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Lay Abstract

Small scale magnetic soft robots are small machines with flexible bodies that can be

remotely controlled by a magnetic field. Due to their small size and flexible body, they

have a wide range of applications, especially in the medical field. However, designing

these robots is a complex task that requires a vast range of knowledge and often

relies on a trial and error approach. This research explores how artificial intelligence

(AI) techniques can be used to automate this process. To achieve this, two AI-

based methods were implemented: Genetic Algorithm (GA) and Covariance Matrix

Adaptation Evolution Strategy (CMA-ES). These two methods are different dialects

of Evolutionary Algorithms (EA), which are a group of algorithms that are inspired by

natural evolution and improve a population of solutions through iterations, similar to

how organisms evolve in nature. The results show that CMA-ES successfully designs

and optimizes the magnetization profile of a particular magnetic soft robot structure

and outperforms human design configuration by 45.5% in terms of the horizontal

speed of the robot. However, GA failed to achieve comparable performance and was

unable to compete with the efficiency of human-designed robots. CMA-ES performs

better likely due to its ability to adjust its search strategy during the optimization

process, while GA relies on a fixed approach that cannot adapt to the problem.

This highlights the efficiency and superiority of CMA-ES in designing and optimizing
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magnetic soft robots.
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Abstract

Small scale untethered magnetic soft robots, due to their flexible body, small size,

and remote actuation capabilities, have a wide range of applications in fields such

as bioengineering and healthcare. However, designing these robots is a highly chal-

lenging task requiring precise optimization of material and magnetic configurations.

Traditionally, this process relies on trial and error, which can limit innovation due

to designer bias towards traditional methods, and provides an inefficient means of

exploring the vast space of possible design solutions.

To address this challenge, this study presents an AI-driven optimization that

utilizes Covariance Matrix Adaptation Evolution Strategy (CMA-ES) combined with

a Material Point Method (MPM) based simulation environment, to successfully design

and optimize the magnetic profile of a strip-shaped walking robot, and outperform

the human-designed magnetization profile as shown by the increase in the robot’s

horizontal speed by 45.5%.

Additionally, we compared the CMA-ES with the Genetic Algorithm (GA), which

is a widely used evolutionary optimization method. The result demonstrates that

CMA-ES significantly outperforms GA in terms of convergence speed. While CMA-

ES designed robots significantly outperformed the human-designed configuration, GA

was unable to come close to the original design performance. This performance gap is
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likely because CMA-ES dynamically adapts its search distribution by using a covari-

ance matrix. This allows for more efficient exploration of design space and increases

the performance of this algorithm in solving complex problems, while GA relies on

fixed mutation and crossover strategies that limit its ability.

These findings highlight the potential of AI-driven optimization in the design of

the robots, enabling more innovative and efficient designs. Future work can explore

multi-objective optimization to balance competing goals such as maximizing locomo-

tion speed, improving motion accuracy, and minimizing manufacturing complexity.

Additionally, this approach can be applied to different robots and locomotion modes.

Extra experimental validation involving physical fabrication and testing can be done

to confirm the effectiveness of the optimized designs in real-world conditions. This re-

search represents a small step towards a fully automated design process for a magnetic

soft robot.
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Chapter 1

Introduction

Small scale robots range from a few centimeters to nanometer scale [7–9]. The spe-

cial characteristics of these robots, such as their small size and precision, makes them

suitable tools in many different fields, such as bioengineering [10, 11], microfabrica-

tion [12–14], and healthcare [15–22]. These robots can be actuated using different

methods, such as light, electricity, heat, chemicals, and magnetism. However, among

these methods, magnetic actuation stands out due to its unique characteristics. One

of the key advantages of magnetic actuation is its biocompatibility, which makes

it a suitable method for medical applications. This is because it can interact with

biological tissues without causing physical damage or altering DNA. It can also pen-

etrate varied tissues and surfaces, providing precise remote control. The potential

applications of these robots can be increased by integrating the soft materials. The

untethered soft robots have more advantages than the rigid ones, as they can adapt

their body shape to fit tight spaces and navigate paths with high curvatures [23]. As

there is no direct physical attachment to an external point, they are able to access

remote and hard to reach parts of the body for targeted drug delivery [17, 16, 15] and
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minimally invasive surgeries [19, 18].

Designing these untethered small scale magnetic soft robots is a precise and com-

plex process that involves optimizing many parameters. In recent years, many stud-

ies have been done on the use of artificial intelligence (AI) to assist and ease this

process [5, 6, 24]. These studies have shown the promising possibility of using AI,

especially evolutionary algorithms, in designing and optimizing small scale magnetic

robots. This optimization can focus on different aspects of the robot, such as mag-

netization profile and material distribution. Despite the success of the mentioned

studies, the objective functions that are used in these studies are based on some

physical modeling that cannot represent all aspects of the complex behavior of these

robots in real world environments and has limited the effectiveness of the algorithms

in evolving more sophisticated designs.

To address the mentioned gap, this study integrates Covariance Matrix Adapta-

tion Evolution Strategy (CMA-ES)[25], which is an evolutionary algorithm, with a

Material Point Method (MPM) based simulation framework designed for magnetic

soft robots [26] to optimize an untethered small scale magnetic soft robot to increase

its walking speed. Using this MPM-based simulation as part of the fitness function

enables the evolution of complex robots with more sophisticated behavior without

the need for advanced physical modeling.

This study goes beyond mere optimization and can be considered a step towards

automated design. The algorithm designs the magnetic configuration of the robot to

have desirable movement, and the resulting robot demonstrates movement similar to

the human-designed robot, despite having a significantly different magnetic configu-

ration. The algorithm successfully achieves novel designs and significantly increases

2
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the speed of the robot by 45.5%.

This study demonstrates the potential of combining CMA-ES with an MPM-

based simulation, provides a framework for optimizing any segment-base robots that

can be modeled within this simulation environment, and opens the door for future

research that aims for evolving more sophisticated and complex microscale magnetic

soft robots for diverse applications.
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Chapter 2

Background

This chapter provides an overview of the fundamental concepts involved in this study.

It begins with an introduction to soft robotics and highlights its significance and

applications while providing details on the materials and fabrication involved. Then,

the principle of magnetic actuation is explained to provide the foundational knowledge

that is necessary for understanding the following sections. The chapter concludes with

an introduction to evolutionary algorithms and their role in optimizing small scale

soft magnetic robots.

2.1 Introduction to Soft Robotics

Soft robotics is a growing field that focuses on creating flexible and adaptable robots

inspired by biological organisms [27]. These robots are characterized by their soft

body made of flexible materials, allowing them to bend and deform to adapt to the

environment and have better maneuverability. These characteristics give soft robots

significant advantages over rigid ones, especially in circumstances where adaptability
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and safe interaction are essential. Various actuation methods, such as light [28], elec-

tricity [29], heat [30], chemical [31] and magnetism [32–35], are used in soft robotics.

Among these methods, magnetic actuation stands out due to several advantages.

Firstly, it is wireless and can navigate through air, vacuum, and fluids, which elim-

inates the need for a direct physical connection, leading to the improvement of the

robot’s mobility, an essential feature of soft robots. Secondly, it is safe, biocompatible,

and quick in response, making it a desirable method for medical applications [36, 15–

17]. Magnetic soft robots are widely used in various fields, such as small-scale ma-

nipulation [37], microfluidics [38, 11], and intelligent sensors [39]. These robots are

moved by a magnetic field, which can generate impressive forces compared to their

size. This, combined with the fact that they do not require a motor for movement,

allows them to be scaled down to just a few nanometers to micrometers, which makes

them ideal for operation with high precision.

