
THE EFFECT OF PAIRING CORRELATIONS ON NUCLEAR TRANSITION



THE EFFECT OF PAIRING CORRELATIONS ON NUCLEAR TRANSITION RATES

By

Abel Ferreira de Miranda, B.Sc

A Thesis

Submitted to the Faculty of Graduate Studies 

in Partial Fulfilment of the Requirements 

for the Degree

Doctor of Philosophy

McMaster University

September 1962



DOCTOR OF PHILOSOPHY (1962) 
(PHYSICS)

McMASTER UNIVERSITY
Hamilton, Ontario

TITLE: The Effect of Pairing Correlations on Unclear Transition Hates

AUTHOR: Abel Ferreira, de Miranda, B.Sc. (Imperial College,
University of London)

SUPERVISOR: Professor M. A. Preston

NUMBER OF PAGES: v, 113

SCOPE AND CONTENTS:

An attempt is made to study the influence of pairing 

correlations in some γ and β decay processes, using wave functions that 

are eigenfunctions of the number operator, and that have extremely large 

overlaps with the exact solutions of the pairing Hamiltonian. The 

techniques used are straight-forward, and it is not much more difficult 

to obtain accurate numerical results with the new wave functions than it 

is with the usual Bardeen-Cooper-Schrieffer wave functions. The results 

show appreciable differences between the two types of wave functions, 

which in some β-decay cases studied can be as much as 10% to 25% when 

the same single particle level structure end pairing force parameter are 

used. Improvement is obtained in some cases. In others, the projected 

wave functions indicate that pairing correlations can account for only- 

part of the configuration mixing required to explain the large deviations 

from single particle values that are experimentally observed.

ii



ACKNOWLEDGEMENTS

I sincerely wish to express my gratitude to Professor M. A. 

Preston for his very valuable criticism and suggestions, and for his 

guidance throughout this work.

I am also grateful to Dr. D. J. Kenworthy, of the Department 

of Mathematics, for having written a very elegant program that essentially 

permitted the calculation to a sufficient accuracy of the various 

reduction factors given by the projected wave functions.

The numerical work was performed using the Bendix-G15D digital 

computer at McMaster University.

I am very thankful to the Department of Physics of McMaster 

University for a maintenance grant for the academic terms 1959 - 1961 and 

to the National Research Council of Canada for a studentship for the 

year 1961 - 1962.



TABLE OF CONTENTS

INTRODUCTION 1

CHAPTER I

1. Completely Degenerate Case: The Quasi-Spin Model 13
2. "Ansatz" Solution for the General Pairing Hamiltonian 26

CHAPTER II

1, The Independent Quasi-Particle Model (Dogoliubov, Beliaev) 29
2. Energy Levels and. Wave Functions for Low-Lying Quasi- 

Purticle States 40

CHAPTER III

1. Projected Wave Functions (Bayman) 46
2. Projected Wave Functions (Kerman, McFarlane, Lawson) 55

CHAPTER IV

1. Matrix Elements for Allowed and First Forbidden β-Decay 
Oporators 57

2. Matrix Elements for Single-Particle Operators for Electro- 
magnetic Transitions 64

CHAPTER V

1. Results and Discussions for some Electromagnetic 
Transitions 67

2. A. Single Particle Levels 72
B. Choice of the Pairing Force Parameter 74
C. Results and Discussions 76

3. Conclusions 80

APPENDIX I

A. Method of Generating Functions. 82

B. Reduction Factors for β and γ  Transition Rates 85

iv



APPENDIX II

Single Particle Matrix Elements for Allowed β-Transitions 90

LIST OF TABLES

I Fermi Levels λ, Energy Gaps Δ and Occupation Numbers 
υ2 for the Pb Isotopes Considered, Using G = 30 Mev 

and Single Particle Energies (in Mev)  94
II Fermi Levels λ, Energy Gaps Δ and Occupation Numbers

υ2 for the Sn Isotopes Considered, Using G = 19 Mev 
and Single Particle Energies (in Mev)  95

III Fermi Levels X, Energy Gaps Δ and Occupation Numbers for
the M = 50 Nuclei Considered, Using G = 0.291 Mev and 

Single Particle Levels (in Lev) 96
IV Reduction Vectors for M4 Transitions in Pb Isotopes

Using BUS Wave Functions (Rks) and Projected Wave 
functions (Rprojected) with Fairing Force 

Parameter and Single Particle Levels Given
in Table I  97

V Reduction Factors for M4 Transitions Using BCS Wave
Functions (RKS) and Projected Wave junctions 

(Rprojected) with Pairing Force Parameter end 
Single Particle Levels Given 98

VI Shifts of Neutron Levels in Units of  hω Relative
to those Obtained by Nilsson (1955) 99

VII Shifts of Proton Levels in Units of hω Relative to
those Obtained by Nilsson (1955) 99

VIII allowed Transitions Considered (After MN 59 and Nuclear 
Data Sheets) 100

IX lot Forbidden Transitions Considered (After MN 59) 101
X Pairing Force Parameter g, Fermi Levels λ and Energy

Gaps Δ for Protons in Nuclei Considered 102
XI Pairing Force Parameter g, Femi Levels λ and Energy

Gaps Δ for Neutrons in Nuclei Considered 105
XII Reduction Factors Using BCS Wave Functions 100
XXII This number was not used in the thesis

XIV Reduction Factors for Allowed Transitions 110

XV Reduction Factors for Allowed and 1st Forbidden Transitions 111

REFERENCES 112

v



INTRODUCTION

The independent-particle model of the nucleus provides the 

starting-point of our efforts to solve approximately the many-body 

nuclear problem.

It was originally inspired by the Hartree method of treating 

the similar problem at the atomic level. In the spirit of this 

method, each nucleon in a nucleus is supposed to move independently 

in some sort of average potential field generated by all the other 

nucleons. 

The wave-function for the nucleus in this approximation is 

then taken to bo a properly anti-symmetrized product of single­

particle wave functions, those being the eigenfunctions of the 

single-particle Hamiltonian corresponding to the average nuclear 

potential assumed.

For a true Hartree-Fock approximation, the average potential 

should be self-consistent, but no attempt is usually made to actually 

solvo the Hartree-Fock equations for the nucleus, in order to obtain 

the self-consistent field and wave functions. Instead, a spherical 

potential of the form

V1 (r) + V2 (r) l * s

1



is postulated, in first approximation and the parameters contained 

therein are so chosen that the magic number sequence, ground state 

spins and other observables are obtained.

The successes and failures of this basic shell-model picture, 

when its predictions are compared to experimental data, are well- 

known. The more serious discrepancies that found to exist can be 

traced to the fact that any interactions between the nucleons which 

in principle cannot be incorporated in the average field, are simply 

ignored. As we shall soon illustrate, these so-called residual inter­

actions can induce considerable nixing of the single particle 

configurations and thus largely destroy the simplicity of the model. 

Attempts have often been made to treat as perturbations the residual 

interactions, and in many cases, a much better agreement with experi­

ment was actually obtained. Although this approach to the problem is 

often capable of yielding rather accurate results, it evidently 

becomes impracticable as the number of nucleons that oust be treated 

(generally only those outside of closed shells) becomes large. 

Therefore, the need arises for developing a method capable of handling 

to a good approximation these residual interactions, without running 

into insuperable computational difficulties.

On the other hand, it soon was clear that besides single 

particle properties so wall described by the shell-model, many nuclei 

also exhibit collective properties, requiring a co-operative effort of 

many nucleons acting together. Those affects are made evident in a 

variety of ways, for instance, in studies of static quadrupole moments



and enhanced E2 transitions, or in the existence of energy levels 

that can be explained only in terms of rotations and vibrations of 

the nuclear body as a whole.

The collective nodal was developed out of attempts to fit 

all these properties together, and for some time it existed side by 

side, in some sense complementing the shell model. It is well known 

that these two models wore finally tied together in the unified 

description developed by Bohr, Mottelson, Nilsson and other authors.

This new approach keeps the spirit of the original shell 

model but allows the self-consistent field to have a deformed 

equilibrium shape. The nucleons are then assumed to move independ­

ently of one another in the available single particle states of the 

deformed nuclear field. From basic quantum mechanical theorems, the 

nucleus will then exhibit rotational states, as well as vibrational 

and single-particle states. This model has known a very remarkable 

success in most of its applications. Thus, the low-energy level 

systematics, γ and β selection rules and trends in transition rates, 

decoupling parameters, magnetic g-factors and all the single particle 

properties in general are very satisfactorily explained within its 

framework. It is believed that it now provides an excellent picture 

of the single-particle proportice of odd nuclei. When, however, one 

tries to apply it to even-even nuclei, ono immediately encounters a 

basic difficulty. It is a very conspicuous feature of those nuclei 

that their energy spectrum exhibits a gap just above the ground 

state in which without exception no intrinsic excitations are 

found, This energy gap is of the order of 1 Nov for heavy deformed



nuclei and therefore more than one order of magnitude greater than 

the single-particle energy spacings.

The independent particle model would predict that ths low- 

lying intrinsic excitations in even-even nuclei should have an average 

energy spacing comparable to the empirically observed single-particle 

level density in odd-A nuclei. That this is not the case and that 

there is a relatively large energy gap in the intrinsic excitation 

spectrum clearly points to a breakdown of the independent particle 

picture, and at the same time shows that residual forces, which 

cannot bo incorporated in the average field considered by the shell- 

model, are at work among the shell-model particles. Those forces 

somehow prevent the occurrence of low-lying single-particle excitations 

in even-even nuclei.

As was first pointed out by Bohr, Mottolson and Pines 

(BMP 50), the existence of such an energy gap suggests a strong 

analogy with the superconducting state of electrons in a metal: 

basically, both electrons in a metal and, nucleons in a nucleus are 

fermion systems which to a very good first approximation can be 

described by an independent particle model. Moreover, both systems 

exhibit an energy gap in their single particle excitation spectrum. 

As pointed out by these authors, thio suggests that one can 

assume that residual interactions exist among nucleons which are 

similar in some sense to the residual interactions among electrons 

that cause superconductivity in a metal. The basic mechanism that 

loads to superconductivity is, according to the Bardeen-Cooper- 

Schrieffer Theory, a short-range two-electron attractive force that
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strongly binds together any two electrons moving with opposite momenta 

and in singlet spin states (Cooper pairs). By virtue of this force, 

electron pairs are continually scattered from one state of zero total 

momentum to another. Two-body correlations of this type are considered 

to be no important for superconductivity that all other correlations 

are ignored, at least in first approximation. As shown by Bardeen- 

Cooper-Schrieffer these particular correlations directly load to the 

observed gap in the electron excitation spectrum and give a natural 

explanation of cost phenomena associated with superconductivity. In 

the nuclear case, one postulates similarly two-body correlations and 

the existence of an attractive short-range part of the two-nucleon 

residual force, which cannot be incorporated in the average nuclear 

field, and which strongly binds together any two nucleons moving in 

degenerate single-particle orbitals, which differ only in the sign 

of their magnetic quantum numbers (conjugate states).

At this stage, it may be well to recall that Mayer (M 50) had 

already found that, in the case of spherical nuclei, one could give an 

interpretation to the observed systematic differences in the binding 

energies of even-even end odd-A nuclei (a phenomenon intimately related 

to the energy gup in the intrinsic excitation spectrum) in terms of a 

short-range diagonal pairing force, which could provide a large 

additional binding energy to pairs of identical nucleons moving in 

conjugate states. Similarly, as was pointed out by Bohr and Mottelson 

(BM 55) in the case of deformed axially symmetric nuclei, we have
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to postulate short-range pairing forces binding identical nucleons 

filling in pairwise each of the doubly degenerate Nilsson’s orbitals.

It was observed, however, that although these diaconal 

pairing forces are sufficient to explain the even-odd mass differences, 

they cannot account for the energy gap. The reason is that although 

they prevent the breaking up of such bound pairs, they cannot prevent 

the occurrence of low-lying two-particle excitations at about twice 

the single particle energies, corresponding to exciting a pair as a 

whole.

Since we already know that no excitations of this type are 

observed even to energies up to tho order of six tines the single 

particle energies, we conclude that off-diagonal matrix elements of 

the residual two-body force must be taken into account: those 

residual forces should then correlate not only the members of a 

particular conjugate state (K, -K) but also a great number of such 

conjugate states, just as in the superconducting case. That is to 

say, one expects that the residual two-body force should ba capable 

of scattering a pair of particles free the conjugate state (K, -K) 

to another conjugate state (K’, -K'), compatible with the conservation 

laws. One can thus suspect that an excitation of a pair as a whole 

would involve a general redistribution of all similarly correlated 

pairs, malting the excitation energy several tinea larger than the 

single particle energy, as required (P 62).

We shall presently see how those residual pairing forces can 

explain a whole set of nuclear properties that could not be understood 

even qualitatively from the independent-particle model viewpoint.



But before mentioning these developments, we must recall 

another important progress made at about the time Bohr, Mottelson 

and Pines suggested the application of the theory of superconductivity 

to the nuclear structure problem.

In fact, Elliott (H 58a) was able to obtain states of a 

distinctly rotational character from a typical shell-model calculation. 

He assumed that the average nuclear field could be described by an 

harmonic oscillator potential, with the nucleons moving independently 

in its allowed states. He further assumed that there are residual 

forces between any two nucleons of the quadrupole type, i.e.,
Vik = -ri2 rk2 P2 (cosϴik)

He then showed that the nucleus will exhibit energy levels which are 

distinctively collective rotational in character, in fact essentially 

the same as obtained by the rotational model. Elliott's result was 

shown (Ba 58) to be true even if the potential wore not harmonic, or 

if a different radial dependence for Vik were assumed, provided that 

wo insist that the angular dependence of the Vik be of the quadrupole 

type. This result of Elliott's clearly suggests the qualitative 

relationship between the actual two-nucleon force and the short-range 

attractive forces that wo found necessary to postulate in order to 

oxplain the even-odd mass differences and the energy gap (Be 59). Let 

us expand the two-nucleon interaction potential in spherical harmonics

V(r1 - r2) = Σ Vl(r1, r2) Pl(cosϴ12)
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In this expansion, only even harmonics occur if we assume 

that V is a parity-conserving interaction. It is reasonable to assume 

that the 1 = 0 term gives the isotropic self-consistent potential 

considered in the early versions of the shell-model. On the other 

hand, Elliott's result indicates that the 1=2 (quadrupole) term will 

produce the ellipsoidal self-consistent field of the unified, model. 

