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Lay Abstract

Chest X-rays are one of the most common medical imaging tools used by doctors

to diagnose diseases, track how illnesses progress, and make treatment decisions.

However, analyzing these images can be complex and time-consuming. This research

explores how artificial intelligence (AI) can help improve chest X-ray analysis by

automatically detecting important features and generating medical insights.

Using a large dataset containing detailed descriptions of chest X-rays, we trained

an AI model to recognize anatomical structures and detect diseases. This AI system

was then used for various tasks, including identifying specific diseases, tracking their

progression, and even generating medical reports.

Our approach improves accuracy and efficiency, making it easier for doctors to

interpret X-rays. This work highlights how AI can support medical professionals and

enhance automated radiology analysis, ultimately leading to better patient care.
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Abstract

Chest X-ray imaging is one of the most commonly performed diagnostic procedures

in radiology, playing a critical role in detecting chest pathologies, monitoring disease

progression, and guiding treatment decisions. This thesis investigates the application

of representation learning as an upstream modality to enhance various downstream

tasks in chest radiograph analysis, including localized disease classification, progres-

sion tracking and automated radiology report generation.

To achieve this, we utilize the Chest ImaGenome dataset, a subset of MIMIC-

CXR, which comprises 242,072 scene graphs that describe individual chest X-rays.

These scene graphs contain automatically extracted information from radiology re-

ports, including patient demographics, anatomical bounding boxes, pathological find-

ings, and progression of disease in each anatomical region. This structured informa-

tion serves as supervisory labels for training models.

For the upstream representation learning task, we employ the DEtection TRans-

former (DETR), a transformer-based object detection framework, to identify anatom-

ical structures in chest X-rays and generate meaningful feature representations. These

learned features are subsequently leveraged for multiple downstream tasks, including

localized classifications via specialized classifiers and radiology report generation us-

ing a large language model.
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Our approach achieves strong performance across these tasks, with an average

ROC of 89.1% over nine disease categories in localized disease detection. Addition-

ally, our method demonstrates effectiveness in tracking localized disease progression,

achieving an average accuracy of approximately ∼67% and an average F1 score of

∼71%. Furthermore, it produces clinically relevant radiology reports.

The results highlight the effectiveness of a unified transformer-based architecture

for chest X-ray interpretation, demonstrating its capability to achieve competitive

performance across multiple tasks while minimizing reliance on handcrafted features

or task-specific models. This work underscores the potential of representation learning

to enhance automated chest radiograph analysis and improve clinical decision support.
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Chapter 1

Introduction

Chest X-ray (CXR) imaging is one of the most widely used and essential diagnostic

tools in clinical practice [20]. It provides radiologists with critical insights for iden-

tifying various thoracic pathologies and abnormalities, assessing disease progression

over time, and conducting routine health screenings. The diagnostic value of CXR

imaging plays a pivotal role in devising timely and effective treatment plans for pa-

tients. However, given its widespread use, the growing volume of imaging studies

poses a significant burden on radiologists and healthcare systems—an issue exacer-

bated by the global shortage of trained radiology professionals [1, 14, 15]. Reducing

this burden through automated image analysis tools can substantially assist clinicians

and improve diagnostic workflows.

The automation of CXR interpretation has emerged as a major innovation in med-

ical imaging, offering the potential to enhance both diagnostic accuracy and efficiency.

With increasing demands for rapid and consistent image assessments—particularly

in resource-limited settings—AI-powered tools provide a promising solution to sup-

port radiologists and improve patient outcomes. Recent advancements in artificial
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intelligence (AI), particularly in the field of computer vision, have facilitated the de-

velopment of highly effective models for medical image analysis, achieving remarkable

levels of accuracy.

This advancement has been largely driven by the emergence of large-scale anno-

tated CXR datasets [5, 6], which have empowered deep learning models to capture

intricate visual patterns and subtle indicators of disease. AI-based systems have

demonstrated strong performance across multiple tasks, including disease classifica-

tion, abnormality localization, and automated report generation [10, 11, 18]. These

tools are not only becoming more accurate but are also approaching the diagnostic

performance of experienced radiologists [17, 19].

Traditional deep learning models, such as convolutional neural networks (CNNs)

[9], initially drove much of this progress. More recently, transformer-based architec-

tures—particularly vision transformers—have shown notable improvements in medi-

cal image analysis by capturing long-range dependencies and improving interpretabil-

ity [8, 12]. Originally developed for general vision tasks, vision transformers are now

being increasingly adopted in healthcare due to their ability to model global context,

which is especially valuable for radiological image interpretation.

Despite this progress, most existing models focus on global disease classifica-

tion—predicting which pathologies are present in a CXR without specifying their

exact location. While global classification is valuable, spatial localization of abnor-

malities adds significant interpretability and clinical relevance, allowing radiologists

to better understand and verify AI predictions. This thesis addresses key limita-

tions of current models by proposing novel tasks and approaches for localized CXR

interpretation.
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Specifically, this work introduces new models capable of both identifying disease

presence and localizing abnormalities within anatomically defined regions of interest

(RoIs). In addition, we propose a new task—localized disease progression monitor-

ing—which involves determining whether a pathology in each anatomical region has

improved, worsened, or remained stable between two timepoints. Lastly, we present

a method for generating free-text radiology reports directly from CXRs. A central

contribution of this thesis is the use of representation learning to unify these tasks un-

der a single model architecture. Rather than training separate models for each task,

we develop a shared backbone that extracts informative image features, which are

then utilized across various downstream tasks. This approach leads to more efficient

training and inference, and reduces the overall computational cost.

To support these efforts, we utilize the Chest ImaGenome dataset [20], derived

from MIMIC-CXR [7], which includes 242,072 frontal CXR images annotated with

structured scene graphs. Each image is associated with bounding boxes for up to 29

anatomical regions and region-level attributes, such as disease presence, progression

status, and corresponding report sentences. In Chapter 2, we address the tasks of

localized disease classification and progression monitoring. In Chapter 3, we focus on

the generation of free-text radiology reports.

1.1 Representation Learning for Localized Disease

Detection and Progression Monitoring

To support localization in the model output and enable multiple downstream tasks

using a single unified framework, the proposed representation learning module is

3
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designed to perform two primary functions:

• Detect anatomical regions of interest (RoIs) that serve as the spatial

basis for localization and analysis.

• Extract feature representations of these RoIs, which are then used by down-

stream models to perform classification and progression analysis.

To achieve these objectives, we employ DEtection TRansformer (DETR) [3], a

transformer-based object detection model. DETR takes a CXR image as input and

identifies relevant anatomical regions by predicting their classes and corresponding

bounding box coordinates. We fine-tune DETR on the Chest ImaGenome dataset, se-

lecting 12 of the 29 annotated regions that are more frequently referenced in radiology

reports and more likely to exhibit pathological findings.

