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Abstract

This thesis explores the design of temporal memory for Tangled Program Graphs

(TPGs), a team-based Genetic Programming (GP) framework for Reinforcement

Learning (RL). We specifically focus on challenging partially-observable settings in

which agents rely on memory to handle temporal dependencies.

First, we look at how global indexed scalar memory can be initialized to better

store and retrieve observations, helping agents build internal models of the environ-

ment. Tests on simple classic control tasks show that resetting memory at the begin-

ning of each new interaction sequence with the environment can prevent interference

by weaker agents and improve performance in tasks with shorter-term dependencies.

Next, we tackle partially-observable continuous control tasks with large state and

action spaces. Here we propose team-specific shared memory, where each group of

programs keeps its own memory without being affected by other teams. In addition,

we extend TPG’s scalar memory by adding vector and matrix structures initialized

with evolved constants, which are numerical values that evolve across generations to

give agents inherited knowledge. These enhancements allow for stronger coordination

and more robust behaviour in high-dimensional tasks.

Overall, our findings highlight the vital role of indexed memory in TPGs when

an agent lacks full state information. By exploring different ways to store and share
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data among programs, this work highlights the importance of sharing information

both among team members during the lifetime of an agent and across generations

through evolved constants.
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Chapter 1

Introduction

1.1 Background and Foundations of Tangled Pro-

gram Graphs

Evolutionary Computing (EC) is a family of population-based search and optimiza-

tion algorithms inspired by the principles of natural selection and genetics. These

algorithms evolve a set of candidate solutions over generations, favouring those that

perform best. Performance is evaluated using a fitness function, which is defined

specifically for each task [7].

Genetic Programming (GP), a key approach in EC, evolves computer programs to

solve specific tasks. GP individuals are typically represented as executable structures

such as trees [17] and linear instruction sequences [2], supporting the evolution of flex-

ible solutions without fixed length. This makes GP particularly effective in domains

where the structure of a solution is not known in advance, and where transparency

and modularity are desired features.
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In the context of RL, GP has shown promise in evolving agents. By interacting

with the environment through trial and error, RL agents can learn to perform complex

behaviours. Indexed memory enables GP-based agents to store and recall relevant

information, while programmatic modularity supports structured and interpretable

agents. This supports decision-making even under partial observability, when agents

do not have access to the full state of their environment [2].

TPG is a GP framework designed to evolve interpretable and modular policies for

RL tasks. In TPGs, agents are composed of teams of linear programs, where each

program processes input data, interacts with its own register memory, and proposes

an action. Each action comes along with a confidence value, which is called the bid

value, and an action value. These programs compete through a bidding process, and

the winning program determines the agent’s action [13].

Adding indexed memory to TPGs functions as a “Culture” [24], empowering

agents to share information. The global indexed memory, which is shared across

all agents, without resetting supports both long-term and short-term information re-

trieval. Since the entire population has access to this memory, even poorly performing

agents can write data to it, which negatively affects overall performance [21]. In this

work, we explore different memory management strategies and memory structures in

TPGs to improve their performance.

The rest of this thesis is organized as follows. Chapter 2 looks at memory manage-

ment strategies, focusing on how resetting the global memory in tasks with short-term

dependencies affects performance. By resetting the memory at the beginning of each

RL trial, access is limited to the running agent, meaning that only its programs in-

teract with the shared memory. Compared to the case where all agents’ programs

2
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interact with a global memory and forming a culture, this setup resembles a smaller

and more focused society. Our results show that this approach leads to better out-

comes.

Based on the findings in Chapter 2, Chapter 3 implements a team-specific shared

memory. In this work, at the start of each RL trial, shared memory and programs’

registers are initialized with constant values that evolve over generations. Team-

specific shared memory allows teams to coordinate more effectively by sharing task-

relevant information without interference from poorly performing agents. Evolved

constants provide agents with inherited knowledge, so they do not begin with registers

and indexed memory filled only with zeros. As a result, the study suggests that

combining team-specific shared memory with evolved constants can improve TPGs

agents’ performance.

Finally, in Chapter 4, we summarize our findings and discuss possible directions

for future work.

1.2 Publications Originating from this Thesis

Chapter 2 is adapted from our paper, “Tangled Program Graphs with Indexed Mem-

ory in Control Tasks with Short Time Dependencies,” co-authored with Ali Naqvi and

Stephen Kelly, and published in the 16th International Conference on Evolutionary

Computation Theory and Applications (ECTA).

Chapter 3 is adapted from our upcoming paper, “Genetic Encoding and Shared

Knowledge in Reinforcement Learning with Structured Memory,” co-authored with

Stephen Kelly and submitted to the ALIFE 2025 Conference.
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During my master’s, I also contributed to a book chapter titled “Evolving Many-

Model Agents with Vector and Matrix Operations in Tangled Program Graphs,”

co-authored with Ali Naqvi, Eddie Zhuang, and Stephen Kelly. This chapter appears

in the book Genetic Programming Theory and Practice XXI (Springer Nature Sin-

gapore, 2025), and focuses on expanding TPGs by incorporating vector and matrix

memory, enabling the evolution of multitask agents capable of handling control and

forecasting problems in partially observable environments.

In addition, I contributed to the development of MAPLE: Multi-Action Programs

through Linear Evolution for Continuous Multi-Action Reinforcement Learning, a

collaborative work with Quentin Vacher, Stephen Kelly, Ali Naqvi, Nicolas Beuve,

Mickaël Dardaillon, and Karol Desnos, accepted to the Genetic and Evolutionary

Computation Conference (GECCO) 2025.
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Chapter 2

Tangled Program Graphs with

Indexed Memory in Control Tasks

with Short Time Dependencies

2.1 Abstract

This paper addresses the challenges of shared temporal memory for evolutionary rein-

forcement learning agents in partially observable control tasks with short time depen-

dencies. Tangled Program Graphs (TPG) is a genetic programming framework which

has been widely studied in memory intensive tasks from video games, time series fore-

casting, and predictive control domains. In this study, we aim to improve external

indexed memory usage in TPG by minimizing the impact of destructive agents during

cultural transmission. We test various memory resetting strategies—per agent, per
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episode, and a no-memory control group—and evaluate their effectiveness in mitigat-

ing destructive effects while maintaining performance. Results from Acrobot, Pen-

dulum, and CartPole tasks show that resetting memory more often can significantly

boost TPG performance while preserving computational efficiency. These findings

highlight the importance of memory management in Reinforcement Learning (RL)

and suggest opportunities for further optimization for more complex visual RL en-

vironments, including adaptive memory resetting and evolved probabilistic memory

operations.

2.2 Introduction

Reinforcement Learning (RL) agents learn through trial-and-error interaction with

their environment [26]. Deep Reinforcement Learning (DRL), with its capacity to

decompose sensor inputs and build hierarchical representations of sensor data, has

significantly expanded the capabilities of autonomous agents operating within com-

plex environments [18]. Despite these advancements, DRL agents often encounter

formidable obstacles in tasks necessitating robust memory functionalities [19]. This

paper investigates these challenges and proposes simple strategies to enhance tem-

poral memory capabilities in the recently-proposed genetic programming framework

known as Tangled Program Graphs (TPG) [13].

Effective memory management is crucial for ensuring that agents can retain and

utilize relevant information over time, particularly in environments that are only par-

tially observable or which require long term planning. We explore various strategies

6
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for enhancing the efficiency of indexed memory in TPG, with the goal of minimiz-

ing the negative impact of destructive agents and improving overall system perfor-

mance. Through a series of experiments, we evaluate different memory management

approaches, including probabilistic methods for writing into memory shared among

a population of agents, and investigate their impact on the performance of TPG

agents in partially observable benchmark RL environments with short time depen-

dencies. This study focuses on comparing memory management strategies within

TPG, using the original version of PyTPG [1] as the baseline. Our results demon-

strate that clearing shared temporal memory before each evaluation episode improves

agent performance by reducing the negative impact of destructive agents and lowering

decision-making complexity.

2.3 Background

Genetic Programming (GP) is an Evolutionary Computation paradigm that evolves

computer programs using evolutionary algorithms [2]. RL agents evolved with GP

can model their environment over time through the use of temporal memory. In

Linear Genetic Programming (LGP) [2], programs are represented by a sequence of

instructions which read and write from memory registers. LGP supports a simple form

of recursive temporal memory simply by allowing registers to maintain state between

sequential program executions. More generally, GP can support indexed memory by

augmenting agents with a linear memory array and adding specialized read and write

operations to the GP function set [29]. If indexed memory is shared among agents in

a population, it can also support the transmission of information between individuals

by non-genetic means. Spector’s [24], “Culture” allows all individuals to share the

7
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same memory, similar to societal interactions, where each individual is affected by

others in a shared environment, but risks “pollution” of the memory matrix by agents

that perform badly.