Despite these advantages, magnetic actuation has limitations that are worth men-

tioning. The magnetic field strength decreases rapidly with distance, which can limit

the depth of the operation, especially inside the body. Additionally, the magnetic

field tends to interfere with surrounding materials and is affected by magnetic noise,

which can lead to inaccuracy. In terms of safety, the magnetic field should be used

with greater caution in individuals with cardiac pacemakers and electrically active

implants since it can cause serious health issues [40, 41].

2.1.1 Magnetic Soft Materials for Soft Robotics

Small scale magnetic soft robots are constructed using magnetic soft materials, which

consist of two components: the soft material that provides the flexible base and the

5
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magnetic component that provides responses to the magnetic actuator [1]. These

materials are categorized into discrete and continuous systems based on their struc-

ture. In discrete systems, the soft material is incorporated with one or multiple rigid

magnets. As a result, the magnetic moment of this system is focused. On the con-

trary, the continuous system is composed of a soft matrix embedded with magnetic

nano- or microparticles that are distributed throughout the material. This provides

a distributed magnetic moment that can lead to more smooth deformations.

Figure 2.1: Types of Magnetic Soft Materials. Magnetic soft materials can be
categorized into a) Discrete Systems, which have rigid magnets inside a flexible

structure, and b) Continuous Systems, which have micro/nano magnetic particles in
a flexible matrix.

When we refer to magnetic materials, we primarily focus on the ferromagnetic and

ferrimagnetic materials, which are strongly responsive to external magnetic fields.

The magnetic properties of these materials can be indicated using a magnetization

curve. This curve provides important information about magnetic material behavior,

6
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including remanence (Mr), coercivity (Hc), and saturation magnetization (Ms). The

remanence (Mr) indicates the magnetic moment that remains in the material after

being completely magnetized in the absence of an external magnetic field. Coercivity

(Hc) is the strength of the magnetic field that is needed to demagnetize the material,

and saturation magnetization (Ms) is the maximum magnetization that a material

can have. Based on these properties, magnetic materials fall into two main categories:

soft-magnetic materials and hard-magnetic materials. As shown in Fig. 2.1.b, soft-

magnetic material exhibits high saturation magnetization (Ms) but has low coercivity

(Hc), low remanence (Mr), and a small hysteresis loop. These characteristics shows

that soft-magnetic material can be easily magnetized and demagnetized with a small

external magnetic field. While they can act as a strong magnet in the presence of

an external field, their low remanence (Mr) results in a weak and negligible magnetic

moment when the external magnetic field is removed. On the other hand, hard-

magnetic materials (Fig. 2.2.a) have high coercivity (Hc) and high remanence (Mr),

along with a large hysteresis loop. This indicates that they retain a strong magnetic

moment even in the absence of an external magnetic field. Additionally, a stronger

magnetic field is required to magnetize and demagnetize the materials that are usually

used in permanent magnets.

2.1.2 Fabrication of Magnetic Soft Robots

Both soft and hard magnetic materials can be used as embedded particles within a

soft matrix to create magnetically responsive soft robots. However, their fabrication

processes are different. When using soft magnetic particles, the particles are mixed

with a soft matrix and exposed to an external magnetic field while the material

7
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Figure 2.2: Magnetic Hysteresis of Hard and Soft Magnetic Materials. a) Hard
magnetic materials show high coercivity (Hc) and remanence (Mr) while b) soft

magnetic materials exhibit low coercivity (Hc) and remanence (Mr) with a narrow
hysteresis loop. Figure recreated based on [1].

is still in a liquid state. Under the influence of this field, the particles align with

the external magnetic field direction and preserve their arrangement after the soft

matrix is cured. Although the particles lose most of their magnetization when the

external magnetic field is removed, their fixed alignment in the cured matrix enables

controlled deformation by magnetic actuators. When hard magnetic particles are

used, the particles are mixed with the soft matrix and magnetized after the matrix

is cured. Alternatively, it is also possible to magnetize the particles before mixing

them in the soft matrix and reorient them again before curing to produce desirable

patterns. Both of these methods lead to soft robots with strong magnetization in

a specific direction. The latter method provides more control on creating magnetic

patterns and needs a weaker magnetic field in the final step compared to the former.

This study focuses on soft magnetic robots constructed by embedding hard magnetic

8
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particles within a soft matrix. From this point, the term ’soft magnetic robots’ will

specifically refer to these structures.

2.2 Magnetic Actuation and Fundamental Princi-

ples

The movement of electrical charges, whether as a current in a wire or as free electrons

in a magnetic material, can lead to the creation of a magnetic field [42]. Magnetic

fields are vector fields that vary across space. In magnetic robots, the focus is on the

magnetic fields projected into space from a source that can apply force and torque

on magnetic objects to actuate them. By observing a magnetic field source from a

far distance, it can be considered a dipole. Magnetic dipoles are similar to electric

dipoles, but unlike electric charges, magnetic monopoles have not been observed in

nature. By considering the source of the magnetic field as a dipole, the complex and

subtle details of the field structure can be simplified, allowing it to be represented as

a point with both magnitude and direction. The magnetic field B that a dipole has

is represented by Eq. (2.2.1) where r is the distance from the central dipole, m is the

magnetic moment of the dipole and µ0 represents the vacuum magnetic permeability.

B(r) =
µ0

4π

[
3r(m · r)

r5
− m

r3

]
(2.2.1)

The magnetic field can apply magnetic torque and force on an object with a

magnetic moment, which are the fundamental principles of magnetic actuation. By

applying a magnetic field, the resulting magnetic torque and force can be used to

manipulate the magnetic object remotely with high precision.

9
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Figure 2.3: Magnetic torque applied on a dipole in the presence of an external
magnetic field.

The torque τ on a magnetic dipole m due to an external magnetic field B is given

by Eq. (2.2.2).

τm = m×B (2.2.2)

Since magnetic torque is given by the cross product of the external magnetic field

and magnetic moment of the object, the maximum torque is generated when they

are perpendicular, while torque is zero when they are parallel. Fig. 2.3 illustrates

the rotation of a magnet to align with the external magnetic field due to the applied

magnetic torque.

If the external magnetic field is nonuniform, a magnetic force is applied to the

magnetic object exposed to it. A nonuniform magnetic field varies across space and

creates a spatial gradient. When a magnetic object is placed in such a field, a mag-

netic force is generated that drives it from a region with a weaker magnetic field

toward the region with a stronger magnetic field. The magnetic field generated by

a source weakens rapidly as the distance from the source increases. As a result, the

magnetic object gets attracted to the magnetic field source. The magnetic force F on

10
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a magnetic dipole m when it is placed in a nonuniform magnetic field B is calculated

by Eq. (2.2.3)

Fm = (m · ∇)B =


∂Bx

∂x
∂Bx

∂y
∂Bx

∂z

∂Bx

∂y

∂By

∂y

∂By

∂z

∂Bx

∂z

∂By

∂z
−
(

∂Bx

∂x
+ ∂By

∂y

)


mx

my

mz

 (2.2.3)

A magnetic object can simultaneously experience both magnetic torque and mag-

netic force. Fig. 2.4 illustrates a magnet placed in a nonuniform magnetic field where

a magnetic force is exerted on it. This moves the object toward the region with a

stronger magnetic field. In this case, the magnet is parallel to the external magnetic

field, which results in zero torque.

Figure 2.4: Magnetic force applied on a magnetic dipole in the presence of a
nonuniform magnetic field

Soft magnetic robots embedded with hard magnetic particles operate using the

same fundamental magnetic principles, which allow them to deform under applied

magnetic force and torque. This deformation is achieved through the controlled align-

ment and distribution of magnetic particles within the soft matrix, enabling bending

and twisting. Utilizing hard magnetic particles allows different parts of the robot

11
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Figure 2.5: Deformation of a magnetic soft robot under a uniform magnetic field. a)
The robot remains in its natural position when no external magnetic field is present.

b) In a uniform magnetic field, the magnetic particles of each segment experience
torque and align with the external field which leads to the deformation of the robot.

to have distinct magnetization alignments, proving more sophisticated and precise

control over the deformation.