DETR utilizes a ResNet-50 backbone [4] to extract global image features. These

features are tokenized and passed through a transformer encoder-decoder architec-

ture, which ultimately produces predictions via a feed-forward network (FFN). The

visual features used for downstream tasks are obtained from the decoder’s final query

embeddings—each representing a specific anatomical region. These feature vectors

form the core of our representation learning approach.

For localized disease classification, each feature vector is passed through a simple

FFN to predict the presence of 9 possible findings within its corresponding region.

For progression monitoring, we process a pair of CXRs—acquired from the same

patient at different timepoints—using the same representation learning module. The

resulting region-specific feature vectors from both images are compared by computing

their differences. We apply a self-attention mechanism to the resulting difference

4
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vectors and feed them into another FFN to predict the progression status (improved,

worsened, unchanged) for each anatomical region.

This chapter introduces a novel yet lightweight architecture that demonstrates

the ability to perform both tasks—localized disease classification and progression

monitoring—using a single shared model with high accuracy and low computational

overhead.

1.2 Representation Learning for Clinical Report

Generation

In this chapter, we explore the potential of vision-based representation learning for

generating high-quality free-text radiology reports from chest X-ray images. Clin-

ical reports are typically written by radiologists after carefully analyzing different

anatomical regions in the CXR [16]. Inspired by this approach, we design a system

that mimics this process by focusing on region-specific visual features to generate

descriptive, coherent textual outputs.

As in the previous chapter, we leverage the DETR model as the backbone for

representation learning. This time, DETR is fine-tuned to detect all 29 anatomical

regions annotated in the Chest ImaGenome dataset. For each detected region, DETR

produces a corresponding feature vector, which serves as a compact representation of

that region’s visual characteristics.

To generate the final report, we condition a Large Language Model (LLM) on

these region-specific feature vectors. Given the remarkable progress in LLMs over

recent years [13, 2], these models offer a powerful mechanism for generating fluent

5
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and clinically meaningful text. We employ a lightweight LLM that takes as input the

DETR-derived features and produces one or two descriptive sentences per selected

anatomical region.

The conditioning process is achieved through pseudo self-attention [21], which

involves embedding the visual feature vectors into the LLM’s attention mechanism

by modifying the query, key, and value representations accordingly. To determine

which regions should contribute to the report, we employ a feed-forward network

(FFN) that selects the most relevant regions based on their feature representations.

This chapter extends the application of vision-based representation learning pre-

viously used for classification and localization, to the more complex task of free-text

report generation. Our results demonstrate that, despite its simplicity, the proposed

model performs competitively with most of the prior state-of-the-art approaches while

remaining lightweight and computationally efficient.

1.3 Contributions and Thesis Organization

This sandwich thesis follows McMaster University thesis requirements and terms of

use, consisting of one published conference paper, and one in-processing conference

paper. All of those two works are related to the topic of representation learning for

interpretation of Chest X-rays. The references for these two papers are as follows:

• Mehrdad Eshraghi Dehaghani, Amirhossein Sabour, Amarachi B. Madu,

Ismini Lourentzou, and Mehdi Moradi, “Representation Learning with a

Transformer-Based Detection Model for Localized Chest X-Ray Disease and

Progression Detection,” in Proceedings of the Medical Image Computing and

6
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Computer Assisted Intervention – MICCAI 2024, vol. LNCS 15001, Springer

Nature Switzerland, Oct. 2024, pp. 578–587. Contributions:

– We propose a new approach for chest X-ray interpretation using DETR-

based anatomical features to jointly perform localized disease detection

and progression monitoring.

– We introduce localized disease progression monitoring and show that fea-

ture differences across regions enable strong performance, even with a sim-

ple multi-layer perceptron (MLP).

– We provide ablation studies and qualitative examples highlighting the role

of anatomical regions in monitoring disease progression.

• Mehrdad Eshraghi Dehaghani, and Mehdi Moradi, ”Clinical Radiology

Report Generation for Chest X-Ray Using Transformer-Based Representation

Learning Model,” *To be submitted to* the Machine Learning in Medical Imag-

ing (MLMI) Workshop, MICCAI 2025. Contributions:

– We introduce a representation learning transformer-based architecture de-

signed to generate high-quality free-text radiology reports from chest X-ray

images.

– We assess the performance of our approach using both grammatical accu-

racy and clinical efficacy metrics.

– We conduct a comprehensive comparison with prior works on this task and

provide an analysis of the results.

The thesis structure is as follows:

7
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• Chapter 2: The details of representation learning with a transformer based

detection model for localized chest x-ray disease and progression detection.

• Chapter 3: The details of clinical radiology report generation for chest X-Ray

using transformer-based representation learning model.

• Chapter 4: The thesis conclusion and discussion.
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Chapter 2

Representation Learning with a

Transformer-Based Detection

Model for Localized Chest X-Ray

Disease and Progression Detection

2.1 Abstract

Medical image interpretation often encompasses diverse tasks, yet prevailing AI ap-

proaches predominantly favor end-to-end image-to-text models for automatic chest

X-ray reading and analysis, often overlooking critical components of radiology re-

ports. At the same time, employing separate models for related but distinct tasks

leads to computational overhead and the inability to harness the benefits of shared
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data abstractions. In this work, we introduce a framework for chest X-ray inter-

pretation, utilizing a Transformer-based object detection model trained on abundant

data for learning localized representations. Our model achieves a mean average pre-

cision of ∼94% in identifying semantically meaningful anatomical regions, facilitating

downstream tasks, namely localized disease detection and localized progression mon-

itoring. Our approach also yields competitive results in localized disease detection,

with an average ROC 89.1% over 9 diseases. In addition, to the best of our knowl-

edge, our work is the first to tackle localized disease progression monitoring, with

the proposed model being able to track changes in specific regions of interest (RoIs)

with an average accuracy ∼67% and average F1 score of ∼71%. Code is available at

https://github.com/McMasterAIHLab/CheXDetector.

2.2 Introduction

Chest X-ray is the most common medical imaging modality. In recent years, with the

introduction of multiple large-scale annotated chest X-ray datasets [4, 5], the field of

automatic interpretation of chest X-ray images leveraging artificial intelligence has

seen a great deal of activity. There are generally two lines of work in this area.