We can then assume that the higher harmonics 1>4 will give rise to 

a residual force which cannot bo incorporated in the self-consistent 

field, and which will produce the effects that we have associated with 

the pairing force. Since the quadrupole force can couple only those 

states having angular moments differing at most by 2 units, we see 

that it will contribute very little to the pairing force, which is 

capable of scattering pairs among states with widely different angular 

momentum quantum numbers, Conversely, the terms for which 1>4 will 

make negligible contributions to the self-consistent field.

These considerations suggest then that one should bo able to 

understand the low-energy properties of nuclei starting from the 

description of an independent-particle notion in a spherical self- 

consistent field and aiding to it the combined effects of the 

short-range pairing force (high harmonics) and the long-range 

quadrupole force (low harmonics) operating among shell-model particles. 

For deformed nuclei, it is clear that we can always incorporate 

most of the effects of the quadrupole force in the construction of the 

self-consistent field. The pairing force, however, has to be treated 

on a different footing, since it cannot be incorporated in the

self-consistent field.



It can be shown (Ba 58) that the quadrupole force alone will

give rise to a distribution of nucleons outside closed shells 

(supposed to account essentially for the low-energy properties of 

racial) such that each nucleon tends to adjust its notion to the 

shops of the average field produced by all the other nucleons (M 60). 

The shell model implies that a single particle outside closed shells 

has a spatial distribution mostly confined to a plane passing through 

the center of the nucleus end thus highly anisotropic. The model 

then indicates that even in this case a non-spherical equilibrium 

shape will be preferred by the nucleus (E 58b). We can then define 

a quantisation axis Z perpendicular to the plane on which the nucleon 

is mostly confined. If we add another nucleon, then the residual 

quadrupole force will correlate it with the already present nucleon 

in such a way that the spatial distribution of the added nucleon will 

be concentrated as nearly to the some plane as possible, i.e, with 

the maximum possible mz value; and so forth. This is because a 

force

is most attractive when the angular distance ϴij between any two 

nucleons i and j differs from 0 or n by loss than about (Ba 58),

So the best possible correlation brought about by an 

attractive quadrupole force (K=2) will result when the nucleons

move in single-particle states with the highest mz values. This
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ensures that each particle feels the effects of the long-range force 

due to all the other particles. The best wave function embodying 

this type of correlation will than be a properly antisymmetrized 

product of single-particle wave functions with the highest possible 

mz values.

We are thus led, in the case of a pure attractive quadrupole 

ferenti to the so-called aligned coupling scheme (Mottelson) in which 

the nucleone are distributed in states which best fit the average 

deformed field which they themselves generate. This of course gives 

rise to the well known rotational states.

Considering now the pairing forco alone, a quite different 

coupling scheme results.

The nucleons under its influence tend to form virtual bound 

pairs (Cooper pairs) which, as we shall see (of. Chapter I) must have 

spherical aliatici distribution for the best possible correlation. In 

this sense, its effects are opposed to the long-range correlations 

brought about by the quadrupole force.

It is the interplay of these two forces that can explain, 

among many other things, the equilibrium deformations of nuclei, and 

the observed sudden onset of a permanent deformation as the number of 

particles outside of closed shells increases (Be 59).

For nuclei in the region nearest to the closed shells, one 

finds that the pairing force is dominant, while the quadrupole force 

can be treated as a perturbation (KS 60). The pairing force, which 

favors spherical symmetry, is responsible for the spherical equili­

brium shape of those nuclei but the quadrupole force perturbs the
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nucleons in their paired states in such a way that slow quadrupole- 

type shape vibrations result, as observed (Bar 60).

For nuclei with strong equilibrium deformations (farthest 

from closed shells), the quadrupole force dominates, and although 

the pairing force little affects the equilibrium shape, it is by 

no means negligible. For we have already soon that it must account 

for the energy gap in the intrinsic spectrum.

On the other hand, the pairing force explains why the 

moments of inertia of deformed nuclei evaluated on the basis of the 

assumption of independent notion of the nucleons is substantially 

larger than the observed values. In fact, the value obtained 

corresponds exactly to the value that would result if the nucleus 

were a rigid rotator. Bohr and Mottelson (BM 55) on the basis of 

the cranking model, have pointed out that the inclusion of an 

additional pairing energy brought about by the type of pairing 

correlations that we are considering will reduce by an order of 

magnitude at least the rigid rotation estimates. Actual calculations 

carried out by Beliae, Migdal et al (Be 59, NP 61) introducing the 

pairing force, bring the computed moments of inertia a great deal 

closer to the experimental values.

Following this general line concerning the various effects 

of the pairing force on the nuclear structure, we propose here to 

make a study of its effects on the nuclear β and γ decay rates. 

Some calculations done by Kisslinger and Sorensen (KS 60) and 

Solovie (S61) allow that the strong single-particle configuration 

mixing brought about by the pairing force explains in a way
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consistent with experiment the reduction of these transition rates 

from the single-particle estimates.

We shall bo concerned hero solely with the effect of the 

pairing force, but before we go on discussing it in detail, it may 

well be pointed out that efforts to diagonalise simultaneously the 

quadrupole force and the pairing force generally in a realistic case 

have not been successful so far. Lipkin (L 61) has succeeded in 

doing an exact diagonalisation for a two-dimensional model using an 

harmonic oscillator field, but although he regained some of the basic 

results mentioned above, he failed to obtain any effect of the pairing 

force on the moment of inertia of the deforced system, and even the 

existence of low-lying vibrational excitations. This may evidently 

be due to the over-simplifications introduced in his model.

More recently, however, Moshinsky (Mo 61) was able to obtain 

a numerical diagonalisation for a particular three-dimensional case. 

Those efforts, if not anything else, have the merit of showing more 

clearly than before the nature of the relationship between the 

quadrupole and the pairing force.



CHAPTER I

1. Completely Degenerate Case: The Quasi-Spin Model

Our task now is to formulate explicitly that part of the 

Hamiltonian corresponding to the pairing force alone and then 

diagonalise it. We consider spherical nuclei first. We ignore 

short-range neutron-proton correlations, since in heavy nuclei 

(to which we refer in this work) the neutrons and protons occupy 

different energy shells and can be assumed to have different 

Fermi levels. There is no satisfactory theory to this date giving 

the solution to the problem of n-p short-range pairing correlations, 

which should evidently bo important in light nuclei.

Since we are assuming basically two-body correlations, we 

must first look at the spectrum of two identical shell-model particles 

without interaction and see how it is modified by a residual short 

range force between them (M 58). We need consider only equivalent 

particles (same n, 1, j quantum numbers), since for non-equivalent 

particles in heavy nuclei the short-range force will not be appreciably 

effective.

Calculations done by Mayer (Ma 50) using a b-function force 

show that one essentially gets the result that the unperturbed j2 

degenerate configurations are modified in such a way that the state

15
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with total angular momentum J = 0 is quite depressed whereas the 

degeneracy of the J = 2, 4, ... 2j-1 states is appreciably lifted 

(Fig. 1) (after M 58).

Proceeding a step further, we define the pairing force as 

that force causing the J = 0 state to be depressed, leaving all the 

other states J = 2, 4, ... 2j - 1 unperturbed. That is to say, the 

pairing force couples only the states 
jm , j-w ; J = 0, M = 0 > 

and 
< j' m', j-m' ; J' = 0 M' = 0 ।

its matrix elemente between ell the other configurations being 

taken as zero. The Cooper pairs than have spherical symmetry.

From the basic assumptions of the theory of superconductivity 

(BCS 58), one then is assured that, also in the nuclear case, when 

we next consider many equivalent particles, the pairing force will 

produce a considerable energy gap in the single particle excitation 

spectrum, if the number of particles is even.



15

The pairing force cannot of course be represented in 

configuration space as a local potential, although from its definition 

we see that it resembles somewhat a δ-function force. But, whereas 

a 6-function force can couple all kinds of single-particle configurations, 

the pairing force connects conjugate states only (or, in general, any- 

set of states which differ from another set of states only by time­

reversal, such as the two-degenerate states of a Nilsson's orbital).

It is most convenient to use a second quantized representation, 

since it automatically takes in account the exclusion principle. Our 

basic set of states are the single-particle states of the spherical 

self-consistent field nljm>  (later we shall use the single particle 

states of an axially symmetric deformed field). In this chapter we 

shall write down explicitly only the angular momentum j and its z- 

component m. We define the vacuum state 0> as the state having no 

nucleons present. We introduce the femion creation and annihilation 

+ 
operators ajm and ajm such that

ajm+ 10 > = jm> I * 1 * 1

ajm 10 > = 0

These operators satisfy the usual anticommutationn rules. We 

define aj-m+ 10> = j-m> = (-1)m jm>* I * 1 * 3 

where * means complex conjugate, and (-1)m jm>*  is the time-reversed

state of jm> .

The general Hamiltonian including two-body forces is then
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We call εj the energy of the single particle state jm>. 

We must now write H in such a way that its invariances under rotations 

(conservation of angular momentum) and under space inversions

(conservation of parity) are explicit. To do this we couple the
angular momentum states <j, m, <j2 m2 to give <jm and j, m,' > j2' m2' >

to give JM> and express H2 as a scalar product. We then get

where

are Clebsch-Gordan coefficients (we are using Condon-Shortley’s

phases).

We shall now effectively truncate our Hamiltonian, keeping

only those toxins that correspond to the pairing force, as we defined

it.

So our model Hamiltonian is

Recalling that
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As Kisslinger and Sorensen have done (KS 60), we further 

simplify the problem by replacing the above matrix element by some 

sort of an average, G, which is to be treated as a parameter to be 

fixed from the empirical evidence. Thus we set

essential for the logical development of the model (Be 59).

We get

The minus sign indicates that we are taking the interaction

to be attractive, as in the case of superconducting electrons. Thus 

we have finally our much simplified pairing Hamiltonian

We should note that the step involved in I.1.9 is not really
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We are doing it, however, because in practice it very much 

simplifies the calculations, and because we can always treat G as a 

parameter to be adjusted empirically (for instance, from the even- 

odd mass data). What is essential, however, is that the two-body 

matrix element should have predominantly one sign (in our case, 

negative, indicating attractive forces). It is precisely this that 

causes the peculiar coherent two-body correlations that leads to the 

splitting off of a single state from a large set of degenerate states, 

leaving the remaining states unperturbed(BCS 58).

Ths resulting energy gap may then be very large compared to 

the average single particle level-spacing, even if the residual 

pairing force be quite weak, since the energies of the remaining 

states are not changed. The wave function corresponding to the 

depressed state will then to a linear combination of the available 

single particle states, with coefficients having predominantly one 

sign.

Before going into the discussion of the Methods available to 

solve approximately the Hamiltonian 1.10, we must consider a particular 

case for which an exact solution can bo given (Racah, Kerman, 

Mottelson et al).

This solution already contains the fundamental features of 

the effects associated with the pairing force.

We consider the following very simplified model of the nucleus, 

which we shall call the "quasi-spin" Model (T ). We divide the 

nucleus in three regions. Region I contains all the closed j-shells, 

and region III contains all the empty j-shells. In region II we assume
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that there is a single j-shell in the process of being filled

Regions I and III are supposed to be purely passive, i.e., they do not

influence in any way the dynamics of the nucleons in the j-shell in

region II. Further, we assume that the sublevels jm in region II are 

completely degenerate in energy, and we set their energy εj to zero. 

Then 1.10 becomes

This then describes an idealized system of N nucleons, say, 

in the j-shell (region II) free from configuration mixing from region 

I and III (the passive region). The problem in this form was completely 

solved by Racah (1948) from a different viewpoint, and led him to 

introduce the concept of the "seniority coupling scheme” appropriate 

to the pairing force, just as the "aligned coupling scheme" is to the 

quadrupole force (cf. Introduction).

We then see that the full Hamiltonian l.10 will simply 

generalize the concept of seniority, when mixing from all the regions 

I, II an III must be taken into account.
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Following Kerman (K 61), we introduce three operators

where t means Hermitean adjoint.

Those operators transform as the three spherical components 

of an irreducible tensor of rank 1, or in other words, the vector Jjm 

behaves as an angular momentum (K 61). Furthermore, Jjm and Jjm' 

(m=/=m’) commute with each other.

We note that

where Ω is the number of the pairing levels, Ω = J + 1/2. 

when the shell is empty (N = 0) we have

. Therefore,

and when it is full (N = 2 Ω )

That is to say, when all the pairing levels are unoccupied, 

each elementary Jjm "points down" and is equal to -1/2 , and since 

these are Ω of them, the total Sjo is -Ω/2 . Similarly, when each 

pairing level (m, -m) is occupied, every elementary Jjm "points up"

We define



21

and is equal to +1/2, and again, since these are Ω pairing levels, 

the total Sjo is + Ω/2. Also note that the expectation values of

J+jm and S-jm, in the states living Sojm = +1/2 vanishes identically. 

This then shows that the elementary Jjm the properties 
of a spin 1/2 when the conjugate levels (m, -m) are occupied by an 

even number of particles (0 or 2).

On the other hand, if there is only one particle occupying 

one of the pairing levels, the Sojm for that particular level vanishes 

as can easily be verified from the third expression in I.1.12. 