Fig. 2.5 illustrates a soft magnetic robot with varying magnetization alignment

along its body. When it is not exposed to an external magnetic field, it is in its

natural shape as seen in Fig. 2.5a. When placed in a uniform magnetic field, the

magnetic particles experience a torque, causing it to align with the external magnetic

field. As the particles are magnetized segment by segment, each segment responds

differently to the external magnetic field based on its magnetic moments. This leads

to the deformation of the robot as illustrated in Fig. 2.5b.

The deformation of these robots is dependent on many variables, such as the

mechanical properties of the soft material, the shape of the robot, and the distribution
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Figure 2.6: The voxel-encoding and development process of magnetic soft robots.
Reproduced from [2] under the Creative Commons Attribution (CC BY) license.

”Fabrication” subfigure taken from [3]

of the particles. Physical modeling of these robots’ behavior is complex and goes

far beyond the provided magnetic principles. To address it, this study combines

an MPM-based simulation environment with an evolutionary algorithm to optimize

robot performance without relying on explicit physical modeling.

2.3 Optimization of Programmable Domains in Soft

Magnetic Robots

Soft robots embedded with hard magnetic particles can achieve precise and sophisti-

cated deformation as their physical properties are derived from the soft matrix and

the magnetic density and profile of different regions can be adjusted [2]. The ability

to adjust the magnetic profile of different regions enables a wide range of design pos-

sibilities, but it increases the design and fabrication complexity. The detailed design

workflow for such robots has been illustrated in Fig. 2.6. This figure demonstrates

the design process of a soft magnetic robot for cardiac catheterization. The process

13
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is initiated by modeling the robot, which is the foundation for the next step. In the

optimization phase, the model is used alongside the desired target shape or applica-

tion to determine the characteristic magnetization of each segment. The optimized

robot can be fabricated in the next phase to be examined in a real world setting. The

driven data can be used to further tune the model and repeat the process [2].

This research focuses on the optimization phase of this process, which can have a

significant impact on the final result. As we proceed, we delve deeper into optimiza-

tion techniques and their use in the field of magnetically actuated soft robots [2].

2.3.1 Optimization Using Physics-Based Modeling

Numerical, analytical, and data-driven methods can be used to produce physics-based

modeling [2]. The modeling predicts the behaviour of the robot under changing

magnetic fields. Using this model, control variables can be optimized to fine-tune the

design and achieve desirable deformation [43–46].

Physics-based modeling comes with several disadvantages. The computational

cost can be high, especially when dealing with high-resolution voxelization. Further-

more, this approach often uses simplification through static or quasi-static assump-

tions, which prevents the model from considering the robots’ dynamic behavior [2].

2.3.2 Optimization Using deep learning algorithms

Deep learning algorithms can be used for optimization by identifying complex patterns

from large data sets [47]. By training these algorithms on appropriate data sets,

models can be developed to determine the magnetic configuration of magnetic soft

robots to achieve desirable deformations [2].

14
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Despite their power and popularity, these algorithms are not widely used in this

field due to several disadvantages. These algorithms rely on large data sets that

are difficult and costly to obtain in the magnetic soft robotics field. Data needs to

represent the robot with high accuracy in various conditions that are challenging to

achieve in both real-world and simulation environments, especially when the number

of repetitions increases [2].

Despite these challenges, a few studies have used deep learning optimization with

successful results. Lloyd et al. used an artificial neural network (ANN) to determine

the magnetization of a soft continuum robot to achieve desirable deformations. The

ANN was trained on a data set they built based on various magnetization and their

corresponding deformations. The data was produced using a FEM modeling they

introduced, where thousands of different magnetizations were fed to the FEM model

to obtain the deformation responses. The trained ANN model was able to reverse the

design process by getting the desired shape and producing the required magnetization

profiles [48].

2.3.3 Optimization Using Evolutionary algorithms

Evolutionary algorithms are powerful optimization tools inspired by natural selection.

These algorithms are able to search large solution spaces with multiple local optima,

and unlike traditional gradient-based methods, they do not require derivative infor-

mation. These algorithms operate based on stochastic selection and evolve selected

solutions repetitively by mutation and recombination to gradually improve them [49].

In recent years, evolutionary algorithms have found their place in the optimization

of magnetic soft robots. These algorithms can be used to optimize the magnetic
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profile or rigidity pattern of the robot to achieve a higher workspace, the range of

positions that the robot can physically reach, or a specific shape deformation. By

widely exploring different configuration settings, the algorithms can develop robots

that are specifically adapted to their intended tasks and capable of high-precision

operation.

As this study heavily relies on evolutionary algorithms, we will explore this method

in greater depth in the following section. Additionally, a separate section (Sec-

tion 2.4.3) will be devoted to reviewing existing research and advancements in apply-

ing evolutionary algorithms for the optimization of magnetic soft robots.

2.4 Introduction to Evolutionary Algorithms

Evolutionary algorithms are a group of algorithms inspired by Darwin’s theory of

evolution in nature. In this group of algorithms, the potential solutions are considered

as individuals that evolve through generations. These algorithms consist of several

steps that help them to mimic evolution in nature and gradually evolve solutions

in a cyclical process. The process begins with a group of random individuals that

form the initial generation. Each of these individuals gets evaluated and assigned

a fitness value based on a fitness function in the evaluation phase. Next, some of

these individuals are chosen based on their fitness value as the parents of the next

generation, and they get combined together in a process called crossover and slightly

changed in the process called mutation. These operations form new individuals, which

are called the offspring. These offspring are evaluated and then compete with the

existing individuals based on their fitness value, and in some cases age, to be selected

to form the next generation. This cycle continues until an individual (solution) with
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a specific fitness is achieved or for a set number of generations [4]. The flowchart of

this cyclical process is shown in Fig. 2.7.

Figure 2.7: Flowchart of evolutionary algorithms process. The process involves
initializing a population, selecting parents, applying crossover and mutation to

generate new offspring, and selecting survivors and updating the population based
on that. This cycle continues for a set number of generations or until a specific
condition, such as reaching an optimal solution, is met. Figure recreated based

on [4].

These algorithms are considered stochastic, as many parts of their processes rely

on randomness. The initial population is often composed of random individuals.

Selection is not solely based on fitness alone, and even less fit individuals have the

chance of being selected. In recombination, it is randomness that determines which

part of each parent contributes to form the offspring. Similarly, in mutation, the

specific parts of the individual that undergo alteration are selected randomly.

17
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Evolutionary algorithms act based on two factors: variation operators and selec-

tion. Variation operators include mutation and recombination, which cause the di-

versity among solutions and increase the novelty. Conversely, the selection increases

the quality of the individuals by favouring the ones with higher fitness values. The

gradual improvement of fitness value through generations is the result of these two

features [4].

The process of these algorithms can be seen from two different perspectives. One

perspective considers the process as a fitness function optimization, where values

are iteratively refined to get closer to the optimal solution point gradually. On the

other one, the process is considered as an adaptation problem. In this perspective,

fitness is not considered a function to be optimized but considered an expression

of the environmental condition, and the individuals that are more adapted to the

environmental conditions are more likely to have more offspring, which gradually

leads to populations that are generally more adapted to the environment [4].

Over time, different dialects of evolutionary algorithms have developed to address

the diverse range of problems [4]. These include Genetic Algorithms (GA), Evolu-

tion Strategies (ES), Evolutionary Programming (EP), Genetic Programming (GP),

Learning Classifier Systems (LCS), Differential Evolution (DE), Particle Swarm Op-

timization (PSO), and Estimation of Distribution Algorithms (EDA). Each of these

has its unique representation for solutions and its unique approach to selection, re-

production, and mutation, which makes them suitable for solving specific problems.