An early wave of works has focused on accurate detection/classification for a limited

number of diseases or findings [13]. The obvious flaw is the limited scope, as radiology

reports are not merely lists of findings. Instead, they consist of localized descriptions,

often with comparative and localized references to the progress of disease from a pre-

vious scan. In response to these shortcomings, subsequent works have expanded the

scope of these early works by including a larger number of findings in their classi-

fication models than those labeled in the publicly available datasets [17]. With the
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increased popularity of language models in medical imaging, the more recent wave of

activity is focused on end-to-end training of image-to-sequence models that produce

a complete radiology report given a chest X-ray image [7, 11]. This line of work ad-

dresses the problem of limited scope and application of disease classifiers. However,

these models are often evaluated for their readability and similarity to radiologist

reports, and not for the accuracy of the findings they list or their comprehensiveness

[18]. As is common in generative models, these models can often produce factually in-

correct language. Additionally, there has been a growing interest in disease detection

with semantically meaningful localization [1, 10] as well as the monitoring of disease

progression within image pairs, assessing whether a patient’s condition has improved,

deteriorated, or remained stable over time [6, 9]. Despite these advancements, to

the best of our knowledge, the challenge of localized disease progression monitoring,

predicting disease progression in specific anatomical regions, remains unexplored.

Given the weaknesses of direct image-to-text models and the variety of detec-

tion/classification tasks involved in chest X-ray interpretation, we propose to train

and utilize a DEtection TRansformer (DETR) anatomical region detection model [2]

to address multiple clinically relevant downstream tasks such as localized disease de-

tection and localized disease progression monitoring. Specifically, previous works have

provided large datasets of X-ray images with marked bounding boxes for anatomical

regions (‘lower lobe of right lung’) [14, 15]. We define the detection of these bounding

boxes as the task for training a DETR model. When trained, this model provides a

rich feature vector for each anatomical region that can be used for both localized dis-

ease detection and localized disease progression monitoring. For each task, we train

relatively compact models, using the features from the upstream model. We show
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that the performance of our proposed framework is comparable to models specifically

trained for these tasks. Our contributions can be summarized as follows:

(1) We introduce a novel approach for chest X-ray interpretation. By utilizing

rich feature vectors generated by a DETR model trained for anatomical region

detection, we address two clinically relevant downstream tasks simultaneously,

localized disease detection and localized progression monitoring.

(2) We introduce the task of disease progression monitoring at a localized level.

Our experimental results show that a simple model that extracts anatomical

region feature differences can achieve competitive accuracy on this new task.

We additionally demonstrate that a simple MLP architecture can jointly achieve

competitive performance in localized disease detection.

(3) We further provide comprehensive ablation analysis with three model varia-

tions and qualitative examples to show the importance of anatomical regions in

disease progression monitoring.

2.3 Methodology

2.3.1 Problem Definition

Let C = {(X,X′)ı̇}Nı̇=1 be a set of CXR image pairs, where X,X′ ∈ RH×W×C , and

H,W and C are the height, width, and number of channels, respectively. Each image

X is associated with a localized label set Y1
i = {yı̇,k,m}K,M

k=1,m=1 where y1ı̇,k,m ∈ {0, 1},

indicating whether the label for the m-th finding appears in the k-th anatomical

region of the image or not. In addition, each image pair (X,X′)ı̇ is associated with a
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Figure 2.1: We first train a DETR anatomical region detection model on a large
collection of CXR images. Given a pair of CXR images, the pretrained DETR
decoder extracts visual features for anatomical regions of interest (RoI) for each
image. These features are then used to compute region-based visual differences
between the two CXRs. The information encoded in the difference vector is

summarized through the self-attention mechanism that captures the importance of
each RoI vector in relation to other RoIs and helps the model focus on relevant RoI
changes. The resulting summary vector is concatenated with the region of interest
(RoI) vector and fed into a multi-layer perceptron (MLP) classification layer for
predicting whether the condition localized on the specific RoI has improved,

worsened, or remained unchanged.

label set Y2
i = {yı̇,k}Kk=1, where y

2
ı̇,k indicates whether the overall condition in the k-th

anatomical region of the image pair (X,X′)ı̇ has improved, worsened, or remained the

same. The goal is to design a model that accurately predicts a set of labels indicative

of the presence of pre-defined diseases at every anatomical Region of Interest (RoI)

for an unseen image, and is also able to compare the two unseen images (X,X′) to

predict localized progression labels as accurately as possible.
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2.3.2 DETR region representation extraction backbone

To this end, we first utilize a DETR pre-trained region detection model for extracting

feature representations of anatomical regions of interest (RoIs). The DETR region

detection outputs a set of bounding boxes denoted as

B = {(b1, c1, s1), (b2, c2, s2), . . . , (bK , cK , sK)}

where bi = (xmin, ymin, xmax, ymax) represents the coordinates of the i-th bounding box,

ci denotes the class label associated with the box (chosen from a predefined set of

K anatomical regions), and si represents the confidence score associated with each

region query, indicating the likelihood of corresponding to a valid RoI. For each re-

gion query, the output of the last hidden state of the decoder can be represented as

F = {f1, f2, . . . , fi, . . . , fK}, where fi represents the last hidden state of the decoder

for the i-th region query. These hidden states serve as learned anatomical region fea-

ture representations, capturing the contextual information extracted by the decoder

regarding the corresponding anatomical region query.

2.3.3 Localized Disease Detection

By utilizing the extracted feature representations F = {f1, f2, . . . , fi, . . . , fK} for the

K anatomical regions of interest (RoIs), we train a compact feed-forward network to

predict the presence or absence of particular disease in the respective RoIs. Let yı̇,k,m

represent the ground truth label indicating the actual presence (1) or absence (0) of

the m-th disease in the k-th RoI for the ı̇-th sample. Similarly, let ŷı̇,k,m represent

the predicted probability for the presence or absence of the m-th disease in the k-th
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RoI for the ı̇-th sample. The binary cross-entropy loss L for a batch of N images can

be defined as:

L = − 1

N

N∑
ı̇=1

K∑
k=1

M∑
m=1

(ŷı̇,k,m · log(yı̇,k,m) + (1− ŷı̇,k,m) · log(1− yı̇,k,m)) , (2.3.1)

where N denotes the batch size and M the number of diseases.

2.3.4 Localized Disease Progression Monitoring

For localized disease progression monitoring, the goal is to predict, for each image pair

(X,X′)ı̇, whether the condition of a particular k-th anatomical region has improved,

worsened, or remained unchanged. Let F1 = {f1,1, f1,2, . . . , f1,k, . . . , f1,K} represent

the feature vectors extracted from the regions of interest (RoIs) in the first image

Xi, and F2 = {f2,1, f2,2, . . . , f2,k, . . . , f2,K} represent the feature vectors extracted

from the corresponding RoIs in the second image X′
i, where K is the number of

RoIs. The model computes the differences of region vectors between the two images

Fdiff = [F2 − F1] = [f2,1 − f1,1, . . . , f2,k − f1,k, . . . , f2,K − f1,K ]. To summarize the

RoI information and capture the relationships between different RoIs, we employ a

self-attention mechanism. The self-attention operation on Fdiff can be denoted as:

α = Softmax

(
FdiffF

T
diff√

dk

)
, (2.3.2)

where α = [α1, α2, . . . , αk] represents the attention weights for each RoI, dk is the

dimension of the key vectors, and the softmax function is applied along the rows of

the matrix. Next, the weighted sum of the difference feature vectors corresponding
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to each RoI k is computed using the attention weights, αFdiff, providing a summa-

rized representation of the global RoI information considering the interdependencies

between different RoIs. To perform the final localized disease progression prediction,

we report results in both “Global” and “Region-focused” attention variants. In the

“Global” approach, we average the rows of the self-attention output to obtain a single

global vector to be used for all the RoIs of the chest x-ray, which is concatenated with

Fk and passed through a classification layer. In the “Region-focused” approach, the

k-th row of the self-attention output, corresponding to the k-th RoI, is concatenated

with Fk and used directly for prediction, ŷk = g ([attk;Fk]), where attk is the self-

attention output for the k-th RoI and Fk = [f2,k−f1,k] is the difference vector for the

k-th RoI. The disease progression model loss for a batch of N images is defined as:

L = − 1

N

N∑
i=1

K∑
k=1

[yi,k · log(ŷi,k) + (1− yi,k) · log(1− ŷi,k)] , (2.3.3)

where L is the total loss over the entire batch, N is the batch size, K is the number

of RoIs, and yi,k, ŷi,k are the ground truth label and model prediction for the k-th

RoI of the i-th image.

2.4 Experiments

Implementation Details. We employ DETR with ResNet-50 backbone as the ini-

tial model for fine-tuning and extracting feature representations of anatomical regions

of interest. The model was trained using PyTorch-Lightning [3], with AdamW opti-

mizer [8], weight decay of 10−4, backbone learning-rate of 10−5 and a learning-rate

of 10−3. To avoid the gradient exploding problem, we use gradient clipping of 0.1.
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The initial batch size for training is 13. For further increasing the batch size while

considering the memory limitations, we use accumulated gradients of 5. The model

was trained for 25 epochs. To filter out unwanted detections, we apply a thresh-

old τ > 0.85 to the scores associated with each region query. Only region queries

with scores exceeding this threshold are considered valid detections. For the disease

classification module, we use a feed-forward network (FFN) similar to DETR’s FFN

with an additional batch norm between layers. The input dimension for the FFN is

256, hidden dimension of 256, output dimension of 9 (equal to the number of studied

finding classes). The model is trained for 100 epochs using Adam optimizer with a

learning rate of 5 × 10−4 and a weight decay of 10−5. For the localized disease pro-

gression detection module, a similar feed-forward network with an input dimension

of 512, hidden dimension of 256 with two layers and output dimension of 3 is used.

The model is trained for 100 epochs using Adam optimizer with a learning rate of

10−3 and a weight decay of 10−5.

Dataset. We make use of the Chest ImaGenome dataset [15]. This dataset consists of

two different sub-datasets: 1) Locally labeled data using a combination of rule-based

natural language processing (NLP) and CXR atlas-based bounding box detection

techniques [14, 16] to generate the annotations (silver dataset). This subset comprises

237, 827 frontal MIMIC-CXRs [5]. 2) Manually validated and corrected studies of

500 patients as ground truth. Chest ImaGenome is represented as an anatomy-

centered scene graph with 1, 256 combinations of relation annotations between 29

CXR anatomical locations and their attributes. Each image is structured as one scene

graph, resulting in approximately 670, 000 localized comparison relations between the

anatomical locations across sequential exams. Rich representation features play a key
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Table 2.1: Dataset characteristics for progression labels per anatomical regions at:
right upper lung zone (RULZ), right mid lung zone (RMLZ), right lower lung zone
(RLLZ), right costophrenic angle (RCA), right hilar structures (RHS), right apical
zone (RAZ), left upper lung zone (LULZ), left mid lung zone (LMLZ), left lower
lung zone (LLLZ), left costophrenic angle (LCA), left hilar structures (LHS),

cardiac silhouette (CS)

Progression Label RULZ RMLZ RLLZ RCA RHS RAZ

Improved 957 2,338 5,681 5,249 7,799 744
Worsened 1,301 3,537 8,333 6,406 7,699 543
No Change 37,149 34,617 28,673 30,529 27,883 37,915

Total 39,407 40,492 42,687 42,184 43,381 39,202

Progression Label LULZ LMLZ LLLZ LCA LHS CS

Improved 678 2,382 6,305 5,225 7,749 1,722
Worsened 927 3,414 8,996 6,399 7,599 3,097
No Change 37,596 34,549 27,667 30,478 27,954 35,036

Total 39,201 40,345 42,960 42,102 43,302 39,855

role in performing the downstream task efficiently. To train the upstream model, we

utilize the entire silver dataset of Chest ImaGenome with 70/10/20 split.

For localized disease progression, we consider the localized comparison relation

data within Chest ImaGenome that pertains to cross-image relations for nine dis-

eases of interest. Each comparison relation in the Chest ImaGenome dataset includes

the DICOM identifiers of the two CXRs being compared, a set of comparison labels

per some anatomical regions, and a set of disease names. In some cases, more than

one progression label was assigned to one region. We excluded these samples from the

dataset to focus on more accurate labels. The comparison is labeled as “no change”,

“improved” or “worsened”, which indicates whether the patient’s condition has re-

mained stable, improved, or worsened, respectively. In contrast to [9] which reports

global classification, we solve this problem at the local level, acquiring one progress

label per anatomical location. We use 35, 646 CXR pairs in total that pertain to the
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Table 2.2: Area under PR curves for the 12 anatomical locations with an mPA of
93.5%, calculated using [12]. Format for each cell: (Anatomical location: Area

under PR curve, IoU threshold = 0.5)

RULZ RMLZ RLLZ RCA RHS RAZ
0.984 0.961 0.962 0.818 0.963 0.968

LULZ LMLZ LLLZ LCA LHS CS
0.983 0.964 0.955 0.743 0.960 0.959

nine diseases of interest. The distribution of the data is improved (53, 134), wors-

ened (58, 251), and no change (390, 046). We use 70/10/20 train/validation/testing

split across studies. Due to the large gap between the number of “no change” labels

and two other classes, only for training, we consider a random subset of “no change”

labels equal to the maximum number of labels in the other two classes. Table 2.1 pro-

vides further details. For localized disease classification, we utilize the silver dataset

(237, 827 CXRs) to train the model. We use 70/10/20 train/validation/testing split

across studies. High-level statistics of the generated dataset based on findings and

anatomical regions of interest are included in the supplementary material.

2.5 Results

Upstream detection network: Table 2.2 reports the area under precision-recall

curves for the twelve target anatomical regions. The mean average precision (mAP)

is 93.5%. For 10 of the 12 regions, the area under ROC curve is at or above 96%,

with only right and left costophrenic angle being the exceptions.

