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Lay Abstract

Several models of computability were previously proposed for partial functions over the
reals. Some of these models were proved to be equivalent for functions satisfying specific
conditions we call “acceptability”. In this thesis, we prove that at least the class of elemen-
tary functions satisfies this “acceptability” condition. This shows that the acceptability
conditions are sufficiently general.
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Abstract

In this thesis, we study models of computation for partial functions on the reals.
Existing work [Fu and Zucker, 2014, Tucker and Zucker, 1999, 2004] studies classes of

computable partial functions on R, namely

• GL-computability,
• tracking computability,
• multipolynomial approximability, and
• WhileCC -approximability.

Fu and Zucker [2014] show that all these four models of computation are equivalent when
we restrict our attention to a specific class of functions we call “acceptable” functions.
This means, within the realm of acceptable functions, we can work with WhileCC -
approximability without giving up expressivity and transfer results amongst the models.

However, it was previously unknown whether the class of acceptable functions is suf-
ficiently large to include many common functions, such as the elementary functions. In
this thesis, we solve the conjecture posed by Fu and Zucker [2014] and show that all
elementary functions are acceptable. We also prove that the elementary functions are
WhileCC -approximable and therefore computable in all the aforementioned models of
computation.
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Chapter 1

Introduction

In this thesis, we study models of computation for the reals. Previous work [Stoltenberg-
Hansen and Tucker, 1999, Tucker and Zucker, 2005] focuses on computational models for
total functions. However, the class of total functions is too restrictive: many standard
functions in real analysis (such as the logarithmic, square root, and inverse trigonometric
functions) are partial and cannot be studied under such models. Thus, in this thesis, we
focus on the computability of partial functions.

Existing work [Fu and Zucker, 2014, Tucker and Zucker, 1999, 2004] studies classes of
computable partial functions on R, namely

• GL-computability,
• tracking computability,
• multipolynomial approximability, and
• WhileCC-approximability.

The first two classes correspond to concrete models of computation. In concrete mod-
els, computability depends on the representation of data. For example, an α-tracking
computable function represents each real number as a natural number. In contrast, ab-
stract models (such as WhileCC-programs) allow functions to be defined independently of
such implementation details. For a programmer, this would be akin to writing programs
against an abstract interface instead of dealing with specific implementations. Abstract
models are easier to program in, but may not be as expressive as their concrete counter-
parts.

Fu and Zucker [2014] show that all these four models of computation are equiva-
lent when we restrict our attention to a specific class of functions we call “acceptable”
functions. This means, within the realm of acceptable functions, we can work with
WhileCC-approximability without giving up expressivity and transfer results amongst
the models.

However, it has been unknown whether the class of acceptable functions is sufficiently
large to include many common functions, such as the elementary functions. In this thesis,
we solve the conjecture posed by Fu and Zucker [2014] and show that all elementary
functions are acceptable. We also prove that the elementary functions are WhileCC-
approximable and therefore computable in all the aforementioned models of computation.

The contributions of this thesis are as follows:

• We prove that all elementary functions are WhileCC-approximable.

• We prove that all elementary functions are acceptable.
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• We present an alternative characterization of acceptable functions.

The structure of this thesis is as follows. In chapter 2, we provide some background by
recalling the related definitions. In chapter 3, we start by suggesting minor modifications
to the definition of elementary functions and prove that these slightly modified elementary
functions are WhileCC-approximable (Definition 2.2.14). Then, in chapter 4 we present
effective open exhaustions for the domains of elementary functions and in chapter 5,
we prove that elementary functions are continuous with respect to the specific open
exhaustions we presented inductively for their domains back in chapter 4. This concludes
our proof of acceptability of elementary functions and implies that elementary functions
are computable in all four models of computation mentioned above. In chapter 6, we
conclude the thesis and discuss potential directions for future research. Then, in Appendix
A, we provide some additional lemmas that are used in chapter 3. Also, the Index at
the end of this thesis provides an alphabetical listing of key terms and topics discussed,
allowing for quick reference.
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Chapter 2

Preliminaries

In this section, we review the basic concepts of signatures and many-sorted algebras
defined by Tucker and Zucker [2001] along with the WhileCC programming language
defined by Tucker and Zucker [2004] as well as some basic concepts of real analysis.

Notation. In this thesis, we use → to denote partial functions and ↠ for total functions.
Contrary to the normal convention, the function log denotes log2 and ln is used for loge.
We write x̄ to denote a sequence x1, x2, . . . , xn and define |x̄| = n. Throughout this
work, the equality symbol = denotes Kleene equality, meaning either both sides of the
equality are defined and are equal, or both sides are undefined. The symbol ϕ denotes
an enumeration of all computable functions on N and is used in Sections 2.3 and 2.4. In
this thesis, “continuity of a function on its domain” is used in the standard sense.

2.1 Basic Algebraic Concepts: Signatures and Algebras

Definition 2.1.1 (Many-sorted signatures, [Tucker and Zucker, 2001]). A signature Σ is a
pair ⟨Sort(Σ),Func(Σ)⟩ where

• Sort(Σ) is a finite set of sorts, and

• Func(Σ) is a finite set of (primitive or basic) function symbols, where each F ∈
Func(Σ) has a type s1×· · ·× sn → t where the arity of F is n and s1, s2, . . . , sn, t ∈
Sort(Σ). We write F : s1 × · · · × sn → t. The case n = 0 corresponds to constant
symbols and can be written as F : → t or F : t.

Definition 2.1.2 (Σ-algebras, [Tucker and Zucker, 2001]). A partial Σ-algebra A has

• a non-empty set As, the carrier of sort s, for each s ∈ Sort(Σ), and

• a (possibly partial) function FA : As1 × · · · ×Asm → At, the interpretation of F , for
each basic function symbol F : s1 × · · · × sm → t in Func(Σ).

Definition 2.1.3 (Topological partial algebras, [Tucker and Zucker, 2001]). A topological
partial algebra is a partial Σ-algebra with topologies on the carriers such that each basic
function symbol’s interpretation is continuous on its domain, and the carriers B and N
(if present) have discrete topology.

Definition 2.1.4 (Signature of booleans: Σ(B), [Tucker and Zucker, 2001]). The signature
Σ(B) below is the signature of booleans :
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signature Σ(B)
sorts bool
functions true, false : → bool

and, or : bool× bool → bool
not : bool → bool

end

Definition 2.1.5 (Standard signature, [Tucker and Zucker, 2001]). A signature Σ is a
standard signature, if:

• Σ(B) ⊆ Σ, and

• for all s ∈ Sort(Σ) \ Σ(B), the function symbols of Σ include a discriminator ifs :
bool× s× s → s.

• if the function symbols of Σ include eqs, then it has to have type s× s → bool.

Definition 2.1.6 (Standard algebra, [Tucker and Zucker, 2001]). Given a standard signa-
ture Σ, a Σ-algebra A is a standard algebra, if:

• A has the carrier B = {tt,ff} for sort bool,

• A has the standard interpretations of the function and constant symbols of Σ(B).
Thus, for example, trueA = tt and falseA = ff, and

• the discriminators and equality operators have their standard interpretation in A;
i.e., for b ∈ B and x, y ∈ As

ifs(b, x, y) =

{
x if b = tt

y if b = ff,

and

• for each sort s for which the function symbol eqs is present, it is interpeted as the
identity relation on s.

Definition 2.1.7 (The topological partial algebra R). The following algebra R is a topo-
logical, partial, and standard algebra that we will be working with, in this document:

algebra R
carriers R, N, B
functions 0real, 1real, −1real : ↠ R

+real, ×real : R× R ↠ R
+nat, ×nat : N× N ↠ N
invreal : R → R
0nat : ↠ N
sucnat : N ↠ N
tt, ff : ↠ B
and, or : B× B ↠ B
not : B ↠ B
=nat, <nat : N× N ↠ B
=real, <real : R× R → B

4
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The signature Σ(R) with sorts real, bool, nat can be inferred from this. The functions
commonly known as inverse, equality and order are not continuous. Since the concepts of
While-computability and WhileCC-computability We are using here have been designed
to make all expressed functions continuous on their domains [Tucker and Zucker, 2001,
2004], the discontinuities in conventional models of equality, order, and inverse have been
resolved by making the functions in R undefined there:

invreal(x) =

{
1/x if x ̸= 0

↑ otherwise

=real(x, y) =

{
ff if x ̸= y

↑ otherwise

<real(x, y) =


tt if x < y

ff if x > y

↑ if x = y

2.2 Computability on R: WhileCC Programming Language

Let us review the the WhileCC(Σ) programming language over an N-standard signature
Σ. We will be working on the model based on the WhileCC programming language
over R. A prominent feature of this language is the choose operator which selects a
natural number satisfying a computable predicate. As Tucker and Zucker [2004] show,
any abstract model for computing functions on topological algebras, needs to have partial
operations and computable functions that are continuous and multi-valued even to be able
to compute deterministic problems. Hence, having a nondeterministic countable choice
operation choose here is a feature and not a bug!

2.2.1 Syntax

Definition 2.2.1 (WhileCC(Σ) programming language syntax, [Tucker and Zucker, 2004]).
For any N-standard algebra Σ, we define four syntactic classes:
(a) Σ-variables (written Var(Σ)):

The class of Var(Σ) consists of variables of each sort s ∈ Sort(Σ). For each s ∈
Sort(Σ), Vars denotes the class of variables of sort s: Var(Σ) = ∪s∈Sort(Σ)Vars.

(b) Σ-terms (written Term(Σ)):
For each s ∈ Sort(Σ), terms are generated by:

ts ::= xs | F (ts11 , . . . , tsmm )

where F is a Σ-function of type s1 × · · · × sm → s (written F : s1 × · · · × sm → s)
and s1, . . . , sm, s ∈ Sort(Σ)

(c) Σ-statements (written Stmt(Σ)): Statements are generated by:

S ::= skip | div | x̄ := t̄ | S1 S2 | if b then S1 else S2 fi

| while b do S0 od | n := choose (z : nat) : P (z, t̄)

where b is of type bool and x̄ := t̄ denotes valid concurrent assignment i.e., x̄ is a
tuple of distinct variables and t̄ is a tuple of Σ-terms. Also, n and z are of type nat,
P is a procedure of type nat× w̄ → bool, and t̄ is of type w̄.

5
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(d) Σ-procedures (written Proc(Σ)):
Procedures of type ū → v̄ are generated by:

P ::= proc D begin S end

where S is the body (all the variables in the body S should be defined in D), and D
is the variable declaration of the form:

D ::= in ā : ū out b̄ : v̄ aux c̄ : w̄

with ā, b̄ and c̄ being tuples of input, output, and auxiliary (distinct and pairwise
disjoint) variables respectively of type ū, v̄, and w̄. Note that the aux clause can be
omitted when |c̄| = 0.

Remark 2.2.2. In this thesis, we exclusively work with WhileCC(R) programming lan-
guage. So whenever WhileCC is mentioned without specifying a standard algebra, we
mean WhileCC(R).
Remark 2.2.3. In the current setup of the language, we do not introduce names for pro-
cedures inside the grammar. Instead, we define shorthands at the metalanguage level
for procedures explicitly (using the ≡ operator) or implicitly ( “Let procedure P be as
follows, etc.”). These shorthands allow us to make the syntax more readable without
complicating the grammar. For example, instead of writing

proc
in n : nat
out r : bool
aux k : nat

begin
r := choose (k : nat) : proc

in m : nat n : nat
out res : bool

begin
if n =nat 2×nat m then
res := tt

else
res := ff

fi
end (k, n)

end

we can define a shorthand for the inner procedure

ExampleProc ≡ proc
in m : nat n : nat
out res : bool

begin
if n =nat 2×nat m then
res := tt

else
res := ff

fi
end

6
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and then the main procedure could be changed into the following:

proc
in n : nat
out r : bool
aux k : nat

begin
r := choose (k : nat) : ExampleProc(k, n)

end

Notation. For expressions X1, . . . , Xn, we write X1 < X2 < · · · < Xn as a shorthand for
X1 < X2 and X2 < X3 and · · · and Xn−1 < Xn. We use 1/x as a shorthand for invreal(x),
x/y for x ×real (1/y), −x for (−1real ×real x), and x − y for x +real (−y). We omit the
subscripts on +nat and +real (resp. ×nat and ×real) since the appropriate subscript can
be inferred from the argument types. Also, we write if b then S1 fi as a shorthand for
if b then S1 else skip fi. We write n := choose (z : nat) : t as a shorthand for

n := choose (z : nat) : ProcP(z, . . .)

where t is a Σ-term and z may appear free in t and ProcP is:

proc
in z : s . . .
out r : bool

begin
r := t

end

Procedure Call Statements. Note that our definition of WhileCC-syntax does not in-
volve any procedure calls other than within a choose statement. We extend our rules of
statement generation to include procedure calls of the form

ū := P (t̄)

where P is a procedure of type s̄ → r with t̄ a tuple of terms of type s̄ and u is a variable
of type r. A procedure call is syntactic sugar for copying the body of the called procedure
P into the calling procedure with any necessary variable renaming, initializing P ’ s input
variables with the term(s) t̄ and copying the output(s) into variable(s) ū. Therefore,
there are no recursive procedure calls. Note that procedure calls do not computationally
strengthen our model. In the following sections, any appearance of procedure P in an
expression

x̄ := · · ·P (t̄) · · ·
is a short form of

ȳ := P (t̄)

x̄ := · · · ȳ · · ·

for some fresh tuple y of the same type as the output type of P .

7
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Casting nat to real. We present a WhileCC-program that maps each natural number to
its equivalent real number below:

toReal ≡ proc
in n : nat
aux counter : nat sum : real

begin
sum := 0real
counter := 0nat
while counter <nat n do
sum := sum + 1real
counter := counter + 1nat

od
return sum

end

From here on, we implicitly make use of this mapping whenever we input anything of
type nat as a real argument (namely assigning nat values to real variables).

Choosing Multiple nat Values. In this thesis, we define the shorthand

x̄ := choose (z1 : nat, . . . , zn : nat) : P (z̄, t̄)

for choose for multiple distinct variables where procedure P is of type

n times︷ ︸︸ ︷
nat× · · · × nat×s̄ → bool,

and t̄ is a tuple of terms of type s̄. This shorthand stands for

x1 := choose (z1 : nat) : proc
in z1 : nat r̄ : s̄
out res : bool
aux tmp2 : nat . . . tmpn : nat

begin
tmp2, . . . , tmpn :=
choose (z2 : nat, . . . , zn : nat) : P (z̄, r̄)

res := tt
end (z1, t̄)

x2, . . . , xn := choose (z2 : nat, . . . , zn : nat) : P (x1, z2, . . . , zn, t̄)

Note that this notation is defined recursively, i.e., choose with n variables of type nat is
defined in terms of choose with n− 1 variables. This definition is by no means efficient:
in fact this recursive definition leads to an exponential number of calls to choose. For n
variables, choose with one variable is executed 2n − 1 times rather than just once. The
reason is that the procedure P needs all the arguments to be chosen simultaneously.

An alternative approach that addresses the inefficiency concern would be to encode
each n-tuple as a single natural number using Gödel’s numbering, choose the Gödel
number of the output tuple, and then decode it to obtain each value. This would reduce
the number of calls to choose to only one. While this is certainly feasible, the efficiency

8
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is not our main concern here. Our primary goal here is to establish that choose can
be extended to multiple variables without adding computational power to our language.
A similar idea for the extension is mentioned in Tucker and Zucker [2004] for choosing
“pairs” of natural numbers using primitive recursive pairing and projection functions.

Choosing rational Values. Definition 2.2.1 does not support choosing a real value. How-
ever, as mentioned in Tucker and Zucker [2004], we can extend our programming language
in a conservative manner to allow choosing a rational value.

In this thesis, we simulate choosing a real value by choosing a numerator and a denom-
inator (both of type nat), and then using division and multiplication by −1 to construct
a real value. Clearly, this construction will only give us rational values.

Let P be a procedure of type real× s1 × · · · × sn → bool. We define

x := choose (q : real) : P (q, t̄)

as a shorthand for
x := ChooseRationalSuchThatP(t̄),

where the procedure ChooseRationalSuchThatP is defined below:

ChooseRationalSuchThatP ≡
proc
in t̄ : s̄
out q : real
aux n1 : nat n2 : nat sign : nat

begin
sign, n1, n2 := choose (k : nat, k1 : nat, k2 : nat) :

proc
in k : nat, k1 : nat, k2 : nat
out res : bool
aux

begin
if k =nat 0 then
res := P (k1/(k2 + 1), t̄)

else
res := P (−k1/(k2 + 1), t̄)

fi
end (k, k1, k2)

if sign =nat 0 then
q := n1/(n2 + 1)

else
q := −n1/(n2 + 1)

fi
end

We extend our choose syntax to support multiple real variables in the same way we extend
our syntax to support multiple nat variables.

9
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The return Statement. We alternatively write programs with one output variable, omit-
ting the out clause and writing a return statement at the last line. The procedure

proc
in . . .
aux . . .

begin
. . .
return t

end

is a shorthand for the following:
proc
in . . .
out r : s
aux . . .

begin
. . .
r := t

end

Note that the type of the output variable is inferred from the type of t.

2.2.2 Semantics

In this section, we briefly review the WhileCC(Σ) programming language semantics origi-
nally given in Tucker and Zucker [2004]. It’s worth mentioning that WhileCC-statements
are interpreted as countably-many-valued state transformations, and procedures are in-
terpreted as countably-many-valued functions on R.

We begin by formally defining the concept of a state, then we define semantics for
terms, and then for statements. We then conclude this section by giving the semantics
of procedures.

Let us review the definition of a state:

Definition 2.2.4 (States of an algebra, [Tucker and Zucker, 2004]). Let A be a standard
Σ-algebra. Then a state on A is a family ⟨σs | s ∈ Sort(Σ)⟩ of functions σs : Vars → As

that maps each variable of sort s to an element of As. The set of states on A is called
State(A).

Notation For any set A, A∗ is the set of all finite sequences in A, and P+
ω (A) is the set

of all countable non-empty subsets of A. Also, let ↑ denote divergence and ↓ be an infix
binary symbol denoting convergence to the second argument. For a variable v of type s,
we write σ(v) for σs(v) since the type of v is unambiguous. For a tuple x̄ with |x̄| = m,
we write σ[x̄] for the tuple (σ(x1), . . . , σ(xm)). Let σ be a state on A, x̄ : ū with |x̄| = m,
and ā ∈ Au1 × · · · × Aum . The variant σ{x̄/ā} is defined as

σ{x̄/ā}(y) =
{
ai if y ≡ xi

σ(y) otherwise.

10
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Definition 2.2.5 (Semantics of terms, [Tucker and Zucker, 2004]). The meaning of a term
t ∈ Terms in a standard algebra A is a function

JtKA : State(A) → P+
ω (As ∪ {↑}).

The definition is by structural induction on terms:

JxKAσ = {σ(x)}
JF (t1, . . . , tm)KAσ =

{
y | ∃x1 ∈ A ∩ Jt1KAσ, . . . , xm ∈ A ∩ JtmKAσ : F (x1, . . . , xm) ↓ y

}
∪
{
↑ | ∃x1 ∈ A ∩ Jt1KAσ, . . . , xm ∈ A ∩ JtmKAσ : F (x1, . . . , xm)↑

}
∪
{
↑ | ∃ 1 ≤ i ≤ m ↑ ∈ JtiKAσ

}
Jif(b, t1, t2)KAσ =

{
y | (tt ∈ JbKAσ ∧ y ∈ Jt1KAσ) ∨ (ff ∈ JbKAσ ∧ y ∈ Jt2KAσ)

}
∪
{
↑ | ↑ ∈ JbKAσ

}
In order to define the semantics for statements, the algebraic operational method

described in Tucker and Zucker [2001] is used. Using this method, in order to define
statements as state transformations, one should provide two main components, which
will be defined below in Definition 2.2.7:

• a strict subset of statements, atomic statements written AtSt, along with a meaning
function L _ MA : AtSt → State(A) → State(A) , and

• functions
First : Stmt → AtSt

and
Rest : Stmt× State(A) → P+

ω (Stmt) :

First(S) intuitively gives the first step in execution of S in any state, and Rest(S, σ)
is a finite set of statements that gives the rest of the execution of statement S in
state σ. The result of Rest depends on the start state for if-then-else statements and
while loops, where the condition needs to be evaluated in that state to determine the
remaining statements to execute. In these cases, First produces the skip statement,
and can therefore be deterministic.