In Visual RL, observable states are high-dimensional matrices such as video frames.

TPG can directly process high-dimensional video inputs and has been tested in var-

ious gaming scenarios, outperforming traditional deep neural network RL methods

in multi-task learning [13]. These TPG agents were also more computationally effi-

cient, requiring fewer calculations per action than other approaches. Their efficiency

is primarily due to: 1) the hierarchical complexity of each entity evolving based on

its interaction with the problem domain, unlike the fixed complexity in conventional

Deep Learning [18]; and 2) within a TPG entity, subsystems often focus on differ-

ent segments of the visual input, meaning only certain components are active at any

specific moment [14].

Despite visual RL providing high-resolution input, individual frames often lack the

complete information required to select the best action. This partial observability sig-

nificantly limits the agent’s perception of the environment and implies that temporal

memory must be available for the agent to build a mental model of its environment.

TPG has successfully used emergent modularity combined with register memory and

indexed memory to evolve problem solvers for memory-intensive tasks [15]. In short,

TPG agents are composed of teams of linear genetic programs which share a single

memory data structure and cooperatively manage a model of the environment which

enables operation in partially observable RL tasks. In this work, we aim to enhance

the effectiveness of indexed memory usage by minimizing the effects of destructive

individuals during the cultural transmission of information through shared memory,

8
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advancing our understanding of the “culture” of digital organisms.

2.4 Methodology

2.4.1 Environments

The environments used in this work are partially-observable versions of the widely-

studied RL benchmarks Acrobot, Pendulum, and Cartpole [26], Figure 2.1. These

tasks are selected for their high level of challenge, extensive comparative results avail-

able in the literature, and computational simplicity resulting in fast experiments.

(a) Acrobot (b) Pendulum (c) Cartpole

Figure 2.1: Problem environments used in this work. See [3] for details.

Acrobot

The Acrobot task is a dynamical system involving a double pendulum with 6 obser-

vation variables, indicated in Table 2.1, and 500 time steps. The control task involves

swinging up the lower link of the double pendulum to reach a specified target height.

As shown in Figure 2.1, the state of the Acrobot at every time step is given by the

cosine and sine of the angles of the two links in radians (θ1, θ2) and their angular

9

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.Sc. Thesis – T. Djavaherpour; McMaster University – Computing and Software

velocities. The action space is discrete and consists of three actions: applying +1

torque, -1 torque, or no torque (0) to the second joint.

Table 2.1: Acrobot observation space

Num Observation Min Max
0 Cos(θ1) -1 1
1 Sin(θ1) -1 1
2 Cos(θ2) -1 1
3 Sin(θ2) -1 1
4 θ1 Angular Velocity -4π 4π
5 θ2 Angular Velocity -9π 9π

The reward function is −tend, which is reached when the free end hits the target

height (− cos(θ1) − cos(θ2 + θ1) > 1.0) or when the episode exceeds 500 steps. The

goal is to reach the target in as few steps as possible, with each step incurring a -1

reward, and reaching the target ending with a reward of 0.

Pendulum

The Pendulum task, shown in Figure 2.1, is a control problem with 3 observation

variables and 200 time steps. This task involves swinging up a pendulum to an upright

position and keeping it balanced. The action space consists of a single continuous

control variable, representing the torque applied to the joint. The observation space

consists of three elements which are indicated in Table 2.2.

Table 2.2: Pendulum observation space

Num Observation Min Max
0 x = cos(θ) -1.0 1.0
1 y = sin(θ) -1.0 1.0

2 θ̇ = Angular Velocity -0.8 0.8

10
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The reward function is as follows:

tmax∑
t=1

−(φ(θ)2 + 0.1× θ̇2 + 0.001× Torque2) (2.4.1)

In this reward function, φ(θ) is the difference between the current angle θ and

the upright position angle, and torque is the control input applied to the pendulum.

The term φ(θ)2 penalizes deviation from the upright position, 0.1× θ̇2 penalizes high

angular velocities to encourage smoother movements, and 0.001× Torque2 penalizes

large control inputs to promote energy efficiency.

Cartpole

The Cartpole task involves balancing a pole on a cart by applying force to the cart

to keep the pole upright. This task has 4 observation variables given by cart position

(x), cart velocity (ẋ), pole angle (θ), and pole velocity at the tip (θ̇). As shown in

Figure 2.1, the state of the Cartpole at every time step is given by the cart position

and velocity, pole angle in radians (θ), and pole angular velocity. The action space is

discrete and consists of two actions, which represent pushing the cart to the left or

right. The observation space consists of four elements which are indicated in Table

2.3.

Table 2.3: Cartpole observation space

Num Observation Min Max
0 Cart Position -4.8 4.8
1 Cart Velocity -Inf Inf
2 Pole Angle (θ) -0.418 rad 0.418 rad
3 Pole Angular Velocity -Inf Inf

The reward function is tend, with +1 awarded for each time step the pole remains

11
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upright. tend is reached when the pole falls, the cart moves out of bounds, or the max

number of steps is reached. The goal is to maximize the number of time steps the

pole stays upright.

In all tasks, agent training fitness is its mean reward over 20 episodes, where

each episode begins with random initial conditions and ends with success, failure, or

reaching a time constraint. Post-evolution, the single training champion is reloaded

and evaluated in 100 test episodes with initial conditions not seen during training.

Velocity state variables describe how the system is changing over time. To make

these environments partially observable, we remove velocity state variables from the

observation space. In order to control the systems without this information, agents

must use temporal memory to store sequential observations over time and integrate

this data to predict the velocity of the system. Note that predicting system velocities

only requires short-term memory.

2.4.2 Tangled Program Graphs

Tangled Program Graphs (TPG) is a hierarchical algorithm for evolving teams of

programs. The basic building block in TPG is a team of programs (see Figure 2.2).

Each team represents a stand-alone decision-making entity (agent) in this framework.

Each program is a linear structure consisting of registers and instructions that operate

on observation inputs and internal memory registers. Programs return two values: a

bid value and an action value. Teams follow a first-placed sealed bid auction method

where the highest bidding program at each timestep wins the right to decide the

action. This action could be a discrete value (directional forces in Figure 2.2), con-

tinuous value (contents of scalar register s[1] in Figure 2.2), or a pointer to another

12
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Time (generations)
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{  }

Program Graphs Emerge

s[1]

s[1]

s[1] s[1]s[1]

Initial Populations

Figure 2.2: Tangled Program Graphs’ hierarchical decision-making structure in
which teams of programs predict discrete and continuous actions.

team. If the action is atomic (i.e. discrete or continuous) it is returned to the task

environment as the control output for the current timestep. If the action is a team

pointer, then decision-making is delegated and the bidding process repeats at this

team for the same timestep and observation. The process repeats recursively until an

atomic action is reached.

2.4.3 Memory

The TPG model introduced in [21] features an external shared memory accessible to

all agents. Each agent consists of several teams and programs, and each program has

its own private registers, which are inaccessible to other programs. Program registers

13
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are stateful, and thus provide a simple form of recurrent temporal memory. Further-

more, all programs have access to the shared external memory for reading and writing

operations. This memory is not reset between training episodes or the evaluation of

different agents, ensuring continuity and allowing for cumulative knowledge building.

Indexed memory operations are handled probabilistically to manage both short-

term and long-term retention. The write operations distribute the content of a pro-

gram’s registers across the external memory in a probabilistic manner, with locations

in the middle of the memory being updated more frequently (short-term memory)

and those towards the ends being updated less frequently (long-term memory). This

study uses the following probability definition, which is shown in Figure 2.3, and

where i corresponds to the index:

Pwrite(i) =
0.25

0.5π(i2 + 0.25)
(2.4.2)

This function provides a heavy-tailed distribution, allowing writing across a wide

range of memory locations, the probability is sharply peaked at the center and rapidly

decreases as the offset increases.

Read operations use indexing, allowing programs to locate regions of external

memory characterized by specific temporal properties. This approach allows programs

to interact during each generation or across different generations, facilitating more

sophisticated decision-making strategies.

14
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Figure 2.3: Probability function for memory write operations.

