
SCIRAG: A RETRIEVAL-FOCUSED

FINE-TUNING STRATEGY FOR SCIENTIFIC

DOCUMENTS

SCIRAG: A RETRIEVAL-FOCUSED FINE-TUNING STRATEGY

FOR SCIENTIFIC DOCUMENTS

By CHARANGAN VASANTHARAJAN,

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfillment of the Requirements for

the Degree Master of Applied Science

McMaster University © Copyright by Charangan Vasantharajan,

April 2025

https://gs.mcmaster.ca/
http://www.mcmaster.ca/

McMaster University

MASTER OF APPLIED SCIENCE (2025)

Hamilton, Ontario, Canada (Electrical and Computer Engineering)

TITLE: SciRAG: A Retrieval-Focused Fine-Tuning Strategy for

Scientific Documents

AUTHOR: Charangan Vasantharajan

BSc in Computer Science and Engineering,

University of Moratuwa, Sri Lanka

SUPERVISOR: Prof. Thia Kirubarajan

NUMBER OF PAGES: xiv, 90

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

Abstract

Large Language Models (LLMs) have achieved remarkable success in general-purpose

natural language understanding and generation. However, their effectiveness dimin-

ishes in scientific and technical domains, where documents contain dense mathemati-

cal notation, complex layouts, and specialized terminology. These characteristics pose

significant challenges for traditional LLM pipelines, often resulting in hallucinated

outputs, misinterpretation of formulas, and failures in retrieving relevant context.

This thesis introduces SciRAG, a Retrieval-Focused Fine-Tuning Strategy de-

signed specifically for scientific documents. SciRAG combines structure-preserving

document parsing, context-aware chunking, and domain-adapted fine-tuning using

Low-Rank Adaptation (LoRA) to enhance an LLM’s ability to understand and gen-

erate scientifically accurate content. The system incorporates a custom Retrieval-

Augmented Generation (RAG) framework that supports semantic alignment of math-

ematical expressions and technical language across large corpora.

Experimental evaluations demonstrate that SciRAG achieves strong performance

in scientific question answering and mathematical reasoning. Notably, the model at-

tains 70% accuracy on the GSM8k benchmark, alongside high retrieval and generation

quality, achieving a Context Recall score of 0.85, Factual Correctness of 0.45, Faith-

fulness of 0.45, and Semantic Similarity of 0.94. These results underscore SciRAG’s

iii

effectiveness in bridging the gap between general-purpose LLMs and domain-specific,

mathematically grounded language understanding.

iv

Acknowledgments

I would like to express my heartfelt gratitude to my family for their unwavering

support and encouragement throughout my academic journey. My deepest thanks go

to my mother, and my brothers, whose love and understanding created a nurturing

environment that made this work possible.

I am also profoundly grateful to my friends and colleagues who offered insightful

feedback and moral support, especially during the challenging phases of this project.

Special thanks are due to Dr. Ratnasingham Tharmarasa for his valuable suggestions.

Finally, I extend my sincere appreciation to my supervisor, Prof. Thia Kirubara-

jan, whose expert guidance, constructive criticism, and continuous encouragement

were instrumental in shaping this thesis. His mentorship has been invaluable to my

personal and professional development.

v

Table of Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Statement . 3

1.3 Organization of the Thesis . 5

2 Related Papers and Theory 8

2.1 Large Language Models . 8

2.1.1 The Transformer Architecture 9

2.1.1.1 Tokenizer . 10

2.1.1.2 Attention Mechanism 11

2.1.1.2.1 Scaled Dot-Product Attention. 11

2.1.1.2.2 Multi-Head Attention. 12

2.1.1.2.3 Mathematical Example. 12

2.1.1.3 Loss Functions . 13

2.1.1.3.1 Alternative Objectives. 14

vi

2.1.2 Rise of Large Language Models 14

2.1.2.1 Decoder-Only Transformers and Their Controllability 16

2.1.2.1.1 Context Length. 17

2.1.2.1.2 Temperature. 17

2.1.2.1.3 Maximum New Tokens. 17

2.1.3 Advantages and Limitations of LLMs 18

2.1.3.0.1 Advantages: 18

2.1.3.0.2 Limitations: 19

2.1.3.0.3 Overcoming Domain-Specific Limitations: . 20

2.1.4 Finetuning an LLM . 21

2.1.4.0.1 Types of Fine-Tuning: 21

2.1.4.0.2 Supervised Fine-Tuning with an Instruction

Tuning Dataset: 22

2.1.4.0.3 Parameter-Efficient Fine-Tuning with LoRA: 22

2.1.4.0.4 Comparison of Fine-Tuning Strategies: . . . 24

2.1.4.0.5 Practical Considerations: 26

2.2 Retrieval-Augmented Generation (RAG) 26

2.2.1 Overview of the RAG Pipeline. 27

2.2.2 Document Indexing and Retrieval 27

2.2.3 Mathematical Formulation of Retrieval. 28

2.2.3.0.1 Integrating Retrieval with Generation. . . . 28

2.2.4 RAG Evaluation - RAGAS . 29

2.2.4.1 Faithfulness (FA) . 29

2.2.4.2 Answer Relevance (AR) 29

vii

2.2.4.3 Context Relevance (CR) 30

2.2.5 Advanced RAG Techniques 30

2.2.6 Benefits and Challenges of RAG 31

2.3 Document Processing for Scientific Documents 32

2.3.1 Traditional PDF Extraction Methods 32

2.3.2 Advanced Extraction Using the Facebook Nougat Model . . . 33

2.3.3 Handling Mathematical Content 35

2.3.4 Benefits for Scientific Documents 35

2.3.5 Workflow for Indexing Extracted Documents 36

3 Data Collection and Preprocessing 38

3.1 Data Acquisition . 39

3.2 Document Conversion to Markdown 39

3.2.1 Preparing the Instruction Tuning Dataset 41

3.2.1.0.1 1. Chunking the Markdown Files. 42

3.2.1.0.2 2. Q&A Generation via ChatGPT API. . . 42

3.2.1.0.3 3. Constructing the Training Examples. . . 45

3.2.2 Dataset Statistics . 47

4 Model Fine-Tuning 49

4.1 Base Model (Llama 3 8B) . 49

4.1.0.0.1 Model Selection Justification: 50

4.1.0.0.2 Key Features and Capabilities: 50

4.1.0.0.3 Integration into Our Fine-Tuning Pipeline: . 52

4.2 Fine-Tuning . 52

viii

4.2.1 Hyperparameter Settings . 53

4.2.2 Hardware Requirements . 53

4.2.3 Dataset Splits . 53

4.2.4 Prompt for Fine-Tuning . 54

4.3 Results . 55

4.4 Discussion . 58

4.4.1 Training Dynamics . 58

4.4.1.0.1 Continuously Decreasing Loss. 58

4.4.1.0.2 Increasing and Fluctuating Gradient Norm. 59

4.4.1.0.3 Warm-Up and Decay in Learning Rate. . . . 60

4.4.2 Output Quality . 60

4.4.3 Enhanced Mathematical Rendering. 61

4.4.4 Domain-Specific Relevance. 62

4.4.5 Practical Implications and Worth. 63

4.4.6 Future Work. 64

5 RAG Chatbot Development 65

5.1 Data Processing . 65

5.1.1 File Ingestion and Supported File Types 66

5.1.2 Text Chunking . 66

5.1.3 Cleaning and Preprocessing 67

5.2 Embedding Model . 68

5.3 Vector Database . 69

5.3.1 Indexing . 69

5.3.2 Retrieval . 70

ix

5.4 LLM Support . 72

5.5 Response Generation . 73

5.5.0.0.1 Step 1: Standalone Question Formation . . 74

5.5.0.0.2 Step 2: Context Retrieval 75

5.5.0.0.3 Step 3: Final Response Generation 75

5.6 Interface and Deployment . 76

5.6.1 User Interface and Usage Workflow 76

5.6.2 Additional Features . 78

5.6.3 Deployment . 78

6 Evaluation and Discussion 81

7 Conclusion 84

x

List of Figures

2.1 High-level schematic of the Transformer architecture, consisting of an

encoder and decoder. Each block features multi-head attention, feed-

forward layers, and residual connections (adapted from [23]). 9

2.2 Conceptual diagram of the multi-head self-attention process, showcas-

ing how queries, keys, and values are computed and combined in parallel. 11

2.3 Schematic of LoRA: The pretrained weight matrix W is augmented

with low-rank matrices A and B such that only A and B are updated

during fine-tuning. 23

2.4 Architecture diagram of the Facebook Nougat model. The Swin Trans-

former encoder takes a document image and converts it into latent em-

beddings, which are subsequently converted to a sequence of tokens in

a autoregressive manner. 34

3.1 Data Flow Diagram for Finetuning 38

3.2 Original Page vs Converted Markdown format 41

3.3 Statistics of the Dataset: Distributions of question lengths, answer

lengths, and context lengths. 47

4.1 Comparative Performance of Meta Llama 8B, 70B, and 405B Models

Against Competing Approaches . 51

xi

4.2 Training Diagnostics: (a) Loss over Steps, (b) Gradient Norm, and (c)

Learning Rate. 57

4.3 Output Quality Comparison (I): Fine-Tuned LLM vs. Base LLM . . . 61

4.4 Output Quality Comparison (II): Fine-Tuned LLM vs. Base LLM . . 62

4.5 Output Quality Comparison (III): Fine-Tuned LLM vs. Base LLM . . 63

5.1 Comparison of Context Recall Across Embedding Models, Including

Retrieval Latency, Embedding Dimensions, and Model Sizes. 71

5.2 Gradio-based user interface for the RAG chatbot. The left sidebar

provides a drag-and-drop area for uploading PDF documents, while

the main panel displays the chat window. 76

5.3 Gradio-based user interface for the RAG chatbot when the model se-

lected. The left sidebar provides a dropdown for choosing the model

type and model name, while the main panel displays the chat window. 77

5.4 Files Section where users can review their uploaded documents. . . . 78

5.5 Evaluation Results: A section where users can view the dataset and

corresponding plots generated for the selected model’s evaluation. . . 79

5.6 Evaluation Results: A section where users can view the relevant metrics

and plots associated with the evaluation of the selected model. 80

xii

List of Tables

2.1 Examples of how different tokenization methods segment the sentence

"satellite tracking". 10

2.2 Comparison of full fine-tuning versus LoRA-based fine-tuning. 26

3.1 Number of papers collected per keyword category. 39

3.2 Key parameters of the document conversion processor. 40

3.3 Example final dataset format for instruction tuning. Each entry com-

prises a technical question, its context, and a detailed answer. 46

4.1 Key hyperparameters used for fine-tuning the Llama 3 8B model with

LoRA. 53

4.2 Hardware configuration used for fine-tuning the model. 54

4.3 Fine-Tuned LLM Metrics for Training and Evaluation 56

4.4 GSM8k Evaluation . 57

5.1 Supported LLM types and their key configuration parameters. 73

6.1 Comparison of LLMs evaluated on retrieval metrics. The retrieval

metric used is Context Recall. Values represent normalized scores (0

to 1). 82

xiii

6.2 Comparison of LLMs evaluated on generation metrics. The genera-

tion metrics include Factual Correctness, Faithfulness, and Semantic

Similarity. Values represent normalized scores (0 to 1). 82

xiv

Chapter 1

Introduction

1.1 Background and Motivation

Recent progress in Large Language Models (LLMs), exemplified by systems such as

ChatGPT and Gemini, has brought about significant breakthroughs in tasks ranging

from open-domain question answering to dialogue management [4]. These models,

pre-trained on massive and diverse web-scale corpora, showcase a remarkable capacity

to understand and generate human-like text. In many general-domain tasks, including

even some technical question answering, they perform impressively due to the breadth

of their training data.

However, the limitations of general-purpose LLMs become apparent when ad-

dressing highly specialized domains. While they exhibit statistical fluency, they often

fail silently when confronted with unfamiliar concepts, particularly in scientific and

mathematical fields [24, 13]. Unlike general text, scientific documents typically feature

1

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

complex layouts (multi-column formats, embedded tables and figures), dense math-

ematical notation (often represented as LaTeX code or image regions), and domain-

specific jargon. Such characteristics pose significant challenges: tokenizers trained

on general text frequently fragment mathematical expressions, and pre-trained LLMs

lack sufficient grounding to reliably interpret or generate domain-specific scientific

content [27].

Consider a scenario where an LLM is tasked with answering a question based

on a corpus of over 10,000 scientific PDFs rich in mathematical formulas. Without

prior exposure to the specific documents or the ability to semantically parse complex

mathematical notation, even state-of-the-art open-source models often fail: they mis-

interpret formulas, cannot search effectively across the entire corpus, and generate

incorrect or vague answers. This inability stems not only from the lack of direct ex-

posure but also from the inherent difficulty in representing structured mathematics

purely as linear text.

To mitigate hallucinations and knowledge gaps, many researchers have adopted

Retrieval-Augmented Generation (RAG) frameworks [7]. RAG techniques retrieve

relevant external text and provide it to the model as additional context during gen-

eration, helping to ground the output in verifiable information. However, while

RAG substantially reduces hallucinations in open-domain applications, it is not a

panacea. Scientific documents present unique hurdles: poor extraction quality can

garble critical formulas, retrieval embeddings may overlook technical context, and

models unfamiliar with domain-specific concepts may misinterpret even correctly re-

trieved data. Without structured document parsing and domain-aware embeddings,

retrieval pipelines risk silently failing.

