-T2 [40] in NTIRE 2024 LLIE Challenge)

on the NTIRE 2025 LLIE dataset. This dataset contains 219 training pairs, 46 and

30 low light images for validation and testing. Due to the unavailability of the ground

truth for validation and test set, we build a test set includes 11 images with scenes

that are similar but not identical to those in the training set. We construct this test

set by analyzing the differences between the NTIRE 2024 LLIE and NTIRE 2025

LLIE training sets. For a fair comparison, we use a patch size of 512 × 512 and a

batch size of 2 during training on the NTIRE 2025 LLIE dataset for all methods

being compared. Besides the NTIRE dataset, we also evaluate our method on two

additional datasets: LOL-v1 [58] and LOL-v2-real [63], where the patch size and

batch size are set to 384× 384 and 4, respectively.
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Input MIRNet Retinexformer SNR UHDM(SYSU) Ours GT

Figure 4.8: Visual comparisons on the LOL-v1 dataset, with MIRNet [66], Retinex-
Former [6], SNR [60], and UHDM (SYSU) [40].

4.2.3 Quantitative Results

The quantitative comparisons on the NTIRE 2025 LLIE, LOL-v1, and LOL-v2-real

datasets are shown in Tab 4.1. On LOL-v1, we obtain the highest SSIM (0.873)

and the lowest LPIPS (0.092), indicating superior structural fidelity and perceptual

quality, while maintaining a competitive PSNR (24.63). For LOL-v2-real, our ap-

proach continues to lead with a PSNR of 22.84, SSIM of 0.859, and LPIPS of 0.126,

surpassing all other methods. On the NTIRE 2025 LLIE benchmark, our method

again outperforms all baselines with the highest PSNR (26.75), SSIM (0.899), and

second-best LPIPS (0.113), closely following UHDM (0.111).

4.2.4 Qualitative Results

We present visual comparisons of our model with the methods listed in Table 4.1. As

shown in Figure 4.8, Figure 4.9, and Figure 4.2, our results are perceptually better or

comparable to those of other methods. Our method more effectively captures under-

lying lighting conditions and preserves the original content of the input images. While
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Input MIRNet SNR Retinexformer UHDM(SYSU) Ours GT

Figure 4.9: Visual comparisons on LOL-v2-real dataset with MIRNet [66], Retinex-
Former [6], SNR [60], and UHDM (SYSU) [40].

MIRNet [66] and SNR [60] occasionally produce slightly brighter outputs, our model

delivers a more perceptually pleasing balance of contrast and natural appearance,

particularly in terms of retaining underlying image information.

Methods LOL-v1 LOL-v2-real NTIRE 2025 LLIE

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

KinD [69] 20.87 0.802 0.207 17.54 0.669 0.365 — — —

MIRNet [66] 24.14 0.832 0.131 19.35 0.708 0.138 — — —

SNR [60] 24.61 0.842 0.151 20.82 0.811 0.161 24.39 0.878 0.149

Restormer [67] 22.43 0.823 0.147 18.69 0.834 0.232 — — —

Retinexformer [6] 125.16 0.845 0.131 22.79 0.840 0.171 25.06 0.872 0.183

LLFlow [56] 21.09 20.861 0.116 17.43 0.831 0.129 — — —

UHDM (SYSU) [40] 23.10 0.846 20.094 20.48 0.841 0.134 26.26 0.892 10.111

Ours 224.63 10.873 10.092 122.84 10.859 10.126 126.75 10.899 20.113

Table 4.1: Quantitative comparison on LOL-v1, LOL-v2-real, and NTIRE 2025 LLIE
datasets. 1 and 2 indicate the best and second-best performances, respectively. “—–”
denotes ongoing experiments.
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Configuration PSNR↑ SSIM↑ LPIPS↓

w/o SGCA 23.67 0.855 0.095

w/o SGTB 23.38 0.849 0.096

w/o MS-SSIM 24.48 0.868 0.093

Full Model 24.63 0.873 0.092

Table 4.2: Ablation results on LOL-v1 dataset. Our full model achieves the best
performance in terms of all metrics and removing any component our complete model
leads to obvious performance drop, highlighting the rationality of the design of our
method.

Input Training Time Epochs Extra Data Diffusion Attention Quantization # Params. (M) Runtime GPU
(1600, 1600, 3) 36h 260 No No Yes No 12.7 0.7s on GPU A100

Table 4.3: Details of our model for the NTIRE 2025 LLIE Challenge

4.3 Ablation Study

To verify the contribution of each component in our method, we conduct ablation

studies on the LOL-v1 dataset [8].