2.5 Experiments

The experiments detailed in this section are designed to evaluate our TPG shared

temporal memory implementations in mitigating the negative impact of destructive

agents while maintaining system performance and efficiency. We used TPG as imple-

mented in [1]. The culture method discussed in [23] highlights the negative impact of

destructive agents, noting that while positive ideas from individuals can be preserved

for collective benefit, negative actions by a single agent can destroy valuable infor-

mation. To reduce this negative impact, we study the effect of clearing memory at

different stages and compare the results with the original version of shared memory

in TPG.
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Algorithm 1: Agent execution with memory resetting conditions.

for generation in generations do
run agent with pooling
if original version then

execute episodes with frames()

else
if reset for each agent then

lock pooling
reset external memory
reset agent’s registers
execute episodes with frames()

release pooling
else

if reset for each episode then
for episode in episodes do

lock pooling
reset external memory
reset agent’s registers
execute frames()

release pooling
end

else
for episode in episodes do

for frame in frames do
reset agent’s registers
act and get feedback

end

end

end

end

end

end
Function execute frames():

for frame in frames do
act and get feedback

end

Function execute episodes with frames():
for episode in episodes do

execute frames();
end
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We assess three strategies: resetting memory for each agent (Section 2.5.1), re-

setting memory for each episode (Section 2.5.2), and a no-memory condition (Sec-

tion 2.5.3). Algorithm 1 details the implementation of these strategies. The follow-

ing terms are used in the pseudocode: execute frames() executes a set of frames

where the agent takes an action based on observations and receives feedback from

the environment for each frame. Lock pooling and release pooling manage par-

allelism, with lock pooling preventing other agents from interacting with memory

and release pooling restoring parallelism after the agent completes its interactions.

execute episodes with frames() runs multiple episodes.

2.5.1 Reset Memory for Each Agent

In this case, the external memory and registers are cleared and set to zero at the

beginning of evaluating each agent in each generation. This method ensures that each

agent can independently build its own memory model at run time and removes the

possibility of negative impact from other agents. Each agent essentially has its own

indexed memory which is shared among its programs, resembling a smaller society.

In this case, the agent’s memory maintains state over all training episodes, during

which time the agent is free to gradually develop its mental model of the environment.

While each agent interacts with memory, it is essential to restrict others’ access to it.

In our current implementation, this requires blocking the parallelizing system, which

increases experiment run time.
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2.5.2 Reset Memory for Each Episode

This approach also removes potential negative impact of other agents. In this version,

we reset the external memory and all the agent’s registers at the beginning of each

episode. This tests the agents’ ability to build their memory quickly during a single

episode. Again, when one agent interacts with memory, it is essential to restrict

others’ access to it.

2.5.3 No Memory

In this version, we do not use any external indexed memory and we clear all the

agent’s registers to zero at the beginning of each time step, implying the agent’s

behaviour is entirely stateless. This is a control experiment to confirm that all par-

tially observable task configurations absolutely require stateful agents with temporal

memory capabilities.

2.5.4 Experimental Parameters

Evolutionary hyper-parameters follow previous TPG work in RL tasks [21]. The

initial root team population is set at 360 and remains static throughout evolution. We

utilize “Cauchy Half” (Equation 2.4.2) for memory distribution in scenarios involving

memory. The operation set includes: “ADD”, “SUB”, “MULT”, “DIV”, “NEG”,

“COS”, “LOG”, “EXP”, “MEM READ”, and “MEM WRITE” allowing complex

interactions without any task-specific functions. To constrain model complexity and

computational cost of decision-making, we set the probability of acting atomic to be

1.0, meaning no programs point to another team.
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2.5.5 Results

Experiments reveal that the reset memory for each episode strategy (Section 2.5.2)

improves the score and performance of TPG agents across all the control problems

mentioned in Section 2.4.1, as shown in Figure 2.5. This memory configuration also

results in the lowest solution complexity, as indicated in Figure 2.6.

We conduct experiments for all the cases detailed in Section 2.5 as well as the

original version of PyTPG [1], using the Cauchy Half distribution for memory writing

probability. We ran 10 repeats with unique random seeds for Pendulum task and

CartPole task, and 8 repeats for Acrobot task. Each experiment was run using

multiple cores to manage the computational load efficiently: 30 hours with 30 cores

for Acrobot, 48 hours with 10 cores for Pendulum, and 72 hours with 20 cores for

CartPole. The results were compared based on the achieved score during the same

running period (Figure 2.4), reached score based on the number of generations (Figure

2.5), and their complexity (Figure 2.6). The complexity is characterized by average

number of instructions executed per action decision.

To plot Figures 2.5 and 2.4, we determined the minimum number of generations

across all experiments. According to Figure 2.5, for all three environments, the ap-

proach of resetting memory for each episode has the best average score after the 5th

generation.

In Figure 2.6, the complexity over the minimum number of generations across all

experiments is reported. This figure demonstrates that resetting memory and registers

for each episode reduces complexity. Interestingly, in all three environments, although

the no memory version has the worst score over generations, it exhibits the highest

complexity. This indicates that agents are struggling to improve by making more

19

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.Sc. Thesis – T. Djavaherpour; McMaster University – Computing and Software

0 10 20 30 40 50 60 70
Time (hours)

100

200

300

400

500

Sc
or

e

Memory Management Strategy
Mean for Original PyTPG
Mean for Reset Memory Each Episode
Mean for Reset Memory Each Generation
Mean for No Memory

(a) Cartpole environment

0 10 20 30 40
Time (hours)

1200

1000

800

600

400

Sc
or

e

Memory Management Strategy
Original PyTPG
Reset Memory Each Episode
Reset Memory Each Generation
No Memory

(b) Pendulum environment

0 5 10 15 20 25 30
Time (hours)

300

250

200

150

100

Sc
or

e

Memory Management Strategy
Original PyTPG
Reset Memory Each Episode
Reset Memory Each Generation
No Memory

(c) Acrobot environment

Figure 2.4: Scores achieved in different memory strategy experiments over 48 hours
in each environment. Shaded areas show the range of scores across 10 repeats

(minimum to maximum), and solid lines represent the average scores.
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Figure 2.5: Scores achieved in different memory strategy experiments over 48 hours,
based on the minimum number of generations run in various environments. Shaded
areas show the range of scores across 10 repeats (minimum to maximum), and solid

lines represent the average scores.
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Figure 2.6: Complexity in different memory strategy experiments over 48 hours,
based on the minimum number of generations run in the different environment.

Shaded areas show the range of complexity across 10 repeats (minimum to
maximum), and solid lines represent the average scores.
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complex decisions. On the other hand, the version with resetting memory for each

episode, which has the highest score, also exhibits less computational complexity than

the original PyTPG.

Execution speed varied across tasks: the no memory version consistently ran

the most generations, indicating the fastest execution speed. The original version

performed at an intermediate speed, while both the reset memory for each agent and

reset memory for each episode versions were the slowest, running significantly fewer

generations across all tasks due to the blocking of parallelism as discussed in Section

2.5. The blocking mechanism is further illustrated in Algorithm 1. The running

time explains the original version’s superior results over the same amount of time

as indicated in Figure 2.4. However, since this version runs more generations in the

same amount of time as reset for each episode, it achieves a better score. Still, based

on Figure 2.5, it would perform worse if it operated at the same speed as the reset

memory for each episode case.

These results support our hypothesis that, for tasks without long term state de-

pendencies, resetting memory before each episode can reduce the effect of negative

agents and improve results over the same number of generations. As expected, the

no memory version cannot solve these partially observable tasks.

After training, we reloaded and tested the champion of the last common genera-

tions for each case across all seeds. We applied the Mann-Whitney U test to compare

each case with the reset memory for each episode case, confirming the results in Fig-

ure 2.5 with p-values less than 0.05. In Acrobot, the reset memory for each agent

and reset memory for each episode versions showed no significant differences due to

similar scores. However, both versions showed significant differences (p-value<0.05)
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compared to the original and no-memory versions. Readers interested in further de-

tails about TPG and visualizations of evolved graphs of teams are referred to [6], [22],

[15].

2.6 Conclusion

This study explored the effectiveness of different memory management strategies in

enhancing the performance of Tangled Program Graphs in partially observable Re-

inforcement Learning environments. We experimented with TPG’s original shared

indexed memory formulation, resetting memory for each agent, resetting memory for

each episode, and a no-memory condition across three benchmark tasks: Acrobot,

Pendulum, and CartPole.