Note that Sjo is an integer or half-integer depending upon 

whether N-Ω is even or odd; also, from elementary angular momentum

It then follows that Sj is an integer or half-integer

corre spending to whether N is even or odd.

The oppression I.1.11 becomes

From the properties of an angular momentum operator, the 

eigenvalues of Hdeg are simply

Therefore, the eigenstates of Hdeg will be labelled by the 

quantum numbers corresponding to the total quasi-spin Sj and its 

zero-component Sj.
The total quasi-spin quantum number Sj is related to Racah's

seniority υ by

theory
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In terms of seniority quantum number, the energy spectrum is,

as found by Racah, —,

Since Edeg for a given JN configuration depende solely upon υ 

, and is degenerate in all the other quantum numbers (except N 

itself), it is called the "seniority spectrum".

We recall that the seniority v is the smallest number of 

particles needed for building a state with a given set of properties, 

and therefore it specifies the simplest configuration which contains 

such a state (Racah). Adding a number of saturated pairs, i.e., 

pairs of identical nucleons coupled to J=0 angular momentum, to the 

J configuration does not change its seniority v , or the related 

quasi-spin Sj . This is also evident from the fact that Sj+ (or Sj- ) 

operating on the vacuum creates (destroys) a saturated pair, without 

changing the magnitude of Sj , from elementary angular momentum 

theory.

Thus we see that if we have saturated pairs only in the JN 
configuration, then the seniority quantum number v = 0. If we have, 

besides saturated pairs, v particles which do not form saturated 

pairs, then the seniority of the state equals the number of particles 

that remain unsaturated, v. The energy level Edeg (v) will occur 

only if these ere at least v particles in the configuration.
For a given N and v the level Edeg is Dv- fold degenerate, 

whose
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as can easily be shown (T 61).

Note that Dv rapidly increases with u.

The level spacing is _
E (u) - E (u+2) = - 2 G Sj       I *1.21

We note that it is independent of N, although the absolute 

value of Edeg depends strongly upon N.

It then follows that the level density near the ground state 

is independent of N. For an even-N system, all the particles form 

saturated, pairs in the ground state, The energy needed to break a 

pair is independent of IT, end therefore the single particle level 

density near the ground state does not increase with N in spite of 

the rapidly increasing number of degrees of freedom available as N 

increases.

For an even N system, this corresponds to having a gap in 

the single particle excitation spectrum.

For an odd-N system, because the odd particle doos not inter­

act with the saturated pairs, there is no gap, since it requires 

arbitrarily small energies to excite it. We shall see, however, that 

the average single particle level density near the ground state is 

appreciably reduced compared to the case where G = 0 (no pairing 

interaction) (Bk 58).

Also notice that, if N << Ω, the ground state energy increases 

linearly with N; on the other hand, we recall that with the residual
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long-range quadrupole force the particles are best correlated when

they are all as near to the equatorial plane of the deforced nucleus

as possible. We then have to consider interactions between all the

possible pairs and, as the actual calculation shows, the ground state

energy increases with N roughly as N2 . We thus substantiate the

remarks already made in the Introduction that near the closed shells

the pairing force will dominate, whereas far away from closed Shells

the quadrupole force will take over.

We can now construct explicitly the eigenvectors of Hdeg 

We label them by the two quantum numbers Sj and Sj:

Similarly, for an odd-N system, the state with the odd

partióle in the sublevel m1 is

is a normalization factor.

where is the number of pairs and

For an even N, any state SjSjo> can be obtained by operating

on the vacuum by the saturated pair creation operator Sj. Thus

The completely filled shell (N = 2Ω) is described by

The vacuum state is then easily soon to be
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We note that the angular momentum of those states can easily 

be obtained: for if even, all the particles form saturated pairs in 

the ground state, so J=0; for odd-N, the angular momentum, is given 

by the last unpaired particle. We thus regained the well-known 

shell-model coupling rules (Ma 50).

Excited states can also be constructed: for N even, the 

first excited states will have seniority 2, corresponding to breaking 

up a pair.

The resulting two unsaturated particles must couple to an 

angular momentum with values restricted by the exclusion principle. 

Thus we must construct the generalised pair-creation operator:

which creates a state with good angular momentum T (z-component M). 

So, the first excited state will be, apart from normalisation factors

Thia state io degenerate, of course, since the energy is 

independent of J and M: from (I.1.20) we see that its degeneracy 

is Ω -1.

Higher excited states can be obtained with the help of 

operators such as S+(JM): however, the problem of obtaining states 

with good angular momentum will be more difficult,

Also, the problem of investigating the orthogonality of those 

states to the ground state is nontrivial (Kerman).



2. "Ansatz" Solution for the General Pairing Hamiltonian

In the previous paragraph we have shown how the problem of a 

completely degenerate JN configuration with residual pairing forces 

can be exactly solved. The seniority coupling scheme was than

obtained. We saw that for an even-N system an energy gap occurs.

Its magnitude was found to be (I.1.19)
I. 2.1

where Ω is the number of pairing levels among which the Cooper pairs 

scatter under the action of the pairing force.

We must now look at the general pairing Hamiltonian. First, 

consider the limit of a very strong coupling parameter G, which 

implies that the spacings between the single particle levels Ej are 

very small compared to the energy gap △ . We can then take the 

solutions of the last paragraph to be exact in zeroth order, and consider 

as a perturbation the slight deviation from complete degeneracy of the 

single particle levels. If we call E the barycentre of the single 

particle levels Ej (in the last paragraph these levels were degenerate 

and we took E=o), than the perturbation is
V= Σ (Ej-E) ajm+ ajm I . 2.2

The perturbed ground state can be shown to be to first order

(apart from normalization factors)
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On the other hand, in the opposite limit G --> 0 (pairing force

negligible), we evidently recover the simple shell-model many-particle

wave function

where the Cjm's are to be determined by a variational calculation. 

The above limiting wave-functions are obviously simple cases 

corresponding to particular choices of the Cjm. The exact solution 

discussal in the last paragraph corresponds to the ease where all the 

two-particle configurations contribute to the wave function exactly 

with the same weighting factor. For systems with largo degeneracies# 

this will be very approximately the situation. But for systems with 

small degeneracies, the weighting factors depend on the details of the 

single-particle status end we must look at the more general methods 

available for handling the pairing Hamiltonian.

We shall see as already mentioned, that all the basic features 

of the solutions to the completely degenerate case are preserved.

Before closing this Chapter we remark that the "ansatz" wave 

function I.2.5, giving the correct Uniting cases is not easy to

handle. The reason is that it is not a product of wave-functions and

In the region where G is comparable to the average single- 

particle level-spacing, no exact eigenvector of H. can be obtained 

but the above limiting expressions suggest that we use as a trial wave

function, for the ground state



therefore it lacks Hartree-like properties. We cannot then say that 

the probability of finding two pairs occupied in the ground state is 

equal to the product of the probabilities of finding each pair in the 

ground state (C 59). In order to have this property we shall see that

it will be necessary to relax the condition that the number of particles 

M in the system be fixed and insist that only the average number of

particles in the system be equal to N.



CHAPTER II

1. The Independent Quasi-Particle Model (Bogoliubov, Beliaev)

The methods that we will now consider were designed to solve 

the pairing Hamiltonian in general. Those methods stake possible the 

study of the effects of the pairing force in systems for which the 

degeneracy of the basic set of states is reduced to a minimum, as in 

the case of strongly deformed nuclei. In the rare earth region, for 

instance, and at least for large deformations, the degeneracy has 

almost completely disappeared. The residual two-fold degeneracy of 

the Nilsson states is due to the axial symmetry of the average field 

chosen. Therefore, a division of the nucleus in three regions (of. 

Chapter I) excluding mutual configuration mixing becomes untenable.

On the other hand, it is evident that we should regain 

essentially the solution presented in Chapter I in the limit of large 

degeneracies associated with spherical nuclei.

We shall modify slightly our labelling of the eigenstates of 

the self-consistent field by writing vm> for a given eigenstate in 

which M is the component along the z-axis of the angular momentum 

(wo shall take the body-fixed z-axis along the symmetry axis for an 

axially symmetric deformed nucleus); v stands for all the remaining

29
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quantum numbers required to make the representation complete. 

Specifically, states with positive projections on the z-axis will be 

represented, by v+m> or simply vm>; states with negative 

projections will be denoted by v-m>.

The pairing Hamiltonian (I.1.10) than becomes

The phase factors occurring in I.1.10 are supposed to have 

been absorbed in the definition of the single particle states. This 

is done simply for convenience since those phase factors are unimportant 

for our purposes (they may be important in either contexts - see L 61). 

As pointed out in Chapter I, it will prove to be more convenient 

to remove the restriction that the number of particles n in the system 

be fixed, and instead impose the condition that the average number of 

particles in the ground state be equal to the actual number of particles 

in the system which we wish to describe. That is to say, we are going 

to discuss the system from a grand canonical ensamblo point of view. 

We thus introduce a Lagrange multiplier λ, and write

and λ has the character of a chemical potential, to be fixed by the 

constraint

as the now Hamiltonian, where N is the number operator



where Φo> is the ground state of the system.

Who solution satisfying these conditions will then describe 

an ensemble of nuclei centered at the desired nucleus. We shall 

discuss later the accuracy of ouch a description.

As shown by Bogoliubov and Valotin, the next step is to 

introduce a system of now particles that will embody in their 

definition all the effects of the pairing force between the old particles. 

That is to say, the pairing force, introducing strong correlations 

between nucleons in conjugate states, modify in a vary definite manner 

the shell model particles. The spirit of the Bogoliubov-Valatin 

method is then to make a canonical transformation incorporating these 

effects and introducing a modified shell-model particle or "quasi- 

particle". It is next required to have a system of indepent quasi- 

particles, just as originally the shell-model particles were. This can 

be achieved to some approximation by a proper choice of the canonical 

transformation. In this spirit we may argue that the original shell 

model particles are not the actual nucleons but already a system of 

"quasi-particles" which are nucleons modified by the long-range field- 

producing part of the actual two-nucleon force. The new transformation 

is then just another step in the chain of canonical transformations 

leading to a better and more accurate description of the system in terms 

of normal modes.

We introduce the new quasi-particle operators



Where uv and vv are real numbers, satisfying the normalization

condition
Vv2 + uv2 = 1 I . 1.6

Furthermore we insist that
Vv = uvm = Vvw
Uv = Uvm = Uv-m

It is than easily shown that with this choice of the Uv's and 

Vv's the usual anticommutation rules for fermion operators hold for 

“quasi-particle” operators as well. It also follows easily that, if 

αvm is a quasi-particle in the +m state than βvm is a quasi-particle 

in the -m state.

The new operators are a linear combination of a particle and 

hole operators. In the case of an independent fermion system they 

become actually uncoupled, if wo choose Uv = 1, Vv = 0 for the states 

above the Fermi level and Uv = 0, Vu = 1 for the states below. In 

this particular case than the only difference between quasi-particle 

and particle operators lies in the definition of their vacuum state: 

for particle operators it is the state having no particles present and 

for the quasi-particle operators it is the state corresponding to having 

a filled Fermi sea with no particles above the Fermi level. This is 

readily verified from the defining relationships I.l.5.

As we shall presently see, the pairing correlation mixes 

conjugate pair states in such a way that states near the Fermi level 

become partly occupied and partly empty, with probabilities Vv2 and 

Uv2 respectively. That is to say, the occupation distribution number 

Vv2 , instead of having a sharp cut-off at the Fermi level, becomes
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actually smeared out to an extent depending on the strength of the 

coupling parameter G. With the actually observed strengths the 

occupation number distribution becomes rapidly what it would be in the 

case of an independent particle system for states fairly removed in 

energy from the Fermi level (i.e., 1, for states fairly below and 0 

for states fairly above this level).

For G = 0 we go back exactly to the familiar step-function 

distribution of a non-interacting system.

On the other hand, for G=O, the quasi-particle vacuum, just 

as in the case of a non-interacting system, should correspond to the 

Fermi sea for the particles modified by the pairing correlations (see 

below).

Using the properties II.1.6 and II.1.7 we can invert the 

relationships II.1.5 and obtain

Substituting this into II.1.2, and using the Dyson-Wick’s 

theorem for expanding a product of operators in terms of their normal 

products, we find that H can be written as (Be 59)

is the term containing all the possible contractions and is there­

fore a pure number representing the ground state energy corresponding



where, by definition,

Since we want a system of independent quasi-particles we must

now do two things, first, neglect the interaction term Hint (containing

the nomai products of 4 quasi-particle operators) and next obtain an

which clearly represents a system of free quasi-particles moving in 

states v with energy Ev.

To achieve this we must set H20 = 0 identically. This gives the

and defining

The terms H20 and H11 contain normal products of two creation 

and annihilation operators; their expressions are

Hamiltonian of the form

condition

and



55

wo have

is then naturally called the energy gap.

From this relationship one can see that no quasi-particle 

excitations may occur with energies lose than △ : for the Ev vs Ev 

curve has a positive minimum at Ev = X equal to △. This quantity

in the state vm> is

which is the well-known Fermi distribution for the non-interacting 

system. Then G=/=0, the probability distribution is modified, 

especially in an energy region around the Fermi level and width about 

2 △ (see Page 33). Also, since there is now a finite probability for 

finding a pair above the Fermi level of the non-interacting system λo, 

we expect (as proven by a simple calculation) that the Fermi energy 

for the superconducting system X be slightly greater than λo.

From II.1.13 it also follows that the quasi-particle energy

From these equations it follows that for △ = °(or G=0, no 

pairing interaction), we obtain

which yields
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Replacing Uv and Vv from II.1.18 into the defining equation

This equation has the trivial solution △ = 0, From II. 1.18

Thio confirma the interpretation given to Vv2 as being the 

probability that the conjugate states vm> and |v-m> are occupied by 

a pair.