Definition 2.2.6 (Semantics of atomic statements, [Tucker and Zucker, 2004]). A state-
ment is atomic if it is of the form skip, x := t, or x := choose(z : nat) : P (z, t̄). The
set of all atomic statements is denoted by AtSt. The meaning of atomic statements in a
standard algebra A is a function

L MA : AtSt → State(A) → P+
ω (State(A) ∪ {↑})

defined by

L div MAσ = {↑}
L skip MAσ = {σ}

L x := t MAσ =
{
σ{x/a} | a ∈ A ∩ JtKAσ

}
∪
{
↑ | ↑ ∈ JtKAσ

}
L x := choose(z : nat) : P (z, t̄) MAσ =

{
σ{x/n} | n ∈ N ∧ tt ∈ JP KA(n, σ[t̄])

}
∪
{
↑ | ∀n ∈ N(tt /∈ JP KA(n, σ[t̄]))

}
11
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Now we need to provide the functions First and Rest for each of the non-atomic state-
ments.

Definition 2.2.7 (The functions First and Rest, [Tucker and Zucker, 2004]). Let A be a
standard algebra, S ∈ Stmt(Σ), and σ ∈ State(A). Then the function

First : Stmt → AtSt

is defined as

First(S) =


S if S is atomic
First(S1) if S ≡ S1S2

skip otherwise.

The function
RestA : Stmt× State(A) → P+

ω (Stmt)

is defined as follows:

• If S is atomic, then RestA(S, σ) = {skip}.
• If S ≡ S1S2 and S1 is atomic, then RestA(S, σ) = {S2}. If S ≡ S1S2 and S1 is not

atomic, then RestA(S, σ) = {S ′S2 | S ′ ∈ Rest(S1, σ)} ∪
{
div | div ∈ RestA(S1, σ)

}
.

• If S ≡ if b then S1 else S2 fi, then

RestA(S, σ) =
{
S1 | tt ∈ JbKAσ

}
∪
{
S2 | ff ∈ JbKAσ

}
∪
{
div | ↑ ∈ JbKAσ

}
• If S ≡ while b do S0 od, then

RestA(S, σ) =
{
S0S | tt ∈ JbKAσ

}
∪
{
skip | ff ∈ JbKAσ

}
∪
{
div | ↑ ∈ JbKAσ

}
The above three components induce a semantics for the statements J KA : Stmt →

State(A) → P+
ω (State(A) ∪ {↑}).

In order to define the semantics of statements, we need to define the concepts “com-
putation step”, “computation tree stage” and “computation tree”.

Definition 2.2.8 (Computation step function, [Tucker and Zucker, 2004]). Let A be a
standard algebra. We define the computation step function

CompStepA : Stmt× State(A) ↠ P+
ω (A ∪ {↑})

by
CompStepA(S, σ) = L First(S) MAσ

Definition 2.2.9 (Computation tree stage, [Tucker and Zucker, 2004]). Let A be a standard
algebra. We define a computation tree stage function

CompTreeStageA : Stmt× State(A)× N ↠ P+
ω (State(A ∪ {↑})∗)

by induction

• Induction base: CompTreeStageA(S, σ, 0) = {σ}

12
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• Induction step: CompTreeStageA(S, σ, n) is formed by attaching to the root {σ}
the following:

– if S is atomic: the leaf {σ′} for each σ′ ∈ L S MAσ;
– if S is not atomic: the subtree CompTreeStageA(S ′, σ′, n − 1), for each σ′ ∈
CompStepA(S, σ) with σ ̸= ↑ and S ′ ∈ RestA(S, σ), as well as the leaf {↑} if
↑∈ CompStepA(S, σ)

Definition 2.2.10 (Computation tree, [Tucker and Zucker, 2004]). Let A be a standard
algebra. Then we define the function CompTreeA by

CompTreeA(S, σ)
def
= lim

n→∞
CompTreeStageA(S, σ, n).

Remark 2.2.11. Definition 2.2.10 defines an ω-branching tree, branching according to pos-
sible output states. Each node of this tree is labeled by either a state, or “↑”. Furthermore,
“↑” can only be a leaf node of this tree.

Note that the limit above is well-defined, since each computation stage tree

CompTreeStageA(S, σ, n+ 1)

is an extension of
CompTreeStageA(S, σ, n),

where exactly one layer of leaves is attached to leaves in CompTreeStageA(S, σ, n).
Any actual computation of a statement S at state σ corresponds to one of the paths

in this tree.

Definition 2.2.12 (Semantics of WhileCC-statements, [Tucker and Zucker, 2004]). Let A
be a standard algebra. Then we define the semantics function

J KA : Stmt → State(A) → P+
ω (State(A ∪ {↑}))

as

JSKAσ def
= {leaves in CompTreeA(S, σ)} ∪ {↑| CompTreeA(S, σ) has an infinite path}.

Finally we can define the semantics for WhileCC-procedures:

Definition 2.2.13 (Semantics of WhileCC-procedures, [Tucker and Zucker, 2004]). The
semantics of a WhileCC-procedure P of type ū → v̄ with the definition

P ::= proc in ā : ū out b̄ : v̄ aux c̄ : w̄ begin S end

is a (many-valued) function:

PR : Rū → P+
ω (Rv̄ ∪ {↑})

defined as
PA(x) =

{
σ′(b) | σ′ ∈ JSKAσ

}
∪
{
↑ | ↑ ∈ JSKAσ

}
Now let us review the concept of WhileCC-approximability defined in Fu and Zucker

[2014]. Let P : real × nat → real be a WhileCC-procedure. Then PR
n is defined by

PR
n

def
= PR(·, n) : R → P+

ω (R ∪ {↑}).

13
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Definition 2.2.14 (WhileCC-approximability, [Fu and Zucker, 2014]). A WhileCC-procedure
P of type real × nat → real on R is said to approximate a function f : R → R iff for all
n ∈ N and all x ∈ R:

(i) x ∈ dom(f) =⇒ ↑ /∈ PR
n (x), and

(ii) x ∈ dom(f) =⇒ PR
n (x) ⊆ Nbd(f(x), 2−n) , and

(iii) x /∈ dom(f) =⇒ PR
n (x) = {↑}

where Nbd(y, r) has the standard definition of neighborhood on R i.e.,

Nbd(y, r) = {z ∈ R | |y − z| < r}.

Definition 2.2.15 (Well-defined WhileCC-procedures). We call a procedure P : ū → v̄
well-defined iff for x̄ : ū we have

PR(x̄) = {↑}, or ↑ /∈ PR(x̄).

In this thesis, since all WhileCC-procedures of interest are well-defined 1, we consider
the semantics of a procedure P : ū → v̄ to be a function

PR : Rū → Pω(Rv̄)

where PR(x̄) = ∅ iff P does not terminate on input x̄.

Definition 2.2.16 (WhileCC-computability on N). A function f : Nk → N is WhileCC-
computable if there is a WhileCC procedure P such that f = PR.

Remark 2.2.17. The classical Böhm and Jacopini [1966] theorem states that Turing Ma-
chines can be simulated in any programming language with composition and iteration.
This, along with the Church-Turing thesis, implies that WhileCC-computability of a func-
tion of type Nk → N is equivalent to computability via any effective method. This means
that from here on, in order to show that a (total) function of type Nk → N is recursive,
it suffices to give a (necessarily terminating) algorithm for computing it [Cutland, 1980].
Note that the terms “recursive”, “computable”, and “WhileCC-computable” could be used
interchangeably for functions of type Nk → N. In other words, we do not care which
model of computation is used to compute functions of this type. As long as a function is
computable in some model, it is computable in every model.

2.2.3 Some Basic Functions

Using ×real we can define the procedure pow : real× nat → real as:
1This can be easily proven, although we do not provide a proof for it.
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pow ≡ proc
in a : real n : nat
aux counter : nat r : real

begin
r := 1real
counter := 0nat
while counter <nat n do
r := r × a
counter := counter + 1

od
return r

end

This lets us use xn as a shorthand for pow(x, n) and x−n for invreal(pow(x, n)) with x
being of type real and n of type nat.
We can also define the WhileCC-procedure Factorial : nat → nat as below:

Factorial ≡ proc
in n : nat
aux counter : nat res : nat

begin
res := 1nat
counter := 1nat
while counter <nat n+ 1 do
res := res × counter
counter := counter + 1

od
return res

end

Proposition 2.2.18. We can add the operator abs defined as

abs(x) ≃


x if x > 0

−x if x < 0

↑ if x = 0

to our algebra without strengthening it since it can easily be computed using:

abs ≡ proc
in x : real
aux r : real

begin
if 0<real x then
r := x

else
r := −x

fi
return r

end

15
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2.3 Computability on other domains: Realizability theory

In this section, we formally define computability of functions over sets other than N. This
is used implicitly throughout this paper. These definitions are based on Bauer [2022].

Definition 2.3.1 (Realizability relation). A relation ⊩X ⊆ N × X is called a realizability
relation on X, if ⊩X is surjective and univalent. For any x ∈ X, and n ∈ N, We say n
realizes, or represents x, if n ⊩X x.

Definition 2.3.2 (Assembly). We call the pair (X,⊩X) an assembly if ⊩X is a realizability
relation on X.

Definition 2.3.3 (Computability on assemblies). Let (A,⊩A), (B,⊩B) be assemblies. Then
A function f : A → B is computable (or recursive) with respect to ⊩A and ⊩B, if there is
a recursive function f ′ : N → N with:

∀a ∈ dom(f) ∀n ∈ N n ⊩A a =⇒ f ′(n) ⊩B f(a)

The following realizability relations will be assumed by default when discussing com-
putability on rationals, pairs and finite sequences without mentioning the respective re-
alizability relations:

Definition 2.3.4 (Realizability relation on N). We define the realizability relation ⊩N as
the smallest relation satisfying n ⊩N n for all n ∈ N.

Definition 2.3.5 (Realizability relation on Q). Let us consider Godel’s pairing function
g(x/y) = 2x(2y + 1)− 1. We define the realizability relation ⊩Q as:

n ⊩Q
p

q
⇐⇒ gcd(p, q) = 1 ∧ n =

{
2(g(p/q) + 1)− 1 if p/q > 0

2g(p/q) if p/q < 0,

Definition 2.3.6 (Realizability relation on Cartesian product). Let (A,⊩A) and (B,⊩B)
be assemblies. Then we define the realizability relation ⊩A×B as the smallest relation
satisfying

m1 ⊩A a m2 ⊩B b

2m13m2 ⊩A×B (a, b)
.

Definition 2.3.7 (Realizability relation on sequences). Let (A,⊩A) be an assembly and A∗

represent the set of all finite sequences on A. We define the realizability relation ⊩A∗ as
the smallest relation satisfying

m1 ⊩A a1 · · · mn ⊩A an

pm1
1 · · · pmn

n ⊩A∗ (a1, . . . an)
,

where pi is the ith prime number.

Definition 2.3.8 (Realizability relation on functions). Let (A,⊩A) and (B,⊩B) be assem-
blies. Then we define the realizability relation ⊩A→B as the smallest relation satisfying

∀n ∈ N ∀x ∈ A (n ⊩A x =⇒ ϕi(n) ⊩B f(x))

i ⊩A→B f
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2.4 Computability on R: α-tracking Computability

In this section, we review the concept of α-computability, which is central to the definition
of elementary functions defined in 3.1, and an equivalence lemma by Fu and Zucker [2014].

Definition 2.4.1 (Standard enumeration of Q, [Fu and Zucker, 2014]). Let α : N → Q.
We call α a standard enumeration for Q if α is bijective, and the field operations on Q
(+, ·,−, /) are recursive under α, i.e.,

• there is a recursive function add : N× N → N such that

∀n1, n2 ∈ N α(n1) + α(n2) = α(add(n1, n2)),

• there is a recursive function mult : N× N → N such that

∀n1, n2 ∈ N α(n1) · α(n2) = α(mult(n1, n2)),

• there is a recursive function sub : N× N → N such that

∀n1, n2 ∈ N α(n1)− α(n2) = α(sub(n1, n2)),

and

• there is a recursive function div : N× N → N such that

∀n1, n2 ∈ N n2 ̸= 0 =⇒ α(n1)/α(n2) = α(div(n1, n2))

Theorem 2.4.2. There is a standard enumeration for Q.

Proof. Let us consider Gödel’s pairing function g(x/y) = 2x(2y+1)−1. This is a bijection
between positive rationals and N. We can tweak this to give us a bijection f between Q
and N. Let us define

f(x/y) =

{
2(g(x/y) + 1)− 1 if x/y > 0

2g(x/y) if x/y < 0,

This maps positive rationals to odd natural numbers and negative rationals to evens.
The bijection f−1 is a standard enumeration for Q since the functions add ,mult , sub, div
are easily proven to be recursive.

Definition 2.4.3 (Computable reals codes Ω, [Fu and Zucker, 2014]). Let ⟨−,−⟩ : N×N →
N be a recursive encoding of pairs. The set Ω ⊂ N is the set of all codes ⟨e,m⟩ such that

• e is an index for a total recursive function ϕe : N → N generating a Cauchy sequence

α(ϕe(0)), α(ϕe(1)), α(ϕe(2)), . . .

of elements of Q.

• m is the index of a computable modulus of convergence ϕm : N ↠ N, ensuring:

∀k, l ≥ ϕm(n), |α(ϕe(k))− α(ϕe(l))| < 2−n.
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Definition 2.4.4 (α-(tracking) computable reals Rc, [Fu and Zucker, 2014]). For any stan-
dard enumeration α, we define an enumeration of computable reals ᾱ : Ω → R to be

ᾱ(⟨e,m⟩) = lim
i→∞

α(ϕe(i)).

The range of ᾱ is called the set of α-tracking computable reals (or α-computable reals)
and is denoted with Rc.

Definition 2.4.5 (α-tracking function, [Fu and Zucker, 2014]). Let α be a standard enu-
meration of Q. For functions f : R → R and τ : N → N, τ is an α-tracking function for
f if:

1. If f(ᾱ(k)) is defined, then τ(k) is defined, and:

f(ᾱ(k)) = ᾱ(τ(k)).

2. If f(ᾱ(k)) is undefined, then τ(k) is undefined.

Definition 2.4.6 (α-(tracking) computability, [Fu and Zucker, 2014]). The function f :
R → R is an α-tracking computable (also called an α-computable function) iff it has a
recursive α-tracking function.

Corollary 2.4.7. 2 Let f : R → R be a WhileCC-approximable function and α : N → Q
be any standard enumeration for Q. Then f is α-computable.

Note that corollary 2.4.7 implies that for any two standard enumerations α1 and α2 for
Q, the set of α1-computable and α2-computable functions coincide under the assumption
of WhileCC-approximability.

Using the Definition 2.4.6, we can easily see the α-computability of the constant func-
tion(for α-computable reals) and the identity function:

Lemma 2.4.8. The constant function f(x) = c for any α-computable real c is α-computable.

Proof. Using the definition of α-computability, it suffices to show that the constant func-
tion has a recursive α-tracking function.
Since c is an α-computable real, this means c ∈ Rc. Since by definition, α is a surjection,
α−1(c) ̸= ∅. So let’s take an arbitrary y ∈ α−1(c) and let us define τ(x) = y for all x.
Then τ is a recursive α-tracking function for f .

Lemma 2.4.9. The identity function id(x) = x is α-computable.

Proof. Using the definition of α-computability, it suffices to show that the identity func-
tion has a recursive α-tracking function.
let τ be the identity function on N. Then τ is a recursive α-tracking function for id(x).

2.5 Basic Real Analysis Concepts: Open Exhaustion, Effective Open Ex-
haustions, Continuity and Acceptability

In this thesis, we call a function acceptable (Definition 2.5.4) if it has the properties
previously defined in Tucker and Zucker [2005] and referred to as the global assumptions
by Fu and Zucker [2014].

2This is a corollary to Theorem (A) in Tucker and Zucker [2004]
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Effective uniform continuity (not to be confued with “effective local uniform continuity”
in Definition 2.5.3) is central to the standard definition of total computable functions on
reals given by Gryzegorczyk and Lacombe, as published in Pour-El and Richards [1989].

As mentioned in Tucker and Zucker [2005], acceptability is a natural generalization of
effective uniform continuity to partial functions.

In this section, we review the relevant definitions needed for defining acceptability.

Notation. Throughout this work, all topological terms like openness and closure of sets
on R, are considered with respect to the standard (Euclidean) topology. The closure of
a set U is denoted by U .

Definition 2.5.1 (Open exhaustion, [Fu and Zucker, 2014]). Let U be an open subset of R,
and X = (U0, U1, U2, ...) a sequence of open subsets of R. Then the sequence X is called
an open exhaustion of U iff:

1. U =
⋃∞

l=0 Ul, and

2. for each l ∈ N, Ul is a finite union of non-empty open finite intervals I l1, I
l
2, ..., I

l
kl

whose closures are pairwise disjoint, and

3. for each l ∈ N, Ul =
⋃kl

i=1 I
l
i ⊆ Ul+1.

For each l, Ul is called a stage of the exhaustion, with components I l1, I
l
2, ..., I

l
kl

.

Now that we have the definition of open exhaustion, we also want to be able to compute
the intervals in each stage of an open exhaustion.

Definition 2.5.2 (Effective open exhaustion, [Fu and Zucker, 2014]). An open exhaustion
(U1, U2, . . .) of an open set U ⊆ R is called an effective open exhaustion if

• for all l, the components I li that are intervals building up the stage Ul, are rational
and ordered i.e., I li = (ali, b

l
i) for some ali, b

l
i ∈ Q where bli < ali+1 for i = 1, ..., kl − 1,

and

• the map
l 7→ (al1, b

l
1, ..., a

l
kl
, blkl)

which delivers the sequence of stages Ul = I l1 ∪ ... ∪ I lkl is recursive.

Definition 2.5.3 (Effective local uniform continuity, [Fu and Zucker, 2014]). A function f
on U is effectively locally uniformly continuous w.r.t. an effective exhaustion (Un)n∈N of
U , if there is a recursive function M : N2 ↠ N such that for all k, l ∈ N and all x, y ∈ Ul:

|x− y| < 2−M(k,l) =⇒ |f(x)− f(y)| < 2−k

Definition 2.5.4 (Acceptable Function). A function f : R → R is acceptable if there exists
a sequence X where:

(i) X is an effective open exhaustion for dom(f), and

(ii) f is effectively locally uniformly continuous w.r.t. X.
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2.6 Computability on R: Multipolynomial approximability

In this section, we review the concept of multipolynomial computability, which is only
used in section 5.3. During this section, whenever we refer to a “polynomial”, we mean a
Q-polynomial. The symbol ↾ is used for domain restriction.

Definition 2.6.1 (Multipolynomial, [Fu and Zucker, 2014]). Given a finite sequence of
polynomials (p1, p2, . . . , pk) and a sequence of open intervals (I1, I2, . . . , Ik) with disjoint
closures, we define a (Q-)multipolynomial q(x) with domain

⋃k
i=1 Ii as follows:

q(x) =



p1(x) if x ∈ I1
p2(x) if x ∈ I2

. . .

pk(x) if x ∈ Ik

undefined otherwise.

We denote this polynomial by

q = [p1 ↾ I1, . . . , pk ↾ Ik].

Definition 2.6.2 (Effective sequence of multipolynomials, [Fu and Zucker, 2014]). Given
an effective open exhaustion (Un)n∈N of U , a sequence of polyomials (ql) is called an
effective sequence of multipolynomials if

ql =
[
pl1 ↾ I

l
1, . . . , p

l
k ↾ I

l
kl

]
where for any l ∈ N, we have Ul = I l1∪· · ·∪I lkl and (p1, p2, . . . , pk) is an effective sequence
of tuples of polynomials.

Definition 2.6.3 (Effective local multipolynomial approximability, [Fu and Zucker, 2014]).
Let f : R → R and X = (U1, U2, . . .) be an effective open exhaustion of dom(f), and
let (qn)n∈N be an effective sequence of multipolynomials. If there is a recursive function
M : N× N → N such that for all k, l, n ∈ N and x ∈ Ul we have

n ≥ M(k, l) =⇒ |qn(x)− f(x)| < 2−k,

we say f is effectively locally multipolynomially approximable w.r.t. X by (ql) via M and
write (ql) _M,X f .

