
THE SINGLE SOURCE OF TRUTH SYSTEM

THE SINGLE SOURCE OF TRUTH PARADIGM AS A TOOL

FOR SUPPORTING SOFTWARE MAINTENANCE

By STEPAN BRYANTSEV, BS

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfillment of the Requirements for

the Degree Master of Applied Science

McMaster University Copyright by Stepan Bryantsev, April 2025

https://gs.mcmaster.ca/
http://www.mcmaster.ca/

McMaster University

MASTER OF APPLIED SCIENCE (2025)

Hamilton, Ontario, Canada (Computing and Software)

TITLE: The Single Source of Truth Paradigm as a Tool for Sup-

porting Software Maintenance

AUTHOR: Stepan Bryantsev

BS (Software Engineering),

Higher School of Economics, Moscow, Russia

SUPERVISOR: Sebastien Mosser

NUMBER OF PAGES: xiii, 64

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Lay Abstract

As software systems grow, they often become harder to manage, with problems like

slow performance, bugs, security issues, and outdated parts. Developers use di!erent

tools to find and fix these issues, but each tool gives information in its own way,

making it hard to see the full picture. This project introduces a system called the

Single Source of Truth (SST) that brings all this information together in one place.

It organizes the data as a unified graph representation, ensuring data validations and

consistency.

iii

Abstract

Many software systems become complex over time and eventually become harder to

maintain. They often face performance problems, security risks, outdated dependen-

cies, bugs, and other issues. To address these challenges, practitioners use various

maintenance tools like performance profilers, static analyzers, security scanners, and

more. However, the data from these tools is often scattered and di”cult to com-

bine, making it hard to get a complete picture, perform analysis, and make informed

decisions.

We introduce the implementation of the Single Source of Truth (SST) paradigm,

which allows us to bring all software maintenance data together in one place. The SST

aggregates information from di!erent tools, structures it, and stores it in a consistent

and reliable way. It uses a graph-based approach to organize and unify the data,

making it easier to explore and analyze. The system was tested on several software

projects and showed that it can help better understand the software systems and

support smarter maintenance decisions.

iv

To my family.

v

Acknowledgements

I would like to sincerely thank my supervisor, Dr. Sébastien Mosser, for his limitless

help, guidance, and encouragement throughout this project. Without him, I would

not have been able to make this journey. His advice, feedback, and support were

valuable at every stage of this work.

I also want to thank my colleagues and fellow researchers at McMaster University

for their collaboration and helpful discussions during the process.

Finally, I am very grateful to my family and friends for their constant support,

patience, and understanding throughout this journey.

vi

Table of Contents

Lay Abstract iii

Abstract iv

Acknowledgements vi

Notation, Definitions, and Abbreviations xii

Declaration of Academic Achievement xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Research Goal and Questions . 2

1.3 Proposed Solution . 3

1.4 Thesis Structure . 3

2 State of the art 5

2.1 Software maintenance . 5

2.2 Maintenance tools . 7

2.3 Heterogeneous data . 8

vii

2.4 Problem definition . 11

2.5 Conclusion . 12

3 Solution 13

3.1 Solution Requirements . 13

3.2 Single Source of Truth Approach . 14

3.3 Design of the Single Source of Truth system 16

3.4 Conclusion . 17

4 Design & Implementation 19

4.1 SST System Overview . 19

4.2 Design Decisions . 21

4.3 Conclusion . 36

5 Evaluation 37

5.1 Use case . 37

5.2 Microservices Use Case . 51

5.3 Large System Use Case . 54

5.4 Limitations . 56

6 Conclusion 57

6.1 Results . 57

6.2 Discussion . 58

6.3 Future Work . 59

viii

List of Figures

3.1 General architecture of the proposed solution 18

4.1 System architecture. 20

4.4 Graph merging . 31

5.1 Types used in the performance probe. 39

5.2 Types used in the performance probe. 40

5.3 Example of performance data in the system. 41

5.4 Types used in the code structure probe. 42

5.5 Example of code structure data. 43

5.6 Types used in the author contribution probe. 43

5.7 Example of author contribution data. 44

5.8 Global type schema after probe registration. 45

5.9 Merged global graph representing the integrated system data. 46

5.10 Slowest methods and their locations. 47

5.11 Methods invoking slow methods. 48

5.12 Contributors of slow methods, responsible for potential optimizations. 49

5.13 Visualization of author contributions based on lines of code edited. . 50

5.14 Execution time of methods categorized by self-time, I/O operations,

and outgoing calls. 51

ix

5.15 Contributions of authors to slow methods, helping identify the best

candidates for optimization tasks. 52

5.16 Example of a merged graph . 53

x

List of Tables

3.1 Comparison of data integration approaches. 15

5.1 Node and relationship counts in the Petclinic project 44

5.2 Node and relationship counts in the NetBeans dataset 55

xi

Notation, Definitions, and

Abbreviations

Notation

G = (V,E) A graph G consists of a set of nodes V and a set of edges E

v(p) The value of property p in node v

v → v→ Nodes v and v→ are considered equivalent and can be merged

G1 ↑G2 Merge operation of two graphs G1 and G2

↓ Set union operator

Definitions

Probe A data provider that sends maintenance data to the SST

system

Graph Merging The process of combining graphs from multiple probes by

merging equivalent nodes and edges

xii

Type Equivalence A rule that defines when two nodes of the same type are

considered identical for merging

Global Schema The combined type schema used by the SST system to val-

idate and integrate all incoming data

Data Abstraction A method of simplifying complex data by showing only the

relevant information while hiding low-level details, making

it easier to understand and analyze

Abbreviations

SST Single Source of Truth

ETL Extract, Transform, Load

AI Artificial Intelligence

ML Machine Learning

API Application Programming Interface

BI Business Intelligence

DSL Domain-Specific Language

xiii

Declaration of Academic

Achievement

This thesis is my original work and reflects my independent e!ort and research. I,

Stepan Bryantsev, contributed to the study, design, and implementation of the pro-

posed system. The work was conducted under the supervision of Dr. Sébastien

Mosser, who provided guidance, feedback, brainstorming support, and overall direc-

tion throughout the process.

Mina Mahdipour, Waqar Awan, and Hassan Zaker contributed to the development

of certain components used during the implementation phase. All contributions have

been clearly acknowledged, and all external sources of information have been properly

cited.

xiv

Chapter 1

Introduction

1.1 Motivation

Software maintenance is a critical part of the software development process. After

a system is delivered, it needs to be updated, improved, and adapted over time. In

many cases, maintenance takes more time and resources than the initial development.

But it is not only about cost—software systems are used in areas like healthcare,

transportation, finance, and infrastructure, where failures can impact people’s lives

and safety [22]. In such cases, proper maintenance becomes essential to ensure that

systems stay reliable and trustworthy over time.

Now imagine working with a large software project that has been developed and

maintained for several years. Over time, the project has become complicated: there

might be code quality issues, performance slowdowns, unpatched security vulnerabil-

ities, tangled dependencies, and other problems. To deal with this, you need to use

multiple tools—such as performance profilers, code analyzers, security scanners, and

dependency checkers. Each tool produces di!erent types of data in di!erent formats,

1

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

which makes it hard to store, integrate, and analyze all this information together.

This situation creates a clear need for a system that can bring all the maintenance

data together. The solution must be able to collect data from many di!erent tools,

organize it in a consistent way, and make it easy to use for decision-making. While

there are other possible approaches—like data warehouses and lakes, ML and AI-

based integrations, knowledge driven integrations, manual spreadsheets, or custom

tool scripts—these often focus on specific problems, lack transparency, are hard to

scale, or require too much manual e!ort. What is missing is a general, trustworthy

system that helps integrate heterogeneous data in a structured and reliable way. This

work explores such a system and proposes a solution based on the Single Source of

Truth (SST) approach.

1.2 Research Goal and Questions

This work is based on the idea of using the Single Source of Truth paradigm to improve

the way we manage software maintenance data. SST is a common approach in data-

driven systems that helps ensure consistency by storing all relevant information in

one trusted location. It reduces duplication, avoids conflicts, and makes it easier to

access and work with the data.

In this thesis, we treat SST as a high-level guideline for designing the solution. It

gives a clear direction for building a consistent and reliable system, but it does not

solve all the challenges by itself. To apply SST in the software maintenance domain,

we need to go beyond the idea itself and make research, design, and implementation

work required to build a usable solution.

In particular, we aim to answer the following research questions:

2

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

RQ1: How can we organize and structure data coming from multiple tools and

technologies in a single system?

RQ2: How can we ensure that this data remains consistent and can be trusted

for decision-making in software maintenance?

1.3 Proposed Solution

To address the challenges, we propose the implementation of the Single Source of

Truth (SST) system. The main idea is to create a central, trustworthy place where

all relevant maintenance data from di!erent tools can be collected, structured, and

used. The goal of the system is to make maintenance data easier to integrate, store,

access, and analyze. By doing this, the system supports better decision-making and

reduces the complexity of working with multiple maintenance tools.

The proposed solution provides the following key benefits:

A way to formalize and represent diverse maintenance data from di!erent tools

and sources.

A unified system where data is ready for querying, visualization, and analysis.

