
 

 

 

 

 

 

CHILDREN LEARNING THROUGH TEACHING AN ERRONEOUS ROBOT 

 

 

 

 

 

 

 

 

 

 



 

“IT’S TO, NOT TOO!”: THE IMPACT OF ROBOT ERRORS ON CHILDREN’S 

LEARNING IN A LEARNING-BY-TEACHING PARADIGM 

 

 

 

 

 

BY HUNTER KENNEDY CERANIC, B.ENG & SOCIETY 

 

 

A Thesis Submitted to the School of Graduate Studies in the Partial 

Fulfillment of the Requirements for the Degree Master of Applied Science 

 

 

 

McMaster University © Copyright by Hunter Kennedy Ceranic 

April 25, 2025



 

ii 

 

McMaster University 

Master of Applied Science (2025) 

Hamilton, Ontario (Department of Computing and Software) 

 

TITLE: “It’s To, Not Too!”: The Impact of Robot Errors on Children’s Learning in a 

Learning-by-Teaching Paradigm 

AUTHOR: Hunter Kennedy Ceranic (McMaster University) 

SUPERVISOR: Dr. Denise Y. Geiskkovitch 

NUMBER OF PAGES: Roman Numerals, Regular pages 

 

 

 

 

 

 

 

 



 

iii 

 

Lay Abstract 

Access to quality education key factor for addressing societal problems, but as 

teacher resources are continually being spread thinner this goal becomes more difficult to 

achieve. Introducing educational tools, such as teaching robots has been shown to have 

comparable effects to being taught by human tutors, which may help alleviate the burden 

on teachers.  There has been exploration using robots as tutees in learning-by-teaching, as 

the paradigm has been shown to provide better learning outcomes than standard methods. 

In this thesis, we investigate the design and utilization of strategic robot errors in a learning-

by-teaching scenario to improve children’s learning. While we did not find significant 

results regarding the cognitive learning efficacy of different mistakes, post-hoc analysis 

was performed indicating that certain mistakes impact affective characteristics that 

contribute to learning such as attention and self-efficacy. Implications of this research for 

robot design research and applications are discussed.   
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Abstract 

Access to quality education is widely acknowledged as a key factor to address the 

problems we face globally as a society. Teacher resources, however, continue to dwindle 

due to lack of funding and increasing demands for more personalized education, making it 

difficult to find the time to help each student succeed. As such, the introduction of 

educational tools, such as social robots for extra 1-on-1 help, has been shown to have 

comparable effects to being taught by human tutors, which may help alleviate the burden 

on teachers.  

In this thesis, we present an experiment investigating the design and utilization of 

strategic robot errors in a learning-by-teaching scenario to improve children’s reading 

ability. The experiment tested three different conditions to help differentiate the best 

strategy for developing robot errors: targeted mistakes designed to engage the zone of 

proximal development, the challenge level of problem-solving for optimal learning, simple 

mistakes which are easy and obvious to identify requiring little effort on the part of the 

tutor, and no mistakes which acted as a baseline.  

While we did not find significant results regarding the cognitive learning efficacy 

of different mistakes, post-hoc analysis was performed indicating that certain mistakes 

impact affective characteristics that contribute to learning such as attention and self-

efficacy. The implications of this research for robot design, research and implementation 

and broader applications in society are discussed, as the use of mistakes to influence 

affective learning outcomes may be effective at overcoming other known shortfalls of the 



 

v 

 

technology. In addition, recommendations in regard to improving experimental 

methodology for future studies using robot tutees and future research directions for robot 

error design are explored. 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

 

Acknowledgments 

 There are so many people who contributed their knowledge, experiences and time 

to my education to support me writing this paper, who I want to acknowledge here. First 

and foremost, I would like to thank Dr. Denise Geiskkovitch, for supervising this master’s 

thesis and everything that includes, planting that spark of curiosity about the academic 

side of HRI for me in my final year of undergraduate studies and entertaining my 

whimsical writing style.  

 Along with Denise, I would like to thank Dr. Irene Ye Yuan and Dr. Shane 

Saunderson for being members of my M.A.Sc. defence examination committee. I want to 

say a huge thank you to everyone in the HuRoN lab for being so friendly, sharing laughs 

and our passion about how robots and humans fit together. A special thanks goes to Dr. 

Julia Rosen for your incredible advice, and telling me about Swedish academic time, I 

will be using that. Another huge thank you goes to Divya Patel for being the best wizard I 

could ask for, and being a voice of reason when I started to worry about things outside of 

my control. 

 Finally, to my family, Victor, Michele, Logan, Ayden and Finnick Ceranic, thank 

you for being there to care for me and push me to chase my passions. To my partner 

through these past 2 years, Nyah Lawryshyn, thank you for being my side through the 

trials and tribulations of this thesis. I hope you see this paper as an apology for having to 

deal with the stress I had writing it. And, to the Engineering & Society program, thank 

you for molding me into who I am today – an engineer who cares. 



 

vii 

 

Table of Contents 

Lay Abstract ....................................................................................................................... iii 

Abstract ............................................................................................................................... iv 

Acknowledgments ............................................................................................................... vi 

List of Figures ...................................................................................................................... x 

List of Tables .................................................................................................................... xii 

List of Abbreviations and Symbols .................................................................................. xiii 

Declaration of Academic Achievement ............................................................................ xiv 

1. Introduction ...................................................................................................................... 1 

1.1 Research Motivation .................................................................................................. 5 

1.2 Research Objectives ................................................................................................... 7 

2. Related Works .................................................................................................................. 9 

2.1 Digital Agents in Education ....................................................................................... 9 

2.2 Robots in Education ................................................................................................. 10 

2.3 Learning-by-Teaching .............................................................................................. 12 

2.4 Robots as Tutees ....................................................................................................... 14 

2.4.1 Robot Tutee Error Behaviours ........................................................................... 15 

3. Experimental Methodology ........................................................................................... 19 



 

viii 

 

3.1 Participants ............................................................................................................... 19 

3.2 Conditions ................................................................................................................ 21 

3.2.1 The Zone of Proximal Development ................................................................. 21 

3.2.2 Mistake Development ........................................................................................ 23 

3.3 Technology and Setup .............................................................................................. 26 

3.3.1 NAO ................................................................................................................... 26 

3.3.2 Wizard-of-Oz (WoZ) ......................................................................................... 26 

3.4 Materials ................................................................................................................... 28 

3.5 Measures ................................................................................................................... 29 

3.6 Experimental Procedure ........................................................................................... 30 

4. Experiment Results ........................................................................................................ 35 

4.1 Hypothesis Results ................................................................................................... 35 

4.1.1 Hypothesis I ....................................................................................................... 35 

4.1.2 Hypothesis II ...................................................................................................... 37 

4.2 Post-Hoc Quantitative Results ................................................................................. 38 

4.3 Post-Hoc Coding of Behaviour Results ................................................................... 43 

5. Discussion ...................................................................................................................... 48 

5.1 The False Mistakes Phenomenon ............................................................................. 48 

5.2 Affective Learning Outcomes .................................................................................. 49 



 

ix 

 

5.3 Cognitive Learning Outcomes ................................................................................. 52 

5.4 Limitations and Future Work ................................................................................... 55 

6. Conclusion ..................................................................................................................... 60 

7. References ...................................................................................................................... 63 

Appendix ............................................................................................................................ 68 

Appendix A – Ethics Forms ........................................................................................... 68 

Appendix B – Robot Mistakes ....................................................................................... 74 

Appendix C – Test Forms .............................................................................................. 76 

Appendix D – Qualitative Inventories ........................................................................... 78 

Appendix E – Participant Information ........................................................................... 80 

 

 

 

 

 

 

 

 



 

x 

 

List of Figures 

Figure 1. A diagram illustrating the Zone of Proximal Development [63]. ...................... 22 

Figure 2. Experimental Setup with labels. Not pictured here are a video camera behind 

and to the right of the setup ................................................................................................ 29 

Figure 3. The experimental setup as viewed by the right-side camera. In this photo we 

can see a participant talking to the robot after the robot had made a mistake. The 

participant is pointing to the tablet from which the book is being read. ............................ 33 

Figure 4. The experimental setup as viewed by the rear camera. In this photo we can see 

a participant and the robot looking at each other and interacting. The experimenter sitting 

to the right is supervising the interaction. .......................................................................... 33 

Figure 5. Kruskal-Wallis Test Results Comparing Learning Outcomes represented by 

Quiz Score Difference vs. Condition ................................................................................. 36 

Figure 6. Mann-Whitney U Test Results Comparing Learning Outcomes represented by 

Quiz Score Difference vs. Condition ................................................................................. 37 

Figure 7. Kruskal-Wallis Test Results Comparing Mistakes Identified vs. Condition ..... 39 

Figure 8. Kruskal-Wallis Test Results Comparing Mistakes Identified vs. Learning 

Outcome Groups ................................................................................................................ 40 

Figure 9. Composition of Conditions by Participant Age ................................................. 42 

Figure 10. Kruskal-Wallis Test Results Comparing Quiz Score Difference vs. Age ....... 42 

Figure 11. Kruskal-Wallis Test Results Comparing Attention vs. Condition, higher scores 

indicate more behaviours linked to inattention .................................................................. 46 



 

xi 

 

Figure 12. Mann-Whitney U Test Results Comparing Attention vs. Condition, higher 

scores indicate more behaviours linked to inattention ....................................................... 46 

Figure 13. Kruskal-Wallis Test Results Comparing Self-Efficacy vs. Condition, higher 

scores indicate more behaviours linked to negative self-efficacy...................................... 47 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

 

List of Tables 

Table 1. Errors used in Targeted Mistakes condition compared with the original text in 

the reading. The mistakes and the words they replaced are in bold. ................................. 74 

Table 2. Errors used in Simple Mistakes condition compared with the original text in the 

reading. The mistakes and the words they replaced are in bold. ....................................... 75 

Table 3. The age of participants and condition they were randomly assigned to are 

displayed in this table correlating to their participant identification number (ID). 

Participants who were disqualified have been omitted from this table.............................. 80 

  

 

 

 

 

 

 

 

 

 



 

xiii 

 

List of Abbreviations and Symbols 

CLI Command Line Interface 

DRA Developmental Reading Assessment 

GRL Guided Reading Levels 

HRI Human-Robot Interaction 

SAR Socially Assistive Robot 

SDGs United Nations Sustainable Development Goals 

SMA Simplified Miscue Analysis 

WoZ Wizard-of-Oz 

ZPD Zone of Proximal Development 

 

 

 

 

 

 

 

 

 



 

xiv 

 

 

 

 

Declaration of Academic Achievement 

I, Hunter Kennedy Ceranic, declare that this thesis titled, ““It’s To, Not Too!”: The Impact 

of Robot Errors on Children’s Learning in a Learning-by-Teaching Paradigm” and the work 

presented in it are my own. 

 

 

 

 

 

 

 

 

 

 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

1 

 

1. Introduction 

  Human-Robot Interaction (HRI) is a multi-disciplinary research field concerning 

study of the relationships between humans and robots from a range of perspectives. It is a 

very broad field encompassing issues relating to the social and physical design of robots, 

the applications of robots in the wider context of society, as well as how robots influence 

and are influenced by culture [1]. HRI researchers investigate the applications of robots in a 

variety of roles including education, healthcare and therapy, entertainment, service jobs, 

personal assistants, search and rescue [1]. To help organize this broad field, researchers of 

HRI have identified distinct categories of robots, based on their design goals and 

capabilities. This thesis is concerned with one specific category of robot – socially assistive 

robots (SARs), which are designed to provide assistance to human users, through social 

interactions using both verbal and non-verbal communication modalities [1, 17]. SARs have 

been studied for use in specific roles such as medical and elderly care, coaching, and 

companionship [1, 17]. This paper explores the design and implementation of an SAR for 

applications in child education. Specifically, we designed SAR error behaviours to enhance 

tutee robots in the learning-by-teaching paradigm. This teaching strategy was selected in 

particular, as it has been found to correlate with the highest retention rates for learned 

material when compared to other traditional teaching methods [15, 58], therefore arguably 

providing the highest quality learning outcomes. 

  In 2015 the UN passed a motion to adopt a set of 17 sustainable development goals 

(SDGs) to be accomplished by the year 2030, in an effort to foster global peace and 
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prosperity [56]. The fourth goal on this list is Quality Education, which emphasizes the 

notion of creating inclusive and equitable education for all [56]. The UN has identified that 

reaching the goal of Quality Education is a key enabler for achieving all of the other SDGs 

[56]; with increased access to a higher standard of education we will have more people able 

to collaborate and develop ideas to solve the problems posed by the other SDGs. There is a 

pressing need to address this goal, as according to the UN education is trending downwards 

globally [19]. They project that by 2030, without proper interventions being developed, 84 

million children will be out of school, and 300 million children will lack basic numeracy 

and literacy skills [19]. Approximately 80% of the 104 countries studied by the UN reported 

learning losses due to the pandemic, highlighting how delicate of a goal high quality 

education is [2]. Equitable access to education and increasing the resources available to 

teachers is especially important as low and low-middle income families are falling even 

further behind – there is nearly a $100 billion dollar annual financing gap for these families 

to reach their education goals [19]. While there are many different potential solutions to 

attempt to move education systems towards higher quality outcomes, one promising 

direction is optimizing the delivery of high-quality education through expanding and 

improving the tools educators have available to them. These types of solutions can help 

alleviate the stress on educator’s finances and time.  While, traditionally children are taught 

by adults or peers, research in HRI has explored how robots can be utilized in educational 

settings as a potential tool for teachers [5, 6, 36, 38, 39, 67], and the findings warrant further 

investigation. 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

3 

 

The usage of tools such as virtual agents and tutoring software to deliver education 

has been explored for many years [5], demonstrating varying levels of success [29, 30]. 