We say f is effectively locally multipolynomially approximable w.r.t. X by (ql) if f is
effectively locally multipolynomially approximable w.r.t. X via some recursive function
M and write (ql) _X f .

Now, let us review the equivalence lemma proved by Fu and Zucker [2014]:

Theorem 2.6.4 (Fu and Zucker’s Equivalence Theorem). For any acceptable function f :
R → R and any effective open exhaustion X of dom(f), the following are equivalent:

• f is an α-computable function.

• f is WhileCC-approximable.
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• f is GL-computable 3 w.r.t. X.

• f is effectively locally uniformly multipolynomially approximable w.r.t. X.

3The definition of Grzegorczyk-Lacome computability (GL-computability) for total functions is given in [Pour-El
and Richards, 1989, page 25] and later extended in Fu and Zucker [2014] to Grzegorczyk-Lacome computability (GL-
computability) with respect to some open exhaustion for partial functions.
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Chapter 3

WhileCC-Approximability of Elementary
Functions

In this section, we prove that the elementary functions (Definition 3.1.1) are WhileCC-
approximable. Our proof is structured as follows:

1. We first prove that basic elementary functions (constant and identity functions) are
WhileCC-approximable.

2. We then prove that the composition of any elementary function with a WhileCC-
approximable function builds a WhileCC-approximable function.

3. Using the first two parts, we can then inductively prove that all elementary functions
are approximable by WhileCC-programs. This gives us the main result of the current
chapter in Theorem 3.12.1.

We first define the elementary functions formally in Section 3.1, then we introduce some
preliminary lemmas in Subsection 3.2. In Subsection 4.2 we prove that basic elementary
functions (constant and identity functions) are WhileCC-approximable. In subsections
3.4 through 3.11, we prove that the composition of basic elementary function constructors
(addition, multiplication, division, exponential, ln, sin, nth root and arcsin) with other
WhileCC-approximable functions builds WhileCC-approximable functions, and then in
Section 3.12 we conclude that all elementary functions are WhileCC-approximable.

3.1 Elementary Functions

Elementary functions appear in different computational contexts.

Definition 3.1.1 (Elementary functions). The elementary functions on R [Tenenbaum and
Pollard, 1985, page 17] are partial functions defined by expressions built up from

• α-computable reals (see Remark 3.1.2 and Section 2.4), and

• the variable x

and, by applying (repeatedly) the basic operations below on elementary functions f, g:

(i) addition (i.e. (f + g)(x) = f(x) + g(x))

(ii) multiplication (i.e. (f · g)(x) = f(x)g(x))
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(iii) division (i.e. divf (x) =
1

f(x)
where 1

0
is undefined)

(iv) exponential (i.e. expf (x) = ef(x))

(v) logarithm (i.e. lnf (x) = ln(f(x))

(vi) sinf (x) = sin(f(x))

(vii) n-th roots: rootn,f (x) = n
√

f(x) where 0 < n ∈ N

(viii) arcsinf (x) = arcsin(f(x))

In this thesis, we make the following modifications to the natural definition of some
of the functions above, to work with a computable part of R, and also to make sure the
domains of those functions are open:

• We define n
√
x = 0 for x < 0 when n is even.

• We extend the definition of arcsin(x) to be π
2

for x > 1 and to be −π
2

for x < −1.

From here on, the term elementary functions will be used to refer to the modified version
of unary elementary functions.

Remark 3.1.2. Note that the original definition of elementary functions by [Tenenbaum
and Pollard, 1985, page 17] involves expressions built up from arbitrary (possibly non-
computable) constants. We cannot approximate non-computable constants, so we choose
to omit them from our definition of elementary functions and only work with α-computable
reals.

3.2 Preliminary Lemmas

Definition 3.2.1. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and x, b ∈ R. We define (F (−) < −) of type real× real → bool as

(F (−) < −) ≡ proc
in x : real b : real
aux c : nat

begin
c := choose (k : nat) : F (x, k) + 2−k < b
/* If terminates it meansf(x) < b */
return tt

end

The semantics of the procedure above is

(F (x) < b)R = {tt | ∃y, n y ∈ FR(x, n) ∧ y + 2−n < b}.

Note that instead of (F (−) < −)R(x, b), we write (F (x) < b)R.

Definition 3.2.2. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and and x, b ∈ R. We define (F (−) > −) of type real× real → bool
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as
(F (−) > −) ≡ proc

in r : real b : real
aux c : nat

begin
c := choose (k : nat) : F (r, k)− 2−k > b
/* If terminates it means f(r) > b */
return tt

end

The semantics of the procedure above is

(F (x) > b)R = {tt | ∃y, n y ∈ FR(x, n) ∧ y − 2−n > b}.

Note that instead of (F (−) > −)R(x, b), we write (F (x) > b)R.

Lemma 3.2.3. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then we have:

f(x) < y ⇐⇒ ∃n ∈ N ∃y′ ∈ FR(x, n) y′ + 2−n < y ⇐⇒ (F (x) < y)R = {tt}.
(3.1)

Similarly,

y < f(x) ⇐⇒ ∃n ∈ N ∃y′ ∈ FR(x, n) y < y′ − 2−n ⇐⇒ (y < F (x))R = {tt}.
(3.2)

Proof. We begin by proving (3.1).

(⇒) If f(x) < y then y− f(x) > 0, and there is n ∈ N such that 2−n < y−f(x)
2

. Then, for
any y′ ∈ FR(x, n) we have f(x)− 2−n < y′ < f(x) + 2−n and hence:

y′ + 2−n < f(x) + 2−n+1

< f(x) + 2

(
y − f(x)

2

)
≤ f(x) + y − f(x)

≤ y

(⇐) We assume that ∃n ∈ N ∃y′ ∈ FR(x, n) y′ + 2−n < y (*).

f(x) = f(x)− 2−n + 2−n

< y′ + 2−n (y′ ∈ FR(x, n))
< y (assumption (*))

Proof of (3.2) is similar to (3.1).

Remark 3.2.4. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and x ∈ R. Then

• If x /∈ dom(f), regardless of the value of b, we have

(F (x) < b)R = (F (x) > b)R = ∅.
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• Assuming x ∈ dom(f), we have

(F (x) < b)R = ∅ ⇐⇒ f(x) ≥ b,

and respectively,
(F (x) > b)R = ∅ ⇐⇒ f(x) ≤ b.

Remark 3.2.5. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R and x ∈ R. Then, Lemma 3.2.1 is particularly useful for getting an
upperbound for f(x) using the statement

upper := choose (r : real) : F (x) < r

and respectively, getting a lowerbound for f(x) using the statement

lower := choose (r : real) : F (x) > r.

Definition 3.2.6. Let F,G : real× nat → real be WhileCC-procedures and x1, x2 ∈ R. We
define the WhileCC-procedure F (−) < G(−) as a shorthand for

(F (−) < G(−)) ≡ proc
in x1 : real x2 : real
aux c : nat

begin
c := choose (k : nat) : F (x1, k) + 2−k < G(x2, k)− 2−k

/* If terminates it means f(x1) < g(x2) */
return tt

end

The semantics of the procedure above is

(F (x1) < G(x2))
R = {tt | ∃k ∈ N ∃y1 ∈ FR(x1, k) ∃y2 ∈ FR(x2, k)

y1 + 2−k < y2 − 2−k}.
Note that instead of (F (−) < G(−))R(x1, x2) (resp. (F (−) > G(−))R(x1, x2)) we write
(F (x1) < G(x2))

R (resp. (F (x1) > G(x2))
R).

Lemma 3.2.7. Let F,G : real × nat → real be WhileCC-procedures approximating the
functions f, g : R → R respectively, and x1, x2 ∈ R. Then we have:

f(x1) < g(x2) ⇐⇒ ∃n ∈ N ∃y1 ∈ FR(x1, n) ∃y2 ∈ GR(x2, n)

y1 + 2−n < y2 − 2−n

⇐⇒ (F (x1) < G(x2))
R = {tt}

Proof. The proof is similar to Lemma 3.2.3.
(⇒) If f(x1) < g(x2) then g(x2)− f(x1) > 0, and there is n ∈ N such that

2−n < (g(x2)− f(x1))/2.

Then, for any y1 ∈ FR(x1, n) and any y2 ∈ GR(x2, n) we have f(x1) − 2−n < y1 <
f(x1) + 2−n and hence:

y1 + 2−n < f(x1) + 2−n+1

< f(x1) + 2((g(x2)− f(x1))/2)

= f(x1) + g(x2)− f(x1)

= g(x2)
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(⇐) We assume that ∃n ∃y1 ∈ FR(x1, n) ∃y2 ∈ GR(x2, n) such that y1+2−n < g(x2)−2−n

(*). Then:

f(x1) = f(x1)− 2−n + 2−n

< y1 + 2−n (y1 ∈ FR(x1, n))
< g(x2)− 2−n (assumption (*))
< g(x2)

Remark 3.2.8. Let F,G : real × nat → real be WhileCC-procedures approximating the
functions f, g : R → R respectively, and x1, x2 ∈ R. Then

• If x1 /∈ dom(f) or x2 /∈ dom(g), regardless of the value of y, we have

(F (x1) < G(x2))
R = (F (x1) > G(x2))

R = ∅.

• Assuming x1 ∈ dom(f) and x2 ∈ dom(g), we have

(F (x1) < G(x2))
R = ∅ ⇐⇒ f(x1) ≥ g(x2),

and respectively,

(F (x1) > G(x2))
R = ∅ ⇐⇒ f(x1) ≤ g(x2).

3.3 Basic Functions

Theorem 3.3.1. Let c be an α-computable real. Then the constant function f(x) = c is
WhileCC-approximable.

Proof. Immediately follows from Lemma 2.4.8 and Equivalence Lemma 2.6.4.

Theorem 3.3.2. The identity function id(x) = x is WhileCC-approximable.

Proof. Immediately follows from Lemma 2.4.9 and Equivalence Lemma 2.6.4.

3.4 Addition

In this section, we construct a WhileCC-procedure that approximates (f+g)(x) = f(x)+
g(x) using WhileCC-procedures that approximate the functions f and g.

Definition 3.4.1. Let F,G : real × nat → real be WhileCC-procedures approximating the
functions f, g : R → R respectively. Then the WhileCC-procedure

(F +G) ≡ proc
in x : real c : nat
out res : real

begin
res := F (x, c+ 1) +G(x, c+ 1)

end

of type real× nat → real has the semantics

(F +G)R(x, n) =
{
y1 + y2 | y1 ∈ FR(x, n+ 1) ∧ y2 ∈ GR(x, n+ 1)

}
.
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Note that since we want the overall error of our approximation to be less than 2−c, the
idea is to define the procedure (F+G) to approximate each of f(x) and g(x) with at most
half the error bound i.e. 2−(c+1), so that when adding the two values, the overall error
would be smaller that 2−c. We prove that the WhileCC-procedure (F +G) approximates
the function (f + g)(x) = f(x) + g(x).

Lemma 3.4.2. Let F,G : real × nat → real be WhileCC-procedures approximating the
functions f, g : R → R respectively, and x ∈ dom(f+g). Then we have (F+G)R(x, n) ̸=
∅ for any n ∈ N.

Proof. Let us assume x ∈ dom(f + g) = dom(f) ∩ dom(g). Since F (resp. G) is the
WhileCC-procedure approximating f (resp. g), There are y1 ∈ FR(x, n + 1) ̸= ∅ and
respectively y2 ∈ GR(x, n + 1) ̸= ∅. This, by the definition of (F + G)R means that
y1 + y2 ∈ (F +G)R(x, n), and hence (F +G)R(x, n) ̸= ∅.
Lemma 3.4.3. Let F,G : real × nat → real be WhileCC-procedures approximating the
functions f, g : R → R respectively and x /∈ dom(f + g). Then we have ∀n ∈ N (F +
G)R(x, n) = ∅.
Proof. Assume x /∈ dom(f + g). This means that at least x /∈ dom(f) or x /∈ dom(g).
Hence at least one of the sets FR(x, n + 1) or GR(x, n + 1) is empty which means that
(F +G)R(x, n) = ∅.
Lemma 3.4.4. Let F,G : real × nat → real be WhileCC-procedures approximating the
functions f, g : R → R respectively, and n ∈ N. Then we have

(F +G)R(x, n) ⊆ Nbd((f + g)(x), 2−n)

for all x ∈ dom(f + g).

Proof. By definition of (F+G)R(x, n), for any z ∈ (F+G)R(x, n) there are y1 ∈ FR(x, n+
1) and y2 ∈ GR(x, n+ 1) such that y1 + y2 = z. Hence:

y1 + y2 = z ∈ (F +G)R(x, n)

=⇒ |f(x)− y1| < 2−n−1 ∧ |g(x)− y2| < 2−n−1

=⇒ |f(x) + g(x)− y1 − y2| < 2−n

=⇒ |(f + g)(x)− (y1 + y2)| < 2−n

=⇒ y1 + y2 ∈ Nbd((f + g)(x), 2−n)

=⇒ z ∈ Nbd((f + g)(x), 2−n)

Theorem 3.4.5. Let F,G : real × nat → real be WhileCC-procedures approximating the
functions f, g : R → R respectively. Then the WhileCC-procedure (F +G) : real× nat →
real WhileCC-approximates (f + g)(x) = f(x) + g(x).

Proof. Follows directly from Lemmas 3.4.2, 3.4.3, 3.4.4.
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3.5 Multiplication

In this section, we construct a WhileCC-procedure that approximates (f · g)(x) = f(x) ·
g(x) using WhileCC-procedures that approximate the functions f and g.

Definition 3.5.1. Let F,G : real × nat → real be WhileCC-procedures approximating the
functions f, g : R → R respectively. Then the WhileCC-procedure

(F ·G) ≡ proc
in x : real n : nat
aux m1 : nat m2 : nat y1 : real y2 : real

begin
m1 := choose (k : nat) : F (x) < 2−n−1+k and F (x) > −2−n−1+k

y1 := G(x,m1)
m2 := choose (k : nat) : y1

2 < 2−2n−2+k

y2 := F (x,m2)
return y1 × y2

end

of type real× nat → real has the semantics

(F ·G)R(x, n) = {y1 · y2 | ∃m1,m2 ∈ N y1 ∈ GR(x,m1) ∧ y2 ∈ FR(x,m2) ∧
|f(x)| < 2−n−1+m1 ∧ y21 < 2−2n−2+m2}.

Note that the idea here is to compute “how precise” the approximations of f(x) and
g(x) need to be, so that the product of the outputs of those approximations (y1 and y2)
gives us the requested precision (2−n):

Lemma 3.5.2. Let F,G : real × nat → real be WhileCC-procedures approximating the
functions f, g : R → R respectively. Then for any y1 ∈ GR(x,m1) and y2 ∈ FR(x,m2)
with

(i) |f(x)| < 2−n−1+m1 , and

(ii) y21 < 2−2n−2+m2

we have:
|y1y2 − f(x)g(x)| < 2−n.

Proof. To prove |y1y2 − f(x)g(x)| < 2−n, first we prove that

|y1y2 − f(x)g(x)| < 2−m2|y1|+ 2−m1|f(x)|.

Then we need to show that each of the terms 2−m2|y1| and 2−m1|f(x)| are less than 2−n−1.
To show that |y1y2 − f(x)g(x)| < 2−m2|y1|+ 2−m1|f(x)|:

|y1y2 − f(x)g(x)| = |y1y2 − f(x)y1 + f(x)y1 − f(x)g(x)|
≤ |y1y2 − f(x)y1|+ |f(x)y1 − f(x)g(x)|
= |y1(y2 − f(x))|+ |f(x)(y1 − g(x))|
= |y1||y2 − f(x)|+ |f(x)||y1 − g(x)|
< 2−m2|y1|+ 2−m1|f(x)|. (since y1 ∈ GR(x,m1), y2 ∈ FR(x,m2))
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Now to show that 2−m2|y1| < 2−n−1, using (ii), we have:

y21 < 2−2n−2+m2 =⇒ y21 < 2−2n−2+2m2

=⇒ |y1| < 2−n−1+m2

=⇒ 2−m2|y1| < 2−n−1.

Now using (i), we have |f(x)| < 2−n−1+m1 and hence 2−m1|f(x)| < 2−n−1. This proves
that 2−m2|y1|+ 2−m1|f(x)| < 2−n.

Now, we go on to prove that the WhileCC-procedure (F ·G) approximates the function
(f · g)(x) = f(x) · g(x).
Lemma 3.5.3. Let F,G : real × nat → real be WhileCC-procedures approximating the
functions f, g : R → R respectively, and x ∈ dom(f ·g). Then we have (F ·G)R(x, n) ̸= ∅
for any n ∈ N.

Proof. Since x ∈ dom(f · g) = dom(f) ∩ dom(g) and FR, GR approximate f, g respec-
tively, for any n ∈ N we have FR(x, n) ̸= ∅ and GR(x, n) ̸= ∅. This means that since
x ∈ dom(f), we can choose m1 sufficiently large so that 2−n−1+m1 is larger than |f(x)|.
The trick here is to break the comparison to |f(x)| into two comparisons: f(x) < 2−n−1+m1

and f(x) > −2−n−1+m1 .
Now with fixed m1 we can choose y1 ∈ GR(x,m1) and we can find m2 sufficiently large
that y21 < 2−2n−2+m2 and a y2 ∈ FR(x,m2). Now, since multiplication is total, y1y2 can
be computed and hence (F ·G)R(x, n) ̸= ∅.

Lemma 3.5.4. For any real x /∈ dom(f ·g) and for any n ∈ N, we have (F ·G)R(x, n) = ∅.
Proof. Assume x /∈ dom(f · g). This means that at least x /∈ dom(f) or x /∈ dom(g).

• If x /∈ dom(f) then the comparison procedure (F (−) < −) will not terminate and
hence (f · g)(x, n) = ∅.

• If x ∈ dom(f) but x /∈ dom(g), then no y1 ∈ GR(x,m1) can be found since
GR(x,m1) = ∅.

and hence (F ·G)R(x, n) = ∅ in either of the cases.

Lemma 3.5.5. For any real x ∈ dom(f · g) and for any n ∈ N, we have (F ·G)R(x, n) ⊆
Nbd(f(x) · g(x), 2−n).

Proof. Using the definition of the procedure (F · G), Lemma 3.5.2 immediately implies
that (F ·G)R(x, n) ⊆ Nbd(f(x) · g(x), 2−n).

Theorem 3.5.6. Let F,G : real × nat → real be WhileCC-procedures approximating the
functions f, g : R → R respectively. Then the WhileCC-procedure (F ·G) : real× nat →
real WhileCC-approximabtes (f · g)(x) = f(x) · g(x).
Proof. Follows directly from Lemmas 3.5.3, 3.5.4, 3.5.5.
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3.6 Division

In this section, we construct a WhileCC-procedure that approximates divf (x) = 1/f(x)
using a WhileCC-procedure that approximates the functions f .

Definition 3.6.1. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and and x ∈ R. Then the WhileCC-procedure

(1/F (−,−)) ≡ proc
in x : real n : nat
aux res : real chosenVal : nat m : real

begin
chosenVal := choose (k : nat) : proc

in k : nat x : real
aux res : bool

begin
if k =nat 1 then
res := 0 < F (x)

else
res := F (x) < 0

fi
return res

end
if chosenVal =nat 1 then
res ,m := choose (q : real,mVal : real) :

abs(q − 1
mVal

) < 2−n

and
(0 < mVal < F (x))

else
res ,m := choose (q : real,mVal : real) :

abs(q − 1
mVal

) < 2−n

and
(F (x) < mVal < 0)

fi
return res

end

of type real× nat → real has the semantics

(1/F (x, n))R = {q ∈ Q | ∃m ∈ Q 0 < mid < f(x) ∧0 < |q − (1/m)| < 2−n}
∪

{q ∈ Q | ∃m ∈ Q f(x) < m < 0 ∧0 < |q − (1/m)| < 2−n}.

Note that instead of (1/F (−,−))R(x, n) we write (1/F (x, n))R.

We handle the case of 0 < f(x) and f(x) < 0 separately. In each case we choose a rational
value q that is sufficiently close to 1/f(x). Since we cannot calculate the exact value of
f(x), we choose an approximation of it called m here and choose q to be sufficiently close
to m.
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Lemma 3.6.2. Let f : R → R. Then for any q,m ∈ Q we have

(i) 0 < m < f(x) ∧ 0 < |q − (1/m)| < 2−n =⇒ |q − (1/f(x))| < 2−n , and

(ii) f(x) < m < 0 ∧ 0 < |q − (1/m)| < 2−n =⇒ |q − (1/f(x))| < 2−n.