A clear set of integration rules that ensure the consistency and transparency of

the data.

1.4 Thesis Structure

This thesis is organized as follows:

3

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Chapter 2: State of the Art Outlines the significance of software maintenance

and the existing challenges in managing heterogeneous maintenance data.

Chapter 3: Solution Presents the Single Source of Truth approach and the main

solution as a way to unify, integrate, and validate data from multiple sources.

Chapter 4: Design & Implementation Explains how the SST system is designed

and implemented.

Chapter 5: Evaluation Demonstrates the framework in action through real-world

use cases, showing how maintenance data can be combined and utilized.

Chapter 6: Conclusion Summarizes the work and suggests directions for future

research and improvements.

4

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 2

State of the art

This chapter focuses on the importance of software maintenance as a key part of the

Software Development Lifecycle. It explains how maintenance tasks, like bug fixing,

performance improving, refactoring, security enhancement and documentation man-

agement, are essential for keeping systems reliable, stable, and secure over time. The

chapter also discusses the challenges caused by the variety of tools and techniques

used during the maintenance process, particularly in managing and integrating the

di!erent data they produce. Finally, it highlights the need for a unified and stan-

dardized approach to solve these challenges and improve the way maintenance data

is handled.

2.1 Software maintenance

Software maintenance is an essential process of the Software development lifecycle

that ensures long-term system reliability, stability, and security [6]. IEEE standard

defines software maintenance as “Modification of a software product after delivery to

5

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

correct faults, to improve performance or other attributes, or to adapt the product to a

modified environment” [4]. It is important to understand what processes, issues, and

challenges are hidden in this definition and what goals people pursue while performing

software maintenance.

Software maintenance is an extremely broad field that includes such aspects as

bug fixing, performance optimization, migrations, refactoring, documentation build-

ing, and many others. As a result, there are various ways to classify and formalize

those tasks. One possible approach is to categorize these tasks into three groups:

adaptive, perfective, and corrective maintenance [23]. Adaptive maintenance focuses

on adapting software to changes in its environment, perfective maintenance involves

enhancing functionality or performance, and corrective maintenance addresses bug

fixes and fault corrections. This approach helps to understand and classify the types

of changes and their impact on the target project.

Speaking about the software maintenance process, it contains multiple phases,

including change management, analysis, design, implementation, testing, and deliv-

ery. All these phases require comprehensive knowledge and understanding of the

system to ensure successful analysis of the project and reduce maintenance costs [11].

According to Gupta et al. [8], key challenges in software maintenance include high

costs, di”culties in tracking the impact of changes, and the time-intensive nature of

understanding code.

Overall, software maintenance is a very large and important phase of the Soft-

ware Development Lifecycle that ensures a project’s life after delivery. This process

contains wide range of challenges and requires comprehensive knowledge and analysis

from di!erent perspectives and di!erent points of view.

6

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

2.2 Maintenance tools

Software maintenance involves a wide range of tasks, which has led to the develop-

ment of various tools to support the process. A key focus in this domain is extracting

knowledge from the project. Such tasks are often achieved using various software

analysis or reverse engineering tools. Valentina Lenarduzzi et al. [12] created a de-

tailed survey analyzing 25 di!erent software analysis tools, providing insights into

their goals, supported technologies, and trends. The classification covered objectives

such as code review, bug detection, testing, identifying security flaws, and others.

Furthermore, the study highlighted that researchers and practitioners often have dif-

ferent needs, which further broadens the variety of tools available.

In general, maintenance tools o!er a wide range of solutions designed to support

various aspects of software and project management. These include reverse engineer-

ing, software analysis, and many other tools that support various aspects of software

maintenance. Reverse engineering tools aim to extract high-level abstractions, such

as system architecture diagrams, dependency graphs, or functional overviews, from

software, particularly when documentation is incomplete or unavailable. While soft-

ware analysis tools focus more on evaluating code quality, identifying issues such as

bugs, security vulnerabilities, or performance ine”ciencies.

Further, these tools can be divided into static and dynamic analysis tools. Static

analysis tools operate without executing the code, providing insights into syntax,

structure, and potential compile-time issues. On the other hand, dynamic analy-

sis tools analyze a program’s behavior during execution, o!ering various runtime

insights [21, 3].

In practice, sometimes, even selecting appropriate tools for a specific project can

7

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

be a challenging task due to the wide variety of available solutions. To address this

challenge, Gerald C. Gannod and colleagues [7] developed a framework to analyze and

structure reverse engineering tools based on their semantic quality. This framework

helps in comparing di!erent approaches by measuring and formalizing the character-

istics of existing tools. Such e!orts provide valuable guidance in identifying tools that

suit the best for particular project goals.

2.3 Heterogeneous data

As projects grow in complexity, relying on a single tool is often not enough. This

raises an important question: what if more than one tool is needed for project mainte-

nance? For example, what if the process has to address both performance optimiza-

tion and bug fixing simultaneously. Each task may require specialized tools, resulting

in separate sets of data and insights. How can all this information, coming from di!er-

ent sources, be e!ectively managed, and utilized to support maintenance activities?

Mart́ınez-Fernández et al. [13] present an ontology-based approach to integrate data

from di!erent software analytics tools, such as static code analysis, testing tools, and

issue trackers. This work demonstrates how automation and data comprehension can

help reduce the e!ort required to manage and integrate data, making it more useful

for software maintenance decisions.

Many researchers conclude that the usage of maintenance tools in software projects

is a challenging problem that needs a systematic approach [2]. Pfei!er and Aaen iden-

tify the di”culties of using multiple tools for software quality monitoring, emphasizing

issues such as inconsistent data formats, lack of synchronization, and the additional

burden on practitioners to align tool outputs for e!ective decision-making [17]. These

8

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

challenges highlight the need for e”cient strategies to aggregate and integrate the out-

puts of multiple maintenance tools and data sources, ensuring that the maintenance

process remains e!ective and manageable.

The next question is: ”what are the actual technical and practical solutions that

address the problem of heterogenous data integration”. Exist a significant number of

solutions and approaches that helps to integrate data during the software maintenance

process, however we can highlight 3 the most popular and large groups.

Data driven integration This is a very large group of solutions that mostly focus

on collecting, transforming and storing data in a structured way. Usually, such

approaches rely on the data properties and require significant understanding of

the domain, data formats and shapes during the implementation. The group

includes such solutions as ETL (Extract, Transform, Load) and Data Warehous-

ing [10]; Data Lakes [9]; various relational databases techniques; graph solutions

and many other. For example, some approaches use graph-based models to com-

bine syntactic and semantic information, allowing e”cient querying and analysis

to support tasks like debugging and refactoring [19]. Other approaches focus

on automation in data aggregation process. They reduce the need for manual

documentation and ensure stakeholders have access to accurate and up-to-date

information. Buchgeher et al. introduce a platform for automatically extracting

and maintaining architecture information for large-scale service-oriented soft-

ware systems [1]. Generally speaking, such data-driven solutions are great in

terms of data management and consistency, however, could be too tailored to

specific problem and experience lack of flexibility and scalability.

Machine Learning & AI approaches Nowadays, ML and AI solutions become

9

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

more and more popular for all spheres of Software development, and mainte-

nance process is not an exception. These solutions include automated AI-based

data integrations, ML data cleaning, anomaly detections, AI-Driven schema

mapping and many other. The solutions tackle the problem by identifying pat-

terns and issues using predictive models and evolutionary approaches [5]. Over-

all, ML and AI contains very powerful solutions that help automate, optimize,

and simplify the handling of heterogeneous data in software maintenance. Such

solutions are great in terms of automation, e”ciency personalisation, however,

they may lack control, transparency, and high-level abstraction. In addition,

many AI solutions work as a black box so its hard to understand the processes

and hence such solutions could be less trustworthy. Despite their strengths,

AI-based solutions often need to be complemented by more transparent and

controllable approaches.

Knowledge driven integration Knowledge-driven integration uses formal repre-

sentations of domain knowledge—such as ontologies, rules, and semantic mod-

els—to support and improve the integration of maintenance data. Unlike data-

driven or AI-based methods, this approach incorporates expert knowledge and

software concepts, allowing the system to reason about relationships and provide

greater transparency [24]. Rule-based reasoning can help detect inconsistencies,

validate tool outputs, and guide maintenance decisions. A great example is the

DEFII framework [20], which introduces an ontology-based tool for integrating

data from engineering design and analysis models. Overall, knowledge-driven

integration o!ers strong benefits in terms of structure, clarity, and explain-

ability, However, building and maintaining ontologies and formal rules can be

10

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

time-consuming and often requires specialized domain expertise.

2.4 Problem definition

The use of multiple maintenance tools often creates significant challenges in the areas

of data integration, aggregation, and consistency. This is due to the wide variety

of solutions available and the heterogeneous nature of the software maintenance do-

main [2]. Pfei!er and Aaen emphasize that combining outputs from multiple tools

is a complex task, as it involves inconsistent data formats, lack of synchronization,

and additional work for practitioners to align outputs for decision-making [17]. These

di”culties underline the necessity of developing e”cient strategies to aggregate, in-

tegrate, and analyze outputs from diverse maintenance tools, ensuring the process

remains manageable and e!ective.