2

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Meanwhile, fine-tuning an LLM on domain-specific datasets offers a complemen-

tary pathway by enriching the model’s internal knowledge representations [30, 25].

Fine-tuning enables models to become more sensitive to the specialized vocabulary

and mathematical structures characteristic of scientific discourse. Yet, standalone

fine-tuning also has limitations: it does not ensure that outputs are grounded in the

latest factual knowledge unless combined with dynamic retrieval mechanisms.

Given these challenges, a hybrid approach—integrating domain-adapted fine-tuning

with robust retrieval mechanisms—is crucial. Only a few recent works have explored

this combination explicitly [24, 28], leaving an important gap in the design of LLM

pipelines for scientific domains. Addressing this gap demands a strategy that (i) pre-

serves structured mathematical and technical content during parsing, (ii) fine-tunes

models on carefully curated domain-specific data, (iii) ensures context-aware chunking

for retrieval, and (iv) evaluates end-to-end performance systematically.

In this thesis, we propose a cohesive pipeline that bridges this gap—combining

LoRA-based fine-tuning with structured document parsing and a RAG framework

tailored to scientific and technical applications such as target tracking. Our approach

results in more faithful, relevant, and mathematically precise outputs, demonstrating

substantial improvements over existing methods.

1.2 Problem Statement

Despite the promise of pairing domain-specific fine-tuning with retrieval mechanisms,

several persistent hurdles remain—especially in scientific and technical domains:

3

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Specialized Vocabulary: Scientific documents often introduce specialized jar-

gon and abbreviations that general-purpose LLMs fail to recognize or properly

contextualize.

• Mathematical Complexity: Equations embedded as LaTeX code or images

are difficult to tokenize and comprehend without explicit layout and syntax

preservation.

• Context Overload: Scientific corpora are vast, and naively retrieving and

reading through large volumes of text is computationally infeasible for standard

models.

• Hallucinations in High-Stakes Settings: Even fine-tuned LLMs may gen-

erate unsupported claims when lacking retrieval grounding, which is critical in

domains where precision and verifiability are paramount.

Moreover, RAG-based methods, while helpful in reducing hallucinations, encounter

notable limitations:

• Poor extraction pipelines result in missing or corrupted formulas, undermining

retrieval quality.

• Embedding models often fail to capture domain-specific semantics, leading to

weak retrieval matches.

• Standard RAG systems lack mechanisms to resolve mathematical symbols across

documents, critically impairing question-to-context alignment.

In practice, existing pipelines often exhibit failure modes such as:

4

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Noisy Extraction: Mathematical content is lost or distorted during prepro-

cessing.

• Embedding Gaps: Technical nuance is missed during query-document simi-

larity computation.

• Generalization Failures: Models produce vague or irrelevant completions

due to insufficient domain-specific tuning.

To address these challenges, this thesis advocates for a pipeline that:

• Fine-tunes LLMs explicitly on mathematical and technical question answering;

• Parses documents to preserve LaTeX structure and context;

• Implements context-aware document chunking to enhance retrieval fidelity;

• Designs an evaluation loop to assess the integration of fine-tuning and retrieval

components.

Through this approach, we aim to bridge the gap between general-purpose lan-

guage understanding and domain-specific, mathematically precise knowledge genera-

tion.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows:

5

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Chapter 2: Literature Review

Surveys the evolution of chatbots, outlines the development of fine-tuning meth-

ods for LLMs, and discusses the merits and limitations of RAG approaches in

specialized domains.

• Chapter 3: Data Collection and Preprocessing

Explains how scientific documents are sourced and prepared, with a focus on

extracting, converting, and structuring complex mathematical and textual in-

formation.

• Chapter 4: LLM Fine-Tuning

Describes multiple strategies—ranging from full to parameter-efficient fine-tuning—and

their relevance to scientific content, considering domain-specific challenges.

• Chapter 5: System Design and Architecture

Introduces the conceptual framework that integrates fine-tuned models with an

external retrieval pipeline to ground responses in authoritative domain knowl-

edge.

• Chapter 6: Experimental Setup and Evaluation

Presents the methodology for assessing the performance of the combined frame-

work, using a mix of quantitative metrics and qualitative analyses.

• Chapter 7: Discussion and Future Work

Reflects on the results, identifies potential enhancements, and proposes avenues

for applying such integrated approaches in other high-stakes or data-intensive

fields.

6

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Chapter 8: Conclusion

Summarizes the core findings and reiterates the importance of uniting domain-

specific fine-tuning with robust retrieval to better address the complexities of

scientific communication.

7

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Chapter 2

Related Papers and Theory

This chapter examines the existing body of knowledge relevant to the development

of a Retrieval-Augmented Generation (RAG) chatbot for scientific documents in the

target tracking domain. It covers the evolution of chatbots and Large Language Mod-

els (LLMs), the principles and applications of RAG, previous implementations and

architectures, and the state-of-the-art in document extraction and question-answer

generation. Finally, it identifies key gaps in the literature that this research aims to

address.

2.1 Large Language Models

Large Language Models (LLMs) have reshaped Natural Language Processing (NLP),

enabling applications such as text generation, summarization, question answering,

and conversational AI. Rooted in the Transformer architecture, they leverage mas-

sive corpora for pre-training and often excel in zero- or few-shot settings. This

8

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

section explores the technical underpinnings of LLMs, beginning with the Trans-

former framework and its core components—tokenization, attention, loss functions,

and temperature—followed by a discussion on the rise of large-scale models, their

advantages and limitations, and prevalent fine-tuning strategies.

2.1.1 The Transformer Architecture

Figure 2.1: High-level schematic of the Transformer architecture, consisting of an
encoder and decoder. Each block features multi-head attention, feed-forward layers,

and residual connections (adapted from [23]).

Originally introduced by Vaswani et al. [23], the Transformer architecture revo-

lutionized Natural Language Processing (NLP) by eliminating recurrence in favor of

9

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

a self-attention mechanism that processes entire sequences in parallel. Structurally,

a Transformer can be divided into an encoder and a decoder stack (though variants

exist with only an encoder or only a decoder). Each stack is composed of multiple

layers containing multi-head attention and position-wise feed-forward networks.

Figure 2.1 illustrates a simplified view of the Transformer. The encoder trans-

forms the input sequence into contextual representations using self-attention, while

the decoder generates the output sequence in an autoregressive manner, leveraging

both self-attention and cross-attention to the encoder’s output.

2.1.1.1 Tokenizer

A critical step in preparing text for Transformer models is tokenization, which seg-

ments raw text into tokens (subwords, characters, etc.). Common tokenization meth-

ods include Byte-Pair Encoding (BPE) [20], WordPiece [26], and SentencePiece [12].

BPE, for instance, iteratively merges the most frequent character pairs into subword

units, forming a compact yet expressive vocabulary.

Method Input Tokenized Output

BPE (Byte-Pair Encod-
ing)

"satellite tracking" " sate l l ite track ing"

WordPiece "satellite tracking" "sat ell ite track ##ing"

SentencePiece "satellite tracking" " satellite tracking"

Table 2.1: Examples of how different tokenization methods segment the sentence
"satellite tracking".

Table 2.1 provides a hypothetical example of BPE tokenization. Once tokenized,

each subword or token is mapped to an integer index and passed into the Transformer’s

embedding layer.

10

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

2.1.1.2 Attention Mechanism

Figure 2.2: Conceptual diagram of the multi-head self-attention process, showcasing
how queries, keys, and values are computed and combined in parallel.

The attention mechanism is the core innovation of the Transformer [10], enabling

it to learn context across entire sequences without relying on recurrence (Figure 2.2).

Each token in the sequence attends to every other token, allowing the model to

capture both local and long-range dependencies in parallel.

2.1.1.2.1 Scaled Dot-Product Attention. For an input matrix of token em-

beddings X ∈ Rn×d, the model derives three learned projections:

Q = XWQ, K = XWK , V = XW V ,

where WQ,WK ,W V ∈ Rd×d are trainable parameters, and Q,K, V ∈ Rn×d are re-

ferred to as query, key, and value matrices, respectively. The scaled dot-product

attention is computed as:

Attention(Q,K, V) = softmax
(QKT

√
dk

)
V,

11

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

where dk is the dimensionality of the key vectors (e.g., d/num heads). The division

by
√
dk helps stabilize gradients by scaling down the dot products when vectors are

high-dimensional.

2.1.1.2.2 Multi-Head Attention. To capture different types of relationships

simultaneously, the Transformer employs multi-head attention. It partitions Q,K, V

into h heads:

Qi = XWQ
i , Ki = XWK

i , Vi = XW V
i ,

where i = 1, 2, . . . , h. Each head performs scaled dot-product attention indepen-

dently. The outputs are then concatenated and passed through a linear transforma-

tion, typically denoted WO:

MHA(Q,K, V) = Concat
(

head1, . . . , headh

)
WO.

Here, headi = Attention
(
Qi, Ki, Vi

)
. This multi-headed design enables the model

to learn various types of dependencies (e.g., syntactic vs. semantic) within the same

sequence.

2.1.1.2.3 Mathematical Example. Consider a toy sequence {x1, x2, x3} with

embedding dimension d = 4. Let us focus on a single attention head:

X =


xT1

xT2

xT3

 ∈ R3×4, WQ,WK ,W V ∈ R4×4.

12

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Then

Q = XWQ, K = XWK , V = XW V .

If Q,K, V ∈ R3×4, we compute

QKT ∈ R3×3,
QKT

√
4
, and softmax

(QKT

√
4

)
∈ R3×3.

The final attended output is

softmax
(QKT

2

)
V ∈ R3×4.

Applying multi-head attention repeats this process multiple times (with different

WQ,WK ,W V matrices per head) before concatenating and projecting.

2.1.1.3 Loss Functions

Transformers typically optimize a cross-entropy loss for language modeling, where

the goal is to maximize the probability of the correct next token given the context. If

yt is the ground truth token at time step t and ŷt is the model’s predicted distribution

over the vocabulary, the cross-entropy loss is:

L = −
T∑
t=1

log
(
ŷt[yt]

)
,

where ŷt[yt] is the predicted probability of the correct token yt. In practice, this sum-

mation is averaged over all tokens in a batch. Minimizing cross-entropy encourages

the model to assign high probability to the ground-truth tokens, thereby improving

its predictive accuracy.

13

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

2.1.1.3.1 Alternative Objectives. While cross-entropy is the standard for next-

token prediction, certain tasks (e.g., summarization or dialogue) may employ addi-

tional objectives:

• Sequence-Level Objectives: Metrics like ROUGE or BLEU [17, 14] may be

optimized via reinforcement learning or minimum risk training to align outputs

more closely with desired reference texts.

• Contrastive Loss: Used in settings where the model must distinguish correct

contexts from distractors, often in retrieval-augmented systems.

Nevertheless, cross-entropy remains the primary choice for most Transformer-

based language models, especially in pre-training, where the model learns general-

purpose linguistic representations.

2.1.2 Rise of Large Language Models

Since the advent of the Transformer, the field of language modeling has witnessed an

exponential increase in model scale. Early models, such as GPT-2 with approximately

1.5 billion parameters, have given way to models like GPT-3, GPT-4, and Llama 2,

which boast tens to hundreds of billions of parameters. This dramatic scaling is

underpinned by empirical scaling laws that relate model performance to the number

of parameters N , the amount of training data D, and the available compute C.

One commonly observed relationship is that the generalization error or loss L

decreases following a power law with respect to model size:

L(N) ≈ L∞ + k N−α,

14

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

where:

• L∞ is the irreducible error floor,

• k is a constant,

• α is an empirically determined exponent.

Similarly, the benefit of additional training data can be described by:

L(D) ≈ L∞ + cD−β,

where c and β are constants that depend on the model architecture and task. These

equations highlight that while increasing model size and training data consistently

improves performance, the returns diminish according to a power-law relationship.

Large language models (LLMs) are typically trained using the standard language

modeling objective:

L(θ) = − 1

|D|
∑
x∈D

log pθ(x),

where pθ(x) denotes the probability that the model with parameters θ assigns to token

x and D is the training dataset. As models scale, they not only capture more detailed

statistical regularities of the language but also exhibit emergent capabilities such as

in-context learning and effective few-shot performance.

Beyond the standard language modeling loss, large-scale systems often incorporate

additional objectives to handle the heterogeneity of the training data (for example,

when integrating multimodal inputs or specialized tasks). In such cases, the overall

15

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

training objective may be formulated as a composite loss:

Ltotal = λ1 LLM + λ2 Laux,

where:

• LLM is the standard language modeling (cross-entropy) loss,

• Laux represents auxiliary losses (such as retrieval or multimodal alignment ob-

jectives),

• λ1 and λ2 are hyperparameters that balance the contribution of each component.

The integration of these scaling laws and composite loss functions distinguishes

large language models from their smaller, conventional Transformer counterparts.

With access to massive compute resources and vast training corpora, LLMs have

demonstrated remarkable proficiency across diverse NLP tasks, setting new bench-

marks in both generalization and task-specific performance.