However, this study has a focus on Genetic Algorithms (GA) and Evolution Strategies

(ES), and other dialects fall out of the scope of this research and will not be discussed

further.
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2.4.1 Genetic Algorithm

The genetic algorithm is the most well-known dialect of evolutionary algorithms and

shows the most resemblance to the natural evolution process [50–52]. It was intro-

duced by John Holland in the 1960s and early 1970s [53]. Around the same time,

De Jong implemented it and used it for parameter optimization [54, 55]. This algo-

rithm relies on both mutation and recombination to evolve solutions. The solutions

are represented as a string of fixed length that traditionally was binary-encoded,

but alternative encoding methods are also used, such as Octal, Hexadecimal, three,

permutation, and value encodings [56–58].

Although the genetic algorithm was first introduced to study adaptive behavior,

it is widely used as a powerful optimization tool. One of the earliest versions of GA

is the Simple Genetic Algorithm (SGA), which is a process with fixed steps. It starts

with a population of size µ, from which a sub-population of parents is created that

has the same size (µ) but allows duplicates. These individuals pair randomly and

combine with each other through crossover to create offspring. The offspring replace

the parent population, and the cycle continues. This algorithm is based on a binary

representation and fitness proportionate selection. The mutation rate is low, and the

production of the new generation heavily relies on the crossover, while mutation has

a low probability. This algorithm is summarized in table 2.1.

Representation Bit-strings
Recombination 1-Point crossover
Mutation Bit flip
Parent selection Fitness proportional - implemented by Roulette Wheel
Survival selection Generational

Table 2.1: Summary of Simple Genetic Algorithm (SGA) components. Reproduced
from [4].
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2.4.2 Evolution Strategy

In the early 1960s, Rechenberg and Schwefel introduced the evolutionary strategies

(ES) while they were working on a shape optimization problem. ES is typically used

for continuous optimization, where each solution is represented as a vector of real-

valued parameters (see 2.2). (1 + 1)ES is the earliest ES algorithm consisting of two

members. This algorithm works with one individual, called parent, which produces

one offspring. The offspring is created by adding a different random number to each

element of the parent, and it replaces the parent if it has a higher fitness value. This

ensures that the solution (individual) is always moving towards a higher fitness value

in the search space. By removing this condition and replacing the parent with the

offspring, whether it has a higher fitness or not, we reach the (1, 1)ES algorithm. In

this case, the individuals forget the previous solutions, their ancestors. The random

numbers that are added to the elements of the parents are sampled from a Gaussian

distribution with a mean of zero and a deviation equal to σ that is considered the

mutation rate [4].

Representation Real-valued vectors
Recombination Discrete or intermediary
Mutation Gaussian perturbation
Parent selection Uniform random
Survivor selection Deterministic elitist replacement by (µ, λ) or (µ+ λ)
Speciality Self-adaptation of mutation step sizes

Table 2.2: Summary of Evolution Strategy (ES) components. Reproduced from [4].

Having more than one individual leads to the development of (µ + λ) and (µ, λ)

ES’s in the 1970s. In this case, µ determines the size of the population, and λ is the

number of offspring that is produced in each generation. Following this, the concept
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of self-adaption was introduced to enhance the effectiveness of the search process. To

enable this, the ES’s parameters are included in the individuals, allowing dynamic

adaption through the optimization process. Nowadays, the mutation step size in most

ESs is self-adaptive to provide flexibility and efficiency. One of the most significant

algorithms in this area is Covariance Matrix Adaptation (CMA) [25, 4]

CMA introduces a more flexible search strategy, which makes it a successful ap-

proach for optimizing synthetic and real-world black-box problems [59, 58]. This

algorithm acts based on adapting mean vector, step size, and covariance matrix to

refine the search distribution through generation. The mean vector represents the

center of search distribution and is updated in each generation based on the fittest

offspring generated in the current generation. This leads to the shift of the distribu-

tion towards more promising areas of the search space. The step size determines the

scale of exploration in the search space. By adapting this parameter, CMA-ES makes

a balance between exploration and exploitation. One of the key differences between

this algorithm and other ESs is the full covariance matrix update. This allows search

distribution to align with problem structure and properly update the distribution in

complex and non-separable problems.

Recombination in Evolution Strategies

The recombination process, which combines the parents to produce the offspring, can

be done in two ways based on the selection of value for each gene: Discrete Recom-

bination and Intermediate Recombination. In Discrete Recombination, the value of

each gene is selected randomly from one of the parents to transfer to the offspring. On

the contrary, in the Intermediate Recombination, the value of each gene is obtained
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by averaging the corresponding genes of the parents. The number of contributing

parents for each offspring can be more than the traditional two parents. This recom-

bination is referred to as global recombination, whereas the two-parent approach is

called local recombination [4]. Global recombination is commonly used in ESs, while

both discrete and intermediate recombination are applied simultaneously to produce

offspring. The part of individuals that is storing ES’s parameters undergoes interme-

diate combination while the other part undergoes discrete recombination. This allows

the algorithm to produce diverse solutions while keeping the average mutation step

size.

2.4.3 Review of Evolutionary Algorithm Applications in Mag-

netic Soft Robot Optimization

In recent years, evolutionary algorithms have found their place as a powerful optimiza-

tion tool for the small scale magnetic robot design. Evolutionary algorithms, unlike

traditional methods, do not rely on gradient information and are capable of searching

a large and complex design space efficiently. Their population-based structure allows

for the exploration of diverse solutions, which makes them a suitable approach for

optimizing small scale magnetic robots with complex and non-linear design character-

istics. In this section, we cover key studies that have applied evolutionary algorithms

for optimization of small scale robot.
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Evolutionary design of magnetic soft continuum robots by Liu Wang et

al. [5]

Wang et al. introduced an evolutionary approach for optimization of magnetic soft

continuum robots (MSCRs) to increase their workspace. Traditional MSCRs consist

of permanent magnets or a uniform distribution of magnetic particles, which limits

the range of workspace of these robots. To overcome this problem, Wang et al. used

genetic algorithm to optimize both magnetization and rigidity pattern of the robot

to have more flexible and adaptable robots that leads to their larger workspace.

The robot is divided into 100 discrete voxels, and a magnetic particle volume

fraction (φ) is assigned to each of these voxels as seen inFig. 2.8. The (φ) value

affects both remanent magnetization and rigidity. The remanent magnetization is

obtained from Eq. (2.4.1), where M0 is the remanent magnetization of the hard-

magnetic particles. By increasing the φ, the remanent magnetization of the voxel

also increases. Consequently, φ only determines the magnitude of the magnetization,

while the direction of magnetization is considered the same for all voxels, pointing

toward the tip of MSCR.

M = M0φ (2.4.1)

Increasing φ also affects the rigidity of voxels. As magnetic particles are stiffer

than the polymer matrix, increasing φ leads to an increased shear modulus, which can

be obtained from Eq. (2.4.2), where G0 is the shear modulus of the polymer matrix.

It is also worth mentioning that in this study, φ is constrained between 0 and 0.4 as

voxels with φ bigger than 0.4 cannot be fabricated properly.

G(φ) = G0 exp

[
2.5φ

1− 1.35φ

]
(2.4.2)
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Figure 2.8: Programmable MSCR with varied remanent magnetization and rigidity
along its body. a) Each voxel of the robot has a specific remanent magnetization

that is set by adjusting magnetic particle volume fraction (φ). b) The relation
between magnetic particle volume fraction (φ) and normalized magnetization

strength and shear modulus is shown in black and red, respectively. Reproduced
from [5] under the PNAS license.