After examining existing challenges and solutions in the field, we can identify three

global weaknesses and areas of improvement in current approaches:

Focus on Specific Tools and Technologies [C1] A significant limitation of ex-

isting software maintenance solutions is their narrow scope. Many approaches

are designed to work only with specific programming languages, tools, or frame-

works. For example, static analysis solutions might support only a few program-

ming languages and integrate with limited number of technologies. As a result,

there is a clear need for a universal approach that can manage a broader range

of technologies and tools.

Lack of Formalization and Abstraction [C2] Many existing solutions focus on

data features and rely on integration at the data level. While these approaches

11

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

can achieve some success, they often lack consistency and fail to provide mean-

ingful high-level abstractions. This makes it di”cult to understand and analyze

the nature of the data or the processes involved. A formalized, abstraction-

driven approach is necessary to enhance the traceability, adaptability, and com-

prehension of the data flow in maintenance activities.

Trust and Transparency in Data Processes [C3] The final global challenge is

ensuring that the aggregated data is trustworthy. It is essential to comprehend

and control the data sources, the data structure, the integration and storage

processes. Such transparency helps to ensure that all processes are under con-

trol and that the data is consistent, accurate, and reliable. Trust in the data is

a foundation for e!ective decision-making and must be addressed in a compre-

hensive solution.

2.5 Conclusion

The described challenges highlight the need for a universal, formalized, and trustable

approach to addressing heterogeneous data in software maintenance. Current solu-

tions fail to meet the requirements for handling diverse data across multiple tools

and technologies, integrating and analyzing that data at a high level, and ensuring

the reliability and traceability of the information. There is a need to study an ap-

proach that supports data aggregation, integration, analysis, and management while

maintaining consistency and trust.

12

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 3

Solution

This chapter introduces the SST system. It is designed to solve the challenges de-

scribed in the previous chapter by helping practitioners collect, organize, and use

maintenance data from di!erent tools in one place. SST focuses on making the data

integration consistent, clear, and easy to work with.

3.1 Solution Requirements

The main goal of the solution is to support practitioners in software maintenance tasks

by providing a trustworthy system that helps ensure data consistency and reliability

for a wide range of tasks and tools. Such an approach can benefit software project

analysis, decision-making, and maintenance across diverse environments and over

time. To meet these goals and address the challenges outlined in Section 2.4, the

system must satisfy the following requirements:

Multiple maintenance solutions: The solution must handle data provided

by multiple maintenance reverse engineering and software analysis tools without

13

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

being tied to specific tools or technologies (Challenge C1).

High level abstractions: The solution must rely on high-level data abstrac-

tions and allow users to specify the data formats and schema (Challenge C2).

Data aggregation and integration: The solution must aggregate data from

various sources and integrate it into a unified representation for storage and

analysis (Challenge C3).

Data validation and consistency: The solution must validate all input data

to ensure consistency and correctness (Challenge C3).

Accessibility and availability: The solution must allow multiple practition-

ers to work concurrently, providing access to data for updates, analysis, and

decision-making (Challenge C1).

Time evolution and environments: The solution must support data evolu-

tion over time and support multiple working environments (Challenge C3).

3.2 Single Source of Truth Approach

The initial idea and implementation of the system were inspired by the Single Source

of Truth approach, which is widely used in various organizations and solutions. The

Single Source of Truth approach focuses on improving data-driven decision-making by

ensuring consistency, accuracy, and reliability of data. As defined by Magno Queiroz

et al., “The goal is to have a single definitive source of data, accessible, trusted,

credible, and reliable” [18].

14

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

The Single Source of Truth approach addresses common issues such as data silos,

where information is isolated in separate systems, and inconsistencies caused by du-

plicate or outdated data. By consolidating data into one trusted source, Single Source

of Truth helps reduce errors, simplify operations, and make data easier to use. It also

supports scalability and adaptability, enabling organizations to manage growing data

needs and respond to changes e!ectively.

Another key benefit of the Single Source of Truth approach is its ability to pro-

mote collaboration and data sharing across users and teams, ensuring everyone works

with the same accurate information. According to the paper [18], organizations that

implement Single Source of Truth report higher e”ciency, improved trust in their

data, and better organizational flexibility. These strengths make the approach an

ideal foundation for solutions that depend on reliable maintenance data.

Table 3.1 summarizes how well di!erent integration approaches address the de-

scribed challenges.

Problem
Data-
driven

integration

AI & ML
solutions

Single
Source of
Truth

Variety of supported tools and tech-
nologies

X ↭ ↭

Data formalisation and abstraction ↭ X ↭
Trust and Transparency X X ↭

Table 3.1: Comparison of data integration approaches.

As a result of the analysis, we decided to use the Single Source of Truth as the

foundation for the solution’s implementation. However, it does not mean that other

data integration, AI, ML, and other techniques could not be part of the system or are

15

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

not suitable for the problem. In the future, various solutions could be incorporated

to improve the system’s usage, performance, flexibility, analysis, and other processes,

but for the initial and fundamental implementation, we mostly rely on the Single

Source of Truth approach.

3.3 Design of the Single Source of Truth system

Building on the concept of the Single Source of Truth approach, we designed our SST

system to provide two main benefits for software maintenance:

Single Source: The system acts as a centralized storage for all maintenance

data, ensuring that all data is gathered in one place. This is achieved through

a formalized integration method that combines diverse sources into a single

accessible system.

Truth: The system is responsible for aggregating and integrating data in a

transparent and reliable way, ensuring the accuracy and consistency of the in-

formation. This is ensured by defining the data formats and schema and using

a formal and strict way of data integration.

To implement these principles, the SST architecture is organized into three con-

ceptual layers (Figure 3.1):

Maintenance Tools (Probes) Layer: This layer represents the set of tools

used for software maintenance processes. These tools act as the primary sources

of data, which they deliver to the framework in a standardized graph-based

format.

16

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

SST service Layer: The core of the solution, this layer is responsible for

integrating the data received from the maintenance tools. By organizing infor-

mation into a unified graph representation, the SST service ensures that the

data is stored in a consistent way and is ready for further analysis.

Data Access Layer: This layer provides practitioners with the capability to

plug in di!erent data visualization or analysis tools. The architecture does not

rely on a single representation and analysis technique, but provides flexibility.

The primary goal of the SST design is to benefit software maintenance tasks by

providing a central system for managing and analyzing data from heterogeneous tools.

In simple terms, SST can be imagined as a powerful and universal adapter, hub, and

data storage that, on one side, allows the integration of diverse data sources into a

single, reliable representation, and, on the other side, allows practitioners to perform

data warehousing and analysis.

3.4 Conclusion

This chapter introduced the Single Source of Truth approach as the foundation for

addressing the key challenges of software maintenance data integration. The approach

fulfills solution requirements by consolidating diverse maintenance data into a cen-

tralized, consistent, and transparent system. By implementing this approach, we can

build a flexible and reliable system that enables better understanding, analysis, and

decision-making in software maintenance tasks across di!erent tools.

17

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Data access
layerSST layerProbes layer

Probe 1

Probe 2

Probe N

SST

Figure 3.1: Architecture of the solution

18

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 4

Design & Implementation

This chapter presents the core design and implementation of the SST system. The

goal is to create a reliable and consistent framework for integrating heterogeneous data

from multiple maintenance tools into a unified representation that supports analysis

and decision-making.

4.1 SST System Overview

The data flow starts from the software maintenance tools, that could include diverse

data structures and formats. To be compatible with the SST each data source must

be represented as probe and follow strict format and schema rules. First each probe is

required to provide data schema definition to ensure compatibility with other probes.

After that it is allowed to push the data to the remote SST storage.

The SST service is implemented as a remote web server. Such centralized design

ensures that users are not constrained by a single machine or setup. This flexibil-

ity is particularly valuable in maintenance scenarios that often require diverse and

19

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

resource-intensive environments. As the result, all probes can push their data to

the centralized SST server, ensuring that the data is aggregated and accessible in a

single, consistent location. In addition, the SST provides powerful integration mech-

anism that prevents data duplication and allows to independent data upload. As

the result of integration, the SST system operates with consistent and unified graph

representation of all incoming data. Finally, once the data is stored the SST system

provides a layer for data access that could include data visualisation, representation,

and analysis techniques.

Figure 4.1 provides a high-level overview of the system architecture. The SST

system follows a layered architecture. The REST API controller receives and validates

all incoming HTTP requests. The services layer applies the main logic for handling

and organizing Probes, and data. Finally, the infrastructure layer provides commands

and queries to access the Neo4j graph database, ensuring e”cient storage and retrieval

of information.

Probes

HTTP

Probe 1

HTTP

Probe 2

HTTP

Probe N

SST

API Controller

Services

Probe service

Graph service

Infrastructure

DB commands

DB queries

Local storage

Graph database

Neo4j

Data access

Ne04j browser

BI tools

Figure 4.1: System architecture.

20

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

4.2 Design Decisions

Several key design decisions were made during the development of the SST system.

These form the core of the project and ensure it meets the requirements outlined

in previous chapters. This section describes each design solution and the addressed

challenges to better understand the main contribution of the work.