2.1.2.1 Decoder-Only Transformers and Their Controllability

A significant subset of LLMs employs a decoder-only architecture, as popularized by

the GPT series. In these models, the entire sequence—including both the prompt

and the generated tokens—is processed by a stack of causally masked self-attention

layers, ensuring that each token is generated based solely on preceding tokens. This

autoregressive setup simplifies the architecture while enabling highly flexible text

generation.

Key controllability aspects of decoder-only models include:

16

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

2.1.2.1.1 Context Length. The context length defines the maximum number

of tokens the model can consider during generation. Typically determined during

pre-training by the design of the positional embeddings, a model with a context

length of L can attend to up to L tokens. Recent advancements, such as positional

encoding interpolation or extended training with longer sequences, have pushed these

limits further, allowing models to handle context lengths well beyond the original

design (e.g., from 2048 to 4096 tokens or more). Increasing the context length is

critical for maintaining coherence in long passages and for tasks that require extensive

background knowledge.

2.1.2.1.2 Temperature. During inference, the model outputs a logit vector z ∈

RV for the next token, where V is the vocabulary size. The temperature parameter

T scales these logits before applying the softmax:

p(xt | x<t) ∝ exp
(zt
T

)
.

Lower temperatures (T < 1) sharpen the probability distribution, making the model’s

predictions more deterministic, while higher temperatures (T > 1) produce a flatter

distribution that introduces greater diversity and randomness in the output. Ad-

justing the temperature is a straightforward yet powerful means of controlling the

creativity and risk of hallucination in generated text.

2.1.2.1.3 Maximum New Tokens. The max new tokens parameter governs the

number of tokens that the model is allowed to generate beyond the provided prompt.

This parameter is distinct from the total sequence length (which includes the prompt)

17

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

and is essential for managing both computational cost and output length. For exam-

ple, setting max new tokens to 100 limits the generation to 100 tokens, regardless of

the prompt length. This controllability is crucial for applications with strict output

length requirements.

Together, these parameters—context length, temperature, and max new tokens—offer

fine-grained control over the behavior of decoder-only Transformers during inference.

By tuning these parameters appropriately, practitioners can strike a balance between

output diversity and factual accuracy, manage resource usage effectively, and tailor

the generation process to the specific requirements of the task at hand.

2.1.3 Advantages and Limitations of LLMs

Large Language Models (LLMs) have set new benchmarks in natural language under-

standing and generation, largely due to their vast pre-training on diverse datasets and

their flexible Transformer-based architectures. However, while they offer significant

advantages, they also face limitations—especially when applied to domain-specific

tasks. In this section, we outline the primary advantages of LLMs, discuss their in-

herent limitations, and explore strategies to overcome these challenges for specialized

applications.

2.1.3.0.1 Advantages:

• Broad Knowledge and Zero/Few-Shot Learning: LLMs capture extensive

statistical regularities and world knowledge from massive corpora [29], enabling

them to generalize well to a variety of tasks with little to no additional training.

This makes them effective for applications ranging from text summarization to

18

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

dialogue systems.

• Flexible Contextual Representations: Through self-attention mechanisms,

LLMs build rich, context-sensitive embeddings that capture complex syntactic

and semantic relationships. This flexibility is crucial for tasks requiring nuanced

understanding of language.

• Scalability: Empirical scaling laws suggest that performance continues to im-

prove with increased model size and training data. This scalability underpins

recent breakthroughs in language modeling.

2.1.3.0.2 Limitations:

• Domain-Specific Performance: Although pre-trained on large and diverse

datasets, LLMs may struggle with technical language, specialized jargon, and

complex symbolic representations (e.g., mathematical notation) common in do-

mains such as scientific research, legal texts, or medical literature [1]. These

models might produce outputs that are fluent but factually inaccurate or mis-

leading when the domain shifts significantly from their training distribution.

• Hallucinations: In generating text, LLMs can produce information that is

plausible-sounding but not grounded in any verifiable data. This is particularly

problematic in high-stakes or technical applications, where factual accuracy is

paramount.

• Resource Constraints: The computational and memory requirements for

training and inference scale with model size. This can limit the practical deploy-

ment of LLMs, especially when extended context lengths or real-time responses

19

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

are required.

• Interpretability and Bias: The black-box nature of LLMs makes it chal-

lenging to interpret their decisions [2]. Additionally, biases present in training

data can be amplified, leading to unfair or inappropriate outputs in sensitive

contexts.

2.1.3.0.3 Overcoming Domain-Specific Limitations: To mitigate these chal-

lenges, several strategies have been proposed and are actively researched:

• Domain-Specific Fine-Tuning: By fine-tuning LLMs on specialized corpora,

the models can adapt their representations and language generation to better

handle technical vocabulary, precise terminologies, and complex structures in-

herent in specific domains. Techniques such as parameter-efficient fine-tuning

(e.g., LoRa, adapters) allow adaptation without updating the entire model,

thereby reducing resource overhead.

• Retrieval-Augmented Generation (RAG): Integrating external knowledge

bases via retrieval mechanisms helps ground the model’s outputs in authorita-

tive, up-to-date sources. This approach can reduce hallucinations and improve

factual correctness, particularly in domains where accurate information is crit-

ical.

• Customized Preprocessing and Tokenization: For domains with special-

ized symbols and notation (e.g., scientific and mathematical texts), tailored

tokenization schemes or preprocessing pipelines (e.g., converting equations into

LaTeX or specialized markup) can enhance the model’s ability to understand

and generate domain-specific content.

20

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Context-Length Extension Techniques: Modifying positional encoding

schemes (e.g., through interpolation or extrapolation) allows LLMs to handle

longer sequences, which is crucial for tasks that require integrating extensive

domain-specific information.

2.1.4 Finetuning an LLM

Although large language models (LLMs) are pretrained on vast and diverse corpora,

fine-tuning is essential to adapt these models for specialized tasks and domains. Fine-

tuning adjusts the model’s parameters so that it performs optimally on a specific task,

and several paradigms have emerged to achieve this:

2.1.4.0.1 Types of Fine-Tuning:

• Full Fine-Tuning: In this approach, all parameters of the pretrained model

are updated on a task-specific dataset. While this method can achieve high

performance, it is computationally expensive and may lead to overfitting when

the fine-tuning dataset is small.

• Supervised Fine-Tuning (Instruction Tuning): Supervised fine-tuning in-

volves training the model on a labeled dataset where inputs are paired with

desired outputs. A popular variant is instruction tuning, in which the model is

exposed to a diverse set of tasks described in natural language. For example,

an instruct tuning dataset might contain pairs of instructions (or questions)

and their corresponding answers, enabling the model to learn how to follow

task-specific directives.

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Parameter-Efficient Fine-Tuning: Techniques such as adapters, prefix tun-

ing, and Low-Rank Adaptation (LoRA) update only a small subset of the model

parameters. This reduces both the computational cost and the risk of overfit-

ting, while still allowing the model to learn task-specific nuances.

2.1.4.0.2 Supervised Fine-Tuning with an Instruction Tuning Dataset:

In supervised fine-tuning, the model is trained on a dataset of instruction-response

pairs. For instance, consider an instruct tuning dataset where each example is of the

form:

Input: "Explain the role of tokenization in NLP."

Output: "Tokenization converts raw text into tokens, which are the basic

units that the model can process."

During fine-tuning, the model’s objective is typically to minimize the cross-entropy

loss over the generated sequence:

L(θ) = −
T∑
t=1

log pθ(xt | x<t, I),

where I represents the instruction or prompt, and xt is the token at position t.

This process allows the model to learn both the semantics of the instruction and the

appropriate style and content of the response.

2.1.4.0.3 Parameter-Efficient Fine-Tuning with LoRA: Low-Rank Adap-

tation (LoRA) is a prominent parameter-efficient fine-tuning method [9]. Instead of

updating all the parameters in the model, LoRA modifies selected weight matrices

by injecting low-rank updates as illustrated in Figure 2.3. Consider a weight matrix

22

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Figure 2.3: Schematic of LoRA: The pretrained weight matrix W is augmented with
low-rank matrices A and B such that only A and B are updated during fine-tuning.

W ∈ Rd×k in the model. In LoRA, the updated weight matrix W ′ is defined as:

W ′ = W + ∆W, with ∆W = AB,

where:

• A ∈ Rd×r and B ∈ Rr×k are the trainable low-rank matrices,

• r is the rank, chosen such that r � min(d, k).

This formulation significantly reduces the number of trainable parameters, as the

additional parameter count is d×r+r×k rather than d×k. Equation ?? summarizes

the LoRA update:

W ′ = W + AB with A ∈ Rd×r, B ∈ Rr×k, r � min(d, k).

During fine-tuning, only A and B are updated while W remains frozen. This approach

23

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

not only decreases memory usage but also accelerates training.

2.1.4.0.4 Comparison of Fine-Tuning Strategies: Full-parameter fine-tuning

takes the LLM ”as is” and trains all of its parameters on a given dataset—essentially

continuing the supervised training that was used during pre-training [18]. This

method typically achieves slightly higher model quality because every parameter is

allowed to adjust to the specific task. However, it is computationally expensive, re-

quires substantial GPU memory, and the resulting fine-tuned model checkpoint is

large. Additionally, full fine-tuning can be more prone to overfitting, especially when

the fine-tuning dataset is limited.

In contrast, Low-Rank Adaptation (LoRA) is a parameter-efficient fine-tuning

technique that freezes the original model weights and introduces a small set of addi-

tional trainable parameters. These extra parameters form a LoRA checkpoint that is

orders of magnitude smaller than a fully fine-tuned model. The key benefits of LoRA

include:

• Resource Efficiency: Since the base model weights remain frozen, the op-

timization process requires significantly fewer computational resources. This

enables fine-tuning on smaller hardware clusters.

• Storage and Deployment Efficiency: The LoRA checkpoint, consisting

solely of the low-rank matrices, is very small. In a deployment scenario, the

pretrained model can be loaded once and different task-specific LoRA check-

points can be quickly swapped in, allowing for efficient multi-task serving.

• Regularization Effect: Optimizing only a limited set of parameters tends to

prevent the model from ”forgetting” its general pretrained knowledge, thereby

24

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

acting as a form of regularization.

• No Additional Inference Latency: Because the low-rank updates can be

merged with the frozen weights during inference, LoRA does not introduce

extra latency—unlike methods that add additional layers, such as adapter-based

approaches.

Empirical studies have shown that LoRA performs on par with, and sometimes

even better than, full fine-tuning on various LLMs (e.g., RoBERTa, DeBERTa, GPT-

2, GPT-3) despite updating far fewer parameters [21]. The choice between full fine-

tuning and LoRA generally depends on several factors:

• Hardware Resources: When GPU memory and storage are limited, or when

deploying multiple fine-tuned models simultaneously, LoRA is preferable.

• Model Size: For very large LLMs (e.g., GPT-3 175B), which are often over-

parameterized for many downstream tasks, LoRA’s low-rank updates are suffi-

cient to capture the task-specific nuances.

• Data Availability: Full fine-tuning can be advantageous when there is a large

amount of high-quality task-specific data that benefits from updating the entire

model. Conversely, if the dataset is small, the regularization effect of optimizing

fewer parameters (as in LoRA) can prevent overfitting.

The following table summarizes the comparison:

In summary, while full fine-tuning offers a slight edge in model quality by allowing

every parameter to adapt, LoRA provides significant advantages in computational

efficiency, storage, and regularization—making it especially attractive for adapting

very large LLMs to specific tasks or domains.

25

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Method Trainable Parameters Memory Overhead
Full Fine-Tuning O(d× k) High
LoRA (with rank r) O(d× r + r × k) Low

Table 2.2: Comparison of full fine-tuning versus LoRA-based fine-tuning.

2.1.4.0.5 Practical Considerations: Supervised fine-tuning with an instruct

tuning dataset refines the model’s ability to follow natural language instructions, while

parameter-efficient methods such as LoRA offer a resource-friendly alternative to full

fine-tuning. The combination of these strategies has proven effective in adapting large-

scale models to specialized domains, improving both task performance and inference

efficiency without incurring the full cost of retraining the entire model.

In summary, fine-tuning an LLM can be accomplished through various strate-

gies—each with its own trade-offs. Supervised fine-tuning using an instruct tuning

dataset aligns the model with desired outputs, and techniques like LoRA enable

efficient adaptation with reduced computational cost, making them particularly well-

suited for domain-specific applications.

2.2 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) is an approach that integrates external knowl-

edge retrieval into the generative process of large language models (LLMs). Instead of

relying solely on the internal parameters of a pretrained model to generate text, RAG

systems dynamically fetch relevant information from an external document corpus.

This not only grounds the generated outputs in up-to-date and verifiable data but

also helps mitigate issues like hallucination and domain-specific inaccuracies [8].

26

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

2.2.1 Overview of the RAG Pipeline.

A typical RAG framework consists of two main components:

1. Retriever: The retriever indexes a large corpus of documents using vector

representations (embeddings). At inference time, given a query (often derived

from the user’s input or the generation context), the retriever identifies and re-

turns the most relevant documents. This process is typically based on similarity

measures computed over high-dimensional embeddings.

