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1 Review and Summary of Results

We will ultimately be interested in an ODE system whose solutions give rise to
complete metrics on a space whose differential structure is that of a complex line
bundle P over a product of Fano Kähler Einstein manifolds as base. That is,
we’ll assume there are m Fano manifolds Fi such that P is given as a fibration:

C → P → F1 × . . .× Fm

(see section 2 for a more thorough description of the setup)
Ansätze of this form have been thoroughly studied both from the perspective

of Ricci Solitons and Einstein manifolds, with the earliest work on spaces of
this form going all the way back to Calabi’s original work on Kähler geometry.
Meanwhile, Don Page [12], working at a similar time as Calabi, found one of the
first non-Kähler examples of an Einstein metric (his was of positive curvature)
when studying a similar Ansatz.

After this, Berard Bergery [3] systematized the examples of Calabi and Page
via the cohomogeneity one approach. Working independently at a similar time,
Page & Pope [13] found an explicit solution in the Einstein case.

Focusing on the one-factor case, in [17], Stolarski showed that, regardless of
the Euler class, by taking ü(0) sufficiently small, there exists a complete steady
soliton metric with this initial condition. Following this, Wink in [19] showed
that a similar result holds in the case of a multi-factor base.

While all of the examples found by Wink and Stolarski were necessarily
collapsed, Appleton, focusing on the one-factor case, found in [2] that there
actually do exist non-collapsed steady Ricci solitons, but only when the Euler
class is larger than the Chern class of the base. As only non-collapsed solitons
can appear as singularity models of the Ricci flow, this was a very exciting find.

The main result of this paper may be summarized as follows (see section 2
for more details on the setup):

Theorem 1. Consider a cohomogeneity one-type ansatz with principal orbit P
a circle bundle over a product of Fano Kähler Einstein factors Fi:

S1 → P → F1 × . . .× Fm

Since the chern classes c1(Fi) are neccessarily integral classes, we may write
c1(Fi) = piηi with pi ∈ Z+ and ηi an indivisible class.

We may then choose the above bundle P so that the Euler class is a Z-linear
combination of these indivisible classes

e(P ) =

m∑
i=1

qiηi =

m∑
i=1

qi
pi
c1(Fi)

where qi ∈ Z. In this way, we say that the Euler class is a rational combination
of the Chern classes.

If we make the assumption that qi ̸= 0 for each i, then there exists a complete,
non-collapsed Steady Ricci Soliton on a manifold of the above type provided any
one of the qi are taken to be sufficiently large.
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Remark: Following the physics terminology, we could just as easily call our
Ansatz one of Kaluza-Klein type. Such metrics have been long studied in the
physics literature as models of gravity coupled to electromagnetism. (since
EM is described by U(1) gauge theory, it corresponds geometrically to a circle
bundle)

2 Detailing the setup: Cohomogeneity one met-
rics and our Fano Principal orbit

2.1 Introducing Ricci Solitons

The Ricci flow is the evolution of a Riemannian metric gt according to the
following partial differential equation:

∂tgt = −2Ric (gt)

While short time existence (and uniqueness) were already established in Hamil-
ton’s original work [10] (and was later simplified by DeTurk in [8]), the long-term
behavior is far more subtle. Famously, Grigori Perelman (see [14], [15] and [16])
refined the picture of the flow in three dimensions, leading to amazing results,
most famously the three-dimensional case of Poincaré’s conjecture. In higher
dimensions, though, much still remains mysterious about what happens near
singularities.

Despite these difficulties, there are nevertheless some important results which
help guide the way. In particular, it is known that singularity development is
modeled by a particular class of solutions known as Ricci solitons. These solitons
come in three flavours, expanding, steady and shrinking with only the latter two
being relevant for the formation of singularities (although, expanding solitons
do still help shed light in different ways as can be seen in, for example, the paper
of Angenent and Knopf [1]).

The Soliton equation itself is given by:

Ric (g) +
1

2
LXg +

ϵ

2
g = 0

Note the striking resemblance this has to the Einstein equation (albeit with
a change in sign for the constant). Indeed, the Einstein equation is just the
Ricci Soliton equation but with a zero (or Killing) vector field X. Because of
this, we will see that the question of Einstein metrics is never far from mind
when studying Ricci solitons and, indeed, many of the explicit examples of Ricci
solitons which have thusfar been found were discovered by returning to an earlier
found example of an Einstein metric (Our own example here is but one example
of this).

The character of a Ricci soliton is determined by the constant ϵ and is called
expanding, steady or shrinking depending on whether ϵ > 0, ϵ = 0 or ϵ < 0
respectively. Note that, because of the sign flip, positive Einstein metrics are
shrinking solitons.
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While, in the general case, one may have quite complicated vector fields X, a
particularly simple example is provided by the case where the vector field is the
gradient of some function, so X = grad(u) and LXg is replaced with Hessg(u),
so that the soliton equation now reads:

Ric (g) +Hessg(u) +
ϵ

2
g = 0

2.2 Introducing Cohomogeneity one

When approaching the problem of constructing a Ricci soliton, an Einstein met-
ric, or any other geometric structure of interest, one is immediately confronted
with the issue that nonlinear PDEs are an exceedingly difficult class of problems
to solve. One hopes that by checking a more restrictive case, one might begin
to make some progress on building an intuition for what to expect (or, perhaps
more importantly, not expect) from the more general case of the problem.

One technique which has proven useful on many occasions is to consider a
solution which is symmetric. Indeed, for much of the early period of investiga-
tion into the Einstein equations, many concepts could only be verified to exist
on homogeneous spaces, where the PDE system reduces to a problem of real
algebraic geometry. Homogeneous solutions are those which possess a transitive
group action, which allows one to reduce the entire problem to an algebraic one
at any chosen point of the space.

One step removed from this approach is to assume that the group action,
instead of being transitive, is cohomogeneity one. This means that, at a generic
point, the group action sweeps out a codimension one submanifold (which we’ll
call the principal orbit) of our space. In principle, this leaves us with a warped
product over the line, although we achieve much greater generality by allowing
for singular points, or ”blow-downs”. This is a point at which our codimension
one submanifold reduces to something of lower dimension. To get a handle on
this, let’s consider the simplest possible case: we’ll let the principal orbit be a
circle, so that our space looks like a segment of a cylinder at a generic point. By
shrinking the size of the circle more and more, it eventually reduces to a point,
”capping off” the cylinder and leaving us with a disk. Indeed, this is exactly
how we write the standard 2-dimensional euclidean metric in polar coordinates:

gE = dr2 + r2dθ2

We see from the r2 factor that the circle shrinks to zero at the origin and grows
without bound as r grows (such asymptotic behaviour is called ”asymptotically
conical” in contrast to the ”asymptotically cylindrical” space we would get if
the function in front limited to a constant or the ”asymptotically paraboidal”
that occurs between these two).

In the most general case, we have:

g = dt2 + gP (t)

where gP is a t-dependent metric on the principal orbit P .
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Pinning down the beginning of the cohomogeneity one approach in general
is extremely difficult as everything from constructing metrics on surfaces of
revolution to the fundamental solutions of the laplace equation can all be argued
to fit within this category. Instead, we’ll begin our discussion at the systematic
approach taken by Eschenburg and Wang in [9] . In their paper, they analysed
the Einstein equation on a cohomogeneity one manifold and came up with the
following terminology to keep track of all of the relevant pieces:

We consider a cohomogeneity one solution near a singularity to be described
by a triple (G,H,K) of lie groups, with our principal orbit being acted on by
G, with isotropy group K. The singular manifold this reduces to (in the same
way the circle reduced to a point in our surface example) is then given by G/H.
Thus, for the construction to make sense, we require the chain of inclusions
K ⊆ H ⊆ G.

One key fact that constrains what is possible in the cohomogeneity one case
is that, in order to ensure smoothness, the collapsing manifold must be a sphere.
This then shows that the quotient H/K must be a sphere of some dimension.
In our case, this will simply be a circle.

For our purposes, it will be more expedient to refer to [5], where the soliton
case is treated, leading to the following set of equations:

−tr(L̇)− tr(L2) + ü = 0

−L̇− (−u̇+ tr(L))L+ r = 0
(1)

Where L is the shape operator of the singular orbit satisfying ġ = g−1L, u is the
soliton potential and r is the Ricci endomorphism of the metric on the principal
orbit obtained by pullback.

For our case of interest, the principal orbit consists of a circle bundle over a
product of Fano-Einstein manifolds. For simplicity, we’ll assume that there are
no symmetries relating different factors of the Fano product, meaning we may
diagonalize the metric as:

gP = f(t)2(dθ −A)2 +

m∑
i=1

gi(t)
2gFi

where m is the number of Fano factors Fi and A is a multiple of a connection 1-
form on B = F1×. . .×Fm whose curvature 2-form form Ω is a real representative
for the Euler class of P , [Ω] = c1(B) =

∑m
i=1 c1(Fi).

