
The Effect of Pre-Main Sequence Evolution on Star Cluster

Dynamics



The Effect of Pre-Main Sequence Evolution on Star Cluster

Dynamics

A Thesis

Submitted to the School of Graduate Studies 

in Partial Fulfilment of the Requirements 

for the Degree

Master of Science

McMaster University

©Copyright by Robert Wiersma, December 2004



Master of Science (2004)

(Department of Physics and Astronomy)

McMaster University

Hamilton, Ontario

TITLE: The Effect of Pre-Main Sequence Evolution on Star Cluster Dynamics

AUTHOR: Robert Wiersma, B.Sc.

SUPERVISOR: A. Sills

NUMBER OF PAGES: xii, 95

ii



Abstract

The effects of adding pre-main sequence stellar evolution to a stellar dynamics pro­

gram is investigated. Based on available stellar evolution tracks, pre-main sequence 

evolution from birth to the zero age main sequence was implemented into the popu­

lar dynamics code Starlab. Medium-sized star clusters were modeled under different 

circumstances, paying special attention to the differences in stellar population. In all, 

3 sets of simulations were used. The first was a control set with all stars starting at 

the main sequence. The second used similar parameters as the first, but with stars 

beginning their evolution at the pre-main sequence. Because pre-main sequence stars 

have such large radii, a large number of the binary stars were in contact. For the 

third set, the binary parameters were adjusted to ensure that all of the binary stars 

were detached.

The second set of simulations produces a luminosity profile that is dominated by 

high magnitude stars in the early years of the clusters. It also experiences a large 

number of mergers, which affect a number of dynamical properties of the models. The 

mergers lower the binary function of the clusters, which slightly affect the behaviour of 

its core. More intermediate mass stars abound in the clusters, which leads to higher 

mass loss through stellar evolution and more high velocity escaping star systems. 

Fewer blue stragglers are observed since many of the close binaries merge very early 

on in their existence.

The third set of simulations yields similar results, but mostly for different reasons. 

There are very few mergers in this implementation, but since there are few hard 

binaries and more soft binaries many of the multiple systems break up, yielding 

a similay binary fraction to that of the second set of simulations. Very few of the 

binaries in these models circularize in stark comparison to the first two sets of models,
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which experience circularization in a fraction of its binaries. These models also end 

up having a slightly higher concentration at the end of the simulation, with a core 

density of roughly 3 times that of the other sets after 1.5 Gyr.

In general, adding pre-main sequence evolution to star cluster simulations de­

creases the binary fraction and the number of hard binaries in the cluster. Thus 

pre-main sequence evolution should be computed for high detail simulations.
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Chapter 1

Introduction

1.1 Overview of Star Clusters

Star clusters have been an accessible environment in which to study the properties 

of stars for the past century. Although some clusters (such as the Pleiades) are visible 

to the naked eye, telescopes were able to reveal the more precise nature of them. As 

astronomers such as Messier (1784) began to catalogue objects in the sky (which were 

recognised as star clusters soon after), their importance became apparent. Herschel 

(1893) built on Messier’s work to dramatically expand the number of recorded clusters. 

Better telescopes and the ability to record observations as photographs eventually 

enabled observers to perform star counts of clusters. Bailey (1893) made the first of 

these counts on w Centauri and 47 Tucanae which laid down qualitative descriptions 

of these clusters. The first model was a fit of a function to the stellar distribution to 

these observations by Pickering (1897).

The emergence of robust theoretical distribution models for star clusters followed. 

The first serious static models were formulated by Plummer (1905) and Plummer 

(1911), using various power law forms, and were followed by gradual improvements in 

the formulations until the 1930s (Meylan and Heggie 1997). After a short period of 

neglect, star cluster theory was revived, culminating in the model proposed by King 

(1966) which is still used today. From this point, theoretical research in this area
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moved towards dynamical models, which moved the calculations from the pencil and 

paper and eventually required vast computational resources.

Star clusters represent a halfway point in terms of the scale in which objects in 

the universe are studied. Any system larger than a star cluster makes the effect 

of individual evolution and encounters that occur amongst the composite objects 

negligible and any object that is smaller than a star cluster results in a lot of statistical 

noise, making the overall dynamics of the system not representative of those sorts of 

systems. In general, star clusters provide astronomers with laboratories for three 

major fields: dynamical, binary, and stellar evolution.

Dynamical evolution is found in an ideal form in star clusters. The number of 

objects is manageable, so the objects of the system can often be tracked individually. 

It is especially important to have a manageable number of objects when simulating 

a system where collisions are permitted, as computational requirements can be pro­

hibitive. To study a system of more than 100,000 objects where encounters occur can 

take months, possibly more depending on the accuracy of gravitational calculations 

required. On the other hand, star clusters contain enough objects that they are quite 

protected from the dangers of small number statistics. For systems of less than 500 

objects, it is uncertain whether the evolution of a single system can yield general 

properties of such systems.

Stars often occur in multiple systems with rather tight orbits. Binary systems are 

the most prominent, and over time can exhibit fascinating phenomena such as mass 

transfer and encounters with other systems. While these systems are important in 

themselves, they serve as an interesting interface between the dynamical evolution of 

the cluster and the stellar evolution of the individual stars. Binary star systems act 

as energy sinks and can drastically effect the overall properties of the cluster. Before 

globular clusters were thought to have primordial binaries, dynamically produced
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binaries were recognised as a key population for halting core collapse (Elson et al. 

1987). If stars in a binary system undergo mass transfer, individual stellar evolution 

can be affected in a noticeable way as well.

As far as single star evolution is concerned, star clusters are a perfect environment 

in which to study it. Typically, stars found in clusters have formed roughly at the 

same time, and with the same material, but have a wide range in masses. This allows 

astronomers to observe stars that are undergoing many stages of stellar evolution, 

which is vital for verifying theoretical models. In addition, exotic objects such as 

so-called “blue stragglers” (which can often only be identified as such in the context 

of a cluster) manifest themselves most frequently in star clusters.

Two flavours of star clusters exist in the our galaxy: globular clusters and open 

clusters. Globular clusters in our galaxy represent the old order of stellar associations. 

Globulars are large clusters with stars numbering in the hundred thousands. As these 

clusters have ages on order of 10 Gyr, we find that star formation in them is completely 

finished and high mass stars are absent from their make-up. Found mostly clustered 

around the galactic centre, old, metal-poor (population II) stars represent standard 

globular constitution.

Open clusters on the other hand, are young clusters that reside in the galactic disk. 

These clusters are often less than 1 Gyr in age, and have anywhere from hundreds to 

tens of thousands of stars. Unlike globulars, a number of open clusters reside within a 

reasonable range of the solar neighbourhood, so they are often ideal for study. Open 

clusters contain young, metal-rich (population I) stars which make them attractive for 

modeling since so much is known about these stars from observations and modelling 

of stars in the solar neighbourhood. Because open clusters reside in the galactic disk 

and have a lower total mass, they are more susceptible to tidal effects from the galaxy
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itself. This shortens the lifetime of these clusters and masks some of their dynamical 

properties.

In addition to the above properties, open clusters exhibit many more effects of 

importance to astronomers. In general, they provide an excellent venue to examine 

the result of evolution of an N-body system. The processes of mass segregation, 

core collapse, and evaporation take place on a time scale short enough that they 

can be noticed when comparing clusters. Their observed high binary fraction (50% 

(Portegies Zwart et al. 2001)) allows for direct observation of its impact on the 

dynamical properties of the cluster. Open clusters give an accessible laboratory for 

various astronomical phenomena.

1.2 Overview of Pre-Main Sequence Evolution

Observable stars exist at various stages of evolution with some on the main se­

quence, some on the giant branch, and some as remnants. Even the ancients recog­

nised that some stars are of different colour, although it is doubtful that they at­

tributed those colours to an evolutionary sequence. It wasn’t until the 20th century 

that a solid description of how stars evolve formed. The pioneering work of Salpeter 

(1955) outlined the expected fraction of white dwarf to main sequence stars and 

speculated that white dwarfs are a later evolutionary stage of main sequence stars. 

Hayashi (1961) described what a fully convective star would look like, and mapped 

it to giant stars as well as protostars that are collapsing into main sequence stars.

Sometimes observed stars with the prototype T Tauri, pre-main sequence stars 

represent the stage of stellar evolution beginning where core deuterium burns and 

ending where core hydrogen burns. Any object earlier than this phase can be referred 

to as a protostar and any object that is finished going through this stage should be a
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main sequence star. In the protostellar stage, gravitational collapse is the dominant 

process, but radiation pressure from nuclear burning eventually plays a role through­

out the pre-main sequence phase. These stars spend more of this phase of evolution 

contracting, but have be shown to have subtle nuances in the way their luminosity 

and temperature evolve (D’Antona and Mazzitelli 1997).

So-called “T Tauri stars” have been known to exist for quite some time, but 

up until the last half the past century, they were known for their variability. Joy 

(1945) initially recognised the importance of these objects, probing deep into dense 

molecular clouds. He assembled the first collection of T Tauri stars and characterized 

their spectra. Through the work of Herbig (1957) and Walker (1956), it became clear 

by star cluster aging and H-R diagram placement that these stars represent a very 

early stage of stellar evolution. Cohen and Kuhi (1979) produced the most complete 

optical survey of T Tauri stars at that time, and described 4 regions of recent star 

formation in their work.

Theoretical models of pre-main sequence stars seemed to initially be little more 

than a distraction to stellar astrophysicists. Modeling efforts in this area began with 

Henyey et al. (1955) who computed a series of evolutionary tracks based mainly on 

gravitational contraction. Shortly thereafter, these became known as ‘pre-main se­

quence’ stars when Huang (1961) compared the tracks to known early-type stars in 

NGC 2264 on an H-R diagram. More detailed numerical work followed with Hayashi 

(1961) and Larson (1969), who made great efforts to make their models self-consistent 

by adding convection and other physical nuances. Simulations were performed sporad­

ically, with a lot of effort focused on the mechanism for protostellar accretion. This 

lead to the identification of the mass-radius relation for protostellar cores (Stabler 

et al. 1980a; Stabler et al. 1980b) and the pre-stellar ‘birthline’ (Stabler 1983; Cohen 

and Kuhi 1979). This birthline reflects where deuterium begins to burn and where
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stars first appear on the H-R diagram. Work on the pre-main sequence birthline 

continued into the 1990s and led to improvements in evolutionary models. Recently, 

models of pre-main sequence evolution have experienced a flurry of interest (Siess et al. 

2000: D’Antona and Mazzitelli 1997: Palla and Stabler 1999) as numerous groups are 

working on producing better stellar evolution tracks, using better understood physics 

based on more complete observations.

Because the radius of given pre-main sequence star is so much larger than its main 

sequence counterpart, it is possible that star-star interactions could play an important 

role in the history of a star cluster. Figure 1.1 demonstrates how the evolution of a 

0.8 Mq star can result in rather drastic changes in radius (Siess et al. 2000). Indeed, 

the radius of this star remains at a value more than six times the main sequence 

radius for a for 0.8 A/© star for a significant period of time and could affect the way 

in which it reacts to encounters with other stars.

1.3 Overview of Recent Computational Efforts

High-performance computers became the principal method of evolving theoretical 

models of star clusters somewhere around the middle of the twentieth century. Three 

major perspectives, gas, Fokker-Planck, and N-body models, dominated these efforts, 

each with its own benefits and drawbacks. They can often be combined with each 

other when convenient (Elson et al. 1987). A brief outline of each follows.

As the first inroads into theoretical star cluster dynamics were made, the similar­

ities between a star cluster and a cloud of gas became apparent. Both objects are 

made up of thousands of components which possess similar apparent randomness in 

their motions. The main problem with this comparison is that the mean free path 

of a molecule in a gas cloud is much shorter compared to the size of the cloud than
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t [yr]

Figure 1.1: Pre-main sequence evolution of the radius of a 0.8 M& star using the 
tracks of Siess et al. (2000). The age of the star is adjusted with the birthline from 
Palla and Stabler (1999).
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a star in a cluster (Moylan and Heggie 1997). Although gas models are rather sim­

plistic. they are relatively easy to implement computationally. These type of models 

date back to Jeans (1913). but the first serious attempt at gas model simulations was 

performed by Larson (1970) and work continued along these lines through the 1980s. 

Interest in this technique has subsequently fallen off.

Towards the middle of this past century, it became apparent that statistical ap­

proaches were necessary in order to adequately model large collections of stars. Henon 

(1961,1965) first proposed applying Fokker-Planck equations to star clusters, which 

is essentially a weak scattering approximation. Great leaps were achieved using this 

method and some of the first attempts at evolving a cluster through time were made. 

Henon (1961) began his models with an infinite central density with an energy flux 

from a central singularity and later (1965) showed that a star cluster will evolve to 

this point anyway; a phenomenon now known as “core collapse”. Eventually, Henon 

(1975) exposed a life beyond this event when he demonstrated that core collapse in a 

star cluster is better likened to a bounce, as the post core collapse phases of evolution 

exliibit gravitational oscillations. As the demand for more and more sophistication 

in simulations increases, the use of Fokker-Planck models has decreased.

Superficially, the most logical way to model star clusters is to keep track of each 

individual star and calculate the forces between them one by one. This ‘N-body’ 

approach was initiated by von Hoerner (1960), who used as many as 16 particles, but 

serious attempts at N-body modeling didn’t occur until the mid-1980s, specifically 

with Aarseth (1985). Unfortunately, N-body star cluster simulations are rather trou­

blesome. While cosmological simulations of this sort have become quite advanced, 

the assumptions and resolution used for them produce gr oss inaccuracies for star clus­

ters (Meylan and Heggie 1997). Because of the scale, cosmological simulations use 

particles to represent a some mass (dark matter, gas clouds, stars, etc.) of matter
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in the universe, rather than an individual object. Star cluster simulations produce a 

distribution of a small number of objects, while cosmological simulations produce a 

density distribution using a large number of objects.

The timesteps required to follow a N-body star cluster simulation are typically 

much smaller than those for cosmological simulations. In fact, if second order dif­

ferential equations are used, by the time a given interaction has been calculated and 

carried out, many of the stars have already changed direction completely. This prob­

lem is usually solved but checking for energy conservation after each step, but a more 

proactive approach to ensuring accuracy is by way of a Hermite scheme, see Makino 

and Aarseth (1992), which uses acceleration and jerk to predict the next location of 

the particles. Such schemes are quite fast, thus providing computational time that 

can be spent on other cluster properties.

Over the past decade, dynamical simulations of star clusters have become much 

more realistic. This realism takes the form of an increasingly complicated treatment 

of individual stars in the cluster. For years, dynamical models only considered stars 

as single, equal-mass, non-evolving points. The introduction of a mass function into 

dynamical models quickly necessitated some treatment of stellar evolution, since liigh 

mass stars have much shorter lifetimes than low mass stars. Mass loss from high 

mass stars can also have a substantial impact on the dynamical evolution of the 

cluster (Elson et al. 1987). Similarly, the addition of binary evolution to a simulation 

can significantly impact its outcome.

Stellar dynamicists realized that the point mass approximation for stars was ne­

glecting a number of dynamically significant processes in clusters. Allowing stars to 

have radii that change as they evolve was an important next addition to stellar dy­

namics simulations (Kroupa 1995; Portegies Zwart et al. 2001; Hurley et al. 2001). 

Finite stellar radii are most important for two aspects of these simulations. First,
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binary stars can undergo mass transfer as one member of the system fills its Roche 

lobe, either through evolution of the star or dynamical modification of the orbital 

parameters of the system. Changing binary systems will change how’ the binaries 

affect the evolution of the cluster. In the extreme case, the two components of the 

binary system can merge. Secondly, stars with finite radii can collide with other stars. 

The low velocity stellar collisions that occur in star clusters produce blue stragglers 

(Sills et al. 1997) and could produce other non-standard stellar populations. These 

populations in turn can change the local dynamical evolution in the cluster.

A number of authors have endeavoured to push the limits of realism in dynamical 

simulations. Hurley et al. (2001) started their simulations with 10000 - 15000 stars 

distributed via Plummer and King models with varying fractions of binaries. They 

assigned masses to these using stars using (Kroupa et al.) (1991, 1993) initial mass 

functions (IMFs), and evolved them from the main sequence using recipes detailed 

in Hurley et al. (2000). Their models considered the effects of galactic tidal fields 

and strip off escaping stars. Because their study focused on blue stragglers, they 

included collisions and mergers as well as close encounters. Portegies Zw’art et al. 

(2001) started with a somewhat similar model, but with 3096 stars all distributed 

using a King model, and using a Scalo (1986) mass function. Their treatment of 

binary and stellar evolution was somewhat different, although they too began their 

stars on the main sequence. Both these papers w’ere among the first to include a 

consist ::;:: treatment of stellar evolution, a very significant achievement because it is 

effectively impossible without a high degree of detail. Adding a mass spectrum to an 

/- .: ':--■ r . ?/::.•:.. >:.a v mass loss, which requires a detailed

treatment of binary evolution and accretion since our ‘bodies’ have radii. Fortunately, 

tins has resulted in data that is looking more and more similar to that taken from 

observations. Colour-magnitude diagrams and density profiles of these clusters can at
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times match up quite nicely with their observed counterparts (Portegies Zwart et al. 

2001). In spite of this progress, there is room for improvement in matching observed 

binarity and luminosity distribution.

Young open clusters are of particular interest when simulating star clusters. Be­

cause they tend to have fewer stars, open clusters provide observations that do not re­

quire prohibitive computational expense to reproduce. Some open clusters are young 

enough to have pre-main sequence stars that are observable; indeed numerous au­

thors have reported pre-main sequence stars in the Pleiades (Garcia Lopez et al. 

1994; Stauffer et al. 2003). As stated previously, open clusters have both small-scale 

and large-scale properties that make them an excellent place to start when integrating 

stellar evolution with dynamics.

Previous work assumed that all stars began their lives on the main sequence (or 

in some cases, a more evolved state). However, low mass stars make up the bulk 

of stars by number in a cluster for any reasonable initial mass function. Low mass 

stars also have a significant pre-main sequence lifetime, significantly influencing a 

cluster population. These young stars have radii which are upwards of 10 times 

larger than their main sequence radii. Therefore, some binaries could have undergone 

an episode of mass transfer that is not taken into account. Also, larger stars are 

more likely to have experienced a collision; those collision products would have been 

missed in previous simulations. Including pre-main sequence evolution is regarded as 

a potentially important step in increasing the realism of stellar dynamics simulations 

(Sills et al. 2003).