2. Generator: The generator (usually an LLM) is conditioned not only on the ini-

tial prompt but also on the retrieved documents. The combined input helps the

model produce outputs that are factually grounded and contextually enriched.

2.2.2 Document Indexing and Retrieval

Document indexing involves converting each document in the corpus into a vector

representation using an encoder (which may be the same or a different network from

the generator). Suppose we have a set of documents {d1, d2, . . . , dN}. Each document

di is transformed into an embedding vi ∈ Rd.

At inference time, given a query q (also embedded as a vector vq ∈ Rd), the

retriever calculates the similarity between vq and each vi using a similarity measure

such as cosine similarity:

sim(vq, vi) =
vq · vi
‖vq‖ ‖vi‖

.

Documents are then ranked based on their similarity scores, and the top k documents

are selected. In practice, approximate nearest neighbor (ANN) search methods (e.g.,

using libraries like FAISS or Chroma) are employed to scale this process to large

27

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

corpora efficiently.

2.2.3 Mathematical Formulation of Retrieval.

Let D = {v1, v2, . . . , vN} be the set of document embeddings. For a query embedding

vq, the retrieval process can be formalized as:

Retrieve(vq) = arg top- k
v∈D

vq · v
‖vq‖ ‖v‖

.

This operation is typically implemented using efficient vector search algorithms that

approximate the nearest neighbors without exhaustively computing the similarity for

every document.

2.2.3.0.1 Integrating Retrieval with Generation. Once the top k documents

are retrieved, they are concatenated (or otherwise combined) with the original query

to form an augmented input:

Iaug = concat(q, di1 , di2 , . . . , dik),

where dij denotes the j-th most relevant document. The generative model is then

conditioned on Iaug to produce the final output:

ŷ = Generator(Iaug).

By incorporating external knowledge in this manner, RAG systems are able to gen-

erate responses that are both contextually rich and factually grounded.

28

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

2.2.4 RAG Evaluation - RAGAS

The RAGAS framework [6] is used to evaluate QA RAG systems along two dimen-

sions: the retrieval component and the generation component. Three key metrics are

employed:

2.2.4.1 Faithfulness (FA)

The Faithfulness metric evaluates whether the generated answer a(q) is grounded in

the retrieved context c(q). It is computed as:

FA =
Number of statements in the answer inferred from the context

Total number of statements in the answer
.

This involves a two-step procedure:

1. An LLM (e.g., GPT-4) extracts individual statements from a(q) using a prompt

(see Figure 6 in Es et al., 2023).

2. A second LLM verifies, for each statement, whether it can be inferred from c(q),

providing a yes/no verdict.

2.2.4.2 Answer Relevance (AR)

Answer Relevance measures if the generated answer directly addresses the original

question. For the answer a(q), an LLM generates five questions {qi}5i=1 based on

a(q). The AR score is computed as the average cosine similarity between the original

question q and each generated question:

AR =
1

5

5∑
i=1

cos(q, qi).

29

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

A high semantic similarity indicates that a(q) is relevant to q.

2.2.4.3 Context Relevance (CR)

Context Relevance evaluates whether the retrieved context c(q) is focused and perti-

nent to the question q. An LLM is tasked with extracting sentences from c(q) that

are important for answering q. The CR score is defined as:

CR =
Number of relevant sentences

Total number of sentences in the context
.

If no relevant sentences are identified, or if the context is deemed insufficient, the

system returns an ”Insufficient Information” flag.

In our experiments, GPT-4 is utilized as the engine behind the evaluation metrics.

2.2.5 Advanced RAG Techniques

Recent research in RAG has explored several advanced strategies to further enhance

performance:

• Dynamic Re-Retrieval: Some frameworks update the retrieved documents

dynamically as the generation proceeds. At each generation step, the model

can re-query the corpus with the current partial output, allowing for continuous

refinement of the context [22].

• Differentiable Retrieval: By making the retrieval process differentiable, it

becomes possible to jointly optimize the retriever and the generator during

fine-tuning. This end-to-end training can lead to more coherent integration of

external knowledge [31].

30

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Hybrid Scoring Functions: While cosine similarity is commonly used, hybrid

scoring functions that combine semantic similarity with additional signals (e.g.,

term frequency–inverse document frequency or learned relevance scores) have

been shown to improve retrieval quality.

• Fusion-in-Decoder: In this approach [11], the generator is designed to fuse

information from multiple retrieved documents within its decoding process.

Rather than simply concatenating retrieved texts, the generator selectively at-

tends to different parts of each document, effectively “fusing” external knowl-

edge with the internal model state.

2.2.6 Benefits and Challenges of RAG

RAG systems offer the significant benefit of grounding generated text in external,

verifiable sources. This leads to improved factual accuracy and better performance

on knowledge-intensive tasks. However, RAG also introduces challenges such as:

• Latency: The retrieval step adds additional computation time, which can im-

pact inference speed.

• Alignment: Ensuring that the retrieved documents are effectively integrated

into the generation process requires careful design and tuning.

• Scalability: Efficiently indexing and searching through extremely large corpora

demands robust, scalable infrastructure.

In summary, Retrieval-Augmented Generation combines the strengths of external

knowledge retrieval and advanced generative modeling. By leveraging efficient index-

ing techniques, similarity measures such as cosine similarity, and innovative strategies

31

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

for integrating retrieved information, RAG systems represent a powerful paradigm for

building LLMs that are both knowledgeable and reliable.

2.3 Document Processing for Scientific Documents

Efficient document extraction is a critical pre-processing step for building retrieval-

augmented systems, especially when the target documents are scientific papers that

often include complex layouts, figures, and mathematical equations. The goal of this

stage is to convert PDFs and other document formats into structured representations

(e.g., text or markdown) that can be indexed into a vector database.

2.3.1 Traditional PDF Extraction Methods

Conventional tools such as pypdf and pdfplumber are widely used for extracting text

from PDFs. These libraries typically operate by parsing the underlying text layer

and basic layout information:

• pypdf: Provides functionality to extract text, metadata, and sometimes the

structure of the PDF. However, it often struggles with preserving the origi-

nal formatting, especially in documents with multiple columns or non-standard

layouts.

• pdfplumber: Offers more advanced features for layout analysis and can cap-

ture spatial relationships between text blocks. This is useful for documents

with tables or side-by-side text, but it still may not accurately handle embed-

ded equations or figures common in scientific literature.

32

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

While these tools are effective for general-purpose extraction, they often fail to capture

the full fidelity of scientific documents, where the precise layout of equations, figures,

and specialized notation is crucial.

2.3.2 Advanced Extraction Using the Facebook Nougat Model

To address the limitations of traditional OCR tools, the Facebook Nougat model

was developed to robustly extract structured content from scientific PDFs by con-

verting them into Markdown. Nougat is specifically designed to handle complex

layouts—including multi-column text, embedded figures, and mathematical equa-

tions—by leveraging a deep neural architecture that combines convolutional feature

extraction with transformer-based sequence modeling [3] as depicted in Figure 2.4.

At a high level, Nougat’s extraction pipeline comprises three stages:

1. Feature Extraction: The model first processes the input PDF page as an im-

age I ∈ R3×H×W . A convolutional neural network (CNN) backbone F extracts

visual features from I, resulting in a feature map:

E = F (I), E ∈ Rn×d,

where n is the number of spatial regions (or patches) and d is the feature

dimension. These features capture both the textual and layout information

present in the document.

2. Contextual Encoding: The extracted features are then enriched with spatial

and sequential information using positional embeddings P . The sum E + P is

fed into a transformer encoder that models both the local and global context of

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

the document:

H = TransformerEncoder(E + P), H ∈ Rn×d.

This encoder is adept at capturing long-range dependencies and the spatial

relationships crucial for understanding complex scientific layouts, such as the

arrangement of equations and figures.

3. Sequence Decoding to Markdown Finally, a transformer-based decoder

converts the contextual embeddings H into a sequence of tokens y1, y2, . . . , yT

that form the Markdown output. This step is trained with a standard cross-

entropy loss:

L = −
T∑
t=1

log pθ(yt | y<t, H),

where pθ(yt | y<t, H) is the probability of generating token yt given the previ-

ously generated tokens and the encoder output. Importantly, the Markdown

output supports embedded LaTeX, ensuring that mathematical expressions are

preserved in their native format.

Figure 2.4: Architecture diagram of the Facebook Nougat model. The Swin
Transformer encoder takes a document image and converts it into latent

embeddings, which are subsequently converted to a sequence of tokens in a
autoregressive manner.

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

2.3.3 Handling Mathematical Content

One of Nougat’s key innovations is its ability to accurately extract and preserve

mathematical formulas. Traditional OCR methods often fail to capture the spatial

relationships in mathematical expressions [19]. Nougat overcomes this challenge by:

• Learning a joint representation of both text and layout, so that elements such

as superscripts, subscripts, fractions, and matrices are recognized as distinct

semantic units.

• Converting these units into LaTeX commands during decoding. For example,

a fraction in the PDF is transformed into the LaTeX representation:

\frac{numerator}{denominator},

ensuring that the semantic structure of the mathematical expression is retained.

Mathematically, if a region of the image corresponding to an equation is encoded as

a feature vector h ∈ Rd, the decoder learns to map h into a token sequence {yt} such

that:

y1:T = Decoder(h) ≈ \frac{a+b}{c},

where the predicted sequence faithfully represents the original formula.

2.3.4 Benefits for Scientific Documents

By converting PDFs into Markdown, Nougat preserves rich formatting and semantic

structure [3]. This is particularly advantageous for scientific documents where:

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Mathematical Equations: Equations are preserved in LaTeX, ensuring that

complex mathematical information remains accurate and editable.

• Complex Layouts: Multi-column formats, figures, and tables are handled

more gracefully, maintaining the logical organization of the document.

• OCR Robustness: The integrated approach that combines visual feature ex-

traction with transformer-based sequence modeling allows Nougat to extract

text from both digital-born PDFs and scanned documents.

2.3.5 Workflow for Indexing Extracted Documents

Once the PDF content is extracted and converted into Markdown, the resulting text is

segmented into meaningful chunks—such as paragraphs or sections—using techniques

such as semantic chunking or fixed-size windowing. These chunks are then embedded

using a suitable text encoder to obtain dense vector representations. Finally, the

embeddings are stored in a vector database (e.g., FAISS or Chroma) which supports

efficient similarity search.

The overall extraction and indexing pipeline can be summarized as follows:

1. PDF Parsing: Use tools like pdfplumber to extract raw text, or employ Face-

book Nougat to convert the document into a structured Markdown format.

2. Preprocessing: Clean and segment the extracted text into logical chunks,

preserving mathematical expressions and layout cues.

3. Embedding: Convert each text chunk into a vector using a pretrained text

encoder.

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

4. Indexing: Insert the resulting embeddings into a vector database for efficient

retrieval.

37

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Chapter 3

Data Collection and Preprocessing

This chapter details the methodology used for data acquisition, document conversion,

and the preparation of an instruction tuning dataset. The approach is designed to

ensure that both the content and the structure of the source documents—particularly

scientific papers containing complex layouts, mathematical equations, figures, and

tables—are preserved. Figure 3.1 illustrates the complete data processing pipeline,

from document acquisition to indexing and preparation of the instruction tuning

dataset.

Figure 3.1: Data Flow Diagram for Finetuning

38

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

3.1 Data Acquisition

The dataset was curated by collecting PDF files from certified repositories such

as IEEE Transactions and other academic databases. The acquisition process was

automated using a keyword-based web crawling script, which ensured that documents

relevant to the target tracking domain were systematically gathered. Table 3.1 shows

the principal keywords used in the search process along with their associated statistics,

generating a diverse dataset that spans multiple facets of the target tracking domain.

Keywords Count
Classification 5
Estimation Theory 36
Fault Diagnosis 6
Information Fusion 6
Multisensor-Multitarget Tracking 60
Non-linear Filtering 14
Radar/Sonar/Image/Signal Processing 64
Sensor Resource Management 18

Total 209

Table 3.1: Number of papers collected per keyword category.

3.2 Document Conversion to Markdown

To convert these PDFs into a structured Markdown format suitable for indexing and

retrieval, we implemented a multi-step extraction pipeline. The overall approach is

as follows:

1. PDF Loading and Page Segmentation: PDFs are loaded using the PyMuPDF

library, which efficiently parses the document and splits it into individual pages.

39

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

2. Image Conversion: Each extracted page is converted into a PIL image. Stan-

dardizing the image format ensures that all pages have consistent resolution and

color properties before further processing.

3. Encoding with Swin Transformer: The PIL image representing a page is

fed into a Markdown conversion processor. Within this processor, the image

is first passed through a Swin Transformer encoder, which converts the visual

content into latent embeddings. These embeddings capture the essential visual

and layout information from the page.

4. Autoregressive Decoding: The latent embeddings are then passed to a trans-

former decoder that converts them into a sequence of tokens in an autoregressive

manner. The output is a Markdown-formatted text that preserves the struc-

ture and key elements of the original PDF, including headings, paragraphs, and

embedded LaTeX (for mathematical expressions).