These technological interventions in education have been developed to address concerns 

relating to limited school budgets, class sizes and the growing demand of children who 

need individualized help, straining teacher resources [5]. SARs have been introduced as 

promising alternatives to teaching agents, adding a physical aspect to the delivery of 

automated education. This real-world physicality, typically referred to as embodiment, also 

gives rise to more effective social elements in the interaction between humans and robots, 

such as non-verbal communication. Findings in pedagogy research have shown that social 

interaction between teachers and students in educational environments leads to enhanced 

learning outcomes [66], and it has been demonstrated that these benefits can extend to 

interactions between robots and humans [1, 40, 49, 52]. In comparison to virtual agents, 

SARs are generally perceived in a more positive way likely due to their embodiment 

enhancing social interactions [5, 25]. Furthermore, robots tend to be more engaging, 

leading to higher attention and compliance over other pedagogical technologies [5, 33]. 

HRI researchers continue to explore the application of SARs, especially in pre-tertiary 

education, due to these promising results [39]. Studies have been conducted where robots 

assist in teaching subjects such as language learning [9, 21, 24, 26, 32, 68], logic and pattern 

recognition [31, 40, 51, 52], as well as math and science [33], though the last two tend to 

be underrepresented in the literature likely due to the social nature of robots lending itself 

better to language studies [36, 38, 39, 67]. Design choices for improving learning outcomes 

are also a focus of research. Communicative gesturing behaviours [64, 65, 68], timing with 
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regards to breaks between learning tasks [42], physical appearance and perception of the 

robot [14, 16, 25], and social communication styles [20, 28], [26, 27] have all been 

investigated to discover how to best enhance robot effectiveness in educational roles. 

Notably, since their control systems are governed by customizable code, robots have the 

capability to offer highly personalized education. When robots employ teaching strategies 

which are tailored to individual students, this approach has been found to enhance 

engagement and produce cognitive and affective learning outcomes comparable to those of 

human counterparts [2, 5, 39]. SARs have emerged as prime platforms to research how we 

can utilize existing learning frameworks in an effort to deliver high quality education 

without further straining teacher resources. 

Pedagogical studies have indicated that peer tutoring can be one of the most 

effective methods of learning, specifically for the tutor [15, 46, 58].  This is especially true 

when the tutee is trying to learn or ask questions about a topic the tutor is not an expert in 

but can reflect on their previous experience to help them problem solve and develop 

solutions to best aid the tutee [15, 46]. Due to evidence that SARs can be viewed as peers 

by children [14, 39], learning-by-teaching has also been explored with robots in the place 

of human peers [7, 11, 23, 41, 52], with findings showing promising opportunities as related 

to learning and pedagogy. Furthermore, robot customizability gives rise to the potential of 

robot tutees being the perfect tutee for tutor learning; targeted questions and mistakes, if 

designed correctly could arguably result in the best learning outcomes possible. For this 

reason, we investigated the design of robot errors in the learning-by-teaching education 
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paradigm to better understand the effects of a robot tutee’s mistakes on children’s learning 

outcomes.  

 

1.1 Research Motivation 

Compounded with the studies which have been performed by the UN indicating that 

there is a need for solutions which move society towards more accessible quality education 

[19]. The primary motivation for this thesis is exploring if it will be beneficial to use SARs 

as a tool in an effort to contribute to solving this societal problem. 

Although there have been studies regarding the use of robot tutee errors in the 

learning-by-teaching paradigm, this is still a relatively new field of research, and as such 

some aspects of the use of robots in the paradigm have yet to be fully explored. Given the 

promise of a future where we can take full advantage of the personalization robots offer in 

educational roles, it is imperative to ascertain the best behaviour protocols that are 

conducive to learning. First and foremost, it is important to gather evidence which suggests 

that the mistakes robots make impact learning. The learning outcomes from a session where 

a child tutors a robot versus a child watching and listening to a robot complete a problem 

successfully should be different enough to provide a justification to use the technology as 

educational tools. 

 For younger children, fully realizing the benefits of being a tutor in learning-by-

teaching interactions can be challenging due to the cognitive demands needed to internalize 
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and acknowledge ones own problem-solving capabilities [15]. However in certain 

modalities of learning-by-teaching such as correcting and giving feedback, reflection on 

the error being made is an automatically required component of the tutor role in order to 

successfully teach the tutee [15]. In this scenario, the tutor may actively problem solve at a 

higher level than they are usually comfortable with to identify and correct the mistake, 

without consciously having to acknowledge and explain why the mistake was made. In this 

master thesis, the goal is to determine if designing robot mistakes in a learning-by-teaching 

scenario to intentionally approach the this level of problem-solving, commonly referred to 

as the zone of proximal development (ZPD) [60], of a younger child is sufficient enough 

to achieve the improved learning outcomes typically associated with the paradigm.  

In this thesis we will test the hypothesis that mistakes that are designed to target the 

general ZPD of the child tutors will always lead to the best learning outcomes. Since the 

learning-by-teaching paradigm focuses on learning by correction, there are circumstances 

where tutors may only elicit knowledge telling behaviours, which are summary 

explanations that do not engage the ZPD and lead to lesser learning outcomes [15, 46]. 

Therefore, we want to further examine if there is a significant difference in children’s 

learning outcomes when robot mistakes are targeted towards the ZPD compared to mistakes 

which they could easily identify independently. These mistakes that would be easily 

identifiable for child tutors given their reading level, are more likely to induce knowledge 

telling behaviours since they are within the children’s comfort zone, and they will not need 

to engage in breaking down the problem to find the error. This is important to test as it 

could point towards whether the underlying mechanisms of learning-by-teaching are not 
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able to be fully taken advantage of by SARs due to their weaker verbal communication 

capabilities [52], or if augmentation of the paradigm by using intentionally designed robot 

tutee mistakes is a sufficient solution to maximize the learning outcome benefits. 

With the results of this study presented and discussed using standard experimental 

methodologies in HRI learning-by-teaching interaction design, this thesis aims to 

determine the impact of the quality of robot errors on learning outcomes and lay a 

foundation for future research on the use of robot tutees and the design of their mistake 

behaviours. 

 

1.2 Research Objectives 

The objective of this thesis is to evaluate the effect of robot errors on the learning 

outcomes of 6-8-year-old children who act as a tutor for a robot tutee during a reading task. 

In the experimental study we conducted, a robot read a book out loud, alongside 

participants who were tasked with correcting the robot if it made any reading mistakes. To 

evaluate our hypotheses, we used a between-participants design where each participant was 

randomly assigned to one of three study conditions, representing the three types of 

behaviours the robot was programmed to display: reading with no mistakes (the baseline 

condition), reading with simple mistakes (which are designed to be comfortably within their 

capabilities and easily identifiable), and reading with targeted mistakes (which are designed 

to approximate the tutor’s zone of proximal development). In total, the valid results of 27 

participants were collected. The learning outcomes of the participants were analyzed based 
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on the score difference of pre- and post-experiment quizzes. The experimental sessions 

were also recorded as references for post-hoc data collection. The following hypotheses 

were made to guide our research objectives: 

H1) In the targeted and simple mistake conditions participants will achieve better learning 

outcomes, or will show more improvements across quiz scores, than the participants in the 

no mistakes condition.  

H2) Participants in the targeted mistake condition will achieve better learning outcomes, 

or will show more improvements across quiz scores, than participants in the simple mistake 

condition.  
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2. Related Works  

 The purpose of this chapter is to highlight previous research, which was referenced 

to support the creation of the research objectives, and the development of the experiment 

discussed in this thesis. 

 

2.1 Digital Agents in Education 

 While teachers remain a central part of education, digital agents and other similar 

technological tools have been used in pedagogy research in an effort to assist in teachers’ 

delivery of education. Digital agents are programmed computer-controlled characters, 

which can be interacted with by students in a social manner, usually via text or images on  

a monitor [11]. By using knowledge of pre-existing social schemas, the designers of such 

agents aim to have them mimic traditional methods of learning via social interaction [7].  

Digital agents in these applications have been designed to give advice, and demonstrate 

thought processes for learning [11, 48, 53], as well as attempt to influence more affective 

components of learning such as motivation through encouragement [3, 11]. The idea is that 

in these roles as teaching aids, digital agents can go beyond what normal people can 

achieve, due to an infinite amount of patience and time resources, and the ability to 

communicate via visualization of concepts and thought processes [7]. These advantages 

translate to the data where the use of these technological tools have been found to improve 

students learning by moderate amounts, from the 50th to 75th percentile, though these results 
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are typically skewed towards individualized tests created for research rather than 

standardized tests [30]. 

 Though they have some successful results, they are typically inconsistent especially 

in relation to the socio-emotional outcomes of learning [29], as the use of digital agents as 

tools for teaching could be hindered by the abstract nature of the agent itself. Existing only 

on the two-dimensional plane of a computer monitor, reduces the ability for a tutor to 

identify and relate to it in a social capacity, as findings suggest the more human-like 

technology appears the easier it is for people to accept it having intelligence [41, 57]. For 

this reason, robots which can have a physical three-dimensional embodiment similar to a 

human, and are able to better display collaborative social behaviours, have a higher 

potential as pedagogical tools [41].  

 

2.2 Robots in Education 

Similarly to digital agents, robots can take on the role of tutors to support and 

supplement the educational strategies of teachers in new ways. This way of thinking is 

reflected in the research regarding robots in education; as of 2018, 48% of the pedagogical 

studies involving robots placed them in the role of a tutor [5]. In a study by Serholt et al., 

the overall efficacy of robot tutors compared to human peer tutors was investigated in a 

study consisting of 27 students aged 11–15-years-old  [51].  It was found that the mere 

presence of a physical robot caused children to be more eager to learn, however students 

were more comfortable with asking questions to human tutors to due the limited verbal 
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capabilities of the robot [51]. According to Belpaeme et al., robot tutors have an impact on 

cognitive learning outcomes, which affect knowledge retention and understanding, 

comparable to those of human tutors [5]. Robot tutors have slightly less impact on affective 

learning outcomes, which are related to development of emotional or personal factors of 

tutees which motivate learning, in comparison to human tutors, albeit still having an effect 

in around half of the studies Belpaeme et al. reviewed [5]. Moreover, many related works 

also mention how these individual factors such as self-efficacy, attention and personality 

can influence both learning outcomes and study results [5, 23, 39]. While it is difficult to 

control for these factors, qualitative data can be collected to glean insight into what types 

of impacts they can have, and how we can design robot behaviour to better address them. 

This thesis puts an emphasis on investigating cognitive learning outcomes, however since 

our motivation is to provide the highest quality outcomes possible, observational data will 

still be collected regarding the potential impact of SAR mistake design on affective learning 

outcomes. 

Consistently, studies involving SARs in education are constrained to specific 

subjects or lesson plans, and robot behaviour is often limited, with very little adaptation to 

the individuals learning [5]. However, there is no indication that these learning outcomes 

are applicable to more general tutoring applications outside of these controlled settings, and 

as such the technology must be developed more. We argue that the best direction to develop 

SAR technology towards improve learning outcomes would be to design their behaviour in 

alignment with evidence-based learning strategies. Accordingly, this study investigates 

novel robot behaviour strategies for integration into the learning-by-teaching education 
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paradigm, which has been found to be extremely effective for reinforcing and fostering the 

retention of knowledge [15, 23, 46, 58]. 

 

2.3 Learning-by-Teaching 

To interpret findings from HRI studies involving learning-by-teaching, it is 

necessary to first explore the underlying mechanisms of the paradigm. In tutor-tutee 

dynamics, the goal is typically for the tutor to teach the tutee. However, research into this 

dynamic has revealed that the tutor also engages in learning-by-teaching, where through 

their instruction of the tutee, the tutor reinforces their own learning [15]. This effect is 

emphasized further when the dynamic is peer-to-peer instead of adult-to-child, as it enables 

current students to further enrich their quality of education [15, 58].  

Learning-by-teaching has been shown to involve different cognitive processes 

when compared to learning for oneself, due to the expectancy that someone else will rely 

on them to teach the material. Awareness of this expectation causes the tutor to place greater 

effort into understanding and organizing the content in meaningful ways [15]. This is a 

phenomena known as the protégé effect, and arises due to the tutor’s feelings of 

responsibility to the tutee [11, 23].  

Tutors have the potential to experience higher quality learning outcomes than even 

their tutee, as a result of their improved task commitment in combination with their 

interactions explaining concepts to the tutee  [15]. Roscoe and Chi argue that these 
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enhanced outcomes only occur when tutors engage in a form of collaboration in learning-

by-teaching interactions called reflective knowledge building [46]. Generally, tutors, 

though more experienced in the subject than the tutee, are likely not experts, which means 

there are knowledge gaps they must account for when teaching. To do so, the tutor has to 

perform a very demanding task: assess their own understanding of a problem and ensure 

their explanations and guidance make logical sense [15, 46]. This has the additional benefit 

of often making the explanations of tutors who engage in this thought process, higher 

quality [15, 46]. This is the tutor recognizing and grappling with their own ZPD. However 

the problem arises that oftentimes instead of knowledge building, tutors tend to prefer what 

is called knowledge telling [15, 46]. Tutors engaging in knowledge telling mainly 

summarize knowledge, akin to memory recall, resulting in shallower explanations and less 

learning benefits for both parties [46]. Since there seems to be a latent bias towards 

knowledge telling [46], whether a tutor engages in knowledge building is also reliant on if 

they have received training to do so [15]. This makes knowledge building especially 

challenging for younger learners in primary school, due to the introspection and experience 

it requires, resulting in less learning benefits. For this reason it may be the case that younger 

children often play the role of a collaborator or tutee instead of a tutor in a majority of 

studies with educational robots [39, 51]. 