Proof. First let’s assume f(x) > 0, then

0 < |q − 1/m| < 2−n

=⇒ |q − 1/f(x)| < 2−n (since 0 < mid < f(x))

Now the case where f(x) < 0 is similar: we have

0 < |q − 1/m| < 2−n

=⇒ |q − 1/f(x)| < 2−n (since f(x) < mid < 0)

Now, we go on to prove that the WhileCC-procedure (1/F (−,−)) approximates the
function divf (x) = 1/f(x).

Lemma 3.6.3. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then for any real x ∈ dom(divf ) and for any n ∈ N, we have
(1/F (x, n))R ̸= ∅.
Proof. Since x ∈ dom(divf ). This means that x ∈ dom(f) and f(x) ̸= 0. This means
there is always a rational number m between 0 and f(x). Now no matter what value the
chosen non-zero mid has, we can choose a rational number q sufficiently close to 1/m
satisfying |q − 1/mid| < 2−n. Hence (1/F (x, n))R ̸= ∅.
Lemma 3.6.4. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then for any real x /∈ dom(divf ) and for any n ∈ N, we have
(1/F (x, n))R = ∅.
Proof. Assume x /∈ dom(divf ). This means that at least x /∈ dom(f) or f(x) = 0. If
x /∈ dom(f), then (F (x) > 0)R = (F (x) < q)R = ∅, and hence (1/F (x, n))R = ∅. Now
let’s assume x ∈ dom(f) and f(x) = 0. This means no 0 < mid < 0 can be found and
hence (1/F (x, n))R = ∅.
Lemma 3.6.5. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then ∀x ∈ dom(f) with f(x) ̸= 0, ∀n ∈ N, ∀q ∈ (1/F (x, n))R :

|1/f(x)− q| < 2−n.

Proof. Using the definition of the procedure (1/F (−,−)), Lemma 3.6.2 immediately im-
plies that (1/F (x, n))R ⊆ Nbd(1/f(x), 2−n).

Theorem 3.6.6. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then the WhileCC-procedure (1/F (−,−)) approximates divf .

Proof. Follows directly from Lemmas 3.6.3, 3.6.4, 3.6.5.
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3.7 Exponential

In this section, we discuss WhileCC-approximability of the function expf (x) for a WhileCC-
approximable function f . First, we define a WhileCC-program that approximates exp(x)
and then based on that, assuming we have a WhileCC-procedure for approximating the
function f , we build another WhileCC-program that approximates expf (x) = exp(f(x)).

3.7.1 WhileCC-Approximability of exp(x)

Since the function ex is analytic on R, we can compute sufficiently many terms of its
Taylor series to get a ‘sufficiently close’ approximation. The Taylor expansion of ex is as
follows:

ex =
∞∑
n=0

xn

n!
(3.3)

To approximate ex, we need to figure out how many iterations of the summation above
need to be calculated to achieve the desired precision. Let us define the WhileCC-
procedure isProperIndex : nat× real× nat → real below:

isProperIndex ≡ proc
in N : nat x : real c : nat
aux res : bool

begin
res := xN/Factorial(N) < (2−c)

and (2 × x) < N
and (2 × −x) < N

return res
end

The semantics of the procedure isProperIndex is as below:

isProperIndexR(N, x, c) = {tt} ⇐⇒ xn/N ! < 2−c ∧ 2|x| < N.

The procedure isProperIndex returns true only if calculating the first n terms of the series
will produce a sufficiently precise approximation.

Lemma 3.7.1. For all N ∈ N, x ∈ R, and c ∈ N, we have

isProperIndexR(N, x, c) = {tt} =⇒
∣∣∣∣∣ex −

N∑
n=0

xn

n!

∣∣∣∣∣ < 2−c

Proof. Let us assume isProperIndexR(N, x, c) = {tt}. By definition, this means that

(i) xn/N ! < 2−c, and

(ii) 2|x| < N

We compute an upper bound for the error of the Taylor series approximation up to the
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Nth term:∣∣∣∣∣ex −
N∑

n=0

xn

n!

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

xn

n!

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

xN+k

(N + k)!

∣∣∣∣∣
≤

∞∑
k=1

|x|N+k

(N + k)!
(by triangle inequality)

<

∞∑
k=1

1

2k
· |x|

N

N !
(by assumption (ii) and Lemma A.0.4)

= 1 · |x|
N

N !
< 2−c (by assumption (i))

Now we need to make sure that the premise in Lemma 3.7.1 can actually be satisfied.

Lemma 3.7.2. For any c ∈ N and arbitrary x ∈ R, there is some N ∈ N for which

isProperIndexR(N, x, c) = {tt}.
Proof. By Theorem A.0.1, choosing ϵ = 2−c, there exists an index N > 2|x| such that
xN

N !
< 2−c.

Now we know that for arbitrary inputs x, we can find the necessary number of terms
we must calculate to get the desired precision.

Definition 3.7.3. The WhileCC-procedure

Exp ≡ proc
in x : real c : nat
aux counter : nat N : nat sum : real

begin
counter := 0nat
sum := 0real
N := choose (k : nat) : isProperIndex(k, x, c)
while counter <nat N do
sum := sum + xcounter/Factorial(counter)
counter := counter + 1

od
return sum

end

of type real× nat → real has the semantics

ExpR(x, c) =

{
N∑

n=0

xn

n!
| isProperIndex(N, x, c)

}
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The procedure Exp approximates ex for x ∈ R by calculating the first N terms of the
series (3.3) where N is chosen to satisfy isProperIndex.

Lemma 3.7.4. For any real x ∈ R and for any n ∈ N, we have ExpR(x, n) ̸= ∅.
Proof. Follows directly from the definition of ExpR and Lemma 3.7.2.

Lemma 3.7.5. For any x ∈ dom(exp) = R, n ∈ N, and y ∈ ExpR(x, n) we have

|ex − y| < 2−n.

Proof. Follows directly from the definition of ExpR and Lemma 3.7.1.

Theorem 3.7.6. The WhileCC-procedure Exp given in Definition 3.7.3 approximates exp.

Proof. Follows directly from Lemmas 3.7.4, 3.7.5 and the fact that dom(exp) = R.

3.7.2 WhileCC-Approximability of exp(f(x))

Definition 3.7.7. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and x ∈ R. Then the WhileCC-procedure

ExpF ≡ proc
in n : nat x : real
aux res : real m : nat z : nat

begin
z := choose (k : nat) : F (x) < k
m := choose (k : nat) : Exp(2−k) < 2−n−1−2z + 1
res := Exp(F (x,m), n+ 1)
return res

end

of type real× nat → real has the semantics

ExpRF (x, n) = {y ∈ ExpR(r, n+ 1) |
∃z ∈ N f(x) < z ∧
∃m ∈ N e(2

−m) < 2−n−1−2z + 1 ∧
r ∈ FR(x,m)}

Intuitively, ExpF approximates exp(f(x)) by invoking Exp(F (x,m), n+1), where m is
sufficiently large to ensure ∣∣ef(x) − y

∣∣ < 2−n

for any output y of Exp(F (x,m), n+ 1).

Lemma 3.7.8. Let the WhileCC-procedure F : real × nat → real approximate f : R → R
and x ∈ dom(f). Now let m, z ∈ N, r ∈ FR(x,m), and y ∈ ExpR(r, n + 1) satisfy the
two conditions

(i) e(2
−m) < 2−n−1−2z + 1, and

(ii) f(x) < z.
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Then ∣∣ef(x) − y
∣∣ < 2−n.

Proof. First, we can see that∣∣ef(x) − y
∣∣ = ∣∣ef(x) − er + er − y

∣∣
≤

∣∣ef(x) − er
∣∣+ |er − y|.

Now, to prove
∣∣ef(x) − y

∣∣ < 2−n it suffices to prove |er − y| < 2−n−1 and
∣∣ef(x) − er

∣∣ <
2−n−1.

(i) |er − y| < 2−n−1: This is easily seen by assumption y ∈ ExpR(r, n+ 1).

(ii)
∣∣ef(x) − er

∣∣ < 2−n−1: First observe the following:∣∣ef(x) − er
∣∣ ≤ ∣∣∣ef(x) − ef(x)+2−m

∣∣∣ (by Lemma A.0.3)

=
∣∣∣ef(x) − ef(x)e2

−m
∣∣∣

=
∣∣∣ef(x)(1− e2

−m

)
∣∣∣

=
∣∣ef(x)∣∣∣∣∣(1− e2

−m

)
∣∣∣

= ef(x)(e2
−m − 1) (since e2

−m ≥ 1)

< ez(e2
−m − 1) (by (ii))

< 4z(e2
−m − 1)

= 22z(e2
−m − 1)

Now using (i), we have

e2
−m

< 2−n−1−2z + 1 =⇒ e2
−m − 1 < 2−n−1−2z

=⇒ e2
−m − 1 < 2−n−1 · 2−2z

=⇒ 22z(e2
−m − 1) < 2−n−1

which implies
∣∣ef(x) − er

∣∣ < 2−n−1.

Now we prove that the WhileCC-procedure ExpRF approximates expf (x).

Lemma 3.7.9. For any real x ∈ dom(ef ) and for any n ∈ N, we have ExpRF (x, n) ̸= ∅.
Proof. Assuming x ∈ dom(expf ), this means x ∈ dom(f). Since F approximates f(x),
we can find a z > f(x). Now looking at the constraint e(2

−m) < 2−n−1−2z + 1, we know
that 2−n−1−2z > 0 and hence 2−n−1−2z + 1 > 1. This means we can find an index m
sufficiently large so that e(2

−m) < 2−n−1−2z + 1 since limm→∞ e(2
−m) = 1. Now since

x ∈ dom(f), we know that FR(x,m) ̸= ∅ so we can choose an r ∈ FR(x,m). We also
know that dom(exp) = R, so ExpRF ̸= ∅ and hence ExpRF (x, n) ̸= ∅.
Lemma 3.7.10. For any real x /∈ dom(ef(x)) and n ∈ N, we have ExpRF (x, n) = ∅.
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Proof. Assuming x /∈ dom(ef(x)), this means x /∈ dom(f). So we have FR(x,m) = ∅.
This shows that F (x) < z does not terminate and hence ExpRF (x, n) = ∅ for any n ∈ N.

Lemma 3.7.11. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then ∀x ∈ dom(f), ∀n ∈ N, ∀y ∈ ExpRF (x, n) :∣∣ef(x) − y

∣∣ < 2−n.

Proof. Follows directly from Lemma 3.7.8.

Theorem 3.7.12. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then the WhileCC-procedure ExpRF approximates expf (x).

Proof. Follows directly from Lemmas 3.7.9, 3.7.10, 3.7.11.

3.8 Logarithm

In this section, we discuss WhileCC-approximability of the function ln(f(x)) for any
WhileCC-approximable function f .

Since we already have a way of approximating the inverse of ln(x), which is exp(x), we
can use it to construct a WhileCC-procedure that approximates ln(f(x)) for a WhileCC-
approximable function f .

Definition 3.8.1. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and and x ∈ R. Then the WhileCC-procedure

LnF ≡ proc
in x : real n : nat
aux res : real

begin
res := choose (y : real) : Exp(y) < F (x) and F (x) < Exp(y + 2−n)
return res

end

of type real× nat → real has the semantics

LnRF (x, n) = {y ∈ Q | exp(y) < f(x) < exp(y + 2−n)}

The WhileCC-procedure LnF approximates lnf (x).

Lemma 3.8.2. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and x ∈ dom(lnf ). Then for any n ∈ N, we have LnRF (x, n) ̸= ∅.
Proof. Since x ∈ dom(lnf ), then f(x) > 0. Then there must be some y ∈ Q satisfying
exp(y) < f(x), and we can choose y such that exp(y) is arbitrarily close to f(x). Since
exp is monotonically increasing, we can choose y to satisfy f(x) < exp(y+2−n). Therefore
LnRF (x, n) ̸= ∅.
Lemma 3.8.3. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. For any real x /∈ dom(lnf ) and n ∈ N, we have LnRF (x, n) = ∅.
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Proof. Since x /∈ dom(lnf ), it means that at least x /∈ dom(f), or f(x) ≤ 0. In the case
x /∈ dom(f), the procedure Exp(y) < F (x) does not terminate and hence LnRF (x, n) = ∅.
In the case where f(x) is defined but f(x) ≤ 0, since exp(y) is positive, Exp(y) < F (x)
cannot terminate and hence LnRF (x, n) = ∅.
Lemma 3.8.4. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then ∀x ∈ dom(f), ∀n ∈ N, ∀y ∈ LnRF (x, n) :

|ln(f(x))− y| < 2−n.

Proof. Using the definition of LnF , we have

exp(y) < f(x) < exp(y + 2−n) =⇒ y < ln(f(x)) < y + 2−n

=⇒ |ln(f(x))− y| < 2−n.

Theorem 3.8.5. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then LnRF WhileCC-approximates the function lnf .

Proof. Follows from Lemmas 3.8.2, 3.8.3, 3.8.4.

3.9 Sine Function

In this section, we discuss WhileCC-approximability of the function sinf (x) for a WhileCC-
approximable function f . First, we define a WhileCC-program that approximates sin(x)
and then based on that, assuming we have a WhileCC-procedure for approximating the
function f , we build another WhileCC-program, that approximates sin(f(x)).

3.9.1 WhileCC-Approximability of sin(x)

Since the function sin(x) is analytic on R, we can compute sufficiently many terms of its
Taylor series to get a “sufficiently close” approximation. Considering the Taylor expansion
of sin(x) expanded around x = 0, we get:

sin(x) =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
(3.4)

To approximate sin(x), we need to figure out how many iterations of the summation
above need to be calculated to achieve the desired precision. Let us define the WhileCC-
procedure isProperIndex : nat× real× nat → bool below:

isProperIndex ≡ proc
in N : nat x : real c : nat
out r : bool

begin
r := xN/Factorial(N)<real 2−c

∧ 2× x < N
∧ 2×−x < N

return r
end
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The semantics of the procedure isProperIndex is as below:

isProperIndexR(N, x, c) = {tt} ⇐⇒ xN/N ! < 2−c ∧ 2|x| < N.

The procedure isProperIndex returns true only if calculating the first N terms of the series
will produce a sufficiently precise approximation.

Lemma 3.9.1. Let c ∈ N and x ∈ R. Then for any N ∈ N

isProperIndexR(N, x, c) = {tt} =⇒
∣∣∣∣∣sin(x)−

N∑
n=0

(−1)n
x2n+1

(2n+ 1)!

∣∣∣∣∣ < 2−c.

Proof. Let us assume isProperIndexR(N, x, c) = {tt}. By definition, this means that

(i) xN/N ! < 2−c, and

(ii) 2|x| < N .

Then, ∣∣∣∣∣sin(x)−
N∑

n=0

(−1)n
x2n+1

(2n+ 1)!

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

(−1)n
x2n+1

(2n+ 1)!

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

(−1)n+k x2N+2k+1

(2N + 2k + 1)!

∣∣∣∣∣
≤

∞∑
k=1

|x|2N+2k+1

(2N + 2k + 1)!
(by triangle inequality)

<
∞∑
k=1

1

2N+2k+1
· |x|

N

N !

(by assumption (ii) and Lemma A.0.4)

<

∞∑
k=1

1

2k
· |x|

N

N !

= 1 · |x|
N

N !
< 2−c (by assumption (i))

Lemma 3.9.2. For any c ∈ N and arbitrary x ∈ R, there is some N ∈ N for which

isProperIndexR(N, x, c) = {tt}.

Proof. By Theorem A.0.1, choosing ϵ = 2−c, there exists an index N > 2|x| sufficiently
large such that xN/N ! < 2−c.

Now we know that for arbitrary inputs x ∈ R, we can find the necessary number of
terms to calculate to get the desired precision.
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Definition 3.9.3. The WhileCC-procedure

Sine ≡ proc
in x : real c : nat
aux counter : nat N : nat sum : real

begin
counter := 0nat
sum := 0real
N := choose (k : nat) : isProperIndex(k, x, c)
while counter <nat N do
sum := sum +

(−1counter × x2×counter+1/Factorial(2× counter + 1))
counter := counter + 1

od
return sum

end

of type real× nat → real has the semantics

SineR(x, c) =

{
N∑

n=0

x2n+1

(2n+ 1)!
| isProperIndex(N, x, c) = {tt}

}
.

The procedure Sine approximates sin(x) for any x ∈ R by calculating the first N terms
of the series 3.4 where N is chosen to satisfy isProperIndex.

Corollary 3.9.4. For any c ∈ N and x ∈ R, Using Lemma 3.9.2 and Definition 3.9.3, it
immediately follows that

SineR(x, c) ̸= ∅.
Lemma 3.9.5. For any n ∈ N and x ∈ R we have

SineR(x, n) ⊆ Nbd(sin(x), 2−n)

Proof. Follows immediately from Definition 3.9.3 and Lemma 3.9.1.

3.9.2 WhileCC-Approximability of sin(f(x))

Here, we build a WhileCC-procedure that approximates sin(f(x)) using the WhileCC-
procedure Sine we constructed in the previous section.

Definition 3.9.6. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and and x ∈ R. Then the WhileCC-procedure

SineF ≡ proc
in x : real n : nat

begin
return Sine(F (x, n+ 1), n+ 1)

end

of type real× nat → real has the semantics

SineRF (x, n)
def
= {y ∈ SineR(r, n+ 1) | r ∈ FR(x, n+ 1)}.
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Let us prove that SineF approximates sin(f(x)):

Lemma 3.9.7. For any real x ∈ dom(sin(f)) and for any n ∈ N, we have SineRF (x, n) ̸= ∅.
Proof. Assuming x ∈ dom(sin(f(x))), this means x ∈ dom(f). Since x ∈ dom(f), we
know that FR(x, n + 1) ̸= ∅. So for any choice of r ∈ FR(x, n + 1), since we know that
dom(sin) = R, there exists a y ∈ SineR(r, n+ 1). Hence, we have SineRF (x, n) ̸= ∅.
Lemma 3.9.8. For any real x /∈ dom(sin(f)) and n ∈ N, we have SineRF (x, n) = ∅.
Proof. Since F approximates f and x /∈ dom(f), FR(x, n + 1) is empty and hence no
r ∈ FR(x, n+ 1) can be chosen which means SineRF (x, n) = ∅.
Lemma 3.9.9. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, then ∀x ∈ dom(f), ∀n ∈ N, ∀y ∈ SineRF (x, n) :

|sin(f(x))− y| < 2−n.

Proof. For any WhileCC-prodecure approximating f : R → R, arbitrary x ∈ dom(f)
and n ∈ N, and for any arbitrary y ∈ SineRF (x, n), we have y ∈ SineR(r, n + 1) where
r ∈ FR(x, n+ 1). Now, let us calculate the error of the approximator function below:

|sin(f(x))− y|
= |sin(f(x))− sin(r) + sin(r)− y|
≤ |sin(f(x))− sin(r)|+ |sin(r)− y|
≤ |f(x)− r|+ |sin(r)− y| (by the mean value theorem)
< 2−n−1 + |sin(r)− y| (since r ∈ FR(x, n+ 1))
< 2−n−1 + 2−n−1 = 2−n (since y ∈ SineRF (r, n+ 1))

Theorem 3.9.10. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then the WhileCC-procedure SineRF approximates sinf (x).

Proof. Follows from Lemmas 3.9.7, 3.9.8, 3.9.9.

3.10 Arcsine

As mentioned in Definition 3.1.1, we would like to modify the common definition of
arcsin(x) to a totalized version

arcsin′(x)
def
=


π
2

if x > 1

arcsin(x) if −1 < x < 1

−π
2

if x < −1

to obtain a continuous function with an open domain. In this section, the ultimate
goal is to prove WhileCC-approximability of the function arcsin′(f(x)) for any WhileCC-
approximable function f .

Starting with arcsin(x), in order to approximate arcsin′(x), we cannot simply compare
the value of x against the endpoints and define constant functions outside the borders of
the interval (−1, 1). Intuitively, since our definition of comparison (x < −1 and x > 1)
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is “partial” and undefined on x = −1, 1, we would have undefined holes in x = −1, 1.

The idea here would be to find overlapping intervals and approximate functions defined
on those overlapping intervals using the choose operator.