The results show that resetting memory for each episode improves the performance

of TPG agents across all tasks. This strategy led to the highest average scores after

the initial few generations and reduced the complexity of decision-making processes.

In contrast, the no-memory version, although capable of running more generations,

struggled to solve the partially observable tasks effectively, exhibiting the highest

complexity and lowest performance.

Interestingly, while the reset memory for each agent and reset memory for each

episode strategies showed similar performance, both were significantly better than

the original and no-memory versions in terms of robustness and reliability, demon-

strating consistency of the agents’ performance across different runs with a tighter

distribution of scores over the repeats (Figure 2.5). In contrast, the reset memory for

each generation case failed to perform better than the original version in CartPole

only. The Mann-Whitney U test confirmed these findings, with p-values less than
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0.05, indicating significant differences.

These findings suggest that shared memory and “culture” can have a negative

impact on the performance of TPG agents in partially observable tasks with no long

term temporal dependencies. Resetting memory before each episode can mitigate

these negative effects, improving agent performance and reducing decision-making

complexity. However, the primary drawback of the memory reset strategies is the in-

creased runtime due to the blocking of parallelism. Implementing a dedicated memory

for each agent could potentially mitigate this issue, allowing parallel execution with-

out interference and maintaining computational efficiency.

Overall, effective memory management strategies are crucial in reinforcement

learning tasks. By carefully selecting and optimizing memory resetting strategies,

significant improvements can be achieved in the efficiency and effectiveness of TPG

in challenging control environments.

2.7 Future Work

Future work will scale these experiments to more complex environments, such as

Memory Gym [19], in order to validate the methods’ robustness and explore their

adaptability to tasks with long and short time dependencies. The current memory

strategies help agents quickly build mental models without directly sharing infor-

mation. However, this may not be suitable in complex tasks where global memory

is beneficial (e.g. [21]). For such cases, we envision a dynamic method, such as

resetting memory based on real-time performance metrics (e.g., wiping memory if

median score drops below that of the previous generation), could provide a more

adaptive approach. Additionally, investigating other probabilistic memory functions
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and their combinations could provide further insights into optimizing agent’s mem-

ory use. For example, rather than manually resetting memory, it might be possible

to evolve customized memory management rules for each agent which automatically

minimize negative effects on shared memory. Finally, integrating advanced paral-

lelization techniques could mitigate the runtime overhead caused by memory resets,

improving their practicality in real-world applications. Since this paper incurred sig-

nificant wall clock run time, faster TPG frameworks, such as those from [6], will be

considered for use in future work.

Overall, studying the long-term evolutionary impacts of different memory strate-

gies could provide deeper insights into the development of more sophisticated and

adaptive agents in partially observable environments.
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Chapter 3

Genetic Encoding and Shared

Knowledge in Reinforcement

Learning with Structured Memory

3.1 Abstract

Memory is essential for agents to perform well in partially observable environments,

where current input alone is insufficient for decision-making. We investigate this

challenge using TPGs, an evolutionary RL framework in which agents are composed

of interconnected teams of programs organized into decision-making structures. We

introduce a team-specific shared memory mechanism that allows programs within

the same team to exchange information during an RL episode, improving coordi-

nation without interference from less-closely related agents. We also initialize each

program’s register memory and team-specific memories with evolved constant values.

These constants are evolved through the training process, providing useful starting
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points that improve learning and decision-making. We evaluate these strategies on

MuJoCo continuous control tasks with partial observability. Our results show that

the team-specific shared memory configuration achieves the highest fitness scores

across tasks, and that evolved constants improve performance when memory is not

retained between timesteps. These findings highlight the importance of learned mem-

ory structures and genetic encoding in supporting adaptive behaviour in evolutionary

RL systems.

3.2 Introduction

Decision-making in partially observable environments is a fundamental challenge in

RL [10]. Many real-world applications, such as robot control, autonomous navigation,

and multi-agent coordination, require agents to operate with incomplete information,

making it necessary to design models that can retain and share relevant knowledge

over time.

TPGs are an evolutionary RL framework based on Genetic Programming (GP).

They are composed of graphs of teams, where each team consists of multiple pro-

grams acting as decision-making units. This hierarchical structure allows TPGs to

evolve solutions through automatic problem decomposition, enabling complex be-

haviours to emerge from simple components.[12]. While TPGs have demonstrated

strong performance in decision-making tasks, their initial implementation lacked an

explicit memory mechanism, limiting their effectiveness in environments that require

non-sequential dependencies. Prior work introduced a global shared memory, where

all agents in the population access a single memory space without any resetting logic

[21]. This approach aligns with Spector’s [24] “Culture” concept, where individuals

28

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.Sc. Thesis – T. Djavaherpour; McMaster University – Computing and Software

influence one another, facilitating knowledge exchange across the population. How-

ever, such shared memory structures introduce the risk of contamination, as poorly

performing agents can degrade the quality of stored information. As shown by [5],

global shared memory can lead to inefficient information retention and increased

complexity. In reinforcement learning, each new interaction sequence with the envi-

ronment is called an episode. That study also demonstrates that incorporating shared

memory into TPGs, when combined with resetting the memory at the beginning of

each episode, can lead to improved performance. These findings highlight the need

for structured and localized memory management within TPGs.

To address these challenges, we introduce team-specific shared memory, where

each TPGs team maintains a dedicated memory space accessible only to its mem-

bers. Unlike global memory, which allows the entire population to access a single

memory space, our approach functions as a smaller society, preserving the benefits of

“Culture” while limiting the influence of poorly performing agents. This design pre-

vents interference across teams and allows for parallel execution, as suggested in [5].

Additionally, our method features a scaled normal distribution-based selection mech-

anism for memory access, optimizing the balance between short-term and long-term

memory use. Furthermore, we used TPGs by incorporating three distinct memory

structure and associated operations: scalar, vector, and matrix [6], allowing agents to

handle richer data representations and solve complex control tasks more effectively.

We also incorporate evolved constants in registers and the shared memory, ensur-

ing that agents do not start with zero-initialized values, which can limit early-stage

adaptability. Evolved constants allows agents to inherit structured computational bi-

ases that improve decision-making. Unlike zero-initialized registers, evolved constants
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provide prior knowledge, ensuring agents and teams retain relevant information across

generations. This mirrors biological evolution, where evolved constants in registers

act as individual genetic encoding [11], while their use in shared memory reflects

group-level knowledge retention.

To evaluate our method, we conduct experiments on MuJoCo continuous control

tasks, including Inverted Double Pendulum, Hopper, and Half Cheetah. These en-

vironments are more complex RL tasks than in prior work, with large, continuous

observation and action spaces. To better reflect real-life uncertainty, we introduce a

stochastic masking mechanism that mimics natural fluctuations in perception, rather

than relying on static observation removal. In particular, MuJoCo environments are

used under partial observability conditions by stochastically masking the agent’s state

observation at each timestep. The effect of inherited knowledge in the form of evolved

constants, and stateful registers that retain data throughout an episode is studied. We

compare four different configurations: Stateless Registers - No Constants (SL-NC),

Stateless Registers (SL), Stateful Registers (SR), and Stateful Registers with Shared

Memory (SR-SM).

Our experimental results demonstrate that team-specific shared memory enhances

agent performance in partially observable environments. Among the tested configura-

tions, SR-SM consistently achieved the highest fitness scores, confirming the benefits

of structured memory retention. Additionally, our findings highlight the importance

of evolved constants, as agents equipped with inherited knowledge without any mem-

ory (SL) outperform those with zero-initialized registers (SL-NC ). However, memory

remains essential for handling recurrent dependencies, as SR consistently outperforms

SL.
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3.3 Related Work

RL and evolutionary algorithms have been widely explored for decision-making in

complex environments. This section reviews key advancements in both, with a focus

on methods for partially observable environments.

3.3.1 Neural and Policy-Based RL

Standard RL approaches assume fully observable Markov Decision Processes (MDPs),

making them less effective in partially observable Markov decision processes (POMDPs),

where only partial state information is available [9]. Several techniques have been pro-

posed to address this limitation.

Recurrent Neural Networks (RNNs), including LSTMs and GRUs, store past in-

formation but are computationally expensive [9]. Guided Soft Actor-Critic (Guided

SAC) trains an auxiliary agent under full observability to assist the main agent in

learning optimal policies [8], but this approach assumes access to a fully observable

version of the environment, which may not be available in many real-world or bio-

logically inspired settings. In [31], they introduce Partially Observable Guided RL

(PO-GRL), which gradually transitions from full to partial observability, improving

policy learning efficiency.