Equations II. 1.22 and II.1.23 oust be solved together in order 

to determine λ and Δ for any given nucleus. The position of λ depends 

of course on the effective number of pairing levels taken to bo 

appreciably mixed by the pairing interaction and whose occupation number 

is therefore sensibly different from 1. A spherical nucleus, for 

instance, exhibits a well-developed shell structure. Matrix elements 

of the pairing force between states of the completely filled shells and 

the states of the region of partly filled shells are vanishingly small, 

so most of the contributions to the sum II.1.22 comes from the states 

outside of closed shells. We may then consider only those shells in

the actual solution of II.1.22 and II.1.23.

From the constraint condition II.1.4 it also follows that

we again see that this solution corresponds to the normal state of the 

system, without pairing interactions.

The non-trivial solution corresponds to the energy gap introduced 

by the pairing correlation:

for the energy gap, II.1.11, we got
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Similarly, the shells that lie well above the Fermi level will 

give negligibly small matrix elements with states of the partially 

filled shells.

It can be shown (Be 59) that if the various shells outside the 

shell of interest are taken into account the effect is to renormalize 

the value of the strength parameter G. We have then to fit G according 

to the actual cut-off placed both below and above the Fermi level.

In order to solve II.1.22 and II.1.23 one needs firstly the 

energies εv and the strength parameter G. We shall discuss below 

how to find G empirically.

We notice from II.1.15 (or II.1.16) that the pairing interaction 

contributes a term to the self-consistent field, viz. Guvvv3 and 

does in a sense cause a renormalization of the single particle energies 

 εv of the deformed field. It originates from the diagonal part of 

the pairing Hamiltonian and therefore has the character of a self—energy 

term. From its nature, we see that it affects mostly those energy 

levels close to the Fermi level, but otherwise is small compared to 

the second term in II.1.15.

We have then two alternative choices, viz. either incorporate 

the self-energy term in the definition of the single particle levels, 

thus working with effectively renormalized single particle energies, 

or just ignore it, for the reason explained above.

From the first viewpoint, we may use the known experimental 

single particle energies available in trying to find the best fit for 

the strength parameter G and the level distribution. We have, however, 

used hero the second approach. In what follows we shell discuss this 

point somewhat further.
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One should notice that from Equation II.1.21 it follow that 

a non-trivial solution is possible only when the matrix elements of 

the pairing interaction have predominantly one sign over sufficiently 

many pairing levels: we have, in foot, already ensured this coherent 

behaviour by replacing the matrix elements of the pairing force by an 

average, -G. This is because otherwise we would have no guarantee 

that the expression II.1.21, involving algebraic sums over many matrix 

elements would not be vanishingly small duo to cancellations, giving 

no solution other than that corresponding to the normal solution.

We thus see that the more pairing levels there are for the 

Cooper pairs to scatter into, the more justifiable and accurate will 

be the description of the effects of the short-range interactions 

between nucleons by means of the pairing force.

Following Nilsson and Prior (IIP 61) wo then define an effective 

degeneracy ΩH by the expression

and we take it as a measure of the accuracy of the description by 

means of the pairing force. As we shall see, these solutions reproduce 

the exact results developed in Chapter I for the completely degenerate 

case to an accuracy of the order of ΩH.

On the other hand, if wo look at the last two terms of II. 1.15

and rewrite them, thus
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we see that the neglect of the last term in the last expression when

compared. to the second term will involve an error of the order of 

magnitude ΩeH-1 , since there are effectively ΩeH terms in the sum. 

It turns out (NP 61) that, among the various contributions

involved in the neglected interaction term Hint in II.1.9, there is

a term containing 4 quasi particle operators that gives non-zero

matrix elements between the vacuum and 4 quasi particle states, and also

between 1 and 5 quasi particle states. Again, the effect of this 

coupling on the ground state is of the order of magnitude ΩeH-1, which 

is then a good measure of the validity of the independent quasi particle

approximation.



2. Energy Levels and. Wave Functions for Low-Lying Quasi-Particle States

have occupation probabilities sensibly different from 1 (or zero).

As was mentioned in the last paragraph, we now wish to introduce 

a vacuum state Φo> for the quasi particles that would correspond 

naturally to the ground state of the old particles modified by the 

pairing correlations. Moreover, this state Φo> must be such that

From the definitions of the quasi-particle operators II.1.15, 

it is easily seen that the state vector

satisfies the conditions II.2.1. The state (o> represents here the 

true vacuum of the system.

We thus take Φo> as being the state with no quasi-particles 

present, and corresponding to having the old particles (at least those 

occupying the states lying within about Δ from the Fermi surface) in 

the form of Cooper pairs. We thus see that the concept of a quasi- 

particle is actually a generalisation of the concept of seniority 

introduced in the last chapter.

We note that the product over Vm runs over all the single 

particle states of the self-consistent field. However, with the 

practical values of the pairing force, only those states lying within 

a band of width of about 2Δ = 2 Mev centered at the Fermi surface
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where V1(V2) is the lowest (highest) level for which the probability 
number Vv2 (Uv2) differs from 1 by a pre-assigned amount, say by

less than .01.

Particles below Vi would be described by a simple product wave 

functions ( Vv2 =1) and above the limit V2, we would have true 

vacuum ( Uv2 =1).

Clearly a state of seniority one, or a state with one quasi-

particle. Similarly,

and so on. All these

states of seniority two are

states are, of course, normalized and are exact

eigenstates of the quasi-particle Hamiltonian, provided that the inter-

action term Hint can be neglected. Again, the problem of investigating

the orthogonality of these states is non-trivial, just as in the case 

of a completely degenerate system.

We note that none of these states describe a system with a 

definite number of particles; in other words, they are not eigenstates 
of the number operator. Φo> is actually a superposition of 0, 2, 4, 

6 ... particle states, whereas Φo> describes a superposition of 1, 3,

where (vomo> (or Vo-mo >) is the state occupied by the odd

particle present, is simply

So we night consider in practice
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5 ... particle states, Therefore Φo> can describe only even-n systems
and Φ1> odd-n systems. We shall later see how we can extract from

those a set of wave functions containing a definite number of particles

and how well can they describe the system.

We now note the following: the state Φ1> can be taken as a

trial wave function for the full pairing Hamiltonian II.1.1.

In the usual manner we evaluate the expectation value of 

and minimise it with respect to Vv , say,

which we see to be identical to II.1.15. Therefore the choices for 

Vv2 and Uv2 given by II.1.18a and II.1.18b guarantees that Φ1> gives 

the minimum ground state energy of the particle system. Φ1> is 

then the host product wave function available, containing the maximum 

possible correlations among the particles which are favourable to the 

pairing force.

Wo can take similarly one quasi-particle states as trial functions 

for the ground state and low-lying excited states of the exact pairing 

Hamiltonian of an odd-n system. However, all basic equations previously 

developed have to be modified slightly to take into account the blocking 

of the orbital occupied by the odd nucleon. Using the single quasi 

particle state II.2.3 as a trial wave function, a variational calculation

yields the equation

subject to the condition

This yields
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where n is the total number of particles in the system and v' is the

orbital occupied by the odd particle. Nilsson and Prior (NP 61) have

estimated the difference between Δe (when there is no blocking of an 

orbital, or when it is ignored) and Δo given by the above equations,

assuming that states wall below and well above the Fermi level are not 

affected by the blocking. This difference can be quite appreciable (see 

for instance Table XI) and produces quite marked changes in the occupation 

numbers, at least near enough to the Fermi level.
The excitation energy of a quasi-particle in the state v1m1>

The energy of two quasi-particles in the states v1 and v2 is seen to be

as can easily be seen from II.1.13 and II.1.15. If the quasi particle

Ground state energy is Evo , then the relative energy of the excitation

is simply

and they find that

where

which to 1st order is



Therefore, odd-A nuclei can have arbitrarily low excitation 

energies, whereas even-even nuclei cannot have intrinsic excitations 

below zΔ , in the independent quasi-particle approximation.

One should also notice that the pairing force implies that the 

average level density of intrinsic states near the ground state of odd 

nuclei is sensibly higher than that predicted by the independent particle 

model (M 58).

This is a consequence of the Pauli principle. In fact, if the 

orbital Vo , say, is blocked by the odd particles, then the correlated 

pairs are unable to scatter into Vo , due to the exclusion principle. 

However, if Vo has a fairly high energy, then the pairs can correlate 

much better under the action of the pairing force, since they will have 

more available pairing levels. This implies that the experimentally 

observed low-lying single particle levels are slightly pushed up in energy 

relative to their positions according to the independent particle model, 

whereas the higher lying levels are not much affected. These indeed are 

the observed facts (Bk 58 ).

The energy gap may be obtained from the known nucleon separation 

energies, or from an estimate of the position of the first excited two 

quasi-particle states, although in this latter case one should make 

allowances for residual forces not token into account by the pairing 

Hamiltonian, and which may affect considerably the two quasi-particle 

states.

The method followed here is based on estimates of even - odd mass 

differences. This is defined for neutrons, say, by
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where the E's are total binding energies of the even-odd. neighbours.

A moro exact relationship is given by (NP 61)

From the expressions previously developed for the ground state energies

of an even-n and odd-n systems, it can be shown (NP 61) that the

where the self-energy terms discussed previously have been included.

If the blocking effect were ignored, which is tantamount to assuming the

same vacuum for zero and one quasi-particle states, we would simply have

Nilsson and Prior calculations show that the third term in the

expression for Pn reduces the contribution of the second to make Pn 

actually smaller then Δe by about 10% on the average, both for neutrons

and protons.

Following those authors, we have tried to adjust the pairing 

force parameters Gn and Gp to give

further referred to in Chapter V.

whore Sn(z,N) is the neutron separation energy in the nucleus

theoretical even-odd mass difference is

whore Pmexp and Pmexp are the experimentally obtained even - odd

mass differences. The results are given in Tables X and XI, and are



CHAPTER III

1. Projected Wave Functions (Bayman)

As we have seen, the BCS wave functians are trial wave functions  

for the pairing Hamiltonian corresponding to an ensemble of nuclei.

The minimization of the energy was seen to give rise to 

definite expressions for the occupation number amplitudes such that 

the ensemble really consists of a few nuclei with slightly different 

numbers of particles. More precisely, if we define a mean square

deviation for the number of particles in the ground state of an even

system by

where N is the number operator, then it is easily seen that

Beliaev (Be 59) has estimated this quantity assuming a

uniform single particle level density ρ and a pairing force parameter

G large compared to the average single particle level spacing, and

found it to be

46
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Both conditions are verified to a sufficient approximation 

for nuclei in the rare earth region. We found that for neutrons, 

say, in the nuclei we considered in this region, the value of 

ranges from about 10 to about 5, which is much smaller than the 

effective number of neutrons considered (sea Chapter II) (a typical 

number is 70).

For an odd system, due to the blocking of a single particle 

orbital V' , the mean square deviation is

σNo turns out to be smaller than σN2 by about 5%.

Another consequence of thio lack of definiteness in the number 

of particles in the independent quasi-particle picture is the appearance 

of spurious states (M 58). To illustrate this point lot us restrict 

ourselves for a moment to the case of a single degenerate j-shell 

containing Ω = j + 1/2 pairing levels. Since quasi-particles are 

supposed to be independent we can easily construct a state with total 

angular momentum JM ; for instance,

where Φo> is the quasi-particle vacuum (i.e., the BCS ground state 

for an even-n system). Because those are Ω = j +1/2 pairing levels, 

there are obviously Ω degenerate two quasi-particle states. Since we 

know that the concept of a quasi-particle is a single generalisation 

of the concept of seniority, we conclude that there is one extra quasi­

particle state, because there are only Ω - 1 degenerate states of
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Similarly, there are four quasi-particle states,

degenerate states of seniority 4. We could go on this way to show that

there are always too many quasi-particle states compared to the number

of states of real particles of seniority equal to the number of quasi-

particles.

This is a direct consequence of the fact that we are attempting 

to describe the system in the independent quasi-particle approximation 

by introducing wave functions that are not eigenstates of the number

operator. That is to say, expressing IT in terms of quasi-particle

Since, in the case we are now considering (degenerato jn configuration),

the occupation numbers are

as can be easily seen.

seniority

and only

operators a, ß, we have
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The extra component

is, apart from numerical factors, a state in which formally two quasi­

particles are coupled to J = 0 . Its presence, however, precludes the 

possibilities of making Φo> an eigenstate of N. It represents the 

extra state that we found when mentioning the degeneracy of a quasi­

particle pair state.

Unfortunately, these spurious states have non-vanishing 

components on the various two quasi-particle configurations that one 

can form, which of course is undesirable since the spurious states cannot 

have physical significance.

As Bayman suggests A (Ba 59), we can try to work with wave 

functions having a definite number of particles if we accept the BCS 

wave functions as a set of generating functions for the various matrix 

elements of physical interest. That is to say, we define (far the ground 

state a for instance) the Generating function 

We can then extract from this the states containing definite numbers 

of particles by simply expanding it in powers of Z and picking up the 

coefficient of Zp/2 , if p is the number of pairs in the system that we 

wish to describe.

These projected (and properly normalized) functions will be taken 

then as a presumably better Approximation to the actual nuclear state. 

The coefficient of Zp/2 for instance, is
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there being pair operators in the sum.

Similarly one can easily find the matrix elements of any operator

by expanding

Z
in powers of Z and picking up the coefficient of Z , if  is the 

number of pairs, and if the number of pairs remains unchanged, (see 

App. I).

If we take the u's and u's as parameters for a variation 

calculation, the problem is to minimise the expectation value of the 

pairing Hamiltonian with respect to these parameters (with the norma- 

lisation condition Vα2 + Uα2 = 1 ), using the projected wave functions. 