11
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1.4 Thesis Objective
The hypothesis that the addition of pre-main sequence evolution will noticeably 

affect the overall appearance of the cluster shall be tested. Does this enhancement 

increase a simulation’s ability to mimic observations? Other than apparent age, what 

properties of the cluster will differ from a simulation begun at the main sequence? 

Do future star cluster simulations require the inclusion of pre-main sequence stellar 

evolution or can it be neglected? Simulations begun at the pre-main sequence will 

be compared to those begun at the main sequence, and the implications for possible 

observational similarities will be discussed.
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Chapter 2

Simulation Environment

2.1 Star lab

The simulations were run using the Starlab environment, version 4.1.1 (Hut 2001). 

This package features a dynamical integrator which considers stellar encounters by 

interacting with a binary/stellar evolution module. This way, the entire cluster may 

be evolved consistently. The two main components of this code are named Kira 

(which controls the N-body integration and the higher order evolution of the system) 

and SeBa (which controls the stellar and binary evolution). The Kira component 

evolves the system dynamically and then sends and retrieves the individual evolution 

information from SeBa.

2.1.1 Kira

Kira was the main module from which the simulations were performed. From 

this basic integrator, all of the other required details of the simulation are called. It 

evolves the system using an adaptive timestep and goes through the following steps 

each time:

• Flag stars which need to be updated (according to the timestep specified upon 

the previous iteration). Timesteps are chosen as powers of 2, so there are often 

a number of stars in this list.

13
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• If necessary, perform various 'housekeeping' operations. These include: sys­

tem reinitialization, output logging, escaper removal, run termination, and/or 

snapshot output. Output logging refers to recording certain system parameters 

whereas snapshot output dumps the position and state of all stars in the system.

• Predict location and velocity of all stars (using the GRAPE (see section 2.2)).

• As per the Hermite scheme (see below), compute acceleration and jerk and 

correct positions and velocities of flagged stars (using the GRAPE).

• Flag multiple star systems as perturbed or unperturbed by other stars.

• Flag apparent collisions and mergers.

• Reorganise tree, if necessary. That is, if stars are interacting with a multiple 

system, add them to that node.

• Evolve single and multiple stars with SeBa.

The Hermite predictor-corrector scheme (Makino and Aarseth 1992) is a method 

of N-body integrating which attempts to reclaim some of the accuracy lost due to 

the use of discrete timesteps. It uses acceleration and its time derivative (jerk) to 

compute predicted positions and velocities. New acceleration and jerk values are 

computed based on the predicted positions and velocities, which are in turn used to 

correct the motion of the stars. If we let x^,-, vprojii, a,-, v,-, and x, denote the time- 

projected position, time-projected velocity, current acceleration, current velocity, and 

current position respectively for a given timestep dt, then we have

di?. dt? ,.
X?roj,i---- y^i d n”®! d" dtVj d* Xi 

6 2
(2.1)
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and

dt2
vProj,i = -z-a, + dt^ + Vj. (2.2)

Of course, the acceleration and jerk values are calculated by integration:

(2-3)

(2-4)

where r^ and v^- represent the differences between the projected and the current 

positions and velocities respectively. If a; is expanded using Hermite polynomial 

interpolation, then the second and third order time derivatives calculated at time t, 

a0,i and a^ are given by

-6(ao,i - ai,i) - dt(4ao,i + 2aiti)
a°’f _ dt7 (2-5)

and

(3) _ H^uojj^M^Ojj^-^^I^^J^
a°.i ” de (2-6)

where ai,, and a^j are calculated at time t + dt. Finally, the corrected position 

and velocity will be

dt^ dtP
Xi(t 4” dt} = ^-proj,i 4" "24"^'* "^ T20^'* ’ (2.*0

and

dt3 dt4 (3)
Vi(t + dt) = vproj,i + -yao.i + ^4 ^.i • (2-8)
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To deal with binary and higher order systems. Kira employs a linked-list to com­

pose a tree structure, where single stars arc counted as leaves. Figure 2.1 shows how 

binaries make up branches so that when the integration is performed, these systems 

make up nodes, and count as one object for gravity to interact with. This simplifies 

the situation drastically since the orbital positions in binary stars are left to SeBa to 

calculate. When encounters with other stars or star systems occur, these branches 

are easily modified to reflect the new systems. For instance, if a binary system with 

stars A and B encounter a single star C, the tree can go from having A and B being 

on one node and C being on its own node, to A, B, and C sharing a node as a triple 

system, and then finally, A and C sharing one node as a binary and B occupying one 

as a single star.

integration done at this level

binary evolution

done at this level

Figure 2.1: The tree structure employed in Starlab.
Circles labeled s, b, and t indicate single, binary, and triple star systems respectively. 
On the left is a system undergoing a three body exchange (a binary has encountered 
a single star and is ‘trading partners’). The binary system on the right is being 
perturbed by the nearby single star system.

In addition to the tree structure, Starlab tracks binary systems to detect if other 

stars are in the neighbourhood to perturb the orbit. If there are not perturbing stars, 

then the binary orbit is solved analytically by SeBa, but if there are stars nearby, 

their effect acts to perturb the binary system (even though these other stars are still
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on their own node). Perturbed and unperturbed binaries are schematically shown in 

figure 2.1. Kira attaches a list of nearby perturbers to each binary and updates this 

list every center of mass step.

Kira gives the option of executing this whole process in the presence of a tidal field. 

This field will exert a potential upon the cluster and affect the motion of the individual 

stars. There are a few different tidal field options, but the simulations presented here 

impose a galactic disk tidal field similar to that of Heggie and Ramamani (1995). The 

general form for the potential of a tidal field is

0eit = -(aix2 + q322), (2-9)

where the line from Galactic center to the cluster center forms the x axis and the 

z axis represents the axis of rotation for the Galaxy. For a disk field, the equations 

for the coefficients are given via the Oort constants A and B, with a local Galactic 

density pg

ai = — 4X(A — B),

and

a3 = 47vGpg + 2(X2 - B2).

(2-10)

(2-11)

Heggie and Ramamani (1995) adopt the values A = 0.0144 km s l, B = —0.012 km 

s-1, and = 0.11 M© pc-3, and the Jacobi radius (used for stripping escaping stars) 

takes the form

(2-12)
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The distribution of stars can be given by a number of models. One of the most 

common models is the King (1966) model. The standard King model can be expressed 

as:

p = Ke" [ e^rfidp, (2.13) 
Jo

where K is some constant, IV is a free parameter specified by a central value of the 

dimensionless depth I Vo, and r] is a function describing the angular momentum at a 

certain point which is dependant on the position vector f. Wlien a tidal field being 

used, Starlab sets the model up accordingly. The formulation is identical, except that 

7j takes into account an external potential.

The stars on the outer edge of the system may be “stripped” when they get too 

far away. The stripping radius may be set to any value, but is usually a multiple of 

the Jacobi radius. Stars will drift this far away from the cluster for three reasons. 

The first is if there is a tidal field that is imposed on the cluster (usually to represent 

the effect of the centre of a galaxy), then this may pull outlying stars away from the 

cluster. Another reason is if the star is has a binary companion that goes supernova, 

it acquire a velocity kick as a result. Finally, occasionally random motion in the 

cluster will cause evaporation.

2.1.2 SeBa

SeBa is the collective name for the module that handles stellar and binary evo­

lution. Each star in the cluster is governed by luminosity and temperature relations 

that depend on the star’s mass and age relative to the zero age main sequence. Es­

tablished formulae can take a star from the main sequence, through the giant branch, 

and to a compact object (Eggleton et al. 1989). In addition to these two properties, 

radius, bolometric correction, radius of gyration, mass loss due to stellar wind, and
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adiabatic and thermal mass transfer relations are determined for each star. These pa­

rameters are used to determine what the star should look like, but also how it behaves 

in various scenarios. For instance, the adiabatic mass transfer relation will determine 

how a given star will accrete onto a binary companion, given the opportunity. Stellar 

properties which are significant dynamically (radius and mass) are updated for kira 

every 1/64 of a crossing time if they have changed by more than 1%.

Individual stellar evolution is given mainly by the prescriptions found in Eggleton 

et al. (1989). These recipes assume solar metallicity, and are designed for population I 

stars. They provide luminosity and temperature for stars in main sequence and post- 

main sequence stages of evolution. As a given star evolves off the main sequence, 

it can go through a number of phases, depending mostly on its mass. Prior to this 

work, SeBa allowed for the following stellar types (and evolved through them more 

or less as shown here):

proto star. Typically unused, this mostly empty type describes a gravitationally 

contracting object on the Hayashi track.

planet. Unused type for low mass objects. Initial conditions are usually such that 

the simulation only describes stellar objects.

brown dwarf. A star with mass below the hydrogen burning limit. Initial conditions 

normally specify a range of stars that preclude brown dwarfs.

main sequence. A star with a hydrogen burning core.

hypergiant. A post-main sequence star with a mass greater than 25 Mq. A drastic 

mass loss stage that procedes a Wolf-Rayet star.

Hertzsprung gap. A post-main sequence star that is evolving toward the giant 

branch.
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sub giant. A star with a hydrogen burning shell.

horizontal branch. A star with a helium burning core.

super giant. A star with a two burning shells.

helium star. The helium core of a giant, as a result of stripping of mass by a binary 

companion.

white dwarf. A low mass stellar remnant.

Thorne-Zytkow. A neutron star with a hydrogen binning shell surrounding it. This 

can only happen as a result of a merger or collision.

neutron star. An intermediate mass stellar remnant.

black hole. A high mass stellar remnant.

disintegrated. Can be produced via a Type la supernova detonation of a white 

dwarf.

Each of these types have slightly different behaviour and evolves with its own pre­

scription. A star will typically evolve through a number of types until it becomes 

some sort of compact object (white dwarf, neutron star, or black hole). The limits 

that determine a star’s fate depend on the helium core mass at transition time. For 

core masses in between 2.2 M0 and 5 Mg a neutron star is formed, if the core mass 

is less than 2.2 M0, a white dwarf is formed. A black hole is formed for core masses 

above 5 Mg. If a star becomes a neutron star, it will receive a velocity kick in a 

random direction with a magnitude drawn from the distribution of

P(u)du = —7-, (2.14)
%(l + uy

where u = v/a and a = 600 km s-1 (Hartman 1997).
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Since the main sequence phase can occupy the majority of a star’s lifetime, the 

proper implementation of these parameters is essential to an accurate simulation. 

Functions expressing luminosity and temperature as a function of mass and time 

are readily available from Eggleton et al. (1989) (and radius can be obtained from 

these two). The evaluation of the stellar wind is performed as a simplified version of 

Schaerer et al. (1996), and is given by

(2-15)

where Cw represents the wind constant, ti represents the age of this particular 

evolutionary phase, t represents the age of the cluster, and dt represents the time 

step over which the wind is calculated. Cw can take on various values depending 

on the evolutionary state and the mass. For instance, on the main sequence, Cw is 

given the value of 42 for stars of mass over 85 Mq, 0 for stars less than 8 M0, and 

1% of the mass squared for all other masses. On the other hand, when a star is on 

the asymptotic giant branch, Cw is 80% of the initial envelope mass (Nelemans et al. 

2000).

Binary evolution is solved in a few different ways. Unperturbed binaries are 

evolved analytically as described by Portegies Zwart and Verbunt (1996). This is 

relatively easy since two body motion is generally quite predictable. Tliis type of mo­

tion requires attention if the stars are close enough to produce tidal circularization. 

The criterion for this is if the stellar radius for either star is greater than 20% of the 

distance between the star’s centers at periastron. The eccentricity, e, of the system 

will be reduced, but the semi-major axis, a, will be increased to maintain conservation 

of angular momentum:

(1 - e2i)ai = (1 - e20)a0. (2-16)
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This process will proceed until the orbit is circular or the periastron distance exceeds 

the stellar radius by a factor of 5.

Perturbed binaries are further divided into strongly and lightly perturbed sys­

tems but still experience the same effects of mass loss as their unperturbed coun­

terparts. Strongly perturbed binaries have an external perturbation factor that is 

greater than ten, and must be resolved into components and solved via integration 

over each member. Lightly perturbed binaries are slightly more complicated, but 

faster computationally. Their solution is based on Mikkola and Aarseth (1998), with 

slight modifications. Mikkola and Aarseth determined that perturbed binaries can be 

solved in a way similar to perturbed simple harmonic oscillators. This treatment leads 

to a solution with recursive Taylor series. The method is different because Mikkola 

and Aarseth employed a regularization scheme to the binary equations of motion, 

whereas Starlab applies the perturbations directly to the binaries. Small corrections 

are also applied to the orbits to ensure consistency and low computational costs.

In a two body system, orbital decay can result from a number of processes. Aside 

from actual contact of the stars, SeBa accounts for two modes of orbital decay. First, 

angular momentum can be lost via magnetic braking through stellar wind. This loss 

is applied only when a binary has is circularized or very close to circularization (e <= 

0.001). Rappaport et al. (1983) give a more thorough treatment of this phenomenon 

in their population synthesis (that is, binary simulations with no cluster dynamics), 

and the implementation followed here is a simplified version. The magnetic braking 

torque is first determined for each star, and then this is translated into angular 

momentum loss for the binary system. This torque, which applies to main sequence, 

sub giant, and Hertzpurg gap stars, is given by:

Tmb = -3.8 x 1O"3OM1110 [w3dyn cm, (2-17)
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where w is the angular frequency of the star, and 7 is the magnetic braking 

exponent, set to 2.5 in Starlab. In addition to this, angular momentum can be lost 

from the system through radiation of gravity waves. The prescription followed is 

given by Peters (1964), and describes the average decay of eccentricity by:

de _ 304 G3mpma(mp + ma) / 121 2\
dt ~ "T' A1!!-^2 V + S') ’ (2-18)

and the semi-major axis a can be determined from this by:

a(e) =
Coe12/19
1 — e2

121 ,1870/2299

304® . (2.19)

co is determined from the values of the previous timestep (or the initial conditions). 

For large separations this treatment isn’t valid, so the binary is first circularized 

(e = 0), and the semi-major axis a is adjusted by:

a(t) = (a40 - 4^)1/4, (2.20)

where

= 64 G3mpma(mp + ma) (221.)
5 c5

Often, the members of a binary system will undergo mass transfer from one star 

to the other. This will occur usually because of the radius evolution of the individual 

stars, but dynamic effects can also cause binaries to behave this way. The criterion 

for this is given by a star’s ability to fill its Roche lobe which is given by

_ 0.49g2/3 , .
“’O^ + lnp + t1'1)’ l'2)

where q is the ratio of the star’s mass to its companion’s mass (Eggleton 1983). If a 

binary star is in a mass transfer phase, the evolution is slowed to ensure that < 1%
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of the donor star’s mass is lost per timestep. In general, a typical step that a binary 

would undergo in SeBa would involve the following iteration (Portegies Zwart et al. 

2001):

1. Reduce angular momentum as a result of magnetic stellar wind.

2. Reduce angular momentum as a result of gravitational wave radiation.

3. Merge the stars if they satisfy the merger criterion.

4. Evolve primary star and correct orbit parameters in light of stellar wind mass 

loss.

5. Ensure that the binary system is intact. A supernova from one of its stars or a 

collision would destroy the system’s binarity.

G. Evolve secondary star and correct orbit parameters in light of stellar wind mass 

loss.

7. Ensure that the binary system is intact. A supernova from one of its stars or a 

collision would destroy the system’s binarity.

8. Apply tidal circularization and synchronization as necessary.

9. Determine if either star fills its Roche lobe. If not, return to Kira. Otherwise, 

identify donor and accretor and take subsequent action:

(a) Determine the time at which mass transfer begins.

(b) Ensure binary stability. If unstable, apply unstable mass transfer prescrip­

tion (if this results in a merger), and return to Kira.

(c) Calculate Qi, Cm, and Q,.

(d) Calculate the amount of mass loss from the donor.
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(e) Calculate the amount of mass gained to accretor.

(f) Remove the mass for the donor.

(g) Add mass to the accretor, evolve and rejunvenate accretor.

(h) Correct binary orbit parameters.

The instability criterion for unstable mass transfer is simple: if the donor’s angular 

momentum is greater than 1/3 of the binary system’s angular momentum, the mass 

transfer is considered unstable. Wliat happens next is dependent on the stars in 

the system. If the donor is a main sequence star, the two stars merge because the 

core/envelope structure is not as defined. If the donor is giant, then any giant in the 

system ejects its envelope at the expense of the orbital energy. A merger occurs if 

the donor still fills its Roche lobe after envelope ejection.

For stable mass transfer, it is important to determine which energy transfer mech­

anism will be dominant and therefore which timescale is significant. The key element 

to this formulation is the following relation:

dlnr 
d In m

(2.23)

Qh (for changes in thermal equilibrium) varies between 0 and 0.9 for various masses 

of main sequence stars, -2 and 15 for Hertzprung gap and horizontal branch stars, 

and 0 for all other types. Cad (for changes due to an adiabatic effect) is set to 2 for 

main sequence stars with masses greater than 0.7 AIq, and 4 for all other masses. 

For other star types Cad is assigned to a value based on a polynomial. The other 

pertinent variable is (ri, which describes how the donor’s Roche lobe changes. This 

is calculated by examining how the binary parameters are affected by an infinitesimal 

mass particle (Portegies Zwart et al. 2001).
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The mechanism employed is determined as follows:

Qui < Cm dynamic mass transfer timescale: Tdyn

Qh < Cri < Cad thermal transfer timescale: rth

(ri < Cad- Cri < Cth nuclear mass transfer timescale: minimum of rnuc and tj.

The timescales that are given can be expressed:

riyn ~ ^[r^/m • 5.1 x 10 n[Afyr], (2.24)

7«.~32m2/(r£W], (2.25)

7nuc^0.1tms, (2.26)

and

Tdyn — Jbin/(jyr 4" jmj)[Mj/r]| (2.27)

where r, m, L, and tms are the star’s radius, mass, luminosity, and main sequence 

lifetime respectively. Jgr and Jmi define angular momentum loss due to gravitational 

radiation and magnetic braking. In general, it is found that main sequence donors will 

not employ dynamic mass transfer, while supergiant donors will employ exclusively 

thermal and dynamic mass transfer.