1. Probes How external data sources integrate with the SST.

2. Type System: How data is structured and formalized.

3. Graph Storage: How the system represents data

4. Graph Merging: How data is combined and aggregated consistently.

5. Data Access: How practitioners interact with and analyze the data.

4.2.1 Probes

Challenge: How to support heterogeneous data sources?

Design

Imagine having multiple maintenance tools providing di!erent data. It could be

performance, code structure, runtime, security, developer contribution, and other

data of di!erent shapes and formats. It is impossible to tailor the solution for each

possible case, so the challenge is to create the appropriate generalization that will

allow support for a wide range of data sources.

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

To address this challenge, we introduce the notion of Probes. A Probe represents

a maintenance tool that provides data to the SST framework. By defining this ab-

straction, we establish a separation between data providers and the framework itself

and enable the ability to develop and integrate new data providers.

This approach supports the solution’s flexibility and scalability by allowing users

to plug in and unplug di!erent tools, reducing the integration implementation e!ort.

Such a design ensures that a wide range of tools can be supported, enabling the

system to aggregate data from diverse sources.

Each Probe has only two requirements:

Provide types schema (4.2.2).

Provide data in a graph format (4.2.3).

As a result, we have a formal approach that allows us to integrate any maintenance

data provider into the SST in the proper format. A long-term ambitious goal of this

design is to create a marketplace of Probes, where all practitioners can contribute and

create a pool of tools compatible with the SST. Such an ecosystem would function

similarly to a package manager, enabling seamless integration of new tools while

managing their compatibility.

Implementation

To support this abstraction, the SST system implements a structured process for reg-

istering and validating probes. The following steps outline how probes are onboarded

and made compatible with the global schema.

22

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Each probe must be registered in the system and define its own data schema.

When a new probe sends a registration request, the SST follows a structured valida-

tion and integration process to ensure consistency and compatibility of the provided

types.

The probe registration process consists of the following steps:

1. Probe validation. The SST system validates the probe definition. The system

checks whether a probe with the same name already exists and verifies that all

data types within the probe are unique and defined correctly. Additionally, it

ensures that each type has a valid structure, including a mandatory definition

of the merge rule (type equivalence).

2. Probe compatibility. If the probe defines a data structure that is already

present in the system, the algorithm compares the type structures. It verifies

that the fields and merge rules of the new type are compatible with the existing

definition. If the types are not compatible, the probe registration is rejected to

maintain consistency in the system.

3. Updating the global schema. After processing the local data schema of a

probe, the SST updates the global schema. This schema serves as the global

data structure for validating future data submissions from probes.

This process ensures that all probes conform to a consistent structure, preventing

conflicts and inconsistencies in the stored data. By enforcing type compatibility and

merging definitions when possible, the SST system creates a unified schema. This

schema plays a key role in validating the data received from probes and maintaining

data consistency across the SST.

23

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

4.2.2 Type System

Challenge: How to define data abstractions and schemas?

Design

To successfully integrate and manage input data from multiple sources, we need to

understand its formats and shapes. Instead of working directly with the data, the

SST requires providing the Type schema. Such an approach ensures better data

abstraction and generalization, allowing improved data integration, validation, and

consistency. The Type System is a critical component between the Probes and the

SST. Each Probe is required to define the types of data it provides, ensuring that the

framework can understand, process, and integrate the data correctly.

Imagine having a type that represents a data schema. Like a class in OOP,

the type defines the fields that the future data component (object) will have. In

addition, the Type System allows defining the relations between di!erent types inside

one probe and also defines type equivalence globally. For example, there is Probe 1

that contains Type A and Type B, and another Probe 2 that contains Type A’ and

Type C (Figure 4.2).

To successfully implement data integration and compatibility, the SST requires

each Probe to define Type equivalence for each type. So, when the two probes that

share some data types are integrated in the SST, the shared data Types are also

integrated. As a result, the global Types will contain Type B, Type C, and the

integrated Type A, which will contain the properties from both Probes as long as

there are no conflicts (Figure 4.3). By establishing this approach, the SST can ensure

that the data at the schema level is compatible and will be integrated correctly.

24

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Probe 1

Type A

Field A : string

Field B : number

REL X

Type B

Field : string

Probe 2

Type A`

Field A` : string

Field C : number

REL Y

Type C

Field : number[]

Figure 4.2: Type schemas of two probes

Globa Type Schema

Type A

Field A : string

Field C : number

Field B : number

REL X

Type B

Field : string

REL Y

Type C

Field : number[]

Figure 4.3: Global Type System

One significant advantage of the Type System is the creation of a global type

system (schema), which provides a high-level abstraction of the data structures and

relations. This abstraction enhances understanding of the aggregated data and im-

proves usability, especially if the number of Probes and types grows and the relations

become more complex.

25

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Implementation

Based on the design goals, the SST system requires each probe to declare its data

schema using a structured JSON format. This ensures type definitions are explicit,

consistent, and mergeable across di!erent probes. The expected JSON structure

consists of the following elements:

types: A list of types used in the Probe, where each type has:

– name: The unique name of the type.

– fields: A list of attributes describing properties of the node, including:

name: The field’s name.

type: Expected data format.

unique: A boolean flag indicating whether the field is unique.

– mergeRules: Specifies the type equivalence (how nodes of the same type

should be merged).

relations: A list of relationships between types:

– name: The name of the relationship.

– from: The source type of the relation.

– to: The target type of the relation.

An example JSON structure for defining types is provided below:

1 {
2 "typeExample": {
3 "name": "fullName",
4 "type": "string",
5 "unique": true

26

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

6 },
7 "relationExample": {
8 "name": "RELATION",
9 "from": {

10 "typeName": "Author"
11 },
12 "to": {
13 "typeName": "Method"
14 }
15 }
16 }

This schema ensures that di!erent Probes follow a standardized format while

allowing flexibility for diverse data sources. Basically each type schema contains

a list of data structures and a list of possible relations between those structures.

Such approach is helpful when trying to formalise and structure heterogeneous and

unstructured data.

4.2.3 Graph Data Format

Challenge: What data structure to choose to store SST data?

Design

There are several options for how the SST could store and manage the data. One

option is to use a relational database. Such an approach is great for structured data

but could be ine!ective when dealing with heterogeneous and evolving information.

Another option is to use a NoSQL solution that would o!er much more flexibility

and can support unstructured and evolving data. However, such an approach could

be less convenient when working with interconnected data with multiple relations or

dealing with data consistency. Given the heterogeneous nature of the maintenance

27

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

data and the need to support various data relations, we naturally end up using a

graph data storage. Graph databases provide a more natural and e”cient way to

manage such data by focusing on relationships, making them the best choice for this

problem.

Graph storage has several key advantages, making it well-suited for the SST’s

goals. First, it natively supports relationships, eliminating the need for complex

integration operations. Second, it is flexible, allowing the SST to evolve as new data

sources and tools are added. Third, querying interconnected data is e”cient and

intuitive, enabling complex queries that provide valuable insights during the analysis

process. Lastly, graph storage aligns perfectly with the SST approach, ensuring that

maintenance data is aggregated, consistent, and easy to explore, making it the most

natural and e!ective data structure for the solution.

Implementation

After defining the types, probes can submit their actual data. To align with the

graph-based model, this data must follow a specific JSON format representing two

lists of nodes and relationships:

nodes: A list of nodes where each:

– type: Matches a previously defined type.

– Contains additional fields based on the type definition.

edges: A list of relationships between entities:

– relationName: Matches a previously defined relation type.

– from: The source entity (defined by type and unique identifier).

28

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

– to: The target entity (defined by type and unique identifier).

– properties: Additional attributes related to the relationship.

The following JSON example illustrates the structure of actual graph data:

1 {
2 "probeName": "AuthorContribution",
3
4 "nodes": [
5 {
6 "type": "Author",
7 "email": "john.doe@example.com",
8 "fullName": "John Doe"
9 },

10 {
11 "type": "Method",
12 "fullName": "com.example.MyClass.myMethod ()"
13 }
14],
15
16 "edges": [
17 {
18 "relationName": "CONTRIBUTES",
19 "from": {
20 "nodeType": "Author",
21 "propertyName": "email",
22 "propertyValue": "john.doe@example.com"
23 },
24 "to": {
25 "nodeType": "Method",
26 "propertyName": "fullName",
27 "propertyValue": "com.example.MyClass.myMethod ()"
28 },
29 "properties": {
30 "linesEdited": [10, 15, 20],
31 }
32 }
33]
34 }

29

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

4.2.4 Graph Merging

Challenge: How to integrate multiple graphs while ensuring consistency?

Design

A key feature of the SST graph storage is the merging principle. Using type-level

equivalence defined by the Probes, the framework identifies and merges equivalent

nodes. If two graphs provide equivalent nodes, in the resulting graph the equivalent

nodes will be merged (Figure 4.4).

Such a process ensures two critical properties:

1. Data Integration: When two Probes provide graphs with overlapping data,

the merging operation links their graphs by combining equivalent nodes.

2. Data Consistency: The merging operation eliminates duplicate nodes, ensur-

ing that the data remains unified and coherent.