To measure the workspace as the fitness value of the genetic algorithm, they

developed a hard-magnetic elastica theory, which predicts the deformation of the

robot with a given magnetization and rigidity pattern under the influence of a specific

external magnetic field. As the workspace is asymmetric, they only analyzed half of

the workspace for their study. The algorithm starts with 100 randomly generated

individuals represented as an array of φ’s. The half workspace of these individuals is

calculated using the developed model. Then, they choose 100 individuals based on

stochastic universal sampling, which allows duplication, and individuals with higher

fitness are more likely to be selected. The next generation is created by 5% elitism,

10% mutation, and 85% crossover. This mean that 5% of the new generation is built

by choosing the individuals with the highest fitness of a selected group, 10% of the

new generation is built from randomly selected individuals from a selected group that

has undergone mutation, and finally the remaining 85% of the new generation is built

by random selection from the selected group and applying crossover on them. The
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cycle continues until the difference between the workspace of the fittest individual

and the mean of the workspaces of all individuals in a generation is smaller than a

predefined threshold. This optimization process is demonstrated in Fig. 2.9.

Using a genetic algorithm, they successfully optimized an MSCR robot with non-

uniform magnetization distribution and achieved a significantly larger workspace.

They also validate their approach through finite element simulations and experimental

testing and illustrate the strength of the evolutionary algorithm in the optimization

of magnetic soft continuum robots.

Evolutionary Algorithm-Guided Voxel-Encoding Printing of Functional

Hard-Magnetic Soft Active Materials by Wu et al. [6]

. This study introduces a voxel-encoding (Direct Ink Writing) DIW printing strategy

that provides control on the direction and density of magnetization of voxels in the

printing process. This flexibility is achieved by controlling the path of printing and

the number of printing layers; as the number of layers increases, the magnetization

density of the voxel increases.

By having m voxels and n layers per voxel, the search space is equal to (2n+ 1)m,

which can grow significantly as the number of voxels and/or layers increases. This

indicates the need for an efficient optimization tool to find an optimal design among a

large number of possible solutions. As a result, Wu et al. introduced an evolutionary

algorithm that is capable of finding the optimum magnetization of different beams’

voxels, among possible configurations, to achieve desired deformations when they are

exposed to specific external magnetic fields. The algorithm begins with an initial

population of 32 randomly generated individuals (µ = 32), where each individual
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Figure 2.9: a) The flowchart of the optimization algorithm, illustrating the
representation of individuals in the initial population, stochastic universal sampling,
crossover, and mutation. b) The highest and mean normalized half workspace of 100
individuals plotted over 50 generations. c) Magnetic distribution and fitted function
of the optimized design at generation 40. d) Normalized half workspace of the robot

based on the fitted distribution of the optimized design in generation 40.
Reproduced from [5] under the PNAS license.
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Figure 2.10: Voxel-Encoding Printing of Hard-Magnetic Soft Active Materials. a)
special curvature of a Sidewinder snake, which leads to its unique sidewinder

motion. b) The structure of a three-layered printed voxel with programmed density
and direction. d) The encoding of voxels with three printed layers. e) Magnetic
density of voxels with a varied number of layers. The dashed line represents the

ideal magnetic density for this type of robot. Reproduced from [6] under the
Creative Commons Attribution License (CC BY 4.0).

represents a unique magnetization pattern for the beam. In this representation, each

element of individuals corresponds to a single voxel that determines the magnetization

density and direction. The range of acceptable values for each voxel is determined

based on the number of layers (n). For example, having n = 3, the variations can be

encoded by 2n + 1, which is equal to 7 possible magnetization states. The encoded

values are stored in the individuals and are decoded when it is needed. Each individual

is evaluated by comparing the deformation of the decoded individuals in the FEM
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simulation to the desired deformation fed to the algorithm in the first step. In the

next step, 38 individuals (λ = 38) are selected for the next generation by crossover

and mutation operators. 70% of the new generation undergoes crossover, and 25%

undergoes mutation, while the remaining 5% of the population does not experience

either. This cycle continues until the fitness value is smaller than a predefined value

or for a set number of generations, here 15 generations. This process is illustrated in

Fig. 2.11.

Conclusion. The reviewed studies demonstrate the power of evolutionary algorithms

in optimizing magnetic soft robots, especially through control over the material prop-

erties and magnetization pattern across segmented structures [5, 6]. However, a com-

mon limitation in both works is the focus on the static shape outcome under fixed

magnetic field conditions. The optimization target is a specific final deformation

rather than the robot’s complete dynamic behavior in an environment. This provides

an opportunity for future research to go beyond shape-matching objectives toward

behavior-driven fitness functions that reflect the robots’ behavior in real tasks. In this

study, we address this gap by utilizing an MPM-based simulation environment as part

of the fitness function to increase the robot’s walking speed and overall locomotion

performance.
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Figure 2.11: Evolutionary algorithm applied to voxel-encoding printing. a) The
algorithm gets the desired deformation as input, and EA finds the required

distribution to achieve the targeted deformation. b) Flowchart of the implemented
EA. Reproduced from [6] under the Creative Commons Attribution License (CC BY

4.0).
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Chapter 3

Methodology

A small-scale soft robot originally presented by Diller et al. [13], later adapted by

Hu et al. [44] ,and reproduced by Davy et al. [26] is chosen as the foundation of this

research. The proposed robot is capable of having multimodal locomotion, which

consists of swimming inside or on the surface of a liquid, crawling, jumping, climbing,

and walking. It is built from a mixture of silicon elastomer and hard magnetic particles

that provide a flexible body that deforms under the influence of an external magnetic

field. The shape and actuation method of the robot is similar to the one introduced

by Zhang et al. [60], which focuses only on swimming movement. Although Zhang

et al. have modeled the swimming speed of their swimmer robot, which can be used

as part of the evaluation function for swimming movement, we have used the MPM-

based simulation to optimize the robot with a focus on walking behavior, which paves

the path for optimization of the soft-bodied robot by eliminating the need for hand-

crafted mathematical models as the simulation captures the physical behavior needed

for evaluation.

The reproduced robot by Davy et al. [26] consists of 9 sections aligned as an array,
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as each section represents a discrete voxel. Each voxel can be magnetized differently,

which means the direction and strength of the magnetization can be customized.

These magnetization patterns determine how robots react to the external magnetic

field, and by altering these patterns, we can actually design different robots with

varied kinds of movements. In this study, the Covariance Matrix Adaptation Evo-

lution Strategy (CMA-ES), a robust method for non-linear continuous optimization,

is used as an optimization method to find the best magnetic configuration for each

section of the robot to achieve a higher horizontal speed. The optimization process

relies on an MPM-based Simulation that models magnetic soft robots to evaluate the

performance of each individual in a rotating magnetic field in terms of the distance

they travel in a specific amount of time.

Additionally, a genetic algorithm is also implemented for comparison. However,

the GA fails to achieve optimization within the same number of generations and

population size, which highlights the superiority of the CMA-ES to GA in this context.

The codebase developed for the optimization framework, including the GA and

CMA-ES implementation and adapted MPM simulation environment, is available at

https://github.com/HeartLab-McMaster/MPM-Optimization.

3.1 Algorithm

To optimize the magnetization pattern of the robot, two evolutionary algorithms, the

Genetic Algorithm (GA) and the Covariance Matrix Adaptation Evolution Strategy

(CMA-ES), are implemented and compared. The GA is selected due to its popu-

larity in optimizing soft magnetic robots, and CMA-ES is chosen for its reputation
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in continuous optimization. Both algorithms, GA and CMA-ES, use the same rep-

resentation (3.2) and evaluation function (3.3), with identical population size and

generation limit to ensure a fair comparison.

In this study, the external magnetic field applied to individuals during the eval-

uation phase was kept constant to enable comparison of different individuals in the

identical condition. The individuals differ in the magnetic moments (both in direction

and magnitude) of their segments. The algorithm seeks to find the optimal magnetic

configuration for the robot by altering these magnetic moments and evaluating the

resulting configuration.

3.1.1 Genetic Algorithm

The Genetic Algorithm (GA) has been discussed in detail in 2.4.1. As representation

and evaluation functions are shared between GA and CMA-ES, they are discussed

separately in Section 3.2 and Section 3.3, respectively. Here, we focus on the aspects

that differentiate GA from CMA-ES, including crossover, mutation, and selection.