When a star undergoes accretion from an outside source, the evolutionary state is 

altered. On one hand, a more massive star will evolve more quickly, but on the other 

hand, the accretion will add new material for nuclear burning which will make the 

star seem younger. The treatment of rejuvenation is somewhat simplistic in Starlab, 

but it is sufficient to produce a fair number of blue stragglers. The star’s properties 

are determined by their relative age (that is, its apparent age independent of when
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the cluster was born), trei. For a star undergoing an accretion of 6m, the new relative 

age can be expressed as:

trettm + 6m) = to.Xm + 6m) + (——+ 6m)1Z,
(2.28)

where to..i(m) represents the expected time required to evolve through all previous 

evolutionary states for a star of mass m and tj(m) represents the expected time 

required to evolve through the current evolutionary state for a star of mass m. TZ 

represents the rejuvenation factor. If this is set to unity (which it is if the donated 

material is not hydrogen), then the accreted star is not rejuvenated beyond changing 

the relative age to reflect the new, more massive star. Normally, TZ is set to a value 

greater than one:

_ m + 6m 
m

(2.29)

2.1 .2.1 Collisions/Mergers

One of the major features of using the Starlab environment is that there are 

prescriptions for mergers or collisions of varying types of stars. Collisions and mergers 

can be distinguished in that a merger is a result of unperturbed binary evolution, and 

is preceded by a period of mass transfer. A collision therefore, is an encounter between 

two stars that are typically not part of a binary system. Currently, the code does not 

follow collisions that don’t result in a merged object, so at the moment when the two 

stars are replaced by a single star the result will depend only on the types of stars 

and their mass.

Although SeBa reflects a somewhat simplified view of stellar collisions and mergers, 

often mergers that occur in the simulations produce blue stragglers. Prescriptions for 

encounters initially consider which star is the more massive of the two and then follow
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a set of rules depending on the types of stars in the encounter. If the secondary 

(less massive) star is a main sequence star, the rule is that the merger is treated 

as conservative mass accretion from the less massive secondary to the more massive 

primaiy. This results in a rejuvenation of the star which partially resets its age. If 

this is done with two main sequence stars that are close to the turn off mass, this 

may be observed as a blue straggler.

In the case of evolved secondary' stars, the prescription is slightly different. When 

the primary is a main sequence star, the product will be a Hertzprung gap star if 

the secondary' is a giant because this will accelerate the star’s evolution past the 

main sequence. If a more massive main sequence star meets a white dwarf, a giant is 

formed because there will already be helium core. Finally, a Thorne-Zytkow (Thorne 

and Zytkow 1977) object will be produced in the case of a secondary black hole or 

neutron star meeting a primary main sequence. Note that these scenarios are most 

likely to occur if the primary star is a product of a previous merger/rejuvenation and 

is therefore a blue straggler.

On the other hand, if the primary is a giant star, the product will be giant star 

as well (with a subsequently larger core mass) for giant and white dwarf secondaries. 

A neutron star or a black hole secondary that merges with a primary giant star will 

produce a Thorne-Zytkow object. If the primary is a compact object, most types of 

stars will form an accretion disc surrounding the primary star. Given enough mass, 

a white dwarf or neutron star primary could collapse into a neutron star/black hole. 

In general, accretion onto a neutron star will result in a millisecond pulsar.
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2.2 GRAPE-6

Simulations were run employing the tremendous computational power of the 

GRAPE-6 (Makino et al. 2003). The GRAPE-6 (GRAvity PipelinE) is the 6th 

generation of special purpose computers designed to perform gravity calculations on 

a list of objects. It is necessary since the accuracy required for these calculations 

result in rather short timesteps and high computational demand. While cosmological 

N-body simulations can be well adapted to parallel computer systems, the nature of a 

typical star cluster makes this troublesome. The important dynamics of star clusters 

can be found in a central core that is comparatively smaller than the system. In this 

core collisions and close interactions become very important. The bottleneck of the 

simulation is communication latency (Makino et al. 2003). Consequently, the most 

favourable approach is a dedicated hardware system.

The GRAPE acts as a fully contained ‘black box’ in that Kira sends it a list of 

particles with their masses and pertinent dynamical information and the GRAPE then 

outputs the position and velocity assigned to each object. After the initialization of 

the GRAPE in which all particles with the important data is sent, a single integration 

would proceed through the following steps (Makino et al. 2003):

1. Kira sends a list of particles to be updated.

2. Iterate steps 3-6 for each particle.

3. Kira predicts the position and velocity of the particle. This is received by the 

GRAPE (which calculates the jerk as well), and stored in the force calculation 

pipeline. The time in the predictor pipeline is reset to the current time.

4. The GRAPE integrates the forces from all other particles. The new position 

and velocity is calculated in the predictor pipeline.
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5. The GRAPE transmits the position and velocity to Kira.

6. Kira predicts a new timestep.

7. The present system time is updated.

The GRAPE-6 has been able to achieve speeds as high as a few Tflops (Makino 

et al. 2003), and increases performance greatly for star cluster simulations.
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Chapter 3

Pre-Main Sequence Implementation

To implement a pre-main sequence type into an already well-integrated code such 

as Starlab requires a great deal of care. Instead of revamping the ‘Proto Star’ type to 

make it more reflect reality, it was decided that a ‘Pre-Main Sequence’ type should 

be inserted in between the ‘Proto Star’ and ‘Main Sequence’ types. This ensures the 

ability to use the ‘Proto Star’ type to reflect pre-proto stellar cores and other early 

type objects. The entire pre-main sequence implementation is available as C++ code 

in Appendix B.

When considering pre-main sequence stars and their properties, there are two 

main aspects to note. The first is that a pre-main sequence star is almost completely 

convective. Since there is hardly any energy source other than gravitational contrac­

tion, they typically find themselves with very little if any radiative zone. The second 

is that stars on the pre-main sequence will still possess a composition similar to that 

of a zero-age main sequence star. That is, there will have been no nuclear reactions 

(with the exception of a small deuterium burning core) to affect its metallicity.

The most important thing to know about a star at a given time for dynamical 

simulations is its radius. The radius determines how a star will react when encoun­

tering other stars and when to initiate mass transfer in binary systems. The next 

most important aspect is either the star’s temperature or luminosity, as one can be 

determined from the other if radius is known. Since this data is usually presented in
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published stellar evolution tracks, it was necessary to examine contemporary publi­

cations of pre-main sequence tracks and find the most suitable.

After a brief search, the evolutionary tracks of Siess et al. (2000) were selected. 

They give pre-main sequence tracks that begin with a fully convective protostar, and 

end just after hydrogen burning begins. Their tracks have resolution in mass of 0.1 

.\IQ from 0.1 to 2 M3 and then transition to a resolution of 1 Mq between 4 and 7 

M$. We used the tracks for a metallicity of Z = 0.02 with no convective overshooting. 

We decided against using the tracks that had convective overshooting for a number of 

reasons. The first is that the amount of convective overshooting that actually occurs 

in pre-main sequence stars is uncertain and probably insignificant. The second is that 

it would add another complication to the system without much gain in realism. The 

third is that the other stages of evolution already neglect overshoot.

Because the tracks were raw and didn’t begin at any particular set time, they were 

modified to have consistent start and end times. One possible starting point is the 

deuterium burning limit, which is sometimes referred to as the “pre-main sequence 

birthline”. Deuterium burning typically occurs around a central temperature of 106 

K, and forms a birthline that travels across the H-R diagram just above the zero-age 

main sequence. To calculate the birthline, Palla and Stahler (1999) calculate the 

radius of an object after some mass M accretes on it, and then find the point on its 

Hayashi track where the stellar radius equals Ro(M). The tracks of Siess et al. (2000) 

were adjusted to begin at the pre-main sequence birthline and end at the zero-age 

main sequence (where the main sequence type would take over). Figure 3.1 shows 

the modified tracks.

These tracks were chosen from a variety of others (D’Antona and Mazzitelli 1997; 

Palla and Stahler 1999) for a number of reasons. The first is that they have sufficient 

resolution and span the entire range of masses to which pre-main sequence evolution
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Figure 3.1: Pre-main sequence tracks of Siess et al. (2000), adjusted with the birtliline 
from Palla and Stabler (1999). The masses shown are 0.1, 0.3, 0.5, 0.7, 1.0, 1.3, 1.6, 
2.0, 2.5, 3.0, 4.0, 5.0, and 7.0 Mq

33



M.Sc. Thesis-------- Robert Peter Wiersma----------McMaster University - Physics and Astronomy 2004

applies. Since theoretical tracks from different authors differ amongst themselves it 

was important to be able to have enough data to infer the properties of the star 

from a given mass and age. The range of masses is quite fortunate since our initial 

mass function has a lower limit of 0.1 M-. . and pre-main sequence evolution isn’t very 

significant at masses much higher than 7 M.. Another reason these tracks were chosen 

is that they had data for stellar radius and temperature that was easily manipulated. 

Siess et al. (2000) compare their tracks with others and find good correspondence 

with most other tracks, although there is still some debate concerning the form of 

verj’ low (M < O.4M0) mass pre-main sequence evolution.

SeBa uses functions to dictate luminosity and temperature for a star with a given 

age and mass. Initially, functions were fit to the pre-main sequence tracks through 

age and mass in order to match the method used for other phases of evolution. Unfor­

tunately, pre-main sequence stars can evolve in a complicated manner and unphysical 

deviations from the tracks were encountered when trying to fit functions to them. 

These complications arose for many possible function combinations (fourth order 

polynomial, logarithmic, and exponential). The use of formulae to dictate the crucial 

stellar quantities was abandoned. Instead, all the tracks v/ere combined to create a 

lookup table which was interpolated linearly through mass and age to find radius and 

temperature. Both linear and logarithmic interpolation were analysed, but it was 

found that logarithmic interpolation was an improvement over linear interpolation in 

119 out of 294 test cases. See appendix A for the analysis details.

Unfortunately, beyond temperature, radius, and luminosity not much is known 

about pre-main sequence stars. For the other quantities we had to look to stars with 

similar composition (main sequence) or similar structure (giant) to give us these other 

characteristics. For instance, the way that we chose to calculate the mass transfer 

and age rejuvenation from accreting binary star systems in Starlab is similar to the
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main sequence recipes, but the mass transfer relations (Oa and Cad) are based on the 

values for a supergiant star. That is, Cth is zero (disabled), and Cad is governed by the 

following expression:

Cad = 57.8109/J - 75.6863/m3 + 32.0344fm2 - 2.84699/m - 0.220823, (3.1)

where fm = Mcore/Mtot, the core mass divided by the total mass (Hjellming and 

Webbink 1987). The core mass is set to 0.0001 for all pre-main sequence stars. 

This yields a number very close to zero, which is consistent since pre-main sequence 

stars should be very diffuse when undergoing binary accretion. It also means that in 

almost all instances that pre-main sequence stars are undergoing mass transfer, it is 

happening via dynamical mass transfer.

Similarly, we chose the value for the radius of gyration to be that of a supergiant 

star, which is approximately 0.44. It was decided that since pre-main sequence stars 

do not exhibit mass loss (especially since pre-main sequence recipes were only being 

used for stars with masses less than 7 MQ), the stellar wind would be disabled for 

this part of the evolution. The rejuvenation (via accretion from a binary companion) 

formulae are slightly different that those for main sequence stars. The rejuvenation 

factor is set to one, which means that the age of the accreted star is adjusted to 

reflect a younger, more massive star. The accreted star will be proportionally as much 

along the pre-main sequence as the star was before the accretion began. Normally, 

rejuvenation makes the star young slightly younger than tliis, but there is no hydrogen 

burning occurring in a pre-main sequence star, so it doesn’t experience the effects of 

‘re-fueling’ due to mass transfer the same way a main sequence star does.

An important aspect of the implementation was how to handle encounters involv­

ing pre-main sequence stars. Collisions and mergers play a significant role in affecting 

the appearance of the cluster. For pre-main sequence/pre-main sequence encounters,
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the merged object ends up at the pre-main sequence birthline as its evolutionary 

state is completely disrupted, and its apparent age is set to zero. The treatment of 

encounters of pre-main sequence stars with more evolved species was similar to the 

treatment for main sequence stars. That is. if the pre-main sequence star is the sec­

ondary. it behaves as if it instantaneously accreted all of its mass onto the primary. If 

the secondary is a main sequence star, the pre-main sequence star will rejuvenate it. 

If the secondary is a giant, it will revert to a Hertzprung gap star; if the secondary is 

a white dwarf, the product will be a giant star, and finally, a Thorne-Zytkow object 

will form for a neutron star or black hole primary.

A robust implementation of pre-main sequence evolution is critical for the integrity 

of the simulation. Consistency with current theory should be achieved mainly through 

the lookup table. While stars can take upwards of 300 Myr to evolve off the pre-main 

sequence, a large fraction of that time is spent very close to the main sequence. It is 

expected that the effects will be noticed early in the simulation.
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Chapter 4

Simulation Parameters

A total of 9 simulations were evolved for approximately 1.5 Gyr in order to span 

the range of well-studied open clusters. The nature of each run is outlined in Table 

4.1. The runs prefixed by ‘pz’ indicate that the snapshots used to begin the runs were 

the the same snapshots used by Portegies Zwart et al. (2001). For the ‘pz-pms’ runs, 

the type of the initial stars (with masses of 7 MQ and less) was simply changed to 

pre-main sequence stars, thus keeping the initial distribution of the stars and their 

binary orbits. Since the binary orbits have a minimum separation of Roche lobe 

contact based on main sequence radii, quite a few of the initial binary systems were 

in contact. In order to consider more realistic parameters, 3 runs (rw-pmsn - ‘rw’ 

denoting the author) were begun with identical parameters, but a minimum orbital 

separation of pre-main sequence Roche lobe contact. For these runs, the binary orbits 

had to be completely reset. For statistical purposes, most of the results axe averaged 

over a number of runs for each parameter space.

4.1 Initial Conditions

In the interests of simulating observable results, we choose parameters correspond­

ing to population I, young clusters. These clusters typically have approximately 1000 

stars, and are no older than a couple of billion years.

The initial cluster is built from the ‘ground up’ by adding incrementally various 

levels of sophistication. It begins by laying out 2048 nodes set up with a King (1966)
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model with a dimensionless depth (Wo) of 6. This value seems to give reasonable 

approximations to some observed clusters (Portegies Zwart et al. 2001). The initial 

distribution takes into account the velocity anisotropy and non-spherical shape that 

cluster would experience in the Galactic disk tidal field similar to that of Heggie and 

Ramamani (1995).

The next step is to add a binary companion to every second node (the nodes are 

numbered randomly), for a total of 3072 stars. This is comparable to a number of 

clusters including the Hyades, which have binary fractions close to 50% (Perryman 

et al. 1998).

Masses are applied to the nodes (but only primary stars) using a initial mass 

function prescribed by Scalo (1986) with masses varying from 0.1 Mq to 100 Mq, 

and a mean mass of (m) ~ O.6M0. Tliis initial mass function £ takes the form:

£(logm) = ' ^"^m^l$-r(m) WW T^m) < To ^ ^

<Mlogm) r(m) > To

where 0ms is the present day mass function of main sequence stars, To is the age 

of the Galaxy, r(m) is the main sequence lifetime of stars with mass m, and b(t) is 

the relative birthrate defined as the ratio of the present stellar birthrate to the past

Run Name
Table 4.1: Parameters investigated

Starting Point Number of Stars Total Initial Mass
Mo

pz-msl 
pz-ms2 
pz-ms3 
pz-pinsl 
pz-pms2 
pz-pms3 
rw-prasl 
rw-pms2 
rw-pms3

Main Sequence 3072 1482.88
Main Sequence 3072 1594.84
Main Sequence 3072 1606.40

Pre-Main Sequence 3072 1482.88
Pre-Main Sequence 3072 1594.84
Pre-Main Sequence 3072 1606.40
Pre-Main Sequence 3072 1482.88
Pre-Main Sequence 3072 1594.84
Pre-Main Sequence 3072 1606.40
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average birthrate. Scalo (1986) gives numerical tables of these functions based on 

observational data.

This yields an initial total mass of Mq ~ 1600Mo, which is similar to estimates for 

the Hyades of Weidemann (1993). For the secondary stars, the masses are selected 

randomly between 0.1 Mq and the mass of their primary (Duquennoy and Mayor 

1991).

Binary stars require binary orbits. The eccentricities of the orbits are selected 

from a thermal distribution between 0 and 1 and orbital separation a is selected with 

a uniform probability in log a. A minimum separation of Roche lobe contact or 1 Rq 

(whichever is larger) and a maximum separation of 106 AU is ensured in this process, 

with the provision discussed earlier in this chapter. These parameter distributions are 

similar to those observed in the survey performed by Duquennoy and Mayor (1991).

Attributes are then added to the stars based on their mass. Depending on the 

type of run, radius, temperature, and luminosity were applied for stars starting at 

the zero age main sequence, or the pre-main sequence birthline.

The simulations were run for about 1000 dynamical time steps with stellar and 

binary evolution turned ‘on’. Escaping stars were stripped away when they reached 

2 Jacobi radii from the cluster’s centre of mass. Steers were considered merged when 

they made contact, where the collision/merger recipes would take over. On average, 

the simulations took about 2 weeks for each run.
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Chapter 5

Results

The properties contained within a star cluster involve effects on a number of scales, 

so it is beneficial to consider both the dynamical (global) properties as well as the 

stellar and binary (local) properties. The first attempts at adding stellar evolution 

to dynamical simulations resulted in dramatic effects on both levels. Adding another 

phase of stellar evolution should have an effect, albeit more subtle. Although most of 

the results are averaged over 3 runs, it is still important to ensure that any nuances 

in the data are due to real, physical processes, and not an artifact from statistical or 

computational weaknesses.

5.1 Global Dynamical Properties

The most obvious two functions that represent the time evolution of star cluster 

are its total mass and total number of particles versus time. The two processes 

through which the total number of cluster members can decrease are through the a 

merger between two stars and through the escape of a star from the system. Stars 

may escape as a result of a mixture of influences: dynamical encounter with a binary, 

supernova kick, or capture by the galactic tidal field. Figure 5.1 shows the total 

number of particles versus time for each set of runs (averaged). That the number of 

particles in the pz-pms runs have a significant initial drop is notable. This has mainly 

to do with early mergers that occur within these clusters. In these runs, all of the 

binaries that had a small orbital separation in the main sequence configuration are
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now in contact. As a result, a large number of binaries merge in the first 1.5 Myr 

of the simulation. Eventually, the evidence of this event is erased, and the number 

of remaining cluster members approaches that of the other series. The rw-pms runs 

experience a decreased number of mergers throughout the life of the cluster since the 

radii of the stars become smaller throughout the pre-main sequence lifetime, and may 

only reach a point of Roche lobe overflow when one of the stars becomes a giant. As 

a result, the number of stars for the rw-pms clusters decreases at a lower rate than 

the pz-pms runs, but identical to the pz-pms runs (without the initial drop).