The merging principle also introduces useful commutativity and associativity prop-

erties. Regardless of the order in which data is pushed to the system, the resulting

graphs will be identical. This property significantly enhances the system’s usability,

especially in incremental data integration scenarios where information is extended

over time.

To prove Associativity and Commutativity, we can define each graph as a set of

nodes and edges:

G = (V,E),

where V is the set of nodes and E is the set of edges. The merge operation for graphs

↑ is defined as the union of the node sets and edge sets, with the special rule that

30

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Merge result

Graph 2Graph 1

A1

A2

B1

B2

C1

C2

A1

A2

C3

A1

A2

B1

B2

C1

C2

C3

Figure 4.4: Graph merging

merges equivalent nodes. That is, for two graphs G1 = (V1, E1) and G2 = (V2, E2),

we have:

G1 ↑G2 =
((

V1 ↓ V2

)
, E1 ↓ E2

)
,

where
(
V1↓V2

)
is the union of nodes in which any two nodes v ↔ V1 and v→ ↔ V2 with

v → v→ are merged into a single node.

When merging two equivalent nodes, we can represent each node as a set of

31

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

property–value pairs. For example, a node v can be represented as:

v = {(p1, a1), (p2, a2), . . . , (pn, an)}.

The merge operation of equivalent nodes is defined as:

v ↑ v→ =

v ↓ v→, if ↗p ↔ prop(v) ↘ prop(v→), v(p) = v→(p),

reject, otherwise,

where prop(v) is the set of properties present in v and v(p) is the value of property p

in v. Since the union of sets is both commutative and associative, it follows that:

v ↑ v→ = v→ ↑ v,

v ↑ (v→ ↑ v→→) = (v ↑ v→)↑ v→→,

ensuring that the merging of nodes is a commutative and associative operation.

Graph merge commutativity

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Then the merged graph is given

by:

G1 ↑G2 =
((

V1 ↓ V2

)
, E1 ↓ E2

)
.

Since set union is commutative (V1 ↓ V2 = V2 ↓ V1 and E1 ↓ E2 = E2 ↓ E1) and the

merge of equivalent nodes is commutative, then:

G1 ↑G2 = G2 ↑G1.

32

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Graph merge associativity

Consider three graphs G1 = (V1, E1), G2 = (V2, E2), and G3 = (V3, E3). The merge

operation:

G1 ↑ (G2 ↑G3) =
(
V1 ↓ (V2 ↓ V3), E1 ↓ (E2 ↓ E3)

)
,

and by the associativity of set union,

V1 ↓ (V2 ↓ V3) = (V1 ↓ V2) ↓ V3,

with a similar property for the edge sets. Since the merge of equivalent nodes is also

associative, it follows that:

G1 ↑ (G2 ↑G3) = (G1 ↑G2)↑G3.

The commutativity and associativity properties significantly enhance the usability

of the SST, especially in incremental data integration scenarios where information is

provided partially and over time.

Implementation

To realize the behavior defined earlier the main SST usage scenario includes two

stages: graph validation and graph upload. Users are allowed and encouraged to val-

idate the data before saving the data, to gain insights or detect data issues. The

validation result includes information about created and merged nodes and edges or

any errors that might cause integration or consistency issues. If the validation is suc-

cessful, the SST can safely merge the graph data into the global storage. This process

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

guarantees consistency, prevents conflicts, and maintains a coherent representation of

the information.

The algorithm consists of the following steps:

1. Validation of schema and probe. Before processing the graph, the system

checks whether the probe that submitted the data is registered in the SST. It

also verifies that the global type schema exists and is properly defined.

2. Validation of node types. Each node in the submitted graph is checked

against the type schema. If a node references an undefined type, the submission

is rejected.

3. Grouping nodes by type. Nodes are grouped based on their types to speed

up processing. Each type is then validated against the probe definition to ensure

its fields and properties match the expected structure.

4. Merging with existing data. Based on the type equivalence definition, the

SST checks whether submitted nodes already exist in the global graph. If a node

matches an existing one, the properties are compared. If the data is consistent,

the node becomes a merge candidate; otherwise, an integration conflict is raised.

5. New nodes. If a submitted node does not match any existing entity, it is

considered new and will be added to the global graph.

6. Validation of relationships. The system verifies that all edges (relationships)

reference valid node types and properties. If an edge is not properly declared in

the probe definition or links undefined nodes, an integration conflict is raised.

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

7. Updating the global graph. After all nodes and edges are validated suc-

cessfully, they are integrated (merged or created) into the existing Neo4j graph

database.

This algorithm ensures that data from di!erent probes is correctly validated and

integrated while maintaining consistency across the SST. If an integration conflict

is raised, the data is not saved and the user receives a detailed error message with

reasoning and references to the problematic data.

4.2.5 Data access layer

Challenge: How to provide flexible data access and analysis options?

Design

In software maintenance, di!erent tasks require di!erent ways to explore, analyze,

and visualize data based on specific goals. Some may need a graph analysis approach,

while others need advanced visualizations, statistics, and charts. A predefined analy-

sis approach would limit flexibility and the number of use cases. To make the system

more practical and adaptable, it is important to provide an open and customizable

way for users to interact with the SST.

The Data Access design solves this by allowing practitioners to create and plug

in their own analysis and visualization tools, similar to the idea of Probes. This

approach ensures that the SST is not tied to a specific method but supports various

data exploration techniques. Users can connect or develop their preferred tools for

querying, visualization, or advanced analytics, making the SST adaptable to di!erent

workflows and project requirements.

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Implementation

At the current stage of implementation, any tool compatible with the Neo4j database

can be used for querying and exploring the graph data. This enables users to leverage

existing graph analysis tools and visualization platforms to gain insights into software

maintenance processes. For example, a Tableau BI tool was successfully connected.

If needed in the future, a server-based solution could be implemented to provide

customized access to the data, depending on specific user needs. This could include

REST APIs, GraphQL, web-based dashboards, or other interfaces tailored to di!erent

tasks. The goal of this decision is to ensure flexibility and adaptability, allowing

various analysis approaches to integrate seamlessly with the SST system.

4.3 Conclusion

This chapter detailed the design and implementation of the SST system, focusing on

its role in integrating heterogeneous maintenance data into a consistent, centralized

structure. The design was driven by the key challenges identified in Chapter 2.

C1: Probes and the access layer ensure compatibility with a wide range of tools.

C2: The type system and graph representation formalize and abstract mainte-

nance data.

C3: Graph merging and validation mechanisms ensure consistent and trustwor-

thy integration.

These components collectively allow the SST system to act as a reliable foundation

for software maintenance analysis across diverse technologies.

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 5

Evaluation

This chapter evaluates the SST system by examining its usability in real-world soft-

ware maintenance scenarios. The evaluation focuses on validating the system’s abil-

ity to integrate heterogeneous data sources, ensure consistency, support graph-based

merging, and enable flexible analysis.

5.1 Use case

To evaluate the proposed approach, it is necessary to choose a realistic maintenance

scenario that reflects common challenges in software projects. For the main case study,

a performance optimization scenario was considered. Imagine a common problem:

having a software system that faces performance troubles. As more features are added

and more contributors modify the codebase, the system becomes more complex, and

more issues may arise. In this case study, the SST system is used to help analyze the

project, detect potential issues, and integrate various maintenance tools to improve

performance.

37

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

A good evaluation case should involve a solid web project that has been actively

developed, has multiple contributors, and requires continuous improvements. For

this reason, the Spring Petclinic project was selected as the main project for the

case study. Spring Petclinic is a well-known open-source application that serves as

a reference project within the Spring ecosystem. It has been under development

since 2013, making it a suitable candidate for maintenance evaluation. The project

simulates a management system for a veterinary clinic, allowing users to manage pet

owners, register pets, document visits, and view veterinarians.

Spring Petclinic is a good candidate for evaluation for several reasons. Firstly, it

is an open-source project, meaning that all details about its code and development

history are fully accessible. Secondly, the project has been actively developed for

more than a decade, providing a realistic example of a long-term software system that

requires ongoing maintenance. Thirdly, the project is built using Java and the Spring

Boot framework, one of the most popular technology stacks for web development

today [16]. This makes the evaluation more relevant to modern software engineering

practices.

By applying the SST framework to the Petclinic project, the evaluation demon-

strates how the approach can support software maintenance tasks in practical sce-

narios. The results provide insights into the e!ectiveness of the system in handling

heterogeneous maintenance data and integrating multiple tools in a centralized way.

38

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

5.1.1 Probes

To analyze the performance issues in the case study, we might need di!erent types

of data. First, we need performance measurements to identify bottlenecks and un-

derstand which parts of the system are slow. Second, we need the full structure of

the code, including its classes, methods, and dependencies. This helps us see how the

problematic areas fit into the overall system and how performance issues spread across

components. Finally, we need information about developer contributions, allowing us

to trace performance problems back to specific changes and understand which devel-

opers are most familiar with the a!ected code. These three types of data are provided

by separate probes, following the probe abstraction model described in Section 4.2.1.

By combining these three perspectives, we can gain a clear understanding of the

problem and make informed maintenance decisions (Figure 5.1).