These methods often rely on additional supervision, such as full state access dur-

ing training, or specialized architectural components like recurrent layers or memory

networks. This trend is common in deep RL approaches to partial observability.

In contrast, our approach integrates a shared memory mechanism directly into the

TPGs structure, reducing state uncertainty without requiring external supervision or

additional neural memory structures directly supporting temporal memory such as
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recurrent connections.

3.3.2 Evolutionary Algorithms in Partially-Observable Decision-

Making

TPGs have been widely studied as an alternative GP framework for evolving decision-

making agents [12]. They have demonstrated success in solving RL tasks by evolving

graph-based policies in GP rather than using traditional neural networks. However,

standard TPGs implementations lack an explicit memory mechanism, which limits

their applicability to partially observable RL tasks.

[28] demonstrated that memory is a valuable addition to GP, showing that adding

memory mechanisms enhances functionality by allowing programs to retain and use

past information. His approach introduced indexed memory in GP, where programs

interact with a fixed-size memory array using explicit “read” and “write” instruc-

tions. This setup enabled agents to build and update internal models of the en-

vironment, supporting more complex, context-aware behaviour without relying on

external supervision. In TPGs, memory is typically managed through registers that

store intermediate values during decision-making. Expanding this capability, [6] in-

troduced a memory model that extends beyond scalar registers to include vector

and matrix operations. In this context, register memory refers to internal program

memory—local variables that store and manipulate temporary values within a single

program. In contrast, indexed memory (such as shared memory) functions as an exter-

nal storage space accessible by multiple programs, allowing information to persist and

be exchanged across decision steps. This enhancement improved multitask learning

and performance in partially observable environments, leading to higher scores and
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demonstrating the significant impact of structured memory on TPGs optimization.

In [21], it is observed that agents equipped with external memory are capable of

purposefully navigating their environment, whereas those lacking memory are con-

fined to more reactive behaviours such as “flight or fight” responses. This study

introduced indexed memory in TPGs, where a single global shared memory was

used to store temporary values during execution, meaning that all agents in the

population had access to and could modify the same memory space. [5] follows up

on this work, finding that a globally shared memory can negatively impact TPGs

agents in partially observable control tasks that do not rely on long-term temporal

dependencies. In these scenarios, resetting the memory more frequently can improve

performance while keeping complexity low and enhancing computational efficiency.

In [22], memory enables agents to develop internal state representations, improving

decision-making in partial observability. Context programs write to memory while ac-

tion programs read from it, highlighting the impact of structured memory in TPGs.

These studies demonstrated the value of shared memory but also exposed issues with

global access, such as interference between unrelated agents. This inspired our use

of team-specific shared memory, limiting access within teams to support more stable

and focused information sharing.

To evaluate our proposed extensions, we use MuJoco, a standard benchmark for

memory-enhanced RL and evolutionary algorithms in continuous control tasks [30].

Many recent studies [8, 31, 32, 4] have tested structured memory mechanisms in

RL models using MuJoCo environments such as Inverted Double Pendulum, Hopper,

Half-Cheetah, and Ant. These tasks require precise control, balance, and long-horizon

learning, making them ideal for evaluating how memory influences decision-making in
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RL. As memory management strategies continue to evolve in TPGs, MuJoCo provides

a well-suited platform to assess their effectiveness in complex control scenarios with

large continuous observation and action space.

3.4 Methodology

This section outlines the evolutionary framework used in our approach, detailing how

agents process information, retain memory, and evolve over generations. We describe

the register structure, team-specific shared memory, and the role of evolved constants

in enhancing performance.

3.4.1 Tangled Program Graphs (TPGs)

TPGs are an evolutionary learning framework that develop graph-based policies from

teams of programs for decision-making tasks [12]. These programs are Linear Genetic

Program (LGP) [2] with registers, as illustrated in Figure 3.1. LGPs are also called

register machines. Registers function as the internal memory of programs. The data

stored in these registers are transformed through a sequence of operations executed

by register machines. An example of how LGPs interact with registers is provided

in Algorithm 2. The first register, known as the bid value, represents the program’s

internal estimate of how favourable it would be to execute its associated action,

given the current observation and memory state. Higher bid values indicate stronger

preferences for execution, influencing which program is selected within a team. The

second register stores the selected action.

In TPGs, each agent is represented by teams of programs (Figure 3.2). Each team
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Algorithm 2: Example program. Each program consists of scalar (s), vec-
tor (v), and matrix (m) memory registers, each with 8 instances. Programs
belong to a team and have access to its team specific shared memory, which
includes three separate memory types: scalar (sm), vector (vm), and ma-
trix (mm), each with 8 instances. Shared memory operations involve reading
and writing values between individual program registers and team memory.
For memory write operations (Lines 5 and 7), a memory index is selected
probabilistically using a normal distribution centred around the middle of
the available memory range. For memory read operations (Lines 8 and 11),
values are retrieved from shared memory into program registers.

1 v0 = roll( ~obs(t), -oi)[:mw] . Copy observation to vector memory

2 vi = roll( ~obs(t), -oi)[:mw*mw] . Copy observation to temporary vector vi
3 m0 = vi.reshape(mw,mw) . Copy observation to matrix memory
4 v4 = s0*v1 . Program execution begins
5 scalar memory write(s5) . Write scalar register to shared memory
6 s2 = mean(v3)
7 vector memory write(v4) . Write vector register to shared memory
8 s1 = sm4[3] . Scalar memory read
9 s1 = sin(s0)

10 s0 = s0 / v0[3] . Observing a value from v0
11 m3 = mm5[1] . Matrix memory read
12 s3 = norm(m3)
13 if (s0 < v4[2]) : s0 = -s3
14 return s0, v1 . bid, continuous action

consists of a group of programs, and each program typically learns to act within a

specialized part of the RL environment. Initially, all teams are root nodes pointing

to different number of programs, which means each agent of the first generation

has just one team. To select an action, all programs are executed, and the team

selects the action of the program with the highest bid value. As shown in Figure 3.2,

through evolution, program’s action can reference other teams within the population,

promoting problem decomposition by breaking down complex tasks into smaller, more

manageable components. Algorithm 3 refines teams through selection, mutation, and

crossover in a structured evolutionary process. The modular, hierarchical structure
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of TPGs, combined with memory mechanisms, helps it adapt to partially observable

environments by retaining and using past information for better decision-making. As

teams evolve, they develop strategies that improve decisions by using memories to

retain relevant information. This enables TPGs to be well-suited for tasks such as

first-person visual RL, where incomplete world view implies that agents must infer

missing information and adapt their strategies accordingly [16].

Algorithm 3: Evolutionary process in TPGs, where T is the population
of teams and ti is an individual team. Each team is evaluated over multiple
episodes by executing its programs and selecting actions (Line 6), based on
the policy described in [6]. Fitness is averaged across episodes and used to
guide selection, mutation (including evolved constants), and crossover.

1 Procedure EvolvePopulation(T) . T is the set of teams
2 foreach ti ∈ T do
3 foreach ej ∈ Episodes do
4 ti ← LoadeEvolvedConstants(ti);
5 foreach f ∈ Frames(ej) do
6 Aij ← SelectAction(ti) . Run programs and return atomic action
7 Rewardj += Evaluate(Aij);

8 Fj += Rewardj ;

9 Fi ← Fj /NumberOfEpisodes;

10 if TerminationConditionMet() then
11 return BestTeam(T );

12 T ′ ← SelectTopTeams(T, F ) . Select best teams
13 T ′′ ← EvolutionOperations(T ) . Mutation and Crossover
14 T ← ReplaceWeakTeams(T ′, T ′′) . Combining team population
15 return EvolvePopulation(T);

A recent study on TPGs [6] expanded simple scalar register machines to include

vector and matrix memory, along with corresponding operations, as shown in Figure

3.1. By incorporating vector and matrix memory into scalar-based TPGs programs,

agents gain richer data representations, enhanced decision-making capabilities, and

greater adaptability in dynamic environments. Based on the action space, the action
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value is either s1, for environments like Control task problems, or v1 to support multi-

continuous action environments, like MuJoCo (shown in Figure 3.1 and Algorithm 2).

Since this advancement makes TPGs more suitable for solving complex RL problems,

it has been used in this study. Algorithm 2 provides an example of how these registers

are utilized in this work. Values stored in these registers can either be directly copied

from observations (Lines 1, 3 and 10) or computed by applying various operations on

existing register values. Further details on the register memory sizes in this work are

provided in Table 3.2.