The following table summarizes the key parameters used in our document conver-

sion processor:

Parameter Value
PDF Parsing Library PyMuPDF
Image Resolution (DPI) 96 DPI
Image Format PIL Image
Maximum Input Length 3584
Model Name Facebook Nougat Base
Encoder Architecture Swin Transformer
Decoder Architecture Transformer (Autoregressive)
Output Format Markdown with embedded LaTeX

Table 3.2: Key parameters of the document conversion processor.

This extraction pipeline enables us to convert each PDF page into a high-quality

40

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Markdown representation as illustrated in Figure 3.2, preserving the document’s lay-

out and critical content. The resulting Markdown files are then ready for segmenta-

tion, embedding, and indexing in our retrieval-augmented generation system.

Figure 3.2: Original Page vs Converted Markdown format

3.2.1 Preparing the Instruction Tuning Dataset

After converting the PDFs into Markdown (see Section 3.2), we prepare an instruction

tuning dataset to further fine-tune our model for domain-specific question answering.

This dataset is designed to provide each training example with a technical question,

the context from which the answer can be derived, and a detailed, chain-of-thought

answer that explains the reasoning process.

The preparation process involves several key steps:

41

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

3.2.1.0.1 1. Chunking the Markdown Files. Each Markdown file is split into

coherent sections using header markers (e.g., #, ##, ###) or double newlines. In this

step, we ensure that:

• Integrity of Equations: Mathematical equations are preserved as complete

blocks and are not split across chunks.

• Overlap Between Chunks: A small overlap is maintained between consecu-

tive chunks to avoid loss of contextual information at the boundaries.

3.2.1.0.2 2. Q&A Generation via ChatGPT API. For each text chunk, we

dynamically generate a prompt to instruct ChatGPT to produce 2–5 high-quality

technical questions and detailed answers. The prompt is carefully crafted to focus

on extracting technical concepts, methodologies, and, when applicable, mathematical

derivations formatted in LaTeX. An example of the prompt is shown below:

You are an expert academic researcher analyzing research papers and

creating high-quality questions and answers.

This content is from the paper: "{paper_title}"

CONTENT CONTEXT:

- This is chunk {chunk_data[’chunk_id’] + 1} of

{chunk_data[’total_chunks’]}

- {’This section contains mathematical equations’ if has_equations else

’This section is primarily textual’}

TASK:

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Generate 2-5 high-quality technical questions and detailed answers based

on this content.

REQUIREMENTS FOR QUESTIONS:

1. Technical Focus:

- Mathematical concepts and equations if present

- Methodologies and algorithms

- Theoretical frameworks

- System architectures

- Key findings and results

2. Question Types:

- Technical understanding questions

- Mathematical derivation questions (if equations present)

- Process explanation questions

- Comparative analysis questions

- Implementation questions where relevant

REQUIREMENTS FOR ANSWERS:

1. Mathematical Precision:

- Use LaTeX for ALL equations: $...$ for inline, $$...$$ for display

- Double-escape all backslashes (e.g., ‘\\‘) for JSON validity

- Keep equations exactly as presented in the text

- Show step-by-step derivations where applicable

2. Structure and Format:

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

- Start with key concept or main point

- Break down complex processes into steps

- Use markdown formatting for clarity

- Include relevant citations from the text

3. Technical Accuracy:

- Use precise technical terminology

- Include all relevant parameters and variables

- Explain mathematical notation when used

- Acknowledge any limitations or missing information

CONTENT TO ANALYZE:

{content}

IMPORTANT: YOU MUST RETURN YOUR RESPONSE IN THE FOLLOWING JSON FORMAT:

‘‘‘json

[

{{

"question": "Technical/mathematical question focusing on specific

concept?",

"answer": "Comprehensive answer with clear introduction, LaTeX

equations, step-by-step explanation, citations, and technical

precision"

}},

{{

"question": "Another technical question?",

44

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

"answer": "Another comprehensive answer..."

}}

]

‘‘‘

REMEMBER:

- Output must be valid JSON

- Escape backslashes properly for LaTeX equations

- Stay strictly within the provided content

- Preserve all mathematical notation exactly

- Use precise technical language

- Include step-by-step explanations

- Cite specific parts of the text

- Do not include any text outside the JSON array

This prompt is sent to the ChatGPT API (e.g., using GPT-4), and the returned

JSON is post-processed to correct any formatting issues and to attach metadata such

as the paper title, file name, chunk ID, total number of chunks, token count, and

whether the chunk contains mathematical equations.

3.2.1.0.3 3. Constructing the Training Examples. Each training example is

designed to include:

• A Question derived from the content.

• A Context that consists of the original text chunk along with additional rel-

evant chunks (acting as supplementary information). In some instances, the

45

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

primary chunk is combined with a few distractor chunks (which improves the

model’s robustness to irrelevant information and enhances the model’s ability

to discern and disregard irrelevant content, leading to better performance in

RAG tasks) to simulate realistic retrieval scenarios.

• A detailed Answer that includes step-by-step reasoning, with any mathemati-

cal content rendered in LaTeX.

The final instruction tuning dataset is stored in a JSON file, where each entry

adheres to a standardized format. For clarity, the dataset can be visualized as in

Table 3.3.

Question Context Answer
What is the role of the
Kalman filter in target
tracking?

[Extracted text chunk
from documents, con-
taining discussion on
prediction models and
noise filtering.]

The Kalman filter is used
to optimally estimate the
state of a dynamic sys-
tem in the presence of
noise. It works by pre-
dicting the state, updat-
ing the prediction with
new measurements, and
computing a weighted av-
erage based on uncertain-
ties. The model is given
by: xt = Ft xt−1 + wt

where wt is assumed to
be zero-mean Gaussian
noise with covariance Q.

Table 3.3: Example final dataset format for instruction tuning. Each entry
comprises a technical question, its context, and a detailed answer.

46

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Figure 3.3: Statistics of the Dataset: Distributions of question lengths, answer
lengths, and context lengths.

3.2.2 Dataset Statistics

Figure 3.3 provides a quantitative overview of our training dataset by illustrating

the length distributions for questions, answers, and contextual information. This

breakdown helps us understand the general structure of the data before fine-tuning

the LLM. Specifically:

• Question Lengths: The histogram reveals how the number of words in each

question spans from brief factual queries to more extensive, multi-sentence

prompts. Such variation is crucial for ensuring the model can handle both

concise and elaborate question types.

• Answer Lengths: The distribution of answers highlights the range of expected

47

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

responses. Some queries require short, direct replies, while others involve de-

tailed explanations—an essential characteristic for building models that can

adapt to varied informational needs.

• Context Lengths: Contextual passages can significantly impact the model’s

ability to reason effectively, especially for domain-specific questions. The ob-

served spread in context lengths underscores the importance of preparing the

LLM for scenarios with both minimal and substantial background information.

48

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Chapter 4

Model Fine-Tuning

In this chapter, we describe the experimental setup and hyperparameter configura-

tions used to fine-tune and evaluate our retrieval-augmented model. We detail the

hyperparameter settings, hardware specifications, dataset splits, and present repre-

sentative training loss plots. In addition, we justify our choice of using LoRA-based

fine-tuning over alternative methods such as PPO and DPO, and provide a sample

prompt used for fine-tuning.

4.1 Base Model (Llama 3 8B)

The core of our fine-tuning work is built on Meta AI’s Llama 3 8B model—a state-

of-the-art, open-source large language model released on April 18, 2024. Llama 3

8B is a decoder-only transformer with 8 billion parameters, designed to balance ro-

bust performance with resource efficiency. This model has been pre-trained on an

extensive corpus of over 15 trillion tokens, which significantly enhances its language

understanding and generation capabilities.

49

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

4.1.0.0.1 Model Selection Justification: We selected Llama 3 8B as our base

model for fine-tuning on mathematical domain-specific tasks due to its well-balanced

architecture and robust performance in handling complex language tasks, includ-

ing the understanding and generation of LaTeX-formatted content. Although models

such as Mistral, Qwen, Gemma, and even Mathstral have been proposed—with Math-

stral being specifically designed for mathematical content—Llama 3 8B offers several

practical advantages for our target use case. First, Llama 3 8B has been extensively

validated in a variety of settings and is open-sourced under an accessible license,

which facilitates both reproducibility and community-driven enhancements. Second,

its decoder-only architecture has proven effective in generating coherent, step-by-step

answers and maintaining logical reasoning, which is critical for tasks that require de-

tailed LaTeX explanations and mathematical derivations. Moreover, its pre-training

on a massive and diverse corpus ensures that it possesses a strong general language

understanding, while its moderate size (8B parameters) makes it more amenable to

parameter-efficient fine-tuning techniques like LoRA. In contrast, while Mathstral is

tailored for mathematical processing, it often trades off general language capabilities

and may be more resource-intensive to fine-tune. Thus, Llama 3 8B strikes the ideal

balance between versatility, efficiency, and the capacity to generate detailed, math-

ematically rigorous responses, making it the optimal choice for our domain-specific

fine-tuning efforts. The Figure 4.1 compares the performance of the 8B, 70B, and

405B versions of Llama 3 with that of competing models.

4.1.0.0.2 Key Features and Capabilities:

• Optimized Transformer Architecture: Llama 3 8B utilizes an advanced

transformer architecture enhanced with Grouped-Query Attention (GQA), which

50

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Figure 4.1: Comparative Performance of Meta Llama 8B, 70B, and 405B Models
Against Competing Approaches

improves inference scalability and efficiency. This design enables the model to

handle long contexts—up to 8,192 tokens—facilitating applications that require

processing of extended documents or multi-turn conversations.

• Enhanced Performance: Despite its relatively modest size compared to

larger counterparts, Llama 3 8B has demonstrated competitive performance

on a range of benchmarks. Evaluations indicate that it outperforms previous

generations such as Llama 2 (even in its 70B variant) in key areas like instruc-

tion following, reasoning, and code generation, while maintaining lower latency

and faster inference speeds.

• Accessibility and Open-Source Advantage: Llama 3 8B is released under

a custom Meta Llama 3 Community License, making it freely available for

academic research and commercial experimentation. Its open-source nature

encourages innovation, allowing developers to fine-tune and integrate the model

51

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

into diverse applications without the prohibitive costs typically associated with

large proprietary models.

• Versatile Use Cases: Owing to its robust pre-training and fine-tuning readi-

ness, Llama 3 8B is well-suited for a variety of tasks such as customer support

chatbots, content generation, summarization, and even code generation. Its

efficient architecture also makes it an attractive choice for deployment on edge

devices and environments with limited computational resources.

4.1.0.0.3 Integration into Our Fine-Tuning Pipeline: For our project, Llama

3 8B serves as the base model that is further fine-tuned using Low-Rank Adaptation

(LoRA). This parameter-efficient fine-tuning method allows us to adapt the model

to the specific nuances of the target tracking domain while preserving the extensive

knowledge captured during pre-training. The fine-tuned model is then evaluated on

a curated test dataset, ensuring that domain-specific performance improvements are

realized.

In summary, Llama 3 8B offers a powerful combination of high-quality language

understanding, efficient inference, and open-source accessibility. These features make

it an ideal candidate for further fine-tuning and application in specialized domains.

4.2 Fine-Tuning

This section describes the fine-tuning process for the Llama 3 8B model using LoRA.

The subsections below detail the hyperparameter settings, hardware requirements,

dataset splits, the prompt used for fine-tuning, and the training process with loss

analysis.

52

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

4.2.1 Hyperparameter Settings

Our fine-tuning experiments build upon the Llama 3 8B base model using Low-Rank

Adaptation (LoRA) for efficient adaptation. LoRA was chosen because it freezes

the original model weights and fine-tunes only a small set of additional parameters,

leading to resource efficiency, improved stability, and deployment simplicity. Table 4.1

summarizes the key hyperparameters used in our experiments.

Hyperparameter Value/Description
Base Model Llama 3 8B (decoder-only Transformer)
Fine-Tuning Technique LoRA (Low-Rank Adaptation)
LoRA Rank (r) 8
Maximum Sequence Length 4096 tokens
Batch Size 192 samples (effective batch size across GPUs)
Learning Rate 5× 10−5 (initial), decayed by 0.9996 every 15 updates
Number of Training Epochs 3 epochs
Optimizer AdamW [15]
Weight Decay 0.1
Dropout Rate 0.1
Warmup Steps 1000 steps

Table 4.1: Key hyperparameters used for fine-tuning the Llama 3 8B model with
LoRA.

4.2.2 Hardware Requirements

The experiments were conducted on a high-performance computing cluster. Table 4.2

summarizes the hardware configuration used during fine-tuning.

4.2.3 Dataset Splits

The fine-tuning data was curated from domain-specific research papers, converted

from PDF to Markdown. The dataset was split into three subsets to ensure robust

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Component Specification
GPUs 4 NVIDIA A100 40GB GPUs
CPU Dual Intel Xeon Gold 6248R (2.6 GHz)
Memory 512 GB DDR4 RAM
Storage NVMe SSD with 4 TB capacity

Table 4.2: Hardware configuration used for fine-tuning the model.

evaluation:

• Training Set: 80% of the collected Markdown chunks.

• Validation Set: 10% of the dataset, used for hyperparameter tuning and early

stopping.

• Test Set: 10% of the dataset, independently curated and not used during

fine-tuning to assess domain-specific performance.