4.3.1 Structure-Guided Cross Attention (SGCA)

To study the importance of the extracted structure prior and our proposed SGCA,

we remove these two parts from our method. Tab. 4.2 reports the quantitative

performance of this modification on LOL-v1 dataset, which still achieve competi-

tive enhancement performance on all measured metrics compared to UHDM(SYSU),

Restormer, and MIRNet in Tab. 4.1. However, compared to this modified version,

our full model shows significantly enhanced SSIM and PSNR scores by integrating

structure prior using our proposed SGCA. This comparisons manifest the importance

of our proposed SGCA and the structure prior generated by the extraction pipeline

discussed in Sec. 3.1.
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Team Rank PSNR↑ SSIM↑ LPIPS↓ NIQE↓
NWPU-HVI 1 26.24 0.861 0.128 10.9539
Imagine(Ours) 2 26.345 0.858 0.133 11.8073
pengpeng-yu 3 25.849 0.858 0.134 11.2933
DAVIS-K 4 25.138 0.863 0.127 10.5814
SoloMan 5 25.801 0.856 0.130 11.4979
Smartdsp 6 25.47 0.848 0.120 10.5387
Smart210 7 26.148 0.855 0.137 11.5165
WHU-MVP 8 25.755 0.855 0.138 11.2140
BUPTMM 9 25.673 0.855 0.137 11.2831
NJUPTIPR 10 25.011 0.848 0.122 10.1485
SYSU-FVL-T2 11 25.652 0.857 0.135 11.5897

Table 4.4: Performance comparison of the top 11 teams in the NTIRE 2025 LLIE
Challenge. Metrics include PSNR, SSIM, LPIPS (lower is better), and NIQE (lower
is better). Our team (Imagine) achieved the best PSNR and the second-best overall
score among 28 teams.

4.3.2 Structure-Guided Transformer Block (SGTB)

Similarly, we implement an adaptation to illustrate the effectiveness of the developed

SGTB. Specifically, we remove the SGTB from our customized Hybrid Structure-

Guided Feature Extractor (HSGFE) module. The quantitative results of the remain-

ing network are reported in Tab. 4.2. The discernible performance gap between this

configuration and the full model (i.e., a 1.25 dB drop in PSNR and a 0.024 drop in

SSIM) demonstrates the superiority of our proposed Structure-Guided Transformer

Block (SGTB). It is worth noting that the remaining network is entirely CNN-based,

and its relatively poor performance underscores the importance of our hybrid CNN-

Transformer architecture.
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4.3.3 Loss Function

As introduced in Sec. 4.2, we add the muti-scale MS-SSIM loss into our complete opti-

mization objective, which is not included in UHDM(SYSU). To verify the effectiveness

of this new introduced loss function, we remove it and adopt the same optimization

strategy in UHDM(SYSU). The quantitative results are reported in Tab. 4.2, which

demonstrate that the integration of multi-scale MS-SSIM loss helps achieve higher

SSIM performance. The loss function of UHDM (SYSU) is defined as follows:

Ltotal =
3∑
i=1

LC

(
Ii, Îi

)
+ λ · LPercep

(
Ii, Îi

)
, (4.3.1)

where L1 and LPercep represent Charbonnier loss [31], and perceptual loss[29], respec-

tively. The weighting factor is set as λ = 0.04.
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Chapter 5

Future Improvements

Evaluation and Metrics As stated in Section 3.3, we have incorporated PSNR,

LPIPS, and MS-SSIM into our loss function. However, we plan to include additional

metrics in future versions of the loss, such as NIQE. Furthermore, we aim to introduce

a User Study Score in our comparison with other models. A group of participants

will be invited to rate the enhanced results produced by our model and others. The

scoring will range from 1 to 5, allowing participants to evaluate image quality based

on their visual perception.

Structure Priors As introduced in Section 3.2, we have incorporated structure

priors into our model. Lengyel et al. proposed five color invariants—E, W, C, N, and

H. In our current approach, we use W as the source of structure priors. However, the

remaining four invariants have not been thoroughly explored. In future work, we plan

to substitute the current structure prior with each of the other invariants (E, C, N,

and H) to fully investigate their potential and better understand the role of structure

priors in our framework.
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Model Architecture As shown in Figure 3.1, each SGTB block in our model

includes only one attention module. As the patch size increases, the computational

cost of the transformer-like architecture also grows. To address this, we plan to

introduce multi-head attention in future versions of our model. This would allow

the network to better capture both local and non-local information within the input

patches.
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Chapter 6

Conclusion

We present an encoder–decoder architecture augmented with Hybrid Structure-Guided

Feature Extractors (HSGFEs) to effectively enhance low-light images. These mod-

ules leverage structural cues, extracted from the input by color-invariant edge de-

tector, to preserve fine-grained details, combining dilated residual dense blocks with

transformer layers guided by structural priors. To further address scale variation, a

semantic-aligned, scale-aware module is incorporated, and skip connections are main-

tained to preserve spatial consistency throughout the network. Our design enables

robust and detail-aware low-light enhancement across diverse lighting conditions. Ex-

tensive experiments validate the effectiveness of our method, which achieveds the best

PSNR score and second-best overall performance among 28 teams globally in

the NTIRE 2025 Low Light Enhancement Challenge [41].
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