The time evolution of mass proceeds similarly, except that initial mergers have 

no impact on total mass since there is no mass loss in this process. There are two 

processes through which the total mass of the system is decreased. One is through 

mass loss of individual stars via stellar winds and the other is mass loss through the 

escape of star systems. Figure 5.2 shows the total mass of the system versus time, for 

run 2 of each series. The profiles look identical, and the evolution of the total mass 

is indifferent to the starting point of the stars. One might expect the pz-ras runs 

to undergo mass loss from the giant branch sooner, but it appears that those effects 

aren’t very significant.

Although it is insightful to look a the cluster as a whole, it is sometimes only 

possible to see the very core of the cluster when observing it in practice. Figure 5.3 

shows how density in the core as well a larger portion of the cluster changes tlirough 

time. The overall density of the clusters seem to stay the same, but at around 1.2 

Myr, the cores of the pz-ms and pz-pms clusters continue to face a decrease in density, 

but the rw-pms runs stay steady. This may indicate that the core of these clusters 

can still absorb energy as massive stars fall toward the centre and low mass stars are 

ejected, and is related to the number and hardness of binaries in the core.
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Figure 5.1: Total number of stars versus time averaged over models pz-ms (dotted)-, 
pz-pms (dashed), and rw-pms (solid).
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Figure 5.2: Total mass versus time for models pz-msl (dotted), pz-pmsl (dashed),
and rw-pmsl (solid).
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Figure 5.3: Density versus time averaged over models pz-ms (red), pz-pms (green), 
and nv-pms (blue). The top and bottom lines represent the density within the 10% 
and 50% Lagrangian radii respectively.
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5.1.1 Mass Segregation

While mass segregation occurs in all runs, it is not clear if the starting point 

of the stellar evolution has much of an impact. The expected cycle that a given 

cluster will experience is that which the most massive stars fall to the center of the 

cluster, but as soon as they lose their envelope and become a white dwarf, they end 

up drifting towards the outside while stars that haven’t yet become white dwarfs fall 

to the center. In a simulation where the stars begin their evolution at the pre-main 

sequence, this cycle should be offset slightly in time. When evolution of the average 

mass of the stars contained within various Lagrangian radii is plotted (figure 5.4), 

the only noticeable difference is in the first 100 Myr. The average mass in the pz-pms 

and rw-pms runs increase dramatically at first, and then level off to a value slightly 

above the pz-ms runs. Again, the initial mergers that the pre-main sequence stars 

experience result in masses higher than normal, yielding a higher average mass.

The value of selected Lagrangian radii would also give an indication of how the 

mass is distributed through the cluster. Figure 5.5 gives the time evolution of various 

Lagrangian radii for the average of each type of run. In these figures, the 5% La­

grangian radius tells the story of the core of the cluster. While these clusters are too 

small to experience core collapse, some interesting fluctuations can be noted. In the 

first 500 Myr, the core radius of the runs beginning at the pre-main sequence faces a 

steady increase, somewhat greater than the increase observed in the pz-ms runs. The 

next period is one of fluctuations for the pz-pms and rw-pms runs, but the pz-ms runs 

seem rather calm. The last 250 Myr has the core radius of the all the runs increasing.
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Figure 5.4: Average mass versus time for runs pz-msl (top), pz-pmsl (left), and rw- 
pmsl (right). Shown are the average mass calculated inside the 5% (top line), 25%, 
50%, and 75% (bottom Une) Lagrangian radii. The values were smoothed over 7.5 
Myr intervals.
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Figure 5.5: Lagrangian radii versus time. Each figure shows the 5%, 25%, 50%, and 
75% Lagrangian radii (starting at the bottom and moving up). Shown are those 
averaged over the pz-ms runs (top), the pz-pms runs (left), and the rw-pms runs 
(right).
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5.1.2 Luminosity/Mass Functions

Mass and luminosity functions aid in determining the initial conditions of star 

formation. The present-day mass and luminosity functions play a crucial role in 

determining the initial mass function. Dynamical effects and binary interactions are 

rarely taken into account in these calculations however. If there are a lot of early 

mergers in a cluster for instance, the present day mass function may be artificially 

weighted towards intermediate mass stars. Figure 5.6 shows the evolution of the mass 

and luminosity functions over time. The run beginning on the pre-main sequence has 

an initial luminosity function weighted towards high magnitude, and after 600 Myr 

still does not fill the low luminosity bins like the pz-msl run does because the low 

mass stars still have not completely evolved onto the main sequence. In the mass 

function diagram, the pz-msl and rw-pmsl models evolve similarly, with the pz-pmsl 

model having fewer low mass stars (mainly due to a high number of early mergers).

5.2 Local Stellar Properties
In addition to the impact that pre-main sequence evolution has on the global 

properties of a star cluster, it is desirable to know what form various phenomena 

take on under these conditions. For instance, does the addition of pre-main sequence 

evolution increase the number of blue stragglers in a cluster? The number of colli­

sions? These questions will gauge the relevance of the difference between the three 

implementations.

5.2.1 Population Evolution

The stellar populations of the different runs are quite different. Pre-main sequence 

stars are quite numerous throughout the lifetime of all the clusters starting at the
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Figure 5.6: Luminosity (left) and mass (right) functions for models pz-msl, pz-pmsl, 
and rw-pms 1. The dotted line represents the initial configuration for the pz-ms run 
(which is identical to the models starting on the pre-main sequence for the mass 
function) and the solid black line represents the initial configuration for the pz-pms 
run and the rw-pms run. Also shown is the data at 600 Myr for pz-ms (red), pz-pms 
(green), and rw-pms (blue).

pre-main sequence. Aside from that, there is a slight decrease in the number of stellar 

remnant and giant stars. Tables 5.1, 5.2 and 5.3 show the time evolution of the vari­

ous populations (single stars and binaries) in the cluster (here and tliroughout, pms 

represents pre-main sequence stars, ms represents main sequence, gs represents giant 

star, and rm represents stellar remnant). Almost all of the features are attributable 

to either the difference in the number of mergers or the shift in age that the entire 

population experiences due to starting on the pre-main sequence. The fact that the 

lower mass stars start their main sequence evolution later results in a non-uniform 

shift in the population. It is interesting to note that in a lot of instances, the pz-ms 

runs sit in between the ps-pms and rw-pms runs. For instance, the number of white 

dwarfs in the pz-ms runs stays steadily between the rw-pms and the ps-pms runs. 

The reason that there are so many white dwarfs in the pz-pms runs with respect to
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Table 5.1: Population Evolution of pz-ms Runs_______________
time [Myr]: 0 100 200 400 600 800 1000 1200
ms
gs
rm
ms/ms 
ms/gs 
ms/rm 
gs/gs 
gs/rm 
rm/rm

1024 1407.7 1374.3 1251.0 1109.0 931.7 763.3 610.7
0 4.0 6.3 7.3 9.0 7.0 8.0 5.7
0 7.0 14.0 27.0 39.7 48.0 51.0 53.3

1024 788.3 766.0 714.7 628.7 554.3 464.7 377.0
0 0.6 1.3 1.3 3.3 2.7 2.0 2.3
0 0.6 3.3 5.0 4.3 7.0 9.0 9.7
0 0.0 0.3 0.0 0.0 0.0 0.7 0.0
0 0.0 0.6 1.3 0.7 0.7 0.7 1.0
0 0.0 0.6 3.3 3.3 4.0 5.0 3.3

time [Myr]:
Table 5.2: Population Evolution of pz-pms Runs_______________ 

0 100 200 400 600 800 1000 1200
pms
ms
gs
rm 
pms/pms 
pms/ms 
pms/gs 
pms/rm 
ms/ms 
ms/gs 
ms/rm 
gs/gs 
gs/rm 
rm/rm

1020.3 1395.3 1274.7 1071.0 868.7 684.7 524.3 379.7
3.7 144.7 219.0 288.3 320.0 333.3 320.3 302.3
0.0 3.7 5.7 6.3 7.7 8.3 8.7 7.0
0.0 7.0 15.3 31.3 43.3 53.0 58.3 60.7

1020.6 600.7 553.3 473.3 392.7 322.3 258.3 200.3
2.7 34.7 56.0 74.3 86.0 85.3 85.0 75.7
0.0 0.3 0.0 0.3 0.0 1.0 1.0 0.3
0.0 0.0 0.3 0.3 0.3 0.3 1.0 1.7
0.7 23.7 28.7 45.0 55.0 59.3 61.7 62.0
0.0 0.3 1.7 0.7 2.7 1.0 0.7 1.3
0.0 0.0 1.7 3.0 4.0 5.3 5.7 5.7
0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.0
0.0 0.0 0.7 0.7 0.3 0.7 0.3 0.3
0.0 0.0 1.7 2.0 1.7 2.0 1.7 1.3

the rw-pms runs is that the merger products from early in a ps-pms cluster’s lifetime 

will have a high mass, and thus tend to move quickly to the remnant stage.

In general, these populations end up being similarly distributed throughout the 

cluster. Figure 5.7 shows the distribution of various classes of stars at 600 Myr the 

first run of each of the series. At this point in time, the cluster has relaxed quite a 

bit and is cycling its core population by having the high mass giant stars fall into 

the centre, lose their mass as they become white dwarfs, and then drift out to the 

outer parts of the cluster. The low mass stars (main sequence in pz-ms, and pre-
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Table 5.3: Population Evolution of rw-pms Runs
time [Myr]: 0 100 200 400 600 800 1000 1200
pms
ms
gs
rm
pms/pms 
pms/ms 
pms/gs 
pms/rm 
ms/ms 
ms/gs 
ms/rm 
gs/gs 
gs/rm 
rm/rm

1020.3 1450.0 1346.7 1148.3 936.3 735.7 566.0 471.7
3.7 127.3 192.3 255.3 296.3 301.3 284.3 291.3
0.0 4.3 5.0 3.7 7.7 7.3 8.3 8.7
0.0 7.0 15.3 28.7 35.7 43.3 48.3 51.0

1020.6 643.0 600.0 512.3 418.7 334.7 262.3 226.7
2.7 44.3 61.0 87.3 95.0 104.3 100.3 97.3
0.0 0.0 0.3 1.0 0.3 1.7 0.7 0.3
0.0 0.0 0.3 0.7 2.0 1.7 2.7 3.3
0.7 22.3 32.7 47.0 56.3 64.3 67.7 66.7
0.0 0.0 2.3 1.7 2.3 0.3 1.0 1.0
0.0 1.3 1.3 4.7 6.0 7.7 6.7 6.3
0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0
0.0 0.0 0.0 0.3 1.3 0.3 0.3 1.0
0.0 0.3 1.0 2.3 3.0 4.7 5.0 4.0

main sequence in pz-pms and rw-pms) tend to have the flattest distribution, while 

the giant stars are almost always concentrated in the core. The binary stars sit with 

the intermediate mass stars, as would be expected since their total masses axe close 

to that range.

The time evolution of the binary orbit parameters is as expected. Figures 5.8 

and 5.9 show the binary orbits of all stars at the start of the simulation and at 600 

Myr for runs using the original binary orbits and using the more realistic binary 

orbits respectively. For the pz-pms model it is evident that almost all of the binaries 

with a low orbital period have merged or circularized by 600 Myr. For the rw-pms 

model almost no circularization occurs. This is again attributable to the fact that 

the stars are contracting and are therefore rarely in a period of mass transfer. This 

is encouraging since a quick note of observational data (Duquennoy and Mayor 1991) 

indicates that fully circularized binaries are not very common. It is also noticeable 

that all of the softer binaries (those with orbital periods larger than 101 yr) have been 

broken up in all models by 600 Myr.
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Figure 5.7: Population distribution for runs pz-msl (top), pz-pmsl (left), and rw- 
pmsl (right) at GOO Myr. The dotted line represents the initial distribution of all 
objects (a King model). Also shown are the binary stars (solid), pre-main sequence 
stars (short dashed), main sequence stars (long dashed), giant stars (dotted-short 
dashed), and remnants (dotted-long dashed).
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Figure 5.8: Eccentricity versus orbital period of binaries for pz-msl and pz-pmsl. 
Shown are the initial parameters shared by both runs (top), and the parameters at 
600 Myr for pz-msl (left) and pz-pmsl (right).
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Figure 5.9: Eccentricity versus orbital period of binaries for rw-pmsl. Shown are the 
parameters at 0 Myr (left) and 600 Myr (right).

Tlirougliout the pz-pms and rw-pms runs, the binary fraction stays dramatically 

below the pz-ms runs, as seen in figure 5.10. The initial dip for the pz-pms rims is 

a result of the large number of mergers that occur immediately after the simulation 

begins. For the rw-pms runs, the binary orbits were selected such that there were a 

higher concentration of soft binaries. Tliis lead to a lot of multiple systems breaking 

up into single stars. The binary fraction stays at a low level for the runs that begin 

at the pre-main sequence until about 800 Myr when it begins to creep up again. This 

is around the time at wliich a new crop of massive stars fall into the center of the 

cluster, and their concentration leads to the formation of binary star systems. In the 

case of the pz-pms runs, the binary fraction continues to increase through time and 

might possibly meet the pz-ms value at some point. It is possible that there is an 

equilibrium binarity of this configuration. If so, it seems that at a binary fraction of 

approximately 0.37, the number of binaries that are dynamically created is equal to 

the number of binary stars that are destroyed through mergers and dynamics.
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Figure 5.10: Binary fraction versus time for all binaries. Shown are pz-ms (dotted), 
pz-pms (dashed), and rw-pms (solid) averaged over all runs.
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The hard binaries follow a slightly different trend as shown by figure 5.11. The 

number of hard binaries increases steadily over the entire lifetime of the cluster. For 

pz-pms and rw-pms runs, the hard binarity is significantly lower that their pz-ms 

counterpart due to early mergers and initial conditions respectively. The rate of 

increase seems similar for all models.

Because binary stars tend to have a higher total mass than single stars, they 

often end up in the core of the cluster. Bmaries can also be dynamically created in 

the core because it is more dense. Figure 5.12 shows the distribution of binaries at 

0 and at 600 Myr. All of the models seem to follow the same trend, with binary 

fraction decreasing with decreasing distance from the centre. For the rw-pmsl run, 

the binaries seem to dominate the core, with binary fractions of over 0.8. The pz-msl 

and pz-pmsl models seem to be have similar profiles, however.

5.2.2 Collisions/Mergers

The biggest difference observed between runs of the pz-pms type and these of the 

other types are the number of mergers. Because many of the binaries were in contact 

for the initial pz-pms snapshots, the first 1 million years contained a very large number 

of mergers. Interestingly enough, the number of mergers for the rw-pms series was 

lower than that of the pz-ms series. This is because the pre-main sequence binaries 

started with large radii and then contract away from each other. In the end, these 

binaries require more of a perturbation in order to merge. The differences between 

the models are showed in figure 5.13.

The most common form of merger in the pz-pms runs is the pre-main sequence/pre- 

main sequence merger. Since these mergers occurred so soon, their impact on the 

number of blue stragglers isn’t the same as the mergers in the pz-ms runs. The early
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Figure 5.11: Binary fraction versus time for hard (E < 1000AT) binaries. Shown are 
the values for pz-msl (dotted), pz-pmsl (dashed), and rw-pmsl (solid). The total 
binary fractions are given as a reference using the same legend.
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Figure 5.12: Binary fraction versus radius initially (dotted-dashed line), and at 600 
Myr. Shown are the values for pz-msl (dotted), pz-pmsl (dashed), and rw-pmsl 
(solid).
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Figure 5.13: Types of mergers in all models. The legend is as follows: blue - pre-main 
sequence/pre-main sequence mergers, red - pre-main sequence/main sequence merg­
ers, yellow - pre-main sequence/giant mergers, green - main sequence/main sequence 
mergers, violet - main sequence/giant star mergers, orange - main sequence/remnant 
mergers, grey - giant star/giant star mergers, pink - giant star/remnant, light blue - 
remnant / remnant.
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merged pre-main sequence binaries do not become blue stragglers because their ad­

justed age is so close to the real age of the cluster. Also, because so many of the close 

binaries have already merged, the number of blue stragglers is significantly decreased 

among the pz-pms runs. The rw-pms runs have a low number of blue stragglers 

simply because there are fewer mergers. Figure 5.14 illustrates the frequency of blue 

stragglers in each run. The configuration of these clusters is such that collisions are 

very infrequent. In all of the simulations, there were 2 pre-main sequence/pre-main 

sequence collisions, and these were at the very beginning of the run. One would 

expect more blue stragglers in a more dense environment.

5.2.3 Escapers

The nature of the escapers is slightly different from run to run. Figure 5.15 shows 

how the velocity of the escapers vary with mass. The pz-pms runs seem to have a few 

more high velocity escapers than both the pz-ms and rw-pms runs, with the latter 

having very few high velocity escapers. The trend is opposite for the medium /elocity 

escapers with masses less than 1 M0, as pz-pms seem to be void of escapers there. 

Finally, there are more high mass escapers in the rw-pms runs than the other runs. 

This may be an indication of the fate of some of the high mass stars in softer binary 

systems.

Mass can leave the system through escapers as well as during stellar evolution. 

Table 5.4 summarises which modes of mass loss and number loss are experienced in 

each of the models. There is slightly more mass lost through escapers in the rw- 

pms runs even though these runs have fewer escapers than the pz-pms runs. This 

is probably because stars have have a greater likelihood of being in a wide binary 

orbit (and thus able to disassociate) in the rw-pms runs. A rather surprising result
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Figure 5.14: Blue stragglers with respect to the turn-off mass. Each horizontal line 
represents a blue straggler that exists for a given period of time. Shown are those 
from the pz-ms2 runs (top), the pz-pms2 runs (left), and the rw-pms2 runs (right).
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Figure 5.15: Mass versus velocity of all escapers. Shown are those from the pz-ms 
runs (top), the pz-pms runs (left), and the rw-pms runs (right).