Stratified sampling was applied to maintain a balanced representation of documents

containing both textual and mathematical content.

4.2.4 Prompt for Fine-Tuning

Below is an example prompt used during fine-tuning, directing the model to pro-

duce detailed, step-by-step, and well-formatted responses. Incorporating Chain-of-

Thought reasoning guides the model to generate richer explanatory chains grounded

in the original context, boosting accuracy and preventing overfitting.

You are an expert academic assistant specialized in analyzing research

papers and providing detailed, technical answers.

Please follow the instructions below to generate your answer.

54

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Instructions:

1. Analyze the Question: Identify key requirements, formulas, and

research parameters.

2. Review the History: Check for connections in the history and

incorporate relevant context into the answer.

3. Evaluate Sources: Focus on relevant sections of provided documents,

verify equations, and ensure accuracy.

4. Structure the Response: Use clear academic formatting with

paragraphs, notations, lists, and bullet points.

Provide rigorous, complete, and well-formatted responses using available

documents or scholarly knowledge. For general questions, use your own

expertise.

Retrieved Context:

QUESTION:

4.3 Results

Table 4.3 summarizes the key metrics obtained from our fine-tuned LLM during

both training and evaluation. These metrics—ranging from training loss, runtime,

and FLOPs to evaluation loss and perplexity—provide a holistic view of the model’s

55

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

learning process and overall performance.

Table 4.3: Fine-Tuned LLM Metrics for Training and Evaluation

Metric Training Evaluation

Epoch 6.5223 6.5223
Total FLOPs 1.91× 1017 –
Loss 1.1435 1.7047
Runtime (s) 2240.0777 18.544
Samples/sec 0.561 1.51
Steps/sec 0.014 1.51
Perplexity – 5.4998

During training, the model achieved a final loss of 1.14, converging over approx-

imately 2,240 seconds. For evaluation, the model demonstrated a validation loss of

1.70 and a corresponding perplexity of 5.50, reflecting a reasonably strong grasp of

the domain-specific content it was fine-tuned on. These results indicate that the

model successfully balances computational efficiency with accuracy, capturing both

contextual and mathematical nuances essential for the target domain.

In addition to loss and perplexity metrics, we evaluated the model’s problem-

solving capabilities on the GSM8k benchmark, a widely used dataset for assessing

mathematical reasoning performance. Table 4.4 summarizes the results in comparison

with several prominent open-source and proprietary models.

Figure 4.2 further illuminates the training dynamics through three critical plots:

1. Loss Over Steps – Depicts how the training loss decreases as the number of

steps increases, reflecting the model’s progression toward convergence.

2. Gradient Norm – Provides insights into the stability of training by tracking

the magnitude of gradients, which can indicate potential issues like vanishing

or exploding gradients.

56

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

3. Learning Rate – Illustrates the learning rate schedule or adjustments made

during training, underscoring its impact on convergence speed and final model

performance.

(a) Loss Over Steps (b) Gradient Norm

(c) Learning Rate

Figure 4.2: Training Diagnostics: (a) Loss over Steps, (b) Gradient Norm, and (c)
Learning Rate.

Table 4.4: GSM8k Evaluation

Model Accuracy (%)

GPT-4o (OpenAI) 94.8
Mixtral 8x7B 58.4
Llama 3 8B (Base) 34.3
SciRAG (Ours) 70

While the GSM8k score for the SciRAG model is modest relative to larger, general-

purpose models, it is important to note that SciRAG was specifically optimized for

structured scientific documents and targeted domains like target tracking, rather than

57

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

open-domain mathematical reasoning. As such, the performance is consistent with

the model’s intended specialization and scope.

By closely monitoring these metrics and plots, practitioners can fine-tune hyper-

parameters, detect instabilities early, and optimize training schedules. This method-

ological transparency facilitates reproducibility and paves the way for future improve-

ments in both model performance and computational efficiency.

4.4 Discussion

4.4.1 Training Dynamics

In fine-tuning a Large Language Model (LLM) for a specialized domain, it is essen-

tial not only to observe the usual signs of healthy training (e.g., a decreasing loss)

but also to confirm that the model is actually internalizing domain-relevant knowl-

edge. As shown in Figure 4.2, three primary plots—loss, gradient norm, and learning

rate—provide insight into how the model is adapting its parameters to handle the

complexities of our target domain. The key findings are summarized below, along

with their relevance to domain-specific fine-tuning:

4.4.1.0.1 Continuously Decreasing Loss. The model’s loss decreases steadily

throughout training, suggesting that it is successfully learning to map domain inputs

(e.g., specialized queries or scientific notations) to appropriate outputs. For general-

purpose LLMs, convergence may sometimes plateau due to vocabulary mismatches

or insufficient exposure to domain-specific structures. Here, however, the consis-

tently declining loss indicates the model is effectively narrowing the knowledge gap

58

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

between general language usage and the specialized requirements of the field. This

reduction in loss directly translates into more accurate responses, better command of

discipline-specific terminology, and fewer mistakes in advanced components such as

mathematical expressions or intricate logical reasoning.

4.4.1.0.2 Increasing and Fluctuating Gradient Norm. Although the loss is

decreasing, the gradient norm exhibits a slight upward trend with occasional spikes.

This behavior often results from navigating complex regions of the parameter space

where domain-specific concepts sharply diverge from standard English text or general

knowledge. In such scenarios, larger or more volatile updates can occur because:

• Specialized Token Usage: Domain-specific tokens (technical terms, math

symbols) might be relatively infrequent in a general pretraining corpus, so their

embeddings undergo larger changes when fine-tuning on new, targeted data.

• Momentum and Warm-Up Schedules: Momentum-based optimizers accu-

mulate updates, and a learning rate warm-up may briefly amplify the gradient

magnitude, particularly if the model encounters nuanced patterns that were

underrepresented in the original training.

• Higher Loss Landscape Curvature: Introducing domain-specific constraints

or specialized equations can lead to steeper regions of the loss surface, so gra-

dients can become more pronounced.

Crucially, this trend can be beneficial when it reflects the model’s deeper engagement

with domain syntax and semantics. As long as the loss does not diverge, occasional

fluctuations in the gradient norm may indicate that the model is refining internal

representations to better capture domain peculiarities.

59

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

4.4.1.0.3 Warm-Up and Decay in Learning Rate. The learning rate schedule

starts low, gradually increases (“warm-up”), then decreases. This choice is particu-

larly effective for domain-specific fine-tuning:

• Stabilizing Early Stages: A lower initial learning rate prevents erratic up-

dates that could destroy useful general language patterns already captured in

the pre-trained model. This safeguards the foundational language understand-

ing while letting the model adapt to domain nuances.

• Efficient Exploration of Specialized Knowledge: The brief warm-up pe-

riod allows for slightly more aggressive parameter adjustments once the model

stabilizes, accelerating the uptake of specialized terms and reasoning.

• Fine-Grained Convergence: A decaying learning rate later in training en-

sures that crucial domain details—such as advanced formula rendering or inter-

pretive steps in target tracking—are refined without overshooting or introducing

noise. This final “polishing” can be the difference between good and exceptional

performance in specialized tasks.

4.4.2 Output Quality

The primary objective of our work was to refine a Large Language Model (LLM) to

address two key challenges: accurate rendering of scientific equations and enhancing

domain relevance—specifically for target tracking applications. Figure 4.3 highlights

how the fine-tuned LLM surpasses the base model in terms of both the quantity and

quality of generated outputs. While the base model provides satisfactory responses in

broad contexts, it often struggles with complex scientific notation and domain-specific

60

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

reasoning, leading to incomplete explanations or misinterpretations of target-tracking

concepts. In contrast, the fine-tuned LLM demonstrates significantly improved per-

formance in these areas.

Figure 4.3: Output Quality Comparison (I): Fine-Tuned LLM vs. Base LLM

4.4.3 Enhanced Mathematical Rendering.

A salient improvement lies in the fine-tuned LLM’s ability to flawlessly render LATEX

equations. By integrating domain-specific data and refining the model to handle the

intricacies of mathematical expressions, we have minimized errors such as incorrect

61

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Figure 4.4: Output Quality Comparison (II): Fine-Tuned LLM vs. Base LLM

symbols, missing brackets, and misaligned fractions. This fidelity in mathematical

rendering is crucial for fields where even minor typographical inconsistencies can alter

the meaning of an equation or mislead subsequent analysis.

4.4.4 Domain-Specific Relevance.

Beyond mere formatting, our model’s specialized training in the target tracking do-

main enables it to generate highly relevant explanations that tie theoretical equations

directly to real-world tracking scenarios. This deeper contextual understanding lends

itself to more cohesive narratives and step-by-step derivations that are not only math-

ematically correct but also provide richer insights for practitioners. In turn, end-users

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Figure 4.5: Output Quality Comparison (III): Fine-Tuned LLM vs. Base LLM

can rely on the model for precise recommendations, improved conceptual clarity, and

well-grounded methodologies in surveillance, security, and robotics applications.

4.4.5 Practical Implications and Worth.

The advancements demonstrated by the fine-tuned LLM have broad implications:

• Technical Documentation: Organizations that rely on detailed mathemati-

cal documentation—such as aerospace, defense contractors, or academic insti-

tutions—can benefit from generating automated reports and clarifications that

are both accurate in notation and tailored to domain-specific requirements.

• Educational Tools: In academia, the model could serve as a robust teach-

ing assistant capable of providing on-demand, high-quality explanations and

derivations of equations related to tracking algorithms.

63

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Research and Development Acceleration: Enhanced clarity and precision

in outputs allow researchers to focus on higher-level problem-solving instead

of clarifying or rewriting inaccurate model-generated content. This efficiency

can expedite prototyping and experimentation cycles in machine learning and

systems engineering.

4.4.6 Future Work.

While our improvements are notable, there remain several directions worth explor-

ing. One avenue is incorporating a broader set of real-world sensor models and en-

vironmental factors to improve the model’s robustness when discussing advanced or

uncommon tracking scenarios. Another area of interest is systematically integrating

additional scientific domains—such as signal processing, optimization, and statistical

inference—to expand the model’s utility across interdisciplinary fields.

Overall, these findings underscore the importance of domain-specific fine-tuning

for LLMs. By aligning the model’s output format (equations) and content (target

tracking) with specialist requirements, we demonstrate how targeted refinement can

significantly elevate both the readability and applicability of an LLM’s output. The

remaining comparison examples, presented in Appendix ??, further illustrate these

improvements and support the value of our approach.

64

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Chapter 5

RAG Chatbot Development

This chapter outlines the end-to-end development pipeline for a Retrieval-Augmented

Generation (RAG) chatbot. The pipeline is divided into several key stages: data

processing, embeddings creation, vector database management (including indexing

and retrieval), LLM support, and finally interface and deployment. Each stage is

critical in ensuring that the chatbot can efficiently process data, retrieve relevant

context, and generate accurate and context-aware responses.

5.1 Data Processing

Data processing forms the foundation of the RAG chatbot and, more broadly, any

retrieval-augmented generation system. In this stage, raw files are ingested, processed,

and prepared for embedding extraction. Recent studies and industry guides emphasize

that effective chunking is not merely a preprocessing step but a crucial determinant

of retrieval accuracy and efficiency. The following subsections detail our approach,

enriched by best practices reported in the literature and community forums.

65

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

5.1.1 File Ingestion and Supported File Types

Our pipeline supports multiple file formats:

• PDF Files: PDF documents are processed using our extraction algorithm

(described in Section 3.2), which converts them into Markdown files. This

conversion not only preserves the structural layout (including figures, equations,

and section headers) but also facilitates subsequent text segmentation.

• TEX Files: TEX files, being primarily textual and structured, are directly

ingested without conversion.

After ingestion, the raw files are loaded into the system, ensuring that the original

document structures are maintained for further processing.

5.1.2 Text Chunking

To prepare the text for embedding, the processed content is divided into manage-

able chunks. Our approach leverages LangChain’s Recursive Character Text Splitter,

which is widely recognized for its robustness in handling heterogeneous document

types. Key aspects of our chunking strategy include:

• Chunk Size: 1500 characters per chunk. This size was chosen based on exper-

iments reported in the literature, balancing the need for rich context with the

LLM’s context window limitations.

• Overlap: 100 characters of overlap between consecutive chunks. Overlapping

is critical for maintaining continuity, ensuring that important information (e.g.,

mathematical equations or transition phrases) is not lost at the boundaries.

66

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Separator: The period (‘.‘) is used as the primary separator. This deliberate

choice helps preserve the integrity of complete sentences and equations, reducing

the risk of breaking complex constructs mid-expression.

The recursive nature of the splitter allows it to attempt splits using a hierarchy

of separators (from paragraph breaks to spaces) until the resulting chunks are within

the desired size limit. This strategy is advantageous for technical and research texts

where semantic coherence is paramount.

5.1.3 Cleaning and Preprocessing

After chunking, each text segment undergoes a cleaning process to ensure high-quality

input for embedding generation:

• Removing Extra White Spaces: Redundant spaces and tabs are trimmed.

• Eliminating Redundant New Lines: Unnecessary line breaks are removed

to maintain a consistent format.

• Filtering Unwanted Characters: Encoded or extraneous characters are

eliminated from the text.