On a glance, it might seem that previous research in learning-by-teaching indicates 

that the benefits of the paradigm may not be able to be fully leveraged by younger child 

tutors. However, different modalities of learning-by-teaching are easier to engage with for 

younger children. For example, learning by correcting mistakes and providing feedback is 
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a very common form of peer learning. In these scenarios tutors inherently must reflect on 

their own knowledge, and break the task down to examine how their tutee deals with a 

problem and learn from their peers mistake [15]. The fundamentals of this paradigm are 

essential to understanding how the robot behaviour we describe in this thesis was designed 

and programmed. Part of the goal of this thesis is to design mistakes that deliberately 

attempt to elicit knowledge building behaviours, in an effort to enhance learning outcomes. 

Understanding learning-by-teaching also provides clarity regarding the decisions made by 

other researchers who have investigated using robots as tutees. 

 

2.4 Robots as Tutees 

When investigating the usage of robots in a learning-by-teaching scenario, 

researchers attempt to explore the benefits of using robot tutees and how their unique 

capabilities can be further leveraged in this role. While we have discussed some of these 

benefits directly, they are best highlighted by a series of studies as part of the START 

project spearheaded by Pareto and Serholt translated findings from a teachable agent to a 

robot-tutee and then continued to directly compare the use of a robot tutee versus a child 

tutee in a learning-by-teaching scenario [41]. In two parallel studies they had 12–13-year-

olds participate in a gamified mathematics-based tutoring scenario with either a robot or a 

9–10-year-old tutee [40, 52]. They collected the general perceptions tutors had of the tutee 

during the session, regarding how much they learned and their enjoyment tutoring, and 

used this qualitative data to assess the effectiveness of the interaction [40, 52]. Their results 
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suggest that generally robot and human tutees perform comparatively similar in the role, 

both evoking high enjoyment in the task, and creating an environment where the tutor 

believes that learning occurred [40, 52]. Verbal communication and collaboration in the 

interaction was where the robot’s capabilities fell short, causing them to rely on outside 

intervention from adult teachers to help [40, 52]. However, tutors indicated they preferred 

to have adult teachers in the room during the experiment with both types of tutees 

regardless, to help guide the interaction [40, 52]. Furthermore, there was evidence that 

tutors felt that they did learn moderately more in the robot tutee condition [52]. This may 

have been due to child peers often asking fewer questions and generally eliciting less 

interaction than their robot tutee counterparts [40]. We know that collaboration is essential 

to knowledge acquisition [60], and that communication and collaboration are glaring 

weaknesses of robot tutees [40, 52], however acknowledging this we can attempt to 

strategically circumvent scenarios which rely on these capabilities. For this reason, this 

thesis focuses on leveraging other modes of learning-by-teaching, by designing SAR 

behaviour to engage tutors in knowledge-building without the need to rely on heavy 

amounts of collaboration.  

2.4.1 Robot Tutee Error Behaviours 

Robots are inherently prone to errors, due to the nature of the computers and the 

computer software that control them. HRI research has investigated the impact of robot 

errors on people’s perception of robots. Such studies have found that, while simpler or 

harmless errors can actually make people feel more favourably towards the robot, and elicit 
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positive reactions like laughing and smiling [35, 55], more severe errors provoke escalating 

social responses and can lead to a decrease in trust in the robot [47, 55]. Similar results 

have also been found with young children, showing that verbal informational errors made 

by robots can negatively impact children’s trust [18]. However, these studies take place 

outside of the context of an educational setting. When the context changes and the child’s 

expectation is to teach the robot, the errors robots make instead lead to a greater engagement 

in the learning task [33].  

Given these findings, research in HRI has been conducted to evaluate how to best 

implement these mistake behaviours in tutee robots. Hood et al. conducted a study with an 

emphasis on creating a learning-by-teaching scenario where mistake behaviour was 

perceived to be authentic (i.e., the mistakes did not seem intentional) by the tutor. In the 

study, they created an algorithm that enabled the robot to physically enact the motions of 

handwriting, and subsequently develop “poor” handwriting shapes [21]. As 6–8-year-old 

child tutors observed the robot write, they would correct the robot through demonstration, 

and the robot would respond to this, altering the shape drawn according to the feedback 

[21]. While the study did not explicitly test for learning outcomes, they found that every 

child perceived this type of learning scenario as believable, and as a result in 9 of 14 of the 

sessions children continued to try to teach the tutoring period, indicating that it evoked a 

high level of engagement [21].  

Chandra et al. elaborated on these findings by using a similar handwriting scenario 

to measure 7–9-year-old children tutor’s perceptions of how much the robot tutee learned, 

and analyzed if that impacted their own learning outcomes [9, 10]. They compared a robot 
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that continually improves on their mistakes in response to tutoring and a robot who does 

not improve [10]. A follow-up study added another condition for comparison where the 

robot copied the feedback given by the child tutors in an effort to develop personalized 

learning [9]. Additionally, they collected information on the participants perceived self-

efficacy regarding their performance in the role as a tutor [9, 10], but interestingly not in 

regards to their own confidence in handwriting. In the first study findings suggest that 

continuous improvement, or the perception that the robot was learning from their mistakes 

did in fact result in significantly better learning outcomes [10]. This was however not 

replicated in their follow-up study, where there was no significant difference found between 

the learning outcomes of the personalized, continuously improving and non-improving 

mistake conditions [9]. Chandra et al. accounted for this discrepancy by noting their small 

sample size (25 participants in the first study and 37 in the second), and how other factors 

such as the child’s attention and motivation may have impacted the results. 

In contrast, a study by Yadollahi et al. focused on how robot gesture behaviours can 

be used to help children identify robot tutee mistakes in reading-based learning-by-teaching 

scenarios [68]. To accomplish this, the researchers characterized three different types of 

reading mistakes that 6–7-year-old children make at their reading level using the Simplified 

Miscue Analysis (SMA) framework [13, 68]. They then implemented these mistakes as 

robot errors, and evaluated how robot gestures, such as pointing at the word being read, 

impacted the children’s discovery of the mistakes [68]. The authors found that, while 

pointing itself did not have a significant impact overall on the number of corrections the 

child tutor was able to make, pointing did help children identify mistakes that particularly 
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correlated with illustrations [68]. Again however, while the learning outcomes of the 

interaction were not evaluated, the researchers did comment on the children having high 

levels of engagement in the task [68].  

Overall, while there have been some studies conducted on the impact of robot 

mistake behaviours in learning-by-teaching, there remains large gaps in the research with 

regards to the actual learning outcomes they create and the underlying mechanisms that 

contribute to them.  
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3. Experimental Methodology  

 In this thesis we investigate the impact of robot mistake design for use in learning-

by-teaching scenarios with children. In this chapter we outline the methodology – including 

the participants, technology and materials we used, how the robot mistakes we tested were 

developed, and as well as the experimental procedure. 

 

3.1 Participants 

In accordance with previous studies conducted utilizing robot tutees in learning-by-

teaching scenarios we identified the age range of 6–8-year-old children as the best fit for 

our study [9, 21, 68]. Thirty-one participants (M = 7.13, SD = .81, 16 girls, 15 boys) were 

recruited at the Hamilton Public Library, in Hamilton, Ontario, Canada, with a majority 

recruited at the Turner Park Branch. At the Turner Park branch, a large portion of the 

recruitment was performed alongside the reading buddies program for 6–12-year-old 

children, though children from outside the program were recruited as well. As a thank you 

for participation, parents of participants received $15 CAD, and their child received a small 

toy, regardless of if the experimental session was completed or not.  

Since we were working with an underage population receiving informed consent to 

participate in the study was of the utmost importance. To achieve this, we established a 

multi-step consent process. First we developed a letter of information for parents and 

guardians which provided an outline of what their child would experience in the study and 
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any potential risks that they would incur. They were also informed that they would receive 

$15 CAD, and their child would receive a small toy as compensation for their participation 

in the study. Most importantly, we provided information about how their child’s data would 

be collected through video recording, and allowed them to choose how much of their child’s 

image and likeness we were allowed to use upon the dissemination of our findings. Their 

signatures were collected to indicate their consent. An assent script was developed to 

communicate the same information contained within the letter of information to the 

participant at their understanding level. Samples of these forms can be found in Appendix 

A – Ethics Forms. Parents/guardians of participants were required to provide consent before 

the experimental session began.  

A debrief script was also developed to explain that information was withheld from 

the participants, specifically that they were actually the ones being tested not the robot. This 

choice was made to avoid introducing bias into the experimental sessions, which we 

explained to the participants at their understanding level. Samples of the debriefing script 

can also be found in Appendix A – Ethics Forms. 

The study described in this thesis was submitted to the McMaster Ethics Review 

board and received ethics clearance as project MREB#6063. 
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3.2 Conditions 

The participants were randomly assigned to one of three conditions to test our 

hypotheses – targeted, simple and no mistakes. This subchapter gives a brief background 

of the theory we used to create targeted mistakes and the development of both the targeted 

and simple mistakes. 

3.2.1 The Zone of Proximal Development 

In order to design and code robot mistakes to enhance the quality of education that 

they can deliver we must first understand how humans best learn. In Mind in Society: The 

Development of Higher Psychological Processes, Vygotsky proposed that knowledge is 

socially constructed [60]; it is through interaction with other people that we begin to 

internalize and come to “know” the things that we are taught. To explain the underlying 

mechanisms of how this works Vygotsky coined the term Zone of Proximal Development 

(ZPD). He defined the ZPD as the “distance between the actual developmental levels as 

determined by independent problem solving and the level of potential problem solving 

under adult guidance or in collaboration with more capable peers” [60]. 
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Figure 1. A diagram illustrating the Zone of Proximal Development [63]. 

  

The ZPD describes the range of problem difficulty that is conducive to an 

individual’s cognitive growth in any given learning area. These problems can only be 

solved through assistance and collaboration with others who have more experience or 

knowledge in the given domain. In order to guide the individual who is trying to learn how 

to solve a problem the more capable person must develop scaffolding, engaging the 

learner’s ZPD by breaking down the problem into smaller, more manageable tasks [36, 60]. 

Social constructivism and the principle of scaffolding are typically used to describe what 

happens during interactions in one-on-one tutor-tutee scenarios. As a result, HRI 

researchers, working under the assumption that the impact educational robots have are 

comparable those of humans [5], can leverage this framework to create novel robot 

behaviours targeted at enhancing learning outcomes. As a tutor this may manifest as robot 
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behaviours such as asking targeted questions, however it also enables robots to occupy the 

role of a tutee and use intentional mistake behaviours in an effort to scaffold learning to 

target a child’s ZPD [5, 36, 41]. 

3.2.2 Mistake Development 

Creating personalized robot behaviours has the potential for improved learning 

outcomes, however the study by Chandra et al. could not prove definitively that this was 

the case [9]. Due to the large amount of individual data we would have to collect from 

participants about their reading level prior to conducting the study, we decided that 

individualized mistakes would not be appropriate given the scope of this thesis. Instead, we 

opted to design the mistakes in the study around the average reading level of the 

population’s age range, which presented clear benefits and drawbacks.  Given that learning-

by-teaching is inherently a strategy for reinforcing what the tutor has already learned [15], 

designing the mistakes for the average reader instead of personalizing them will make 

identifying and correcting errors require less scaffolding resources [58], potentially leading 

to better learning outcomes.  We acknowledge however that all of the children would likely 

start at different reading levels, though we believe this drawback could be mitigated 

through random assignment of participants which would account for this variance across 

the conditions. In addition, we took extra care in selecting the reading material to be used 

for the study which is further discussed in Section 3.4 Materials. 

To begin designing the robot errors we started with the targeted mistakes condition 

as it proved to be the largest challenge: How do we design believable mistakes to ensure 
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they fall within the ZPD of children 6–8-years-old? Fortunately, we found the system for 

characterizing mistakes adopted by Yadollahi et al. could also be largely adapted for our 

purposes, as they developed their mistakes for children of the same age range  [68]. To 

define the three categories of reading mistakes for their study Yadollahi et al. used the SMA 

Framework created by Cunningham in 1984 [68]. The SMA defines guidelines that can be 

used to analyze the root of any reading error made by a child [13]. These guidelines are 

organized into a series of four questions: “Did the miscue look like the original wording?”, 

“Did the miscue leave the syntax of the passage essentially the same?”, “Did the miscue 

leave the meaning of the passage essentially the same?”, and “Did the reader successfully 

correct the miscue?” [13]. Since the goal of the interaction is to have the tutor correct the 

mistake being made, the first 3 questions were the main references used when developing 

mistakes.  

In addition Scarborough’s Reading Rope framework was also referenced when 

developing targeted mistakes, as it is typically used by teachers to facilitate reading 

comprehension in young children [62]. We identified six of the eight skills outlined in the 

Reading Rope could be incorporated into to our mistake design to ensure they were using 

the full range of their reading skills in the study: Background Knowledge referring to the 

context of the text, Vocabulary referring to the range of how words can be used, Language 

Structures referring to word syntax and semantics, Phonological Awareness referring to 

awareness of how words should sound, Decoding referring to understanding how phonemes 

combine to create a word and Sight Recognition referring to the automatic processing of 

words without decoding [50]. The other two skills Verbal Reasoning and Literacy 
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Knowledge [50] are more difficult to test in one reading, since they are based on inferencing 

and understanding literary genres and as such we were not able to incorporate the ideas 

these skills represented into the targeted mistakes. Given this set of criteria targeted 

mistakes often resulted in subtle changes from the original text such as words that have the 

similar morphology or pronunciation. Error! Reference source not found. in Appendix 

B – Robot Mistakes contains the list of all the targeted mistakes used in the robot script. 