S S S S S S S S

V V V V V V V V

M M M M M M M M

S

S

S

S

S

S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

Each Matrix of Size 

6x6

Each Program's Register 

Memory of Size 8Each

Vector

of Size

6x1

Bid 

Value

Action

Value

Figure 3.1: Program registers in TPG. This is the register memory structure for an
environment with an observation size of 6, which determines the size of each vector
and matrix. Each program contains scalar, vector, and matrix registers, where each
element stores continuous numerical values. The first element of the scalar register

stores the bid value. If the program wins the bid at a given timestep, the action
value it returns is either the second element of the scalar register or a value from the

vector register, depending on the action space.
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3.4.2 Team-Specific Shared Memory TPGs

To overcome global shared memory limitations, we propose a team-specific shared

memory model, where each team maintains its own memory space, and all programs

of that team have access to that shared memory as indicated in Figure 3.2. In terms

of “Culture”, we maintain a smaller society, as shown in [5], which has been found to

help agents develop their own memory more effectively. This design prevents inter-

team interference while enhancing intra-team collaboration, allowing agents to retain

and reuse critical information over time.

Initial Populations Program Graphs Emerge

Team 

Population
T1 T2

P1 P2 P3 P4 P5 P6

T1 T2

P1 P2 P3 P4 P5 P6
Program

Population

Shared Memory 1 Shared Memory 2 Shared Memory 1 Shared Memory 2

Time (generations)

Figure 3.2: Team-Specific Shared Memory TPGs. The figure illustrates the
evolution of TPGs with team-specific shared memory. Initially (left), independent
teams (T1, T2) contain programs (P1–P6) with separate shared memories. Over
generations (right), teams evolve structured connections, forming a hierarchical

program graph.

Using the TPGs version from [6], each program operates with scalar, vector, and

matrix registers. Accordingly, shared memory is divided into three sections, each

38

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.Sc. Thesis – T. Djavaherpour; McMaster University – Computing and Software

storing data specific to the accessed register type. This shared memory has a size of

8, which means 8 times the registers shown in Figure 3.1. For the “write” instruction

(Lines 8 and 11 in Algorithm 2), data is read from the program’s registers and written

into the corresponding shared memory section. If a scalar register is selected, the value

is stored in the scalar memory section; if a vector register is chosen, it is written

into the vector memory; and if a matrix register is used, the data is stored in the

matrix memory section. Similarly, for the “read” instruction (Lines 8 and 11 in

Algorithm 2), data is retrieved from the shared memory and written back into the

respective program register. The difference between “write” and “read” is that, for

simplicity, the “read” instruction retrieves only a single scalar from the matrix or

scalar memory, while the “write” instruction updates all scalars in a selected memory

cell. This shared memory with scalar, vector, and matrix parts ensures that memory

access remains structured and consistent, enabling efficient data exchange between

individual programs and the shared memory space. One example of executing a

program with “read” and “write” instruction is provided in Algorithm 2.

In [21], writing is probabilistic, where with a certain probability, register values are

written to the columns of the external global memory. In this approach, whenever

a register is written to shared memory, the entire memory is updated based on a

probabilistic rule. This means that a single write operation requires traversing the

entire shared memory structure, deciding for each column, based on a probability,

whether it should be updated or not. To ensure efficient memory access for writing,

we employ a normal distribution-based selection mechanism, where memory indices

are probabilistically sampled (Figure 3.3).
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Figure 3.3: Normal distribution used for memory access in team-specific shared
memory with M = 8. The memory index is sampled from N (µ, σ2), with µ = M/2

(red dashed line) and σ = M/6. The green dashed lines show one standard
deviation from the mean, illustrating memory access probability spread.

The normal (Gaussian) distribution is a continuous probability distribution de-

fined by its mean µ and standard deviation σ, with the probability density function:

f(i) =
1

σ
√

2π
exp

(
−(i− µ)2

2σ2

)
, (3.4.1)

where i represents a random variable, µ is the mean (center of the distribution),

and σ determines the spread. A higher σ results in a wider distribution, while a lower

σ concentrates probability values closer to µ.

Since the sampled memory index (i) is a continuous real number, it must be

converted into a valid integer memory index to ensure it remains an integer (i ∈ Z).
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This is achieved using the floor function and a clamping operation. As indicated in

Figure 3.3, by setting µ = M
2

and σ = M
6

, where M = 8, the memory index falls

within the range i ∈ (0, 8). The final chosen memory index is bic.

3.4.3 Evolved Constants

Instead of initializing registers and shared memory with zero values, we use evolved

constants, which are inherited across generations and refined through mutation. In

the first generation, evolved constants are randomly initialized and then evolved there-

after. Following the approach in [20], a real-valued constant is mutated by multiplying

it with a uniform random number in the range [0.5, 2.0], with the mutation probabil-

ity defined in Table 3.2. Additionally, the sign of the constant is flipped with a 10%

probability (Algorithm 3, Line 13).

In terms of registers, this provides a prior computational bias, enabling agents to

perform meaningful operations at the start of an episode or frame. This mirrors bi-

ological heuristics [27], where species inherit evolutionarily advantageous behaviours

without requiring immediate learning. For instance, if registers are initialized to zero,

adding, subtracting, or multiplying would be meaningless, resulting in less useful in-

formation being learned. However, evolved constants address this issue by ensuring

that agents start with computational values where structure can emerge through

evolution. Regarding shared memory, having evolved constants ensures that shared

memory contains evolutionarily useful knowledge, allowing individuals to inherit so-

cially transmitted information. By incorporating these values, TPGs agents are better

equipped to handle information flow and execute more effective policies throughout

an episode or even a frame.
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3.5 RL Tasks

For evaluating the effectiveness of the structured team-specific memory, we selected

MuJoCo environments as our benchmarking tasks. MuJoCo is widely used in con-

tinuous control tasks and provides highly realistic physics simulations, making it an

ideal testbed for assessing memory mechanisms in partially observable environments.

By selecting MuJoCo as our test environment, we ensure that our method is evalu-

ated under realistic, high-dimensional, and computationally challenging conditions,

making the results more applicable to real-world RL problems. In this work, we

studied Inverted Double Pendulum, Hopper, and Half Cheetah (See Figure 3.4). The

environment descriptions provided in this section are based on the Gymnasium doc-

umentation https://gymnasium.farama.org/.

(a) Inverted Double
Pendulum

Observation: 11,
Action: 1

(b) Hopper
Observation: 11,

Action: 3

(c) Half Cheetah
Observation: 17,

Action: 6

Figure 3.4: Problem environments used in this work. A higher observation and/or
action space means the task is more complex.
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3.5.1 Inverted Double Pendulum

In this environment, a cart moves along a straight track with a pole attached to it

and a second pole connected to the top of the first (see Figure 3.4a). The second pole,

having a free end, makes balancing more challenging. The agent applies continuous

forces to move the cart left or right, aiming to keep the second pole balanced while

stabilizing the system.

The observation space includes the cart’s position and velocity, as well as the

angles and angular velocities of both pendulums. The action space consists of a

continuous force in the range of [−1, 1] applied to the cart, allowing precise control

over its movement. Each episode has a default maximum duration of 1000 timesteps.

The system reaches a height of 1.2 meters when all components are perfectly aligned

in a vertical stack. If the height falls below 1 meter, the episode terminates.

The reward function in this environment is defined as:

reward = alive bonus− distance penalty− velocity penalty (3.5.1)

alive bonus is a fixed reward (healthy reward = 10) given at each timestep while

the pendulum remains upright. The distance penalty measures how far the tip of the

second pole deviates from its ideal position and is computed as:

0.01(x2pole2-tip + (ypole2-tip − 2)2) (3.5.2)

where xpole2-tip, ypole2-tip represent the tip’s xy-coordinates. This encourages the
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agent to minimize unnecessary displacement. Additionally, the velocity penalty dis-

courages excessive motion by applying a negative reward based on the angular veloc-

ities of the two joints, given by:

10−3ω1 + 5× 10−3ω2 (3.5.3)

where ω1, ω2 are the angular velocities of the first and second hinges, respec-

tively. The agent maximizes rewards by maintaining stability and reducing unneces-

sary movement for smoother, controlled balancing.

3.5.2 Hopper

The Hopper is a two-dimensional, single-legged robot with four main body segments:

a torso, thigh, leg, and foot (See Figure 3.4b. The agent controls torques at three joints

to produce coordinated hopping, aiming to move forward efficiently while maintaining

balance. Successful locomotion depends on precise joint coordination and stability,

making this a challenging continuous control task.