SST server

Source code

Author contribution

Performance metrics

GitHub

VisualVM

Figure 5.1: Types used in the performance probe.

39

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Performance

The performance probe is implemented using the VisualVM analysis tool. It pro-

vides runtime performance measurements by tracking method execution time during

runtime. This allows us to identify slow parts of the system and understand where

optimizations are needed. The probe captures various runtime metrics and integrates

them into the SST to provide a detailed view of performance issues.

The data collected by the probe includes method execution times, CPU usage,

number of invocations, I/O operation time, and time spent in outgoing method calls.

Each performance measurement is linked to a specific method in the codebase, creat-

ing a structured representation. The types used in this probe are shown in Figure 5.2,

and an example graph of the collected data is presented in Figure 5.3.

Performance

uid : string

selfTime : number

selfTimeCPU : number

totalTime : number

totalTimeCPU : number

invocations : number

IOOperationTime: number

outgoingMethodCall: number

PERFORMS

Method

fullName : string

Figure 5.2: Types used in the performance probe.

40

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

PERFORMS

PERFORMS

M1

PERFORMSM2

P1

P2

P3

Figure 5.3: Example of performance data in the system.

Code Structure

The code structure probe is implemented using Rascal, a domain-specific tool for

analyzing software, including Java, C++, Python, and other projects. It extracts de-

tailed information about the static architecture of the software, including its methods,

classes, packages, and dependencies. This helps us understand how di!erent parts of

the system are organized and how they interact. By integrating this structural infor-

mation into the system, we can analyze dependencies and locate performance issues

within the broader context of the project.

The probe provides data on the hierarchy of the project, including packages con-

taining files, files containing classes, and classes containing methods. Additionally, it

tracks method calls, helping to visualize how di!erent functions interact. This struc-

tured view of the codebase is crucial for identifying areas that may require refactoring.

The types used in this probe are shown in Figure 5.4, and an example of the graph

data is presented in Figure 5.5.

41

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Method

fullName : string

INVOKES

shortName : string

variablesCount : number

parametersCount: number

INCLUDES

Package

fullName : string

INCLUDES

File

fullName : string

INCLUDES
Class

fullName : string

Figure 5.4: Types used in the code structure probe.

Author Contribution

The author contribution probe is implemented using a custom Python script that

analyzes Git repository data. It provides insights into how di!erent developers have

contributed to the project methods. This information helps in identifying the right

people to work on fixing performance problems and understanding how recent modi-

fications may have a!ected the system.

The probe collects data on developers and their contributions at the method level.

Each method is linked to the author who modified it. The types used in this probe are

shown in Figure 5.6, and an example of the collected data is presented in Figure 5.7.

5.1.2 Integration

Before pushing any data to the system, each probe must be registered in the SST.

This process ensures that all three probes are compatible with each other on the

type level. Figure 5.8 shows the resulting global type schema after registering all

three probes. This schema serves as a unified schema for the entire process, ensuring

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

INCLUDES INCLUDES

P

INCLUDES

F1

INCLUDES

F2

INCLUDES

C1

INCLUDES

C2

M1 INVOKESM2 M3

Figure 5.5: Example of code structure data.

Method

fullName : string
CONTRIBUTES

Author

fullName : string

email : string

Figure 5.6: Types used in the author contribution probe.

consistency between di!erent probes.

Once the probes are registered, each data graph can be pushed to the SST indepen-

dently. This results in a unified global graph that represents the system’s combined

data, linking performance measurements, code structure, and developer contributions

in a single graph. The integration process follows the graph merging mechanism de-

scribed in Section 4.2.4, which ensures that equivalent nodes are consistently merged

based on type definitions and equivalence rules. Figure 5.9 illustrates the final merged

graph, showing how di!erent nodes are connected.

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

M1

M2

CONTRIBUTESA1

CONTRIBUTES

CONTRIBUTES

A2

Figure 5.7: Example of author contribution data.

5.1.3 Graph analysis

As a result of merging the data from all three probes, the SST system builds a unified

graph that represents the analysed Petclinic project. The final graph includes 360

nodes and 549 edges, combining the structure of the code with performance data and

developer contributions. Table 5.1 shows a breakdown of the node and relationship

types included in the graph, giving a clear overview of the data.

Type Count

Package 6
File 30
Class 36
Method 182
Author 14
Performance 77

Includes (relationship) 223
Performs (relationship) 78
Invokes (relationship) 142
Contributes (relationship) 106

Table 5.1: Node and relationship counts in the Petclinic project

The Neo4j database allows us to perform various types of queries on the project

44

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Performance

uid : string

selfTime : number

selfTimeCPU : number

totalTime : number

totalTimeCPU : number

invocations : number

IOOperationTime: number

outgoingMethodCall: number

PERFORMS

Method

fullName : string

INVOKES

shortName : string

variablesCount : number

parametersCount: number

INCLUDES

Package

fullName : string

INCLUDES

File

fullName : string

INCLUDES

Class

fullName : string
CONTRIBUTES

Author

fullName : string

email : string

Figure 5.8: Global type schema after probe registration.

graph to analyze di!erent aspects of the project and the software maintenance pro-

cess. This is made possible by the flexible data access layer described in Section 4.2.5,

which enables external tools and users to interact with the integrated graph through

standard query interfaces. This section demonstrates how we can use Cypher queries

to explore performance issues, dependencies, and contributors related to slow meth-

ods.

To begin, we need to identify the slowest methods in the system based on ex-

ecution time. The following query retrieves the slowest methods along with their

corresponding class, file, and package, providing an overview of their location in the

project.

Listing 5.1: Query to find slowest methods

MATCH (m:Method) <-[:INCLUDES]-(c:Class)

<-[:INCLUDES]-(f:File) <-[:INCLUDES]-(p:Package)

45

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

PERFORMS

PERFORMS

PERFORMS

P1

P2

P3

INCLUDES INCLUDES

P

INCLUDES

F1

INCLUDES

F2

INCLUDES

C1

INCLUDES

C2

M1 INVOKESM2 M3

CONTRIBUTES

A1

CONTRIBUTES

CONTRIBUTES

A2

Figure 5.9: Merged global graph representing the integrated system data.

MATCH (m) -[:PERFORMS]->(perf:Performance)

WITH m, c, f, p, perf

ORDER BY perf.TotalTime DESC

LIMIT 5

RETURN m, c, f, p, perf

The result of this query is shown in Figure 5.10, displaying the most time-

consuming methods in the project along with their locations.

Once we have identified the slowest methods, the next step is to analyze which

other methods invoke them. This helps us understand the potential impact and

46

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

PE
RF

O
RM

S

IN
CL
UD

ES

IN
CL
UD

ES

IN
CL
U
D
ES

INCLUDES

IN
CL
UD

ES

PE
RF

O
RM

S

IN
CL
UD

ES

INCLUDES

INCLUD
ES

PERFO
RM

SPE
RF

O
RM

S

IN
CL
UD

ES

IN
CL
UD

ES

PE
RF

O
RM

S

IN
CL
UD

ES

IN
CL
UD

ES

IN
CL
UD

ES

org.sprin…

org.sprin…

/src/mai…

org.sprin…

1185771…

org.sprin…

org.sprin…

/src/mai…

284f45c…

org.sprin…

53269ac…

org.sprin…

org.sprin…

/src/mai…

2da2b4f…

org.sprin…

org.sprin…

/src/mai…

org.sprin…

6946b51…

Figure 5.10: Slowest methods and their locations.

dependency of these slow methods on the overall system performance.

Listing 5.2: Query to find methods invoking slow methods

MATCH (caller:Method) -[:INVOKES]->(slow:Method) -[:PERFORMS]->(perf:

Performance)

WITH slow , perf , caller

ORDER BY perf.TotalTime DESC

LIMIT 10

RETURN caller , slow , perf

Figure 5.11 presents the results, showing the connections between the slowest

47

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

methods and their callers.

PE
RF
O
RM

S

INVOKES

PE
RF
O
RM

S

INVOKES

IN
VO

KE
S

INVO
KES

IN
VO

KE
S

PE
RF

O
RM

S

PE
RF
OR

M
S

IN
VO

KE
S

INVOKES

IN
VO

KES

PE
RF

O
RM

S

IN
VO

KE
S

IN
VO
KE
S

INVO
KESIN

VO
KE
S

PE
RF

O
RM

S PERFO
RM

S

org.sprin…

org.sprin…

1185771…

org.sprin…

org.sprin…

org.sprin…

org.sprin…

c54e48a…

org.sprin…

f0d2145…

org.sprin…

a23dbbc…

org.sprin…

org.sprin…

dd04840…

org.sprin…

org.sprin…

org.sprin…

cad9477…

org.sprin…

142f51b…

Figure 5.11: Methods invoking slow methods.

To address performance issues, it is important to identify the developers who

contributed to the a!ected methods. This helps determine who is most familiar with

the code and can work on refactoring and optimizing it.

Listing 5.3: Query to find contributors of slow methods

MATCH (a:Author) -[: CONTRIBUTES]->(slow:Method) -[:PERFORMS]->(perf:

Performance)

MATCH (c:Class) -[:INCLUDES]->(slow)

WITH a, slow , perf , c

ORDER BY perf.TotalTime DESC

LIMIT 10

RETURN a, slow , c

The output of this query, visualized in Figure 5.12, highlights the contributors who

have modified the slowest methods, assisting in assigning the necessary maintenance

decisions.