For simple mistakes another set of criteria had to be developed, to ensure the 

mistakes were easy or obvious to identify. In contrast to the targeted mistakes condition, 

the goal was to have the children engaging in knowledge telling when identifying simple 

mistakes. As mentioned before, the SMA represents the root causes of typical reading 

mistakes made by children [13], therefore we found that creating mistakes which did not 

correlate with the SMA criteria would make them strikingly obvious.  Each of the simple 

mistakes were developed using the same criteria: the mistake would be unrelated to the 

original phrase regarding both syntax and semantics and would be words that are part of 

common vocabulary for 6–8-year-old children. A table containing the list of all the simple 

mistakes used in the robot script for the condition can be found in Appendix B – Robot 

Mistakes. 

The final condition was the no mistakes condition. In this condition, the robot read 

the original text as normal. However, it is important to note that regardless of condition the 

participants were informed that the robot may make a mistake, so they all had an 

expectation that they would be participating in a learning-by-teaching scenario. 
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3.3 Technology and Setup 

3.3.1 NAO 

An integral part of this project was the choice of robot platform to act as a tutee. 

For this experiment we used Softbank Robotics’ NAO, a commonly used SAR in Child-

Robot Interaction research, and especially in learning-by-teaching research [9, 21, 23, 68]. 

The robot features the NAOqi OS which is fully programmable, and offers SDKs in a 

multitude of programming languages [37], of which we chose Python for comfortability 

and ease of programming. NAO is a humanoid robot which is 23 inches tall and has 25 

degrees of freedom [37]. This proved to be beneficial for our project as we designed the 

interaction such that NAO would stand up and sit down, move its head between the reading 

and the participant, and gesture with its arms, to enhance the authenticity and child 

engagement in the interaction. Furthermore, NAO comes prepacked with text-to-speech 

capabilities [37], which we utilized to have the robot read book passages out loud and 

communicate with the participant about mistakes. For the purposes of the experiment, we 

gave the robot a gender-neutral name, SAM-EE, to help the participants recognize the robot 

as a peer, and to avoid introducing gendered bias.  

3.3.2 Wizard-of-Oz (WoZ) 

When designing the mistake generation algorithm, we decided to not to make the 

robot fully autonomous. The reasoning for this decision was two-fold: firstly since we were 
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working with 6–8-year-old children, we had to ensure that any interactions or mistakes 

made by the robot were age appropriate and consistent with the criteria we developed in 

3.2.2 . Furthermore, by using an interaction set-up called Wizard-of-Oz (WoZ), we could 

control the robot if needed to generate more specific or detailed responses to make the 

scenario more genuine. WoZ is a very commonly used experimental technique in HRI 

research for enabling semi-autonomous operation of robots, to make it appear as if the robot 

is behaving autonomously [45]. In traditional WoZ set-ups, the robot is placed into a 

position to interact with the participant, and a “wizard” who is hidden or otherwise not 

participating in the interaction observes and controls the robot’s behaviour as needed [45]. 

The use of WoZ streamlined our robot design, as the wizard that was controlling the robot 

through a command line interface (CLI), could listen to and interpret what the children 

were saying directly and respond accordingly, as opposed to needing voice recognition 

algorithms to detect and parse what they were saying. This also enabled us to essentially 

script the robot’s behaviour removing the need for computer vision to read; NAO would 

simply enact a pre-determined set of movements while following the story incorporated 

into its code for each condition, and when necessary the wizard could manually deviate 

from that script, through custom typed responses at any time. The wizard was trained on 

how to use the CLI to control the robot, and briefed on the experimental procedure from 

the perspective of the robot prior to the study to ensure smooth operation when interactions 

with the participants occurred. The GitHub Repository located at [8], contains the modules 

that were used to control the robot’s behaviour in the experiment. 
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3.4 Materials 

The book Frog and Toad are Friends by Arnold Lobel [34] was chosen for the 

reading activity. This choice was made for a variety of reasons, the first, being that it 

addressed the concern of accommodating the skill range of 6–8-year-old readers. We 

consulted the Scholastic Readers Wizard to choose a book that aligned with the Guided 

Reading Levels (GRL) and Developmental Reading Assessment (DRA) scales which are 

common reading level guidelines used in schools across North America [44]. Second, the 

book is a collection of short stories, which meant one story could be selected to reduce the 

amount the participants need to read and therefore the length of an individual study session 

could be shorter. The story that we chose to use for the experiment was The Letter. 

Furthermore, this book is older (it was originally published in 1970), so our participants are 

much more likely to have not read it before.  

The book chosen was also available as a PDF, which was important, as the robot 

“read” off a tablet in the experiment. We decided to use a tablet because the text could be 

made larger such that it could be placed in a position which made it believable that the child 

and the robot could both read from it. This positioning also made it so that children could 

not touch the tablet to change the page, which would disrupt the robot script. This setup is 

pictured in Figure 2. In addition, the tablet’s screen could be streamed allowing the wizard 

to track exactly which sentence was being read in the book. 
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Figure 2. Experimental Setup with labels. Not pictured here are a video camera behind 

and to the right of the setup. 

 

3.5 Measures 

To test our hypotheses, we developed a method to measure learning outcomes. 

Similar to the study by Chandra et al. we developed pre- and post-tests to evaluate the 

child’s reading skill before and after the robot interaction [9]. These tests were administered 

to every participant regardless of condition, and their learning outcomes, defined as the 

difference between their pre-test score and post-test score, were compared between-

conditions. The questions were read aloud to the child, and the answers were displayed on 

cue cards which were randomly presented. The children were instructed to select the correct 

answer to the best of their abilities. To design the quiz questions, we adapted the same 

criteria that we used to develop mistakes in section 3.2.2 Mistake Development, and 
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composed two quizzes consisting of 10 unique multiple choice questions each, which tested 

the same concepts. The contents of the questions were derived from passages in the book 

Frog and Toad are Friends to ensure that they were at the same reading level as the robot 

task. Each quiz question had two possible answers: the correct answer, and an incorrect 

answer that represented a mistake similar to the ones the robot might make. 9 of the 

questions on each quiz had incorrect answers based on targeted mistakes and 1 question 

(question #4 on the pre-test and question #10 on the post-test) had an incorrect answer 

based on simple mistakes. It is important to note that none of the quiz answers overlapped 

with the mistake words the robot would say during the reading to avoid the participants 

relying on memory to identify the correct answer instead of reading skill. The pre- and post-

test forms can be found in Appendix C – Test Forms. In addition to quizzes, data for other 

metrics such as the number of mistakes identified by each participant during the robot task, 

as well as the number of pages they asked to be re-read, were also collected and compared 

across condition.  

 

3.6 Experimental Procedure 

To begin parents/guardians provided consent to have their child participate in the 

experiment. After consent was received, each participant was randomly assigned to one of 

the three conditions: targeted mistakes, simple mistakes, or no mistakes. Participants were 

sat down at a table, in a private room with the experimenter sitting to the right of them who 

proceeded to read them the assent script. In the assent script, participants were given brief 
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instructions about their task and explicitly told the goal of the study was to “understand if 

children helping robots read improves the robot’s reading level”. The assent script was 

designed to clarify to the participants that even though they were being quizzed, the robot 

was the one being tested. To ensure this, the assent script explained that the participant’s 

job was to help the robot learn by correcting its mistakes, and answering the quiz questions 

as correctly as possible to improve the robot in the future. It should be noted participants 

were explicitly not told that WoZ was used to control the robot, to reduce any preconceived 

bias they had towards the robot’s behaviour. Once verbal assent was given, the video 

cameras were turned on, and the first phase of the experiment began.  

In the first phase of the experiment, the participants listened as the experimenter 

read the short story from Frog and Toad are Friends, called “The Letter” aloud. In this 

phase, the goal was to expose the participant to the reading material so that they could 

mentally prepare themselves to help the robot read the same book. After the reading was 

completed, the experimenter then administered the 10-question pre-task quiz which gave 

an initial estimate of their reading skills. The experimenter then left the table to bring the 

robot over and begin phase two of the experiment. 

In the second phase of the study, the participant was introduced to the robot. The 

robot was placed on the table, slightly to the left of the child, such that the child and the 

robot both can have a clear view of the tablet which the book is read off (Figure 3 and 

Figure 4). The wizard then followed an introductory script that was the same for every 

participant. The robot, controlled by the wizard, conversed with the child and explained 

that it needed help reading the story. The robot also informed the participant of the rules of 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

32 

 

the interaction, asked the participant to tell the robot to stop reading when it made a mistake 

so that they could correct them together, and that the participant would be asked by the 

robot if they wanted it to read each section over again at the end of each page. After the 

participant responded they were ready to read, the robot was commanded by the wizard to 

begin the reading the story “The Letter” according to the condition the participant was 

allocated.  

The robot read one page at a time, and the experimenter, still sitting to the right of 

the participant, controlled the tablet when it was necessary to proceed to the next page. 

Across the entirety of the reading task, the robot made 12 mistakes in the targeted and 

simple mistake conditions, once per page. If the participant stopped the robot because they 

thought it had made a reading mistake, the robot would turn its head from the tablet towards 

the participant and ask the child to explain what the error was. After being told what the 

error was, the robot would then repeat the sentence in question with the child’s correction, 

and ask if it changed the mistake correctly, to acknowledge it was learning from the 

interaction. The robot would then continue reading the page now using the corrected 

sentence. If the child ever turned to the experimenter to ask about the robot’s performance 

or for any other reason, the experimenter redirected them to the robot or the task. If the 

child ever asked the robot a question during the reading task, the robot could respond, but 

would usually ask the child to continue reading. Once the book was finished, the wizard 

initiated the ending script which was the same for every participant. In the script the robot 

would thank the child for helping it, say goodbye, and then would be carried away by the 

experimenter to avoid distraction. The experimenter would then proceed to administer the 
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post-task test, which, similarly to the pre-task test, was used to evaluate if there were any 

improvements made through participation in the learning-by-teaching interaction.  

 

Figure 3. The experimental setup as viewed by the right-side camera. In this photo we 

can see a participant talking to the robot after the robot had made a mistake. The 

participant is pointing to the tablet from which the book is being read. 

 

 

Figure 4. The experimental setup as viewed by the rear camera. In this photo we can see 

a participant and the robot looking at each other and interacting. The experimenter sitting 

to the right is supervising the interaction. 
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Once the post-task test was completed, the experimenter read the debrief script to 

the participant. The participant was given a chance to re-assent or withdraw their assent, 

and then they were told the experiment was complete. The participant and their parents 

were then given compensation, as described in section 3.1 Participants. After the 

experiments concluded, using the recorded videos, assenting participant’s total scores were 

tallied and behaviours such as mistakes they pointed out, were coded. 
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4. Experiment Results  

Out of the 31 participants who were recruited, 1 participant was removed due to 

lack of continuous assent, 1 due to technical difficulties, and 2 due to obvious guessing 

during the quiz tasks (e.g., closing their eyes and pointing at a random answer cue card). 

Thus, we analyzed data from 27 children aged 6-8 (M = 7.19, SD = .83, 15 girls, 12 boys), 

9 assigned to the targeted mistakes condition, 10 to the simple mistakes condition, and 8 to 

the no mistakes condition. Additionally, all statistical tests discussed in this section were 

administered in IBM SPSS [22]. 

 

4.1 Hypothesis Results 

4.1.1 Hypothesis I 

To restate, the first hypothesis posited that the participants in the targeted 

mistakes and simple mistakes conditions would demonstrate better learning outcomes than 

the baseline condition. This was because in the targeted and simple mistake conditions it 

was expected that the participant would take on the role of a tutor in a learning-by-

teaching paradigm and correct the robot’s mistakes, instead of simply reading alongside 

the robot as expected in the no mistakes condition. The statistics for quiz score 

differences across the respective conditions are as follows: x̃ = 0.000, x̄ = .778 (n = 9, 

IQR = 2.00, SD = 1.715) for targeted mistakes, x̃ = 0.000, x̄ = .400 (n = 10, IQR = 1.50, 

SD = 1.429) for simple mistakes, and x̃ = 0.000, x̄ = 0.000 (n = 8, IQR = 2.50, SD = 
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1.414) for no mistakes. To test this, we compared the difference between the pre- and 

post-test results for each condition. After performing a Shapiro-Wilk normality test it was 

found that there was not a normal distribution of the data. As a result, we compared these 

outcomes across the conditions using a non-parametric Kruskal-Wallis Test, the results of 

which can be seen in Figure 5. Kruskal-Wallis Test Results Comparing Learning 

Outcomes represented by Quiz Score Difference vs. Condition. We did not find any 

statistically significant differences in relation to learning based on score differences (H(2) 

= .688, p = .709). Therefore, based on these tests we could not reject or retain our 

hypothesis. 

 

Figure 5. Kruskal-Wallis Test Results Comparing Learning Outcomes represented by 

Quiz Score Difference vs. Condition 
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4.1.2 Hypothesis II 

The robot mistakes in the targeted mistake condition were designed to provide 

enough of a challenge for participants to engage their zone of proximal development, in 

contrast to the simple mistake condition where mistakes were designed to be intentionally 

obvious and trivial for participants to identify. We hypothesized that this would produce 

better learning outcomes. To test this, we compared score difference between pre- and post-

test results for just the targeted and simple mistake conditions, whose median, interquartile 

range, mean and sta. A Mann-Whitney U test was performed (refer to Error! Reference 

source not found.) and it was found that there was no statistically significant difference 

between the score differences between the two conditions (U = 50.5, p = .661). As a result, 

again we could not reject our hypothesis. 