The algorithm starts with 12 randomly generated individuals. Each individual

represents a unique magnetic configuration for the nine-segmented robot described

earlier. Each individual is separately evaluated by constructing a robot based on its

parameters, sending it to the simulation while exposing it to a fixed rotating magnetic

field for a set period of time. As each robot has a unique magnetic configuration, they

react differently to the magnetic actuation, resulting in varying traveled distances.

This traveled distance is used as a fitness value to compare individuals (different

magnetic configurations) with each other. Based on these assigned fitness values, 12

individuals are selected using tournament selection, a method that will be discussed in
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detail later. In this selection process, some individuals may be selected multiple times,

and some of them may not be selected at all. Then, some of these selected individuals

undergo crossover, where two individuals blend their parameters, and mutation, where

random small changes are introduced. Both operations ensure that the individuals’

values remain within valid bounds. Only the individuals that are altered through

crossover or mutation are reevaluated by running new simulations, and the resulting

population replaces the previous one. This cycle repeats for 100 generations, as the

algorithm proceeds without relying on convergence-based termination.

Selection: Tournament Selection

In this algorithm, tournament selection is chosen as the selection mechanism. In this

method for selecting λ individuals from a population with the size of µ, a subgroup of

k individuals is selected randomly, and the best individual in this subgroup is selected

for reproduction. This allows the selection pressure to be adjustable and is a suitable

approach when a subjective selection is needed by comparing the individuals to each

other, which makes it an appropriate approach when EAs are applied in design and

art. In this study, we use a tournament size of k = 3. The value of k determines

the selection pressure. Increasing k increases the chance of selecting individuals with

higher fitness, as they are more likely to be in the selected subset. This decreases the

selection of individuals with lower fitness.

Crossover: Blend Crossover

In this study, we employ Blend Crossover (BLX−α) as a recombination operator [61].

Unlike traditional crossover methods that generate offspring strictly inside the range
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of parents’ values, BLX − α allows offspring to take values both inside and outside

that range. For each element of the solution representation (gene), if the parents have

values xi and yi, the distance is defined as di = |yi − xi|. The offspring gene is then

sampled uniformly from the range [min(xi, yi)−α · di, max(xi, yi) +α · di]. Here, the

parameter α defines the exploration intensity. This method allows the offspring to

allocate outside of the parents’ range proportional to the distance between them and

enables a diverse search of the solution space while providing refinement of current

solutions. For our study, we set α to 0.5, which is the recommended value by the

previous studies. Additionally, to keep the modified element within the defined range,

the values exceeding the upper limit are set to the upper bound, and those falling

below the lower limit are set to the lower bound.

Mutation: Gaussian Mutation

In the GA algorithm, we use a fixed-step mutation. Each gene in an individual has a

20% chance of being mutated by the step size of 0.1. This means that the mutation

can increase or decrease the element values by 0.1. To keep the mutated element

within the defined range, the same approach that is used in the crossover is applied.

3.1.2 CMA-ES

In this study, we use the CMA Python library to implement the CMA-ES optimization

algorithm. The overall optimization process is shown in Algorithm 1. The algorithm

is initialized with step size σ = 1, and all elements of the initial solutions are set to

zero. This allows the algorithm to start the search from a neutral place and gradually

shift toward more promising places by self-adaptation. Around this initial individual,
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12 individuals are sampled from a multivariate normal distribution. Each individual

is evaluated by constructing a robot based on its parameters and simulating its move-

ment under a rotating magnetic field for a set time. Similar to the GA approach, the

traveled distance is measured and used as the fitness value. After evaluation of all

individuals, the fittest one is used to update the mean (center of sampling distribu-

tion), and the covariance matrix and step size are adjusted accordingly. This cycle

also continues for 100 generations and does not rely on the convergence of fitness.

3.2 Representation

For determining the magnetization of each section, each individual is represented as

an array of 9 pairs of y and z, which represent the vector of the magnetization. To

avoid the algorithm exponentially growing, the y and z are constrained within a set

boundary.

3.3 Evaluation Function

The evaluation function of our algorithm uses the MPM-based simulation as a critical

tool to evaluate each robot’s performance under the influence of a rotating magnetic

field. The decoded individuals are sent to the simulation as robots with specific

configurations. The simulation runs for a set period of time while the robot is exposed

to a rotating magnetic field. The average position of the particles of the central section

is considered the position of the robot, highlighted in red in Fig. 3.1.

This approach is necessary as the robot has the potential to bend during its

movement. As shown in Fig. 3.1, considering the position of the first or last section
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as the position of the robot can lead to inaccurate results. For instance, one robot

may end the simulation in a straight shape (Fig. 3.1.a), while another finishes in a

bent shape (Fig. 3.1.b). In such cases, even if their central sections are aligned at the

same position, using the first section (blue) as the position of the robot would make

it appear as though the straight robot traveled a shorter distance. Using the last

segment (yellow) would suggest that the bent robot traveled a shorter distance. In

both cases, the robots’ final positions are the same, and only the final shapes of the

robots are different. Therefore, using the central segment (red) ensures the correct

displacement measurement that is independent of the robot’s shape.

Fitness = yfinal − yinitial (3.3.1)

The evaluation function calculates the distance that each robot travels along the y-

axis (forward) in a specific period of time and uses it as the fitness value that we are

trying to increase.

3.3.1 Penalty Conditions

Some penalty conditions are applied during simulation to reduce computational cost

while encouraging effective movements. If these conditions are violated, the simula-

tion is terminated, and a penalty value, which is negative, is applied based on the

severity of the violation. The fitness value in terms of violation is defined as below:

Fitness =
Penalty Value

Time to Reach Threshold
(3.3.2)
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This ensures that individuals who violate the constraints sooner receive worse fit-

ness values than those which violate them more gradually. This enables the algorithm

to rank the individuals even though they are not acceptable and provides a path for

finding acceptable individuals gradually and optimizing their performance afterward.

The penalty applies under the following conditions:

It is worth mentioning that the penalty value is not simply subtracted from the

fitness value calculated using Eq. (3.3.1); instead, a new form of fitness calculation,

given by Eq. (3.3.2), is employed. In fact, the Eq. (3.3.2) is used to calculate the

fitness value when the simulation is terminated early due to the violation of penalty

conditions, rather than to merely adjust the fitness with a penalty.

Figure 3.1: This figure illustrates the position measurement for robots with different
final shapes. a) A robot ending the simulation with a straight shape. b) A robot

ending the simulation with a bent shape. The Blue, yellow, and red arrows represent
displacement measurements taken from the corresponding colored segments.
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Backward Movement Threshold: If a robot moves backward beyond a defined

threshold, the simulation ends, and the fitness value is calculated based on the pro-

vided equation. This prevents the waste of computation for individuals with poor

forward movement while enabling the evolution of better individuals based on these

poor ones that are finally capable of moving forward quickly.
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Figure 3.2: The best fitness values over 100 generations without height restriction.

Height Limitation Threshold: A height limitation is introduced to guide the al-

gorithm through acceptable behavior. Without this constraint, the algorithm evolves

robots that move by flipping instead of crawling. They rotate around the front part

of the robot as the pivot point, which causes a large initial displacement, but this

movement does not continue, and can be done for only one rotation. This particu-

lar behavior is shown in Fig. 3.3, and the performance of CMA-ES over generations
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without height restriction is illustrated in Fig. 3.2. The best fitness achieved without

height restriction increases rapidly, corresponding to the evolution of flipping behav-

ior, and even outperforms the original design within the set simulation time. However,

the flipping behavior is not a continuous locomotion. When the simulation time is

extended, it is evident that the original design’s traveled distance increases, while the

robot optimized by the algorithm is stuck after one flip and does not advance fur-

ther. The algorithm considers the flip as a successful large displacement. Even with

an extended simulation time, the algorithm fails to recognize the lack of continuous

movement. By limiting the height that the central segment is allowed to exceed, this

kind of movement receives a penalty and gets eliminated from later generations. This

limitation can also be set to a specific height to ensure the resulting robot is capable

of navigating through a specific narrow path.