This then immediately gives:

L = diag

(
ḟ

f
,
ġ1
g1
, . . . ,

ġm
gm

)

where each ġi
gi

appears di = dim(Fi) times, giving a matrix of size D = 1 +∑m
i=1 di as expected.
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2.3 Riemannian submersions and the O’Neill formulae

Now, returning to eq. (1), we are left with the question of how to compute the
Ricci portion of the equations. This can be done by application of the O’Neill
formulae for Riemannian submersions (as can be found in, for example, [4]) as
applied to the fibre sequence:

S1 → P →
m∏
i=1

Fi

Recalling that, the Fano-Einstein condition gives:

Ric(gFi
) = pigFi

where pi ∈ Z is the Chern class. By this, we mean that piη is the Chern class
where η is indivisible. Noting that the Euler class is a rational multiple of the
chern class (see [18] for a more thorough discussion of this) allows us to define
integers qi by requiring qiη represents the Euler class

The O’Neill formulae for the Ricci tensor read: (see chapt 9 of [4] for more
details)

r(U, V ) = r̂ − (N,TUV ) + (AU,AV ) + (δ̃T )(U, V )

r(X,U) = ((δ̂T ), X) + (DUN,X)− ((δ̌A)X,U)− 2(AX , TU )

r(X,Y ) = ř(X,Y )− 2(AX , AY )− (TX, TY ) +
1

2
((DXN,Y ) + (DYN,X))

Where X,Y are horizontal vectors, U, V are vertical vectors, T is the second
fundamental form and A is related to the integrability of the horizontal distri-
bution. (r̂ and ř are on the fibre/base respectively) (N depends on T, which
we’ll see soon means it doesn’t matter to our analysis). From here, the standard
simplification to make the setup easier is to assume that the vertical fibres are
totally geodesic so that T = 0 and furthermore take the connection associated
to the horizontal distribution to be Yang-Mills so that δ̌A = 0. This is the stan-
dard procedure as can be seen in, for example, [18]. Entering these assumptions
into the O’Neill Formulae above gives:

r(U, V ) = r̂ + (AU,AV ) = 0 + (AU,AV )

r(X,U) = 0

r(X,Y ) = ř(X,Y )− 2(AX , AY )

Where the first line uses the fact that all one-dimensional spaces are trivially
flat (so that r̂ = 0).

Thus, we see that the only things to compute in this are the values of

(AU,AV ) =

dim(base)∑
i=1

(AXi
U,AXi

V )
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and

(AX , AY ) =

dim(base)∑
i=1

(AXXi, AYXi) =

dim(fibre)∑
i=1

(AXUi, AY Ui)

Where {Xi} and {Ui} are orthonormal bases of the base/fibre respectively. For
the case of a single circle factor, we have the formula: (see 9.65 of Besse)

AXY = −1

2
ω(X̌, Y̌ )Û

While

(AU,AU) =

1∑
i=1

(AUi, AUi) = |A|2 =

dim(base)∑
i=1

(AXi
, AXi

)

=
∑
i,j

(AXi
Xj , AXi

Xj) = −1

4

∑
i,j

(ω(Xi, Xj))
2
(U,U)

So assuming (U,U) = ρ2, the above is equal to:

=
1

4

∑
i,j

ρ2 (ω(Xi, Xj))
2

While

(AX , AY ) =
∑
i

(AXXi, AYXi) =
1

4

∑
i

ω(X,Xi)ω(Y,Xi)(Û , Û) =
1

4

∑
i

ρ2ω(X,Xi)ω(Y,Xi)

Now, when evaluating the above, we turn to [18]

We have that, the curvature form Ω above is given by Ω =
∑dim(base)
i=1 qiωi

where ωi is the Kähler class of the ith Fano factor.
In order to make sense of this, we turn to the standard equations for a Fano

manifold
ω(X,Y ) = g(JX, Y )

Because of this, if we are to expand the above in an orthonormal basis {Xi},
we arrive at:

ω(Xi, Xj) = g(JXi, Xj)

Now, we can expand the endomorphism J in coordinates with respect to this
basis:

JXi =
∑
k

Jki Xk

So that:
ω(Xi, Xj) =

∑
k

g(Jki Xk, Xj)

ω(Xi, Xj)
2 =

(∑
k

g(Jki Xk, Xj)

)2

=
∑
k,m

g(Jki Xk, Xj)g(J
m
i Xm, Xj)
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∑
k,m

Jki J
m
i g(Xk, Xj)g(Xm, Xj) =

∑
k,m

Jki J
m
i δkjδmj

=⇒
∑
ij

ω(Xi, Xj)
2 =

∑
i,j,k,m

Jki J
m
i δkjδmj =

∑
ij

Jji J
j
i = tr(JTJ)

But, for a Kähler manifold we have that the complex structure is orthogoanal:

g(JX, JY ) = g(X,Y ) =⇒ JTJ = 1

This then gives us (remember: the norm of a two-form is the sum with i < j):

2∥ω∥2=
∑
ij

ω(Xi, Xj)
2 = trI = di

Finally, we note that, in our case, we deal not with the original Fano metrics
hi when restricting to these parts of the tangent space, but instead use g2i hi.
Since the norm of a two-tensor is given by double contraction with the metric,
this then implies

∥ω∥2g2i hi
=

1

g4i
∥ω∥2hi

=
di
2g4i

Thus, combining all of the above with the fact that our bases are Einstein
(so ři = pihi), we arrive at the following set of equations:

ü =
f̈

f
+

m∑
i=1

di
g̈i
gi

d

dt

ḟ

f
=− (trL− u̇)

ḟ

f
+

m∑
i=1

diq
2
i

4

f2

g4i

d

dt

ġi
gi

=− (trL− u̇)
ġi
gi

+
pi
g2i

− q2i
2

f2

g4i

(2)

which will be the entire focus of the rest of the document.

2.4 Initial conditions and smoothness at the singular or-
bit.

The last piece of information which needs to be fixed to leave us with a well-
defined ODE problem is the question of initial conditions. For the ray-type case
we consider here, there is a single singular orbit corresponding to the zero of
our geodesic variable. The work of Buzano in [5] gives an account of how to
derive the initial conditions in the cohomogeneity one setting. Because of the
singular orbit, it turns out that we also need to provide some second derivative
information at t = 0, even though the ODE is second order. Namely, we only
get a unique solution if we also prescribe ü(0).

Thankfully our case is sufficiently similar that her results still apply. In
particular, she was able to show that both u and the gi are even functions at

8



t = 0 while f is odd. This is already enough to give us f(0) = u̇(0) = ġi(0) = 0.
In order to get something non-zero, we also need to require ḟ(0), gi(0) ̸= 0 and
so, given the geometric picture, it is most natural to require ḟ(0), gi(0) > 0.
Since changing the metric by homothety doesn’t change the geometry, it is
common to find a choice of normalization. Often the condition is taken to be
such that vol(M) = 1 however, in our case, a more convenient choice is to fix
our homothety degree of freedom by requiring ḟ(0) = 1.

Putting all of this together, we see that the only initial conditions left to set
are u(0) and ü(0), which we will find later by careful analysis of a conserved
quantity. Nevertheless, we collect all initial conditions here for later convenience:

f(0) = ġi(0) = u(0) = u̇(0) = 0

ḟ(0) = 1, gi(0) > 0

ü(0) =
C

2

(3)

3 The work of Appleton and Wink

What follows is hoped to be both an extension of the work of Appleton to a
slightly broader case, while also serving as a fringe case of the setup studied by
Wink. As such, in order to understand the context for what is being attempted
here, it will be important to review both of their results.

3.1 Wink’s work

We begin with the work of Wink. As I’ve decided to stick with his notation, we
return to system 2. In [19], he approaches a number of Ansatz from the perspec-
tive of the soliton potential, including our own. In the course of his discussion,
Wink considers both the steady and expanding cases. As my own material cov-
ers only the steady case, it is safe to assume ϵ = 0 in what follows. For our
case, he was able to prove the existence of a continuous family of complete Ricci
solitons, surrounding Kähler-Einstein solutions which had been found earlier by
Dancer and Wang in [7]. Crucially, though, Wink relied on a-priori estimates
which resulted in all the solutions being collapsed.

In particular, in proving his theorem A, Wink assumes an upper bound on
the quantity ωi =

f
gi
. This can be seen explicitly in the statement of Proposition

2.15 from the paper:

Wink’s Proposition 3.15. Let ϵ ≥ 0 and consider a maximal Einstein or
Ricci soliton trajectory in the Dancer-Wang set-up with initial conditions given

by eq. (3) and ü(0) ≤ 0. Suppose that f
2

g2i
< 2pi

q2i
holds along the entire trajectory

if qi ̸= 0.
Then this trajectory is defined for all t ≥ 0 and corresponds to a complete

Einstein or Ricci soliton metric.
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Since we are requiring
f2

g2i
= ω2

i <
2pi
q2i

we see that this set-up is specifically avoiding the critical phenomena which
occurs as we let

ω2
i =

2pi
q2i

This corresponds exactly to the Q = 1 case of Appleton’s approach which we’ll
see later and in his case this value shows itself to be the critical value above
which Q (our ω) is destined to grow without bound (eventually leading to an
incomplete solution, whose existence is key to the existence of the noncollapsed
trajectory).

3.2 Enter the conserved quantity

Before moving on to the work of Appleton, we’ll first need to go over the role
of the conserved quantity all (gradient) solitons share.

Recall that, for any C3-regular gradient steady soliton, we must have

R+ |∇u|2 + ϵu+ C = 0

for some constant C, function u and where R is the scalar curvature. This
equation goes all the way back to Hamilton’s original work (cf. [11]) and has
proved a key way to gain insight to the geometry of solitons in just about every
case found. The hope of this work is that it may help to cast Appleton’s results
within this broader framework of general solitons.