62



M.Sc. Thesis Robert Peter Wiersma------ McMaster University - Physics and Astronomy--------  2004

pz-ms pz-pms rw-pms

Table 5.4: Number Loss and Mass Loss as of 1.5 Gyr for all runs

% objects that have escaped 51.1 49.5 50.1
% objects that have merged 3.1 14.2 0.4
% mass lost via escapers 47.5 46.6 47.8
% mass lost via stellar evolution 18.6 19.6 18.9

is that the amount of mass lost through stellar evolution for the runs beginning at 

the pre-main sequence is higher than the pz-ms runs. One might expect that because 

the pz-ms stars are started further along than the pz-pms stars, more stars will have 

a chance to get to the giant branch and blow off their envelopes. For the pz-pms 

runs, the mergers result in more high mass stars which lose more mass during stellar 

evolution than their low mass counterparts. On the other hand, the rw-pms stars 

are rarely accreting so there is less rejuvenation of binary companions. Rejuvenation 

retards a star’s evolution, and thus slows mass loss.

5.3 Simulations of Observations
One significant aspect of computational work is to bridge the gap between theory 

and observations. A useful way to do this is to try display the data as it would look 

if an observer was documenting the object.

Colour-magnitude diagrams (CMDs) provide an excellent snapshot of a particular 

cluster. In figure 5.16 the time evolution of the appearance of the cluster is shown. 

Features such as the binary main sequence, blue stragglers, and a collection of giants 

and white dwarfs are clearly visible. The pre-main sequence stars begin above the 

main sequence and descend down towards the main sequence. In the more evolved 

colour-magnitude diagrams, a gap is noticeable in the main sequence for the rw- 

pms and pz-pms at the 300 Myr mark. This gap has been observed in NGC 3603 

(Eisenhauer et al. 1998), and although NGC 3603 is less than 5 Myr old, the gap
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should continue to move down the zero age main sequence until it becomes too small to 

notice, especially at the lower magnitudes. The gap itself is a result of non-linearities 

in the mass-absolute magnitude relation. These non-linearities arise from out of 

equilibrium CN'O burning that is initially out of equilibrium in pre-main sequence 

stars (Piskunov and Belikov 1996). Another notable feature of the CMDs is that the 

binary main sequence is so sparsely populated in the pz-pmsl runs. The decreased 

binary fractions due to mergers is evidenced through this, but the effect is uniform 

over all colours. This may be actually one of the only distinguishable features of the 

rw-pmsl CMDs, along with perhaps the population of the white dwarf regime.

Finally, it is desirable to know what the cluster ’looks like’ to an observer. That 

is, what sort of image would show up in a telescope from earth looking at one of the 

clusters in space. In figures 5.17 and 5.18, the spatial concentration in the x-y plane of 

the magnitude is shown at 0 Myr, and 600 Myr respectively. In the initial snapshots, 

the greater luminosity of the pre-main sequence stars is evident. Of course, if this 

was a real young cluster, a large amount of that luminosity would be obscured by 

dust. In the more evolved snapshots, the difference is more subtle, but it seems that 

the rw-pms run has more of its luminosity concentrated in the core.
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Figure 5.16: Colour-Madnitude Diagrams (CMDs) for models pz-msl (left), pz-pmsl 
(center), and rw-pmsl (right). Descending chronologically, the CMDs shown represent 
the clusters at approximately 0, 300, 600, and 1200 Myr.
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Figure 5.17: Initial Luminosity Distribution for pz-pmsl (left) and rw-pmsl (right). 
Contours are plotted at -0.86 mag/pc2, 0.34 mag/pc2, 1.6 mag/pc2, 2.8 mag/pc2, 4.1 
mag/pc2, and 7.8 mag/pc2. A Gaussian point spread function with a dispersion of 
0.35 pc is applied to the stars.
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Figure 5.18: Luminosity Distribution for pz-msl (top), pz-pmsl (left), and rw-pmsl 
(right) at 600 Myr. Contours are plotted at -0.86 mag/pc2, 0.34 mag/pc2, 1.6 
mag/pc2, 2.8 mag/pc2, 4.1 mag/pc2, and 7.8 mag/pc2. A Gaussian point spread 
function with a dispersion of 0.35 pc is applied to the stars.

x [pc]
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Chapter 6

Conclusions

Pre-main sequence stars abound in the galaxy, yet their role in dynamical systems 

remains largely ignored. This is in part due to the fact that they are thought to 

be dynamically insignificant, but also because of dust obscuration and the rarity of 

very young clusters that makes pre-main sequence stars difficult to study. However, 

research is being pushed to the limits of detail, and the inclusion of this evolutionary 

stage in dynamical models is the next logical step.

In tliis work, 3 series of 3 runs were evolved for 1.5 Gyr. One series contained 

3096 main sequence stars in different configurations, with a binary fraction of 50 %. 

The second series was made up of identical configurations as the first, but with stars 

beginning at the pre-main sequence. For the third series, the binary orbits of the 

stars were reassigned such that the stars were initially detached. The main stellar 

properties for the pre-main sequence stars were taken from available stellar evolution 

tracks, while the other properties were taken as adaptations of other stellar types.

One of the main problems facing star cluster theorists is that it is difficult to de­

termine whether the results represent a degenerate end of a number of input param­

et ers/physics or a unique solution. It is therefore important to continually compare 

results with the previous configurations and implementations. This work focused 

on first changing one parameter - the starting point of stellar evolution - and also 

compared to changing another parameter - orbital separations of the binary systems.
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The intermediate step is crucial in determining which effects are uniquely a result of 

adding pre-main sequence evolution.

Although the differences between the various runs are small, they are mostly 

due to the different number of mergers. In the pz-pms runs, a lot of the binaries 

begin in contact, since the binary orbits are based on main sequence radii, and pre- 

main sequence stars have much larger radii. These early pre-main sequence/pre-main 

sequence mergers show up as a decrease in the total number of stars, but an increase 

in average mass. This effect drastically changes the mass function of the cluster, 

not just initially, but the effect continues to be noticed for quite a large portion of 

the cluster’s lifetime. On the other hand, since the stars in the rw-pms runs start 

at a greater separation, and since the initial pre-main sequence radius is the largest 

radius for a given star until it becomes a giant star, there is an absence of mergers in 

these runs. This increases the binary fraction, and affects the mass function to match 

something one would expect from a population synthesis (stellar/binary evolution 

with no dynamics).

In spite of the initial drop of total number of objects in the pz-pms models, the 

time evolution of the total mass isn’t noticeably affected by the starting point of the 

stars. The total mass evolution of the rw-pms runs behaves similarly. One might 

expect the pins runs to have a flatter or steeper curve for total mass versus time for 

a number of reasons, but it seems that these reasons are countered by other effects, 

or are not very dominant. For instance, there is no mass loss due to stellar wind for 

pre-main sequence stars, and their pre-main sequence lifetime offsets the evolutionary 

stage in which the stars would lose a lot of mass. In this way, the total mass of the 

system should be decreasing at a lower rate.

Similarly, the total number of stars in both pms clusters seem to decrease at a 

slower rate than their pz-ms counterparts. This could be due to a smaller number of
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escapers ejected from the cluster through an encounter. Perhaps the inclusion of pro- 

main sequence evolution causes the stellar interactions to be less violent. During a 

binary star/single star exchange, accretion during the stellar encounter may affect the 

ensuing binary parameters which in turn could affect the resulting ejection velocity. 

Indeed, the merger of close binaries (as in the pz-pms runs) or the absence of close 

binaries in the rw-pms runs should affect the cluster in the same way since binaries 

act as a heat sink for the total energy of the cluster. Since the predominant form of 

binary that stars in these models will encounter is not very hard, the heat sinks of 

the cluster can absorb more, thus decreasing the energy available for other purposes.

In the rw-pms models very little circularization is observed. This is because the 

stars are contracting away from each other, and therefore cannot maintain contact as 

required for circularization. The pz-pms runs contain the largest number of circular­

ized binaries, wliile the pz-ms runs contain quite a few as well. As surveys of binary 

parameters become more complete, it will be possible to determine how common cir­

cularization is. Currently it seems that there are not a large number of binary stars 

with eccentricities less than 0.0001 (Duquennoy and Mayor 1991).

Another item of note is the frequency of the different types of mergers. Almost 

all of the mergers were due to the normal binary evolution in which a star’s radius 

becomes too big and contacts the other star. The two most frequent mergers in 

the pms runs are pre-main sequence/pre-main sequence and pre-main sequence/giant 

star mergers (with the latter being more dominant in the rw-pms case). Detailed 

work on these types of encounters is still in an embryonic stage (Laycock and Sills, 

in preparation), but clearly they need to be better understood if they occur this 

frequently. As it stands, it appears that the result will be a larger pre-main sequence 

star in the former case, and a larger giant star in the latter case, but this needs 

confirmation.
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The differences between the frequency and attributes of escapers of the models 

is subtle, but since there are more low mass, high velocity escapers in the rw-pms 

models, perhaps their numbers are being underestimated in standard main sequence 

cluster evolution models. This could be confirmed if the velocity distribution of a 

large number of field stars was available as it is doubtful that the galactic tidal field 

could affect the velocities of said stars significantly.

There is a significant amount of future work that could be done in this area and 

could involve simulating other cluster configurations (for instance, with more stars or 

in different tidal field). Since pre-main sequence stars in very young clusters have been 

studied (e.g., Eisenhauer et al. (1998)), a focus on the first 100 Myr of a simulation 

could be insightful. Another avenue of research would be to perform population 

synthesis in order to better determine which initial distribution of binary parameters 

will result in the observed distribution of these parameters.

The end result then is that while consideration of pre-main sequence evolution is 

not important in basic star cluster theory, any detailed treatment of stellar popula­

tions within such clusters warrants such care. These stars can affect the dynamics 

as well as the population evolution of the cluster in very important ways which can­

not be overlooked. Research in this area will continue to progress until a completely 

satisfactory match with observations has occurred.
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Appendix A

Interpolation Analysis

Determining which method of interpolation would be appropriate for implemen­

tation in the look-up table was of great importance. Although the time steps in the 

lookup table should provide good resolution for calculating the required parameters, 

it isn t obvious whether logarithmic or linear interpolation would more accurately 

reflect the trends in a pre-main sequence evolutionary track.

The linear interpolation is rather straight forward. For a given parameter X, the 

value for X at some mass m and time t is given by the following set of equations:

X{mj,t) =
"ij.i+l lmj,i «mj,i+l lmj,i

(7.1)

X(mi+1, i) = , ^J ‘ x^. + ^_j2a±!_Xmj+„i+1, (7-2)

X(m,t) =
Ulj^.\ UI

^5+1 ^j
X(inj,t} +

m — nij

JUj^.^ ”~ TUj
X{mj+Ut), (7.3)

where subscripts denote values from the lookup table.

Since some of the inflections in the values of the tracks take place over small time 

scales when compared to the length of the entire track, logarithmic interpolation 

deserved to be examined. Logarithmic interpolation takes the same form as linear 

interpolation with the exception that the values in the equations are the logarithm 

(base 10) of the values in the lookup table. The final value is then raised as an 

exponent corresponding to the logarithm base.
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In order to test which method is better, test points at selected intervals were 

examined. These test points would be removed, and values would be interpolated in 

their place. The interpolated values would then be measured against the real values. 

Admittedly, this method only gives a lower limit on accuracy as one level of resolution 

is removed, but it should indicate which method is superior.

In total, linear interpolation was more accurate 175 out of 294 times. In most 

cases, the difference was minimal, but at higher masses the effect of lost resolution was 

more pronounced. For instance, the largest discrepancy for masses less than 1.5 M© 

was as high as 17.1% for logarithmic interpolation and 15.2% for linear interpolation, 

but the largest discrepancy all other masses was 45.4% for logarithmic interpolation 

and 52.9% for linear interpolation. A complete summary of all cases is given by the 

following tables. In the table the value from the track is given, followed by the value 

calculated through linear interpolation, followed by a percent difference, with data 

from the logarithmic interpolation listed along side.
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Table 7.1: Interpolation comparison for M = 0.13 M©
* l»»l R'h ' Ltn La T!M ■TW Lu. -..lilt Lou %dltl

1 OOE *04 ;'u?‘ Tm 171". 2.20 IMS 2s» 2925.34 -0.13%
-0.14%

2824.28 -U.17/O
-0.16%i.ooe+os 1 795 1.81 0.96% 1.81 0 62% 2885 2881.01 2880.28

1.00E+06 1.016 1.15 13.38% 1.15 12.98% 3026 2993.76 -1.07% 2993.05 -1.09%

: 00MT 0.497 049 .2225 048 -2.89% 3146 3140.17 -0.19% 3139.46 -0.21%
l.OOE+W 0.210 0.21 -0.01% 0.21 -0.70% 3147 3124.42 -0.72% 3122.53 -0.78%
3.00E+08 0 157 0.16 0.49% 0.16 -0.61% 3090 3048.38 -1.35% 3044.77 -1.46 Vo
6 00E*M 0.148 0.15 -0.35% 0 14 -2.0?% 3072 3005.77 -2.10% 3000.20 -2.31%
: ■• • - “ 0.146 0.13 -12.05% 0.14 -3.35% 3069 2894.16 -5.70% 2978.95 -2.93%

Table 7.2: Interpolation comparison for M = 0.16 M©
Ltn Tani- ; : .mi in Lin % dill Log % dill

1.01'k+lM 2.372 2.31 -2.560% 2.31 -2.654% 2895 2914.86 0.58% 2912.86 0.51%
1.00E+O5 1.965 1.93 -1.67% 1.93 -1.98% 2945 2955.29 0.35% 2954.15 0.31%
1.00E*0G 1.25 1.36 6.77% 1.30 4.30% 3059 3043.04 -0.358% 3047.93 -0.362%
1.00E*07 0.538 0.53 -0.86% 0.53 -1.25% 3208 3207.C0 -0.01% 3206.83 -0.04%
1.00E+06 0.223 0.22 0.16% 0.22 -0.54% 3229 3217.14 -0.37% 3215.95 -0.40%
3.00E+O8 0.178 0.18 -0.18% 0.18 -1.36% 3193 3173.G2 -0.61% 3171.97 -0.66%
6.OOE+O8 0.175 0.17 -0.88% 0.17 -2.23% 3189 3166.13 -0.72% 3164.33 -0.77%
1.00E+09 0.174 0.17 -1.07% 0.17 -2.55% 3183 3163.71 -0.76% 3161.84 -0.82%

Table 7.3: Interpolation comparison for M = 0.2 M©
‘ini k[W Lin % dirt Los % dirt T |K| Lin % dilf Lor % diir

l.UUE+M 2.429 2.47 l.M% 2.47 1.74/. 3040 3039.33 -0.02% 3035.25 -0.16%
1.00E+05 2.179 2.18 0.05% 2.18 -0.12% 3046 3056.00 0.33% 3052.80 0.22%
l.OOEiOG 1.823 1.55 -15.20% 1.51 -17.14% 3077 3129.92 1.72% 3128.93 1.69%
1.00E+07 0.G11 0.62 0.71% 0.G1 0.25% 3283 3279.39 -0.11% 3278.25 -0.14%
1.00E+08 0.2G 0.2G -0.80% 0.26 -1.52% 3321 3325.37 0.13% 3323.73 0.08%
3.00E+08 0.211 0.21 -0.79% 0.21 -1.95% 3293 3301.99 0.27% 3299.86 0.21%
6.00E+06 0.207 0.21 -0.63% 0.20 -1.99% 3290 3297.91 0.24% 3295.68 0.17%
1.00E+09 0.207 0.21 -0.91% 0.20 -2.3%; 3290 3297.33 0.22% 3295.08 0.15%

Table 7.4: Interpolation comparison for M = 0.25 M©
MN Lin ■ % dill Lo« sr din T |K| Lin % dill ■ Lor % dill

l.UUE+01 2.601 2.59 -0.62% 2.35 •O.bUuo 3216 3203.50 -0.39% 3199.32 -0.52%
1.00E+05 2.325 2.40 3.44% 2.30 2.M% 3213 3205.50 -0.23% 3201.52 -0.36%
l.OOE+DG 1.917 2.00 4.09% 1.99 3.65% 3218 3219.20 0.04% 321G.O7 -0.06%
1.00E+07 0.C51 0.6t -1.07% 0.61 -1.47% 3383 3380.87 -O.CG% 3379.50 -0.10%
1.0GE+08 0.294 0.29 0.22% 0.29 -0.41% 3442 3425.71 -0.47% 3424.12 -0.52%
3.O0E+08 0.246 0.25 -0.05% 0.21 -1.06% 3435 3408.71 -0.77% 340G.76 -0.82%
G.OOEtOS 0.244 0.24 -0.41% 0.21 -1.51% 3431 3407.00 -0.79% 3404.99 -0.84%
1.00E+09 0.244 0.21 -0.38% 0.24 -1.49% 3434 3407.00 -0.79% 3404.99 -0.84%

Table 7.5: Interpolation comparison for M = 0.3 M©
tlnl MH Lin % dirt Log % dirt tm Lin % dilf Log " % diir

1.U0E+01 2.741 2.S1 2.467c 2.79 1.92% 3367 3344.09 -0.68% 3339.22 ■ 0.83%
1.00E+05 2.619 2.60 -0.60% 2.57 -2.00% 33G5 3341.89 -0.69% 3337.03 -0.83%
1.00E+06 2.1G9 1.92 -11.66% 1.92 -11.681% 3361 3342.33 -0.56% 3337.82 -0.69%
1.00E+07 0.C95 0.63 -0.59% 0.C9 -0.99% 3475 3469.32 -0.16% 34G7.25 -0.22%
1.OQE+08 0.318 0.32 -0.7G% 0.31 -1.58% 3529 3523.00 -0.17% 3521.21 -0.22%
3.00E+03 0.279 0.28 0.00% 0.28 -1.34% 3524 3514.17 -0.28% 3512.40 -0.33%
G.00E+03 0.279 0.28 -0.01% 0.27 -1.47% 3524 3512.01 -0.34% 3510.30 -0.39%
1.00E+09 0.279 0.28 0.137c 0.28 -1.36% 3524 3512.18 -0.34% 3510.46 -0.38%

Table 7.6: nterpolation com parison for M = 0.4 M©
1(H) R M Lin dlli Los TCdlil T|K] Lin % din Log % dilf