 

Figure 6. Mann-Whitney U Test Results Comparing Learning Outcomes represented by 

Quiz Score Difference vs. Condition 
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4.2 Post-Hoc Quantitative Results 

Firstly, in order to investigate our hypotheses results, we wanted to perform a power 

analysis. For the statistical test we conducted for Hypothesis I, we calculated the epsilon-

squared effect size of the results to be ε2 = 0.26, and using that we could calculate the power 

of the test as 1-β = 0.05 (n = 27). For the statistical test we conducted for Hypothesis II, we 

calculated the effect size of the results to be r = 0.10, and using that we could calculate the 

power of the test as 1-β = 0.05 (n = 19). We can conclude that in both cases our results we 

underpowered. 

Post-experiment, we performed a manipulation check to ensure that the conditions 

were adhered to properly. To do this, we investigated if the mistakes we designed could be 

differentiated by their ease of identification, which was intended when we developed the 

targeted and simple mistakes. We performed a non-parametric Kruskal-Wallis test 

comparing how many mistakes were identified by the participants across conditions, after 

a normality test revealed that the distribution was not normal. After performing the test, a 

statistically significant difference was found between all of the conditions (H(2) = 13.77, p 

= .001), where the statistics of the conditions were as follows: x̃ = 0.000, x̄ = .778 (n = 9, 

IQR = 2.000, SD = 1.715) for targeted mistakes, x̃ = 4.000, x̄ = 4.670  (n = 10, IQR = 6.000, 

SD = 4.153) for simple mistakes, and x̃ = .500, x̄ = 1.750 (n = 8, IQR = 3.000, SD = 3.105) 

for no mistakes. Additionally, when only comparing the targeted and simple mistake 

conditions the statistically significant difference held true (H(2) = 2.038, p = .042), where 

significantly more simple mistakes were identified than targeted mistakes. This indicates 
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that the mistakes created did in fact result in different tutoring conditions, albeit unrelated 

to learning outcomes. 

 

Figure 7. Kruskal-Wallis Test Results Comparing Mistakes Identified vs. Condition 

 

We found that even in the no mistake condition, children still identified what they 

perceived to be mistakes where there weren’t mistakes, and participated in the learning-by-

teaching interaction. As a follow-up to the tests performed for4.1.1 Hypothesis I, we instead 

compared the number of mistakes identified to improvement, as purely engaging in the 

learning-by-teaching paradigm is known to improve learning [15]. To test this, we 

categorized participants into 3 separate groups based on their learning outcomes: improved, 

those who did better on the post-test than pre-test, stagnant, those who scored the same on 

the post-test and pre-test, and regressed, those who performed worse on the post-test than 

pre-test. The statistics for the mistakes identified across learning outcome groups are as 
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follows: x̃ = 3.000, x̄ = 5.270 (n = 11, IQR = 11.00, SD = 4.962) for the improved group, x̃ 

= 8.000, x̄ = 7.450 (n = 11, IQR = 8.000, SD = 4.655) for the stagnant group, and x̃ = 1.000, 

x̄ = 2.800 (n = 5, IQR = 7.000, SD = 3.834) for the regressed group. Again, we performed 

a Shapiro-Wilk test and found that there was not a normal distribution of the data when 

comparing these learning outcome groups versus total mistakes identified. A non-

parametric Kruskal-Wallis test was used to evaluate the comparison, and the results can be 

seen in Figure 8. Kruskal-Wallis Test Results Comparing Mistakes Identified vs. Learning 

Outcome Groups. There were no statistically significant differences found between 

mistakes identified and improvement (H(2) = 3.617, p = .164). 

 

Figure 8. Kruskal-Wallis Test Results Comparing Mistakes Identified vs. Learning 

Outcome Groups 
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Since we tested with participants 6-8-years-old, we believed it would be important 

to investigate the impact of age on learning improvement. The distribution of the age of 

participants across conditions is displayed in Figure 9 and the average age of participants 

sorted into each condition were as follows: targeted mistakes = 7.11, simple mistakes = 

7.0, no mistakes = 7.5. Data trends such as the 6-year-olds having a wider dispersion of 

learning outcomes, 6 of 10 of the participants who maintained perfect scores being 8-years-

olds, the remaining 4 being 7-years-olds, and none of the 8-year-old participants 

performing worse on the post-session quiz, were noted. The statistics for learning outcomes 

across age groups were as follows: x̃ = 2.000, x̄ = .857 (n = 7, IQR = 5.000, SD = 2.478) 

for 6-year-olds, x̃ = 0.000, x̄ = -.250 (n = 8, IQR = 2.250, SD = 1.164) for 7-year-olds, and 

x̃ = 0.000, x̄ = .583 (n = 12, IQR = 1.000, SD = .792) for 8-year-olds. After performing a 

Kruskal-Wallis test comparing learning outcomes while controlling for age, there was no 

significant difference found between different ages and improvement (H(2) = 1.944, p = 

.378). Since we did note the wider dispersion of results for 6-year-olds, we also performed 

Levene’s test to investigate this further and found that there is a significant difference in 

the variance of the age populations based on learning (F(2, 24) = 14.151, p = <.001). This 

means that, while age did not have a direct effect on learning improvement outcomes, there 

is a much wider variance of learning outcomes in some parts of the population than others. 

This aligns with the trends we identified and can be seen directly in Figure 10; the older 

participants had significantly less variance in their learning outcomes than the younger 

participants. 
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Figure 9. Composition of Conditions by Participant Age 

 

Figure 10. Kruskal-Wallis Test Results Comparing Quiz Score Difference vs. Age 
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4.3 Post-Hoc Coding of Behaviour Results  

Observations were made during the research sessions which encouraged us to 

perform analysis of the behaviour participants displayed in the video data we collected. It 

was found that on average participants who performed better (and therefore showed 

improvement) on the second quiz re-read 2.55 pages (SD = 3.83, n = 11) and identified 5.27 

mistakes (SD = 4.96, n = 11). Participants who scored the same on both tests re-read 1.64 

pages (SD = 2.46, n = 11) and identified 7.45 mistakes (SD = 4.65, n = 11). Participants 

who performed worse on the second quiz re-read 1 page (SD = 1.00, n = 5) and identified 

2.8 mistakes (SD = 3.83, n = 5). These slight discrepancies between performance and task 

participation, alongside other behaviours that were demonstrated, indicated that there was 

an affective component to the conditions which may have influenced the cognitive learning 

outcomes. This led us to develop post-hoc methods to quantitatively code the behaviour 

data to see if explanations for these trends would arise. 

Across the conditions, the impact on attention and self-efficacy were the two main 

affective characteristics we were interested in investigating as they are most related to 

performance and task participation. To do this we developed a simple methodology to code 

participant behaviour in the paradigm, which we would use as checklists when watching 

back the videos. Two 5-item checklists were created for categories of attention and self-

efficacy: the attention checklist was inspired by the ADDES-5 [54] which is a 60-item 

inventory used by teachers as a pre-screening for attention deficit disorder in young 

children, and the self-efficacy checklist was based on the BASE [4, 12] which is a 15-item 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

44 

 

inventory used by teachers to help infer a child’s “academic self-esteem”. The entirety of 

the created checklists can be found in Appendix D – Qualitative Inventories. Each item 

represents a specific behaviour corresponding with either lack of attention or lack of 

academic self-esteem. To evaluate these checklists, we had a single coder use a simple 

rating scale from 0-2. The coder assigned values for each item on each checklist according 

to how often said behaviour was displayed by a participant. In this scale, 0 represented the 

behaviour never being exhibited by the participant, 1 represented the behaviour only being 

exhibited in one instance, and 2 represented more than one instance of the behaviour. The 

score assigned to each checklist item was summed per participant to give two overall 

attention and self-efficacy scores respectively, with higher scores representing lower levels 

of attention or self-efficacy. The coder in this experiment was also the writer of this thesis, 

who holds a B.Eng.Society in Mechatronics Engineering & Society, with a minor in 

Psychology. The coder received self-training on how to perform this task exactly as 

described above, and was instructed on how to complete this task by their supervisor Dr. 

Denise Y. Geiskkovitch who has over 10 years of experience performing quantitative 

coding. 

In a similar manner to the previous quantitative tests, we then performed the 

Shapiro-Wilk normality test on both the attention by condition and self-efficacy by 

condition datasets to find that both did not have a normal distribution. Therefore, we chose 

to use non-parametric Kruskal-Wallis tests to evaluate the effects of condition on these 

characteristics. The results of these tests can be found in Figure 11 and Figure 13. The 

statistics for rated attention scores across the respective conditions are as follows: x̃ = 
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4.000, x̄ = 3.667 (n = 9, IQR = 3.500, SD = 2.449) for targeted mistakes, x̃ = 7.000, x̄ = 

6.300 (n = 10, IQR = 3.250, SD = 2.750) for simple mistakes, and x̃ = 5.000, x̄ = 4.875 (n 

= 8, IQR = 4.250, SD = 2.232) for no mistakes. We found that there was no statistically 

significant impact seen on attention between the conditions (H(2) = 4.545, p = .103). 

However, upon performing a Mann-Whitney U Test between just the simple and targeted 

mistake conditions there is a statistically significant effect that occurs (U = 50.5, p = .043), 

showing that participants in the targeted mistakes condition were less inattentive than those 

in the simple mistakes condition. The statistics for rated self-efficacy scores across the 

respective conditions are as follows: : x̃ = 7.000, x̄ = 6.222 (n = 9, IQR = 2.500, SD = 2.048) 

for targeted mistakes, x̃ = 3.000, x̄ = 3.200 (n = 10, IQR = 2.750, SD = 1.988) for simple 

mistakes, and x̃ = 1.500, x̄ = 2.000 (n = 8, IQR = 1.750, SD = 1.069) for no mistakes. It was 

also found that there was a statistically significant impact on self-efficacy between the three 

conditions (H(2) = 14.414, p = <.001), where participants in the targeted mistakes condition 

displayed the least self-efficacy, participants in the no mistakes condition displayed the 

most self-efficacy, and participants in the simple mistakes condition scored in-between the 

two. 
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Figure 11. Kruskal-Wallis Test Results Comparing Attention vs. Condition, higher scores 

indicate more behaviours linked to inattention. 

 

Figure 12. Mann-Whitney U Test Results Comparing Attention vs. Condition, higher 

scores indicate more behaviours linked to inattention. 
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Figure 13. Kruskal-Wallis Test Results Comparing Self-Efficacy vs. Condition, higher 

scores indicate more behaviours linked to negative self-efficacy. 

 

Explanations for these results and how they align with observations that were made 

are presented with supporting quotes from the recorded experimental sessions in section 5. 

Discussion.  
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5. Discussion 

The goal of this study was to examine whether the type of error that a robot makes 

as a tutee during a learning-by-teaching scenario has an impact on a child tutor’s learning. 

In this section, we look to discuss our results, and to do so we use quotes from participants 

who are described in Appendix E – Participant Information. Overall, while we did find that 

the conditions had an impact on affective factors such as attention and self-efficacy which 

is discussed in section  5.2 Affective Learning Outcomes, we did not find any effect of 

mistake-type on learning, and thus we failed to reject both our hypotheses which is 

discussed in section 5.3 Cognitive Learning Outcomes. Our lack of findings may have been 

for several reasons, and mirror prior studies which will be discussed in section 5.4 

Limitations and Future Work.  

 

5.1 The False Mistakes Phenomenon 

There were some interesting observations in the no mistake condition that could 

elucidate some the results we obtained. In 4 of the 6 cases where a participant’s score was 

maintained or there was improvement in the no mistakes condition, the participants, in fact, 

found a “mistake”. These “false mistakes” were often identified due to the way the robot 

pronounced the words (e.g., “sent” and “send” sounding similar in the default NAO’s 

voice), the speed at which the robot was reading making the child think there were grammar 

errors (e.g., One participant who said to the robot, “Too come, you did it a little long, you 
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have to make the sound “To” a little faster like “To come””(P25)), or simply due to the 

child mishearing what the robot said. In these scenarios, the children’s behaviours were 

evocative of those in the targeted mistakes condition, likely due to the perceived challenge 

level of the mistakes being caught falling within their ZPD (as they were not mistakes in 

the first place). Otherwise, for the participants who did not hear false mistakes, the lack of 

mistakes led to participants exhibiting lower levels of attentiveness more akin to the simple 

mistakes condition. This duality is likely why there was no significant difference found 

between attention in the conditions when the no mistakes condition was considered 

alongside the others, due to this phenomenon where it could elicit behaviours similar to 

both. Additionally, this phenomenon may have also influenced the cognitive learning 

outcome results which we analyzed in our hypotheses, as it was mentioned that a majority 

of the participants that showed improvement or stagnation in their results in the no mistakes 

condition found false mistakes. 

 

5.2 Affective Learning Outcomes 

Post-hoc quantitative coding analysis presented results which align with key 

observations made during the study. We observed that there appeared to be a difference in 

behaviour between children who identified mistakes in the targeted versus in the simple 

conditions. In the simple mistakes condition, identifying a mistake was generally easy, 

which makes sense since they were designed to be obvious. We noticed that this seemed to 

result in improved self-efficacy for participants. As the experimental session went on, they 
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interacted less with the experimenter, instead promptly interrupting the robot when it made 

mistakes and talking over it whenever they noticed an issue. Occasionally, participants 

would insist the robot repeat sentences, to the point where their interactions with the robot 

came off as argumentative rather than teaching. For instance, one participant repeated 

multiple times, “You made a mistake, you made a mistake” (P11) and when the robot 

responded, “Please tell me my mistake”, the participant said, “Yes you made a mistake, and 

you did not even hear me” (P11) before continuing to point out what the mistake was. Later 

the same participant became exasperated when the robot made a mistake saying, “NO! It’s 

not ball for the mail?” (P11), tilting their head as if they were questioning the robot’s 

intelligence. While much less common, this indicates that sometimes the ease of identifying 

mistakes may have caused children to become defensive, perhaps because they expected 

the mistakes to be harder to identify, resulting in a lower self-efficacy. Overall, though, this 

was not the case and participants in the simple mistakes condition displayed higher self-

efficacy.  