Localized disease detection: Figure 2.2 shows the ROC curves obtained for the

nine findings from the localized disease detection model. Despite a simple MLP archi-

tecture, the model provides an average AUC score of 89.1%. The closet benchmark
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Figure 2.2: Localized Multi-label Disease Detection Results
Table 2.3: Localized Disease Progression Results (Accuracy/Weighted F1)

Anatomical location Attention Attention MLP
(Global) (Region-focused)

Right Upper Lung Zone 66.66/77.07 78.93/84.94 96.17/94.30
Right Mid Lung Zone 62.25/69.12 63.40/70.12 79.76/80.07
Right Lower Lung Zone 56.38/57.47 58.33/59.69 17.48/7.15
Right Costophrenic Angle 61.72/64.12 56.62/60.69 46.67/51.78
Right Hilar Structures 61.17/59.93 59.24/60.29 16.41/6.89
Right Apical Zone 66.69/78.11 83.81/89.53 97.44/96.17

Left Upper Lung Zone 66.56/77.75 81.01/86.85 97.15/95.75
Left Mid Lung Zone 63.80/70.09 69.23/74.30 83.34/81.82
Left Lower Lung Zone 55.56/55.91 54.55/55.76 19.98/8.73
Left Costophrenic Angle 61.86/64.43 61.50/64.38 38.19/42.64
Left Hilar Structures 67.88/63.42 61.87/63.20 16.59/9.29
Cardiac Silhouette 65.38/73.40 67.59/75.29 90.28/88.00

Weighted Average 67.36/70.60 66.65/70.86 60.35/57.54

to this work is [1] which reports localized disease detection on the same dataset with

average AUC scores in the range of 89% to 93% for various models trained for the

specific task of localized disease detection.
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Prior Current

Ground Truth No change
Model Prediction (Ours) No change
CheXRelFormer No change

Prior Current

Ground Truth Worsened
Model Prediction (Ours) Worsened
CheXRelFormer No change

Figure 2.3: Examples of model predictions obtained by our model compared against
the ground-truth labels and CheXRelFormer model [9]. Lung Opacity pathology

(left) and Pneumonia pathology (right).

Localized disease progression: The results for localized progression labeling are

presented in Table 2.3 for the three model variations. It is clear that the introduc-

tion of the attention layer in this classifier has improved the results compared to

the baseline of MLP. Both the global and region-focused attention architectures out-

perform the MLP model, with a slight edge for global attention which provides an

average accuracy ∼ 67% and an average F1 score of ∼ 71%. For this application,

we do not have a current direct comparison from previous work. We trained a CNN

Siamese network equivalent to the one in [15] with 3 classes, on 9 diseases and 12

anatomical regions, maintaining our original train/test splits. This simple model de-

livered a weighted average accuracy of only ∼ 34% and F1 score of ∼ 32%. Authors

in CheXRelFormer [9] report global disease progression with an average accuracy of

49% across the diseases. Figure 2.3 highlights the advantage of localized over global

progress classification. The progression labels in different anatomical locations can

be inconsistent. As the figure shows, while our local model correctly classifies the

progression label for both regions of interest, the global label by definition provides

a single label that cannot be correct for both regions.
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2.6 Conclusions

In this study, we presented a novel approach for interpreting chest X-rays, leveraging

rich feature vectors derived from a DETR model trained specifically for anatomi-

cal region detection. By harnessing these feature vectors, we concurrently addressed

two clinically significant downstream tasks: localized disease detection and localized

progression monitoring. Furthermore, we introduce the novel task of disease pro-

gression monitoring at a localized level, demonstrating that extracting anatomical

region feature differences can achieve competitive accuracy in this domain. Our ex-

periments showcase the effectiveness of representation learning combined with simple

architectures in achieving competitive performance for localized disease detection and

progression.
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2.7 Supplementary material

Figure 2.4: Precision-Recall curves for backbone representation learning module.
Plot created using [12]

Table 2.5: Anatomical regions characteristics for representation learning model
using DETR

Progression Label Train Val Test Total

Right Upper Lung Zone 166,259 23,918 47,341 237,518
Right Mid Lung Zone 162,889 23,400 46,422 232,711
Right Lower Lung Zone 162,983 23,414 46,446 232,843
Right Costophrenic Angle 166,137 23,900 47,297 237,334
Right Hilar Structures 162,883 23,399 46,419 232,701
Right Apical Zone 162,836 23,380 46,414 232,630

Left Upper Lung Zone 166,226 23,910 47,313 237,449
Left Mid Lung Zone 162,146 23,294 46,240 231,680
Left Lower Lung Zone 162,582 23,372 46,377 232,331
Left Costophrenic Angle 165,875 23,873 47,233 236,981
Left Hilar Structures 162,170 23,299 46,233 231,702
Cardiac Silhouette 166,490 23,949 47,387 237,826

Total 1,969,476 283,108 561,122 2,813,706
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Table 2.6: Dataset characteristics for disease classification labels per anatomical
regions at: right upper lung zone (RULZ), right mid lung zone (RMLZ), right lower
lung zone (RLLZ), right costophrenic angle (RCA), right hilar structures (RHS),
right apical zone (RAZ), left upper lung zone (LULZ), left mid lung zone (LMLZ),
left lower lung zone (LLLZ), left costophrenic angle (LCA), left hilar structures

(LHS), cardiac silhouette (CS)

Finding Label RULZ RMLZ RLLZ RCA RHS RAZ

Lung Opacity 10,922 25,132 70,428 57,163 59,432 6,196
Pleural Effusion 663 3,697 15,788 56,107 0 0

Atelectasis 1,739 9,751 43,299 2,162 2,472 0
Enlarged Cardiac Silhouette 0 0 0 0 0 0

Hazy Opacity/Pulmonary Edema 1,479 2,404 6,807 1,685 35,350 0
Pneumothorax 115 197 1105 834 0 4603
Consolidation 1420 4192 7954 499 1301 0

Heart Failure/Fluid Overload 588 189 631 202 1249 0
Pneumonia 1940 6493 13647 0 2960 219

Finding Label LULZ LMLZ LLLZ LCA LHS CS

Lung Opacity 8,177 26,130 80,840 59,380 58,360 0
Pleural Effusion 526 5,066 18,933 18,166 0 0

Atelectasis 1,155 13,434 55,872 2,616 2,043 0
Enlarged Cardiac Silhouette 0 0 0 0 0 58,908

Hazy Opacity/Pulmonary Edema 1,479 2,391 6,805 1,673 35,196 0
Pneumothorax 77 125 729 594 0 0
Consolidation 900 4,382 9,045 518 1,014 0

Heart Failure/Fluid Overload 587 187 633 201 1,241 6,636
Pneumonia 1,074 5,862 13,907 0 2,270 0
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Table 2.7: # Images (number of images) and # Bboxes (number of bounding boxes)
utilized in order to generate the dataset for localized disease classification task