In our cohomogeneity one setup, this equation takes the form:

ü+ (−u̇+ trL)u̇ = C + ϵu (4)

in the steady case, we have ϵ = 0 and the equation no longer has any direct
dependence on u, instead only depending on u̇. As it turns out, the same is true
of the steady equations generally, meaning that no matter which value of u(0)
we use, the dynamics are entirely unchanged. For this reason, we are safe to set
u(0) = 0 (as our interest here will only be on the steady case).

Focusing more closely on the equation

ü+ (−u̇+ trL)u̇ = C

we note that we may relate the initial conditions to the conserved quantity
simply by setting t = 0 in the above equation. There is, however, one wrinkle
coming from the trL term. While u̇(0) = 0, we also have that f(0) = 0 and,
since trL contains a ḟ/f term, we’ll have to make sense of

ü(0) +
ḟ

f
u̇

∣∣∣∣
t=0

= C
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we can then evaluate this second term via l’Hopital, leaving us with:

C = ü(0) +
u̇

f
ḟ

∣∣∣∣
t=0

= ü(0) +
ü(0)

ḟ(0)
ḟ(0) = 2ü(0)

Thus, we are able to round off our initial conditions with what will turn out to
be the most important one:

ü(0) =
C

2

In what follows (especially as we begin to discuss the new results of Appleton),
we will see that the initial condition ü(0) will be central to the analysis and,
indeed, to the production of new examples. When we see ü(0), we should have
in mind the above relation, which tells us that we are equally studying the
behaviour of the conserved quantity C. While the quantity ü is particular to
our setup, this focus on the constant helps us contextualize things within the
broader context of soliton solutions.

3.3 Translating Appleton’s results to Wink’s notation

In his work, Appleton made a different choice in normalizing the fibres which
have the result of changing the presentation of the equations. Here we will give a
quick account of how this difference comes about and, crucially, how to transfer
between a result in Appleton’s notation with one in Wink’s.

To begin, let us return to our earlier discussion on how to derive the equations
in the first place:

The steady soliton equations in [19] are:

ü =
f̈

f
+

m∑
i=1

di
g̈i
gi

d

dt

ḟ

f
=− (trL− u̇)

ḟ

f
+

m∑
i=1

diq
2
i

4

f2

g4i

d

dt

ġi
gi

=− (trL− u̇)
ġi
gi

+
pi
g2i

− q2i
2

f2

g4i

(5)

While Appleton’s [2] are:

f ′′ =
a′′

a
+ 2n

b′′

b

a′′ = 2n

(
a3

b4
− a′b′

b

)
+ a′f ′

b′′ =
2n+ 2

b
− 2

a2

b3
− a′b′

a
− (2n− 1)

(b′)2

b
+ b′f ′

(6)

Note that, while we use the label t and denote our derivatives by ḟ , Appleton
instead uses s (not to be confused with the s we’ll use later on) and denotes
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derivatives as f ′, but other than the notation, these have the same meaning for
us.

Rearranging the above then gives:

f ′′ =
a′′

a
+ 2n

b′′

b

a′′

a
−
(
a′

a

)2

= 2n

(
a2

b4
− a′b′

ab

)
−
(
a′

a

)2

+

(
a′

a

)
f ′ = −

(
−f ′ + a′

a
− 2n

b′

b

)
a′

a
+ 2n

a2

b4

b′′

b
−
(
b′

b

)2

=
2n+ 2

b2
− 2

a2

b4
− a′b′

ab
− 2n

(
b′

b

)2

+

(
b′

b

)
f ′

which ultimately gives:

f ′′ =
a′′

a
+ 2n

b′′

b
d

dt

a′

a
= −

(
a′

a
+ 2n

b′

b
− f ′

)
a′

a
+ 2n

a2

b4

d

dt

b′

b
= −

(
a′

a
+ 2n

b′

b
− f ′

)
b′

b
+

2n+ 2

b2
− 2

a2

b4

(7)

So,

2n
a2

b4
=
dq2

4

f2

g4
,
2n+ 2

b2
=

p

g2
, 2

a2

b4
=
q2

2

f2

g4

From which we may derive:

f ≃ u

a ≃ q(n+ 1)

p
f

b ≃

√
2(n+ 1)

p
g

(8)

The convenience of Appleton’s setup is most apparant in the case where
the Fano base is simply a complex projective space CPn (and, indeed, his pa-
per spends the most time with this case). It is a well-known fact in complex
geometry that the first chern number of projective space is given by:

c1(CPn) = n+ 1

Since p is just the chern class, we see that in this case p = n + 1 so that the
above relations simplify to:

f ≃ u

a ≃ qf

b ≃
√
2g

12



Since our (Wink’s) choices of normalization feature the condition ḟ(0) = 1,
the middle relation above tells us that the initial condition for a (at least in the
case of a projective base) is simply given by the Euler class of the bundle.

While this may seem a rather natural thing to do, it is clear that Appleton’s
choices here have no analogue in the multi-factor case and so Wink’s equations
are indeed the more natural presentation of the system for our interests.

3.4 Appleton’s work

Appleton, in contrast, studied the same setup, but now with only a single Fano
factor in the base of the principal orbit. Thanks to the existence of an explicit
solution to the Einstein equation in this case, discovered initially by Berard
Bergery (see [3]) and later expounded by Page and Pope in [13], Appleton was
able to continue Wink’s family to a larger domain of the parameters and showed
that the corresponding Einstein trajectories would be forced to have finite time
blow-up. He found that, right at the cusp of where the solutions cease to exist,
there is in fact a noncollapsed solution. Unfortunately, his approach relies on
the existence of an explicit solution to the Einstein equation and so is not readily
extendable to the multi-factor case without a little work. Partial results in this
direction have been achieved, and will be the focus of the final part of this
document.

For now, let us return to the question of how Appleton’s work diverges from
the earlier results of Wink.

The primary deviation from Wink is that Appleton replaces the a-priori
estimate on ωi for a condition on the initial condition of the soliton potential
ü(0). This can be seen clearly in the statement of his Lemma 7.1:

Lemma 7.1 Let (f, a, b) : [0, s0) → R2, s∞ ∈ R∪{∞}, be a maximal solution
to the soliton equations with initial conditions a′(0) > n + 1 and f ′′(0) = 0.
Then Q > 1 in finite distance s.

Here we can see how the a-priori estimate of Wink’s analysis breaks down as
the initial value is increased from the negative toward zero.

By the conserved quantity for Ricci solitons, this then transfers to a condition
on the soliton constant C in a fairly direct way (ü(0) = C

2 ). By reframing in this
way, Appleton was able to make explicit the relationship between the collapsed
complete solutions and the incomplete ones. Namely, the former exist while C is
sufficiently negative and, on increasing C toward zero, we eventually cross over
into the incomplete case. As the parameter is a multiple of one of the initial
conditions, we are then able to use continuous dependence on initial conditions
to argue that there must exist some particular solution at a critical value of C
which somehow ”interpolates” between the two families on either side. This is
precisely the non-collapsed example.

He accomplishes this in his Theorem 7.2, whose essential features can still
be seen in the present document (albeit with one slight change).

13



The key steps to Appleton’s proof go through as follows: First, we define a
quantity ω = f

g (Appleton uses Q = a
b ). We see that if this quantity is bounded

above, the solution continues to exist for some longer length of time. This is
the content of Appleton’s Lemma 5.3:

Lemma 5.3 Let s0 > 0 and (f, a, b) : [0, s0) → R3 be a solution to the soli-
ton equations with f ′′(0) ≤ 0. If Q <

√
n+ 1 on [0, s0), the solution can be

extended past s0.

This is then contrasted against the beheviour of the solution when this bound
is broken as can be seen in Lemma 6.5:

Lemma 6.5 There are no complete solutions (f, a, b) : [0,∞) → R3 to the
soliton equations with f ′′(0) < 0 and n+ 1 < Q2

∞ <∞

Finally, in Lemma 7.1, he shows that a set of initial conditions exist which
gaurantee the bound is broken in finite time, thus leading to an incomplete so-
lution in this case. Theorem 7.2 then uses this nonexistence result in an essential
way when establishing the existence of his new noncollapsed soliton. Thank-
fully, 7.2 still works with minor change and the final theorem of this document
will be notably similar (albeit with one important change)

3.5 Asymptotics

In his section 6, Appleton covers the topic of Asymptotics proving:

Theorem 6.1 Let (u, f, g) : [0,∞) → R3 be a solution to the soliton equations
with ü(0) < 0. Then either lim

t→∞
Q = 0 or lim

t→∞
Q = 1. Furthermore

1. if lim
t→∞

Q = 0 we have f ∼ const and g ∼ const
√
t

2. if lim
t→∞

Q = 1 we have f ∼ g ∼ const
√
t

as t→ ∞.
Naturally, we hope to derive an analogue of this for our case. For our

purposes, the asymptotics of our new solutions were actually already covered in
Wink’s paper. Because his statement slightly differs, I have decided to include
the argument though it should be noted there is nothing essentially new here
(other than the trivial step at the end). See Proposition 3.18 for Wink’s version.

Theorem 2. Suppose the ωi all have finite limits as t→ ∞.

� Then there are at most two possibilities for the limit of ω⃗ = (ω1, ωm), one
of which is the origin and the other has ωi > 0 for each i.