3.4 Simulation Environment

While finite element method (FEM) modeling is widely used for optimization in pre-

vious studies, this study utilizes an MPM-based simulation as part of the evaluation

function in this study [26]. FEM is a highly accurate modeling method that can be

used for simulating the deformation of magnetic soft robots in the presence of a mag-

netic field and is capable of handling complex geometry. To simplify the FEM, the

magnetic elements can be considered discrete, but under this assumption, the FEM

loses its accuracy in large deformations. Zhao et al. addressed this issue by intro-

ducing a stressing factor. However, the non-linear FEM is computationally expensive

because it relies on a numerical iterative minimization process.
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Algorithm 1 CMA-ES Optimization for Magnetic Soft Robot Design

1: Initialize CMA-ES with:
2: Population size
3: Step size (σ)
4: Bounds for the search space
5: Maximum number of generations (genmax)
6: for each generation do
7: for each individual in the population do
8: fitness← run simulation (individual)
9: Assign fitness to the individual
10: end for
11: Update CMA-ES model with:
12: Fitness values
13: Candidate solutions
14: if termination criteria are met then
15: Exit the loop
16: end if
17: end for
18: return the best solution

19: Subroutine: run simulation(individual)
20: Initialize the robot using the individual’s parameters
21: Set simulation parameters (e.g., grid size, time step, duration, penalty value)
22: while simulation time ≤ duration do
23: Perform one MPM simulation step
24: Update the magnetic field dynamically based on time and frequency
25: if robot exits the grid or violates constraints then
26: fitness← penalty/time
27: Exit the simulation loop
28: end if
29: if intermediate checks (e.g., height threshold) fail then
30: fitness← penalty/time
31: Exit the simulation loop
32: end if
33: end while
34: if simulation completes successfully without penalties then
35: fitness← distance between the robot’s initial and final positions
36: end if
37: return fitness
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Figure 3.3: This figure illustrates the behavior of the robot optimized with and
without height restriction over time. a) The robot optimized with a height
restriction shows a stable and continuous walking behavior by bending and

straightening in a cycle, while the robot optimized without a height restriction b)
demonstrates a flipping behavior that is not continuous, and the robot gets stuck

and is unable to progress further.

On the other hand, the Material Point Method (MPM) offers advantages in han-

dling large deformations and self-collisions, which makes it a suitable tool for modeling

magnetic soft robots. Additionally, MPM is well-suited for parallel computing, which

makes it a faster alternative to FEM.

MPM consists of four cyclical steps. In the first step, the internal forces and

magnetic stresses are calculated in the particle domain. Then, the properties of the

particles are transferred to the grid domain to apply further calculations. In the next
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step, the external field, such as the one applied due to the external magnetic field, is

calculated in the grid domain. Finally, the calculated values are transferred back to

the particle domain. Please refer to [26] for more detailed information.

A group of parameters needs to be set in this simulation environment to achieve

the desired modeling of the robot. The particle density is set to 1×1013 particles/m3

to have a suitable resolution for the robots. The simulation grid size is set to 25 mm

with a spatial resolution equal to 0.1 mm to have an accurate calculation of the

deformation and movement.

Figure 3.4: Comparison of simulation stability. a) Stable simulation with sufficient
particle density and a small time step b) Unstable simulation resulting from reduced

particle density and increased time step causes particles to disperse and loss of
structure

Initially, we tried to decrease the computational cost of the simulation by decreas-

ing the particle density and increasing the simulation step size, with the assumption

that high precision is not needed in the evolving phase, and the final optimized robot

can be validated by a high-precision setting at the end. However, this approach was

unsuccessful, as reducing the particle density and/or increasing the simulation caused

the simulation to become unstable and fail to calculate the particles’ position prop-

erly, leading to particles dispersing across the simulation domain and the robot losing

its shape, as demonstrated in Fig. 3.4.

Each individual is placed in the simulation environment while it is exposed to a

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.A.Sc. Thesis – F. Norouziani; McMaster University – Computing and Software

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

5

4

3

2

1

0
M

ag
ne

tic
 Fi

el
d 

Co
m

po
ne

nt
s (

m
T)

Magnetic Field Components Over Time
y(t)
z(t)

Figure 3.5: Plot of the By and Bz components of the magnetic field over six cycles.

rotating magnetic field for a set period of time. The rotation of the magnetic field in

the yz-plan causes the walking-like movement of the robot. This rotating magnetic

field is defined as follows:

B(t) =


0

M cos θ

M sin θ

 (3.4.1)

where the magnitude of the field is given by:

M = Mmax

(
t mod

1

f

)
· f (3.4.2)

The rotation angle is given as:

θ = π +

(
t mod

1

f

)
· f · π

4
(3.4.3)
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Here, Mmax represents the maximum magnitude of the magnetic field, which is

equal to 8 mT, and f is the frequency that determines the rotation speed of the

magnetic field, and it is set to 10 Hz. This rotating magnetic field that causes the

walking movement of the robot is shown in Fig. 3.5.
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Chapter 4

Results

The CMA-ES algorithm was executed for five runs using unique random seeds with

a reset strategy, which is explained later in this section, and the result was used

for further analysis. Due to the computationally heavy simulation environment that

has been used, it was not feasible to run more experiments. The best fitness value

achieved among these five runs is 3.828 mm, which is the longest distance traveled by

the robot in the given time. To make a comparison, the original robot design was

simulated under the same conditions, which traveled the distance of 2.630 mm over

the same duration. This represents a 45.5% improvement in the horizontal speed of

the robot.

Notably, the algorithm begins its search process with randomized initial configura-

tions and is not provided with information on the original design. Despite this, the

algorithm not only produces the desired walking behavior but also exceeds the orig-

inal’s performance in terms of speed. This was achieved only by defining a proper

fitness function and constraints.
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Figure 4.1: The best fitness values over 100 generations for five independent GA
runs.

4.0.1 Performance of GA vs. CMA-ES

To analyze the optimization process further, the genetic algorithm was also tested

with the same population size and number of generations as CMA-ES. The results

indicate that GA is capable of improving fitness over generations. However, it con-

verges before outperforming the original design.

Fig. 4.1 illustrates the best fitness values over 100 generations for five independent

runs of GA, with the mean fitness across all runs shown by the black line in the plot.

The original human-designed traveled distance, measured over the same simulation

period as the evolved individuals, is indicated by a dashed line for reference. The

optimization process aims to approach and ideally surpass this line through genera-

tions. Based on this figure, all the individual runs start with a low fitness value close
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to zero. Seed 1 performs the worst among all other seeds and manages to reach only

0.37 mm. On the other hand, although seed 3 reaches the lowest value in comparison

to seeds 2, 4, and 5, its growth rate is considerably higher than the others, as it

achieves a maximum of 2.33 mm, which is the closest value to the original design.

Furthermore, seed 5 shows the best performance during the first 30 generations, but

is overtaken by seed 4 in the following generations, and they both finally converge to

approximately a similar point. Lastly, the mean fitness after 100 generations reaches

a value of about 1.7 mm, which is mostly due to the disappointing trend of seed 1.