In order to create “overlapping” intervals, we need to compute bounds such that ap-
proximating arcsine of any value closer than the bounds to the endpoints(x = −1, 1)
would be a “good-enough” approximation of arcsine of the endpoints −1, 1.

Let us define the WhileCC-procedure isCloseEnough of type real× nat → bool as

isCloseEnough ≡ proc
in y : real k : nat
aux n : nat

begin
b := ((Sine · Sine)(2−k)) > 1− y × y
return b

end

with the semantics

isCloseEnoughR(y, k) = ((Sine · Sine)(2−k) > 1− y2)R

of type real × nat → bool. This is the bound computed for y being a “good-enough” of
approximation for the endpoints calculated below:

Lemma 3.10.1 (Bounds for arcsin). For any k ∈ N and any y ∈ R:

1. 0 < y < 1 ∧ isCloseEnoughR(y, k) = {tt} =⇒
∣∣π
2
− arcsin(y)

∣∣ < 2−k.

2. −1 < y < 0 ∧ isCloseEnoughR(y, k) = {tt} =⇒
∣∣−π

2
− arcsin(y)

∣∣ < 2−k.

Proof. 1. Let us assume k ∈ N and 0 < y < 1 and hence 0 < arcsin(y) < π
2
:

isCloseEnoughR(y, k) = {tt}
⇐⇒ 1− y2 < sin2(2−k)

=⇒
√

1− y2 < sin(2−k) (since 0 < y < 1)
⇐⇒ cos(arcsin(y)) < sin(2−k)

⇐⇒ sin(
π

2
) cos(arcsin(y)) < sin(2−k)

⇐⇒ sin(
π

2
) cos(arcsin(y))− cos(

π

2
) sin(arcsin(y)) < sin(2−k)

⇐⇒ sin(
π

2
− arcsin(y)) < sin(2−k)

⇐⇒ π

2
− arcsin(y) < 2−k (sin is strictly increasing on [0, π

2
])

=⇒
∣∣∣π
2
− arcsin(y)

∣∣∣ < 2−k

2. Similar to the first part, we assume k ∈ N and −1 < y < 0 and hence −π
2
<

41



M.Sc. Thesis - F. Ghasemi; McMaster University - Computer Science

arcsin(y) < 0:

isCloseEnoughR(y, k) = {tt}
⇐⇒ 1− y2 < sin2(2−k)

=⇒
√

1− y2 < sin(2−k) (since −1 < y < 0)
⇐⇒ cos(arcsin(y)) < sin(2−k)

⇐⇒ sin(
π

2
) cos(arcsin(y)) < sin(2−k)

⇐⇒ sin(
π

2
) cos(arcsin(y)) + cos(

π

2
) sin(arcsin(y)) < sin(2−k)

⇐⇒ sin(
π

2
+ arcsin(y)) < sin(2−k)

⇐⇒ π

2
+ arcsin(y) < 2−k (sin is strictly increasing on [0, π

2
])

=⇒
∣∣∣−(

π

2
+ arcsin(y))

∣∣∣ < 2−k (arcsin(y) > −π
2
)

=⇒
∣∣∣−π

2
− arcsin(y)

∣∣∣ < 2−k

Now, we need to define a WhileCC-program approximating arcsin(f(x)) for −1 <
f(x) < 1 itself.

Definition 3.10.2. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and and x ∈ R. Then the WhileCC-procedure

pArcSineF ≡ proc
in x : real n : nat
aux i : nat dist : real res : real

begin
res , i := choose (y : real,m : nat) :

Sine(y) < F (x) < Sine(y + 2−m)
return res

end

of type real× nat → real has the semantics

pArcSinF
R(x, n) = {y ∈ Q | sin(y) < f(x) < sin(y + 2−n)}

The WhileCC-procedure pArcSineF outputs values sufficiently close to arcsin(f(x))
only for −1 < f(x) < 1. The behaviour of pArcSineF on f(x) ∈ (−∞,−1) or f(x) ∈
(1,+∞) is unknown. Now, incorporating the procedure isCloseEnough into the WhileCC-
procedure, we get a procedure for WhileCC-approximating the totalized version arcsin′(f(x)).

Definition 3.10.3. Let F : real × nat → real be a WhileCC-procedure approximating the
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function f : R → R, and and x ∈ R. Then the WhileCC-procedure

ArcSinF ≡ proc
in x : real c : nat
aux chosenVal : nat u : real l : real r : real

begin
u := choose (q : real) : 0 < q < 1 and isCloseEnough(q, c+ 1)
l := choose (q : real) : −1 < q < 0 and isCloseEnough(q, c+ 1)

chosenVal := choose (k : nat) : proc
in k : nat x : real
aux res : real

begin
if k =nat 1 then
res := −1 < F (x) < 1

else if k =nat 2 then
res := F (x) > u

else if k =nat 3 then
res := F (x) < l

else
res := ff

fi
return res

end
if chosenVal =nat 1 then
r := pArcSinF (x, c)

else if chosenVal =nat 2 then
r := pArcSinF (u, c)

else if chosenVal =nat 3 then
r := pArcSinF (l, c)

fi
return r

end

of type real× nat → real has the semantics

ArcSinRF (x, n)
def
= {y ∈ pArcSinRF (x, n) | −1 < f(x) < 1} ∪

{y ∈ pArcSinRF (u, n) | isCloseEnoughR(u, n) = {tt}
∧ 0 < u < 1 ∧ f(x) > u} ∪

{y ∈ pArcSinRF (l, n) | isCloseEnoughR(l, n) = {tt}
∧ −1 < l < 0 ∧ f(x) < l}

Now, we need to prove that ArcSinF approximates arcsin(f(x)).

Lemma 3.10.4. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and x ∈ dom(f), then we have ArcSinRF (x, n) ̸= ∅ for any n ∈ N.

Proof. Let f be a WhileCC-approximable function, and x ∈ dom(f) and n ∈ N. Then
we have different possible cases based on the value of f(x),
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• −1 < f(x) < 1: In this case, it suffices to show that {pArcSinRF (x, n)} ≠ ∅. Since
the interval (−1, 1) is an open interval, f(x) is an inner point, and sin is strictly
increasing on (−1, 1), it means there is a rational y such that −1 < sin(y) < f(x) <
sin(y + 2n) < 1, and hence ArcSinRF (x, n) ̸= ∅.

• f(x) ≥ 1: In this case, we need to show

{y ∈ pArcSinRF (u, n) | cos2(2−n) < u2 ∧ 0 < u < 1 ∧ f(x) > u} ≠ ∅.
It suffices to show that there is some u ∈ R with 0 < u < 1 ≤ f(x) such that
cos2(2−n) < u2 and since 2−(n+1) > 0 meaning cos2(2−n) ̸= 1, there is a rational
number 0 < u < 1 such that cos2(2−n) < u2 < 1. Now that we found such u, by
part 1, we can see that pArcSinRF (u, n) ̸= ∅.

• f(x) ≤ −1: We need to show

{y ∈ pArcSinRF (l, n) | cos2(2−n) < l2 ∧ f(x) ≤ −1 < l < 0 ∧ f(x) < l} ≠ ∅.
It suffices to show that there is some l ∈ R such that cos2(2−n) < l2 and also
−1 < l < 0. since 2−n > 0, meaning cos2(2−n) ̸= 1, this means there is a rational
numbers −1 < l < 0 such that cos2(2−n) < l2 < 1. Having found −1 < l < 0, by
part 1, we can see that pArcSinRF (l, n) ̸= ∅.

Lemma 3.10.5. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. For any x /∈ dom(f), we have ArcSinRF (x, n) = ∅ for any n ∈ N.
Proof. Let f be a WhileCC-approximable function, and x /∈ dom(f) and n ∈ N.
Since f(x) is not defined, based on the definition of the procedure and using Lemma
3.2.1, F (x) < b would not terminate on any bound b. Hence we can conclude that
ArcSinRF (x, n) = ∅.
Lemma 3.10.6. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. We have ∀x ∈ dom(f), ∀n ∈ N, ∀y ∈ ArcSinRF (x, n) :

|arcsin′(f(x))− y| < 2−n.

Proof. For arbitrary x ∈ dom(f), n ∈ N, and for any y ∈ ArcSinRF (x, n), we have 3 cases
to consider:

• −1 < f(x) < 1 : In which case y ∈ pArcSinRF (x, n). Then by definition of pArcSinF :

− 1 < f(x) < 1 ∧ sin(y) < f(x) < sin(y + 2−n)

=⇒ y < arcsin(f(x)) < y + 2−n

=⇒ arcsin(f(x)) > y ∧ arcsin(f(x))− y < 2−n

=⇒ |arcsin(f(x))− y| < 2−n

=⇒ |arcsin′(f(x))− y| < 2−n.

• f(x) > u: for some 0 < u < 1 in which case y ∈ { y ∈ pArcSinRF (u, n) | cos2(2−n) <
u2 }, hence:

1− sin2(2−k) < u2 ∧ 0 < u < 1 ∧ f(x) > u

=⇒
∣∣∣π
2
− y

∣∣∣ < 2−n (by Lemma 3.10.1 part (1))

=⇒ |arcsin′(f(x))− y| < 2−n
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• f(x) < l for some l satisfying cos2(2−n) < l2 ∧ −1 < l < 0: We would have
y ∈ pArcSinRF (l, n), in which case:

1− sin2(2−k) < l2 ∧ −1 < l < 0 ∧ f(x) > l

=⇒
∣∣∣−π

2
− y

∣∣∣ < 2−n (by Lemma 3.10.1 part (2))

=⇒ |arcsin′(f(x))− y| < 2−n

Theorem 3.10.7. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then the WhileCC-procedure ArcSinRF approximates arcsin′(f(x)).

Proof. Follows from Lemmas 3.10.4, 3.10.5, and 3.10.6.

3.11 Natural Root

As mentioned in Definition 3.1.1, we modify the common definition of n-th root function
rootn,f (x) for n ∈ N to a totalized version

rootn,f (x)
def
=


n
√

f(x) if n is odd
n
√
f(x) if n is even and f(x) > 0

0 if n is even and f(x) ≤ 0

(3.5)

to obtain a continuous function with an open domain.
Now depending on the parity of n, different WhileCC-procedures are devised to approx-
imate the function rootn,f (x).

3.11.1 Odd root

First of all, let us define a WhileCC-procedure that approximates n
√
f(x) for odd ns.

Definition 3.11.1. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and and x ∈ R. Then the WhileCC-procedure

oddRootn,F ≡ proc
in x : real n : nat
aux res : real

begin
res := choose (y : real) : yn < F (x) < (y + 2−m)n

return tt
end

of type real× nat → real has the semantics

oddRootRn,F (x,m) = {y ∈ Q | (yn < F (x))R = {tt} ∧ (F (x) < (y + 2−m)n)R = {tt}}

We prove that oddRoot approximates n
√
f(x) for odd ns.

Lemma 3.11.2. Let F : real×nat → real be a WhileCC-procedure approximating the func-
tion f : R → R, and x ∈ dom(f), then for any odd n ∈ N, we have oddRootRn,F (x,m) ̸= ∅
for any n,m ∈ N.
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Proof. We need to show that oddRootRn,F (x,m) ̸= ∅. Since n is odd, we can always choose
a rational y such that yn < f(x) < (y + 2−m)n. Hence oddRootn,F (x,m) ̸= ∅.
Lemma 3.11.3. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and x /∈ dom(f). Then we have oddRootRn,F (x,m) = ∅ for any
n,m ∈ N.

Proof. Since x /∈ dom(f), the comparison procedure (− < F (−)) with the second argu-
ment being x does not terminate and hence we can conclude that oddRootRn,F (x,m) =
∅.
Lemma 3.11.4. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. For any odd n ∈ N, we have ∀x ∈ dom(f), ∀m ∈ N, ∀y ∈
oddRootRn,F (x,m) :

|rootn,f (x)− y| < 2−n.

Proof. For arbitrary x ∈ dom(f), odd n ∈ N, and for any y ∈ oddRootRn,F (x, n), we have

yn < f(x) < (y + 2−m)n

=⇒
∣∣∣ n
√
f(x)− y

∣∣∣ < 2−m

Theorem 3.11.5. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then oddRootRn,F WhileCC-approximates the function rootn,f (x) for
any odd n ∈ N.

Proof. Follows directly from Lemmas 3.11.2, 3.11.3, and 3.11.4.

3.11.2 Even root

In this section, we construct a WhileCC-procedure that approximates n
√
f(x) for even

ns. Having the modifications in equation 3.5 in mind, the trick here is to find a bound
for f(x) such that, for any value less than this bound, approximating the n-th root of
that value by outputting 0 is sufficiently accurate.

Definition 3.11.6. Let us define the WhileCC-procedure isCloseEnough of type real×nat×
nat → bool below:

isCloseEnough ≡ proc
in y : real n : nat k : nat

begin
return 0 < y and y < 1/2nk

end

with the semantics

isCloseEnoughR(y, n, k) = {tt | (0 < y)R = {tt} ∧ (y < 1/2nk)R = {tt}}

Lemma 3.11.7 (Bounds for Natural Root). For any even n ∈ N, y ∈ R and k ∈ N:

isCloseEnoughR(y, n, k) = {tt} =⇒ | n
√
y| < 2−k.
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Proof. Let us assume y ∈ R, k ∈ N . Then,

isCloseEnoughR(y, n, k) = {tt}
=⇒ 0 < y < 2−nk

=⇒ |y| < 2−nk (since 0 < y)
=⇒ | n

√
y| < 2−k

So if isCloseEnoughR(y, n, k) outputs tt, we can use the fact that n
√
y is at most 2−k

away from 0.

Remark 3.11.8. For any even n and fixed k ∈ N, there is always an y ∈ R such that

isCloseEnoughR(y, n, k) = {tt}.

Now let us define the WhileCC-procedure for approximating an even root of f(x) for
any WhileCC-approximable function f : R → R.

Definition 3.11.9. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and and x ∈ R. Then the WhileCC-procedure

evenRootn,F ≡ proc
in n : nat x : real c : nat
aux chosenVal : nat l : real r : real

begin
l := choose (q : real) : isCloseEnough(q, c, n)

chosenVal := choose (k : nat) : proc
in k : nat x : real
aux res : real

begin
if k =nat 1 then
res := 0 < F (x)

else if k =nat 2 then
res := F (x) < l

else
res := ff

fi
return res

end
if chosenVal =nat 1 then
r := oddRootn,F (x, c)

else if chosenVal =nat 2 then
r := 0

fi
return r

end
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of type real× real → nat, has the semantics

evenRootRn,F (x,m) = { y ∈ oddRootRn,F (x,m) | (0 < F (x))R = {tt}} ∪
{ 0 | ∃l ∈ Q isCloseEnough(l,m, n) = {tt} ∧ f(x) < l}

The procedure above reuses the WhileCC-procedure oddRoot, originally defined for
approximating odd roots, to approximate even roots since oddRoot happens to work for
when n is even on (0,+∞). We now prove that oddRoot approximates n

√
f(x) for even

ns.

Lemma 3.11.10. Let F : real × nat → real be a WhileCC-procedure approximating
the function f : R → R, n some even number, and x ∈ dom(f). Then we have
evenRootn,F (x,m) ̸= ∅ for any m ∈ N.

Proof. Let F : real × nat → real be a WhileCC-procedure approximating the function
f : R → R, x ∈ dom(f) and n ∈ N. We have two cases based on the value of f(x):

• 0 < f(x): We need to show that oddRootn,F (x,m) ̸= ∅. Since the interval (0,+∞) is
an open interval, f(x) is an inner point, and the power function is strictly increasing
on (0,+∞), we can choose a rational y such that yn < f(x) < (y + 2−m)n. Hence
oddRootn,F (x,m) ̸= ∅.

• f(x) ≤ 0: In this case, there is always a rational l such that

isCloseEnough(l,m, n) = {tt}.
This means that the set { 0 | isCloseEnough(l,m, n) = {tt}∧f(x) < l} is non-empty,
and so is evenRootn,F (x,m).

Lemma 3.11.11. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, and x /∈ dom(f). Then we have evenRootn,F (x,m) = ∅ for any
n,m ∈ N.

Proof. Since x /∈ dom(f), the comparison procedure (− < F (−)) with the second argu-
ment being x does not terminate and hence we can conclude that evenRootn,F (x,m) =
∅.
Lemma 3.11.12. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then for any even n, we have ∀x ∈ dom(f), ∀m ∈ N, ∀y ∈
evenRootn,F (x,m) :

|rootn,f (x)− y| < 2−n.

Proof. We have two cases:

• y ∈ oddRootRn,F (x,m) and (0 < F (x))R = {tt}: Then, by the definition of oddRootn,F (x,m):

yn < f(x) < (y + 2−m)n

=⇒
∣∣∣ n
√

f(x)− y
∣∣∣ < 2−m.

• y = 0 ∧ ∃l ∈ Q isCloseEnough(l,m, n) = {tt} ∧ f(x) < l: Immediately follows from
Lemma 3.11.7 that

∣∣∣ n
√
l
∣∣∣ < 2−nm and hence |rootn,f (x)− y| < 2−n.
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Theorem 3.11.13. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R. Then the WhileCC-procedure evenRootn,F (x,m) approximates
rootn,f (x).

Proof. Follows directly from Lemmas 3.11.10, 3.11.11, and 3.11.12.

3.12 Conclusion

Theorem 3.12.1. All elementary functions are WhileCC-approximable.

Proof. By induction on the structure of elementary functions, theorems 3.3.1 (constant
function) and 3.3.2 (identity function) prove the base cases, and theorems

• 3.4.5 (addition),

• 3.5.6 (multiplication),

• 3.6.6 (division),

• 3.8.5 (logarithm),

• 3.7.12 (exponential),

• 3.9.10 (sin),

• 3.10.7 (arcsin), and

• 3.11.5, 3.11.13 (natural root)

prove the induction step.
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Chapter 4

Open Exhaustions for the Domains of
Elementary Functions

This section is a first step towards proving that elementary functions are acceptable. In
this section, we present an inductive construction for an effective open exhaustion for the
domain of any arbitrary elementary function. To simplify the proofs, we will strengthen
the claim and prove the following statement:

For any open set U with an effective open exhaustion, f−1(U) has an effective open
exhaustion.

In particular, this stronger formulation makes the composition case trivial.

Definition 4.0.1 (Exhaustion-reflecting function). Let f : R → R. We call f exhaustion-
reflecting if for any open set U with an effective open exhaustion, f−1(U) ̸= ∅ implies
that f−1(U) has an effective open exhaustion.

Remark 4.0.2. If f is exhaustion-reflecting, since R is an open set with an open exhaustion,
f−1(R) = dom(f) has an effective exhaustion.

4.1 Preliminaries

In Section 4.1.1, we introduce some basic lemmas about effective open exhaustions. In
Section 4.1.2 we generalize the concept of open exhaustions to Rn. This generalization is
used later in Sections 4.3 and 4.4.

4.1.1 Open Exhaustion Lemmas for R

We begin by defining a simplified form of an effective open exhaustion called a “simple
effective open exhaustion” (Definition 2.5.2). We prove that we can compute an effective
open exhaustion from a simple effective open exhaustion. Simple effective open exhaus-
tions are more convenient for the constructions in the remainder of Chapter 4.

Definition 4.1.1 (Simple effective open exhaustion). A sequence (U1, U2, . . .) of open sets
in R is called a simple effective open exhaustion for an open set U if

• U =
⋃∞

i=0 Ui,

• for each l ∈ N, Ul is a finite union of non-empty open finite intervals I l1, I
l
2, ..., I

l
kl

whose closures are not necessarily disjoint, and
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• (eventual covering property) for any i, l ∈ N there is some index l′ > l such that
Ul =

⋃kl
i=0 I

l
i ⊆ Ul′ and also Ul ⊆ Ul+1,

• the map
l 7→ (al1, b

l
1, ..., a

l
kl
, blkl)

which delivers the sequence of endpoints of the stage Ul = I l1∪ ...∪ I lkl for any l ∈ N,
is recursive.

Remark 4.1.2. Note that the definition of “simple effective open exhaustion” is different
from “effective open exhaustion” in three aspects:

• the closures of intervals in each stage of a simple effective open exhaustion are not
necessarily disjoint,

• the closure of each stage of a simple effective open exhaustion is not necessarily
contained in the next stage, instead it is replaced with the eventual covering property,
and

• the map delivering the endpoints in each stage of a simple effective open exhaustion
does not necessarily give us the intervals in order.