� Then, gi → ki
√
t asymptotically for some constants ki.
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� If, in addition, none of the ωi have a limit of zero, then f has the same
asymptotic behaviour (up to a constant)

Proof. We may rewrite eq. (2) as:

f̈ = −(−u̇+ trL)ḟ − ḟ2

f
+

m∑
i=1

diq
2
i

4

ω4
i

f

g̈i = −(−u̇+ trL)ġi −
ġ2i
gi

+
pi − q2i

2 ω
2
i

gi

As in Wink, we rely on a result from Appleton’s paper provided by Jon
Wilkening (see Lemma 6.2 of Appleton).

As Wink does, we rely on a result from Appleton’s paper. Namely, Lemma
6.2 of his paper (see pp. 12 & 24 of the paper) gives us the following:

Lemma 1. Let α > 1, ϵ > 0 and c∗1, c
∗
2 > ϵ. Assume ci : [0,∞) → R, i = 1, 2,

are two positive smooth functions satisfying

|ci(t)− c∗i | < ϵ, i = 1, 2,

for all t ≥ 0. Then for a solution y : [0,∞) → R to the ODE

y′′ =
c1(t)

2y
− α

(y′)2

y
− c2(t)y

′ (9)

with initial conditions y(0), y′(0) > 0 there exists an t0 > 0 such that for t > t0

y2(t0) + γ−(1 + ϵ)−1(t− t0) ≤ y2(t) ≤ y2(t0) + γ+(t− t0),

where

γ± =
c∗1 ± ϵ

c∗2 ∓ ϵ

In particular, the Lemma requires that the functions c1 and c2 are bounded.
We will prove later on (see the beginning of section 3) that f is monotone

increasing, while ġi = 0 can only occur if ωi → ∞. Putting these two together,
the assumption of finite limit for ωi is then enough to ensure the shape operator
remains positive-definite along the trajectory and so trL→ 0 as t→ ∞. Mean-
while, Wink was able to show in his Proposition 2.3 that in such cases we must
also have −u̇ →

√
−C where C is the Ricci soliton conserved quantity we saw

earlier. All of this together is enough to account for the c1, which is identical
in both cases.

Meanwhile, dealing with c2 will require a little more. First note that, for f ,
we cannot ensure c2 is bounded away from zero as the hypotheses require when
the ωi → 0. Further, even if all ωi are positive, we still need to make sure we

have pi − q2i
2 ω

2
i ̸= 0.
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Nevertheless, applying the lemma to f and gi then gives us (see Wink Prop
3.18 for the original argument) that for all small ϵ > 0 there is t0 > 0 such that

f(t0)
2 + γ−(1 + ϵ)−1(t− t0) ≤ f2(t) ≤ f(t0)

2 + γ+(t− t0)

gi(t0)
2 + Γi,−(1 + ϵ)−1(t− t0) ≤ g2i (t) ≤ gi(t0)

2 + Γi,+(t− t0)

where

γ± =

∑m
i=1

diq
2
i

2 ω2
i,∞ ± ϵ

√
−C ∓ ϵ

and Γi,± =
2pi − q2i ω

2
j,∞ ± ϵ

√
−C ∓ ϵ

This yields γ−
Γi,+

≤ ω2
i,max ≤ γ+

Γi,−
for all small ϵ > 0, hence,

(
pi −

q2i
2
ω2
i,∞

)
ω2
i,∞ =

m∑
j=1

djq
2
j

4
ω4
j,∞ (10)

whose common locus of solution contains only two points, one being the
origin and the other satisfying ωi,∞ > 0 for each i. We prove this by breaking
into cases:

Zero case: Suppose any of the ωi are zero. The corresponding equation(
pi −

q2i
2
ω2
i,∞

)
ω2
i,∞ =

m∑
j=1

djq
2
j

4
ω4
j,∞

then clearly has a zero LHS.
Thus,

m∑
j=1

djq
2
j

4
ω4
j,∞ = 0

But, since ωj appears to even power and the coefficients are all positive, it
follows that we must then have ωj = 0 for every j.

Nonzero case: Now, instead suppose that ωi > 0 for each i. We begin by
reshuffling our equation:(

pi −
q2i
2
ω2
i,∞

)
ω2
i =

m∑
j=1

djq
2
j

4
ω4
j,∞

=⇒ piω
2
i − 2

q2i
4
ω4
i,∞ =

m∑
j=1

djq
2
j

4
ω4
j,∞

=⇒ piω
2
i −

m∑
j=1

djq
2
j

4
ω4
j,∞ = 2

q2i
4
ω4
i,∞
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Now, since we are assuming ωi > 0 for each i, we must have that
∑ djq

2
j

4 ω4
j > 0

too. Thus, we can divide to obtain:

piω
2
i

(∑ djq
2
j

4
ω4
j

)−1

− 1 = 2
q2i
4
ω4
i,∞

(∑ djq
2
j

4
ω4
j

)−1

=⇒

piω2
i

(∑ djq
2
j

4
ω4
j

)−1

− 1

(∑ djq
2
j

4
ω4
j

)
= 2

q2i
4
ω4
i,∞

piω2
i

(∑ djq
2
j

4
ω4
j

)−1

− 1

∑ djq
2
j

4
ω4
j

(∑ djq
2
j

4
ω4
j

)−2
 = 2

q2i
4
ω4
i,∞

(∑ djq
2
j

4
ω4
j

)−2

piω2
i

(∑ djq
2
j

4
ω4
j

)−1

− 1

∑ djq
2
j

p2j
p2jω

4
j

(∑ djq
2
j

4
ω4
j

)−2
 = 2

q2i
p2i
p2iω

4
i,∞

(∑ djq
2
j

4
ω4
j

)−2

piω2
i

(∑ djq
2
j

4
ω4
j

)−1

− 1


∑ dj

(
qj
pj

)2
pjω2

j

(∑ djq
2
j

4
ω4
j

)−1
2


= 2

(
qi
pi

)2
piω2

i,∞

(∑ djq
2
j

4
ω4
j

)−1
2

Thus, if we define new variables si by:

si := piω
2
i

(∑ djq
2
j

4
ω4
j

)−1

The above becomes:

(si − 1)
∑

di

(
qj
pj

)2

s2j = 2

(
qi
pi

)2

s2i

These equations go back to Wang and Ziller in [18] (cf. pp.222-223). There,
when considering the question of Einstein metrics on a generalization of our
principle orbit (they consider general torus bundles over a product Einstein-
Fano base) they show the equations have unique positive solution.

Putting the above two together then gives us that there are only two possible
finite limits for the ωi, one being the origin, the other positive.
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Wrapping up Thus, if we sit at the positive point, we can then see from

eq. (10) that pi − q2i
2 ω

2
i,∞ ̸= 0 as follows: Since we know ωj > 0 for each j,

the RHS of eq. (10) must be positive immediately contradicting the zero on the
LHS. In this way, we see that the Γi,± are still bounded away from zero in this
case. Meanwhile, at the origin, this is just pi and so, still, is nonzero. This
retroactively justifies our use of the lemma by ensuring c2 satisfies the relevant
hypotheses (at least in the gi case).

Thanks to this, we may apply the theorem directly to gi to get the desired
asymptotics.

Once we have the result for gi, the following result for f simply comes from
the fact that the quotient f

gi
being asymptotically a (nonzero) constant implies

the numerator must have the same asymptotics as the denominator.

4 The multi-factor case:

4.1 Initial estimates on f and g

Before beginning our analysis in earnest, we first establish some estimates on
our functions which will prove helpful over and over.

The following proposition provides us a partial analogue of Appleton’s Lemma
4.1 (we leave the gi part of the lemma until after we’ve covered the behaviour
of the ωi in more detail as they play a larger role there).

Proposition 1. Let t0 > 0 and (u, f, gi) : [0, t0) → Rm+2 be a smooth solution
to the soliton equations 2. Then f is a strictly increasing function on [0, t0)

Proof. By the initial conditions, ḟ(0) > 0, so if f is ever to decrease, we’d first
have to have ḟ = 0. The evolution equation 2 of f implies

f̈ =

m∑
i=1

diq
2
i

4

f3

g4i
> 0

whenever ḟ = 0 since f must clearly still be positive at this time. Meanwhile,
since gi(0) > 0, 1/gi is initially positive and can only become zero if gi = ∞,
but this can’t happen within the domain of our solution. Since the derivative
of ḟ is positive when it reaches zero from above, this leads to a contradiction
and so ḟ > 0 so long as the solution exists.

We will also find it useful to have a relative bound, which gives us:

Lemma 2. Along a solution to the soliton equations eq. (2), we have the fol-
lowing bound:

ḟ ≥ C∏
i g
di
i e

−u

for some positive constant C. In particular, ḟ → ∞ if gi → 0 for any i.
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Proof. In order to prove this, we’ll need only the equation for f :

d

dt

ḟ

f
= −(trL− u̇)

ḟ

f
+

m∑
i=1

diq
2
i

4

f2

g4i

Since every non-constant term appears to an even power, it is easy to see we
must have:

m∑
i=1

diq
2
i

4

f2

g4i
≥ 0

From which it immediately follows:

d

dt

ḟ

f
≥ −(−u̇+trL)

ḟ

f
= −

(
−u̇+

ḟ

f
+
∑
i

di
ġi
gi

)
ḟ

f
= −

(
−u̇+

∑
i

di
ġi
gi

)
ḟ

f
−

(
ḟ

f

)2

=⇒ d

dt

ḟ

f
=
f̈

f
−

(
ḟ

f

)2

≥ −

(
−u̇+

∑
i

di
ġi
gi

)
ḟ

f
−

(
ḟ

f

)2

=⇒ f̈

f
≥ −

(
−u̇+

∑
i

di
ġi
gi

)
ḟ

f

Now, we divide by ḟ/f , which requires us to be able to claim this term is
positive, which we just did in the previous lemma. Hence:

d

dt
ln(ḟ) =

f̈

ḟ
≥ −

(
−u̇+

∑
i

di
ġi
gi

)
= − d

dt
ln

(
e−u

∏
i

gdii

)

Integrating the above from t0 > 0 (to avoid issues with f(0) = 0) to t
immediately yields our result.