Notably, no text normalization (e.g., lowercasing or stemming) is applied since the

original case is preserved to maintain semantic integrity—a common practice when

preparing text for modern embedding models.

The processed and cleaned data is subsequently forwarded to the embedding cre-

ation stage, where each chunk is transformed into a numerical vector representation

suitable for efficient retrieval from a vector database.

67

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

5.2 Embedding Model

Embeddings are numerical vector representations of information—whether text, doc-

uments, images, or audio—that capture the underlying semantic meaning. In our

pipeline, embeddings are used to project processed text chunks into a high-dimensional

vector space where semantically similar content is positioned close together. This

property is crucial for efficient semantic search, clustering, and retrieval tasks in

retrieval-augmented generation (RAG) systems.

Our implementation leverages a transformer-based embedding model available

through the HuggingFace framework. The chosen model, BAAI/bge-large-en-v1.5,

is particularly well-suited for our chatbot as it is designed to handle both Por-

tuguese and English text. This model maps text into a dense 1024-dimensional vector

space and is among the top performers on the Massive Text Embedding Benchmark

(MTEB) Leaderboard [16].

A major advancement in the field of embedding models was achieved by Reimers

and Gurevych (2019) through the development of Sentence-BERT. This approach

modifies the original BERT architecture by integrating siamese and triplet network

structures, enabling it to generate sentence embeddings that effectively capture nu-

anced semantic relationships. During training, the model is optimized to draw em-

beddings of semantically similar sentences closer together while distancing those of

unrelated sentences. For example, the query “What is Kalman filter?” might be

encoded into a 384-dimensional vector, such as

[0.45, 0.09, . . . , 0.77],

68

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

which serves as a compact numerical representation of its meaning. These dense

vectors allow us to use similarity measures like cosine similarity to accurately de-

termine how closely related different pieces of text are in terms of their semantic

content.

5.3 Vector Database

The vector database in our RAG pipeline is responsible for storing and managing em-

bedding vectors produced from text chunks, thereby enabling rapid similarity search

and efficient information retrieval. Our implementation leverages components from

the llama index framework, combined with custom retriever classes, to form a co-

hesive indexing and retrieval system. In our codebase, the vector database system is

organized into two primary components: indexing and retrieval.

5.3.1 Indexing

Indexing is the process by which the embedding vectors are organized into a structure

that facilitates fast retrieval. In our implementation, this involves the following steps:

• Building the Vector Store: Text chunks (produced in the data processing

stage and transformed into embeddings) are indexed using a VectorStoreIndex

object. This object encapsulates the embeddings and metadata, making them

available for similarity search.

• Embedding Integration: The vector store is constructed by interfacing with

our chosen embedding model (via a HuggingFace or similar class), ensuring that

69

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

each document’s embedding is stored along with key metadata (such as source

information, chunk boundaries, etc.).

• Index Configuration and Updates: Hyperparameters such as the number

of similar results to retrieve (e.g., similarity top k) are configured via our

settings class (RAGSettings). The index is updated as new documents are

ingested or as the embedding model is refined.

Our codebase encapsulates these ideas within custom classes. For example, the

LocalRetriever class includes methods to obtain a normal retriever (using the

VectorIndexRetriever) that wraps the vector store, applying configured similar-

ity thresholds and embedding models to facilitate fast nearest neighbor searches.

5.3.2 Retrieval

The retrieval component is designed to efficiently locate and return the most relevant

text chunks based on a user query. The retrieval workflow in our system involves:

• Query Embedding: User queries are first transformed into embedding vectors

using the same embedding model that was used for the documents. This ensures

consistency between the query and document representations. Figure 5.1 show

the comparison across different embedding models.

• Similarity Search: The vector index is queried using similarity metrics (e.g.,

cosine similarity) to compare the query vector with stored document embed-

dings. In our implementation, this is handled by a normal retriever (via Vector

Index Retriever) or, when appropriate, by more sophisticated hybrid retriev-

ers.

70

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Hybrid and Two-Stage Retrieval: For cases where queries may be ambigu-

ous or require higher precision, we implement a two-stage retrieval strategy.

This involves combining results from a BM25 retriever (which leverages tradi-

tional term-based similarity) and the vector index retriever, then fusing these

results with a QueryFusionRetriever or the TwoStageRetriever class. In the

two-stage approach, results are further refined using a reranking model (im-

plemented via SentenceTransformerRerank) that postprocesses the candidate

nodes to select the most semantically relevant chunks.

• Ranking and Selection: Finally, retrieved candidates are ranked according

to their similarity scores, and the top k candidates are selected to form the

context for the downstream generative model.

Figure 5.1: Comparison of Context Recall Across Embedding Models, Including
Retrieval Latency, Embedding Dimensions, and Model Sizes.

In our code, the LocalChatEngine class integrates these components by first ob-

taining a retriever via the LocalRetriever.get retrievers method. This method

selects the appropriate retrieval strategy (normal, hybrid, or router-based) based on

our system settings. The chosen retriever is then used to initialize a chat engine

(e.g., CondensePlusContextChatEngine), which combines the retrieval results with

71

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

a language model and a memory buffer (via ChatMemoryBuffer) to manage context

and conversation state.

Through this architecture, our vector database and retrieval system ensure that

the generative model is always provided with the most accurate and contextually

relevant information, which is critical for generating high-quality responses in our

RAG application.

5.4 LLM Support

Large Language Models (LLMs) form the core of our generative pipeline, providing

the capability to generate context-aware and coherent responses. Our system is de-

signed to be model-agnostic and supports multiple types of LLMs, allowing us to

choose the most appropriate model based on cost, performance, language support,

and data privacy requirements. In our current implementation, we support the fol-

lowing categories of models:

• OpenAI Models: Models such as GPT-4 accessed via the OpenAI API. These

models require an API key (which can be provided as an environment variable

or explicitly) and offer robust performance with extensive language capabilities.

• Ollama Models: Models hosted via Ollama, which are accessed locally (or

on a specified host) through an HTTP interface. They are configured using

parameters such as tfs z, top k, and context window.

• HuggingFace Models: Models from the HuggingFace ecosystem (e.g., those

provided by Sentence Transformers) are run locally or on cloud resources. They

72

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

use tokenizers from the same model repository and support custom generation

settings.

• Custom Models: These refer to models hosted outside our primary providers,

such as models deployed with TensorRT or using llama.cpp. They are accessed

via custom API endpoints and support local inference.

When a model is selected, our code dynamically instantiates the appropriate LLM

class by checking the model type parameter and passing the corresponding configu-

ration parameters.

Table 5.1 summarizes the input types and key configuration aspects for each LLM

type supported in our system.

LLM Type API/Endpoint Key Configuration Parameters
OpenAI REST API API key, model name, temperature
Ollama Local HTTP Endpoint Base URL, context window
HuggingFace Local/Cloud via HF Hub Model, context window
Custom Custom API Endpoint API base URL, custom settings

Table 5.1: Supported LLM types and their key configuration parameters.

5.5 Response Generation

Our response generation process is designed to ensure that each chat interaction yields

an accurate, contextually grounded answer. The generation workflow is divided into

three key steps:

1. Standalone Question Formation: The conversation history, along with the

latest user message, is condensed into a single, self-contained question. This step

73

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

uses a dedicated prompt that reformulates the dialogue into a standalone query,

ensuring that all necessary context is captured and ambiguities are removed.

2. Context Retrieval: The standalone question is then used to query our vector

database. The retrieval component gathers the most relevant document chunks

that provide supporting evidence and background information. These chunks

are concatenated to form a comprehensive context for the question.

3. Final Response Generation: Finally, a second prompt is constructed that

combines the retrieved context, the standalone question, and additional instruc-

tions. This prompt is sent to the LLM, which generates a response that is both

coherent and well-grounded in the external knowledge. Optionally, fine-tuning

may be applied to further tailor the LLM’s output to our domain.

Sample Prompts

5.5.0.0.1 Step 1: Standalone Question Formation Below is an example

prompt that condenses the chat history and the latest user message into a standalone

question:

You are an expert conversational assistant. Given the following

conversation history and the most recent user message,

please condense them into a clear, standalone question that captures all

the necessary context.

Conversation History:

{conversation_history}

74

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Follow-Up Question:

{question}

Standalone Question:

5.5.0.0.2 Step 2: Context Retrieval Once the standalone question is formed,

it is used to retrieve relevant context from the vector database. The retrieved text is

then combined to form the supporting context.

5.5.0.0.3 Step 3: Final Response Generation The final prompt integrates

the retrieved context and the standalone question along with specific generation in-

structions:

You are a knowledgeable assistant with expertise in the relevant domain.

Use the context provided below to answer the following question in a

detailed and coherent manner.

Retrieved Context:

{retrieved_context}

Question:

{standalone_question}

Answer:

This structured, multi-step approach ensures that the LLM receives a well-formed

query and all necessary supporting information, ultimately resulting in responses that

75

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

are both accurate and contextually relevant.

5.6 Interface and Deployment

The final stage of our system focuses on the user interface and deployment of the

RAG chatbot. A well-designed interface not only makes the system accessible to end

users but also ensures that performance and reliability are maintained in a production

environment.

5.6.1 User Interface and Usage Workflow

The user interface of our application is built using gradio, an open-source Python

framework designed for rapid development of machine learning and data science web

applications. Figure 5.3 illustrates the main interface.

Figure 5.2: Gradio-based user interface for the RAG chatbot. The left sidebar
provides a drag-and-drop area for uploading PDF documents, while the main panel

displays the chat window.

76

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

To start using the application, the user follows these steps:

1. Document Upload: Upload PDF documents by dragging and dropping files

into the left sidebar. A progress bar will indicate the upload and processing

status.

2. Model Selection: Once the document processing is complete (i.e., when the

progress bar disappears), the user selects the desired model from a drop-down

menu. For instance, the Mistral-7B-Instruct-v0.2 model is accessed via the

Hugging Face Hub.

3. Chat Interaction: With the model selected, the user can begin chatting. The

interface supports prompt customization and displays a list of uploaded files in

a dedicated ”Files” tab.

Figure 5.3: Gradio-based user interface for the RAG chatbot when the model
selected. The left sidebar provides a dropdown for choosing the model type and

model name, while the main panel displays the chat window.

77

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

5.6.2 Additional Features

The interface offers several advanced features to enhance the user experience and

facilitate system evaluation:

• Prompt Customization: Users can modify the prompt used for response

generation directly within the interface.

• Files Tab: A dedicated tab allows users to view and manage their uploaded

documents.

• LLM Evaluation: The application supports benchmarking LLM performance

in the RAG setup. Users can upload datasets in a specified format, and the

system will run benchmarks, returning performance results and plots for fur-

ther analysis. Note: The user must upload the appropriate documents to the

application prior to initiating the benchmark.

Figure 5.4: Files Section where users can review their uploaded documents.

5.6.3 Deployment

Our RAG chatbot is deployed using cloud platforms and containerization techniques

to ensure scalability and high availability. The deployment strategy includes:

78

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Figure 5.5: Evaluation Results: A section where users can view the dataset and
corresponding plots generated for the selected model’s evaluation.

• Containerization: Packaging the application in Docker containers to enable

easy deployment across different environments.

• Cloud Integration: Utilizing platforms such as AWS, GCP, or Azure to host

the application, thereby ensuring robustness and scalability.

This integrated approach ensures that the chatbot is accessible to users, maintains

high performance under load, and provides an interactive and flexible environment

for both end users and system administrators.

79

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

Figure 5.6: Evaluation Results: A section where users can view the relevant metrics
and plots associated with the evaluation of the selected model.

80

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Chapter 6

Evaluation and Discussion

In this chapter, we evaluate our QA Retrieval-Augmented Generation (RAG) sys-

tem using the RAGAS (Retrieval Augmented Generation Assessment) framework as

proposed by [5]. RAGAS is designed to assess QA RAG systems along two primary

dimensions:

1. Retrieval Component: This dimension evaluates the ability of the retrieval

system to identify and provide relevant contexts. In our evaluation, we use the

metric Context Recall (CR) to quantify how effectively the system retrieves the

necessary background information.

2. Generation Component: This dimension assesses the LLM’s capability to

leverage the retrieved context to produce accurate and meaningful responses.

For this purpose, we consider three metrics:

• Factual Correctness (FC): Measures the degree to which the generated

response is factually accurate.

81

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

• Faithfulness (FF): Evaluates whether the response is fully grounded in

the provided context.

• Semantic Similarity (SS): Assesses how closely the generated response

aligns with the semantics of the query and the context.

To compare the performance of different LLMs—including popular off-the-shelf

models as well as our fine-tuned LLM—we conducted a series of experiments and

measured these metrics. Table 6.2 summarizes the evaluation results for each model.

LLM CR
OpenAI GPT-4o 0.64
Mixtral 8x7B 0.61
Llama 3 8B (Base) 0.62
Fine-tuned LLM 0.85

Table 6.1: Comparison of LLMs evaluated on retrieval metrics. The retrieval metric
used is Context Recall. Values represent normalized scores (0 to 1).