As Bayman pointed out, this is equivalent to evaluating the contour

integrals

where E is to expectation value of the energy and the contours are to 

enclose the origin. This expression is exact, but in practice of course 

we can evaluate it only approximately. This is done by using the saddle- 

point method, i.e., essentially replacing the integrals by the value of 

their integrands evaluated at the saddle point Zo. The resulting 

expression for E is then minimized subject to the condition that the 

number of pairs in the system be equal to  . As shown by Bayman, 

when G is large compared to the average single particle level opening, 

the result is the familiar fundamental equation of the BCS theory, viz., 

the ground state expectation energy to to minimized (cf. II.1.10)
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The error made in using Uv's and Vv's determined by the BCS

eq. II.1.10 and II.1.23 is than formally equivalent to that made in 

replacing the ratio of the contour integrals by the ratio of their 

integrands evaluated at the saddle point. Bayman concludes that this 

error is small provided that, firstly, the contributions to the intergrand 

come mainly from a small neighbourhood of the saddle point and, secondly, 

that the integrands be approximately proportional over the entire contour. 

The first condition is shown to imply that σNp2 be large, more precisely,

Then the quantitative differences between the physical predictions of 

the Bardeen and projected wave functions tend to be reduced, essentially 

because the number of pairing states admired becomes so large. We find, 

for instance, that for M4 transitions in Pb isotopes, the quantitative 

differences between the Bardeen and projected wave functions is quite

negligible as the number of neutron holos increases (see Chapter V).

and the equation yielding λ

that

Therefore, when this condition holds, the saddle point approximation 

will be valid. It might seem a little surprising at first that, as the 

mean square root number deviation increases, the accuracy of projected 

wave functions as found by the above saddle point method should become 

better. But, in fact, as the mean square root increases, so does the 

effective number of particles, and the effective degeneracy
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It is also shown that for large σNe the conditions II.1.10 and

II.1.23 alone guarantee that the excited states obtained from a 

variational solution of these equations are nearly orthogonal to one 

another and to the ground state.

Bayman further shows that the second requirement mentioned above 

io satisfied in the limit of non-interacting particles. No direct proof 

has yet been given in the general case.
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2. Projected Wave functions (Kerman, McFarlane, Lawson)

We consider again the full pairing Hamiltonian I.1.10

by choosing a convenient representation. The basic set of states most

useful in this connection are xSSo> introduced in Chapter I. We

have merely to make sure that the set of states is complete and therefore

x denotes all the additional quantum numbers required. The expressions

for the eigenvectors SjSjo> were given in Chapter I. While the

The quasi-spin vector Sj refers to the j-shell; we introduce the total

quasi-spin for the system

Corresponding to the total seniority

Then III. 2.1 becomes

Kerman et al (KMcL 61) proceed to diagonalize) Ho numerically

and re-write it in terms of the quasi-spin operator I.1.12

where by definition



quantum numbers Sj and Sj completely define the state of an even 

number of nucleons in a single j-shell, when we have several shells 
we must couple the several Sj and Sjo to give the total S and S°, 

following the usual rules of the algebra of irreducible tensors.

Once all the linearly independent states (far the ground state 

of an even system only the states of seniority zero) have thus been 

constructed, we can then use them as our basic set to make the represent- 
ation of Ho, after which the diagonalization is done numerically. 

Similarly, one can proceed to represent Ho whan the system has an odd 

number of particles. One has to remember only that the odd particle, 

say in the j shell, blocks a state in that shall and therefore reduces 
Sj by 1/2 (cf. Chapter I). All the states must of course have seniority 

one. The diagonalization will then yield the states of angular momentum

The most important result that emerges from this analysis, and 

which has a direct relevance here, is that the projected wave functions 

introduced in the previous paragraph give overlap integrals with the 

exact solution, obtained by the method outlined above, better than 99% 

in most cases discussed by Kerman et al (for states of seniority 0, 1 

and 2). For instance, in the case of Ni59, with 3 neutrons outside a 

closed shell, the p3/2 state, say given by the numerical diagonalization 

of the energy matrizes was found to be

0.812 (p33/2)3/2  + 0.526 (f25/2)o p3/2 +

+ 0.187 (p21/2)o p3/2 + 0.170 (g29/2 )o p3/2

whereas the corresponding amplitudes in the projected and normalized 

wave functions containing 3 partidas are (0.737, 0.614, 0.216, 0.183).
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The overlap integral is seen to be 0.993. For all the other states the 

overlap is 0.999.

From a general quantum mechanical theorem we know that if we 

have a trial wave function for the ground state which in good to order 

E, the energy will be good to order E2. We expect then, since the 

overlap integrals are so close to unity, that the energies obtained by 

using the projected wave functions should be in excellent agreement 

with those obtained exactly, and this indeed is the case: for instance, 

taking again the Ni isotope quoted above, the energies obtained for the 

various seniority one states using the projected wave iterations differ 

from the exact value by a small fraction of a per cent.

These results are indeed remarkable, since the projected wave 

functions describing a definite number of particles constitutes only 

about 40% of the original BCS wave functions, for typical cases.

This excellent overlap between the projected wave functions and 

the exact solutions should encourage one to use these wave functions to 

calculate matrix elements. In Chapter V we make an attempt to test the 

wave functions on some γ and β  decay cases of interest.

Another important conclusion reached by Kerman et al is that 

for states of seniority one in spherical nuclei the wave functions and 

energies are not sensibly changed if the blocking effect due to the odd 

particle is ignored to evaluating λ and Δ, as was done by Kiselinger 

and Sorensen (KS 60). Similar conclusions seem to hold for states of

seniority two.
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We have found, however, that there is an appreciable chance 
2 2

in the occupation numbers v2 and u2 when blocking in taken into account

for deformed nuclei.



CIMILI IV

1. Matrix Elements for Allowed an First Forbidden β-Decay Operators

In developing the formula for the β-decay matrix elements using 

the pairing model we shall explicitly consider neutron decay, since 

proton decay can be obtained by simply tailing the corresponding hermitean 

conjugate operators.

moreover, since we are interested in the reduced transition 

probabilities, the Wigner - Eckart theorem permits us to consider only 

the transitions in which the initial and final magnetic quantum numbers 

are positive.

Sum+ ( Su'm') are single particle creation (annihilation) operators 

creating (destroying) particles in states um> and u'm'> respectively. 

The matrix element weighting the operator Cum+ Cu'm' in IV.1.1 is 

just the configuration space representation of ϴ , if the single particle 

states are given in configuration space.
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If ϴ is an operator representing some dynamical variable 

associated with a single nucleon, its second quantisation representation

is
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The operator ϴ in the cases of interest to us here is

This 6- annihilates a neutron state ( Tz = + 1/2) and creates a 

proton state ( Tz = - 1/2), and is one of the spherical components of 

the i-spin operator T. In IV.1.2 ξ is a tensor the exact nature of

which depends on the classification of the decay process (for discussion

of β decay theory see for instance P. 61, pg 394 ff, note that we are 

using here the opposite convention for the i-spin operators).

where we are using the labels  and n for quantities referring is 

protons and neutrons respectively. Similarly, the b's will stand for

proton operators and the a's for neutron operators.

We discuss first the case when the decay results from the

transformation of the odd particles, and there is no change in the

number of Cooper pairs.

Let there be N = 2 n + 1 neutrons and Z = 2p protons in the 

parent nucleus. We recall that we are assuming that there are no pairing

correlations between neutrons and protons. Then the generating function

for this nucleus in its initial state in the pairing approximation is

Thus IV.1.1 becomes
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Here u,m,> is the odd neutron orbital in the initial 

configuration. If after the decay the resulting proton goes into the 

orbital α2m2 , we have similarly for the final state

where the coefficients A and B denote the occupation amplitudes for 

the daughter nucleus. As remarked above, we restrict ourselves to 

m>0, m2>0 . The matrix element of IV.1.3 between these states is then

where, by definition,

and

It is seen that (cf. App. Ia)

and

Thus

and
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Thus the matrix element is just

The Bardeen results would correspond to making Z=1 in these 

formulae. Thus the Bardeen "reduction" factors are

and

The product terms in these expressions are clearly very close to 

unity and would have been exactly 1 if the blocking of the single 
particle orbitals α1m1> and α2m2> could be ignored. The reduction 

factor for the transition probability is than

From the generating functions for the reduction factors IV.19a 

and IV.1.9b we can easily get (cf. App, Ia) the reduction factors when 

projected wave functions are used:
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In IV.1.12 no two single particle indices α, β ... can be repeated, due 

to the exclusion principle. If there are p proton pairs and n neutron 

pairs (which in the case we are now discussing remains unchanged) the 
suns are to be taken over products of p factors aα , bα , cα respectively 

for the protons, and n similar factors for the neutrons. The more 

explicit form given in App. Ia (see for instance, eq. 1 (5), 1 (6), 

2 (7)» 2(8)) makes clear what meaning is to be attached to this 

formula when any of the u's or u's vanishes.

To simplify the writing we introduce

where α1 is the label for the blocked orbital.

With this notation, the reduction factors IV.1.12 become

with the convention that k stands for the number of factors in each

product in the sum. If one of the single particle states is blocked,

we define

We have put



62

There S (k) satisfy simple algebraic properties (cf Ap. Ia). Since the

blocking of a single particle orbital actually reduces trio effective

Lot us new consider the case when the number of pairs in each

system changes, i.e., the (2n, 2p + 1) parent decays into the (2 n-1,

2 p + 2) daughter. Since the sign of the magnetic quantum numbers do not

influence the final results, we assume that the proton orbital in the

parent nucleus is v1 -m1> and that the odd particle in the daughter
v2-m2>occupies the orbital

The generating function for the initial state is than

We are of course assuming that the proton system is unexcited

after the decay. The the matrix element is just

For the final state we have

number of pairing states, it follows that

and
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For the projected wave functions, it is shown in the Appendix I.A

Since these transitions always occur near the Fermi level where 

the occupation number Vv2 and Uv2 have the same order of magnitude,

end also in virtue of IV.1.16, the reduction factors are again less 
than unity. The factors √n and √p+1 are, of course, trivial and will 

cancel out because S (k) involves k: permutations of the k factors

With Bardeen wave functions, the reduction factors are then

We show in Appendix I.A. that this reduces to

simply

and the single particle reduced probabilities are decreased by a factor

that we get

and
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2. Matrix Elements for Single-Particle Operators for Electromagnetic 

Transitions

We consider a transition of a nucleon from the orbital α1 m1>

to the orbited α2m2> , and since we are interested only in reduced 

transition probabilities, we may assume that m1>o2m2>o.

The generating function for the matrix element is then, if we 

denote by TMK the single particle part of the corresponding electro-

It is then easily shown that the only non-vanishing contributions

from time-reversal properties, and where T is even or odd depending on 

whether the operator TMK is even or odd under time reversal. Thus 

for electric transitions δ =1, and for magnetic transitions δ =0.

magnetic operator

to IV.2.1. are

But

The Bardeen result would correspond to making Z = 1:
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The reduction relativo to the single particle estimate would

If we assume that the blocking has a negligible effect in the

wave functions (which is the case in spherical nuclei (see KLMcF 61)) then

the reduction factors simplifies to

Dividing this by the normalisation factors (cf Ap. I.B) we get

If the system has p pairs, then the coefficient of Zp in the 

expansion of IV.2.2 in powers of Z is then

then be
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Correspondingly the Bardeen reduction factor would be just

transition T is odd. We notice again that the reduction factors in

both cases will always be less than unity.

For a magnetic transition, T is even, and for an electric



CHAPTER V

1. Results and Discussions for some Electromagnetic Transitions

The application of the pairing model to electromagnetic 

transitions, in particular to some isomeric transitions in spherical 

odd-A nuclei, has already been discussed by Kisslinger and Sorensen 

(KS 61). They find that the configuration mixing of the type introduced 

by the pairing force can explain certain features of these transitions, 

although the detailed quantitative comparison with experimental results 

was not considered to be of significance, due to large uncertainties 

involved in the evaluation of single particle matrix elements.

Wo re-examined hero their results for odd-A nuclei, taking the 

same pairing force and single particle energies for both projected and 

BCS wave functions.

In Table I we give the various probability numbers for Pb 

isotopes with the observed single-hole levels in Pb207, and using G = 30/A 

Mev. This parameter was found to fit reasonably well the oven - odd mass 

differences observed (KS 61), although KS have used 23/A Mev in their 

calculations of levels of Pb isotopes. However, the value 30/A Mev seems 

to give a slightly improved agreement for the M4 data for Pb.

In Table II, similar quantities are listed for the two Sn 

isotopes considered. The single particle levels, however, are taken from
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the experimental data obtained by Cohon et al (C 61), and represent 

average values over the various Sn isotopes studied by these authors by 

moans of stripping and pick-up reactions. They differ appreciably from 

the Kisslinger and Sorensen data (KS 61). We have used their value for 

the pairing force parameter, assuming that the different level order and 

spacing does not affect appreciably this parameter.

Table III lists similar quantities for three N = 50 isotones, 

taking the single particle levels and the pairing force strength as given 

by Kisslinger and Sorensen.

Table IV gives the transition energies, level changes and 

reduction factors for Pb isotopes. In column 4 are listed the reduction 

factors for Pb isotopes obtained with the BCS wave functions, using 

formula IV.2.10 (Chapter IV).

The salient feature, as pointed out by Kisslinger and Sorenson, 

is their smooth variation as the isotopic number changes from 205 to 197, 

i.e., when the Fermi level moves from close to zero (p1/2 state) up to 

about the position of the P3/2 level, going past the final level of the 

transition (f5/2).

In column 8 are listed the experimental reduction factors, 

defined by the ratio Pexp/Ps.p. of the observed probability of transition 

per unit time to the corresponding quantity evaluated on the basis of 

the single particle model. One observes that they are nearly constant. 