48

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

CO
N

TRIBU
TES

IN
CL

UD
ES

CO
NT

RI
BU

TE
S

CO
N

TR
IB

UT
ESCONTRIBUTES

CO
N

TRIBUTES

CONTRIBUTES

CO
NT

RI
BU

TE
S

IN
CL

UD
ES

INCLUD
ES

CO
NT

RI
BU

TE
S

IN
CLU

D
ES

CO
N

TRIBUTES

IN
CL

UD
ES

CO
N

TR
IB

UT
ES

IN
CL

U
D

ES

IN
CL

UD
ES

Kiyeon
Cho

org.sprin…

org.sprin…

Dave Syer
Dave Syer

org.sprin…

org.sprin…

bijomutta

org.sprin…

org.sprin…

org.sprin…

Shweta
Tyagi

org.sprin…

org.sprin…

simrin051

org.sprin…

org.sprin…

org.sprin…

Figure 5.12: Contributors of slow methods, responsible for potential optimizations.

These queries illustrate how Neo4j can be utilized to analyze the project graph,

identify performance bottlenecks, assess their impact, and find the right contributors

to address the issues. As a result of using the SST and leveraging these graph analysis

queries, maintenance tasks can be better prioritized and managed.

5.1.4 Data visualization

Another SST data usage scenario includes data representation and visualization. Af-

ter executing all three probes, the system representation was stored as a graph in the

Neo4j database. To analyze this data e!ectively, we connected the BI tool Tableau

to design interactive visualizations and graphs, making it easier to understand the

project data.

To gain insights into the distribution of code modifications, we created a visual-

ization that shows the contributions of each author, measured by the number of lines

of code edited. As seen in Figure 5.13, this chart helps identify the main contributors

to the project. It highlights the presence of a dominant author who has made sig-

nificantly more changes than others. Understanding these contributions is essential

49

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

when identifying responsible developers for maintaining or optimizing specific parts

of the codebase.

Figure 5.13: Visualization of author contributions based on lines of code edited.

To analyze performance issues, we created a bar chart of the execution times of

methods in the system. Figure 5.14 presents a breakdown of method execution time

based on three di!erent metrics. This visualization enables a deeper understanding

of how methods contribute to performance issues and where optimizations should be

prioritized.

Since resolving performance issues requires knowledge of both slow methods and

their contributors, we created a chart (Figure 5.15) that links authors to the slow

methods. This chart provides an intuitive way to identify the right developer to

contact when optimizing specific slow methods.

These visualizations illustrate how the framework allows us to explore project

data e”ciently. For the use case scenario, Tableau serves as a powerful tool for

50

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Figure 5.14: Execution time of methods categorized by self-time, I/O operations,
and outgoing calls.

transforming complex graph-based information into actionable insights.

5.2 Microservices Use Case

The SST system was also used in research MEng project that focused on improving

software maintenance in Java-based microservices systems. This research explored

how team collaboration, project structure, and service documentation could be im-

proved using graph-based analysis. To support this, the SST system was selected as

the foundation for data integration and storage. Its ability to unify heterogeneous

data and provide a structured format made it a strong fit for this use case.

In this project, several probes were created to collect and organize relevant main-

tenance and development data. Each probe targeted a specific aspect of the codebase

51

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Figure 5.15: Contributions of authors to slow methods, helping identify the best
candidates for optimization tasks.

or team activity. Below is a brief overview of the probes used:

1. Most Recent Contributor: Identifies the last developer who modified a method.

This helps in resolving bugs by involving the person most familiar with recent

changes.

2. List of Contributors: Gathers all developers who contributed to a specific

method or class. Useful for documentation and communication.

3. Top Contributor: Highlights the developer with the most contributions to a

method, helping identify domain experts.

4. File Contributors: Lists all developers who worked on a file. Helps in clarifying

responsibilities.

5. Author Relation: Measures collaboration strength between developers based on

joint contributions. Supports team evaluation and collaboration insights.

52

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

6. Endpoints: Extracts all REST API endpoints from the system. Useful for iden-

tifying project API structure.

7. Bean Data: Collects all registered Spring beans and their dependencies. Helps

identify configuration issues and understand system structure.

8. Dependencies List: Extracts library and framework dependencies across mi-

croservices. Helps track outdated or vulnerable dependencies and supports main-

tenance tasks.

After all the probes registered and pushed their data to the SST, the system

merged this information into a single, consistent graph (Figure 5.16). This unified

graph allowed practitioners to explore relationships between contributors, source code

elements, and service components all in one place.

Auth
ored

_by

Authored_by

Authored_by

Auth
ore…

Authored_by

Co
nt
ai
ns

Authored_by

Authored_by

Au
tho

red
_by

Authored_by

Co
nta

ins

Authored_by

Co
nt
ai
ns

Au
tho

red
_b
y

Authored_by

Authored
_by

Authored_by

Authored
_by

Authored_by

Authored_by

Authored_by

Contains

Authore
d_by

Authored_by

Authored_by

Au
tho

red
_b
y

Authored_by

Authore
d_by

Authored_by

Authored_by

Contains

Authored_by

Au
th
or
ed
_b
yAu

tho
red

_by

Author
ed_by

Authored…

Con
tain

s

M
ap

s

M
ap
s

Ma
ps

M
aps

Maps

M
ap
s

Maps

Ma
ps

Maps

M
ap

s

M
aps

Maps

Map
s

M
ap
s

33

34

36

37

39

40

41

44

45

48

Figure 5.16: Part of the final merged graph.

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

This case study shows that the SST system works well for di!erent types of main-

tenance tasks and data structures. It is especially useful in microservice architectures,

where data comes from many sources and services. In addition, the example demon-

strates that the system is suitable and useful for external scenarios, having a fast

learning curve that makes it easy to get started with the system.

5.3 Large System Use Case

Another research group at Université Côte d’Azur has shown interest in using the SST

system to support their work on understanding variability in large software systems.

Their study, presented by Mortara et al. and titled Visualization of Object-Oriented

Variability Implementations as Cities [15], introduces a tool called VariCity.

VariCity visualizes object-oriented software systems as 3D cities—where classes

are shown as buildings and relationships such as inheritance or usage are represented

as streets. This approach helps developers explore and understand how variability

is implemented across a system, particularly in projects that rely on inheritance,

method overloading, or design patterns.

For this use case, VariCity was used to visualize variability in large Java-based

software systems using pre-generated data produced by the Symfinder toolchain [14].

Symfinder analyzes codebases to detect variability implementations, and exports this

information in structured JSON files. These files describe class-level relationships,

such as inheritance and usage, which are then used by VariCity to construct inter-

active 3D visualizations. The evaluation was performed using data from ten large

open-source projects, including Apache Maven, NetBeans, JUnit, and others.

The SST system can support this research by addressing common data integration

54

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

and consistency challenges in large-scale systems:

Structured storage: SST allows variability data to be stored in a formal,

unified graph format that includes classes, interfaces, methods, and their rela-

tionships.

System-wide consistency: By merging data project subgraphs, SST ensures

that the integrated information remains coherent and accurate.

Single data provider: SST can act as a data provider for tools like VariCity,

making it easier to generate consistent and reliable visualizations.

The SST system was able to successfully integrate and manage all data graphs

produced by the Symfinder toolchain across the evaluated projects. In the largest

scenario with the Apache NetBeans project, the SST handled more than 30,000 nodes

and more that 30,000 relationships without significant integration or performance

issues (Table 5.2). This demonstrates the system’s scalability and its ability to work

e!ectively with large and complex software systems, maintaining consistent structure

and performance throughout the integration process.

Type Count

Class 2,846
Method 29,535
Interface 674

Implements (relationship) 933
HasMethod (relationship) 29,537

Table 5.2: Node and relationship counts in the NetBeans dataset

This use case highlights two key strengths of the SST system:

55

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

1. External collaboration: The interest from another research group confirms

that SST is applicable beyond its initial scope and can support a range of

software engineering studies.

2. Scalability and consistency: The ability to manage large-scale, structured

data makes SST well-suited for visualization and analysis in complex systems

and scenarios.

5.4 Limitations

While the SST ensures data consistency and integration, it does not guarantee the

correctness of the data provided by individual probes. Although validation and in-

tegration mechanisms can detect inconsistencies and highlight potential issues, the

system does not actively verify or correct the accuracy of the input data itself.

Another key limitation of the approach is the requirement for users to develop and

configure probes. This process involves structuring the data in the required format,

defining types, and specifying node equivalence rules. In some cases, defining equiv-

alence can be challenging, especially for data that lacks natural unique identifiers,

such as performance measurements.

Additionally, the reliance on graph-based storage, while beneficial for managing

relationships and dependencies, may not be suitable for all types of maintenance data

or specific use cases. These limitations highlight areas where further improvements

and adaptations could enhance usability of the system.

56

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 6

Conclusion

6.1 Results

The main goal of the work is to explore the application of the Single Source of Truth

approach in the software maintenance domain. The work focuses on designing and

implementing a system that enables structured integration of heterogeneous mainte-

nance data, ensuring consistency and reliability.