In contrast, once a child identified a mistake in the targeted mistakes condition, they 

seemed to display an increase in attention (keeping their eyes glued to the robot or the e-

book), and their interactions with the robot became much more constructive. Often 

participants who displayed this behaviour were more cautious in ensuring that mistakes 

were caught, hesitating and looking for guidance from the experimenter in identifying 

mistakes (e.g., “Is this the mistake?” (P18)), or asking for the page to be re-read as they 

were unsure whether there was really a mistake being made. This aligns with our 
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quantitative coding findings which suggests participants displayed lower self-efficacy in 

this condition in comparison to the others. 

In the targeted mistakes condition, attention was found to be significantly higher 

than in the simple mistakes condition. This is likely due to the nature of the targeted 

mistakes being less obvious and participants needing to pay more attention to the words 

being read to properly correct the robot. In the simple mistakes condition the mistakes were 

obvious, allowing the participants to pay less attention and still be able to hear the words 

the robot said that seemed out of place, which may align with the higher self-efficacy which 

was observed and displayed in the data. Conversely self-efficacy was significantly lower 

in the targeted mistakes condition than the other two conditions. This may be the result of 

the subtlety of the targeted mistakes causing participants to question whether what they 

heard the robot read was truly a mistake, which aligns with our observations. Additionally, 

if these mistakes were causing children to engage in their ZPD this could result in lower 

self-efficacy as well, as they might still be uncomfortable with solving those types of 

problems without additional assistance. These findings are further supported by previous 

psychological studies that suggest that as task difficulty increases, such as in the targeted 

mistakes condition, self-efficacy decreases [59] and attention increases [61].  

While the attention and self-efficacy inventories do not conclusively indicate the 

exact impact the different mistake conditions have, they do point towards the conclusion 

that the mistakes a robot makes can be manipulated to influence these affective 

characteristics which play a role in learning. This has interesting implications for the field 

as typically, robots tend to have better results impacting cognitive learning rather than 
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affective learning [5]. Our findings indicate that intentional robot error behaviour may be 

a more effective strategy than the more direct verbal and non-verbal attitude reinforcement 

strategies that robots typically use to impact affective learning characteristics [40, 52]. That 

being said, both targeted and simple mistakes had positive and negative impacts, therefore 

a hybrid strategy that includes both of them may have to be developed to achieve the best 

results. Furthermore, these findings do have implications for broader society. If we can 

manipulate robot mistakes to influence affective characteristics, robots outside of the field 

of education may be able to implement similar strategies. If a robot has the potential to 

make a mistake, in roles such as companionship perhaps, the mistakes can be designed to 

impact the people around them positively. Whether that is something we would want to 

actually implement is an ethical consideration that should be scrutinized, but is outside the 

scope of this thesis. 

 

5.3 Cognitive Learning Outcomes 

Regarding why our study failed to reject the hypotheses we made, it is possible that 

the types of mistakes that we implemented, although developed based on prior literature, 

simply do not lead to different levels of learning. A manipulation check showed that there 

was a difference in the number of mistakes identified per condition, indicating the targeted 

and simple mistakes we designed resulted in different tutoring conditions. However, simply 

identifying reading mistakes may not be enough to elicit the educational benefits of the 

learning-by-teaching paradigm, and engage the ZPD. Multiple times, in the targeted 
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mistake condition children would look to the experimenter when they thought the robot had 

made a mistake, signaling they were unsure or needed help. These behaviours were also 

associated with comments from participants where they turned to the experimenter and 

asked, “Is this the mistake?”(P18), “When it says time of day it’s kind of weird, it’s very 

fast, is that like a mistake?”(P9), and “Uhh I’m not sure [if the robot made a mistake], can 

we re-read the page?”(P15). These types of behaviours are consistent with what we know 

about the ZPD as it is the zone that children can problem solve in with assistance [60].  The 

possible explanation for this is twofold. Firstly, the targeted mistakes were likely designed 

properly and were at the level of the children’s ZPD where the mistakes were difficult 

enough for them to recognize that it was outside the level they could comfortably identify 

themselves. Secondly, the participants still may have needed extra help beyond just 

familiarizing them with the book to develop scaffolding to properly engage their ZPD. This 

was an intentional limitation of the experiment design, we were directly testing to see if 

this was a possibility, and if these types of results are replicated it may mean that robot 

mistake design may not have as much of a direct impact on learning outcomes in the 

paradigm. 

 Another reason for our lack of statistically significant results may have been that 

the quizzes that participants took before and after the tutoring session could have been too 

easy, and therefore unable to properly assess learning. The reasons we believe this are 

threefold. Firstly, we based the quizzes on the reading itself, drawing on passages of the 

book to create questions. Post-experiment, we recognized this may have been a flaw in our 

study design, as instead of engaging in reading comprehension when answering the 
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questions, the participants could have used their memory of the reading to guide their 

answers.  

Furthermore, unlike Chandra et al. [9], we decided to only have participants partake 

in one experimental session instead of multiple over a longer period of time. This was due 

to limitations regarding recruitment issues that are discussed in section 5.4 Limitations and 

Future Work. Again, this could have resulted in the learning outcomes measured being 

attributed to how much the participant learned and memorized the book that was being 

read, as opposed to development of actual reading skills. Finally, the results indicated the 

tests could have been a problem especially due to the age range of participants. For 

example, 8-year-olds consistently achieved 80% or higher in the pre-test, and 90% or higher 

in the post-test (with 11 of 12 getting 100%). 

Age was not only a factor when it came to the quizzes, it may have played an overly 

impactful role throughout the experimental sessions. The mistakes we designed were meant 

to be targeting the general ZPD for children aged 6-8, and therefore was likely most 

appropriate for 7-year-olds. This means that the mistakes the robot made may have been 

too difficult for the younger participants to identify at times, and too easy for the older ones. 

We believe this is visible in the results, as the high variance in score difference displayed 

by the 6-year-olds and the low variance displayed by the 8-year-olds. More information 

regarding how age may have been limiting factor in the study is available in section 5.4 

Limitations and Future Work 
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5.4 Limitations and Future Work 

The study contained in this thesis had a number of limitations. For one, the sample 

size was quite small, especially after 4 participants had to be removed resulting in the study 

being underpowered. Previous experiments using robots as tutees in a learning-by-teaching 

paradigm have also reported similar issues regarding sample sizes [9, 21, 40, 52, 68]. In 

our experiment the limitation on sample size was due to difficulties with recruitment, as 

although we were recruiting at times the librarians recommended, there was a limited 

number of recruitment times we were allowed to schedule and limited numbers of children 

who frequented the library in that age range during those times. In addition, the length of 

the experiment was approximately 20-30 minutes which meant in one 4-hour period the 

library allocated to us, a maximum of 8 participants could be tested.  Furthermore, we 

attempted recruiting at other libraries where we had little success with parents bringing 

their children to follow-up experiments. Finally, we attempted to recruit from schools, but 

were denied approval for various reasons such as the amount of time the participants would 

have to spend out of class due to the experiment. Results of the experiment may differ with 

a larger sample size which we recommend investigating.  

Moreover, several methodological decisions were made that likely affected our 

findings. Firstly, the age range that we used for our sample population may have been too 

wide. We decided on a gap of two years to help increase potential sample size, but this 

impacted the design of other aspects of the experiment such as range of difficulty of the 

mistakes targeting the generalized ZPD. This led to the wide variance in learning outcome 
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results per age that was reflected in our findings. In the future, if the generalized ZPD 

approach is used limiting the age range to a one-year gap may be preferable. Future research 

could also attempt to tackle this issue by testing and adapting to each child’s ZPD, as 

opposed to grouping children, therefore removing the need to generalize the ZPD level 

across an age range. If this approach is taken, the experimental methodology must be 

changed to include some form of pre-screening for participants, to create mistakes that 

adapt to their understanding level. Those mistakes also must be created on the spot for each 

individual participant. We wanted to avoid the need for multiple experimental sessions and 

the extra mistake creation preparation time when conducting our study, which is why this 

approach was not taken. Additionally, ensuring that the pre- and post-session quizzes are 

difficult enough to properly assess learning should be tested with the target population prior 

to conducting the experiment. In our research, we chose not to do this because the quiz 

questions were developed based on the SMA [13], similar to the mistakes used in the study 

by Yadollahi et al., [68], and due to the limited availability of recruitment times we were 

allotted from the library.  

The presence of the experimenter during the study sessions could have also 

potentially affected results as participants may have been more likely to seek guidance from 

them, interfering with the regular flow of the learning-by-teaching paradigm. In our study 

the experimenter was there to help guide the interaction, ensure none of the technical 

equipment was damaged, and expedite the speed of transitions between the phases of the 

experiment. In addition, prior research has indicated the presence of an adult in the room 

helps facilitate learning-by-teaching interactions with young children [40, 52]. That being 
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said, in the future, changing the experiment design such that the experimenter is not directly 

beside or in the room with the participant during the robot reading phase could help address 

any potential interference this limitation introduced. Finally, this experiment was controlled 

in nature, so it is possible that these results will not generalize to in-the-wild contexts, where 

robots and children are engaging in improvised learning-by-teaching scenarios. Future 

research could conduct a similar study with fewer constraints, such as including a range of 

subjects being taught or a range of locations to explore this. 

Beyond replicating a similar experiment to the one presented in this thesis, there are 

also other experiments which test a robot’s efficacy in a learning-by-teaching scenario that 

we recommend investigating.  Based on our observational findings and post-hoc qualitative 

analysis, future research should include additional measures for participants, such as self-

efficacy, attention, and even personality measures, when looking at how robot errors may 

impact learning. Chandra et al. remarked that a potential reason that they were unable to 

replicate their own results between their two studies was that a child’s attention and 

engagement within the scenario may play a role in their learning outcomes [9].  When we 

are designing robot tutee mistake behaviours, it is important to recognize, we are also 

essentially devising ways to test a child’s mental capabilities in their current state. Testing 

such aspects of participants’ state and personal attributes can enable researchers to better 

understand how other factors, such as individual differences, may influence a learning 

session with a robot. Interestingly, successful studies have been performed where robots as 

tutors suggest different studying strategies to improve motivation, and therefore learning 

outcomes [43], so designing interactions or mistake behaviours for robot tutees may be 
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similarly successful. Specifically, measuring the effect of mistakes on academic self-

efficacy of children throughout learning-by-teaching sessions could shed some light into 

how they approach subsequent mistakes and therefore how we should design mistakes in 

the future to improve learning. If we can manipulate the types of mistakes that a robot 

makes such as using simple and targeted mistakes in tandem, to target how much a child 

tutor pays attention during a task, and how confident they are in their own ability to perform 

the problem-solving required to teach the task, we can bolster their academic learning 

outcomes in a more indirect manner. 

Future research could attempt to investigate the phenomenon that occurred in the 

no mistakes condition, where participants found false mistakes, due to the limited vocal 

quality of the robot. While this problem could be addressed by using different robots or a 

different generated voice, further research regarding how voice quality impacts the 

perception of errors may be worthwhile considering it is a common area of weakness for 

robot capabilities [52]. Observational and qualitative data indicate that these types of 

mistakes may elicit behaviour similar to regular designed mistakes. Further investigating 

whether false robot mistakes actually lead to similar learning outcomes as true mistakes 

may have impacts on the field of HRI outside of learning-by-teaching.  

Moreover, given that we failed to reject our hypotheses, we should acknowledge 

that when testing our hypotheses we were only testing if proper cognitive scaffolding could 

be developed by a tutor when confronted with a problem in their ZPD based on content 

they are familiar with. However, there are other mechanisms of the paradigm usually 

associated with working in the ZPD not included in our methodology. For instance 
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communication and collaboration in a learning-by-teaching scenario, such as tutee’s asking 

questions about the subject matter or asking the tutor to explain their corrections, are also 

factors which help tutors develop scaffolding towards the ZPD [15]. Further 

experimentation regarding mistake design may want to put an emphasis on making room 

for these types of interactions in their procedure, as opposed to just simple corrections, to 

see if learning outcomes could be augmented by them. 

 

 

 

 

 

 

 

 

 

 

 

 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

60 

 

6. Conclusion 

Findings in the field of HRI suggest that SARs are a technology that have the 

potential to be leveraged for use in education, in large part due to their customizability and 

embodiment creating educational outcomes on par with traditional teaching. Furthermore, 

the learning-by-teaching paradigm, in which a child solidifies their learning through the act 

of teaching a less experienced peer, has been explored with SARs in the tutee role, due to 

pedagogical findings which indicate the paradigm is more effective at reinforcing learning 

than standard methods.  

In this thesis we discussed an experiment we devised to test the efficacy robot tutee 

mistakes on learning outcomes in the learning-by-teaching paradigm. We tested three 

conditions, one used targeted mistakes toward a generalized zone of proximal development, 

another used simple mistakes which were meant to be obvious and easy for children to 

identify and the last was a baseline containing no mistakes. We conducted an experiment 

in which children completed a reading activity with a robot, and randomly assigned 

participants into the three aforementioned conditions. While we did not find an effect of 

type of error on children’s learning, we did observe, and subsequently perform post-hoc 

tests which indicate that there were differences in children’s attention and self-efficacy 

depending on the condition.  