Finding Label # Images # Bboxes

Lung Opacity 102,675 323,175
Pleural Effusion 51,328 111,267

Atelectasis 49,507 94,280
Enlarged Cardiac Silhouette 41,195 41,195

Hazy Opacity/Pulmonary Edema 24,958 66,558
Pneumothorax 4,448 5,904
Consolidation 10,470 21,887

Heart Failure/Fluid Overload 4,694 8,723
Pneumonia 17,142 33,844
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Chapter 3

Clinical Radiology Report

Generation for Chest X-Ray Using

Transformer-Based Representation

Learning Model

3.1 Abstract

High-quality clinical reports in radiology play a critical role in improving diagnos-

tic accuracy and guiding more effective and personalized treatment plans. In this

paper, we explore the application of transformer-based representation learning for

using anatomical region detection to automate radiology report generation in chest

X-ray imaging. We propose a simple framework that leverages an upstream represen-

tation learning model to detect anatomical regions and extract fine-grained feature
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representations from chest radiographs. These feature embeddings are then used to

identify regions with a higher likelihood of pathological findings, prioritizing them

for detailed analysis and report generation. Finally, the region-specific feature en-

codings are passed to a large language model (LLM) to generate interpretable, and

contextually relevant radiology reports. The obtained results confirm the efficacy of

the proposed method, highlighting the potential of representation learning in enhanc-

ing various radiology tasks, including anatomical localization, disease detection, and

automated report synthesis.

3.2 Introduction

Chest X-ray imaging is widely used in clinical practice for both routine health assess-

ments and the diagnosis of various pathologies, aiding in the development of efficient

and effective treatment plans. Radiologists interpret these images and document

their findings in free-text reports, which serve as critical references for patient care.

However, the increasing demand for chest X-ray imaging, coupled with a shortage

of trained radiologists, has led to significant workloads and potential delays in diag-

nosis [2, 27, 28]. To address this challenge, automatic clinical report generation has

emerged as an active area of research in artificial intelligence (AI), aiming to reduce

the burden on radiologists while maintaining high diagnostic accuracy.

Interpreting a chest X-ray involves analyzing different anatomical regions and

describing relevant findings for each one. Given that chest X-ray reports follow a

free-text structure—where each sentence typically corresponds to a specific anatom-

ical region—generating high-quality reports presents several challenges. Many ex-

isting AI-based methods fail to capture all necessary information, often producing
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incomplete reports or generating inaccurate findings [19]. A major limitation of these

approaches is their reliance on raw visual features of the image without leveraging

structured anatomical representations. This results in a lack of interpretability, mak-

ing it difficult to justify the use of such models in clinical decision-making [9, 10, 19].

Recent progress in representation learning has demonstrated significant potential

across a range of medical imaging application, including localized disease classifica-

tion, progression monitoring [8], and severity assessment [12]. This technique in-

volves training an upstream model to extract generalizable features, which can then

be applied to downstream tasks. Transformer-based models [32], in particular, have

demonstrated significant potential in addressing complex challenges in various fields

such as computer vision [13]. In the context of report generation, a recent study

[31] attempted to improve accuracy and explainability by adopting a representation

learning approach that mimics a radiologist’s workflow [30]—detecting anatomical

regions and generating structured, region-specific descriptions.

Following that work and previous success stories, we explore the use of transformer-

based object detection models as an upstream representation learning module for free-

text clinical report generation. Specifically, we leverage the DEtection TRansformer

(DETR) [4] model to identify anatomical regions of interest and extract correspond-

ing feature vectors. These feature representations help determine which regions are

more likely to exhibit pathological findings, guiding the generation of detailed and

explainable clinical reports. By integrating these features into a large language model

(LLM), we aim to produce structured reports where each sentence corresponds to a

specific anatomical region, thereby enhancing interpretability and clinical applicabil-

ity.
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Figure 3.1: Overview of the model architecture. The model consists of three main
stages. First, DETR is employed for anatomical region detection. Given an input
chest X-ray (CXR), DETR identifies and extracts visual features for 29 possible

regions in the image. In the second stage, a region selection module, implemented as
a multi-layer perceptron (MLP), determines which regions should be used for

generating textual descriptions. Additionally, an abnormality classification module,
structurally similar to the region selection module, is used during training to

enhance DETR’s focus on clinically significant regions by identifying abnormalities.
The final stage incorporates a GPT-2 Medium [25] decoder, which integrates the

visual features of the selected regions and generates one or two descriptive sentences
per region. These sentences are subsequently processed and merged to form the

model’s final output.

3.3 Methodology

3.3.1 Overview

Our model is consisted of three major components. The first component being the

upstream region representation module, makes use of DETR to detect and extract the

features of at most 29 anatomical regions of interest (RoIs). The next module being

the region selection module, with the use of the features extracted in the first stage as

input and a simple feed-forward neural network, makes a decision on whether or not

to select each detected region to produce a report for. During training, there is an

abnormality detection model which is an structurally identical feed-forward network
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as the region selection model and determines if a region is abnormal, meaning that

it contains a disease. This will help DETR to come up with richer features which

subsequently helps region selection model to perform better. The third stage is a large

language model pre-trained on PubMed [22] and conditioned on the region features

which produces 1-2 sentences per selected RoI.

3.3.2 Problem Definition

Let C = {Xi}Ni=1 be a set of chest X-ray (CXR) images, where each image X ∈

RH×W×C has height H, width W , and C channels. Each image X is associated

with a radiology report Y = {s1, s2, ..., sT}, where st represents the t-th sentence

describing the observed findings in a particular anatomical region. The objective is

to design a model that generates a structured and clinically accurate report Ŷ that

closely matches the ground truth Y . The proposed model consists of three main

stages: anatomical region detection, region selection with abnormality classification,

and report generation.

3.3.3 Anatomical Region Detection

In the first stage of our model, we utilize a pre-trained DEtection TRansformer

(DETR) model to detect anatomical regions of interest (RoIs) within a given chest

X-ray (CXR) image X. The DETR model outputs a set of bounding boxes, each

corresponding to a distinct anatomical region, along with its associated class label

and confidence score. Formally, the output of DETR can be represented as:

B = {(b1, c1, s1), (b2, c2, s2), . . . , (bK , cK , sK)}, (3.3.1)
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where bi = (xmin, ymin, xmax, ymax) represents the coordinates of the i-th bounding box,

ci is the class label assigned to the detected region (selected from a predefined set of

K anatomical regions), si denotes the confidence score for the detection, reflecting

the likelihood of the region being a valid anatomical structure. For each region query,

the final hidden state of the DETR decoder provides a feature representation that

encapsulates contextual information about the detected anatomical region. We denote

this set of learned representations as:

F = {f1, f2, . . . , fK}, (3.3.2)

where fi corresponds to the last hidden state of the decoder for the i-th detected

region. These feature representations serve as high-level embeddings that encode

both spatial and semantic characteristics of anatomical regions. The extracted region

features F are then passed to subsequent model components, including the region se-

lection module and the abnormality classification module, to determine which regions

should contribute to the final report. By leveraging DETR’s self-attention mecha-

nisms, the model efficiently localizes key anatomical structures, providing a strong

foundation for clinically meaningful text generation in later stages.