Subsequently, Fig. 4.2 illustrates the best fitness values over 100 generations

through five independent runs of CMA-ES, where it reaches an extraordinary achieve-

ment by exceeding the original design in 4 out of 5 seeds. Similar to the previous

plot, seed 1, by a gradual and slight growth, reaches 0.4 mm, which is the worst result

among all the seeds. In contrast, it is evident that using CMA-ES results in a con-

siderable increase in the fitness value beyond 2.62 mm, by approximately the same

pattern for the seeds 2, 4, and 5. While seed 4, after 100 generations, reaches to the

highest value of about 3.7 mm, it is worth noting that at a specific point between

the generations 70 and 80, seed 5 shows a sudden jump, and hits a fitness value of

4.05 mm, which is the highest point among all seeds through all generations. Then,

it declines slightly to the second rank trend again. Additionally, the mean fitness

reaches about 2.7 mm in the final generation, which is lower than all seeds except for

seed 1. Nevertheless, it still remains above the original design value.

By overall observation of the improvement in fitness values over 100 generations

in both GA and CMA-ES, it can be concluded that while CMA-ES achieves a fit-

ness value that outperforms the original human-designed robot by 45.5% in 5 runs,
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Figure 4.2: The best fitness values over 100 generations for five independent
CMA-ES runs.

the highest fitness value that GA managed to reach in the same number of runs is

2.339 mm, which is 11% less than the original design’s performance.

To further illustrate the difference in convergence speeds and overall performance

between these two algorithms, we plotted the mean fitness across all CMA-ES and

GA runs in Fig. 4.3. It is evident that the convergence of CMA-ES is significantly

better; however, in early generations, the GA temporarily outperforms CMA-ES. This

indicates that GA cannot compete with CMA-ES over time in solving this problem.

To prevent unsuccessful runs in CMA-ES and improve convergence reliability,

a restart strategy was implemented for this algorithm. In each run, if the fitness

value does not reach 0.5 mm by generation 20, the algorithm completely restarts.

This approach limits the waste of resources on the algorithms that are stuck in local
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Figure 4.3: Mean of the best fitness achieved over 100 generations for five
independent runs of GA and CMA-ES.

optima. To achieve a reliable, optimized robot, the algorithm was executed by this

strategy for five independent seeds, and the results from these runs are plotted in

Fig. 4.4. According to the result, all seeds are successful in overtaking the original

design, and they can achieve the fitness value of more or less 3.5 mm. All seeds at the

beginning show a sharp rise in their trend of increasing the fitness value, and then

change into a gradual growth. Interestingly, the best fitness value of the best seed in

both forms of CMA-ES, with and without the restart strategy, stands around 3.7 mm.

4.0.2 Best-Performing Individuals and Their Behaviors

The best individual of the generation from the two seeds that reached the highest

fitness over generations, seed 2 and seed 4, of the algorithm using the restart strategy
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Figure 4.4: The best fitness values over 100 generations for five independent
CMA-ES runs with the restart strategy.

were chosen, and their behaviors were then observed in the simulation environment

for twice the original simulation time. Both individuals exhibit the same movement

pattern as the original design, cyclical bending and straightening movements, which

cause a forward motion. The magnetic configuration of these two individuals differs

significantly from the original design and from each other. This difference shows the

algorithm’s ability to discover innovative solutions by being free from the human basis

toward traditional designs.
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Figure 4.5: This figure illustrates the magnetic configurations of the best individuals
from the best generations of each seed. The original robot’s magnetic configuration

is also included for reference. The direction of magnetization of each segment is
represented by an arrow, while the color of the arrows indicates its magnitude.
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Chapter 5

Conclusion

This thesis presented an optimization framework for untethered small-scale mag-

netic soft robots using two variations of evolutionary algorithms: Genetic Algorithm

(GA) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES). By combin-

ing these optimization techniques with a Material Point Method (MPM) simulation

environment, we successfully designed and optimized the magnetic profile of a soft

magnetic robot to achieve high-speed horizontal locomotion. This study highlights

the effectiveness of the CMA-ES over the evolutionary algorithm that is commonly

used in this field, the genetic algorithm. This study offers a more flexible and efficient

approach for designing magnetic soft robots using the desired movement.

Through a comparative study between the GA and CMA-ES, we revealed the

advantage of CMA-ES over GA in designing/optimizing the magnetic profile of un-

tethered magnetic soft robots.

Both GA and CMA-ES showed improvement in fitness over generations; however,

their convergence rates and final optimization outcomes after the same number of

generations varied significantly. Although GA demonstrates an increase in fitness
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function, its convergence rate was extremely slow compared to CMA-ES with the

same population size. Having a computationally expensive simulation environment as

a part of the evaluation function prevents us from dedicating more generations to GA.

While CMA-ES reached a fitness value that outperforms the original human-designed

configuration by 45.5%, GA only achieved 89% of the original design’s performance,

which is relatively low. This highlights the efficiency of CMA-ES in finding high-

quality solutions in fewer iterations by having a small population. This efficiency is

likely due to the ability of CMA-ES to adapt to the search distribution by using a

covariance matrix, while GA relies on fixed mutation and crossover strategies.

Another major contribution of this study is the use of Material Point Method

(MPM) based simulation instead of the traditional Finite Element Method (FEM)

based approach. While FEM is widely used for simulating and modeling the magnetic

soft robot for optimization using evolutionary algorithms, MPM offers better handling

of large deformation and self-collisions and computational efficiency for highly flexible

structures. The integration of MPM with CMA-ES allowed for more realistic motion

modeling of the robots, which makes this study an important step towards more

sophisticated designing and optimization of magnetic soft robots using AI.

Nevertheless, this work has several limitations. First, the computational cost of

MPM simulations remains high, which limits the number of generations and popula-

tion sizes that can be practically used. This issue could be addressed by choosing a

more efficient simulation environment. The current simulation used in this study is

implemented in Python, which, as an interpreted language, is not as fast as compiled

languages. Reimplementing the critical parts of the simulation or the entire simula-

tion in a compiled programming language such as C++ could significantly increase
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the simulation speed, allowing for larger population sizes and a greater number of

generations, which provides a more thorough exploration of the solution space and

optimization of robots with a higher number of segments.

Secondly, the current algorithm optimizes both the magnitude and orientation of

the magnetic moment for segments. However, manufacturing a robot with segments

having different magnetization magnitudes is a challenging task. To facilitate the

practical manufacturing of the optimized robot, the algorithm could be modified to

optimize only the magnetization direction and represent individuals by a list of angles

instead of using the vector components (x and y) while keeping the magnetization

magnitude uniform across all segments. Additionally, in practice, automated mag-

netic material printers tend to have limitations on the range of achievable magnetiza-

tion magnitudes and offer discrete magnitude levels rather than a continuous range.

To support these printers, future versions of the optimization framework should ex-

plore selecting magnitudes from a discrete set of available values while still optimizing

the directions over a continuous search space. This adjustment would increase the

manufacturability of the optimized design using the current fabrication technologies.

The promising results of this research open several directions for future work.

Although the integration of the MPM simulation environment and CMA-ES leads

to significant improvement in the speed of the magnetic soft robot studied, a more

computationally efficient environment can further enhance the adaptability of this

framework to more complex soft robot structures with a higher number of segments.

Additionally, this approach can be applied for the optimization of other locomotion

types by having varied fitness functions and applying the algorithm on varied kinds of

magnetic soft robots. Furthermore, experimental validation of the robot is a crucial
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step that evaluates the optimized robot in real-world conditions by manufacturing

and testing physical prototypes.

Moreover, this algorithm can be extended to a multi-objective optimization prob-

lem, such as balancing the robot locomotion performance with design simplicity, es-

pecially when considering manufacturing limitations.

In conclusion, this study is an important step toward the automated design and

optimization of magnetic soft robots. By demonstrating the advantages of CMA-ES

over the traditional evolutionary method commonly used in this field, the genetic al-

gorithm, and the advantages of using MPM simulation in the evaluation phase of EA,

this study contributes to advancing the field of AI-driven robotic optimization. With

the advancement of simulation technology, computational techniques, and tools, the

future of designing magnetic soft robots can move toward full automation, enabling

more innovative and efficient designs.
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