The observation space includes the torso’s position, velocity, height, movement

along the x-axis, angle, and angular velocity, as well as the angles and angular veloc-

ities of the thigh, leg, and foot joints. The action space consists of three continuous

torques applied to the hip, knee, and ankle joints, enabling dynamic posture ad-

justments to maintain forward momentum. Each episode has a maximum duration of

1000 timesteps but may terminate earlier if the Hopper becomes unhealthy. Termina-

tion occurs if any state variable exceeds the limits set by the healthy state range,

including excessive joint angles or velocities. The episode also ends if the Hopper

falls, indicated by its height dropping below 0.7 meters, or if the torso angle deviates
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beyond the range [−0.2, 0.2] radians.

The reward function in the Hopper environment is designed to encourage forward

movement while penalizing excessive control efforts. The total reward is calculated

as:

reward = healthy reward + forward reward− ctrl cost (3.5.4)

The healthy reward is a fixed value given at each timestep while the Hopper

remains in a valid state, with a default value of 1. The forward reward incentivizes

movement in the positive x-direction and is computed as

wforward ×
dx

dt
(3.5.5)

where dx represents the displacement of the torso, and dt is the time step between

actions. The value of dt is determined by the frame skip parameter (default: 4) and

the frametime (0.002 s), resulting in dt = 4× 0.002 = 0.008.

The weighting factor wforward (default: 1) scales the contribution of forward move-

ment to the total reward. The control cost penalty discourages excessive action

magnitudes by applying a negative reward based on the squared norm of the action

vector:

wcontrol × ‖action‖22 (3.5.6)

where wcontrol is the control cost weight, set to a default value of 10−3. Together,

these reward components encourage the agent to develop efficient, stable, and energy-

conscious locomotion.
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3.5.3 Half Cheetah

The Half Cheetah is a two-dimensional robotic model with nine body segments con-

nected by eight joints, including two paws (see Figure 3.4c). The goal is to control

torque at six joints to maximize forward speed, earning a positive reward for forward

movement and a negative reward for moving backward. The torso and head remain

fixed, while torque is applied to the front and back thigh joints (attached to the

torso), the shin joints (connecting to the thighs), and the foot joints (connecting to

the shins).

The observation space includes the front tip’s height, position, and velocity along

the x- and z-axes, as well as its angle and angular velocity. It also contains the angles

and angular velocities of the back thigh, back shin, back foot, front thigh, front shin,

and front foot joints. The x-coordinate of the front tip is excluded. The action space

consists of six continuous torque values applied to the hinge joints. These torques

control the movement of the back thigh, back shin, back foot, front thigh, front shin,

and front foot. Each torque value ranges from [−1, 1], allowing the agent to adjust

joint forces for efficient locomotion. This environment does not have termination

conditions; episodes continue until they reach the maximum length of 1000 timesteps.

The total reward is defined as:

reward = forward reward− ctrl cost (3.5.7)

The forward reward encourages movement in the positive x-direction and is com-

puted as shown in Equation 3.5.5. In this environment, the value of dt is determined

by the frame skip parameter (default: 5) and the frametime (0.01 s), resulting in

dt = 5× 0.01 = 0.05.
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The control cost applies a penalty for excessive action magnitudes, given by the

Equation 3.5.6 where wcontrol (default: 0.1) is the control cost weight. The control cost

discourages overly aggressive actions, promoting more stable and efficient movement.

3.5.4 Partial Observability

To introduce partial observability, we implement a stochastic masking mechanism.

At each step, the method randomly determines whether the agent receives full state

information or a completely masked (blind) observation, controlled by sampling from

a uniform distribution over [0, 3). If the random number is less than 1, the observation

vector is set to zero. Thus, the agent receives full state information with probability

1
3

and no state information with probability 2
3
. As a result, the agent can no longer

rely solely on the current observation but must instead infer missing information from

past interactions to make optimal decisions. This stochastic masking approach more

closely reflects real-world perceptual uncertainty, where agents must operate under

intermittent or unpredictable access to sensory information.

3.6 Experiments

This section presents the experimental setup used to evaluate different memory mech-

anisms in TPGs. We compare four approaches: Stateless Registers - No Constants

(SL-NC), Stateless Registers (SL), Stateful Registers (SR), and Stateful Registers with

Shared Memory (SR-SM) agents. In all tests, except for SL-NC, evolved constants

are used, as described in Section 3.4.3. Table 3.1 summarizes the specific memory

features active in each configuration to clarify what is being tested.
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Variants Evolved Constants Register Memory Shared Memory

SL-NC - - -
SL X - -
SR X X -
SR-SM X X X

Table 3.1: Active memory components per variant.

The goal is to analyze the impact of structured memory on decision-making perfor-

mance in partially observable RL tasks. The detailed parameters and configurations

utilized in this work are listed in Table 3.2. For Inverted Double Pendulum, the pop-

ulation size is 1000 root teams with 300 new teams per generation, whereas the more

complex Hopper and Half Cheetah require 1500 root teams and 1000 new teams per

generation for better exploration.

Parameter Value

Tournament size 3
Evolved constants mutation probability 0.5

Team crossover probability 0.5
Program mutation probability 0.1
Program addition probability 0.075
Program deletion probability 0.1

Action pointer mutation probability 0.1
Atomic action selection probability 0.9

Number of memory registers 8
Memory size Observation size

Table 3.2: Key experimental parameters used in the evolutionary process, including
population dynamics, mutation rates, memory configuration, and action selection

probabilities.
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3.6.1 Stateless Registers - No Constants (SL-NC)

In this version, register memories are stateless, meaning they do not carry informa-

tion from one step to the next. At the beginning of each execution, the registers

are initialized with zeros. This setup tests whether the task can be solved without

any memory or if, due to partial observability, it actually needs more than just the

observation at each step.

3.6.2 Stateless Registers (SL)

This approach is similar to the previous one, with the key difference being that at

the beginning of each execution, the registers are initialized with evolved constants.

Applying operations on nonzero values allows programs to exhibit some degree of

adaptation in partially observable environments, preventing them from relying purely

on the current observation. However, without retaining information from previous

observations, the agent’s performance remains limited in tasks requiring long-term

dependencies.

This setting tests the ability of TPGs to perform without any form of memory

from previous steps in partially observable tasks. It also examines the added value of

initializing memory with evolved constants.

3.6.3 Stateful Registers (SR)

In this setup, agents rely exclusively on the registers shown in Figure 3.2 to store

temporary values during executions. Register memories are set to evolved constants

prior to each evaluation and left to accumulate throughout the episode. There is

no mechanism for sharing information across programs. This approach serves as a
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baseline memory mechanism to assess the effectiveness of more advanced memory

structures.

3.6.4 Stateful Registers with Shared Memory (SR-SM)

This setup extends the previous approach, where each program has its own regis-

ter memories, as described in Section 3.6.3. The extension introduces team-specific

shared memory, as detailed in Section 3.4.2. The shared memory is initialized with

evolved constants at the beginning of each episode. This design enables information

retention and sharing across programs within each team, facilitating better decision-

making.

3.7 Results

In this section, we compare fitness scores for each task using the reward functions

defined in Section 3.5. We also measure computational complexity as the number

of executed instructions per prediction to assess performance across TPGs memory

setups over 10 repeats.

Variants Inverted Double Pendulum Hopper Half Cheetah

SL-NC 1630.16 1619.82 1.58
SL 9349.37 2017.00 608.98
SR 9349.92 2165.23 376.77
SR-SM 9350.03 3078.25 725.97

Table 3.3: Best results on MuJoCo tasks. The best result in each task column is
shown in bold.
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Figure 3.5: Comparison of different memory setups in TPGs across 10 repeats that
shows the effectiveness of different memory configurations. Top row: Mean fitness

(solid line) and standard deviation for the 10 repeats. Bottom row: The
corresponding instructions used per prediction for the 10 repeats.

Table 3.3 presents the best fitness scores achieved in each environment, demon-

strating the effectiveness of using shared memory. Based on this table, SR-SM

achieves the highest score among all tests. In Inverted Double Pendulum, highest

possible score is achieved. Moreover, after visualizing the Hopper with shared mem-

ory, it can be seen that it hops. Consequently, in at least one of the 10 runs, SR-SM

was able to solve the task in Inverted Double Pendulum and Hopper. This suggests

that structured memory retention plays a crucial role in maintaining useful informa-

tion across timesteps, allowing the agent to make more informed decisions in partially

observable settings.