This thesis and its findings point to the opportunities that SARs can provide in the 

context of learning-by-teaching, as well as challenges that need to be overcome for success. 

Since we were unable to come to any conclusions regarding the direct impact of the types 
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of mistakes discussed in this thesis on learning outcomes more research needs to be 

performed, to replicate and further the results of this experiment. Mistake design may not 

have an impact on cognitive learning outcomes, and if that is the case, more emphasis 

should be put on developing other aspects of interactions with robot tutees in the future. 

However, if the results of future experiments indicate that mistake design has an impact, 

this would validate the choices made in previous studies with robot tutees using mistakes 

targeted towards the ZPD [9, 21, 68], and solidify a design goal for educational robots. 

Optimizing mistake design does not push SARs into a place where they will be able to 

solve the problem of quality education anytime soon – much more work is needed to 

improve their capabilities especially regarding communication clarity which was 

exemplified by the difficulties some participants had understanding the robot’s speech.  

However, the results regarding the impact of robot mistakes on attention and self-efficacy 

are exciting for HRI researchers, and deserves further investigation in future research as it 

has implications outside the field of HRI as well. Evidence that intentional robot errors can 

be used to impact personal characteristics such as attention and self-efficacy have plenty of 

implications regarding robots working alongside humans in many fields not just education. 

When the expectation that a robot may make a mistake is present, robot designers could 

potentially design intentional mistakes to elicit certain behaviours, hopefully for the better, 

such as improving traits such as attention and self-efficacy. But as researchers, we should 

also be involved in the conversations about whether that is ethically appropriate to 

essentially manipulate people towards different mental states. 
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As mentioned many times in this thesis, robots are prone to errors. Robots as tutees 

have displayed great potential as tools for education in previous studies and in this thesis 

our results further point towards the idea that their erroneous behaviour can be actively 

leveraged to create indirect impacts on attention and self-efficacy which contribute to the 

act of learning. This thesis serves as a reminder to robot designers that learning has both 

cognitive and affective components, and that influencing one may impact the other and vice 

versa. While our findings regarding the impact of mistakes on the affective learning factors 

attention and self-efficacy have spawned strong motivations for future research, we were 

originally trying to impact cognitive learning outcomes, and failed in doing so. Future 

research must have a wholistic view of learning, incorporating both aspects, or figuring out 

ways to ensure they isolate them, in order to properly assess whether tutee robots can truly 

provide higher quality learning outcomes. 

 

 

 

 

 

 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

63 

 

7. References 

[1] Bartneck, C. et al. 2020. Human-Robot Interaction — An Introduction. Cambridge 

University Press. 

[2] Baxter, P. et al. 2017. Robot education peers in a situated primary school study: 

Personalisation promotes child learning. PLOS ONE. 12, 5 (May 2017), e0178126. 

DOI:https://doi.org/10.1371/journal.pone.0178126. 

[3] Baylor, A.L. and Kim, Y. 2005. Simulating Instructional Roles through Pedagogical 

Agents. International Journal of Artificial Intelligence in Education. 15, 2 (May 

2005), 95–115. DOI:https://doi.org/10.3233/IRG-2005-15(2)02. 

[4] Beauchamp, K.D. 1995. The Behavioral Academic Self-Esteem Scale with 

preschoolers. Psychological Reports. 76, 1 (Feb. 1995), 273–274. 

DOI:https://doi.org/10.2466/pr0.1995.76.1.273. 

[5] Belpaeme, T. et al. 2018. Social robots for education: A review. Science Robotics. 3, 

21 (Aug. 2018), eaat5954. DOI:https://doi.org/10.1126/scirobotics.aat5954. 

[6] Benitti, F. 2012. Exploring the educational potential of robotics in schools: A 

systematic review. Computers & Education. 58, (Apr. 2012), 978–988. 

DOI:https://doi.org/10.1016/j.compedu.2011.10.006. 

[7] Biswas, G. et al. 2005. Learning By Teaching: A New Agent Paradigm For 

Educational Software. Applied Artificial Intelligence. 19, (Mar. 2005), 363–392. 

DOI:https://doi.org/10.1080/08839510590910200. 

[8] Ceranic, H. 2025. cer-hunter/NAOME. 

[9] Chandra, S. et al. 2020. Children Teach Handwriting to a Social Robot with 

Different Learning Competencies. International Journal of Social Robotics. 12, 3 

(Jul. 2020), 721–748. DOI:https://doi.org/10.1007/s12369-019-00589-w. 

[10] Chandra, S. et al. 2018. Do Children Perceive Whether a Robotic Peer is Learning or 

Not? Proceedings of the 2018 ACM/IEEE International Conference on Human-

Robot Interaction (New York, NY, USA, Feb. 2018), 41–49. 

[11] Chase, C.C. et al. 2009. Teachable Agents and the Protege Effect: Increasing the 

Effort towards Learning. Journal of Science Education and Technology. 18, 4 (Aug. 

2009), 334–352. DOI:https://doi.org/10.1007/s10956-009-9180-4. 

[12] Coopersmith, S. and Gilberts, R. 1982. Behavioral Academic Self-Esteem: A Rating 

Scale. Consulting Psychologists Press. (1982). 

[13] Cunningham, J. 1984. A Simplified Miscue Analysis for Classroom and Clinic. 

Reading Horizons: A Journal of Literacy and Language Arts. 24, 2 (Jan. 1984). 

[14] Díaz, M. et al. 2011. Building up child-robot relationship for therapeutic purposes: 

From initial attraction towards long-term social engagement. 2011 IEEE 

International Conference on Automatic Face & Gesture Recognition (FG) (Mar. 

2011), 927–932. 

[15] Duran, D. 2017. Learning-by-teaching. Evidence and implications as a pedagogical 

mechanism. Innovations in Education and Teaching International. 54, 5 (Sep. 

2017), 476–484. DOI:https://doi.org/10.1080/14703297.2016.1156011. 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

64 

 

[16] Edwards, A. et al. 2016. Robots in the classroom: Differences in students’ 

perceptions of credibility and learning between “teacher as robot” and “robot as 

teacher.” Computers in Human Behavior. 65, (Dec. 2016), 627–634. 

DOI:https://doi.org/10.1016/j.chb.2016.06.005. 

[17] Feil-Seifer, D. and Mataric, M.J. 2005. Defining socially assistive robotics. 9th 

International Conference on Rehabilitation Robotics, 2005. ICORR 2005. (Jun. 

2005), 465–468. 

[18] Geiskkovitch, D.Y. et al. 2019. What? That’s Not a Chair!: How Robot 

Informational Errors Affect Children’s Trust Towards Robots. 2019 14th 

ACM/IEEE International Conference on Human-Robot Interaction (HRI) (Mar. 

2019), 48–56. 

[19] Goal 4 | Ensure inclusive and equitable quality education and promote lifelong 

learning opportunities for all | Department of Economic and Social Affairs: 2025. 

https://sdgs.un.org/goals/goal4. Accessed: 2025-03-04. 

[20] Gordon, G. et al. 2015. Can Children Catch Curiosity from a Social Robot? 

Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-

Robot Interaction (New York, NY, USA, Mar. 2015), 91–98. 

[21] Hood, D. et al. 2015. When Children Teach a Robot to Write: An Autonomous 

Teachable Humanoid Which Uses Simulated Handwriting. Proceedings of the Tenth 

Annual ACM/IEEE International Conference on Human-Robot Interaction (New 

York, NY, USA, Mar. 2015), 83–90. 

[22] IBM SPSS Software: https://www.ibm.com/spss. Accessed: 2025-02-20. 

[23] Jamet, F. et al. 2018. Learning by Teaching with Humanoid Robot: A New Powerful 

Experimental Tool to Improve Children’s Learning Ability. Journal of Robotics. 

2018, (Nov. 2018), e4578762. DOI:https://doi.org/10.1155/2018/4578762. 

[24] Kanda, T. et al. 2004. Interactive Robots as Social Partners and Peer Tutors for 

Children: A Field Trial. Human–Computer Interaction. 19, 1–2 (Jun. 2004), 61–84. 

DOI:https://doi.org/10.1080/07370024.2004.9667340. 

[25] Kennedy, J. et al. 2014. Comparing Robot Embodiments in a Guided Discovery 

Learning Interaction with Children. International Journal of Social Robotics. 7, 

(Dec. 2014). DOI:https://doi.org/10.1007/s12369-014-0277-4. 

[26] Kennedy, J. et al. 2016. Social robot tutoring for child second language learning. 

2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI) 

(Mar. 2016), 231–238. 

[27] Kennedy, J. et al. 2015. The Robot Who Tried Too Hard: Social Behaviour of a 

Robot Tutor Can Negatively Affect Child Learning. Proceedings of the Tenth 

Annual ACM/IEEE International Conference on Human-Robot Interaction (New 

York, NY, USA, Mar. 2015), 67–74. 

[28] Kory Westlund, J.M. et al. 2017. Flat vs. Expressive Storytelling: Young Children’s 

Learning and Retention of a Social Robot’s Narrative. Frontiers in Human 

Neuroscience. 11, (Jun. 2017). DOI:https://doi.org/10.3389/fnhum.2017.00295. 

[29] Krämer, N.C. and Bente, G. 2010. Personalizing e-learning. The social effects of 

pedagogical agents. Educational Psychology Review. 22, 1 (2010), 71–87. 

DOI:https://doi.org/10.1007/s10648-010-9123-x. 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

65 

 

[30] Kulik, J.A. and Fletcher, J.D. 2016. Effectiveness of Intelligent Tutoring Systems: A 

Meta-Analytic Review. Review of Educational Research. 86, 1 (Mar. 2016), 42–78. 

DOI:https://doi.org/10.3102/0034654315581420. 

[31] Leite, I. et al. 2011. Social Robots in Learning Environments : a Case Study of an 

Empathic Chess Companion. Proceedings of the International Workshop on 

Personalization Approaches in Learning Environments (2011). 

[32] Lemaignan, S. et al. 2016. Learning by Teaching a Robot: The Case of Handwriting. 

IEEE Robotics & Automation Magazine. 23, 2 (Jun. 2016), 56–66. 

DOI:https://doi.org/10.1109/MRA.2016.2546700. 

[33] Lindberg, M. et al. 2017. Does a Robot Tutee Increase Children’s Engagement in a 

Learning-by-Teaching Situation? Intelligent Virtual Agents (Cham, 2017), 243–246. 

[34] Lobel, A. 1970. Frog and Toad are Friends. HarperCollins. 

[35] Mirnig, N. et al. 2017. To Err Is Robot: How Humans Assess and Act toward an 

Erroneous Social Robot. Frontiers in Robotics and AI. 4, (May 2017). 

DOI:https://doi.org/10.3389/frobt.2017.00021. 

[36] Mubin, O. et al. 2013. A review of the applicability of robots in education. 

Technology for Education and Learning. 1, (Jun. 2013). 

DOI:https://doi.org/10.2316/Journal.209.2013.1.209-0015. 

[37] NAO: Personal Robot Teaching Assistant | SoftBank Robotics America: 

https://us.softbankrobotics.com/nao. Accessed: 2025-02-04. 

[38] Pai, R.Y. et al. 2024. Effectiveness of social robots as a tutoring and learning 

companion: a bibliometric analysis. Cogent Business & Management. 11, 1 (Dec. 

2024), 2299075. DOI:https://doi.org/10.1080/23311975.2023.2299075. 

[39] Papadopoulos, I. et al. 2020. A systematic review of the literature regarding socially 

assistive robots in pre-tertiary education. Computers & Education. 155, (Oct. 2020), 

103924. DOI:https://doi.org/10.1016/j.compedu.2020.103924. 

[40] Pareto, L. et al. 2022. Children’s learning-by-teaching with a social robot versus a 

younger child: Comparing interactions and tutoring styles. Frontiers in Robotics and 

AI. 9, (Oct. 2022). DOI:https://doi.org/10.3389/frobt.2022.875704. 

[41] Pareto, L. 2017. Robot as Tutee. Robotics in Education (Cham, 2017), 271–277. 

[42] Ramachandran, A. et al. 2017. Give Me a Break! Personalized Timing Strategies to 

Promote Learning in Robot-Child Tutoring. Proceedings of the 2017 ACM/IEEE 

International Conference on Human-Robot Interaction (New York, NY, USA, Mar. 

2017), 146–155. 

[43] Ramachandran, A. et al. 2019. Toward Effective Robot--Child Tutoring: Internal 

Motivation, Behavioral Intervention, and Learning Outcomes. ACM Trans. Interact. 

Intell. Syst. 9, 1 (Feb. 2019), 2:1-2:23. DOI:https://doi.org/10.1145/3213768. 

[44] Reading Level Scales: https://clubs.scholastic.com/on/demandware.store/Sites-rco-

us-Site/default/Product-ReadingLevels. Accessed: 2025-01-28. 

[45] Riek, L.D. 2012. Wizard of Oz studies in HRI: a systematic review and new 

reporting guidelines. J. Hum.-Robot Interact. 1, 1 (Jul. 2012), 119–136. 

DOI:https://doi.org/10.5898/JHRI.1.1.Riek. 

[46] Roscoe, R.D. and Chi, M.T.H. 2007. Understanding Tutor Learning: Knowledge-

Building and Knowledge-Telling in Peer Tutors’ Explanations and Questions. 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

66 

 

Review of Educational Research. 77, 4 (Dec. 2007), 534–574. 

DOI:https://doi.org/10.3102/0034654307309920. 

[47] Rossi, A. et al. 2017. How the Timing and Magnitude of Robot Errors Influence 

Peoples’ Trust of Robots in an Emergency Scenario. Social Robotics (Cham, 2017), 

42–52. 