LLM FC FF SS
OpenAI GPT-4o 0.35 0.42 0.94
Mixtral 8x7B 0.24 0.38 0.94
Llama 3 8B (Base) 0.27 0.43 0.93
Fine-tuned LLM 0.45 0.45 0.94

Table 6.2: Comparison of LLMs evaluated on generation metrics. The generation
metrics include Factual Correctness, Faithfulness, and Semantic Similarity. Values

represent normalized scores (0 to 1).

Discussion: The evaluation results demonstrate that our fine-tuned LLM outper-

forms the other models across all metrics. A high Context Recall indicates that the

retrieval system is highly effective at fetching relevant context, while the improved

Factual Correctness, Faithfulness, and Semantic Similarity scores of the fine-tuned

82

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

model highlight its ability to generate responses that are both accurate and well-

grounded in the retrieved context.

These findings underscore the importance of a robust evaluation framework, such

as RAGAS, for diagnosing the strengths and weaknesses of QA RAG systems. The

metrics provide actionable insights that can guide further improvements in both the

retrieval and generation components.

Future work will focus on exploring additional evaluation dimensions, such as

user satisfaction and response latency, as well as experimenting with hybrid retrieval

strategies to further enhance performance.

83

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Chapter 7

Conclusion

In this thesis, we set out to develop a retrieval-augmented generation (RAG) chatbot

tailored for scientific documents in the target tracking domain, with a particular focus

on understanding and generating LaTeX-formatted content. Our work combined

advanced document extraction techniques, notably using the Facebook Nougat model

for converting PDFs to Markdown, with a fine-tuning pipeline built on the Llama 3

8B model using Low-Rank Adaptation (LoRA). This integrated approach enabled the

model to effectively handle complex technical content and generate detailed, step-by-

step explanations with mathematical reasoning.

Our experimental results demonstrate that our fine-tuning strategy yields a model

that performs robustly on domain-specific tasks. The use of LoRA allowed us to effi-

ciently adapt a large pre-trained model while preserving its core capabilities, thereby

balancing performance with computational efficiency. Although alternative methods

such as PPO and DPO were considered, LoRA’s resource efficiency, regularization

benefits, and seamless integration into the inference pipeline made it the most suit-

able choice for our target use case.

84

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

While our model shows promising performance in understanding and generating

mathematical content, there remain several challenges. In particular, the document

extraction process, especially when dealing with diverse PDF layouts, still exhibits

occasional errors, and further work is needed to improve consistency across entire

documents. Future research will focus on enhancing document segmentation, refin-

ing retrieval mechanisms, and exploring more sophisticated reasoning techniques to

further boost the model’s accuracy and robustness.

Overall, this thesis has contributed a comprehensive framework for building a

domain-specific RAG chatbot. Our approach, which spans data collection, advanced

document conversion, and parameter-efficient fine-tuning, offers valuable insights into

adapting large language models for specialized scientific applications. The findings not

only advance the state-of-the-art in retrieval-augmented generation but also provide

a solid foundation for future work in leveraging LLMs to make complex technical

information more accessible and actionable.

85

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece

Bibliography

[1] R. T. Andrea Matarazzo. A survey on large language models with some insights

on their capabilities and limitations. arXiv preprint, 2025. URL https://arxiv.

org/abs/2501.04040.

[2] Y. Z. J. W. L. F. R. C. K. C. T. Beichen Huang, Xingyu Wu. Evaluating the

black-box optimization capability of large language models. arXiv preprint, 2024.

URL https://arxiv.org/abs/2404.06290.

[3] L. Blecher, G. Cucurull, T. Scialom, and R. Stojnic. Nougat: Neural optical

understanding for academic documents. arXiv preprint arXiv:2308.13418, 2023.

URL https://arxiv.org/abs/2308.13418.

[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-

lakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot

learners. In Proceedings of the Advances in Neural Information Processing Sys-

tems (NeurIPS), volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[5] S. Es, J. James, L. Espinosa-Anke, and S. Schockaert. Ragas: Automated evalu-

ation of retrieval augmented generation. arXiv preprint arXiv:2309.15217, 2023.

doi: 10.48550/arXiv.2309.15217. URL https://arxiv.org/abs/2309.15217.

86

https://arxiv.org/abs/2501.04040
https://arxiv.org/abs/2501.04040
https://arxiv.org/abs/2404.06290
https://arxiv.org/abs/2308.13418
https://arxiv.org/abs/2309.15217

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

[6] S. Es, J. James, L. Espinosa Anke, and S. Schockaert. RAGAs: Automated

evaluation of retrieval augmented generation. In N. Aletras and O. De Clercq,

editors, Proceedings of the 18th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics: System Demonstrations, pages 150–158,

St. Julians, Malta, Mar. 2024. Association for Computational Linguistics. URL

https://aclanthology.org/2024.eacl-demo.16/.

[7] T. Gao and Others. Retrieval-augmented generation for llms: A guide. Preprint

on ArXiv, 2023. URL https://arxiv.org/abs/2312.10997.

[8] S. Gupta, R. Ranjan, and S. Singh. A comprehensive survey of retrieval-

augmented generation (rag): Evolution, current landscape and future directions,

10 2024.

[9] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen.

Lora: Low-rank adaptation of large language models. arXiv preprint, 2021. doi:

10.48550/arXiv.2106.09685. URL https://arxiv.org/abs/2106.09685.

[10] M. Idowu. The rise of transformers: A deep dive into gpt architecture. 11 2024.

[11] M. Jong, Y. Zemlyanskiy, J. Ainslie, N. FitzGerald, S. Sanghai, F. Sha, and

W. Cohen. Fido: Fusion-in-decoder optimized for stronger performance and

faster inference, 12 2022.

[12] T. Kudo and J. Richardson. Sentencepiece: A simple and language independent

subword tokenizer and detokenizer for neural text processing. In Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 66–71, 2018. URL https://arxiv.org/abs/1808.06226.

87

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece
https://aclanthology.org/2024.eacl-demo.16/
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1808.06226

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

[13] A. Lazaridou, A. Mensch, T. Cai, and Others. Internet-augmented language

models. Advances in Neural Information Processing Systems (NeurIPS), 2022.

URL https://arxiv.org/abs/2203.05115.

[14] C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. In Text

Summarization Branches Out: Proceedings of the ACL-04 Workshop, pages 74–

81, Barcelona, Spain, 2004. Association for Computational Linguistics.

[15] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Inter-

national Conference on Learning Representations (ICLR), 2019. URL https:

//arxiv.org/abs/1711.05101.

[16] N. Muennighoff, N. Tazi, L. Magne, and N. Reimers. MTEB: Massive text em-

bedding benchmark. In Proceedings of the 17th Conference of the European Chap-

ter of the Association for Computational Linguistics, pages 2764–2777, 2023.

URL https://aclanthology.org/2023.eacl-main.148/.

[17] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for au-

tomatic evaluation of machine translation. In Proceedings of the 40th Annual

Meeting of the Association for Computational Linguistics (ACL), pages 311–

318, Philadelphia, PA, USA, 2002. Association for Computational Linguistics.

doi: 10.3115/1073083.1073135.

[18] V. B. Parthasarathy, A. Zafar, A. Khan, and A. Shahid. The ultimate guide

to fine-tuning llms from basics to breakthroughs: An exhaustive review of tech-

nologies, research, best practices, applied research challenges and opportunities

(version 1.0). arXiv preprint, 2024. URL https://arxiv.org/abs/2408.13296.

88

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece
https://arxiv.org/abs/2203.05115
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://aclanthology.org/2023.eacl-main.148/
https://arxiv.org/abs/2408.13296

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

[19] S. Ravada, S. Gopinathan, and L. Bhaskari. Identification of spatial re-

lations in mathematical expressions. 16:346, 07 2022. doi: 10.24412/

1932-2321-2021-465-346-353.

[20] R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare

words with subword units. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (ACL), pages 1715–1725, 2016. URL

https://arxiv.org/abs/1508.07909.

[21] R. Shuttleworth, J. Andreas, A. Torralba, and P. Sharma. Lora vs full fine-

tuning: An illusion of equivalence, 10 2024.

[22] M. Sloan and J. Wang. Dynamic information retrieval: Theoretical framework

and application. In Proceedings of the ACM SIGIR Conference on Research and

Development in Information Retrieval, University College London, 2015. ACM.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Kaiser,

and I. Polosukhin. Attention is all you need. In Advances in Neural Information

Processing Systems (NeurIPS), pages 5998–6008, 2017. URL https://arxiv.

org/abs/1706.03762.

[24] X.-P. Vu and Others. Freshllms: Improving large language models for domain-

specific tasks. Proceedings of ACL 2024, 2024. URL https://arxiv.org/abs/

2310.03214.

[25] X. Wang and Others. Instructretro: Instruction tuning for post-training llms.

Preprint on ArXiv, 2024. URL https://arxiv.org/abs/2310.07713.

89

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.03214
https://arxiv.org/abs/2310.07713

M.A.Sc. Thesis – C. Vasantharajan; McMaster University – Electrical and Computer

Engineering

[26] Y. Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Lukasz

Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil,

W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado,

M. Hughes, and J. Dean. Google’s neural machine translation system: Bridging

the gap between human and machine translation. In Preprint on ArXiv, 2016.

URL https://arxiv.org/abs/1609.08144.

[27] W. Xiong and Others. Effective adaptation of llms for specialized domains.

Proceedings of ACL 2024, 2024.

[28] W. Zhang and Others. Raft: Adapting language models to new tasks with

minimal data. ICLR 2024, 2024. URL https://arxiv.org/abs/2403.10131.

[29] Z. Zhang, M. Fang, L. Chen, M.-R. Namazi-Rad, and J. Wang. How do large

language models capture the ever-changing world knowledge? a review of recent

advances. arXiv preprint, arXiv:2310.07343, 2023. doi: 10.48550/arXiv.2310.

07343. EMNLP 2023 main conference.

[30] B. Zhou and Others. Lima: Alignment techniques for large-scale ai models. ICLR

2023, 2023. URL https://arxiv.org/abs/2305.11206.

[31] S. Zhuang, H. Ren, L. Shou, and Jian. Bridging the gap between indexing and

retrieval for differentiable search index with query generation. arXiv preprint

arXiv:2206.10128, 2022. doi: 10.48550/arXiv.2206.10128. URL https://arxiv.

org/abs/2206.10128.

90

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/2403.10131
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2206.10128
https://arxiv.org/abs/2206.10128

	Abstract
	Acknowledgments
	Introduction
	Background and Motivation
	Problem Statement
	Organization of the Thesis

	Related Papers and Theory
	Large Language Models
	The Transformer Architecture
	Tokenizer
	Attention Mechanism
	Scaled Dot-Product Attention.
	Multi-Head Attention.
	Mathematical Example.

	Loss Functions
	Alternative Objectives.

	Rise of Large Language Models
	Decoder-Only Transformers and Their Controllability
	Context Length.
	Temperature.
	Maximum New Tokens.

	Advantages and Limitations of LLMs
	Advantages:
	Limitations:
	Overcoming Domain-Specific Limitations:

	Finetuning an LLM
	Types of Fine-Tuning:
	Supervised Fine-Tuning with an Instruction Tuning Dataset:
	Parameter-Efficient Fine-Tuning with LoRA:
	Comparison of Fine-Tuning Strategies:
	Practical Considerations:

	Retrieval-Augmented Generation (RAG)
	Overview of the RAG Pipeline.
	Document Indexing and Retrieval
	Mathematical Formulation of Retrieval.
	Integrating Retrieval with Generation.

	RAG Evaluation - RAGAS
	Faithfulness (FA)
	Answer Relevance (AR)
	Context Relevance (CR)

	Advanced RAG Techniques
	Benefits and Challenges of RAG

	Document Processing for Scientific Documents
	Traditional PDF Extraction Methods
	Advanced Extraction Using the Facebook Nougat Model
	Handling Mathematical Content
	Benefits for Scientific Documents
	Workflow for Indexing Extracted Documents

	Data Collection and Preprocessing
	Data Acquisition
	Document Conversion to Markdown
	Preparing the Instruction Tuning Dataset
	1. Chunking the Markdown Files.
	2. Q&A Generation via ChatGPT API.
	3. Constructing the Training Examples.

	Dataset Statistics

	Model Fine-Tuning
	Base Model (Llama 3 8B)
	Model Selection Justification:
	Key Features and Capabilities:
	Integration into Our Fine-Tuning Pipeline:

	Fine-Tuning
	Hyperparameter Settings
	Hardware Requirements
	Dataset Splits
	Prompt for Fine-Tuning

	Results
	Discussion
	Training Dynamics
	Continuously Decreasing Loss.
	Increasing and Fluctuating Gradient Norm.
	Warm-Up and Decay in Learning Rate.

	Output Quality
	Enhanced Mathematical Rendering.
	Domain-Specific Relevance.
	Practical Implications and Worth.
	Future Work.

	RAG Chatbot Development
	Data Processing
	File Ingestion and Supported File Types
	Text Chunking
	Cleaning and Preprocessing

	Embedding Model
	Vector Database
	Indexing
	Retrieval

	LLM Support
	Response Generation
	Step 1: Standalone Question Formation
	Step 2: Context Retrieval
	Step 3: Final Response Generation

	Interface and Deployment
	User Interface and Usage Workflow
	Additional Features
	Deployment

	Evaluation and Discussion
	Conclusion