Although the best possible score in Hopper is more than 3500, our test can hop,
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which becomes evident when visualized. The main challenge we encountered was

Half Cheetah, where none of the tested setups were able to approach the best possi-

ble score, which is above 10,000, due to the task’s high complexity. This is because

of the fact that a probability of 1
3

for receiving an observation makes the task un-

solvable in this environment, unlike the other two. Allowing for more generations in

the evolutionary process may help agents develop more effective memory strategies,

potentially improving performance in this task. Consequently, a higher chance of

obtaining observations is required to solve the task with memory while maintaining

partial observability.

Figure 3.5 emphasizes the impact of using shared memory, as it achieves the high-

est mean fitness value among all setups across all 3 environments. Moreover, in this

figure SR-SM shows the highest increase in complexity over time, indicating complex-

ification [25]. This increase indicates that the agent continues to refine its strategy

over time, starting from a simple form and evolving more complex behaviours through

interaction with the environment. Inverted Double Pendulum is easier compared to

the other two can also be inferred from the low variance between different test results.

In this environment, while SL-NC fails to solve the task, SL achieves a best fitness

score that can be considered as solving the task, as shown in Table 3.3. This further

reinforces the benefit of evolved constants while also confirming the relatively low

difficulty level of this environment.

In terms of the importance of using evolved constants, the difference between SL

and SL-NC in Figure 3.5 and Table 3.3 supports our expectation, as explained in

Section 3.6, that having these evolved values instead of 0 has a significant impact

on agent performance. Despite the fact that evolved constants improve performance
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compared to using zeros, SL still cannot achieve better performance than SR, high-

lighting the necessity of register memory. The superiority of SR over SL is evident

from Table 3.3 and Figure 3.5, where, after SR-SM, SR achieves the highest fitness

and highest mean fitness. The only task where SL performs better than SR is Half

Cheetah, but since this task remains unsolved, no meaningful conclusion can be drawn

from this result. Moreover, Figure 3.5 illustrates that in all three tasks, including Half

Cheetah, the average number of executed instructions per decision across 10 different

runs is higher for SR than for SL-NC, which can be interpreted as SR making more

attempts to solve the tasks.

The best agent for each task was reloaded for 100 episodes, and the Mann-Whitney

U test was used to compare the results with a significance level of p = 0.05. Each

environment’s variants were compared pairwise, and all showed significant differences

except for SR-SM and SL in Half Cheetah and Hopper. In the case of Half Cheetah,

this is likely because the task was not solved. For Hopper, the lack of a significant

difference may suggest that more generations are needed to produce stable hopping

behaviour, which could lead to more reliable performance during the test phase.

However, what is most important in this context is that the highest score in Hopper

was achieved by SL.

Figure 3.6 illustrates how shared memory is used by the best-performing agents

in Inverted Double Pendulum and Hopper. Since Half Cheetah was not solved, its

memory usage is not included in this analysis. Most notably, all write operations occur

exclusively in the matrix memory, with no writing to the scalar or vector sections.

This suggests that, through evolution, agents have learned to favour matrix memory

as the most effective for coordination. The use of the normal distribution in write
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Figure 3.6: Average number of shared memory interactions in the best-performing
run from Table 3.3, measured over 100 episodes for both solved tasks. Top and
bottom rows: Average number of “write” and “read” instructions, respectively.

operations is clearly reflected in the memory access pattern shown in the figure.

For read operations, Inverted Double Pendulum demonstrates shorter-term mem-

ory dependencies compared to Hopper, due to more frequent updates in the middle

of the memory following the normal distribution. The impact of evolved constants is

also observed in the read pattern: in Inverted Double Pendulum, the agent reads from

vector memory despite no write operations to that section, meaning it is accessing

only the evolved constants.

Figure 3.7 presents the average number of shared memory interactions per program

for the best-performing agents in the two solved tasks. These agents consist of a single

team and do not form tangled graphs. The figure reveals that some programs interact

with shared memory more than others, while some exhibit no interaction at all. This

likely reflects the specialized roles that different programs take on within the team,

as described in Section 3.4.1, where each program is responsible for handling specific

aspects of the environment.
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Figure 3.7: Average number of shared memory interactions per program, combining
both “write” and “read” instructions. Results are averaged over 100 episodes using

the best-performing agent from Table 3.3 for the two solved tasks. Each of these
agents consists of a single team, without any tangled graph structure.

3.8 Conclusion and Future Work

In this study, we introduced team-specific shared memory for TPGs to enhance per-

formance in partially observable RL environments. This method enables each team

to maintain a separate memory space, improving information retention and, we hy-

pothesize, reducing interference between unrelated programs.

Our experimental results on MuJoCo continuous control tasks demonstrate that

structured memory improves agent performance in partially observable environments.

Among the tested configurations, SR-SM consistently achieved the highest fitness

scores across different tasks, confirming the benefits of team-specific shared memory.

Compared to agents without this memory mechanism, it facilitates longer-term in-

formation retention, enabling more effective strategy refinement and adaptation in

complex environments.
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Moreover, our findings highlight the importance of evolved constants in improv-

ing agent performance. The comparison between SL and SL-NC confirms that using

evolved constants instead of zero-initialized registers enhances decision-making ca-

pabilities. However, our results also indicate that while evolved constants improve

performance, memory remains essential for solving more challenging tasks. This

is evident as SR consistently outperforms SL, emphasizing the necessity of register

memory for handling episodic dependencies.

This study shows that, through evolution, matrix memory is used more frequently

than scalar or vector memory. Based on this finding, future work could explore

using only matrix memory as the shared memory structure to reduce complexity

and compare its performance with the current approach. Additionally, the current

implementation of the read operation retrieves only a single scalar value from each

section. This could be extended to allow reading an entire vector or matrix from

a selected index, similar to how the write operation is performed. It would also

be worthwhile to investigate agent performance more closely to see whether some

agents consistently perform poorly and become destructive when interacting with

global memory. More generally, future work could explore whether there are truly

“good” and “bad” agents in the population, and how their presence affects shared

memory dynamics. All of these suggestions, as well as the introduced shared memory

and evolved constants, could be applied to time series tasks, where identifying and

remembering trends may lead to improved predictions.
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Chapter 4

Conclusion

Genetic Programming (GP) offers strong interpretability due to its use of symbolic

operations, transparent structure, and sparse feature usage. In GP, programs are

typically compact and modular, often relying on only a small subset of input features,

which makes it easier to trace how decisions are made. Tangled Program Graphs

(TPGs) build on this by introducing a hierarchical, graph-based policy structure that

further enhances interpretability [22].

Memory management strategies and the exploration of efficient memory structures

play a crucial role in optimizing the performance of TPGs agents in RL tasks. In

particular, memory becomes essential in partially observable environments, where

agents must rely on past observations to make informed decisions. Since memory

allows agents to retain and integrate information across time steps, designing effective

memory mechanisms is key to enabling them to construct internal models of their

environment.

Both studies presented in this thesis focus on enhancing the use of indexed memory

within TPGs and demonstrate how strategic memory design can lead to improved
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agent performance.

The first study examined different memory management strategies within a glob-

ally shared memory setup, where all agents had access to the same memory space.

Using benchmark control tasks with short temporal dependencies, Acrobot, Pendu-

lum, and CartPole, it was shown that resetting memory at the start of each RL

episode boosts performance and reduces decision-making complexity. These findings

highlight the importance of mitigating memory contamination caused by underper-

forming agents when memory is shared across the entire population.

Building on these insights, the second study introduced a team-specific shared

memory model. We hypothesize that by restricting memory access to programs within

the same team, this approach preserves intra-team knowledge while preventing nega-

tive interference from unrelated agents from other teams. In addition, the integration

of evolved constants into both register and memory initialization provided agents with

useful priors, enhancing their learning capabilities. Experiments on continuous con-

trol tasks from the MuJoCo suite, including Inverted Double Pendulum, Hopper, and

Half Cheetah, demonstrated that structured and localized memory, when combined

with genetic encoding, results in more adaptive and effective learning strategies.

Together, these contributions elaborate how memory can be purposefully struc-

tured and leveraged in evolutionary RL systems. By showing that both the scope and

the initialization of memory affect learning outcomes, this work offers valuable guid-

ance for the continued development of interpretable and efficient RL frameworks such

as TPGs. These findings also suggest promising directions for future work, particu-

larly in scaling memory-aware TPGs to environments with longer time dependencies

and greater complexity.
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