[48] Ryokai, K. et al. 2003. Virtual Peers as Partners in Storytelling and Literacy 

Learning. Journal of Computer Assisted Learning. 19, (Jun. 2003), 195–208. 

DOI:https://doi.org/10.1046/j.0266-4909.2003.00020.x. 

[49] Saerbeck, M. et al. 2010. Expressive robots in education: varying the degree of 

social supportive behavior of a robotic tutor. Proceedings of the SIGCHI Conference 

on Human Factors in Computing Systems (New York, NY, USA, Apr. 2010), 1613–

1622. 

[50] Scarborough, H.S. 2017. Handbook of Early Literacy Research, Volume 1. Guilford 

Publications. 

[51] Serholt, S. et al. 2014. Comparing a humanoid tutor to a human tutor delivering an 

instructional task to children. 2014 IEEE-RAS International Conference on 

Humanoid Robots (Nov. 2014), 1134–1141. 

[52] Serholt, S. et al. 2022. Comparing a Robot Tutee to a Human Tutee in a Learning-

By-Teaching Scenario with Children. Frontiers in Robotics and AI. 9, (2022). 

[53] Shimoda, T.A. et al. 2002. Student goal orientation in learning inquiry skills with 

modifiable software advisors. Science Education. 86, 2 (2002), 244–263. 

DOI:https://doi.org/10.1002/sce.10003. 

[54] Stephen B. McCarney and N. House, S. 2019. Attention Deficit Disorder Evaluation 

Scale - Fifth Edition (ADDES-5). Hawthorne Educational Services, Inc. 

[55] Stiber, M. and Huang, C.-M. 2020. Not All Errors Are Created Equal: Exploring 

Human Responses to Robot Errors with Varying Severity | Companion Publication 

of the 2020 International Conference on Multimodal Interaction. ICMI ’20 

Companion: Companion Publication of the 2020 International Conference on 

Multimodal Interaction (Dec. 2020), 97–101. 

[56] THE 17 GOALS | Sustainable Development: https://sdgs.un.org/goals. Accessed: 

2025-01-28. 

[57] Timms, M.J. 2016. Letting Artificial Intelligence in Education Out of the Box: 

Educational Cobots and Smart Classrooms. International Journal of Artificial 

Intelligence in Education. 26, 2 (Jun. 2016), 701–712. 

DOI:https://doi.org/10.1007/s40593-016-0095-y. 

[58] Topping, K.J. 1996. The effectiveness of peer tutoring in further and higher 

education: A typology and review of the literature. Higher Education. 32, 3 (Oct. 

1996), 321–345. DOI:https://doi.org/10.1007/BF00138870. 

[59] Voodla, A. and Uusberg, A. 2021. Do performance-monitoring related cortical 

potentials mediate fluency and difficulty effects on decision confidence? 

Neuropsychologia. 155, (May 2021), 107822. 

DOI:https://doi.org/10.1016/j.neuropsychologia.2021.107822. 

[60] Vygotsky, L.S. 1978. Mind in Society: The Development of Higher Psychological 

Processes. Cambridge : Harvard University Press. 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

67 

 

[61] Washburn, D.A. and Putney, R.T. 2001. Attention and Task Difficulty: When Is 

Performance Facilitated? Learning and Motivation. 32, 1 (Feb. 2001), 36–47. 

DOI:https://doi.org/10.1006/lmot.2000.1065. 

[62] What Is Scarborough’s Reading Rope? (Plus How Teachers Use It): 

https://www.weareteachers.com/scarboroughs-rope/. Accessed: 2025-02-03. 

[63] What is the Zone of Proximal Development? 2020. 

https://www.letsgolearn.com/reading-assessment/what-is-the-zone-of-proximal-

development/. Accessed: 2025-01-31. 

[64] de Wit, J. et al. 2021. Designing and Evaluating Iconic Gestures for Child-Robot 

Second Language Learning. Interacting with Computers. 33, 6 (Jul. 2021), 596–626. 

DOI:https://doi.org/10.1093/iwc/iwac013. 

[65] de Wit, J. et al. 2018. The Effect of a Robot’s Gestures and Adaptive Tutoring on 

Children’s Acquisition of Second Language Vocabularies. Proceedings of the 2018 

ACM/IEEE International Conference on Human-Robot Interaction (New York, NY, 

USA, Feb. 2018), 50–58. 

[66] Witt, P.L. et al. 2004. A meta‐analytical review of the relationship between teacher 

immediacy and student learning. Communication Monographs. 71, 2 (Jun. 2004), 

184–207. DOI:https://doi.org/10.1080/036452042000228054. 

[67] Woo, H. et al. 2021. The use of social robots in classrooms: A review of field-based 

studies. Educational Research Review. 33, (Jun. 2021), 100388. 

DOI:https://doi.org/10.1016/j.edurev.2021.100388. 

[68] Yadollahi, E. et al. 2018. When deictic gestures in a robot can harm child-robot 

collaboration. Proceedings of the 17th ACM Conference on Interaction Design and 

Children (New York, NY, USA, Jun. 2018), 195–206. 

 

 

 

 

 

 

 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

68 

 

Appendix 

Appendix A – Ethics Forms 

The Letter of Information/Consent, Assent Script and Debrief Script are found on the 

following pages. 
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Appendix B – Robot Mistakes 

Table 1. Errors used in Targeted Mistakes condition compared with the original text in 

the reading. The mistakes and the words they replaced are in bold. 

Original Passage 
 

Passage updated with Targeted Mistake 
 Mistake Development 

Criteria 

Frog came along, and said 
what is the matter Toad? 

 

Frog come along, and said what is the 
matter Toad? 

 Sounds like original 
wording, leaves passage 

syntax and semantics 
essentially the same 

This is my sad time of day 

 

This is my sad dime of day 

 Sounds like original 
wording, leaves passage 

syntax essentially the 
same 

No, never, said Toad 
 

No, never, says Toad 
 Leaves passage semantics 

essentially the same 

There is something that I 
must do 

 
There is something that I just do 

 Leaves passage syntax 
essentially the same 

He put the paper in an 
envelope 

 
He put the letter in an envelope 

 Leaves passage semantics 
essentially the same 

I think you should get up, 
and wait for the mail some 

more 

 
I think you could get up, and wait for the 

mail some more 

 Leaves passage syntax 
and semantics essentially 

the same 

No, no, said Toad 
 

None, said Toad 
 Leaves passage syntax 

essentially the same 

But Toad, said Frog, 
someone may send you a 

letter today 

 
But Toad, said Frog, something may send 

you a letter today 

 Leaves passage syntax 
and semantics essentially 

the same 

But there will not be any, 
said Toad 

 
But there will not be many, said Toad 

 Leaves passage syntax 
and semantics essentially 

the same 

What did you write in the 
letter? 

 
What did you white in the letter? 

 Leaves passage syntax 
essentially the same 

Oh, said Toad, that makes a 
very good letter 

 
Oh, said Toad, that maked a very good 

letter 

 Sounds like original 
wording, leaves passage 

syntax and semantics 
essentially the same 

Toad's house, and gave him 
the letter from Frog 

 Toad's home, and gave him the letter 
from Frog 

 Leaves passage semantics 
essentially the same 
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Table 2. Errors used in Simple Mistakes condition compared with the original text in the 

reading. The mistakes and the words they replaced are in bold. 

Original Passage  Passage updated with Simple Mistake 

Frog came along and said, what is the matter 
Toad? 

 

Frog came along and said, what is the grape Toad? 

This is my sad time of day 
 

This is my rock time of day 

No one has ever sent me a letter 
 

No one has ever sent me a plant 

Frog hurried home 
 

Frog funny home 

to Toad's house and put it in his mailbox 
 

to Toad's house and put it in his robot 

Toad was in bed, taking a nap. 
 

Toad was in bed, taking a phone. 

The snail was not there yet 
 

The snail was not there soon 

Don't be silly, said Toad 
 

Don't be silly, match Toad 

Because now, I am waiting for the mail, said Frog 
 

Because now, I am ball for the mail, said Frog 

Dear Toad, I am glad that you are my best friend 
 

Dear Toad, I am wind that you are my best friend 

onto the front porch to wait for the mail 
 

onto the front angry to wait for the mail 

Frog and Toad waited a long time 
 

Frog and Toad waited a long book 

 

 

 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

76 

 

Appendix C – Test Forms 

PRE-STUDY VERBAL TEST 

1. Toad was _____ on his front porch. What word fits best: 

a. Sitting 

b. Feeling 

2. In the story, Toad says he is, “unhappy”. Unhappy means Toad is: 

a. Happy 

b. Sad 

3. Frog asks about Toad getting sent mail. Frog asks, “Not ever?” and Toad says “No, 

____”. What word fits best: 

a. Ever 

b. Never 

4.  Toad says, “Everyday my ______ is empty”. What word fits best: 

a. Mailbox 

b. Together 

5. In the story it says, “On the envelope he _____”. What word fits best: 

a. Write 

b. Wrote 

6. Snail says, “Sure, right away”. Does this mean: 

a. Snail will do it 

b. Snail will not do it 

7. Frog says, “I have ____ you a letter”. What word fits best: 

a. Send 

b. Sent 

8. Toad says, “I do not think ______ will ever send me a letter”. What word fits 

best: 

a. Anything 

b. Anyone 

9. Frog and Toad go out to “the front _____”. What word fits best: 

a. Porch 

b. Torch 

10. ____ days later the snail got to Toad’s house. What word fits best: 

a. Tour 

b. Four 
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POST-STUDY VERBAL TEST 

1. Toad says, “This is my sad ____ of day”. What word fits best: 

a. Dime 

b. Time 

2. Toad says, “Everyday my mailbox is empty”. Empty means there is: 

a. No mail 

b. Mail 

3. In the story Frog _______ home. What word fits best: 

a. Hurried 

b. Letter 

4. Frog, “_____ a pencil and a piece of paper.” What word fits best: 

a. Found 

b. Find 

5. Frog ___ out of his house. What word fits best: 

a. Run 

b. Ran 

6. Frog asks snail to “___ it in his mailbox”. What word fits best: 

a. Put 

b. But 

7. Toad was in bed, taking a ___. What word fits best: 

a. Snap 

b. Nap 

8. Toad says, “Don’t be ______”. What word fits best: 

a. Silly 

b. Really 

9. The letter says, “I am glad you are my best friend”. Glad means Frog is: 

a. Happy 

b. Sad 

10. “Toad was very _______ to have it.” What word fits best: 

a. Pleased 

b. Envelope 
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Appendix D – Qualitative Inventories 

ATTITUDE INVENTORY 

Based on ADDES-5 Item #2 

1) Is easily distracted by other activities in the environment (the wizard, movement 

outside the door, etc.) 

Based on ADDES-5 Item #7 

2) Needs oral questions and directions frequently repeated (eg., needs constant 

reminders to stay on task, etc.) 

Based on ADDES-5 Item #37 

3) Talks out of turn during the task (eg., bringing up a topic unrelated to reading, 

interrupts the robot to talk about something unrelated etc.) 

Based on ADDES-5 Item #38 

4) Moves about while seated, fidgets, squirms, etc. 

Based on ADDES-5 Item #60 

5) Engages in nervous habits or unnecessary movements (eg. Bites fingernails, twirls 

hair, chews inside of cheek, chews on objects, spins or twirls objects etc.) 
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SELF-EFFICACY INVENTORY 

Based on BASE Item #2 

1) Hesitates to make corrections or decisions (eg., participant says “I don’t 

understand,” or asks experimenter questions to confirm if a mistake was made, or 

clearly changes quiz answer due to being unsure) 

Based on BASE Item #3 

2) Does not show task independence, needs direction (eg., experimenter needs to 

reiterate the task multiple times to get child to engage in the task) 

Based on BASE Item #4 

3) Does not initiate new decisions easily (eg., requires multiple re-reads or looks for 

support from the experimenter to confirm a mistake, or go to the next page) 

Based on BASE Item #9 

4) Does not show an attitude of cooperation with the robot (eg., is confrontational or 

aggressive with the robot, makes threats etc.) 

Based on BASE Item #15 

5) Does not readily express what they perceive to be the mistakes made (eg., does 

not refer to the mistake word directly or uses minimal words to convey the 

correction to the robot) 
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Appendix E – Participant Information 

Table 3. The age of participants and condition they were randomly assigned to are 

displayed in this table correlating to their participant identification number (ID). 

Participants who were disqualified have been omitted from this table. 

Participant ID  Participant Condition  Participant Age 

P1  Targeted Mistakes  7 

P2  Simple Mistakes  8 

P3  No Mistakes  8 

P4  Targeted Mistakes  7 

P5  Simple Mistakes  6 

P6  No Mistakes  7 

P7  Targeted Mistakes  7 

P8  Simple Mistakes  6 

P9  Targeted Mistakes  8 

P10  No Mistakes  8 

P11  Simple Mistakes  6 

P12  Targeted Mistakes  6 

P13  Simple Mistakes  8 

P14  No Mistakes  6 

P15  Targeted Mistakes  8 



M.A.Sc. Thesis – H. K. Ceranic; McMaster University – Computing and Software. 

 

 

 

81 

 

P16  No Mistakes  8 

P17  Simple Mistakes  6 

P18  Targeted Mistakes  7 

P19  Simple Mistakes  8 

P20  No Mistakes  8 

P21  Simple Mistakes  8 

P22  No Mistakes  7 

P23  Targeted Mistakes  8 

P24  Simple Mistakes  7 

P25  No Mistakes  8 

P26  Targeted Mistakes  6 

P27  Simple Mistakes  7 

 

 