L00E+04 3.223 3.28 1.75% 3.23 0.37% 3600 3566.00 -0.94% 35GU.44 -1.10%
1.00E+05 3.179 3.18 0.007c 3.13 -1.61% 3600 3566.70 -0.93% 3560.97 -1.08%
1.00E+06 1.925 2.09 8.51% 2.09 8.427a 3591 3564.69 -0.73% 3558.86 -0.89%
1.00E+07 0.791 0.79 -0.50% 0.78 -1.137a 3638 3617.63 -0.5G% 3614.6G -0.64%
1.00E+O6 0.374 0.38 0.717. 0.37 -0.62% 3683 3677.49 -0.15% 3G74.49 -0.23%
3.00E+06 0.316 0.35 0.68.2 0.21 -1.34% 3673 3666.15 -0.19% 3G63.39 -0.26%
G.00E+08 0.319 0.35 0.18% 0.34 -1.88% 3668 3665.00 -0.08% 3GG2.29 -0.16%
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Table 7.7: Interpolation com parison for M = 0.5 M0
1 k'l R |Hn) Lin % dilf Lok % dilf T |K| Lin % dilf Lok % dilf

1.00^4*04 3.818 3.67 -3.76% 3.65 -4.49% 3765 3746.50 -0.49% 3743.63 -0.57%
1.00E+05 3.741 3.53 -5.02% 3.51 -6.10% 3770 3749.40 -0.55% 374G.42 -0.63%
1.00E+0G 2.059 2.00 -2.90% 2.00 -2.91% 3770 3746.64 -0.62% 3743.45 -0.70%
1.00E+07 0.843 0.84 -0.51% 0.84 -0.85% 3764 3751.24 -0.34% 3749.62 -0.38%
1.00E+08 0.441 0.45 2.38% 0.45 1.15% 3823 3845.41 0.59% 3841.95 0 50%
3.00E+08 0.418 0.42 1.57% 0.42 -0.18% 3808 3822.77 0.39% 3819.82 0.31%
G.00E+08 0.42 0.43 1.01% 0.42 -0.08% 3806 3818.64 0.33% 3815.68 0.25%

Table 7.8: Interpolation com parison for M = O.CiM0
‘ |yr) H IM Lin % diff Log % dilf T|X| Lin % dill Log % dilf

1.00E+04 4.126 4.10 -0.73% 4.09 -0.96% 3893 3877.50 -0.40% 3875.87 -0.44%
1.00E+05 3.874 3.88 0.18% 3.88 0.07% 3899 3885.06 -0.36% 3883.36 -0.40%
1.00E+0G 1.991 2.10 5.70% 2.10 5.63% 3901 3893.12 -0.20% 3891.16 -0.25%
1.00E+07 0.918 0.93 0.76% 0.92 0.46% 3862 3858.29 -0.10% 3857.14 -0.13%
1.00E+08 0.512 0.52 1.48% 0.51 -0.01% 4011 4045.86 0.87% 1039.99 0.72%
3.00E+08 0.503 0.51 1.71% 0.50 -0.01% 3973 4023.80 1.28% 4018.01 1.13%
G.00E+08 0.506 0.51 1.56% 0.51 -0.12% 3969 4019.96 1.28% 4014.26 1.14%

Table 7.9: Interpolation com parison for M = 0.7 Mo
‘ |yr| R IM Lin % dilf Log % dilf T|X| Lin % dilf Log % dilf

1.00E+04 4.374 4.40 0.63% 4.39 0.43% 3990 3980.00 -0.25% 3979.05 -0.27%
1.00E+05 4.083 3.90 -4.45% 3.90 -4.454% 3999 3997.95 -0.03% 3996.71 -0.06%
1.00E+0G 2.102 2.04 -2.97% 2.0-1 -3.09% 4014 4009.53 -0.11% 4008.05 -0.15%
1.00E+07 1.02 1.01 -0.61% 1.01 -0.86% 3954 3954.16 0.00% 3953.12 -0.02%
1.00E+08 0.61 0.61 0.09% 0.60 -1.14% 4268 4323.70 1.31% 4312.31 1.04%
3.00E+08 0.G05 0.61 0.46% 0.60 -1.04% 4240 4297.38 1.35% 4285.14 1.06%

Table 7.10: Interpolation comparison for M = 0.8 M0
1 |yr) R IM Lin ■ % dilf Log «dilf- T lKl Lin % dilf Log ■ T.litr

1.00E+04 4.601 4.44 -3.58% 4.43 -3.61% 4069 4072.00 0.07% 4071.19 0.05%
1.00E+05 3.831 3.94 2.73% 3.93 2.66% 4100 4089.12 -0.27% 4088.14 -0.29%
1.00E+0G 2.142 2.18 1.62% 2.18 1.56% 4119 4109.05 -0.24% 4107.96 -0.27%
1.00E+07 1.034 1.04 0.54% 1.04 0.32% 4047 4053.09 0.15% 4051.82 0.12%
1.00E+08 0.70G 0.70 -0.59% 0.70 -1.47% 4637 4637.05 0.00% 4622.06 -0.32%
3.00E+08 0.709 0.70 -1.04% 0.69 -2.02% 4625 4623.84 -0.03% 4608.22 -0.36%

Table 7.11: Interpolation comparison for M = 0.9 M0
t |yrl H Ufl Lin % dilf Log ■ % dilf ■ T lKl Lin % dilf Log % dilf

1.00E+04 4.533 4.58 1.12% 4.58 1.119% 4153 4140.24 -0.31% 4139.63 -0.32%
1.00E+05 3.808 3.86 1.24% 3.85 1.23% 4179 4169.62 -0.22% 4169.06 -0.24%
1.00E+0G 2.223 2.23 0.12% 2.22 0.02% 4203 4199.11 -0.09% 4198.34 -0.11%
1.00E+07 1.113 1.12 0.32% 1.11 0.11% 4152 4160.24 0.20% 4158.68 0.16%
1.00E+08 0.795 0.80 0.65% 0.79 -0.05% 5010 4996.80 -0.26% 4983.85 -0.52%

Table 7.12: Interpolation comparison for M = 1.0 M0
t |yr) R IM ' Lin % diff Log % dilf TIKI Lin ' % ditf Log sr ditf

1.00E+04 4.614 4.52 -1.93% 4.52 -1.95% 4209 4215.39 0.15% 4214.90 0.14%
1.00E+05 3.902 3.85 -1.38% 3.85 -1.39% 4238 4243.49 0.13% 4243.00 0.12%
1.00E+06 2.33 2.32 -0.39% 2.32 -0.46% 4280 4273.63 -0.15% 4273.06 -0.16%
1.00E+07 1.192 1.20 0.32% 1.19 0.11% 4271 4276.15 0.12% 4274.31 0.08%
1.00E+08 0.895 0.90 0.49% 0.89 -0.18% 5357 5340.92 -0.30% 5330.63 -0.49%

Table 7.13: Interpolation comparison for M = 1.1 Ma
___ tjyr]____ R IM Lin % dilf Log % dilf Lin % d.lf Log K dur

1.00E+04 4.498 4.58 1.86% 4.58 1.84% 4278 4266.50 -0.27% 4266.07 -0.28%
1.00E+05 3.889 3.92 0.89% 3.92 0.88% 4308 4295.94 -0.28% 4295.55 -0.29%
1.00E+0G 2.411 2.41 0.13% 2.41 0.06% 4344 4339.97 -0.09% 4339.55 -0.10%
1.00E+07 1.289 1.29 0.32% 1.29 0.12% 4384 4400.51 0.38% 4398.36 0.33%
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Table 7.14: Interpolation com parison for M = 1.2 M©
« £> r] MW Ltn -s 33! ■ Jut Lin K ditf Log % ditf

1.(Nt-KU A." 4.49 -0.2051 4 49 -d.3o64T1 4127 4326.00 -0.02% 4325.73 -0.03%
I 00E40S 4 :: 404 -0.17* 4 04 -0.19% 4350 4349.42 -0.01% 4349.12 -0.02%
1.O0E+O8 2 562 2.56 -0 0551 256 -0.12% 4401 4396.73 -0.05% 4396.30 -0.06%
1 OOE+O7 1.330 1.35 0.77% 1.35 0.52% 4594 4621.26 0.59% 4616.54 0.49%

Table 7.15: Interpolation comparison for M =1.3 M©
l lyr] k TH Lin % ditf Lok a diff TM Lin % ditf Lok % ditf

l.OOErlU 4.47b 4.46 -0.51% 4 45 -0.525c 4374 4377.50 0.08% 1377.21 0.07%
1.00E+05 4.01 3.99 -0.43% 3.99 -0.45% 4403 4399.50 -0.08% 4399.25 -0.09%
1.00E+06 2.557 2.55 -0.10% 2.55 -0.16% 4462 4454.92 -0.16% 4454.58 -0.17%
1.00E+07 1.456 1.47 1.14% 1.47 0.87% 4745 4760.04 0.32% 4755.11 0.21%

Table 7.16: Interpolation comparison for M = 1.4 M©
1 yr) MN Lin diff Lok % ditf T 1^1 Lin Vo ditf Log % diff

1.00E+O4 4.413 4.49 1.84% 4.49 1.83% 4428 4418.50 -0.21% 4418.28 -0.22%
1.00E+05 4.102 4.16 1.47% 4.16 1.46% 4442 1138.31 -0.08% 4438.13 -0.09%
1.00E+06 2.642 2.65 0.39% 2.65 0.34% 4510 4507.44 -0.06% 4507.21 -0.0619%
1.00E4-07 1.591 1.65 3.75% 1.64 2.94% 5093 5132.65 0.78% 5122.88 0.59%

Table 7.17: Interpolation comparison for M = 1.5 M©
‘IF1 MM Lin % diff Lok % ditf * l«l Lin % diff Log % diff

1.00&HM 4.51 4.28 -5.10% 4.26 -5.15% 4463 4476.00 0.29% 4475.74 0.2855%
1.00E+05 4.198 4.02 -4.34% 4.01 -1.37% 4479 4483.90 0.22% 4488.66 0.2156%
1.00E+06 2.731 2.69 -1.36% 2.69 -1.39% 4553 4556.01 0.07% 4555.78 0.06%
1.00E+07 1.665 1.92 2.79% 1.89 1.31'% 5161 5563.34 1.82% 5544.36 1.47%

Table 7.18: Interpolation comparison for M = 1.6 M©
1 )yr) MW Lin ft dirt Log % ditf T|K) Lin % dill ■ Log % dilf

1.0UE+M 4.147 4.37 5.39% 4.37 5.34% 4524 4508.00 -0.35% 4507.78 -0.36%
1.00E+05 3.854 4.02 4.20% 4.01 4.18% 4540 4530.70 -0.20% 4530.46 -0.21%
1.00E+06 2.715 2.75 1.33% 2.75 1.30% 4603 4601.32 0.03% 4604.06 0.02%
1.00E+07 2.243 1.93 -14.16% 1.92 -14.19% 6070 6344.40 4.52% 6286.58 3.57%

Table 7.19: Interpolation comparison for M = 1.7 M©
‘(yr) H |Kci) Lin % ditf Log % ditf T |K| Lin % diff Log % diff

1.00E+M 
l.OOE-f-OS 
1.00E+06 
1.00E+07

4.231 4.23 -0.13% 4.22 -0.15%
3.936 3.93 -0.11% 3.93 -0.14%
2.796 2.80 0.07% 2.60 0.02%
1.964 2.00 1.86% 1.99 1.13%

4553 4556.00 0.07% 4555.89 0.06%
4577 4573.47 -0.08% 4573.35 -0.08%
4653 4616.65 -0.14% 4646.45 -0.14%
7209 0669.79 -7.20% 6661.79 -7.59%

Table 7.20: Interpolation comparison for M = 1.8 M©
‘M MM Lin % diff Lok % ditf T M Lin % diff Log % dill

LOUE-HM 4.364 4.15 -3.51% 4.15 -3.53% 4588 4594.50 0.14% 4594.31 0.14%
1.00E+05 4.099 3.89 -2.91'.'. 3.89 -2.92% 4607 4615.84 0.19% 4615.67 0.19%
1.0OE+O6 2.9-1 2.95 -1.13% 2.95 -1.15% 4682 4687.86 0.13% 4687.67 0.12%
1.00E+07 1.759 1.85 5.11% 1.85 4.90% 7301 7786.67 6.65% 7765.20 6.36%

Table 7.21: Interpolation comparison for M = 1.9 M©
1 M MM Lin % ditf Log % diff T l“l Lin % diff Log % diff

1.00 E+01 4.075 4.16 1.99% 4.15 1.92% 4636 4635.00 -0.02% 4634.76 -0.03%
1.00E441S 3.933 4.00 1.77% 4.00 1.71% 4614 4614.64 0.01% 4644.43 0.01%
1.00E+06 2.944 2.96 0.68% 2.96 0.CGS3 4737 4737.33 0.01% 4737.05 0.00%
1.00E+07 1.739 1.70 -2.09% 1.70 -2.15% 8345 8079.45 -3.18% 8041.58 -3.64%

Table 7.22: Interpolation com parison for M = 2.0 M©
1 lyr) R fRol Lin % diff Log % ditf T |K| Lin % diff Log % diff

1.OOE4-O4
1.00B+05
1.00E+06
1.00E+07

4.00B 4.00 -0.2051 4.00 -0.24%
3.869 3.86 -0.18% 3.66 -0.21%
3.025 3.03 0.16'% 3.03 0.11%
1.646 1.73 4.92% 1.73 4.91627%

4682 4070.67 -0.05% 4679.26 -0.06%
4690 4689.76 -0.01% 4689.36 -0.01%
4783 4788.08 0.11% 4787.43 0.09%
8861 8747.40 -1.28% 8728.55 -1.49%
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Table 7.23: Interpolation comparison for M = 2.2 M©

1.00E+04 3.85 4.06 5.45% 4.06 5.44% 4767 4750.00 -0.36% 4749.27 -0.37%
1.00E4-05 3.723 3.90 4.87% 3.90 4.83% 4780 4764.28 -0.33% 4763.48 -0.35%
1.00E+06 3.088 3.20 3.61% 3.19 3.20% 4915 4916.51 0.03% 4914.18 -0.02%
1.00E+07 1.699 1.72 0.94% 1.71 0.84% 9571 9529.58 -0.43% 9496.86 -0.77%

Table 7.24: Interpolation comparison for M = 2.5 M©
_£J*L1_ 
1. OOE 4-01 
1. OOE 4-05 
1.00E4-06

K IHaI Lin «dill Lor % dill T|Kj Lin V. ditf Lor % dilf
4.138 3.93 -4.94% 3.93 -4.96% 4852 4980.00 2.64% 4976.93 2.57%
4.025 3.90 -3.13% 3.90 -3.19% 4870 5010.33 2.88% 5006.64 2.81%
3.56 4.10 15.12% 4.02 12.95% 5050 5-110.09 7.13% 5393.10 6.79%

Table 7.25: Interpolation comparison for M = 2.7 M©
k |Un| Lin % dilf Lor % ditf TIN Lin % ditf Lor % dilf

1.00E+04 3.989 4.68 17.26% 4.63 16.13% 5122 5184.40 1.22% 5168.73 0.91%
1.00E+05 3.989 4.68 17.26% 4.63 16.13% 5122 5184.40 1.22% 5168.73 0.91%
l.OOE+OG 4.796 3.20 -33.20% 3.17 -33.80% 6013 7475.41 24.32% 6948.19 15.55%

Table 7.26: Interpolation comparison for M = 3.0 M0
‘ |yr| 1< |Hn| Lin % dilf Lor % dilf T IN Lin % ditf Lor % dilf

1.00E+04 5.487 5.07 -7.54% 4.89 -10.81% 5683 5473.00 -3.70% 5454.73 -4.02%
1.00E+05 5.554 4.93 -11.20% 4.80 -13.61% 5839 5701.31 -2.36% 5660.76 -3.05%
1.00E+06 2.724 3.95 44.94% 3.78 38.63% 11048 8302.01 -24.86% 7807.97 -29.33%

Table 7.27: Interpolation comparison for M = 3.5 M©
t |yr] H IHaI Lin % dilf Lor % dilf *IN Lin % dilf Log % dilf

1.00E+04 6.849 6.54 -4.54% 6.45 -5.76% 6105 6225.08 1.97% 6202.72 1.60%
1.00E+05 6.435 6.14 -4.62% 6.11 -5.05% 6629 6806.15 2.67% 6738.53 1.65%
1.00E+06 2.558 2.61 2.16% 2.61 1.85% 12062 12723.97 5.49% 12605.49 4.51%

Table 7.28: Interpolation comparison for M = 4.0 M©
t |yr| 

1.00E+04 
1.00E+05 
l.OOE+OG

“OCT" Lin % dilf Lor din T IKI Lin % dilf Lor % ditf
7.606 7.13 -6.27% 7.12 -6.40% 6727 7203.39 7.08% 7046.11 4.74%
6.692 6.02 -10.01% 5.99 -10.42% 7798 8718.67 11.81% 8283.12 6.22%
2.405 2.59 7.59% 2.59 7.56% 14461 13570.53 -6.16% 13421.06 -7.19%

Table 7.29: Interpolation comparison for M = 5.0 M©
__Uni__ II IHnl Lin % dilf Lor % dilf T IN Lin % ditf Lor K ditf
1.00E+04 7.676 5.72 -25.53% 5.39 -29.73% 9421 11968.31 27.04% 10758.71 14.20%
1.00E+05 5.24 5.04 -3.82% 4.76 -9.17% 12839 12554.24 -2.22% 11615.70 -9.53%
1.00E+06 2.663 2.68 0.59% 2.66 0.0-1% 16507 16453.64 -0.32% 16331.23 -1.06%

Table 7.30: Interpolation comparison for M = 6.0 M©
t |yrl H [RmJ Lin _ %dlif Lor «dilf" T (KI Lin % ditf Lor S', dm -

1.00E+04
1.00E+05

3.921
3.385

6.00
4.35

52.91%
28.51%

5.70
4.25

45.36%
25.70%

17306
17291

16577.33
14212.00

-4.21%
-17.81%

16144.35
13303.79

-6.71%
-23.06%
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Appendix B

Pre-Main Sequence Additions to

STARLAB

The main addition to the STARLAB code was the pre-main sequence class that 

dictates the evolution of pre-main sequence stars from the deuterium burning birthline 

until the main sequence. This is done primarily through a lookup table. Wliat follows 

is the main addition to the computer code.