4.2 Evolution of the ωi

Now we turn our attention to the ωi, whose dynamics are central to what follows.
Before going on to the multi-factor case, let us take a moment to go over the
picture in the one-factor case.

As he derives in his section 3, the evolution of Appleton’s Q quantity is given
by the equation:

Q′′ =

(
f ′ − (2n+ 1)

b′

b

)
Q′ +

2n+ 2

b2
Q(Q2 − 1)

So that, at a critical point of Q, we have:

Q′′
crit =

2n+ 2

b2
Q(Q2 − 1)

From this expression, we can see that the sign is entirely dependent on the size
of Q and, in particular, whether Q > 1 or 0 < Q < 1. Thus, any solution
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with a maximum for Q (as all collapsed solutions must have) must always lie
in 0 < Q < 1. Meanwhile, Q2 = n + 1 sits above this and whose role was
expounded in section 2.4.

Using our formulae derived back in section 2.3, we can now relate the above
to their equivalents in our normalization. We see that:

Q =
a

b
=

q(n+1)
p f√

2(n+1)
p g

=
q(n+ 1)

p

√
p√

2(n+ 1)

f

g
=
q
√
n+ 1√
2p

ω

=⇒ ω =

√
2p

q
√
n+ 1

Q

=⇒ ω2 =
2p

q2(n+ 1)
Q2 =

4p

q2(d+ 2)
Q2

Hence, it follows that Appleton’s condition Q = 1 corresponds to ω2 = 4p
(d+2)q2 ,

while Q2 = n+ 1 corresponds to ω2 = 2p
q2 .

Now, in the multi-factor case, we instead have (see Wink p.22):

ω̈i = ω̇i

u̇− (di + 1)
ġi
gi

−
∑
j ̸=i

dj
ġj
gj

+
ωi
g2i

q2i
2
ω2
i − pi +

m∑
j=1

djq
2
j

4

f2

g2j

g2i
g2j


In the multi-factor setting, it is significantly less obvious to interpret this

and, indeed, we will find it useful in the sequel to note it may also be written
as:

ω̈i = ω̇i

u̇− (di + 1)
ġi
gi

−
∑
j ̸=i

dj
ġj
gj

+
ωi
f2

q2i
2
ω4
i − piω

2
i +

m∑
j=1

djq
2
j

4
ω4
j


This form is useful as it replaces Q(Q2−1) above for polynomials only depending
on the ωi (note these are exactly the ones which appeared in our discussion of
asymptotics earlier, whose common zero locus determines the possible limits of
the ωi). The zero set of this polynomial then acts as a non-linear analogue of the
Q = 1 condition from Appleton. This is seen in the figure above, where we’ve
also plotted the lines ω2

i = 4p
(d+2)q2 and ω2

i = 2p
q2 , whose relation to Appleton’s

picture is seen above and whose relevance to the multi-factor setting will become
clear as we continue.

Thus, along a soliton solution of eq. (2), a critical point of ωi satisfies:

ω̈i,crit =
ωi
g2i

q2i
2
ω2
i − pi +

diq
2
i

4

g2i f
2

g4i
+
∑
j ̸=i

djq
2
j

4

g2i f
2

g4j


It is clear to see that the sum term must be nonnegative as all functions

appear in even power. Thus the sign of this term is determined entirely by the
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sign of ωi, whose positivity may be argued as follows: This is not true initially
since ωi(0) = 0. However, since ω̇i(0) > 0, we have ωi > 0 at least on (0, ϵ) for
some small ϵ > 0. Thus, in order for positivity to be broken, we’ll need ωi = 0
in finite time, implying either f = 0 or gi = ∞. Clearly, if the latter occurs, our
solution cannot be defined for further times while the former may be ruled out
by the monotonicity we proved for f in lemma 2 above.

Thus, we obtain the inequality:

ω̈i
∣∣
t=tcrit

≥ ωi
g2i

(
(di + 2)q2i

4
ω2
i − pi

)
=

(di + 2)ωiq
2
i

4g2i

(
ω2
i −

4pi
(di + 2)q2i

)
which only makes sense assuming qi ̸= 0. But note that by the first inequal-

ity, the qi = 0 case always leads to a negative on the RHS of the inequality. In
such a case, the other factors dominate the discussion, so we focus on whichever
of the qi’s are positive. If all are zero, then we clearly always have a max
regardless and so such cases naturally lead to collapsed solutions.

So, thanks to the positivity of ωi shown earlier, we see that if

ω2
i >

4pi
(di + 2)q2i

(11)

then ω̈i,crit > 0 and we have a local minimum.
However, we know by smoothness that ωi(0) = 0, so the first time that this

(eq. (11)) occurs, we must have ω̇i ≥ 0 (since it will have to increase to this
point, we cannot have ω̇i < 0) and this contradicts the local min. (i.e. ωi
cannot increase to a local min). So, if ωi gets big enough, it remains monotone
increasing for all further times.

But, recalling theorem 2, we know the only possible finite limits are given
by the two solutions of the equations:(

pi −
q2i
2
ω2
i,∞

)
ω2
i,∞ =

∑
j

djq
2
j

4
ω4
j,∞

Or, taking out the i part of the sum:(
pi −

(di + 2)q2i
4

ω2
i,∞

)
ω2
i,∞ =

∑
j ̸=i

djq
2
j

4
ω4
j,∞

But, if our condition eq. (11) is satisfied, then the LHS is < 0, and, as we said
before the RHS is always ≥ 0 and so we get a contradiction.

This shows us that once eq. (11) is satisfied, it is no longer possible for ωi to
have a finite limit. Thus, in such cases, we must have ωi → ∞ (note we haven’t
specified whether this occurs in finite time).

Putting all of our discussion above together, we arrive at the following:

Lemma 3. Suppose we have a smooth solution (u, f, gi) : [0, T ) → Rk (with
k =

∑m
i di + 2) to the soliton equations eq. (2) defined on some interval [0, T )

with T ∈ (0,∞]. Then:
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1. If there exists a t0 ∈ [0, T ) where eq. (11) holds, that is if:

ωi(t0)
2 >

4pi
(di + 2)q2i

Then ωi is monotone increasing for all further t ∈ (t0, T ).

2. If, in addition, [0, T ) is the maximal domain of definition of the solution
above, then we must have:

lim
t↑T

ωi(t) = +∞

(Note we haven’t shown T <∞)

4.3 Returning to the gi

Now that we’ve covered the basics of the ωi and their dynamics, we can tighten
up our control of the gi, completing our Analogue to Appleton’s Lemma 4.1
started in proposition 1:

Proposition 2. Let s0 > 0 and (u, f, gi) : [0, s0) → Rm+2 be a solution to the
soliton equations. Then gi are strictly increasing on any interval 0 ∈ I ⊂ [0, s0)

on which ωi <
√
2pi
qi

. Moreover, ġi changes its sign at most once in the interval

[0, s0).

Proof. The evolution equation of gi shows us that g̈i =
pi
gi
− q2i

2
f2

g3i
= 1

gi

(
pi − q2i

2 ω
2
i

)
whenever ġi = 0. Applying l’Hopital’s rule around s = 0 shows that

g̈i(0)

gi(0)
= − ḟ

f

ġi
gi

∣∣∣∣
t=0

+
pi

gi(0)2
= − ḟ(0)

gi(0)

g̈i(0)

ḟ(0)
+

pi
gi(0)2

so that g̈i(0) = pi
2gi(0)

> 0. This in conjunction with the boundary condition

ġi(0) = 0 implies that gi is strictly increasing on any interval I = [0, s], s > 0,
where

pi −
q2i
2
ω2
i > 0 =⇒ ω2

i <
2pi
q2i

=⇒ ωi <

√
2pi
qi

Therefore, ġi can change its sign only when ωi ≥
√
2pi
qi

. Since ωi is strictly

increasing when ωi >
2
√
pi√

(di+2)qi
and g̈i =

1
gi

(
pi − q2i

2 ω
2
i

)
whenever ġi = 0, it

follows that ġi changes sign at most once.

4.4 Monotonicity properties of the soliton potential u

Thanks to earlier work on this ansatz (see e.g. prop 2.3 of [6] and prop 1.2 of
[19]), we have the following properties for our soliton potential u:

Proposition 3. Let s0 > 0 and (u, f, gi) : [0, s0) → Rm+2 be a solution to the
soliton equations. Then
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1. if ü(0) < 0 then u and u̇ are strictly decreasing functions, in particular

(a) u̇ < 0 for s > 0

(b) ü < 0 for s ≥ 0

2. if ü(0) = 0 then u ≡ 0

From this general case, we then specialize to a corollary we will find helpful
later on (note the similarity to Appleton’s corollary 4.3):

Lemma 4. Let s0 > 0 and (u, f, gi) : [0, s0) → Rm+2 be a solution to the soliton

equations with ü < 0 and ωi <
√
2pi
qi

. Then u̇ ≥ −
√

−2ü(0).