Lemma 4.1.3. There is a recursive function that given a simple open effective exhaustion
for an open set, returns an effective open exhaustion for the same open set.

Proof. Let us take a simple effective open exhaustion for a set U . We give an algorithm
to compute an effective open exhaustion for U . This algorithm consists of two steps:

1. merging and fixing the order

2. containing the closure in the immediate next stage

• Step 1. In any stage with index l ∈ N, we first get all the finitely many open intervals
and for overlapping intervals, we merge them into one open interval. Then we sort
the intervals by their endpoints. This gives us the intervals

(al1, b
l
1), . . . , (a

l
nl
, blnl

)

where nl is the number of intervals we are left with, after merging all the intersecting
ones. This sorting guarantees that

al1 < bl1 ≤ al2 < bl2 ≤ · · · ≤ alnl−1 < blnl−1 ≤ alnl
< blnl

,

while preserving the eventual covering property.
We now need to make sure that the strict inequality

al1 < bl1 < al2 < bl2 < · · · < alnl−1 < blnl−1 < alnl
< blnl

holds, guaranteeing that the closure of these intervals are also disjoint. Now, taking
any two intervals (alk, b

l
k) and (alk+1, b

l
k+1) that we have alk < blk = alk+1 < blk+1,

using the eventual covering property, this means the point blk is covered in some
later stage since it is contained in the closure of (alk, b

l
k). This lets us merge any
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such two intervals (alk, b
l
k) and (alk+1, b

l
k+1). This gives us a new set of intervals

(cl1, d
l
1), . . . , (c

l
ml
, dlml

) with ml ≤ nl with

cl1 < dl1 < cl2 < dl2 < · · · < clml−1 < dlml−1 < clml
< dlml

which again preserves the eventual covering property. For the rest of this proof, we
refer to the map generated after applying this step to each stage as the “transformed
map”.

• Step 2. Since the transformed map has the eventual covering property, this gives
us a function C : Q ↠ N that gives us, for any q ∈ Q, the index of the first stage
where q is covered. We define the map outputting the stages of the effective open
exhaustion (U1, U2, . . .) of this algorithm inductively. For stage with index 1, we
output the first stage of the transformed map. For stage with index l, let nl−1 be
the number of intervals in the stage with index l − 1 after the transformation. Our
new stage with index l will be the transformed stage with index

max{C(cl1), C(dl1), . . . , C(clnl−1
), C(dlnl−1

)}.

Lemma 4.1.4 (Effective open exhaustion for intersection). Let U and V be open sets in R
with effective open exhaustions such that U ∩ V ̸= ∅. Then U ∩ V has an effective open
exhaustion.

Proof. Let (U1, U2, . . .) and (V1, V2, . . .) be effective open exhaustions for the sets U and V ,
respectively. Since by assumption we have U ∩V ̸= ∅, we know there is some m ∈ U ∩V .
We also know that both exhaustions (U1, U2, . . .) and (V1, V2, . . .) will cover m at some
stage with index lu resp. lv. Note that we can effectively find lu resp. lv by looking
through all the stages of the two exhaustions until a pair of intersecting intervals is
found. Now let us take k := max{lu, lv}. Then

(Uk ∩ Vk, Uk+1 ∩ Vk+1, Uk+2 ∩ Vk+2, ...)

is an effective open exhaustion for U ∩ V .

Proposition 4.1.5. Let U, V ⊆ R. Then if U and V have effective open exhaustions, then
U ∪ V has an effective open exhaustion.

Proof. Let U, V ⊆ R and (U1, U2, . . .) and (V1, V2, . . .) be effective open exhaustions for
the sets U and V , respectively. Then to prove U ∪ V has an effective open exhaustion,
by Lemma 4.1.3, it suffices to give a simple effective open exhaustion. The sequence

(U0 ∪ V0, ..., Uk ∪ Vk, ...)

is a simple effective open exhaustion for U ∪ V .

Proposition 4.1.6 (Effective open exhaustion for a finite interval). The open interval (a, b)
with a, b ∈ Q and a < b, has an effective open exhaustion((

a+
b− a

3
, b− b− a

3

)
, . . . ,

(
a+

b− a

n+ 3
, b+

b− a

n+ 3

)
, . . .

)
.
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Proposition 4.1.7 (Effective open exhaustion for an open interval). The open interval
(a,+∞) with a ∈ Q has an effective open exhaustion(

(a+ 1, 1),

(
a+

1

2
, 2

)
, ...,

(
a+

1

k + 1
, k + 1

)
, ...

)
.

Lemma 4.1.8 (Effective open exhaustion with removing one point). Let U ⊆ R be an
open set with an effective open exhaustion. Then for any r ∈ Q, U \ {r} has an effective
open exhaustion.

Proof. Let (U1, U2, . . .) be an effective open exhaustion for U . Then consider the sequence(
U0 \ [r − 1, r + 1], . . . , Uk \

[
r − 1

k + 1
, r +

1

k + 1

]
, ...

)
.

There must be a stage m at which Um \
[
r − 1

m
, r + 1

m

]
is non-empty. Then the sequence(

Um \
[
r − 1

m+ 1
, r +

1

m+ 1

]
, . . .

)
.

is clearly an effective open exhaustion that for U \ {r}.
Theorem 4.1.9 (Open exhaustion of intervals using WhileCC-approximability). Let F :
real × nat → real be a WhileCC-procedure approximating f : R → R, and f be strictly
monotone on the interval [a, b] ⊆ dom(f) with a, b ∈ Q. Then there is an effective open
exhaustion for f((a, b)).

Proof. Here we discuss a strictly increasing function f . The case of a strictly decreasing
function follows a similar logic. We need to define intervals Ul = (xl, yl) with endpoints
in Q with the following properties:

• f(a) < xl < yl < f(b)

• (xl, yl) ⊆ (xl+1, yl+1)

•
⋃∞

k=1(xk, yk) = (f(a), f(b))

We present an algorithm to compute the mapping intervals : N × N → I∗ delivering
intervals in a stage. We begin by giving an informal description of the algorithm:

1. Start counters n = 0, l = 0.

2. Increase n until you get an approximation x ∈ FR(a, n) and y ∈ FR(b, n) with
x+ 2−n < y − 2−n.

3. Store x, y respectively in x0, y0.

4. Increase n until new approximations x ∈ FR(a, n) and y ∈ FR(b, n) are calculated
with x+ 2−n < xl and yl < y − 2−n.

5. Increase l by one.

6. Store x+ 2−n, y − 2−n in xl, yl respectively and go to step 4.
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The construction guarantees the three conditions above and equivalently outputting end-
points for one interval for each stage of the effective exhaustion for (f(a), f(b)). The
alorithm we just defined computes the following function:

intervals(l, 1) = (x, y) such that ∃n ∈ N x ∈ FR(a, n) ∧ y ∈ FR(b, n)

∧ x+ 2−n < y − 2−n

intervals(l, i+ 1) = (x+ 2−n, y − 2−n) such that ∃n ∈ N x ∈ FR(a, n) ∧ y ∈ FR(b, n)

∧ x+ 2−n < fst(intervals(l, i)) ∧ y − 2−n > snd(intervals(j, i))

where fst returns the left element in a pair and snd returns the right element in the
pair.

Remark 4.1.10. Theorem 4.1.9 is used to prove the exhaustion-reflecting property (Def-
inition 4.0.1) of the basic elementary functions (see Section 4.2). Note that Theorem
4.1.9 requires the closed interval [a, b] to be in the domain of f . We can strengthen
Theorem 4.1.9 to only require the open interval (a, b) ⊆ dom(f), however, the proof for
the strengthened version is more complicated, and the current version suffices for our
purposes.

4.1.2 Open Exhaustions in Rn

In this section we generalize the notion of an effective open exhaustion to that of Rn by
generalizing intervals in R to cubes in Rn.

Definition 4.1.11 (Open n-cube). Let I1, . . . , In ⊆ R be open intervals. Then we call the
open set I1 × · · · × In ⊆ Rn an open n-cube.

Definition 4.1.12 (Closed n-cube). Let I1, . . . , In ⊆ R be closed intervals. Then we call
the closed set I1 × · · · × In ⊆ Rn a closed n-cube.

Definition 4.1.13 (Rational n-cube). Let I1, . . . , In ⊆ R be open (resp. closed) intervals.
We call the open (resp. closed) set I1×· · ·×In ⊆ Rn a rational open n-cube (resp. rational
closed n-cube) if all the endpoints of I1, . . . , In are rational. The set In denotes the set
of all rational n-cubes.

Definition 4.1.14 (Realizability for In). We define the realizability relation ⊩In as the
smallest relation satisfying

c1 ⊩Q a1 c2 ⊩Q b1 · · · c2n−1 ⊩Q an c2n ⊩Q bn

pa11 pb12 · · · pan2n−1p
bn
2n ⊩In (a1, b1)× · · · × (an, bn)

where pi is the ith prime number.

Defining a realizability relation for In along with Definitions 2.3.7,2.3.4 and Definition
2.3.3 lets us define computable functions from N to finite sequences of cubes.

Definition 4.1.15 (Generalized open exhaustion). Let U be an open subset of Rn, and
X = (U0, U1, U2, ...) a sequence of open subsets of Rn. The sequence X is called an open
exhaustion of U iff

1. U =
⋃∞

i=0 Ui, and
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2. for each l ∈ N, Ul is a (not necessarily disjoint) finite union of non-empty open
n-cubes Ql

1, Q
l
2, ..., Q

l
kl

3. for any l ∈ N there is some j > l ∈ N such that Ul =
⋃kl

i=0 Q
l
i ⊆ Uj, and also

Ul ⊆ Ul+1.

For each l ∈ N, Ul is called a stage of the exhaustion, with components Ql
1, Q

l
2, ..., Q

l
kl

.

Definition 4.1.16 (Generalized effective open exhaustion). An open exhaustion (U1, U2, . . .)
of an open set U ⊆ Rn is called effective if

• each stage Ul consists of finitely many open rational n-cubes Ql
1, . . . , Q

l
kl

, and

• the map
l 7→ (Ql

1, . . . , Q
l
kl
)

which delivers the sequence of stages

Ul = (Ql
1, . . . , Q

l
kl
)

is recursive.

Remark 4.1.17. Note that the generalized notion of an effective open exhaustion in Rn

given in Definition 4.1.16 for the case where n = 1, coincides with the concept of a simple
effective open exhaustion in R given earlier in Definition 4.1.1

Definition 4.1.18 (Effective sequence of open exhaustions). Let (U0, U1, . . .) be a sequence
of open sets in Rn each with an effective open exhaustion. We call the sequence U0, U1, . . .
an effective sequence of open exhaustions if we have a recursive function

Stage : N× N → (In)∗

taking in the index i of the open set, the stage s, and outputting the n-cubes in stage s
of the effective open exhaustion of Oi.

Theorem 4.1.19 (Union of effective open exhaustions). Let (U0, U1, . . .) be an effective
sequence of open exhaustions. Then

⋃
i∈N Ui has an effective open exhaustion.

Proof. Let us assume the effective the open exhaustion for U0, U1, . . . is given by (O0), (O1), . . .
and let us denote the lth stage of (Oi) by Ol

i (for i ∈ N).

Stage t of the effective open exhaustion for
⋃

i∈N Ui consists of the union of the first t
stages of the first t open exhaustions. Let us construct the effective open exhaustion (St)
formally by

St =
t−1⋃
k=0

Ot
k.

We can clearly compute the above open exhaustion for
⋃

i∈N Ui since each Ot
k is a finite

union of finitely many intervals.

Corollary 4.1.20. Let f : Rn → Rm. Let us assume for any rational open m-cube Q that
f−1(Q) has an effective open exhaustion (OQ

l ). If the function

Func : Im × N → (In)∗
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that gets an m-cube Q and a stage index l and outputs the encoding of the sequence of
intervals in the lth stage of f−1(Q) is recursive, then for any open set U with an effective
open exhaustion, f−1(U) has an effective open exhaustion.

Remark 4.1.21. This means to prove that a function f : Rn → Rm is exhaustion-reflecting,
it suffices to show that we can compute, for any rational open m-cube Q, an open ex-
haustion for f−1(Q).

Theorem 4.1.22. Let U ⊆ R2 be an open set. If there is a recursive function

inU : Q2 ×Q2 → B

taking (a1, b1, a2, b2) as inputs and deciding whether the closed rational 2-cube

[a1, b1]× [a2, b2]

is completely contained in U , then U has an effective open exhaustion.

Proof. We give an algorithm that constructs an effective open exhaustion. Intuitively, to
generate each stage of the open exhaustion, we start by considering a grid and selecting
every open square Q in the grid such that Q ⊂ U . Note that U can be unbounded which
implies that we can have infinite number of squares. We work around this by selecting
squares that lie within an increasingly larger search radius around the origin. If the grid
is too coarse and no grid square (and its closure) falls fully under U , we keep dividing
each side of the square into two (resulting in the division of each square to four squares)
until there is a square whose closure falls under U . Such a square must exist since U is
a non-empty open set and the rational numbers are dense in R.

The selected squares will then be investigated for adjacency: for each two selected
squares that are adjacent vertically or horizontally, a filler open square (as shown in
Figure 4.1a) will be added. In addition, if four squares are adjacent (as shown in Figure
4.1b), an additional filler covering the center will be added. Note that in figure 4.1b, the
four two-square-fillers added in the previous step are not drawn for clarity. The set of
selected open squares and added open fillers form a stage of the open exhaustion.

Figure 4.1: Visualization of the additional fillers

(a) two neighbouring squares (b) four neighbouring squares

To get to the next stage, we keep the squares for the current stage and subdivide the
grid further. Then we repeat the process of checking if any remaining uncovered squares
(and their closures) fall under U completely, and check if any filling is needed. Using this
method, it is guaranteed that each point in U will eventually be covered by these open
squares. A visual trace for this algorithm on an open set is shown in Figure 4.2. Note
that in this example, the search radius covers U entirely from step 0.
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Figure 4.2: Visualization of the algorithm outputting an open exhaustion using a decision procedure

(a) step 0

x

y

(b) step 1

x

y

(c) step 2

x

y

(d) step 3

x

y

Note that here the filler squares are not shown, and only the area that is covered at
each stage is shown. Step 0 is when the algorithm starts. The output for stage 0 (resp. 1
and 2) is shown in step 1 (resp. 2 and 3). Different colors show in which stage the points
are covered using the open exhaustion.

4.2 Basic Functions

In this section, we show that all the basic elementary functions are exhaustion-reflecting
(Definition 4.0.1). This implies that the domain of basic elementary functions have effec-
tive open exhaustions which constitutes the first condition for acceptability.

Theorem 4.2.1. Let f(x) = c for any computable real number c. Then f is exhaustion-
reflecting.

Proof. Let U be an open set with an open exhaustion (U1, U2, . . .) and f−1(U) ̸= ∅. This
means we have f−1(U) = R, and the sequence (O1, O2, . . .) defined by Ok = (−k−1, k+1),
is an effective open exhaustion for R.

Theorem 4.2.2. The identity function id(x) = x is exhaustion-reflecting.
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Proof. Let U be an open set with an open exhaustion X. By definition id−1(U) = U , and
hence X is clearly an effective open exhaustion for id−1(U) as well.

Theorem 4.2.3. Let inv(x) = 1
x
. Then inv(x) is exhaustion-reflecting.

Proof. Using Remark 4.1.21, it suffices to show that, for any non-empty interval I =
(a, b) ⊆ R with a, b ∈ Q, we have an open exhaustion for inv−1(I). We prove this by
cases:

• a = 0: Proposition 4.1.6 gives us an effective open exhaustion for inv−1(I) = (0, 1
b
).

• b = 0: Proposition 4.1.6 gives us an effective open exhaustion for inv−1(I) = ( 1
a
, 0).

• a < 0 and b > 0: Proposition 4.1.6 gives us an effective open exhaustion for
inv−1(I) = ( 1

a
, 0) ∪ (0, 1

b
). Then, we can construct an effective open exhaustion

for the union of the two sets using Proposition 4.1.5.

• a, b < 0 or a, b > 0: Proposition 4.1.6 gives us effective open exhaustions for
inv−1(I) = (1

b
, 1
a
).

Theorem 4.2.4. Let f(x) = rootn,id(x) as defined in subsection 3.11. Then f is exhaustion-
reflecting.

Proof. Let us assume U is an open set with an open exhaustion X. Now, let us consider
the parity of n:

• Case of odd n: Since we have the effective open exhaustion X, we can go through
each stage, and compute the corresponding stage.
At stage k, we go through the endpoints of intervals, and for each (ai, bi) we en-
counter, we write (ani , b

n
i ).

• Case of even n: Since we have the effective open exhaustion X, again we can go
through each stage. At each stage, we go through the endpoints of the intervals in
that stage, and for each (ai, bi) we encounter, we have three possibilities:

– Case ai, bi are both positive: we write (ani , b
n
i ).

– Case ai, bi are both negative: we ignore the interval since this interval does not
fall under the image of rootn,id for our even n.

– Case ai is negative, but bi is positive: here we need to accommodate the mod-
ifications we made in section 3.11, so we write (−k, bni ) so that all negative
numbers are eventually covered.

Theorem 4.2.5. The function ln(x) is exhaustion-reflecting.

Proof. Let us take any arbitrary open set U with an effective open exhaustion. We want
to come up with an effective open exhaustion for ln−1(U) = exp(U).

Using Remark 4.1.21, we only need to prove that the preimage of any open interval
I = (a, b) with a, b ∈ Q has an effective open exhaustion.

The pre-image function for ln is exp.
We know that
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• The function exp is monotonically increasing.

• The function exp is WhileCC-approximable (Using Theorem 3.7.12).

• The function exp is defined on any arbitrary interval (a, b).

Hence, Theorem 4.1.9 gives us an open exhaustion for exp(I), and this completes the
proof.

Theorem 4.2.6. The function exp(x) = ex is exhaustion-reflecting.

Proof. Let us take any arbitrary open set U with an effective open exhaustion. Since
exp(x) > 0, we know that exp−1(U) = exp−1(U ∩ (0,+∞)). We want to come up with an
effective open exhaustion for exp−1(U ∩ (0,+∞)). Using Remark 4.1.21, we only need to
prove that the preimage of any open interval I = (a, b) with a, b ∈ Q has an effective open
exhaustion. The pre-image function for exp is ln. Since ln is only defined on positive
reals, ln(I) = ln((a, b) ∩ (0,+∞)).
We know that

• The function ln is monotonically increasing.

• The function ln is WhileCC-approximable (using Theorem 3.8.5).

• The function ln is defined on (a, b) ∩ (0,+∞).

Hence, Theorem 4.1.9 gives us an open exhaustion for ln(I), and this completes the
proof.

Lemma 4.2.7. Let f(x) = sin(πx) and I = (a, b) with a, b ∈ Q and −1 < a < b < 1. Then
there is an effective open exhaustion for f−1(I).

Proof. Let us consider f−1(x) = arcsin(x)/π. The function f−1 is clearly WhileCC-
approximable. We know that

• The function f−1 is monotonically increasing.

• The function f−1 is defined on (a, b).

Hence, Theorem 4.1.9 gives us an open exhaustion for f−1(I), and this completes the
proof.

Theorem 4.2.8. The function sin(x) is exhaustion-reflecting.

Proof. It suffices to show that f(x) = sin(πx) is exhaustion-reflecting. Using Remark
4.1.21, we only need to prove that f−1(I), if nonempty, has an effective open exhaustion
for any I = (a, b) with a < b ∈ Q. Let us consider the value of a and b:

• −1 < a < 1 < b: In this case we can use Theorem 4.1.21 along with Lemma 4.2.7,
we can get an open exhaustion for f−1((a, 1/2)). We modify each (ai, bi) to

(ai − 2i,−1− ai − 2i) ∪ · · · ∪ (ai − 2,−1− ai − 2)
∪ (ai,−1− ai)

∪ (ai + 2,−1− ai + 2) · · · (ai + 2i,−1− ai + 2i)
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Note that the reason we are modifying each interval is that the open exhaustion
f−1((a, 1/2)) does not cover x = 1/2, so stretching (ai, bi) to (ai, 1 − ai) will help
cover the point x = 1/2 as well as the mirrored interval (1/2, 1− f(a)).