3.3.4 Region Selection and Abnormality Classification

A multi-layer perceptron (MLP) is used as a region selection module to determine the

importance of each detected region for report generation. The selection probability

for each region is given by:

pk = σ(MLPselect(fk)), k = 1, . . . , K, (3.3.3)

37



M.Sc. Thesis—M.E. Dehaghani McMaster University—Computing & Software

where σ(·) denotes the sigmoid activation function. Regions with pk exceeding a pre-

defined threshold are retained for report generation. Additionally, an abnormality

classification module, structurally similar to the region selection MLP, is incorpo-

rated only during training to refine DETR’s focus on clinically relevant regions. The

abnormality score for each region is computed as:

ak = σ(MLPabnormal(fk)), k = 1, . . . , K. (3.3.4)

This module is will also improve the quality of representation features extracted by

DETR.

3.3.5 Report Generation

The final stage of our model utilizes a GPT-2 Medium decoder to generate textual

descriptions of the detected anatomical regions. Given the set of selected regionsR′ =

{rj}Mj=1 and their corresponding visual features X = {fj}Mj=1, the decoder incorporates

both textual and visual context to generate the final report. GPT-2 is an auto-

regressive neural model that leverages self-attention mechanisms to generate each

token based on the context provided by all preceding tokens. Mathematically, the

standard self-attention mechanism in GPT-2 is given by:

SA(Y ) = softmax((YWq)(YWk)
⊤)(YWv), (3.3.5)

where Y represents the token embeddings, and Wq,Wk,Wv denote the query, key, and

value projection parameters. To ensure that report generation is informed by the most

clinically relevant regions, we make use of pseudo self-attention (PSA) [36] mechanism,
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which integrates region-level visual features into the self-attention computation:

PSA(X, Y ) = softmax

(YWq)

XUk

YWk


⊤

XUv

YWv

 , (3.3.6)

where X consists of the selected region features fj, and Uk, Uv are newly initialized

key and value projection matrices for the visual features. By integrating pseudo

self-attention, the model conditions text generation not only on previously generated

tokens but also on visual information extracted from diagnostically relevant regions.

This ensures that the final report is both contextually and clinically aligned with the

detected abnormalities.

3.3.6 Training

The training procedure is organized into three consecutive stages. Initially, the object

detection module is trained independently. In the second phase, the binary classi-

fication modules are incorporated, and both the detector and classifiers are jointly

optimized. Finally, in the third phase, the entire model undergoes end-to-end train-

ing, allowing all parameters to be updated. To optimize the language model, we

utilize only those region visual features that correspond to reference sentences in the

training data. This ensures that the region selection module is trained to accurately

identify regions that require textual descriptions. Note that we freeze the language

model and only parameters associated with injecting the feature vectors into the lan-

guage model are trained. For regions associated with multiple sentences, the target

sentences are concatenated to enable the model to learn to generate multiple-sentence

outputs where applicable. The total loss function used for training is defined as:
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L = λobj · Lobj + λselect · Lselect + λabnormal · Labnormal + λlanguage · Llanguage, (3.3.7)

where Lobj represents the loss function for the object detection module, which is based

on DETR. The terms Lselect and Labnormal denote the weighted binary cross-entropy

losses for the region selection and abnormality classification modules, respectively,

while Llanguage is the cross-entropy loss for the language model.

The loss weights are determined based on performance observed on the validation

set and are set as follows: λobj = 1.0, λselect = 5.0, λabnormal = 5.0, and λlanguage = 2.0.

3.4 Experiments

Implementation Details. We employ DETR with a ResNet-50 backbone as the

initial model for fine-tuning and extracting feature representations of anatomical RoIs.

As mentioned, the model is trained in three stages. In the first step, only the DETR

is trained, using a learning rate of 10−4 for DETR and 10−5 for the backbone. In the

second step, both DETR and the classifiers are trained. The learning rate for DETR

remains the same as in the first step, while the classifiers are trained with a learning

rate of 5×10−5. In the third and final step, all parts of the model are trained: DETR

is trained as in the first step, and both the classifiers and the language model are

trained with a learning rate of 5 × 10−5. We use the AdamW optimizer [18], with a

weight decay of 10−4 for DETR and 10−2 for the rest of the model. The batch size is

128 for the first two steps and 4 for the third step, which is accumulated to 64. We

used one NVIDIA H100 GPU with 80 GB of RAM for training. The first two steps
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were trained for 60 epochs, and the last step for 5 epochs.

To filter out duplicate detections of any RoIs, we post-process the DETR out-

put. Based on the confidence score of the model per anatomical region, we remove

the duplicate region with the lower confidence score. Both the region selection and

abnormality detection modules share the same architecture, consisting of a single

feed-forward network (FFN). The input dimension of the FFN is 256, matching the

dimension of each feature vector extracted by DETR. The hidden dimension is 64,

and the output dimension is 1, indicating whether a region should be selected for

report generation or identified as abnormal.

All images are single-channel grayscale, resized to 512×512 while maintaining their

original aspect ratio through padding as needed, and normalized to have zero mean

and unit variance. Data augmentation is applied to each image with a probability

of 50%, including one or more of the following: color jitter with 20% variation in

brightness and contrast, Gaussian noise with zero mean and variance sampled from

the range [10, 50], or an affine transformation consisting of translation up to ±2% of

the image dimensions and rotation up to ±2◦.

Dataset. For training and evaluation, we utilize the Chest ImaGenome v1.0.0 dataset

[34], which is derived from the MIMIC-CXR dataset [11]. MIMIC-CXR consists of

a large collection of chest X-ray images paired with corresponding free-text radiol-

ogy reports. The Chest ImaGenome dataset extends this by providing automatically

generated scene graphs for each frontal chest X-ray in the dataset. Each scene graph

encodes information about 29 distinct anatomical regions within the chest, repre-

sented as bounding box coordinates. Additionally, it includes textual descriptions
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for each region whenever such descriptions are present in the associated radiology re-

port. We follow the official 70/10/20 dataset split, which consists of 166, 512 images

for training, 23, 952 for validation, and 47, 389 for testing. We adopt the ”findings”

section of the radiology reports from the MIMIC-CXR dataset as our reference text,

following prior studies. The ”findings” section provides a summary of observations

recorded by radiologists. To ensure meaningful reference reports, we exclude cases

where the ”findings” section is empty. After this filtering step, the test set contains

32,711 images with corresponding reference reports.