Proof. Recall we have the conserved quantity for a steady soliton:

ü+ (trL)u̇− u̇2 = 2ü(0) = C

Which is simply the conserved quantity equation, eq. (4), appearing back in
section 2.2.

The bound on ωi ensures ġi > 0 which means trL > 0 and so it follows from
u̇, ü < 0 that:

−u̇2 > ü+ (trL)u̇− u̇2 = 2ü(0)

=⇒ |u̇| <
√
−2ü(0)

=⇒ u̇ > −
√
−2ü(0)

As desired.

4.5 Short-time Existence from the Wink bound

Now, we come to one of the main results of Appleton’s paper. In essence, this
information is already present in Wink (see his prop 3.15) and can be seen as
the result of his choice of a-priori estimate. What is presented here is a local
version (which can be seen to be essentially a recounting of Appleton’s Lemma
5.3 in [2] albeit with the different normalizations).

Lemma 5. Let s0 > 0 and (u, f, gi) : [0, s0) → Rm+2 be a solution to the soliton

equations with ü(0) ≤ 0. If ωi <
√
2pi
qi

on [0, s0), the solution can be extended
past s0.

Proof. The monotonicity properties of u, f and the gi derived in earlier imply

that whenever ωi <
√
2pi
qi

f̈ ≤
m∑
i=1

diq
2
i

4

f3

g4i
≤

m∑
i=1

diq
2
i

4

ω3
i

gi
≤

m∑
i=1

diq
2
i

4

(
2
√
pi

qi

)3
1

gi(0)
= C1

g̈i ≤
1

gi

(
pi −

q2i
2
ω2
i

)
≤ pi
gi

≤ pi
gi(0)

= C2
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which in turn shows that

ḟ(t) < ḟ(0) + C1t =⇒ f(t) < ḟ(0)t+
C1

2
t2

ġi(t) < C2t =⇒ gi(t) < gi(0) +
C2

2
t2

as long as ωi <
√
2pi
qi

holds true. Moreover, since ḟ , ġi > 0 for all s ∈ (0, s0),

there exists a c > 0 such that f, gi > c for s ∈ [ s02 , s0). Finally, recall that by
Corollary 4.3 we have

−
√
−2ü(0) ≤ u̇ ≤ 0

Applying the Picard-Lindelof theorem we conclude that the solution may be
extended past s0.

4.6 Existence of non-collapsed solutions

What follows is an attempt to recover a usable version of Appleton’s Lemma
7.1 for the multi-factor setting. Unfortunately, this is where the lack of an
explicit solution hurts the most and so the theorem, while more general, has the
trade-off that we no longer have any quantitative information about what size
of Euler class is required. Instead, a limiting argument will show there is some
Euler class big enough to suit our purposes. Because of this, the following is
still notably weaker in the case that all pi are identical, where Appleton’s result
may be used (by interpreting the product Fano base as a Fano manifold with
the single chern class pi).

Remark: Given that we take u ≡ 0 in the below, we can also see this result on
Ricci-flat metrics on our Ansatz. In particular, if one could show ωi → ∞ can
only occur in finite time, the below would suffice as a proof that no complete,
Ricci-flat metrics exist if any of the qi are taken sufficiently large.

In fact, since the condition ωi < const is open, the below theorem is actually
telling us such trajectories belong to a new open set in the C = 2ü(0) parameter
space from the one found by Wink (giving his collapsed solutions). In this way,
we see that Wink’s open set must be a positive distance from 0 (and thus,
crucially, so to is the supremum of the set which we will return to in the last
section).

Theorem 3. Fix the initial conditions as usual, (ḟ(0) = 1,gi(0) > 0 and ġi(0) =
f(0) = 0) but now setting ü(0) = 0 (recall by proposition 3 this implies u ≡ 0
and so we are on an Einstein trajectory).

Fixing each of the pj and fixing all of the qj ̸= 0 except for one (qi, say),
there exists a value of q̃i sufficiently large so that

ω2
i >

4pi
(di + 2)q2i

in finite time for all qi ≥ q̃i. (note we don’t require pi ̸= 0 simply because this
already follows from the Fano property)
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Proof. Suppose toward a contradiction that given the initial condition ü(0) = 0
we have

ω2
i ≤ 4pi

(di + 2)q2i

for each i, for as long as the solution is defined .
By lemma 5 , we have that so long as

ωi <
2
√
pi

qi
=⇒ ω2

i <
4pi
q2i

our solution may be extended further, so since (we’re assuming each di ≥ 2)

4pi
(di + 2)q2i

<
2pi
q2i

we see that our assumption implies the solution can be extended to all of [0,∞).
Thus, questions of existence are not a worry in what follows (this nice fact is
the main reason for wanting to use a proof by contradiction). In particular, this
tells us that f is bounded in finite time.

Our aim in what follows is to use the equations to find estimates for both
the gi and for f . We will then take this pair of estimates and combine them
to give an estimate on ωi which will then be enough to contradict the above
thus showing, at least for certain choices of the Euler classes, that the Einstein
(ü(0) = 0) trajectory is no longer collapsed. This shows us that, while Wink’s
family exists for sufficiently negative values of C, the Einstein trajectory is not
a member of the family (again, provided the Euler class is big enough).

Changing the independent variable: In the estimates we derive below, it
is first useful to make a change of independent variable. The relevance of this
choice will be seen by how the equations for gi and f simplify below.

We begin with the (hopeful) algebraic relation:

ds =
1

f
dt

From this, it follows from the fundamental theorem of calculus that:

s(t1)− s(t0) =

∫ t1

t0

1

f(t)
dt

In order to meaningfully make a change of variables, we must assure monotonic-
ity of the proposed new independent variable on the initial variable t. In our
case, we need to make sure that ṡ > 0. Thus, we are requiring that 1

f > 0.
But now we recall that, by proposition 1, f is always positive, thus ensuring
monotonicity of s.

Note this relation above leaves us with the choice of which value to assign to
s(t0) and to decide which value of t0 is appropriate to take as a starting point.
First off, as we’ll see below, the limit t → 0 corresponds to s → −∞. Thus,
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we’ll want to begin our comparison from some t0 > 0. We will choose to take
t0 ∈ (0, ϵ) for some choice of ϵ sufficiently small so that the initial conditions
determine our functions. More specifically, we wish to use the identities

gi(t0), ġi(t0), f(t0), ḟ(t0) > 0

which by the initial conditions, must be satisfied at least on some small initial
interval (0, ϵ). Note that, with this choice, we will necessarily have ġi(t0), ḟ(t0) ≈
0 or, both quantities are positive and SMALL.

For the comparison we wish to use below, we see that

g′i
gi
(s0) =

fġi
gi

(t0) < Mϵ (12)

whereMϵ can be taken to be as small as we wish (with the requirement that ϵ be
chosen small enough). This then fixes our value of t0 as any choice of t0 ∈ (0, ϵ).

Now that t0 is fixed, we have determined s as a function if we can fix the
integration constant s(t0). For the sake of clean formulas, the easiest choice for
this constant is simply s(t0) = 0. Thus, in what follows, one should understand
that s = 0 corresponds to this choice of t0 ∈ (0, ϵ).

Now, setting t0 = ϵ > 0 and t1 = t > 0 with ϵ, t << 1, so that f ≈ t, we see
that:

s(t)− s(ϵ) =

∫ t

ϵ

1

t
dt = ln |t|

∣∣∣∣t
ϵ

= ln(t)− ln(ϵ) = ln(t) +M

with M exceedingly large.
Thus, when we recover s as a function of t, we are left with the following

approximation for small t:

s(t) ≈ s(ϵ) +M + ln(t)

Since both s(ϵ) and M are ultimately constants of integration, we can just
combine them into a single constant, let’s say L so that:

s(t) = L+ ln(t)

From this, it’s pretty clear that we must have s(t) → −∞ as t→ 0.

Estimate for the gi: We begin by trying to establish an estimate for gi.
Since we’re ultimately looking for a lower bound on ωi and because gi appears
in the denominator, we will want a lower bound for gi.