Figure 4.3: Covering the points with f(x) = 1

−1 −0.5 0.5 1

−1

1

−1 < a < 1 < b

f(x) = sinπx

f−1[(a, 0.5)]

x

y

The reason we are adding (ai − 2i,−1 − ai − 2i) ∪ · · · ∪ (ai − 2,−1 − ai − 2) and
(ai + 2,−1− ai + 2) · · · (ai + 2i,−1− ai + 2i) is that f(x) is a periodic function and
we would want to eventually cover all the xs in R for which f(x) falls in (a, 1]. The
intuition for building up the stages is shown in Figure 4.3.

• −1 < a < b < 1: In this case we can use Theorem 4.1.21 we can get an open
exhaustion for f−1(I). For each stage we modify each (ai, bi) to

(ai − 2i, bi − 2i) ∪ · · · ∪ (ai, bi) ∪ · · · ∪ (ai + 2i, bi + 2i)

• a, b > 1 or a, b < −1: In this case f−1(I) = ∅.
• a < −1 < b < 1: In this case we can use Theorem 4.1.21 we can get an open

exhaustion for f−1((−1/2, b)). We modify each (ai, bi) to

(−1− bi − 2i, bi − 2i) ∪ · · · ∪ (−1− bi − 2, bi − 2)
∪(−1− bi, bi)

∪(−1− bi + 2, bi + 2) · · · (−1− bi + 2i, bi + 2i)

• a < −1 < 1 < b: In this case the open exhaustion is

((−1, 1), . . . , (−k − 1, k + 1), . . .).

This gives us an effective open exhaustion for f−1(U) for any open set U .

Theorem 4.2.9. The function arcsin′ is exhaustion-reflecting.

Proof. It suffices to show that f(x) = arcsin′(x)/π is exhaustion-reflecting. Using Remark
4.1.21, we only need to prove that if f−1(I) has an effective open exhaustion for any
I = (a, b) with a < b ∈ Q. Let us consider the value of a and b:

• −1/2 < a < b < 1/2: The pre-image function for arcsin′ is sin. So we just need to
construct an open exhaustion for sin(I). We know that

– The function sin is monotonically increasing on (a, b).
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Figure 4.4: Visualization of our algorithm for building up stages for the preimage of an interval (a, b)
with −1 < a < 1 < b

(a) stage 0

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1
I = (a, b)

f(x) = sinπx

x

y

(b) stage 1

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1
I = (a, b)

f(x) = sinπx

x

y

(c) stage 2

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1
I = (a, b)

f(x) = sinπx

x

y
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– The function sin is WhileCC-approximable (using Theorem 3.8.5).
– The function sin is defined on (a, b).

Hence, Theorem 4.1.9 gives us an open exhaustion for sin(I).

• a, b > 1/2 or a, b < −1/2: Since arcsin′(x) ∈ [−π
2
, π
2
], we know that

(arcsin′)−1(U) = (arcsin′)−1(U ∩ [−π

2
,
π

2
]).

So for such I = (a, b), (arcsin′)−1(I) = ∅.
• −1/2 < a < 1/2 < b: We can use the Theorem 4.1.9 to get an open exhaustion for
sin(I), but then at each stage, modify all the intervals (ai, bi) to (ai, i + 1) to cover
(1,+∞).

• a < −1/2 < b < 1/2: We can use the Theorem 4.1.9 to get an open exhaustion for
sin(I), but then at each stage, modify all the intervals (ai, bi) to (−i− 1, bi) to cover
(−∞,−1).

• a < −1/2 and 1/2 < b: In this case, the open exhaustion is

((−1, 1), . . . , (−k − 1, k + 1), . . .).

This gives us an effective open exhaustion for (arcsin′)−1(U).

4.3 Composition of Functions

In this section, we prove that the composition of two exhaustion-reflecting functions is
exhaustion-reflecting.

Theorem 4.3.1. Let f : Rn → Rk and g : Rm → Rn be exhaustion-reflecting, then
f ◦ g : Rm → Rk is also exhaustion-reflecting.

Proof. Let U ⊆ Rk be an open set with an effective open exhaustion. Then by assumption
on f , f−1(U) ⊆ Rn has an effective open exhaustion, and hence g−1(f−1(U)) ⊆ Rm has
an effective open exhaustion.

4.4 Addition and Multiplication

In this section we prove that the addition and multiplication of two exhaustion-reflecting
functions f, g : R → R, defined as (f + g)(x) = f(x) + g(x) and (f . . . g)(x) = f(x) ·
g(x) respectively, are exhaustion-reflecting. In order to do this, we first break down the
addition and multiplication into atomic functions (that when composed together give us
our original addition and multiplication) and prove that each of these atomic functions
are exhaustion-reflecting. Then using Theorem 4.3.1, we can immediately imply that our
original addition and multiplication are exhaustion-reflecting.
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4.4.1 Deconstruction of Addition and Multiplication

In order to prove properties about addition ((f + g)(x) = f(x) + g(x)) we deconstruct
(f + g)(x) into the composition of

• addition: Add(x, y) = x+ y,

• cartesian product: (f × g)(x, y) = (f(x), g(y)),

• diagonal: Diag(x) = (x, x).

This gives us

Add((f × g)(Diag(x))) = (Add((f × g)(x, x)))

= (Add(f(x), g(x)))

= f(x) + g(x)

Similarly, in order to prove properties about multiplication ((f · g)(x) = f(x) · g(x)) we
deconstruct (f · g)(x) into the composition of

• multiplication: Mult(x, y) = x · y,
• cartesian product: (f × g)(x, y) = (f(x), g(y)),

• diagonal: Diag(x) = (x, x).

This gives us

Mult((f × g)(Diag(x))) = (Mult((f × g)(x, x)))

= (Mult(f(x), g(x)))

= f(x) · g(x)

4.4.2 Exhaustion-reflection for addition

Lemma 4.4.1. The function Add : R × R → R with Add(x, y) = x + y is exhaustion-
reflecting.

Proof. Using Remark 4.1.21, we only need to prove that for any interval I = (a, b) with
rational endpoints, we have an effective open exhaustion for f−1(I), i.e.,

Add−1(I) = {(x, y) | x+ y ∈ (a, b)}

has an effective open exhaustion. Now using Theorem 4.1.22 we only need to present a
recursive function deciding if any arbitrary 2-cube (x1, x2) × (y1, y2) is in Add−1[I]. As
shown in Figure 4.5, we can define

inAdd−1(I)(x1, y1, x2, y2)
def
= a < x1 + y1 < b ∧ a < x2 + y2 < b.

Since x1, y1, x2, y2 are all rational, this function is clearly recursive, and this, along with
Theorem 4.1.22, gives us an effective open exhaustion for Add−1(I).

Lemma 4.4.2. Let f, g : R → R be effectively open. Then, the function (f × g) : R×R →
R× R with (f × g)(x, y) = (f(x), g(y)) is exhaustion-reflecting.
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Figure 4.5: Visualization of a 2-cube contained in Add−1((a, b))

x+ y = a

x+ y = b

x

y

y1

x2

y2

x1

Proof. In order to prove this, we need to prove that for any open U ⊆ R × R with an
open exhaustion, the set

(f × g)−1(U) = {(x, y) | (f(x), g(y)) ∈ U}

has an effective open exhaustion. It suffices to prove that for each 2-cube I1 × I2,

(f × g)−1(I1 × I2) = {(x, y) | (f(x), g(x)) ∈ I1 × I2}

has an effective open exhaustion. We have

(f × g)−1(I1 × I2)= {(x, y) | (f(x), g(x)) ∈ I1 × I2}
= {(x, y) | f(x) ∈ I1 ∧ g(x) ∈ I2}
= {(x, y) | f(x) ∈ I1} ∩ {(x, y) | g(x) ∈ I2}
= f−1(I1)× R ∩ R× g−1(I2)
= f−1(I1)× g−1(I2)

Since f, g are exhaustion-reflecting, and I1, I2 are open finite intervals and hence have open
exhaustions, f−1(I1) and g−1(I2) both have open exhaustions respectively (F0, F1, . . .) and
(G0, G1, . . .). Then (F0 × G0, F1 × G1, . . .) is an effective open exhaustion for f−1(I1) ×
g−1(I2).

Lemma 4.4.3. The function Diag : R → R × R with Diag(x) = (x, x) is exhaustion-
reflecting.

Proof. In order to prove this, we need to prove that for any open U ⊆ R × R with an
effective open exhaustion, the set

Diag−1(U) = {x | (x, x) ∈ U}

has an effective open exhaustion. We give an algorithm that outputs each stage of an
effective open exhaustion for Diag−1(U). For any l ∈ N of the given effective open
exhaustion for U , the stage Ul consists of open 2-cubes

(xl
1, x

l
2)× (yl1, y

l
2), . . . , (x

l
2kl−1, x

l
2kl

)× (yl2kl−1, y
l
2kl

).
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For any 2-cubes (xl
i, x

l
i+1)× (yli, y

l
i+1) we can construct an open interval

I li
def
= (xl

i, x
l
i+1) ∩ (yli, y

l
i+1),

as shown1 in Figure 4.6, and we can define Ul
def
= I l1, . . . , I

l
kl

. Then the sequence (U1, U2, . . .)

is an open exhaustion for Diag−1(U).

Figure 4.6: Visualization of a 2-cube contained in Diag−1(U)

yi+1yixi

xi+1

xi+1

yi

yi+1

xi

x

y

x = y

Theorem 4.4.4 (Addition). Let f, g : R → R be exhaustion-reflecting. Then (f + g) is
also exhaustion-reflecting.

Proof. Using Theorem 4.3.1, we know that compositions preserve exhaustion-reflectingness.
Now we know that (f+g) is composed from the functions Add, (f×g), and Diag. There-
fore Lemmas 4.4.1, 4.4.2, and 4.4.3 complete the proof.

4.4.3 Exhaustion-reflection for multiplication

Lemma 4.4.5. The function Mult : R × R → R with Mult(x, y) = x · y is exhaustion-
reflecting.

Proof. In order to prove this, we need to prove that for any open U ⊆ R, the set

Mult−1(U) = {(x, y) | x · y ∈ U}
has an effective open exhaustion. Now using Theorem 4.1.22 we only need to present a
recursive function deciding if any arbitrary 2-cube (x1, x2)×(y1, y2) is in Mult−1[I]. Since
x · y is a continuous function over the rectangle, its maximum value occurs at one of the
corners. This means we can define

inMult−1(I)(x1, y1, x2, y2)
def
= a < x1 · y1 < b ∧ a < x1 · y2 < b ∧
a < x2 · y1 < b ∧ a < x2 · y2 < b.

1In this figure, the superscript l for endpoints of each interval is removed since we are only concerned with the lth stage
at this point.
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Since x1, y1, x2, y2 are all rational, this function is clearly recursive and this, along with
Theorem 4.1.22, gives us an effective open exhaustion for Mult−1(I).

Theorem 4.4.6 (Multiplication). Let f, g : R → R be exhaustion-reflecting. Then (f · g)
is also exhaustion-reflecting.

Proof. Using Theorem 4.3.1, we know that compositions preserve exhaustion-reflectingness.
Now we know that (f ·g) is composed from the functions (f×g), Diag, and Mult. There-
fore Lemmas 4.4.2, 4.4.3, and 4.4.5 complete the proof.

Theorem 4.4.7. Let f : R → R be an elementary function, then for any open set U with
an effective open exhaustion, f−1(U) has an effective open exhaustion.

Proof. We define the effective open exhaustion for f−1(U) inductively using the following
theorems:

• Base Cases:
Theorem 4.2.1 (constant fuction), Theorem 4.2.2 (Identity) Theorem 4.2.3 (inverse),
Theorem 4.2.4 (natural root),
Theorem 4.2.5 (logarithm),
Theorem 4.2.6 (exponential),
Theorem 4.2.8 (sin),
Theorem 4.2.9 (arcsin).

• Induction Steps:
Theorem 4.3.1 (composition of functions),
Theorem 4.4.4 (addition),
Theorem 4.4.6 (multiplication).

Corollary 4.4.8. Let f : R → R be an elementary function, then for any open set U with
an open exhaustion, dom(f) = f−1(R) has an effective open exhaustion.
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Chapter 5

Acceptability of Elementary Functions

In this section, we prove that all elementary functions are acceptable.
Recalling the Definition 2.5.4, a function f : R → R is acceptable if there exists a

sequence X where:

(i) X is an effective open exhaustion for dom(f) , and

(ii) f is effectively locally uniformly continuous w.r.t. X.

In the previous section, we proved that all elementary functions are exhaustion-reflecting,
and hence have a domain with an effective open exhaustion. In this section, we complete
the proof of acceptability of the elementary functions by proving that the elementary
functions are effectively locally uniformly continuous with respect to the aforementioned
exhaustion.

5.1 Preliminary Lemmas

The following theorem lets us use a simpler characterization for effective locally uniform
continuity of a function that does not depend on any effective open exhaustion. Lever-
aging this characterization, we can reduce the problem of proving effective local uniform
continuity w.r.t an open exhaustion for its domain, to a simpler problem. This charac-
terization is especially used later in Theorems 5.4.1 and 5.5.1 for proving effective local
uniform continuity of the addition and multiplication of functions.

Definition 5.1.1 (Local continuity witness). Let f : R → R. A recursive function N :
Q × Q × N → N is called a local continuity witness for f iff for any a, b ∈ Q with
[a, b] ⊆ dom(f) and k ∈ N, we have

∀x, y ∈ (a, b) |x− y| < 2−N(a,b,k) =⇒ |f(x)− f(y)| < 2−k.

Theorem 5.1.2 (Alternative characterization of effective local uniform continuity). Let
f : R → R have an open domain with an open exhaustion (U1, U2, . . .). Then f is
effectively locally uniformly continuous with respect to (U1, U2, . . .) if and only if there is
a local continuity witness for f .

Proof. (⇒) Assuming f is effectively locally uniformly continuous with respect to an open
exhaustion (U1, U2, . . .) for dom(f), we get a recursive function M : N × N → N
such that for all k, i ∈ N and all x, y ∈ Ui,

|x− y| < 2−M(k,i) =⇒ |f(x)− f(y)| < 2−k.
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We need to prove the existense of a local continuity witness for f . To do this, we
present an algorithm computing a recursive function N : Q×Q×N → N that takes
a, b ∈ Q and k ∈ N with [a, b] ⊆ dom(f) as inputs and returns a natural number
such that

|x− y| < 2−N(a,b,k) =⇒ |f(x)− f(y)| < 2−k.

Since (Ui)i∈N covers dom(f), there is a stage in which [a, b] is covered. By definition
of an effective open exhaustion, there is a recursive map which delivers the sequence
of stages of (Ui)i∈N. Hence we can enumerate all stages until we find a stage s which
contains [a, b], and then we can output N(a, b, k) = M(k, s). This guarantees that

∀x, y ∈ (a, b) |x− y| < 2−N(a,b,k) =⇒ |f(x)− f(y)| < 2−k.

(⇐) Let us assume f has a local continuity witness N : Q × Q × N → N. We need to
define a recursive function M : N× N → N such that

∀x, y ∈ Ui |x− y| < 2−M(k,i) =⇒ |f(x)− f(y)| < 2−k.

Since we have an open exhaustion for dom(f), we have a recursive function listing
the intervals in each stage. Let (a1, b1, . . . , ans , bns) be the endpoints of the com-
ponents of stage s. Let us enumerate the gaps between intervals as g1, gns−1 with
gj ∈ Q for each j ∈ {1, . . . , ns − 1}. Then, we define

M(k, s)
def
= max({N(am, bm, k) | 1 < m < ns} ∪ {⌈1/gj⌉ | 1 ≤ j ≤ ns − 1}).

Consider x, y ∈ Us. Then if |x− y| < 2−M(k,s), this means that x and y must be on
the same interval in the open exhaustion. We also have that |x− y| < 2−N(am,bm,k)

for 1 < m < ns, this guarantees that |f(x)− f(y)| < 2−k, and hence, proves that f
is locally uniformly continuous with respect to (Ui)i∈N.

We take this theorem as justification for being able to talk about just “effective local
uniform continuity”, instead of having to talk about “effective local uniform continuity
w.r.t an open exhaustion”.

Theorem 5.1.2 gives us an alternative characterization of acceptable functions, i.e.:

Corollary 5.1.3. A function f : R → R is acceptable iff:

(i) The domain of f is the union of an effective open exhaustion, and

(ii) The function f has a local continuity witness.

Lemma 5.1.4. Let F : real × nat → real be a WhileCC-procedure approximating the
function f : R → R, with f monotone on its domain, then f is effectively locally uniformly
continuous.

Proof. By Theorem 5.1.2, it suffices to give a recursive function N : Q×Q×N → N that
for any a, b,∈ Q with [a, b] ⊆ dom(f) satisfies

∀x, y ∈ (a, b) |x− y| < 2−N(a,b,k) =⇒ |f(x) < f(y)| < 2−k.

We present an algorithm to compute N(a, b, k) for any a, b ∈ Q with [a, b] ⊆ dom(f).
We begin by giving an informal description of the algorithm:
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1. Start with a counter c = 0.

2. Divide [a, b] into segments [a1, a2], [a2, a3], · · · , [acn−1, acn ] of length at most 2−c.

3. Check whether for all i ∈ {1, . . . , cn − 1}, there exists some q1 ∈ FR(ai, c) and
q2 ∈ FR(ai+1, c) where

|q2 − q1|+ 2−c−1 < 2−k.

If this is not satisfied, increase c by one, and go to step 2. Otherwise, return c.

The algorithm we just defined computes the following functions:

intervals(a, b, i, c) =
{
[a+ 2−ci, a+ 2−c(i+ 1)] if 2−c(i+ 1) < b

[a+ 2−ci, b] otherwise
N(a, b, k) = min

c∈N
∀i ∈ {0, . . . , ⌈(b− a)/2−c⌉}

∃q1 ∈ FR(intervals(a, b, i, c), c)
∃q2 ∈ FR(intervals(a, b, i+ 1, c), c)

|q2 − q1|+ 2−c−1 < 2−k.

Intuitively, intervals(a, b, i, c) divides the interval [a, b] into a finite set of sub-intervals of
maximum length 2−c, returning the ith such interval. Note that |q2 − q1| + 2−c−1 is an
overestimation of how much the value of f changes within the interval [ai, ai+1]. Since
the function is monotone over I, the maximum change in any interval of length at least
2−c is less than the estimation, and hence step 3 will guarantee that

∀x, y ∈ (a, b) |x− y| < 2−N(a,b,k) =⇒ |f(x)− f(y)| < 2−k.

5.2 Continuity for Basic Functions

Theorem 5.2.1 (Continuity for basic functions). The functions

• constant,

• identity,

• inv(x) = 1/x,

• log,

• exp(x) = ex,

• arcsin, and

• natural root

are effectively locally uniformly continuous w.r.t to their respective effective open exhaus-
tions for their domains.

Proof. In each case, we can prove the alternative form of effective local uniform continuity
defined in Theorem 5.1.2. All of the functions above are monotone on any closed interval
in their domain, so we can use Lemma 5.1.4 to provide the requested recursive function
for us in each case.
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Theorem 5.2.2 (Continuity for sin). The function sin(x) is effectively locally uniformly
continuous w.r.t to the effective open exhaustion given in 4.2.8.

Proof. We know that the for any x, y ∈ R, the inequality |sin(x)− sin(y)| ≤ |x− y| holds.
Hence, we can simply define the function M(k, l) = k for any k, l ∈ N. Then for any
k, l ∈ N:

|x− y| < 2−k =⇒ |sin(x)− sin(y)| ≤ |x− y| < 2−k

which gives us the effective local uniform continuity.

5.3 Continuity for Composition of Functions

In this section, we prove that the composition of any two effectively locally uniformly
continuous functions is effectively locally uniformly continuous w.r.t the domain of the
composition. In order to prove this, we first need to prove that the following forward
coverage property follows from uniform local continuity. Intuitively, we say a function
satisfies the forwad coverage property if when applying the function on a point, based on
which stage of the open exhaustion of the domain the point appears in, we can system-
atically anticipate the state of the open exhaustion for the range in which we can expect
the value to fall in.

Definition 5.3.1 (Forward coverage property w.r.t some effective open exhaustion). Let
f : R → R, U an open set with an effective open exhaustion X = (U1, U2, . . .), and
f−1(U) have an effective open exhaustion (U ′

1, U
′
2, . . .). Then f satisfies the forward

coverage property w.r.t X, if there is a recursive function Sf : N → N where

x ∈ U ′
l =⇒ f(x) ∈ USf (l).