///
// jra_sais.eaq;esce.C
//
// derived class of class star.
// class jra_Mis.eaq.stca describes stellar evolution
// for a pra-Mia soqseace star.
// Class fra_taia.saq.asca will a.tcaatically create the follovitg
// base classes: star, sickle star aad starbase.

•laelude •prctc.star.h"
tiaclude ’eaia.ooquesco.h*
•iscl-Ja •brcwE.dwarf.h'

real pes.lccr.parray.data [10000][10000];
real pu_lsc'ruparray_aassos [10000];
1st pu.statss-O;
let pcs_Euaber.e?_tassas«0;

// Def adit (eepty) constructor la pra^ala.eaquaEce.h

•if 0
veld pra.aaia_MqMBCo::adjBst_laltlal_8tar() {

!f(rolativo_ago<>0)
relative.age ■ tax(current.tire, 0.0);

ccra_Mss • pre_za!&.Eaq.esce_cc:e_EassO;
corajradlu ■ prejMlo.soqueDce_core_radlua();
update.viBd.c9cstaat();

lutastaaaow^leMBtO;

update();

}
•eadif

pro_aalE.Boq-Mace::pre_Kai&.sequance(proto.star k p) : Bicgle.starCp) {

delete ip;

Iast.update_a{o ■ 0;
relativa.a<a ■ 0;
relativa_Mis ■ aavelcpe_aass ♦ corejMs;
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onvolopo_sas3 ■ rolatlvo_r.ass - 0.0001;
coro_Eas3 ■ O.OOO1;

adjust.noxt_updato_ago();
updato.vlnd.constantO;

instantanoous.olosontO;
updatoC);

post.constructorC);
>
void pro_sain.soquanco::update() {

// last update ago is cot alter stellar expansion ticoacalo la cot.
// (C!i+SPZ May 4 1999) last.updato.ago cow used as time of last typo change 
// last.updato.ago ■ rolativo.ago;

dotoct.spoctral.f oaturosO;

>
// wind-constant la fraction of cnvolopo lost in nuclear llfotka
// of ctars. Should bo updated after ease accretion
// (SPZ+CM: 1 Oct 1993)
void pro.sain_saqucaco: :updato.wlnd.constant() {

wind-constant ■ 0;

)

// Adjust radius & luminosity at rolativo.ago
void pro^ain.ccquenco: :instantanoou3.olcmont() <

real T_cff;
pms.status ■ 2;

if(relativejnaso <"7.0)

int o_count ■ 0;
real c2 - 0.00;
real si. Hl, R2, Tl, T2;
char buffer[2000];
char filename[50];

while (s2 < rolativo mass th s count < pcs number.of.masses) //know the cans range we're dealing with

si - m2;
s2 ■ pms.lookuparray.sasses[s_count];
□.count ♦- 1;

if (si ■■ 0.0) // if loco than lowest sass In the lookup table 
<

radius - pofl.lookuparray.data [0] [1];
T.eff ■ pss.lookuparray_data[0)(2];

•la. If (■ count — pu nucbor.of.cscooo) // If higher than the bighost csss In th. lookup tablo

radius ■ pz3.1ookupanoy.data[0] «pn._nuab.r-of_BM...o3)-2] ■
T.off ■ pns_loohuparroy_data[0] C<pcs_nu=bor_ol_csoooo.3)-1);

else 
<

RI ■ ps3.1ookuparray.data[0] [<n.count*3)-5];
Tl - p=3.1ookuparray_data(0] ((s_count«3)-4];

R2 ■ p&3.1ookuparrny_data[0] [(s_count«3)a*2];
T2 ■ pss_lookuparray.data[0] ((n.couat»3)-l];

//ID linear interpolation
radius - <(n2 - relative^ase)/(a2-nl))«Rl ♦ (Crolativo^M8-nl)/(n2-nl))«R2;
T_.« - C(o2 - rolatlvo_cuo)/Cn3-nl))*Tl ♦ «rol.tlvo_BM0-al)/(n2-cl)>oT2;

> 
> 
else //sain.soquocco recipe 
<

real alpha, beta, gamma, delta, kappa, lambda;
real logmans ■ Iogl0(rolatlvo_cas3);

alpha ■ 0.03353 ♦ O.O5G5*logjcass;
beta ■ 0.01291 ♦ O.222G»log_cas3;
gamma ■ 0.1151 ♦ 0.0G2G7»lcg_ma3s;
delta - powfrolativo^ano, 1.25)

• (0.1140 ♦ 0.8C04»rolativo.saas«rclatlvo.sa33)
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/ (C M4S1 • rslitm.MM*r«litinjiM)i
kappa - : OWO« • C.omM'lat^Mi;
lor Ms ■ -0.05*13 « lcg.Basee (0.3756 -0 lT44«log.eass);

real ft ■ relative.age/eaiB.soquonco.tleoO;
ImiBMlty ■ baso.Bun_soqwBco.lninoeity()

• paw(10., (ffo(f!*lMbda ♦ kappa)));

radius ■ delta«pev(10.. (ffe(ffe(ff*gana • beta) ♦ alpha)));
T.eff • casts paraxeters(TsuE)*pew(lua!Essity/(offoctive.radivs«affectivo_radlus). 0.25);

offoctivo.radius • radius;
Insists it jr ■ pcv(effective.radius, 2.)* pov (T.oft/casts, par aset ors (Tsun), 4.);

raid pre.eain.sequonto: :oTclvo_olosent(ccast real eBd.tleo) {

real dt ■ and.tiso - curront.tlEe;
currost.tiee ■ ead_tiao;
relative.age •■ dt;

It (rolatlvojeass > 7.0) // Va kava so data for FM5 stars acre eassive than this
{ // just put saae tuskers la and saad it ca it’s way

star.traBsfcrBatlea_story(MaIe.SoqMaeo);
saw sain.sequence(•this);
return;

real rolagoinyrs ■ rolativo_ago«l.GE5;
real T.eff;

iat e.ccunt ■ 0;
1st t_cocst ■ 0;
real e2 - 0.00;
real till ■ 0.00;
real Rill - 0.00;
real Till - 0.00;
real t211 ■ 0.00;
real MH - 0.00;
real T211 ■ 0.00;
real el, til. t21. Ill, Ml, TH. T21, RI, M, Tl, T2;
char huffer[2000];
char flleaaM[50j;

while (e2 < rolatlvo^ass kt e.couat < pes.nuster.cf.aarscc) //know tha sass range we’re dealing with

el " b2;
*2 ■ pes^cckuparray_Baseos[e_csunt];
8_ccuat ♦• 1;

if (il •■ 0.0) // if less than lowest aass la the lockup table

while (till < relagoleyrs) // got the ages, radii, aad Toeperature tor the first aass

till - f*sJoskuparray.data(t.couatHO];
Rill • ^s.l&ckuparray.data(t_couBt](l];

If (Rill — 0.0) // if at the esd of pro-eala sequence, but not charged to MS yet

t.cc-nt ♦• 1;
}
If (Rill — 0.0) 
{

til ■ jcs.l&5*uparray.data[t.count-2][0];
Rll • pcs.lcckuparray.data[t.ccunt-2][1];
TH ■ p*s.lotkuparray.data(t.count-2][2]; 
till ■ pu.lockuparxay.data[t.csust-l](G]; 
Rill ■ pcs.lockuparray_data[t.coust-l][l]; 
Till • pcsJock-jparray.datatt.count-l] [2];

else

til ■ pu.lockuparray.data[t_couct-2](0];
Rll • pss.l ccir.parray.dat a (t_ccutt-2 J [1];
TH ■ pcs.lcckuparray.data[t.ccuut-2] [2);
Till ■ pu.lockuparray.data[t.ccust-l][2];

radius ■ ((tHl-rolagolByrs)/(tlH-tll))*RH«((rolagainyrs-tH)/(tlH-tH))»Rlil;
T.eff - ((tHl-rolaeolnyr8)/(tlll-tll))eTli«((rolagolnyrs-tH)/(tHl-tli))*Tlil;
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olso if (account ■* ps3_nusbor_of.Ea3303) // if higher thia the highest csss in the lockup table 

vhilo (till < rolagolnyrs) // got tho ages, radii, and Tczporaturo for the first nans

till ■ ps3_lookuparray.data(t.count] [(psn.nu3bor_of_Easccs«3)-3];
Rlii ■ ps3_lcokuparray.data[t.count] [(pz3_nuzbor_of^as305«3)-2];

if (Rlii — O.O) // if at tho ond of pro-sain sequence, but not changed to KS yet
break;

t.count ♦■ 1;
>
if (Rlii — O.O)
<

tli ■ pss.lookuparray.data[t.count-2] [(pns.nuabor.of jias808*3)-3];
Rli ■ psa.lookuparray.data(t.count-2] ((pz3_nuzber_of^a3so3*3)-2];
Tli - ps3.1ookuparray_data(t_count-2] [(pas.nunbor.of jus8osa3)-l];
till " pss.lookuparray.dat a [t.count-1] [(pz3_nuabor_of_Ea3303«3)-3];
Rlii ■ pss.lookuparray.data [t.count-l] [(pz3_nunbor.of.Ea3SC3«3)-2];
Till ■ pE3_lookuparray_data[t_count-l] [(ps3.nuzber_of_Easso3«3)-l];

tli ■ pss.lookuparray.data[t.count-2] [(pno.nunbor.of jiassos«3)-3];
Rli ■ pss.lookuparray.data[t_count-2] [(pn3.nuzbcr_of^a3cos*3)-2];
Tli ■ pss.lookuparray.data[t.count-2] [(pno.nunbor.of_nas5cs»3)-l]; 
Till " pss.lookuparray.data[t.count-l] [(ps3_nunbor_of.Ea58O3«3)-l];

radius ■ ((tlil-rolagoinyro)/(tlii-tli))<Rli*((rolagolnyrs-tli)/(tlii-tli))»Rlli;
T.off - ((tlil-rolegoinyro)/(tlll-tll))*Tli*((rolagoinyro-tli)/(tlll-tll))«Tlll;

while (till < rolagolnyrs) // got tho agoo, radii, and Tczpcraturo for tho first cans 
(

till » pss_lookuparrny_data[t_count] [(n.count«3)-6);
Rlii " pss.lookuparray.data[t.count] ((n_count*3)-5];

if (Rlii — 0.0) // if at tho ond of pro-aain ooquenco, but not changed to KS yet 
break;

t.count ♦- 1; 
>
if (Rlii — 0.0) 
<

tli ■ pss.lookuparray.data[t.count-2] [(n_count*3)-6];
Rli - pso_lookuparray_data(t.count-2] [(n_count«3)-5j;
Tli ■ pz3_lookuparrny.data[t.count-2] ((n_count»3)-4];
till ■ pcu.lookupaxTay.data  [t.count-l] [(n_count«3)-6];
Rlii ■ pza_lookuparrny.data[t_count-l] ((n.count«3)-5];
Till ■ pss.lookuparray.data[t.count-l] [(n.count*3)-4]; 

} 
olso 
{

tli ■ pss.lookuparray.data[t.count-2] ((n.count»3)-6];
Rli ■ pss.lookuparray.data[t.count-2] ((n_count*3)-5];
Tli *» pss.lookuparray.data(t.count-2] «n.count*3)-4];
Till ■ pss.lookuparray.data[t.count-l] [(n_couat»3)-4];

t.count >0;

while (t2il < rolngolnyro) // got tho ages, radii, and Tczpcraturo for tho second cars

t211 - pss.lookuparray.data [t.count] [<n_count*3)-3];
R21i " pss.lookuparray.data[t.count] [(n_count«3)-2];

if (P.211 —» 0.0) // if at tho ond of pro-cain sequence, but not changed to KS yet 
break;

t.count ♦■ 1;
}
if (R211 — 0.0)
(

t21 - pss.lookuparray.data[t.count-2] [(a_count*3)-3];
R21 ■ jas.lookuparray.dat a [t.count-2] [(z_count*3)-2];
T21 ■ pss.lookuparray_data[t.count-2] ((n.count«3)-l]; 
t2ii ■ p33_lockuparray.data[t_count-l] [(n_couat«3)-3];
R211 ■ p=3_lookuparray_data(t_count-l] ((n_count«3)-2]; 
T211 » ps3.lockuparray.data[t.count-1] ((n.count*3)-l);

t21 ■ ps3_lookuparray_data(t_count-2] [(n_count*3)-3J;
R21 ■ pss_lookuparray_data(t_count-2] t(n_count*3)-2];
T21 ■ ps3_lookuparray_data(t_count-2] ((c_count«3)-l];
T211 ■ ps3.1ookuparray.data[t_count-l] [(n.count*3)-l);
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.722 linear interpolation
Rl • ((tlii-rel^oinyrs)/(tlli-t!i))*»li*((rela<ols]m-tll)/(tlli-tll))«Rlil;
12 ■ ((t2ii-relageisyT«'/(«2ix-t2i))*ll21*((relacoiB]m-t2i)/<t2ii-t2i))«R21i;
radzzs ■ «i2 - ro’.ai:vo.iaMV(i2-sl))«R! • ((relative.mass-«l)/(«2-Bl))*R2;
Tl • ((tlll-rel^olByrsJ/Ctlii-tlDlsTll^CCrolafolByw-tlD/Ctlil-tli))^!!!;
T2 • ((t:il-re’.a<elnyTiV(t2ii-t21))«T2i«((rela<einyrs-t2i)/(t21i-t21))*T2ii;
T.eff ■ <(b2 - relatlve^ass)/(B2-«l))eTl ♦ <(rolative.sass-«l)/(n2-Bl))*T2;

if (relative.ere <■ next.update.age) {

effectivo.radius ■ Starlab::ai£(effective.radius, radius);
Icxincsity ■ povfaffactivejradiuaa 2.)* pcv(T_ef f/cnsts. parameters (Tsun), 4.);

} else {

// Pro-sain sequence star's aye exceeds deuterium cere burning 
// lifetime.

if Cnlativejeass < casts.parameters(ninism.nain.scquenco)) £
st ar.tr amsf errat i cn.stcry (Er cvn.Dvarf);
rev brcvn.dvarf(othis);
return;

) else £
star.transfcruticu.stcryOUinJioquenco);
rev aalajoqaence(ethls);
returns;

}

update(); 
stellar.vird(dt);

real pre^ala.sequoueoubolcsotrlc.csrrecticnO //use sixain .star perrcriptlca

// temperature!) is defired in Kelvin.
// here ve should use eld 10“3K implementation
// {SPZ*a: 1 Oct 1998)
real temp.in.kK ■ 0.001 • temperature();
real be;

if (tempJnJJC <4.105)
be - 2.5«lo(10((1.724e-7epovCteBpUBjEX.il.) ♦ 1.92Se-2)
/ (1. ♦ l.B84e-9opcv(temp.ln.kK,14.)));

else if (temp.in.kK >- 4.195 U
temp.in.kK <■ 10.89)

be - 2.5«leglO((7.E€e-2«pcv(tempJn.kK,1.5))
/ (1. ♦ €.3Ua-E»pcw(ttmp.ln.W, 4.5)));

else
be - 2.5olugl0((2728/pcw(texp.inJUC,3.5) ♦ 1.87Ee<otonp_in_kK) 

/(I. ♦ 5.3£2e-Eopw(temp_in.kK,3.5)));

// pre^aim.teq-ence stars de met have a compact cure.
// for convenience the core is set to a small value.
real pre^aiB^o^oence: ipre^ain.soqceree.cure.nassO
£

real n_cure • 0.0001;
//m.ccre ■ Starlab:imaxCeure^ass, B.core);

if (s.cure > get.tctal^assO) 
m_cure - got.tutal^assO;

return n.«re;
>
real pre^ain.sosueBCo::pre^ain.soquente.coro.radlus() 
£

return Starlab:jslnCO.GXl, radius);

// used fur MJOF
star* projMln.E^ence:: subtreejcass^rcs.donur (curst real dt, realt Bdot) 
£

■dot ■ relativej^es*dt/get.blMr/()*>got.dGnur.tlmesealo();
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zdot - Bass_ratio_Edot.linlt<Edot);

if (cdot<"onvalopo_casc) 
onvolopo_sass -■ cdot;

olco if (zdot>onvolopo_nas5) 
onvolopojiass " 0;

roturn this;

star* pro-zain_soquonco::Eorgo_olozonto(star* otr) {

star* zorgcd.star » this;

add_sass-to.coro(otr->got_coro_nass());

if (str->gat_onvolopo_na33()>0) 
add_Eas3_to_accrator(8tr->gQt_onvolopo_naso());

spoc_typo [Korgor]-Korgor;

switch(ntr->got_olonont_typo()) { 
case Pro_Kain-Scquonco:

rolativo.ago - 0; // back to tho birthlino 
break;

case Hain.Soquonco: 
star_tran3fomatlon_Gtory(Hain.Soquonco); 
roturn dynanic.cast(star*, new nain.coquonco(*thls)); 

caso Hypor.Giant:
caso Hortzsprung.Gap: 
caso Sub-Giant:
caso Horizontal-Branch:
caso Supor_Glont: 
caso Carbon.Star: 
caso Holiun.Star: 
caso Holiun_Giant: 
caso Carbon_Duarf: 

caso Oxygon_Dwarf:
caso Holiun-Dwarf: 

corr « "Korgo PKS+Holiua Dwarf■« ondl; 
if (rolativo.nas3 <

casts.parameters(caosivo.stur.naso.linit) ) { 
star.transfoxaatioa.Btory(Hortzsprung.Gap);

// (GN*SPZ Kay 4 19S9) should roturn now
// Borgod.star - dynanic.cast(star*, 
// now hortzsprung_gap(*this));
// duzpCcorr, false);

// Choso rolativo.ago to bo next updato ago I 
// othorwiso sub_gianto bocozo unhappy, 
corr « “Korgo PKS*wd”«ondl;
PRC(rolativo.ago);PRC(noxt_updato.ago);

roturn dynaBic_cast(otar*, now hortzoprung_gap(*thio));
> 
olso { 

star.transforzation.otory(Hypor.Giant); 
// Borgod-Star - dynanic.cast(otar*, 
// now wolf.rayot(*this)); 
rotum dynaBic.cast(star*( now hypor.giant(*thio));

>
caso Thorn.Zytkow : 

caso Xray.Pulsar:
caso Radio_Puloar: 
caso Noutron.Star : 
caso DlnckJ!olo :

star.tranofornation.otory (Thorn.Zytkow);
roturn dynaaic-caotCotar*. now thorno_zytkow(*thlo)); 

default: Instantanoouo.olcnontO;
>
return corgod_utar;