To do this, let us first consider the evolution equation for gi:

d

dt

ġi
gi

= −trL
ġi
gi

+
pi
g2i

− q2i
2

f2

g4i

Now, making the change of independent variable as above from t to s, we
have:
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d

dt

ġi
gi

=
1

f

(
1

f

g′i
gi

)′

=
1

f2

(
g′i
gi

)′

− g′i
gi

f ′

f3

where we’ve denoted dφ
ds by φ′. So,

1

f2

(
g′i
gi

)′

− g′i
gi

f ′

f3
= −trL

ġi
gi

+
pi
g2i

− q2i
2

f2

g4i

and,

−trL
ġi
gi

= −

 ḟ
f
+
∑
j

dj
ġj
gj

 ġi
gi

= − 1

f2

f ′
f

+
∑
j

dj
g′j
gj

 g′i
gi

Cancelling the − g′i
gi

f ′

f3
term from either side gives:

1

f2

(
g′i
gi

)′

= − 1

f2

∑
j

dj
g′j
gj

 g′i
gi

+
pi
g2i

− q2i
2

f2

g4i

=⇒
(
g′i
gi

)′

= −di
(
g′i
gi

)2

−

∑
j ̸=i

dj
g′j
gj

 g′i
gi

+ piω
2
i −

q2i
2
ω4
i

Now,
g′j
gj

=
f

gj
ġj

So, to deal with the second term, we’ll require ġj > 0 for every j. If, instead,
we had ġj = 0 for some j, proposition 2 then shows us that we must have

ω2
j ≥ 2pj

q2j
>

4pi
(dj + 2)q2j

contradicting our assumption on the ωj .
Thus, it is safe to assume ġj > 0 for each j (In this way, the approach of a

proof by contradiction helps us again) and we have the following inequality:

−

∑
j ̸=i

dj
g′j
gj

 g′i
gi

≤ 0

Which leads us to:(
g′i
gi

)′

≤ −di
(
g′i
gi

)2

+ piω
2
i −

q2i
2
ω4
i
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Having focused on the first order terms in the equation, let us now look at the
zero order terms. Completing the square gives:

piω
2
i −

q2i
2
ω4
i = −q

2
i

2

(
ω2
i −

pi
q2i

)2

+
1

2

p2i
q2i

Clearly, the left term of the RHS is ≤ 0, so we can further simplify and get:(
g′i
gi

)′

≤ 1

2

(
pi
qi

)2

− di

(
g′i
gi

)2

So, the relevant ODE to solve is:

φ′ = A− kφ2

where we’ve set

A =
1

2

(
pi
qi

)2

; k = di

This can be done by a separation of variables, leading to:

dφ

A− kφ2
= ds =⇒

∫ s

s0

dφ
A
k − φ2

= k(s− s0)

So, setting α2 = A
k , we’re looking to solve the following type of integral:∫ s

s0

dφ

α2 − φ2

which we can do by partial fractions, ultimately giving:

φ(s) = α

φ0 + α

φ0 − α
e2αk(s−s0) + 1

φ0 + α

φ0 − α
e2αk(s−s0) − 1

where φ0 = φ(s0).
Meanwhile,

α2 =
r

k
=

1

2di

(
pi
qi

)2

=⇒ α =
1√
2di

pi
qi

Thus, it’s safe to assume that α > φ0

=⇒ φ0 + α

φ0 − α
= −α+ φ0

α− φ0

and, since α− φ0 > 0, it’s more natural to write φ as

φ ∼ g′i
gi

∼ φ(s) = α

α+ φ0

α− φ0
e2αk(s−s0) − 1

α+ φ0

α− φ0
e2αk(s−s0) + 1
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where now we can clearly see that the denominator is always nonzero. Further-
more, since 2αk =

√
2di

pi
qi
> 0, we see that φ is a monotone function of s, so

that:
φ(s→ −∞) < φ < φ(s→ ∞)

=⇒ −α < φ < α

Now, since we see that φ can never be bigger than α, we must be certain this
value is not so small that it breaks our attempt at comparison. Thankfully,
eq. (12) provides us the necessary bound for us to conclude:

φ < α =
1√
2di

pi
qi

=⇒ d

ds
ln gi <

1√
2di

pi
qi

Since our s0 from before has dropped out, we can reuse this label and integrate
from s0 to s:

ln

(
gi(s)

gi(s0)

)
<

1√
2di

pi
qi
(s− s0)

=⇒ gi(s) < gi(s0) exp

(
1√
2di

pi
qi
(s− s0)

)
Estimate for f : Now that we have established the necessary estimate on gi,
we turn our attention now to finding a similar estimate on f . As f appears on
the denominator of ωi, we will want a lower bound.

Ok, so now that we have an estimate for gi, let’s now turn our attention to
f:

d

dt

ḟ

f
= −trL

ḟ

f
+
∑
i

diq
2
i

4

f2

g4i

(where, again, we assume u ≡ 0)
In order to make a comparison with the estimate for gi above, we’ll need to

put this f equation in terms of s:

d

dt
=

1

f

d

ds

So,
d

dt

ḟ

f
=

1

f

(
1

f

f ′

f

)′

=
1

f2

(
f ′

f

)′

− f ′

f2
1

f

f ′

f
=

1

f2

[(
f ′

f

)′

−
(
f ′

f

)2
]

While:

−trL
ḟ

f
= −

(
ḟ

f
+
∑
i

di
ġi
gi

)
ḟ

f
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=⇒
(
f ′

f

)′

−
(
f ′

f

)2

= −

(
f ′

f
+
∑
i

di
g′i
gi

)
f ′

f
+
∑
i

diq
2
i

4
ω4
i

where ωi =
f
gi

=⇒
(
f ′

f

)′

= −
∑
i

di
g′i
gi

f ′

f
+
∑
i

diq
2
i

4
ω4
i

Clearly we must have
diq

2
i

4 ω4
i ≥ 0 regardless of ωi

=⇒
(
f ′

f

)′

≥ −
∑
i

di
g′i
gi

f ′

f

=⇒

(
f ′

f

)′
(
f ′

f

) =
d

ds
ln
f ′

f
≥ −

∑
i

di
g′i
gi

But, as we saw earlier,
g′i
gi
<

1√
2di

pi
qi

=⇒
(
ln
f ′

f

)′

≥ −
∑
i

di√
2di

pi
qi

=⇒ d

ds
ln
f ′

f
≥ −

∑
i

√
di
2

pi
qi

=⇒ ln

(
f ′

f

)
− ln

(
f ′0
f0

)
≥ −

∑
i

√
di
2

pi
qi
(s− s0)

Where the last step follows by integrating from s0 to s, f0 = f(s0) and f ′0 =
f ′(s0)

=⇒ ln
f ′

f
≥ ln

(
f ′0
f0

)
−
∑
i

√
di
2

pi
qi
(s− s0)

=⇒ f ′

f
≥ f ′0
f0

exp

(
−
∑
i

√
di
2

pi
qi
(s− s0)

)

=⇒ (ln f)′ ≥ f ′0
f0

exp

(
−
∑
i

√
di
2

pi
qi
(s− s0)

)
So, since we have a derivative on the left and a known function on the right, we
can integrate again:

=⇒ ln f−ln f1 ≥ f ′0
f0

− 1∑
i

√
di
2
pi
qi

[exp(∑
i

√
di
2

pi
qi
(s− s0)

)
− exp

(∑
i

√
di
2

pi
qi
(s1 − s0)

)]
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where s1 ≥ s0 is our second constant of integration and f1 = f(s1).
Thus, we arrive at:

f(s) ≥ f1 exp

f ′0
f0

− 1∑
i

√
di
2
pi
qi

[exp(−∑
i

√
di
2

pi
qi
(s− s0)

)
− exp

(
−
∑
i

√
di
2

pi
qi
(s1 − s0)

)]
Which completes our estimate for f.

Putting the two together: Now, we have the following 2 estimates:

gi(s) < gi(s̃0) exp

(
1√
2di

pi
qi
(s− s̃0)

)
and

f(s) ≥ f1 exp

f ′0
f0

− 1∑
i

√
di
2
pi
qi

[exp(−∑
i

√
di
2

pi
qi
(s− s0)

)
− exp

(
−
∑
i

√
di
2

pi
qi
(s1 − s0)

)]
Recall we are ultimately trying to show eq. (11) is satisfied in finite time. Thus,
we’re hoping for a suitable lower bound on the quotient of our two functions
above. (since gi is the denominator, we needed an upper bound for that).

Now, we’d like to simplify a little. First off, let’s take s̃0 = s0 = s1 = 0.
Recall this value of s corresponds to some choice of t0 ∈ (0, ϵ) for ϵ small. (see
the paragraph on changing independent variable for more information)

Note this choice implies f1 = f0, so we can use the same terms when we
write:

gi(s) < gi,0 exp

(
1√
2di

pi
qi
s

)
and

f(s) ≥ f0 exp

f ′0
f0

− 1∑
i

√
di
2
pi
qi

[exp(−∑
i

√
di
2

pi
qi
s

)
− 1

]
So, putting these two together yields

ωi(s) =
f(s)

gi(s)
>

f0
gi,0

exp

f ′0
f0

− 1∑
i

√
di
2
pi
qi

[exp(−∑
i

√
di
2

pi
qi
s

)
− 1

]
− 1√

2di

pi
qi
s


Now, to find the largest value of the RHS, let’s take an s-derivative, set it

to zero, and see what we get.
First off, note that because our function is of the form eψ(s),

d

ds
eψ(s) = ψ′(s)eψ(s) = 0 ⇐⇒ ψ′(s) = 0
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So, we need only take the derivative of the exponent and try to solve:

d

ds

f ′0
f0

− 1∑
i

√
di
2
pi
qi

[exp(−∑
i

√
di
2

pi
qi
s

)
− 1

]
− 1√

2di

pi
qi
s

 = 0

=⇒ f ′0
f0

exp

(
−
∑
i

√
di
2

pi
qi
s

)
− 1√

2di

pi
qi

= 0

=⇒ exp

(
−
∑
i

√
di
2

pi
qi
s

)
=
f0
f ′0

1√
2di

pi
qi

=⇒ −
∑
i

√
di
2

pi
qi
s = ln

(
f0
f ′0

1√
2di

pi
qi

)

=⇒ s = −
ln
(
f0
f ′
0

1√
2di

pi
qi

)
∑
i

√
di
2
pi
qi

Plugging this into the exponent above gives:

f ′0
f0

− 1∑
j

√
dj
2
pj
qj

(f0
f ′0

1√
2di

pi
qi

− 1

)
− 1√

2di

pi
qi

− 1∑
j

√
dj
2
pj
qj

 ln

(
f0
f ′0

1√
2di

pi
qi

)