Definition 5.3.2 (Interval forward coverage property w.r.t some open exhaustion). Let
f : R → R, U an open set with an effective open exhaustion (U1, U2, . . .). Then f satisfies
the interval forward coverage property, if there is a recursive function Sf : Q×Q×N → N
where

x ∈ (a, b) =⇒ f(x) ∈ USf (a,b,l)

for any a, b ∈ Q and [a, b] ⊆ f−1(U).

Lemma 5.3.3. Let f : R → R be a function with interval forward coverage property with
respect to some effective open exhaustion X. Then f has forward coverage property with
respect to X as well.

Proof. Let U an open set with an effective open exhaustion X = (U1, U2, . . .), and f−1(U)
have an effective open exhaustion (U ′

1, U
′
2, . . .). There is a recursive function Sf : Q×Q×

N → N that, for any a, b ∈ Q and [a, b] ⊆ U ′
l and for any x ∈ (a, b), satisfies

x ∈ (a, b) =⇒ f(x) ∈ USf (a,b,l).

Let the stage U ′
l = (a1, b1) ∪ · · · ∪ (anl

, bn1). Let us define

S(l)
def
= max{Sf (a1, b1, l), . . . Sf (anl

, bnl
, l)}

then clearly
x ∈ U ′

l =⇒ f(x) ∈ US(l).

This proves the forward coverage property.
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Definition 5.3.4 (Estimation of max and min over a closed interval). Let f0 : Q×N → Q
and N : Q×Q× N → N. Then we define Maxf0,N : Q×Q× N → Q as

Maxf0,N(a, b, n)
def
= max{f0(q, n+ 1) | q ∈ {a1, . . . , am}},

and respectively, Minf0,N : Q×Q× N → Q as

Minf0,N(a, b, n)
def
= min{f0(q, n+ 1) | q ∈ {a1, . . . , am}},

where we divide [a, b] into segments [a1, a2], [a2, a3], . . . , [am−1, am] such that

∀i ∈ {1, . . . ,m− 1} |ai+1 − ai| < 2−N(a,b,n+1)−1.

Theorem 5.3.5. Let f : R → R and f0 : Q × N → Q satisfy, for any n ∈ N and any
x ∈ dom(d) ∩Q,

|f0(x, n)− f(x)| < 2−n.

Let us also assume we have a recursive function N : Q×Q×N → N that for any n ∈ N
and a, b ∈ Q with [a, b] ⊆ dom(f), we have

|x− y| < 2−N(a,b,n) =⇒ |f(x)− f(y)| < 2−n.

Then ∣∣∣∣Maxf0,N(a, b, n)− max
x∈[a,b]

f(x)

∣∣∣∣ < 2−n

and ∣∣∣∣Minf0,N(a, b, n)− min
x∈[a,b]

f(x)

∣∣∣∣ < 2−n.

Proof. We prove ∣∣∣∣Maxf0,N(a, b, n)− max
x∈[a,b]

f(x)

∣∣∣∣ < 2−n.

The case of minimum is similar.
Let us divide [a, b] into segments [a1, a2], [a2, a3], . . . , [am−1, am], where a1 = a and

am = b, such that

∀i ∈ {1, . . . ,m− 1} |ai+1 − ai| < 2−N(a,b,n+1)−1.

since [a, b] ⊆ dom(f) is a closed interval, we know that f(x) will have its maximum in
[a, b]. Since we have [a, b] = [a1, a2], . . . , [am−1, am], the maximum of f(x) will occur at
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least in one interval [aj, aj+1]. Now:∣∣∣∣Maxf0,N(a, b, n)− max
x∈[a,b]

f(x)

∣∣∣∣
=

∣∣∣∣max{f0(q, n+ 1) | q ∈ {a1, . . . , am}} − max
x∈[a,b]

f(x)

∣∣∣∣
=

∣∣∣∣max

{
f0(q, n+ 1)− max

x∈[a,b]
f(x) | q ∈ {a1, . . . , am}

}∣∣∣∣
=

∣∣∣∣f0(aj, n+ 1)− max
x∈[aj ,aj+1]

f(x)

∣∣∣∣
=

∣∣∣∣f0(aj, n+ 1)− f(aj) + f(aj)− max
x∈[aj ,aj+1]

f(x)

∣∣∣∣
≤ |f0(aj, n+ 1)− f(aj)|+

∣∣∣∣f(aj)− max
x∈[aj ,aj+1]

f(x)

∣∣∣∣
< 2−n−1 + 2−n−1

= 2−n

Lemma 5.3.6. Let f : R → R be effectively locally multipolynomially approximable
w.r.t. (U1, U2, . . .) by (qn)n∈N via M where (U1, U2, . . .) is an effective open exhaustion of
dom(f). Then there is a function f0 : Q× N → N such that

|f0(x, n)− f(x)| < 2−n.

Proof. Let us define f0 : Q× N → N to be

f0(x, n)
def
= qM(n,min{l|x∈Ul})(x).

Then f0 satisfies |f0(x, n)− f(x)| < 2−n by the definition of effective local multipolyno-
mial approximability.

Theorem 5.3.7. All acceptable WhileCC-approximable functions satisfy the interval for-
ward coverage property with respect to any effective open exhaustion.

Proof. Let f : R → R be an acceptable WhileCC-approximable function. Let U be an
open set with an effective open exhaustion (U1, U2, . . .). Then, in order to prove that
f satisfies the interval forward coverage property, we need to give a recursive function
Sf : Q×Q× N → N that, for any a, b ∈ Q with [a, b] ⊆ f−1(U), satisfies

x ∈ (a, b) =⇒ f(x) ∈ USf (a,b,l).

By Fu and Zucker’s equivalence Theorem 2.6.4 and Lemma 5.3.6, there is a function f0
satisfying |f0(x, n)− f(x)| < 2−n. Since f is effectively locally uniformly continuous, we
have a recursive function N : Q × Q × N → N that for any n ∈ N and a, b ∈ Q with
[a, b] ⊆ dom(f), we have

|x− y| < 2−N(a,b,n) =⇒ |f(x)− f(y)| < 2−n.
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Let us define

Sf (a, b, l)
def
= min{n | [Minf0,N(a, b, n),Maxf0,N(a, b, n)] ⊆ Un}.

Since [a, b] ⊆ f−1(U), it follows that f([a, b]) ⊆ U . Since f is continuous and defined on
[a, b], f([a, b]) must be a closed interval [minx∈[a,b] f(x),maxx∈[a,b] f(x)] which falls under
some stage Um. and since Um is open, then by Theorem 5.3.5 there must be some k ≥ m
such that

[ min
x∈[a,b]

f(x), max
x∈[a,b]

f(x)] ⊆ [Minf0,N(a, b, k)− 2−k,Maxf0,N(a, b, k) + 2−k] ⊆ Um ⊆ Uk.

Corollary 5.3.8. All WhileCC-approximable, effectively locally uniform continuous func-
tions satisfy the forward coverage property.

Proof. Follows directly from Theorem 5.3.7 and Lemma 5.3.3.

Theorem 5.3.9 (Continuity for composition). Let f, g : R → R be WhileCC-approximable
and effectively locally uniformly continuous w.r.t effective open exhaustions for their
domains respectively. Let X be an effective open exhaustion for dom(f ◦ g). Then the
function f ◦ g is effectively locally uniformly continuous with respect to X.

Proof. Let f, g : R → R be WhileCC-approximable and effectively locally uniformly
continuous with respect to effective open exhaustions (U g

n)n∈N and (U f
n )n∈N with recursive

functions Nf , Ng respectively. Let X = (U1, U2, . . .) be an effective open exhaustion for
dom(f ◦ g). Then we need to show that there is a recursive function N : N × N → N
that for x, y ∈ Ul satisfies

|x− y| < 2−N(k,l) =⇒ |f(g(x))− f(g(y))| < 2−k

making the function f ◦ g effectively locally uniformly continuous with respect to X. Let
x, y ∈ Ul for some l ∈ N. Since dom(f ◦ g) ⊆ dom(g), for any l ∈ N, the lth stage of
our exhaustion for dom(f ◦ g) is contained in some stage with index l′ of the exhaustion
for U g. Note that the index l′ can be found recursively by going through each stage of
U g and checking whether it contains all the intervals in Ul. Also, let l′′ be the index of
some stage of the exhaustion for U f such that g(Ul) ⊆ U f

l′′ . By Corollary 5.3.8, such l′′ is
recursively attainable from l. Let us define N(k, l)

def
= Ng(Nf (k, l

′′), l′). Then

|x− y| < 2−N(k,l) = 2−Ng(Nf (k,l
′′),l′)

=⇒ |g(x)− g(y)| < 2−Nf (k,l
′′)

=⇒ |f(g(x))− f(g(y))| < 2−k

which gives us effective local uniform continuity of f ◦ g.

5.4 Continuity for Addition of Functions

Theorem 5.4.1 (Continuity for addition). Let f, g : R → R be effectively locally uniformly
continuous with respect to effective open exhaustions for their domains, respectively.
Then (f + g)(x) = f(x) + g(x) is effectively locally uniformly continuous w.r.t. any
effective open exhaustion for dom(f + g).
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Proof. In this proof, we only work with the alternative characterization of effective local
uniform continuity (Theorem 5.1.2). Let f, g : R → R be effectively locally uniformly
continuous with recursive functions Nf , Ng : Q × Q × N → N in the alternative charac-
terization, respectively. We need to present a recursive function N : Q×Q×N → N that
for all a, b ∈ Q with [a, b] ⊆ dom(f + g) satisfies

|x− y| < 2−N(a,b,k) =⇒ |(f + g)(x)− (f + g)(y)| < 2−k

making the function f + g effectively locally uniformly continuous.
Let us take an arbitrary k ∈ N. For any a, b ∈ Q, if [a, b] ⊆ dom(f + g) then

[a, b] ⊆ dom(f) and [a, b] ⊆ dom(g). This means that the function

N(a, b, k)
def
= Nf (a, b, k + 1) +Ng(a, b, k + 1) + 1

satisfies for x, y ∈ (a, b)

|x− y| < 2−N(a,b,k) =⇒ |(f + g)(x)− (f + g)(y)| < 2−k

since for any x, y ∈ (a, b) with |x− y| < 2−N(a,b,k) = 2−(Nf (a,b,k+1)+Ng(a,b,k+1)+1), we have

|x− y| < 2−Nf (a,b,k+1),

and
|x− y| < 2−Ng(a,b,k+1),

hence:

|(f + g)(x)− (f + g)(y)| = |f(x) + g(x)− f(y)− g(y)|
≤ |f(x)− f(y)|+ |g(x)− g(y)|
< 2−k−1 + 2−k−1

= 2k

5.5 Continuity for Multiplication of Functions

Theorem 5.5.1 (Continuity for multiplication). Let f, g : R → R be effectively locally
uniformly continuous with respect to effective open exhaustions for their domains, re-
spectively. Then (f · g)(x) = f(x) · g(x) is effectively locally uniformly continuous w.r.t.
any effective open exhaustion for dom(f · g).
Proof. In this proof, we only work with the alternative characterization of effective local
uniform continuity (Theorem 5.1.2). Let f, g : R → R be effectively locally uniformly
continuous with recursive functions Nf , Ng : Q × Q × N → N in the alternative charac-
terization, respectively. We need to present a recursive function N : Q×Q×N → N that
for all a, b ∈ Q with [a, b] ⊆ dom(f · g) satisfies

|x− y| < 2−N(a,b,k) =⇒ |(f · g)(x)− (f · g)(y)| < 2−k

making the function f · g effectively locally uniformly continuous.
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Let us take an arbitrary k ∈ N. For any a, b ∈ Q, if [a, b] ⊆ dom(f · g) then
[a, b] ⊆ dom(f) and [a, b] ⊆ dom(g). We need to present some recursive function
N : Q×Q× N → N satisfying for x, y ∈ (a, b)

|x− y| < 2−N(a,b,k) =⇒ |(f · g)(x)− (f · g)(y)| < 2−k.

We define the function N as follows:

N(a, b, k)
def
= max{Nf (a, b,m), Ng(a, b,m)}

where m is computed using

m = min
m1∈N

{
2−m1(Max|f |(a, b, 0) +Max|g|(a, b, 0) + 2) < 2−k

}
where Max|f |(a, b, 0) and Max|g|(a, b, 0) are overestimations for the maximum values of
|f |(x) = |f(x)| and |g|(x) = |g(x)| on [a, b] (Definition 5.3.4). Note that such an m must
exist, and we can compute it by checking each natural number in ascending order. This
gives us:

|(f · g)(x)− (f · g)(y)| = |g(x)f(x)− f(y)g(x) + f(y)g(x)− f(y)g(y)|
≤ |g(x)(f(x)− f(y)) + f(y)(g(x)− g(y))|
≤ |g(x)(f(x)− f(y))|+ |f(y)(g(x)− g(y))|
≤ 2−m|g(x)|+ 2−m|f(y)|
≤ 2−m(|g(x)|+ |f(y)|)
≤ 2−m(Max|g|(a, b, 0) +Max|f |(a, b, 0) + 2)

< 2−k. (by defintion of N(a, b, k))

Theorem 5.5.2. Let f : R → R be an elementary function, then f is effectively locally
uniformly continuous w.r.t. any effective open exhaustion for its domain.
Proof. Follows directly from

• Theorem 5.2.1 (constant, identity, inverse, logarithm, exp, arcsine and natural root
functions),

• Theorem 5.2.2 (sin function),

• Theorem 5.3.9 (composition of functions),

• Theorem 5.4.1 (addition of functions), and

• Theorem 5.5.1 (multiplication of functions).

Theorem 5.5.3. All elementary functions f : R → R are acceptable.
Proof. Follows directly from Theorem 4.4.7 and Theorem 5.5.2.

Corollary 5.5.4. Using Theorem 3.12.1 and Theorem 5.5.3, along with the equivalence
lemma 2.6.4, we can immediately conclude that any unary elementary function is also:

• GL-computable w.r.t. an effective open exhaustion for its domain,

• tracking computable, and

• multipolynomially approximable w.r.t. an effective open exhaustion for its domain.
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Chapter 6

Conclusion and Future Work

The contributions of this thesis are as follows:

• We prove that all elementary functions are WhileCC-approximable.

• We prove that all elementary functions are acceptable.

• We present an alternative characterization of acceptable functions.

The following interesting problems are still left open:

• Determining the status of the generalized elementary functions to more than one ar-
gument: In particular, we would like to know if the generalized elementary functions
are acceptable, considering the generalized version of acceptability given by Tucker
and Zucker [2004]. Our idea of decomposing addition and multiplication in Section
4.4.1 seems to show us a way forward towards proving that non-unary elementary
functions are acceptable.

• Determining the status of the While*-approximability model by Tucker and Zucker
[1999], i.e., WhileCC-approximability in the absence of the countable choice opera-
tor: The nondeterministic choice seems to be an important feature in the WhileCC
programming language. But we would also like to know how much power exactly
we are adding to our language when adding this nondeterministic choice operator.

• Extending the equivalence theorem in Fu and Zucker [2014] to acceptable partial
functions of type Rm → R.

We also conjecture that all partial unary WhileCC-approximable functions are acceptable.
We would also like to know the answer to the following questions:

• If the conjecture holds, are non-unary WhileCC-approximable functions acceptable?

• If the conjecture does not hold, what is a model of computation that characterizes
exactly the class of acceptable functions?
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Appendix A

Auxiliary Theorems

Theorem A.0.1 is used in both Sections 3.7 and 3.9, and Lemmas A.0.2, A.0.3, and A.0.4
are used in Section 3.7.
Theorem A.0.1 ([Spivak, 1994], page 308). For any arbitrary ϵ, a ∈ R with ϵ > 0, there
exists some n′ ∈ N such that, for all n > n′, we have an

n!
< ϵ.

Proof. Let a, ϵ ∈ R with ϵ > 0. Notice that for any arbitrary fixed b ∈ R, and for any
m ∈ N, if m ≥ 2b then

bm+1

(m+ 1)!
=

b

m+ 1
· b

m

m!
<

1

2
· b

m

m!
.

Now, let us fix n0 to be any natural number with n0 > 2a. Then, we have:
an0+1

(n0 + 1)!
<

1

2
· a

n0

n0!

an0+2

(n0 + 2)!
<

1

2
· an0+1

(n0 + 1)!
<

1

2
· 1
2
· a

n0

n0!
...

an0+k

(n0 + k)!
<

1

2k
· a

n0

n0!

Let 2k be the first power of 2 for which an0

(n0)!ϵ
< 2k holds, then an0+k′

(n0+k′)!
< ϵ for any k′ > k,

which is the desired result.

Lemma A.0.2. For any x, y ∈ R, we have

ex − ex−y ≤ ex+y − ex.

Proof.

ex − ex−y ≤ ex+y − ex

⇐⇒ ex(1− e−y) ≤ ex(ey − 1)

⇐⇒ 1− e−y ≤ ey − 1

⇐⇒ 2 ≤ ey + e−y

⇐⇒ 1 ≤ (ey + e−y)/2

⇐⇒ 1 ≤ cosh(x)

⇐⇒ true
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Lemma A.0.3. Let the WhileCC-procedure F : real× nat → real approximate f : R → R,
x ∈ dom(f), and r ∈ FR(x,m). Then

∣∣ef(x) − er
∣∣ < ∣∣∣ef (x)− ef(x)+2−m

∣∣∣.
Proof. We prove this by cases:

• r ≤ f(x): ∣∣ef(x) − er
∣∣ < ∣∣∣ef(x) − ef(x)−2−m

∣∣∣ (since er > ef(x)−2−m)

≤
∣∣∣ef(x) − ef(x)+2−m

∣∣∣ (by Lemma A.0.2)

• r > f(x): ∣∣ef(x) − er
∣∣ = ∣∣er − ef(x)

∣∣
<

∣∣∣ef(x)+2−m − ef(x)
∣∣∣ (since er < ef(x)+2−m)

=
∣∣∣ef(x) − ef(x)+2−m

∣∣∣
Lemma A.0.4. Let x ∈ R and N ∈ N. Then for any k ∈ N

|2x| < N =⇒ |x|N+k

(N + k)!
<

1

2k
|x|N
N !

.

Proof. The proof is inspired by the proof of Theorem A.0.1.

|2x| < N =⇒ |x|
N

<
1

2

=⇒ ∀k ∈ N
|x|k

(N + 1) · · · (N + k)
<

1

2k

=⇒ ∀k ∈ N
|x|N
N !

· |x|k
(N + 1) · · · (N + k)

<
1

2k
· |x|

N

N !

=⇒ ∀k ∈ N
|x|N+k

(n+ k)!
<

1

2k
· |x|

N

N !
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Index

In, 54
ϕ, 3, 16–18
n-cube

closed n-cube, 54
open n-cube, 54
rational closed n-cube, 54
rational open n-cube, 54

WhileCC(Σ) programming language, 5
semantics, 10
syntax, 5
well-definedness, 14

acceptable function, 19, 20, 67, 72, 75
algebra

Σ-algebra, 3, 4
topological (partial) algebra, 3

standard algebra, 4, 11–13
N-standard algebra, 5

approximability
WhileCC-approximability, 13, 22,

26, 32, 36, 37, 40, 72
multipolynomial approximability, 20
While*-approximability, 76

computability
α-computability
α-computable function, 18, 20
α-computable real, 18, 26
α-computable reals Rc, 18, 22, 23

WhileCC computability on N, 14
GL-computable, 21
on assemblies, 16

continuity
effective local uniform continuiuty,

19

elementary functions, 22, 23, 66, 75

exhaustion-reflecting, 50, 56–60, 62–67

forward coverage property, 70, 73

Grzegorczyk-Lacome computability, see
GL-Computable

interval forward coverage property, 70,
72

local continuity witness, 67, 68

multipolynomial, 20
effective sequence of

multipolynomials, 20

open exhaustion, 19
effective open exhaustion, 19, 20, 50,

53, 66, 67, 70, 72, 75
generalized to Rn, 54

effective sequence of open
exhaustions, 55

realizability relation, 16
assembly, 16
on In, 54
on N, 16
on Q, 16
on Cartesian product, 16
on Functions, 16
on sequences, 16

signature, 3, 4
standard signature, 4

N-standard signature, 5
simple effective open exhaustion, 50
standard enumeration, 17, 18
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