3.5 Results

To measure the quality of the generated reports by the model, we evaluate at both the

report and sentence levels using widely adopted natural language processing (NLP)

metrics. At the report level, we compute BLEU [23], METEOR [1], ROUGE-L [14],

and CIDEr-D [26], which quantify the similarity between the generated and target

reports by measuring n-gram overlap. At the sentence level, we use METEOR, as

it is well-suited for both sentence and report-level evaluation, unlike metrics such as

BLEU. Table 3.2 shows the results for NLP metrics.

Conventional NLP metrics primarily focus on lexical overlap and may not ac-

curately reflect the clinical correctness of generated reports [3, 17, 24]. To address

this limitation, we follow previous works in reporting clinical efficacy (CE) metrics

[6, 17, 20]. These metrics evaluate the agreement between generated and reference

reports based on the presence status of key clinical observations, providing insight

into the diagnostic accuracy of the generated text.

Clinical efficacy (CE) metrics evaluate the context alignment between generated
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Region RL LL SP MED CS AB Average

IoU 0.931 0.921 0.875 0.871 0.832 0.923 0.876

Table 3.1: Micro-averaged object detection results across six prominent regions:
right lung (RL), left lung (LL), spine (SP), mediastinum (MED), cardiac silhouette

(CS), and abdomen (AB). Nearly all of the 29 anatomical regions are typically
detected in each CXR.

radiology reports and their reference counterparts concerning a set of clinically obser-

vations. We follow the previous work which aggregates example-based scores across

14 observations [20]. Table 3.3 shows the results for CE metrics.

To implement these assessments, we first utilize CheXbert [29], a BERT-based

[7] information extraction system, to classify each observation into four categories:

positive, negative, uncertain, or no mention. The observations include 12 disease

types along with ”Support Devices” and ”No Finding.” We convert these multi-class

labels into binary classes with grouping positive and uncertain labels as the positive

class, while negative and no mention are considered negative. For the final evaluation,

example-based precision, recall, and F1 scores are computed over all 14 observations.

3.6 Conclusions

In this study, we investigated the integration of DETR, a transformer-based model,

for automated radiology report generation from chest X-ray images. Our approach

utilized DETR as a representation learning model to extract comprehensive feature

representations for various anatomical regions, facilitating the extraction of meaning-

ful visual information. These extracted features were then leveraged for generating

free-text radiology reports.

Our results demonstrate that our method is capable of producing grammatically
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

R2Gen [6] 0.353 0.218 0.145 0.103 0.142 0.277 0.406†

CMN [5] 0.321 0.218 0.148 0.106 0.146 0.278 -

PPKED [15] 0.360 0.224 0.149 0.106 0.149 0.284 0.237

M2 TR. PROGRESSIVE [21] 0.378 0.232 0.154 0.107 0.145 0.272 -

Contrastive Attention [16] 0.350 0.212 0.152 0.109 0.151 0.271 -

AlignTransformer [35] 0.378 0.235 0.156 0.112 0.158 0.278 -

M2 Trans w/ NLL [19] - - - - - - 0.445

M2 Trans w/ NLL+BS+fCE [19] - - - - - - 0.492

M2 Trans w/ NLL+BS+fCEN [19] - - - 0.114 0.124 - 0.509

ITA [33] 0.395 0.253 0.170 0.121 0.147 0.284 -

CvT-212DistilGPT2 [20] 0.392 0.245 0.169 0.124 0.153 0.285 0.361

RGRG [31] 0.373 0.249 0.175 0.126 0.168 0.264 0.495

Ours 0.369 0.241 0.166 0.118 0.158 0.254 0.491

Table 3.2: Evaluation metrics for the full report generation task using natural
language processing (NLP) techniques. Reported metrics include BLEU-1 to
BLEU-4, METEOR, ROUGE-L, and CIDEr. A dash (–) indicates unavailable

values. The CIDEr score marked with † is referenced from [19].

Method P R F1

R2Gen 0.331 0.224 0.228

M2 Trans w/ NLL - - -

M2 Trans w/ NLL+BS+fCE - - -

M2 Trans w/ NLL+BS+fCEN - - -

CMN 0.334 0.275 0.278

Contrastive Attention 0.352 0.298 0.303

M2 TR. PROGRESSIVE 0.240 0.428 0.308

CvT-212DistilGPT2 0.359 0.412 0.384

RGRG [31] 0.461 0.475 0.447

Ours 0.354 0.290 0.301

Table 3.3: Clinical efficacy (CE) metrics example-based averaged over 14
observations. Dashed lines indicate missing values. All results except RGRG are

cited from [20].

coherent reports with a quality comparable to state-of-the-art models. While the

proposed architecture may exhibit certain limitations in capturing clinical context as

effectively as existing SOTA models, the strong potential of transformer-based vision
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models suggests promising avenues for future research. Exploring alternative archi-

tectures or complementary methodologies could further enhance the clinical accuracy

and effectiveness of such models in radiology report generation.
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Chapter 4

Conclusion

In this thesis, we explored the use of upstream transformer-based vision models for

representation learning to interpret and extract clinically meaningful information from

chest X-rays (CXRs). We proposed a novel architecture that leverages these learned

representations to perform various downstream tasks, including localized disease clas-

sification and progression monitoring. Additionally, we extended this approach to

investigate its potential for generating free-text clinical radiology reports from chest

X-rays.

In Chapter 2, we discussed the limitations of previous models in accurately iden-

tifying localized pathologies within CXRs and emphasized the clinical importance

of tracking disease progression. We introduced the novel task of localized disease

progression monitoring and proposed a simple yet effective architecture capable of

jointly performing both classification and progression monitoring. Utilizing DETR as

a backbone for representation learning, our model achieved an average ROC of 89.1%

across nine pathological findings for localized disease detection, which is competitive
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with existing state-of-the-art methods. Furthermore, our model attained an aver-

age accuracy of approximately 67% and an F1 score of around 71% in the localized

progression monitoring task.

In Chapter 3, we investigated the ability of our approach to generate high-quality

radiology reports from CXRs. We utilized the same representation learning architec-

ture used in Chapter 2 and designed a dual-network setup consisting of two identical

neural networks: one responsible for selecting relevant image regions to describe, and

another, used only during training, to refine the model’s focus on abnormal regions.

These components were coupled with a large language model to form the downstream

model architecture and be used to generate coherent and clinically relevant report

text. Our experiments demonstrated that the proposed method outperformed or was

competitive with most of the existing models in terms of grammatical fluency and in

terms of clinical efficacy metrics.

Despite the promising results, our method has limitations, particularly in report

generation. In certain clinical efficacy metrics, our approach underperforms compared

to methods such as RGRG. Future work could explore alternative architectures or

enhancements to our current framework to address these shortcomings. Additionally,

there is potential to extend this work by generating more structured and interpretable

clinical reports, which could aid radiologists in more robust and systematic analysis

of chest X-rays.
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