Those reduction factors are actually Mosakowski’s estimates with the 

average nuclear radius taken as

R = 1.2 x A1/3 fermis

and are normalised to the Pb207 value in column 9, since the reduction

207
factor given by the pairing; model for Pb207 is obviously unity.
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This feature of the M4 transitions in Pb isotopes, as explained, 

by Kisslinger and Sorensen, cannot be accounted for without bringing in 

configuration mixing that appreciably smears out the probability 

distribution of states near the Fermi level: the smooth changes in the 

occupation amplitudes across the Fermi surface are responsible for the 

rather gradual variations of the reduction factors, as one adds particles 

to the system, i,e., as the Fermi level moves past the f5/2 state. Such 

a behavior cannot bo obtained on the basis of an independent particle 

model, or even the shell model with diagonal pairing forces, because of 

the sharp cut-off at the Fermi energy.

Ono also notes that when the Fermi level is well below both the 

levels involved in the transition, the occupation numbers have practically 

their independent particle values and the matrix elements are essentially 

the some as given by the independent particle model.

In column 5 we list the reduction factors obtained using the 

projected wave functions (see formula IV2.9, Chapter IV). In column 10 

we list the exporimental reduction factors using harmonic oscillator wave 

functions (which essentially implies hero that we should multiply the 

number in column 9 corresponding to a given A by the factor A/207 ). We 

note that there is an overall slight improvement in the reduction factors. 

The new results tend rapidly to the DCS reduction factors as the number 

of holes in the shell increases, becoming practically indistinguishable 

from them already at Pb197. This is to be expected because, as already 

mentioned in Chapter IV, the more particles we add to the system the more 

complicated the actual nuclear configurations become, and the more 

accurately they are described by the large configuration mixing introduced
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by the pairing forces. At the same time, configuration nixing from 

neighbouring nuclei introduced by the BCS wave functions tend to become 

increasingly lose important, as the root mean square deviation of the 

number of particles becomes negligible when compared to the actual 

number of particles in the system. Therefore, the BCS reduction factors 

rapidly approach those given by the projected wave functions.

The fact that even when the number of holes is relatively small 

there is only a slight difference in the results predicted By the two 

types of wave functions shove that M4 transitions are not very sensitive 

to the differences in the structure of the two types of wave functions. 

When the number of holes in the open shell is small compared to the total 

number of pairing states available, the projected, wave functions tend to 

reduce the single particle matrix elements loss drastically than do the 

BCS wave functions, because the terms corresponding to levels lying below 

the Fermi level ( U2 —> 0) weigh more heavily in the sums involved in 

eq. IV.2.9 (Chapter IV).

As the number of holes increases (but the number of levels does 

not), the contribution of the levels above the Fermi surface becomes 

increasingly important, and the overall result is, of course, that given 

by the BCS wave functions.

Table V lists similar quantities for Sn isotopes and the N = 50 

isotones considered. There is hardly any difference at all, for both 

Sn117 and Sn119, between the calculated reduction factors using the two 

typos of wave functions. The matrix elements they give are very close to 

the single particle matrix elements, because, in both cases, the Fermi
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level lies well below the two energy levels involved in the transition, 

viz., h11/2 and d3/2.
One may notice, incidentally, that the BCS reduction factors 

Given are very close to the values quoted in KS 61, although the values 

for the energy levels are quite different. This is because, as pointed 

out by those authors, the energy difference involved in the transition 

is quite small compared to the gap.

The last three cases listed in Table V show show marked differences 

between the BCS reduction factors and those calculated by means of 

projected wave functions, although these differences tend to decrease as 

the number of protons in the open shells increases, as one could expect. 

Note that the projected wave functions reduce less drastically the 

single particle matrix elements. Since they must give a better estimate 

of the configuration mixing introduced by pairing forces clone (Chapter III) 

than the BCS wave functions (which introduce irrelevant configuration 

mixing from neighbouring nuclei) we conclude that, in these three cases, 

there are important forces that have not been taken into account, such 

as residual quadrupole forces, and that considerably mix quasi particle 

configurations. This would easily explain why the projected wave functions, 
although capable of following the trend observed when one goes from Y89 

to To92, do not reduce sufficiently the single particle matrix elements.



72

2. A. Single Particle Levels

The basic sot of energy levels we have used were taken from the 

original paper by Nilsson (SGN 55), with a few modifications added, in 

line with the results reported by Mottelson and Nilsson (MN 59), and 

Nilsson and Prior (NP 61). The single particle Hamiltonian chosen by 

Nilsson contains two adjustable parameters, y the deformation parameter 

and u , independent of the deformation. The latter determines the 

sequence of levels within a given major oscillator shell N. The total

energy spread of levels within a major shell is determined by yet another

parameter H , which is fixed from the observed level sequence in

spherical nuclei. It is related to the strength of the spin - orbit

component in the potential. The déformation parameter is related to

where δN is independent of H and represents the deformation when

the coupling between two shells with different N is neglected. It is

related to the deformation parameter defined by Mottelson and Nilsson 

(MN 59) δMN approximately by the equation

0
In eq. 5.2.1 wo is the frequency of the isotropic harmonic oscillator 

field (δN= 0). It determines the energy scale and is chosen, according

to Nilsson, by the condition (SGN 55)

where Ro = 1.2 x A 1/3 Fermis. That is to say, the mean value of

the radius vector for all nucleons is set equal to the mean value of the

square of the charge distribution. This gives
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We have obtained δN from the data collected in MN 59. We have 

included all the neutron levels belonging to the N = 4, 5, 6 shells (56) 

and all the proton levels belonging to the II = 5, 4, 5 shells (46) as 

given in Nilsson’s paper (SGN 55). A few shifts of individual groups 

of levels wore introduced, as indicated in Table VI and Table VII, following 

Nilsson and Prior (NP 61) and Szywansky and Be’s (SB 61). Mote the some­

what larger shifts for proton levels, which are expected to take into 

account the corrections due to the Coulomb forces among protons. Those 

level shifts were found to give a better representation of empirically 

found levels than the one obtained originally by Nilsson (SGN 55).
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B. Choice of the Pairing Force Parameter

Using the levels determined as indicated in the previous

paragraph, the eq. for an even system, viz.

were solved simultaneously for all the nuclei listed in Tables X and 

XI. For odd n, of course, the equations have to include the blocking 

of a single particle orbital v' (of Chapter II)

The parameter G for neutrons, for instance, was adjusted until 

the value Δn = Pnexp was obtained, where Pnexp is the experimentally

observed even-odd mass difference (see Chapter II), we recall that 

theoretically the even - odd muss difference Pn is related to the binding 

energies E to a sufficient accuracy by the formula 

where Sn (Z, N) is the neutron separation energy. Similar formulae hold 

for protons.

The results of the calculations are given in Tables X and XI.
The parameters Gn and Gp depend, of course, on the cut-offs 

placed below and above the Fermi level because of re-normalizing effects 

(Chapter II).

For the number of levels chosen, we found that
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give a reasonably good fit for the gap parameter Δen and Δep respectively 

Note that the pairing force strength is a little higher for neutrons than 

that found, by Nilsson and Prior (NP 61). This is due to the fact that 

only part of the N = 6 levels were taken into account (the higher levels 

in the shell are not given in Nilsson’s paper), whereas Nilsson and Prior 

report that they have considered all the N= 6 levels. Also note that G 

is appreciably higher for protons, leading to quite larger energy gaps

(of Table X).

and
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C. Results and Discussion

The reduction factors for neutrons and protons, and the total 

reduction factor R = RN x RZ, obtained with the BCS wave functions, 

using all the 56 neutron levels and 46 proton levels (formulae IV.1.10 

and IV. 1.21, Chapter IV) are given in Table XII, columns 4, 5 and 6 

respectively. Column 7 lists the reduction factors obtained by Soloviev 

(S 61). One observes that, in general, there is a rather good agreement, 

in spite of the fact that our energy levels near the ground states differ 

appreciably from those calculated by Soloviov. It appears that there is 

a largo discrepancy between the total reduction factors in the case of 

the decay of 64Gd16167 --> 65Tb16196  (Table XII).

A possible explanation is that here the differences in the level 

structure caused by the blocking of the odd proton orbital, which are 

most marked near the ground state, or the Fermi level (cf Chapter II), arc 

of importance. In fact, let us look at the levels given by Soloviev (3 61) 

for protons in the region of interest (65 < Z < 70) and the levels we 

have used here, corresponding to the deformation δN = 0.30 (in Mottelson 

and Nilsson’s paper, MM 59, they give δMN = 0.31 for 65Tb16196; we have 

assumed through this work that there is no change in the deformations 

of the parent and daughter nuclei that can cause appreciable differences 

in the level structure).

The Fermi level for 64Gd16197 (Table X; zero re-adjusted to be the 

same as Soloviov’s) is 0.0275, which is slightly above the 5/2 + 413] 

level. The blocked proton level in this transition is 7/2 - [525}, which

in our case lies well below the Fermi level. Soloviev does not give the
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Soloviov Ours
(levels in units of  ) (levels in units of  )

Orbital Energy Orbital Energy

5/2 + [413] 
3/2 + [411] 
7/2 - [523] 
1/2 + [411] 
9/2 - [514] 
7/2 + [404] 
5/2 + [402] 
1/2 + [400]

0 7/2 - £523] -0.04
0.04 5/2 + [413] 0
0.12 5/2 + [411] 0.01
0.20 1/2 + [411] 0.16
0.22 9/2 -[514] 0.20
0.31 1/2 -[530] 0.34
0.36 7/2+[404] 0.375
0.52

position of the Fermi level in this case, but it presumably lies below 

the 7/2 - [523] state. Note that the Fermi level) being very close to 

the 3/2 + [411] state, is well below Soloviov’s 7/2 - [523] level. One 

would not expect that the re-normalization effect would alter vary much 

the position of the Fermi level.

This would explain the large differences obtained in the 

reduction factors, because the proton reduction factor is proportional 

to Uv22 ( V2 being the blocked state in the daughter), which in our 

case is small, because the level in question lies well below the Fermi 

surface.

In Table XIV, columns 7, 8 and 9, and Table XV, columns 6, 7 and 

8, we give the various reduction factors for protons and neutrons obtained 

when the levels the occupation amplitudes of which uro lose than 0.01 

wore removed, in order to save computing time. A comparison with the
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corresponding amplitudes given in Table XII shows that the difference 

is indeed insignificant. Columns 11, 12 and 13 of Table XIV and 

columns 10, 11 and 12 of Table XV give the reduction factors obtained 

with the projected wave functions.

The last two columns in Table XIV are the theoretical logft 

values when the BCS correction factors and the correction factors given 

by the projected wave functions have been made to the single particle 

estimates (columns 14, 15 and 6 respectively).

The last three columns of Table XV give log (ftexp x R), i.e., 

the logarithm of the experimental ft value times the correction factor: 

column 13 corresponds to our reduction factors, evaluated using the BCS 

wave functions, column 14 corresponds to Soloviev’s reduction factors, 

and finally column 14 corresponds to the reduction factors obtained with 

the projected wave functions.

The first 6 rows of Table XV contain 3 pairs of decay cases in 

which the initial and the final single particle quantum numbers arc the 

same.

Therefore, assuming that the average fields are not sensibly 

different for the nuclei involved in each pair, we ought to have nearly 

constant values in the last three columns for each case. A comparison 

of the numerical values given show that for the 1st pair and 3rd pair 

considered, the projected wave functions give values that differ slightly 

loss than the corresponding values given by the BCS wave functions (our 

results), for the second pair, the opposite is the case. We would then 

conclude that the pairing correlations are more important in the 1st and 

3rd pairs then they are in the 2nd pair considered.



79

Looking at Table XIV, at the decoy of Hf181 —> Ta181, it is 

hard to see the actual effect of the pairing correlations, since this 

decay violates quite strongly an asymptotic selection rule ( nZ1 =3). 

One should perhaps try to eliminate the influence of the average field, 

as it was attempted in Table XV.

The next two cases in Table XIV indicate that correlations 

introduced by the pairing forces have actually not even the importance 

that the BCS wave functions would lead one to believe. There are cases 

where some strong additional configuration mixing in clearly needed. The 

last ease in Table XIV seems to indicate that the pairing forces account 

for most of the reduction of the single particle estimates.

Note that the BCS and projected reduction factors are practically 

the same, which indicates that components having slightly wrong number 

of particles have negligible effects in this case.
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Conclusions

We have made an attempt to apply the parts of BCS wave functions 

containing the correct number of particles to some γ and ß decay 

processes.

These components having a as a good quantum number have been 

shown to have extremely large overlaps with the exact solutions of the 

pairing Hamiltonian (at least for estates of seniority 0, 1, and 2). 

The techniques used here for computing with those wave functions are 

straight-forward, and it turns out that it is not much harder to obtain 

numerical results from them than is the case with the BCS wave functions. 

However, due to the very complicated structure of these wave functional 

which somewhat resemble the wave fractions used in the ordinary config- 

uration mixing calculations of the shall model, one should perhaps use 

the BCS wave fractions first in order to have an idea of the qualitative 

features of the problem. But in order to have a reliable quantitative 

estimate of the relative importance of the pairing correlations on the 

decay processes (or on the matrix elements of any physical operator) one 

should use the projected wave function with techniques such as used here.