=

− 1∑
j

√
dj
2
pj
qj

[f ′0
f0

(
f0
f ′0

1√
2di

pi
qi

− 1

)
− 1√

2di

pi
qi

ln

(
f0
f ′0

1√
2di

pi
qi

)]

=

− 1∑
j

√
dj
2
pj
qj

[ 1√
2di

pi
qi

− f ′0
f0

− 1√
2di

pi
qi

ln

(
f0
f ′0

1√
2di

pi
qi

)]

=

 1√
2di

pi
qi∑

j

√
dj
2
pj
qj

(−1 +
f ′0
f0

√
2di

qi
pi

+ ln

(
f0
f ′0

1√
2di

pi
qi

))

=

 1√
2di

pi
qi√

di
2
pi
qi

+
∑
j ̸=i

√
dj
2
pj
qj

(f ′0
f0

√
2di

qi
pi

− 1 + ln

(
f0
f ′0

1√
2di

pi
qi

))
So,

ωi,max >
f0
gi,0

exp


 1√

2di

pi
qi√

di
2
pi
qi

+
∑
j ̸=i

√
dj
2
pj
qj

(f ′0
f0

√
2di

qi
pi

− 1 + ln

(
f0
f ′0

1√
2di

pi
qi

))
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Now, we wish to get a handle of the RHS of this inequality above. This will
be easiest if we return to the exponent in the following form:− 1∑

j

√
dj
2
pj
qj

( 1√
2di

pi
qi

− f ′0
f0

− 1√
2di

pi
qi

ln

(
f0
f ′0

1√
2di

pi
qi

))

=

 1√
di
2
pi
qi

+
∑
j ̸=i

√
dj
2
pj
qj

(f ′0
f0

− 1√
2di

pi
qi

+
1√
2di

pi
qi

ln

(
f0
f ′0

1√
2di

pi
qi

))
So, letting qi → ∞, the above becomes: 1∑

j ̸=i

√
dj
2
pj
qj

(f ′0
f0

− 0 + 0

)

(since x lnx→ 0 as x→ 0)
Which is a positive constant. Thus, ωi,max has a positive lower bound even

as qi → ∞. However, all we need is

ωi >
2
√
pi√

di + 2qi

and, the RHS goes to zero as qi → ∞. From this, we obtain our contradiction
and the theorem is proved.

4.7 Wrapping up

Remark on continuous dependence: In what follows, we will rely heavily
on the continuous dependence of our solution on initial conditions and, partic-
ularly, on ü(0). This fact can be seen in (at least) two ways.

1. Direct proof using the methods of ODE theory. This is the approach taken
by Appleton, as can be seen in his theorem 9.2.

2. Alternatively, the conserved quantity equation eq. (4) shows us that a
choice of C is really just a choice of hypersurface to which our vector
field must be restricted. From this perspective, recalling that C = 2ü(0),
continuous dependence on initial conditions is really just the continuous
dependence of a level set on the level.

Defining the vector-valued function ω⃗(t) by

ω⃗ = (ω1, . . . , ωm)

we get the following equation for the evolution of the magnitude:

d2

dt2
|ω⃗|2 = 4

∣∣∣∣dω⃗dt
∣∣∣∣2 − L d

dt
|ω⃗|2 +

m∑
k=1

2

f2
ω2
k

(
q2k
2
ω4
k +

m∑
l=1

dlq
2
l

4
ω4
l − pkω

2
k

)
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Figure 1: The above picture shows the contours of the relevant functions in
the ωi plane (we consider the 2-factor case for ease of imaging, but the general

case is much the same). The red and blue show the lines
(
pi − q2i

2 ω
2
i,∞

)
ω2
i,∞ =∑

j

djq
2
j

4 ω4
j,∞ for i = 1, 2 respectively. While the black line gives the contour

corresponding to ϕ = 0 (see below for definition of ϕ). Note how the black
line crosses only where the red and blue curves intersect (this can be seen by
d1 = d2 = p1 = p2 = 2 in both cases while q1 = 3, q2 = 4 in the first and
q1 = 7, q2 = 3 for the second.
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To more conveniently refer back to it later, I’ll denote the non-derivative term
as 2

f2ϕ. We’ll only care about the sign, so we don’t need to worry about the
2
f2 factor as this is positive so long as the solution is defined. (Thanks to
proposition 1 the only other possibility is if it is zero, which would correspond
to f → ∞ in finite time). So:

ϕ =

m∑
k=1

ω2
k

(
q2k
2
ω4
k +

m∑
l=1

dlq
2
l

4
ω4
l − pkω

2
k

)

Which we can see is exactly the sum of (ω2
k times) the polynomials defining

the possible finite limits of ωi we saw back in theorem 2. Also, as we see in
the figures above, the locus ϕ = 0 lies entirely inside the region where these
polynomials are negative, except at the extremities (i.e. one of the ωi’s are
zero) or the positive limit point (the only possible finite limit for ω⃗ other than
the origin).

Now, we wish to run an analogue of Appleton’s theorem 7.2, with ∥ω⃗∥ taking
the role his Q variable did there.

To do this, we define the quantity

u∗0 = sup{u0 ∈ R| for ü(0) ≤ u0, ω⃗ → 0 as t→ ∞} (13)

Which serves as our analogue of the quantity Appleton gives the same name.
Note, however, that this definition is quite a bit stronger than his, as it relies
on exact knowledge of the limit. Nevertheless, Wink’s earlier results are still
sufficient to show us that u∗0 > −∞ as he showed the set of collapsed solutions
is never empty. Meanwhile, theorem 3 (and the remark before it) shows us that
u∗0 < 0, at least in those cases where the qi are large enough.

Now, from the evolution equation of the magnitude of ω⃗, we can straight
away determine 2 things:

1. Any critical point
(
d
dt |ω⃗|

2 = 0
)
with ϕ > 0 is a local min. and so solutions

that end up out here grow without bound (i.e. |ω⃗| → ∞).

2. If we have a critical point with ϕ = 0, we either have |dω⃗dt | > 0 in which

case we repeat the above, Or, we have dω⃗
dt = 0, in which case the equation

can only be solved by a constant. (this case is described in more detail
below)

Returning to the equations for the evolution of ωi,

ω̈i = ω̇i

u̇− (di + 1)
ġi
gi

−
∑
j ̸=i

dj
ġj
gj

+
ωi
f2

q2i
2
ω4
i − piω

2
i +

m∑
j=1

djq
2
j

4
ω4
j


If we’re in situation 2, we then have a critical point of this where, since we’re
inside the blue/red region, the left term is non-positive. If negative, we see that
ωi attains a maximum, while, if zero, we see that the equation reduces to ω̈i = 0,
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which is solved by a constant, contradicting our assumption that it is a solution
to the equations starting from ωi = 0.

Thus, the only critical points for |ω⃗|2 all lie in the region where ϕ < 0.
Furthermore, since ω⃗ → 0 when ü(0) < u∗0, |ω⃗| → 0 and ∀ϵ > 0, ∃ some Tϵ > 0
such that |ω⃗| < ϵ ∀ t ∈ [Tϵ,∞) Meanwhile, we may apply our earlier assertion in
the range [0, Tϵ] to assert that |ω⃗| attains a maximum somewhere where ϕ < 0.
Thus, if we assume that ω⃗ → 0 even when ü(0) = u∗0, we must have that ∃
max
t∈R+

|ω⃗| which occurs in a region where ϕ < 0. Since the maximum lies in an

open set, we can then argue (by continuous dependence on initial conditions)
that ü(0) = u∗0+ ϵ should also give rise to a solution with finite maximum inside
the region ϕ < 0. Then, the only possible terminal limit for such solutions
is ω⃗ → 0, contradicting the definition of u∗0. Thus we see that ω⃗ ̸→ 0 when
ü(0) = u∗0

Since ϕ < 0 ∀ t ̸= 0 along our solutions with ω⃗ → 0, we can also assert
(again, by continuous dependence on initial conditions), that our solution must
at least satisfy ϕ ≤ 0 ∀ time. But, there is only one possible limit point on
ϕ = 0 that a solution may end up, so we must have that our solution ends here
(asymptotically as t→ ∞).

Namely, as we saw in theorem 2, there is only one possible finite limit for the
ωi apart from zero. Because of this, we can guarantee our solution must end up
here and, because the corresponding limits for the ωi are finite and positive, we
are left with a non-collapsed solution (i.e. since the different parts of the metric
have the same asymptotic behaviour, the solution is thus non-collapsed).

Thus, we arrive at:

Lemma 6. Take u∗0 as defined in eq. (13). We have the following conclusions,
the first coming from our discussion above and the second from theorem 3:

1. if u∗0 < 0, then setting ü(0) = u∗0 leads to a non-collapsed steady Ricci
soliton.

2. Given any choice of initial conditions (with qi ̸= 0 for each i) and a choice
of factor i, there is some integer, q̃i say, for which u

∗
0 < 0 whenever qi > q̃i.

Combining this with our asymptotics in theorem 2, we see that the resulting
solutions are asymptotically paraboidal, and so we may finally conclude that
theorem 1 is true, that is:

Theorem 4. If we make the assumption that qi ̸= 0 for each i, then there exists
a complete, non-collapsed Steady Ricci Soliton on our ansatz provided any one
of the qi are taken to be sufficiently large.
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