The thesis investigates key design decisions necessary for such implementation,

including data abstraction and schema, integration strategies, data formats and other.

The proposed solution introduces, implements and validates a way to collect, merge,

and analyze maintenance data from multiple sources.

To validate the proposed approach, the SST system was applied to an open-source

software project, demonstrating its ability to support real-world maintenance tasks

such as performance analysis, code structure exploration, and developer contribution

tracking. The results show that the SST concept e!ectively addresses the challenges of

data integration in software maintenance, providing a reliable foundation for analysis

57

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

and informed decision-making. In addition to this case study, the SST was also suc-

cessfully used in a microservices-based project and in a large-scale system variability

analysis.

6.2 Discussion

This section discusses several open questions that arise from the results of the SST

system and help to clarify possible future directions.

What maintenance scenarios are most suitable for SST? Even though the SST

system is built as a flexible and general solution, we can highlight several types of

maintenance scenarios and projects where its usage is especially reasonable. These

include legacy systems with a long development history, missing documentation, or

overcomplicated structure. In such cases, information recovery becomes important,

and maintenance decisions require structured and trustworthy data. SST is particu-

larly useful when critical decisions need to be made based on fragmented or outdated

information, providing a consistent and unified view of the system’s state.

What data is actually needed for SST to operate e!ectively? While SST can sup-

port various types of maintenance data, to build a consistent and connected knowledge

graph it requires some kind of skeleton. According to our usage, a form of code struc-

ture—such as files, classes, and methods—is essential and serves as the base layer.

Other data sources—such as performance metrics, authorship information, security

issues, or dependency data—are layered on top of this structure. In more advanced

cases, it can also be beneficial to include data from ticket tracking systems, docu-

mentation, or other sources that reflect the project’s maintenance and development

history.

58

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Can we validate data completeness using SST? This question opens an interesting

direction for future work. One possible approach is based on the probe concept. By

comparing the current project setup with similar maintenance scenarios, it becomes

possible to identify missing perspectives and suggest existing probes that could be

reused. Another approach is based on the global type schema, which defines what

types of data are expected for the analysis. By comparing this schema with the actual

data provided by the probes, the system can detect gaps in coverage or underdevel-

oped areas. Together, the schema and probe mechanisms provide a structured way

to evaluate and improve the completeness of the collected data.

6.3 Future Work

One of the main future goals of this project is to test the solution in a real maintenance-

driven process. So far, the SST has been developed based on theoretical maintenance

needs and best practice ideas, but real-world usage may present di!erent challenges

and requirements. It is di”cult to predict how practitioners will interact with the

system, what specific scenarios will appear, and what additional techniques or ad-

justments will be necessary to support real maintenance workflows.

Another important direction is to improve system performance and extend support

for more advanced data usage and analysis scenarios. This includes wider integration

with external data access and analysis tools, improved ways to explore and query

data, and more flexible usage in large-scale projects. Future work could also explore

automated suggestions for missing data and schema validation mechanisms to detect

incomplete or inconsistent information. Additionally, it may include the active devel-

opment of new probes based on common maintenance patterns and recurring tasks.

59

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

Having a larger set of reusable probes and maintenance scenarios could eventually

lead to the idea of a shared probe marketplace and a community built around the

SST system.

60

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Bibliography

[1] G. Buchgeher, R. Weinreich, and H. Huber. A platform for the automated

provisioning of architecture information for large-scale service-oriented software

systems. In Software Architecture: 12th European Conference on Software Ar-

chitecture, ECSA 2018, Madrid, Spain, September 24–28, 2018, Proceedings 12,

pages 203–218. Springer, 2018.

[2] G. Canfora, M. Di Penta, and L. Cerulo. Achievements and challenges in software

reverse engineering. Communications of the ACM, 54(4):142–151, 2011.

[3] Z. Chen, B. Pan, and Y. Sun. A survey of software reverse engineering appli-

cations. In Artificial Intelligence and Security: 5th International Conference,

ICAIS 2019, New York, NY, USA, July 26–28, 2019, Proceedings, Part IV 5,

pages 235–245. Springer, 2019.

[4] S. E. S. Committee et al. Ieee standard for software maintenance. IEEE Std,

pages 1219–1998, 1998.

[5] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather. Programl:

Graph-based deep learning for program optimization and analysis. arXiv preprint

arXiv:2003.10536, 2020.

61

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

[6] K. Erdil, E. Finn, K. Keating, J. Meattle, S. Park, and D. Yoon. Software

maintenance as part of the software life cycle. Comp180: Software Engineering

Project, 1:1–49, 2003.

[7] G. C. Gannod and B. H. Cheng. A framework for classifying and comparing

software reverse engineering and design recovery techniques. In Sixth Working

Conference on Reverse Engineering (Cat. No. PR00303), pages 77–88. IEEE,

1999.

[8] A. Gupta and S. Sharma. Software maintenance: Challenges and issues. Issues,

1(1):23–25, 2015.

[9] R. Hai, C. Koutras, C. Quix, and M. Jarke. Data lakes: A survey of functions

and systems. IEEE Transactions on Knowledge and Data Engineering, 35(12):

12571–12590, 2023.

[10] B. Khan, S. Jan, W. Khan, and M. I. Chughtai. An overview of etl techniques,

tools, processes and evaluations in data warehousing. Journal on Big Data, 6,

2024.

[11] S. Khanna, A. Shah, S. Jain, and L. Ramanathan. Software maintenance: Chal-

lenges and issues and models for reducing the maintenance cost. International

journal of advanced research in computer science, 8(3), 2017.

[12] V. Lenarduzzi, A. Sillitti, and D. Taibi. A survey on code analysis tools for

software maintenance prediction. In Proceedings of 6th International Conference

in Software Engineering for Defence Applications: SEDA 2018 6, pages 165–175.

Springer, 2020.

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

[13] S. Mart́ınez-Fernández, P. Jovanovic, X. Franch, and A. Jedlitschka. Towards

automated data integration in software analytics. In Proceedings of the Interna-

tional Workshop on Real-Time Business Intelligence and Analytics, pages 1–5,

2018.

[14] J. Mortara, X. Tërnava, and P. Collet. symfinder: A toolchain for the identifica-

tion and visualization of object-oriented variability implementations. In Proceed-

ings of the 23rd International Systems and Software Product Line Conference-

Volume B, pages 5–8, 2019.

[15] J. Mortara, P. Collet, and A.-M. Dery-Pinna. Visualization of object-oriented

variability implementations as cities. In 2021 Working Conference on Software

Visualization (VISSOFT), pages 76–87. IEEE, 2021.

[16] M. Mythily, A. S. A. Raj, and I. T. Joseph. An analysis of the significance

of spring boot in the market. In 2022 international conference on inventive

computation technologies (ICICT), pages 1277–1281. IEEE, 2022.

[17] R.-H. Pfei!er and J. Aaen. Tools for monitoring software quality in information

systems development and maintenance: five key challenges and a design proposal.

International Journal of Information Systems and Project Management, 12(1):

19–40, 2024.

[18] M. Queiroz, P. Tallon, and T. Coltman. Data value and the search for a single

source of truth: What is it and why does it matter? 2024.

[19] O. Rodriguez-Prieto, A. Mycroft, and F. Ortin. An e”cient and scalable platform

63

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.A.Sc. Thesis – S. Bryantsev; McMaster University – Computing and Software

for java source code analysis using overlaid graph representations. IEEE Access,

8:72239–72260, 2020.

[20] F. Ruiz and J. R. Hilera. Using ontologies in software engineering and technology.

In Ontologies for software engineering and software technology, pages 49–102.

Springer, 2006.

[21] P. Samarasekara, R. Hettiarachchi, et al. A comparative analysis of static and

dynamic code analysis techniques. Authorea Preprints, 2023.

[22] P. Somasekaram, R. Calinescu, and R. Buyya. High-availability clusters: A

taxonomy, survey, and future directions. Journal of Systems and Software, 187:

111208, 2022.

[23] E. B. Swanson. The dimensions of maintenance. In Proceedings of the 2nd

international conference on Software engineering, pages 492–497, 1976.

[24] S. Zappa, C. Franciosi, A. Polenghi, and A. Voisin. Ontology-based digital twin

for maintenance decisions in manufacturing systems: an application at laboratory

scale. IFAC-PapersOnLine, 58(8):13–18, 2024.

64

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

	Lay Abstract
	Abstract
	Acknowledgements
	Notation, Definitions, and Abbreviations
	Declaration of Academic Achievement
	Introduction
	Motivation
	Research Goal and Questions
	Proposed Solution
	Thesis Structure

	State of the art
	Software maintenance
	Maintenance tools
	Heterogeneous data
	Problem definition
	Conclusion

	Solution
	Solution Requirements
	Single Source of Truth Approach
	Design of the Single Source of Truth system
	Conclusion

	Design & Implementation
	SST System Overview
	Design Decisions
	Conclusion

	Evaluation
	Use case
	Microservices Use Case
	Large System Use Case
	Limitations

	Conclusion
	Results
	Discussion
	Future Work