The projected wave functions were found, in all the cases studied, 

to have a less drastic reduction effect on the single particle matrix 

elements than the BCS wave functions, whenever the number of particles 

is small relatively to the number of pairing levels effectively considered 

as the author of particles increases, with the same number of levels, the 

BCS and projected wave functions tend to give very nearly the same results.
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The single particle M4 transitions considered were found to be 

rather insensitive to the detailed structure of the two types of wave 

functions used. Nevertheless, the β-decay reduction factors are not 

insensitive to the wave functions assumed. In the first place, the 

differences between BCS and projected wave functions commonly lie in 

the region 10% to 25% when the same level structure and coupling 

parameters are used. In the second place, the difference between different 

level schemes is illustrated by comparing our BCS calculations with those 

of Soloviev et al, since in neither of those cases is a projected wave 

function used; the differences are again of the same order normally 15% 

to 25%, but with some exceptionally sensitive cases such as Gd161 

discussed above. For most of the β-decay processes considered here, 

it was found that the pairing correlations do not seen to be sufficient 

to explain the reductions from single particle estimates, even taking 

into account the uncertainties associated with the lack of precise 

knowledge of the average field. We also found that, in general, our 

reduction factors, obtained with the BCS wave functions, and using 

slightly modified Nilsson's levels, do not differ too much from those 

quoted by Soloviev (S 61), taking full account of the contributions to 

the average field from the pairing force, which is most noticeable near 

the ground state.

We propose to make a further study of β-decay processes using 

the projected, wave functions, and the improved level scheme proposed by

Soloviev and collaborators.
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A. Method of Generating Functions

Let 4(z)> be a generating function for projected states.

We shall restrict ourselves to states with zero and one quasi particles.

If the system we want to describe has k pairs, we write

(cf Chapter III)

where φ,(k)> is not normalized. If A is a single particle operator 

and if there is no change in the number of pairs, then obviously the 

transition amplitude between the states ।φ1(k)>  and <φ2(k) is 

proportional to just the coefficient Ck of ZR in the expansion of

in powers of Z. The transition amplitude is therefore equal to

where <φ1(k), φ1(h)> is the coefficient of ZK in the power expansion 

of < φ1(z) φ1(z)> and <φ2 (k) φ2 (k)> is the coefficient of zk in the 

expansion of <φ2 (z) φ2 (z)>.

Similarly, if the number of pairs changes, say from k to k + 1, 

it is evident that the matrix element is proportional to the coefficient 

of zk + 1/2 in the expansion of the generating Amotion (2) in powers 

of z .



For example, in discussing the matrix elements considered in

Chapter IV, we need the normalisation integrals; those we can obtain

from the following expansions by the procedure outlined above:

block the state occupied by the odd particle. So the normalisations of

a, β ... appears twice in the same expression. It is also clear that

i.e., in the case of complete degeneracy (cf Chapter I).

In this connection it may be of some interest to note the

and. a similar expression for the one-quasi particle state, provided we

the state having k pairs is

and of the state having k pairs and an odd particle in the orbital [ α,m>

It is clear that we are assuming that no single particle labal

these expressions reduce to the normalizations found in Chapter I where

following: consider the polynomial

with roots bα , bα2 ,... bαn , and construct

Then it is easily seen that g(x)=f'(x). By explicitly 

writing down the expression for g(x) making use of 1.8 and equating it

identically to f'(x) it follows at ones that
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where by definition

The evaluation of the coefficients aR has interest because

they are related to the roots of the polynomial 1 (7) by the well-known

Those sums have precisely the same structure as our normalization

integrals and other matrix elements and are of help in writing a program

for an electronic computer. Thus we can first define, for a given

integer k,

Thus all the sums we require can be easily obtained with

sufficient accuracy.

relations

and store initially dαE = 1, dαi. = 0 (i =/= 0), Cαi = 0,
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B. Reduction Factors for ß and γ Transition Rates

In Chapter IV, we found that the matrix element of a β decoy 

operator 0 = ξ δ - » when the number of pairs remain unchanged,

These can easily be evaluated by a systematic application of

the anti-commutation rules for the operators a and b, and orthogonality

depended on the matrices

and

conditions. For instance, 1 can be written

The orthogonality between states having different numbers of

particles reduces this simply to

Exactly the same steps lead us to the neutron factor

We must then consider the generating functions for the reduction

factors
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From the considerations at the beginning of thio appendix, we 

expand these in powers of Z and pick up the coefficient of Zb (for

where the terms in the sums have p factors if there are p proton pairs. 

The coefficients U , V refer to the parent nucleus and A, B to the 

daughter nucleus, in which the single proton orbital α2m2> is

blocked.

and

p proton pairs) and Zk (for n proton pairs). We then get

and

Using the normalizations given by 1.5 and 1.6 we finally obtain

Similarly the neutron part is
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where the symbols have the same meaning as above, and there are n 

factors in each product, if there are n neutron, pairs present. The 
neutron orbital α1m1 is blocked, of source.

Now suppose that there is a change in the number of pairs, say 

from 2 n neutrons and 2p + 1 protons to 2n- 1 neutrons and 2p + 2 protons. 
Let v1-m1> be the odd proton orbital in the parent nucleus and 

v2-m2> the odd neutron orbital in the daughter nucleus. Then the

assuming that the proton system is in its lowest state.

initial state of the decay can be obtained from

The final state is given by

The function for the matrix element is then

The neutron part can be written as

This is simply
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Similarly the proton part is

or odd under time reversal.

Therefore, the single particle reduced probabilities are

decreased by a factor

these being n - 1 factors in each product in the sum.

The normalization integrals are, for parent and daughter

and

respectively,

The BCS reduction factor (z = 1) are then

and the matrix element is

where δ is even or odd depending on whether the operator TMK in even

The projected reduction factor for the neutron can be obtained

from the coefficients of Zn-1 , i.e.,

and
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The neutron reduction factor is therefore

Exactly the same procedure yields for protons

We have set



APPENDIX II
Single Particle Matrix Elements for Allowed β-Transitions 

The β decay transition rates arc usually measured by their 

comparative half-lives ft, which, in the case of allowed transitions 

(4.5< log ft <7.5) also provide a direct estimate of the nuclear matrix 

elements*
Using the natural units system, in which we set h = m = C = 1 

and in which, therefore, transition probabilities are measured in units

90

of 20= 7.7 x 1020 sec-1, we have for allowed transitions

where DF(c) and DGT(c) are the reduced transition probabilities for

the Fermi and Ganrov-Teller operators respectively, viz.

and

Here the Mf is the component of the total angular momentum 

of the daughter nucleus along the space fixed z-axis, σh and δR

is respectively the Pauli spin operator and the i-spin operator for the 
Rth nucleon.

The wave functions φf and φi refer to the final and initial

nuclear states.
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z-component in the space fixed system by M and along the body fixed z 

axis by K, and the similar quantities in the daughter by I', K’, M',

Here N and Ω are respectively the total oscillator quantum number and 

the body fixed z-component of the intrinsic angular momentum, and N' and 

Ω are the corresponding quantities for the daughter nucleus.

Then for allowed transitions we can deduce that (SGN 55)

In the eq. 1, B and x are universal constants which are found 
to be ( R60) 

B = 2787 ± 70 sec-1

x= 0.560 + 0.012

B is related to the β-decay constants by the defining equation

where g√ 1-x and g√ x

coupling constants.

are respectively the Fermi and Gamow-Teller

In the strong coupling limit for the nuclear wave functions, 

the collective and intrinsic parts separate out and the reduced 

transition probabilities can be evaluated very simply. For odd-A nuclei 

the situation is further simplified because it is usually the odd nucleon 

that undergoes decay,

Thus if we denote the initial total angular momentum by I, its

we can write

where, by definition
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Primed quantities refer to the daughter nucleus.

In the case of axial symmetry, we have

The wave functions and

terms of the eigenfunctions of anisotropic three-dimensional oscillator

well (SGN 55), e.g.,

and ^ + Σ = Ω , ^ being the body fixed z-component of the 

orbital angular nomentum and Σ the corresponding component for the

spin.

For transitions involving Ω =/= 1/2 and (or) Ω' =/= 1/2, this

and the ft value for a pure Gamow - Teller transition, for instance, is

The entire dependence on the details of the single

orbitals for the initial and final nuclei is contained in

particle

r12. In

these circumstances, if we take the ratio of two ft values for transitions

and

have been expanded in

where

further simplifies to
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occurring between states which can be characterized by the same set of 

single particle quantum numbers, the deviations from unity would give 

a measure of particle correlations, which are not taken in account by 

this simple model. This holds, of course, if we make the reasonable 

assumption that the γ12's are essentially the same for both cases, 

which is obviously true if the deformations of the average nuclear field 

are nearly the same.

The rules for associating the description of an orbital 

assymptotic quantum numbers [^' nz ^Ω] with the orbital number in 

the Nilsson’s scheme are given in the paper referred above (SGN 55).



TABLE I

Fermi Levels λ, Energy Gaps Δ end Occupation Humbers v2 for the Pb Isotopes 
Considered, Using G = 30/A Mev and Single Particle Energies (in Mev)

P1/2 = 0, f5/2 = 0.57, p3/2 = 0.90, i13/2 = 1.634, f7/2 = 2.35

Δ (Z = 82) λ (Mev) Δ (Lev) v2 i13/2 
(initial

2  2 2 2 
v2 f5/2 v2p1/2 v2p3/2 u2f7/2
(final)

205 0.072 0.561 0.02943 0.16807 0.56565 0.08606 0.01450

203 0.278 0.730 0.05974 0.5143 0.6779 0.1757 0.02841

201 0.477 0.856 0.09805 0.4460 0.7434 0.2785 0.04524

199 0.676 0.954 0.1457 0.5552 0.7890 0.3857 0.06559

197 0.075 1.033 0.2059 0.6416 0.0252 0.4879 0.09045



TABLE II

Fermi Levels λ, Energy Gaps Δ and Occupation Numbers v2 for the Sn Isotopes

Considered, Using G = 19/A Mev and Single Particle Energies (in Mev)

sl/2 = 0.95, d3/2 = 1.23, d5/2 = 0, g7/2 = -0.16, h11/2 = 1.41

A (Z = 50) λ (Mev) Δ(Mev) v2 hll/2 

(initial)

v2d3/2
 

(final)

v2d5/2 u2g7/2
u2 1/2

117 0.84 1.10 0.2699 0.3329 0.8035 0.8363 0.4502

119 1.07 1.07 0.3486 0.4260 0.8535 0.8772 0.5557



TABLE III

Fermi Levels λ, Energy Gaps Δ and Occupation Numbers for the N = 50 Nuclei 
Considered, Using G = 0.291 Mev and Single Particle Levels (in Mev)

f5/2 = 0 p3/2 = 0.6 p1/2 = 1.8 g9/2 = 3.4

A (N = 50) λ (Mev) Δ (Mev) v2 g9/2 u2p1/2 u2p3/2  u2f5/2

Y89
39 1.85 0.83 0.05797 0.5180 0.9145 0.9554

41Nb91
2.59 0.95 0.1716 0.8257 0.9529 0.9706

43Tc93 5.08 1.94 0.5529 0.8880 0.9611 0.9737



TABLE IV

Reduction Factors for M4 Transitions in Pb Isotopes Using BCS Wave Functions (RKS) and Projected Wave

Functions (R with Fairing Force Parameter and Single Particle Levels Given in Table I
projected

A Transition Level Change R(KS) R(projected) P -la Ps.p. a F P, F2
energy (mev) (ks) (projected) exp sec s.p. o (ao = 1.2) (ao 1.2

207
1.064 i13/2 -> f5/2 1.0000 1.0000 7.72 x 10-1 1.96 3.94x10-1 1.00 1.000

205 i13/2 -> f5/2 0.9390 0.9681

205 0.825 i13/2 -> f5/2 0.8834 0.9042 8.76 x10-2 1.92 x10-1 4.56 x 10-1 1.16 1.15

201 0.629 i13/2 -> f5/2 0.8390 0.8501 6.5 xl0-3 1.63 xl0-2 3.87 xl0-1 0.982 0.953

199
0.426 i13/2 -> f5/2 0.8115 0.8157 1.91x10-4 4.61x10-4 4.14 x10-1 1.05 1.00

197
0.255 i13/2 —> f5/2 0.8026 0.8029 9.12 xl0-7 2.14xl0-6 4.26x10-1 1.08 1.05

Moszkowski estimate

2Estimate using an isotropic harmonic oscillator wave functions

aAfter BA 57

F1
F2



TABLE V

Reduction Factors for M4 Transitions Using BCS Wave Functions

(RKS) and Projected Wave Functions (Rprojected) with Pairing
 

Force Parameter and Single Particle Levels Given

A Transition 
energy (Mev)

Level Change R(KS) R(projected) Fexpa
(ao = 1.2) (ao = 1.1)

Sn117 0.159 M4 h11/2 -> d3/2 0.994 0.995 0.41 0.68

Sn119 0.065 M4 h11/2 --> d3/2 0.995 0.9938 0.57 0.95

59 50
0.915 M4 c 9/2 —* P1/2 0.68 0.857 0.26 0.45

41 Nb9150 0.105 M4 g 9/2 —> p1/2 C.48 0.579 0.20 0.33

45 50 0.390 M4 p1/2 —> g9/2 0.65 0.710 0.55 0.59

aAfter KS 61



TABLE VI

Shifts of Neutron Levels in Units of hwc 
Relative to those Obtained by Nilsson (1955)

Shell φ                 μ                 Shifts

N = 4 0.05 0.45 0

N = 5 0.05 0.45 0

+i13/2
N = 6

=i13/2

0.05 0.45 + 0.15

0.05 0.45 0

TABLE VII

Shifts of Proton Levels in Units of hwo 
Relative to those Obtained by Nilsson (1955)

(The N = 4 Shifts Relative to those
Given by Mottelson and Nilsson (1959))

Shall H Shifts

N = 3 0.05 0.35 - 0.23

N = 4 0.05 0.45 0

0.05 0.45 + 0.10
N = 5

=h11/2 0.05 0.45 - 0.20

N = 6 0.05 0.45 +00



TABLE viii

Allowed Transitions Considered (After MN 59 and Nuclear Data Sheets)

Parent
Nucleus

Daughter Excitation Energy Type of _______ Orbit Assignment  
_Nucleus_____ the Daughter Transition Parent Daughter Classification log10ft

72Hf 109 73 T101108 958 β- [510 1/2-] [541 1/2-] ah ~6.5

181
74 W101107 73 Ta181108 0 ec [624 9/2+ ] [404 7/2+7 ch ~6.6

70^07 71 Lu177106 0 β- [624 9/2+] [404 7/2+] ah 6.2

68 Er171103 69 Tm121102  425 β- [512 5/2-] [523 7/2-] ah 6.3

64 Cd15995 65 Tb15994 364 β- [521 3/2-] [532 5/2-] ah 6.7

67 Ho167100
68 Er16799 700 β- [523 7/2-] [ 523 5/2-] au ~ 4.8

64 Gd16196 65Tb16196 418 β- [523 5/2-] 525 7/2-] au ~4.9



TABLE IX

1st Forbidden Transitions Considered (After MH 59)

Parent
Nucleus

Daughter 
Nucleus

Excitation Energy 
in Daughter

Type of 
Transition

Orbit Assignment
- Classification log10ft

Parent Daughter

70 Yb175105 71 Lu175104 0 β- [ 514 7/2-] [404 7/2+] lu 6.4

66Dy16599 67Ho16598 0 β- [633 7/2+] [ 525 7/2- ] lu ~ 6.2

67Ho167100 68Er16799 0 β- [ 523 7/2- ] [ 653 7/2+ ] lu ~6.0

63Eu15592 0 β- [ 415 5/2+ ] [ 521 3/2-]
1h 8.7

63Er15794 64Gd15793 0 β- [ 415 5/2+] [ 521 3/2-]
lh 0.0



TABLE X

Pairing Force Parameter g, Fermi Levels λ and Energy Gaps Δ for Protons in Nuclei Considered (In Units of
hw(s>. The Zeros of Energy are Arbitrarily Taken at the Observed Ground State Levels in Nuclei Marked by *.

A δN hwo  
(Mev)

 g =27.2/hwoλe Δ0 Blocked
Orbital λo Ppexp Mean Square 

Deviation σeN

181
76W 0.23 7.55 0.02044 0.159 0.1018 3.887

* 181
75Ta 0.25 7.55 0.02044 0.0945 0.1075 [404 7/2+]

[541 1/2-]
0.1515
0.055

0.0685 0.1182
0.1042

72Hf181 0.23 7.55 0.02044 0.06C0 0.1145 5.1448

Lu177
71 0.25 7.42 0.02070 -0.037 0.1190 [404 7/2+] -0.0517 0.0751

Yb177a
70 0.25 7.42 0.02070 -0.074 0.1157 4.839

Yb177a
70 0.27 7.55 0.02115 -0.102 0.1163

Er171 68 0.27 7.55 0.02113 -0.183 0.1191 4.960

aEnergies referred to last filled proton level in Hf179



TABLS X
(CONTINUED)

A δ N
(Kev)

27.2
g = hwoA Xe Δe Blocked

Orbital λo Δo Kean Square 
Deviation σNe2

69 0.27 7.53 0.02113 [523 7/2-] -0.1145 0.0732

69 0.27 7.56 0.02129 -0.1442 0.1200 [411 l/2+] -0.1205 0.0701 0.1167

70Yb175 0.27 7.47 0.0208 -0.101 0.1088 4.213

*71Lu175 0.27 7.47 0.0208 [ 404 7/2+] -0.0832 0.0680 0.1083

* 167
68Er 0.28 7.60 0.02143 0.008 0.1221 5.002

67Ho167 0.28 7.60 0.02143 [ 523 7/2-] -0.049 0.0785

66Dy165 0.29 7.65 0.02155 -0.0719 0.1216 4.889

*67Ho165 0.29 7.65 0.02155 -0.055 0.1205 523 7/2-] -0.054 0.0767 0.1202



TABLE X 

(CONTINUED)

A

hwo _ 27.2 Blocked Pp exp Mean Square 2
δN (Mev) g = 27.2/hwoA λe Δe Orbital λo Δo p Deviation σNe2

64Gd155 0.30 7.82 0.02244 -0.0107 0.1316

63Eu155 0.30 7.82 0.02244 [413 5/2+] -0.066 0.0856

*65Tb159 0.50 7.75 0.02206 [552 5/2-] 0.0585 0.1071

64Gd159
0.50 7.75 0.02206 -0.0105 0.1242 5.057

64Gd161 0.50 7.72 0.02187 -0.0105 0.12092 4.94

65Tb161 0.30 7.72 0.02187 [523 7/2-] -0.0005 0.09422

63Eu157 0.30 7.78 0.02225 [415 5/2+] -0.0662 0.08122

64Gd157
0.30 7.78 0.02225 -0.0106 0.12794 5.193



TABLE XI

Pairing Force Parameter g, Fermi Levels λ and Energy Gaps Δ for Neutrons in nuclei Consider (in Units of
hwo. The Zeros for Energy are Arbitrarily Taken at the Observed Ground State Levels in nuclei Marked by *.

N 18.5
(Mev) g

19 Δe Blocked    Mean Square
g = —— λe Δe  λo Δo pepa Orbital n Deviation

*W183109
0.20 7.50

 0.01384

0.01422 -0.0565 0.1030 [510 1/2-] -0.0701 0.07906

0.1004
-0.0560 0.0940 -0.0695 0.06945

W181107 0.23 7.35 0.01428 [624 9/2+] -0.008 0.0641

*Ta181b108 0.23 7.35 0.01428 0.023 0.1037 0.103 6.421

Hf181109 0.23 7.35 0.01428 [ 510 1/2-] 0.0395 0.08225

Lu177106 0.25 7.42 0.01446 -0.0285 0.0935 5.267

*Hf179107 0.25 7.39 0.01436 0.0015 0.09136 0.0934

Yb177107 0.25 7.42 0.01446 [ 624 9/2+] 0.065 0.0494 

aAfter NP 61

bZero at tile last tilled level



TABLE XI 

(CONTINUED)

A (Mev)
= 18.5 g= 19

hwoA
λe Δe Blocked

Orbital
λo Δo Pexpn a Mean Square

Deviation σNe2 

*Hf117
105

0.26 7.45 0.01444 0.00595 0.09515 [514 7/2-] 0.01 0.05584 0.0867

Yb171
101 0.27 7.55 0.01476 -0.062 0.1067 [ 521 1/2-] -0.046 0.08041 0.09794

Tm 171
102 0.27 7.55 0.01476 —0.0345 0.1033 5.929

Er171103 0.27 7.55 0.01476 [ 512 5/2-] -0.011 0.06410

Yb175105 0.27 7.47 0.01453 [514 7/2-] 0.0525 0.06042 6.C04

*Lu175106 0.27 7.47 0.01453 0.0255 0.1043

*Er16799 0.20 7.60 0.01457 -0.0145 0.1099
[633 7/2+] 

[ 525 5/2-]
-0.0249
0.0012

0.0860
0.09135 0.105

Ho167100 0.20 7.60 0.01457 0.010 0.1057 6.363 



TABLE XI

(CONTINUED)

A δN hwo(Mev)= 18.5 g=19/ λe Δe Blocked λo Δo Pnexp Mean Square

(Mev) hwoA hwoA Orbital Deviation σNe2

Dy161
95

*Hol65b
98

Dy165
99

0.29 7.71 0.01490 -0.001 0.1335 [642 5/2+] -0.067 0.1124 0.1182

0.29 7.65 0.01465 -0.0095 0.1174 7.397

0.29 7.65 0.01465 [ 633 7/2+] 0.0085 0.08965

*Gd15591

Gd157 
93

94

Gd15995

Tb16196

Gd16197

0.30 7.82 0.01526 -0.0100 0.1475 £521 5/2-] -0.0155 0.1264 0.1464

0.30 7.82 0.01526 0.01050 0.1446 9.834

0.30 7.78 0.01514 0.0310 0.1382 [521 3/2-] 0.0332 0.1142 0.1272

0.30 7.78 0.01514 0.0535 0.1347 0.8783

0.30 7.75 0.01500 0.0530 0.1311 0.8554

0.30 7.75 0.01500 [521 3/2-] 0.089 0.1054

0.30 7.72 0.01488 0.0995 0.1217 7,659

0.30 7.72 0.01488 [ 523 5/2-] 0.1389 0.09885 

Zero at the lost filled level



Column 6 gives the induction footers obtained when using 46 proton levels and 56 neutron levels

Column 7 gives the reduction factors obtained by Soloviev (SG1)

TABLE XII

Reduction Factors Using BCS Wave Functions

rarest
Nucleus

Daughter Nucleus Classification RN(neutrons) Rz(protons) R1=RN x Rz R2 = RR 
x Rz  (Soloviev)

72Hf181109
72 109 73Ta181108 ah 0.758 0.971 0.756

181
74 W107

73 Ta181108 ah 0.487 0.834 0.406 0.34

70Yb177 107 71Lu177106 ah 00.503 0.747 0.376 0.41

68Er171104 69Tm171102 ah 0.551 0.347 0.191 0.15

67Ho167160 16768Er16799 au 00.870 0.441 0.387 0.52

64Gd15994 65Tb15994 ah 0.277 0.225 0.0623 0.07

161
64Gd 97 65 Tb16196 au 0.277 0.220 0.0609 0.26

G
O
T



TABLE XII

(continued)

Column 6 gives the reduction factors obtained when using (46 proton levels and 56 neutron levels 

Column 7 gives the reduction factors obtained by Soloviev (S GI )

Parent 
nucleus

Daughter 
nucleus Classification

RN(neutrons) Rz(protons) R1 = RN x Rz R2 = RN x RZ 

(Soloviev)

70Yb175105 Lu 175 
71104 1 u 0.505 0.747 0.575 0.52

66Dy16599 Ho 165 
67 98 1 u 0.574 0.666 0.382 0.55

Ho 167 
67 100

Er167
68 99 1 u 0.504 0.440 0.222 0.23

65 92
64Gd15591

1 h 0.511 0.417 0.215

Eu15794
63Eu157 94 64Gd15793 1 h 0.654 0.290 0.195



TABLE XIV

Reduction Factors for Allowed Transitions

Parent Daughter

Orbit Assignment log10ft Red.Factors (BCS)
RSolv.  

Red.Factors(proj.) (calc.) 
R1 R2Parent Daughter Exp. S.Part. RN RZ R1 = R2 =

RNRz

72Hf181109 73Ta181108[510 l/2-][541 1/2-] ~6.5 ~8.00 0.761 0.971 0.739 0.610 0.979 0.793

78Er17110369Tm171102[512 5/2-] [523 7/2-] 6.3 4.64 0.559 0.551 0.196 0.15 0.642 0.383 0.246 5.35 5.24

67Ho167100 68Er16799[523 7/2-] [523 5/2- ] ~4.8
3.74 0.880 0.446 0.392 0.52 0.998 0.488 0.487 4.14 4.05

64Gd15995
65Tb15994

[521 5/2-][532 5/2-] 6.7
4.47 0.279 0.227 0.0633 0.07 0.262 0.226 0.0643 5.66 5.66

64Gd1619765Tb16196 [523 5/2-] [525 7/2-] 4.8 3.52 0.279 0.222 0.0618 0.26 0.274 0.223 0.0612 4.73 4.75

1
1
0



TABLE XV

Reduction Factors for Allowed and 1st Forbidden Transitions

Orbit Assignment Red.Factors (BCS) Red.Factors(proj) log (ft)expR

Parent Daughter    log10ft Rsolv.    
Parent Daughter RN RZ RNRZ RN RZ RNRZ BCS proj Sol.

74W181107 73Ta181108 [624 9/2+][404 7/2+] 6.6 ah 0.495 0.841 0.416 0.34 0.607 0.906 0.549 6.22 6.34 6.13

7oYb177107 71Lu177106 [624 9/2+] [404 7/2+]
6.2 ah 0.506 0.692 0.350 0.41 0.617 0.776 0.478 5.74 5.87 5.81

66Dy16599 67Ho16598 [633 7/2+] [523 7/2-] ~6.2 0.578 0.674 0.389  0.33 0.625 0.767 0.479 5.79 5.88 5.72

67Ho167100 74W181107 [523 7/2-] [633 7/2+] ~6.0 0.506 0.446 0.225  0.23 0.515 0.488 0.250 5.35 5.40 5.56

68Eu15592 64Gd15591 [413 5/2+][521 3/2-] 8.7 0.512 0.320 0.164 0.613 0.521 0.319 7.91 8.20

63Eu15794 64Gd15793 [413 5/2+][521 3/2-] 8.0 0.657 0.300 0.197 0.682 0.568 0.388 7.30 7.60

70Yb175105 71Lu175104 [ 514 7/2-] [404 7/2+] 6.4 0.515 0.758 0.390 0.32 0.580 0.849 0.492
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ERRATA:

After this work was completed, it was found that the N = 5 h11/2 

proton levels for δN = 0.30 had been depressed by too large an amount. 

Correct parameters (in line with Table VII) yield the results shewn in 

Table X (pg. 104). In addition, the following corrections oust be made:

Where it is It should be

Table XII 0.225 0.0701
(pg. 108)

0.220 0.8107

0.0623 0.0196

0.0609 0.225

(pg. 109) 0.298 0.413

0.195 0.271

Table XIV 0.227 0.0703

0.222 0.816

0.0633 0.0196

0.0618 0.227

0.228 0.0591

0.223 0.867

0.0643 c.0167

0.0612 0.237

5.66 (R1) 6.20 (R1)

4.73 (R1) 4.16 (R1)

5.66 (R2) 6.25 (r2)

4.73 (r2) 4.14 (R2)



Where it is It should be

Table XV 0.320 0.424

0.300 0.429

0.164 0.217

0.197 0.282

0.521 0.468

0.568 0.467

0.588 0.318

7.91 8.03

7.30 7.45

8.20 3.16

7.60 7.50

The large deviation from Soloviov’s results for the case of Gd161 

(see pg. 76) is thereby explained.