>

// Star in rejuvenated by accretion.
void pro_naln_soquonco:: adjust.accrotor.ago (const real cdot*
const bool rojuvenato-truo) (

real n_rol_now;
real n.tot_now - got.total-nassO ♦ cdot;
if (n_tot_now>rolativo_cas3>

n_rol_now ■ n_tot_now;
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else n.rel.new • relative .mm;

real t.pu.eld • pre.»ain.ooq®enco.tiM();
real t.pu.Mw • pre.Baxn.Bequecce.tIM(a.rel.new);

relative.aft •■ (t.pM.new't.fM.cld):

// next.update.age should not be reset here.
// la done in add.aus.to.accrotcr, where also relax:ve_nass
// is updated (SW*a: 1 Oct 1998)
// next.update.age ■ t.ns.new;

// Lov-ubs tarn-sequence donor lifetlMS are expanded by 
// reducing relatlve.zass
// (SPZeCI:25 Sep 1999)
void pre.zaln_sequeuco::adjcst.dcner_age(const real sdot) {

real z.rel_new ■ get.relative^ass() - zdot;
rolative.age •■ pre^aiB.Bequence.tl£e(n.rol.nev)

/ pre^aln.Bequence.tizoO;

// Adiabatic response taction for naln.sequence star.
// Used dor datemining nass.trazsfer.tiEescale.
// Increasing zeta stabilizes binary.
real pre^aiz.Boquence::zeta.adlabatic() {

// sane as super giant (both convective)

real x ■ cero.cass/got.tctal^us();
real a - -0.2X923;
real b - -2.94999;
real c - 32.0344;
real d • -75.£='3;
real e - 57.6109;

real z ■ a ♦ b«x ♦ c*x«x ♦ d*x«x«x ♦ e»x*x«x«x;

return z;

)

// Thorns! respouce function for pre^aln.8oquence star,
// Used for determining nass.transfer.tinescale.
// (SPZeCM: 1 Oct 1998)
real prej»ln.8oqueace::zeta_therzal() {

real z ■ 0; // Ires super.glant

return z;

}

star* ;re^aln.ieq;ence::red.:e.nass (const real ndot) (

if (esvelupe_nas8<"zdct) 
envelcpe^us - 0;

else
exvelope^ass -■ ndst;

return this;
}

veld pre_jMin_aoqMBce::adju8t.Mxt.vpdato.ago() {

// (GMPZ May 4 1999) last update age is tine of previous type change 
last.u^ate.age - 0;
next.update.age • pre^alnjEoquonco.tizo(relatlvojLass);

}

void pre^aln.s»quence::detect.BpectralJoatures() {

slcgle.Btar::detect_spectral^eatures();

if (aecretod^a£s>ecn8ts.para2ttors(B.eclsslcn.star.naes^lElt)) 
apec.type(Eni8si00]»toIsbi0n;

if fgit.relathe_EMB() > turn_cffjcasB(curreut_tlne)
• (14cn8t8.panMtor8(Bluo.8tragglor.jU8B.llalt)))

•p*c..tJ>*lBhi«.£lr*al*r]*Bluo_Stragglor;

■ If 0
real pre^alB.Boq;eace::Btellar.radlus(cGnBt real mass, coast real age) 
<
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real r.pu;
real rolagolnyrs - ago*1.0EG;
real T.effj

int n_count - 0;
int t.count ■ 0;
real b2 - O.OO;
real till - O.OO;
real Rill - O.OO;
real Till - O.OO;
real t211 - O.OO;
real R211 - O.OO;
real T2ii - O.OO;
r.ll Bl, til, t21, Ml, Ml, Til, T21, M, M, Tl, T2; 
char buffor[2000];
char fllonaao[50];

vhilo (n2 < relativeJBM8 th a_count < pns.nuzbcr.of.casses) //know tho bus range wo'ro dealing with

al - b2;
=2 ■ p=3_lookupanay_cacson [n_count];
□.count ♦- 1;

if (al — 0.0) // If loss than lowest nans In tho lookup table

vhilo (till < rolagolnyrs) // got tho ages, radii, and Tonporaturo for the flrot naso

till - pao.lookuparray.data[t.count][0];
Rill » pss.lookuparray.data[t.count][l];

If (Rill ■*“ 0.0) // if at tho end of pro-aain sequence, but not changed to RS yot 
break;

t.count ♦- 1;

if (Rill — 0.0) 
<

til ■ poo.lookuparray_data[t.count-2][0];
Rll ■ pM.lookuparray.data[t.count-2] [1];
till ■ pcs.lookuparray.data[t.count-1 ] [0];
Rill - ps3.1ookuparray_data[t_count-l][1]; 

olso

til - pzs.lookuparray.data[t.count-2] [0];
Rll - pas.lookuparray.data[t.count-2][1];

radius - ((tlll-rolBgolnyro)/(tlli-tll))«Rll*((rolagoinyro-tli)/(tlii-tll))»Rlll;
// if (lonan(radiuo))
// ccrr « -h=a RI" « RI « ■ R2 ■ « R2«" radius ■ « radius« cndl;

}
olso if (n.count « pas.nunbor.of.nacsos) // if higher than tho highest nans in tho lookup tablo

vhilo (till < rolagolnyrs) // got tho egos, radii, end Tosporaturo for tho first naso

till ■ pna.lookuparray.data[t.count] [(pns_nuabor.of.naoooo*3)-3];
Rill «• pao.lookuparray.data[t.count] [(pao.nuabor.of jBM*ose3)-2];

if (Rill ■■ 0.0) // if at tho end of pro-naln ocquonco, but not changed to KS yot 
break;

t.count ♦- 1; 
>
if (Rill — 0.0) 
(

til - pao.lookuparray.data [t.count-2J [(pao.nunbor.of.naflooo>3)-3];
Rli ■ pao.lookuparray.data[t.count-2] [(pao.nuabor.of.010000*3)-2] ;
till ■ pzs_lookuparray_data[t_count-l] [(pao_nunbor.of.naoooo«3)-3] ; 
Rill ■ pao.lookupiXTay.data[t.count-1] [(pn3_nunbor_of_nacso3*3)-2];

olso 
(

til ■ pa3_lookuparray_data[t_count-2] ((p33.nunbor_of.naosoD*3)-3];
Rll ■ pzs.lookuparray.data[t.count-2] [(pao.nuabor.of.naoooo*3)-2];

radius - ((tlil-rolagolnyro)/(tlll-tll))*Rli*((rolagoinyro-tll)/(tlli-tli))*Rlil:
// if (icnaa(radius)) 
// corr « "h=a RI" « Ri « ■ R2 ■ « R2«" radius ■ « radius« ondl;

vhilo (till < rolagoinyro) // got tho ages, radii, and Tosporaturo for tho first naso
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till • p«s.loekuparray.data[t.countK(B.counte3)-«];
RIH ■ pus.lockuparray.data(t.count]((B.co«ta3)-S);

12 (Rill — 0.0) // If at th and of pro-aain sequence. but not changod to MS yot 
break;

t.coat •■ 1;
)
If (Rill - 0.0)
(

til ■ pes.lcckuparray_data[t.ccunt-2][(e.counte3)-6];
Rll - pM.looknpamy.data(t.cocit-2n(■.counta3)-5];
till - pes.lookupsrray.data(t.c©UBt-lH(a.counte3)-€);
RUI ■ pM.lockuparray.data(t.count-lH(«-Cocnte3)-5];

}
also
<

til - pes_lockuparray.data[t.count-2][(n.ccuate3)-6];
Rll ■ pM.lockunarray.data[t_count-2j[(a.ccunte3)-5];

}

t.ccust "0;

while (t2il < rolagelnyrs) // get the ages, radii, and Tesnorature for tho second aass 
(

t21i ■ pus_l::kuparray_data[t_ccunt][(n_ccunt*3)-3];
Juli ■ pEs_13ckuparray_data[t.ccuntH(B_counta3)-2];

if (R2ii ■■ 0.0) // if at the end of pre-sain sequence, but not changed to MS yot 
break;

t.ccust ♦■ 1;
}
if (R2ii — 0.0)
(

121 ■ pes_lockuparray_data[t.count-2][(E_ccunte3)-3];
R21 ■ pesJookuparray_data[t.count-2][(s.ccunt«3)-2];
t21i ■ pes_lockuparray.data[t_ccunt-l] [(B_couat«3)-3];
R211 ■ pMjockuparray_data[t_count-l]E(n.ctunte3)-2];

}
also

121 - pMj»ckuparray_data[t.ccunt-2][(s.ccuate3)-3];
R21 ■ pes.lcskuparray_data[t_count-2][(e.counte3)-2]; 

}

//2D linear interpolation
RI • ((tlli-relagolnyrs)/(tlil-tli))eRH4((rola£oiByrs-tli)/(tlll-tll))eRlii;
R2 • ((t2il-rolagolnjrrs)/(t2ii-t21))eR2i*((relagolnyrs-t2i)/Ct211-t2i))eR21i:
radius - ((b2 - rolativo^ass)/(s2-nl))eRl ♦ ((rolative^ass-sl)/(e2-nl))eR2;

}
r.pes ■ radius;
return r.pu;

}
Midi*

real projMlc^aqucs:o::gyraticnuradius.eq() {

return cn2ts.parasoter8(ccu7octiYo_star^yratlon.radlue.sq);
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A more minor addition to the code was made in the add star module. It was 

necessary to initialise the lookup table there since it is called at the beginning of the 

kira command.

//...„..—.......—.....-------- -- —.....„..// _xiz_
zz........... zz zi\ ■ 

ZZ Z I - I \ I * I \ ZZ .MZ.
ZZ V. I / \ I__ Z I Z \ I...Z ZZ Zl\ -

ZZ \ I Z_ \ I \ I Z__ \ I \ ZZ _MZ_ 
ZZ __ Z I Z XIX I.__  Z \ I__ Z ZZ ZIX -

ZZ ZZ _XIZ_
ZZ--—...—„—----------------------------------- - ------------------- // Zl\

zzzz
zzzz 
zzzz

addstar: Add physical stellar data to existing nodo structure.

zzzz
Options:

zzzz
zzzz
zzzz

-H
-Q
-R

zzzz
zzzz
zzzz
zzzz

comment to put in tho starbase log structure [nono] 
cans Dealing (system sass unit, in solar units) 
virlal ratio (used if time scaling is cnittcd) [0.5] 
dynamical size scaling for stars

(oysters length unit, in parsecs)
initial typos of stars [Eain.coquonco]
dynamical tico scaling (systen tine unit, in Kyr) 
Gtollnr ago (in Ellllons of years) [0]

zz**
zz** 
ZZ** 
ZZ** 
ZZ**

Kotos:
Command-lino arguments ovorrulo parameters Iron input snapshot.

ZZ** 
ZZ** 
ZZ** 
ZZ** 
ZZ** 
ZZ** 
ZZ** 
zz*+ 
ZZ** 
ZZ** 
ZZ** 
ZZ** 
ZZ** 
zzzz 
zzzz 
ZZ

If no time unit io explicitly spocifiod it is derived 
from tho other units.

Tho nass of tho system can be cot independently from tho total 
sass of tho input II-body systen (o.g. when node ling a largo 
cluster by a ccallor K-body systen).

Should run cakcnass first to ostablich stellar casses.

Example of usago: 
cakoncdo -n 10 I D^ccsaoa -u 100 -1 10 I add.ctar -T 1

Seo also: eIoud
nknodo

Version 1.0: Apr 1993
Version 2.0: Hay 1993

Plot Hut, Stove McMillan, Jun Makino
Sicon Portegies Zvart 
spzOgrnpo.c.u-tokyo.ac.jp

Bincludo "singlo.star.h"
oxtorn real pcs.lcokuparruy.dnta [10000] [10000];
extern real pcs.lookuparray.casses [10000];
oxtorn int pcs.numbcr.of.casses;
oxtorn int pcs.status;

•ifndof TOOLBOX

- ---------------------------------------------------------------------------------------------------------------------------
// addstar — for all particles, add a star part using "nou otarO". 
- ---------------------------------------------------------------------------------------------------------------------------

void nddstar(nodo • b, real t_currcnt, otollar.typo typo, bool verboso) 
<

char pms.lut.fname[60];
char tost[10];
char buffer[2000];
int t.count » 0;

if (pms.status ■■ 0)

ifstream pcs.lookuptablo;
strcpy(pcs_lut_fnano, gotonv("STARLAD_PATH") );
strcatCpcs.lut.fnano, ■/lookuptablos/PMSLOOKUP");
pcs.lookuptablo.oponCpns.lut.fname);
if (I pcs.lookuptablo.Is.oponO)

corr « "No pro-main sequence lookup table. Ok if you're just doing cs, but if not,";
corr « - it needs to bo called SSTARLAD-PATH/lookuptablcs/PHSLOOXUP^cndl;

}

pcs.lookuptablo.gotlino(buffor, 2000); // bypass cocccnt lino 
do
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<
pM.loctafcabla»te8t;
i* .stra;:test, '\f? — 0 II atrc«p(test, V) - 0) 
t

break.
>
•!>•

^s.lcikurarray.tusesipBs.fjaber.cf.aMses) • atof(teat);
pMja^bar.cf^auM •■ 1;

}

while (strictest. ’Xn*) !■ 0); //ksov the case range we re dealing with 
^s.l:skz;table.getliso(bnffer, 2000); // bypass label line

while (! pns.lockuptablo.ocfO )

far Utt i - 0; i<pes.tJtber_cf.sasses; !♦♦)

pcs.l:uuptablo»pes.lc:kuparray_data[t_ccu£t] [1*3];
^s.lockxptable»pcs_lcckuparray.data[t.coust] [(i«3)*l];
^s_lKkxptable»pes.lcckuparray.data[t.coust] [(i*3)*2]; 

}
t.ccost *• 1;

far list i ■ 0; l<pes.tusber.of.sasses; !♦♦) 
(

fKs_19ckuparray.data[t.ccust][le3] • 0.0;
pujMkaparrqr.data[t.cocstn(ie3)*l] ■ 0.0;
fes.l:tk^arrar_data[t.ctutt][(le3)*2] ■ 0.0;

}

^s.status ■ 1;
pu.loekuptable. close O;

}

i! (b->got.eldest.dughter() !■ RIX) {

real aula • YaYJJLKEJRna;
real c.tu • -nXT.LAK£.F*EER;
real e.aT ■ 0;
int t.star • 0;

fsr.all.da^hterstsode, b, bl) { 
addstar (bl, t.currest, type, verbose);

12 (verbose) {
real a ■ M->get.starbase()

->cct»^_dr=.to_stu  (bl->£et.eass ());
s^ls ■ Starlab uslntajals, a);
■.sax ■ Star lab:: tuft.Eax, ■);

t_star»*;
}

}

12 (mboM) {
12 (t.star > 0) «_av /- t.star;

) else (

// MS is the de!tilt return value of get.elaseat.typo, In 
// cues where ctly a starbase (but to star) exists.

if Uoget.ttarbaseO-^et.eleaest.typeO I- MS) return;

Itt Id ■ t->get.lzdex0;
real t.c^-C, t^el«0, n^el-1, s.et.<, s.core-O.Gl;
real T.eff, L.eff;
real p^st-G, b_fld<;
real s.tot;

// Craau • Calata) aur [art, aala, th. BTanatlaa attain fro 
// th. aur awry n.4 la 1/ (at_»4a(), „ craaM frea acratck.

stellar.type local .type ■ KAS;
stutue • old.stubue ■ b->get.stubase();
story • a - cId.stubue->cet.8tu_Btory();

real aM.cera ■ 0;
•stnet^tuy.chaptar(lccal.type( t.cur, t_rel, 

n_xel, s.ur, t.ccre, aco.core, T.eff, L.eff. 
r-Tit. b.fld, ••);

92



M.Sc. Thesis Robert Peter Wiersma--------McMaster University - Physics and Astronomy--------- 2004

n.tot ■ n_onv*n_core;
old_Btarbaso->sat_3tar_Etory(NULL); 
delete a;

if (local_typo I" NAS) { // Io tho Etar properly defined?

// Use tho data extracted fron tho otar story. Koto that tho 
// input values of tho typo and tjrol arguments aro IGNORED.

typo - local_typo;

ninglo_Gtar* nov_star ■ nou_singlo_otar(typo, id, t.cur, 
tjrol,
B_rol, a_tot, n.coro, 
sco.coro, 
p_rot, b.fld, b);

} else { // Ko star story present, or at least no 
// proper definition for a single otar.

// Croato a default star of tho specified typo.

real t_cur-0, t_rol - 0, ajrol ■ 1, n_coro - 0.01;
real p_rot-O, b_fld«O;
real n.tot;
t.cur - t.current;

starbaso • old_starbaso ■ b->got_starbaso();
id ■ b->got_lndox();
a.rol ■ n.tot ■ b->got.starbaso() 

->CGnv_H_dyn_to_otcr(b->got_nass());

stellar-type local.typo ■ typo;

// Treat by dynamics pro-requested black holos
if (gotlq(b->got_log.otoryO, "black-holo")—!) {

local.typo " Black_Holo;
n.coro - n.tot;
■co.coro " n_tot;

>
olso if(a_tot<cnsto.paranotoro(nininun_nain.scquonco)) { 

local.typo » Brovn-Dvarf;
n.coro - 0.01•n.tot;
Eco.coro ■ 0;

oinglo.star* nov.star ■ nov.singlo.otar(local.typo, id, 
t-cur, tjrol, 
n.rol, B.tot, n.coro, 
aco-coro, 
pjrot, b.fld, b);

>
// Should not bo nooded slnco nov.singlo.star doos tho job. 
// (SPZ:25 Nov 1098)

// doleto old.starbaso;
>

>
Voise

■aindnt argc, char •• argv) 
<

int c;
bool t_flag - FALSE;
bool H-flag - FALSE;
bool R_flag - FALSE;
bool T-flag - FALSE;
bool Q.flag - FALSE;
bool o-flag - FALSE;
bool c.flag - FALSE;
real n.tot - -1;
real r.vir - -1; // KB code length unit; nay or cay not 

// actually bo tho vlrial radius
real t.vir - -1;
real t.rol - 0;
real q.vir "O.6;
real T.start - 0;
stollar_typo typo ■ Haln_Sequonco;
char • star.typo-String;

char •concent;
extern char epoptarg;
int pgotoptCint, char ••, char •);
char • paraa-string ■ "H:R:Q:T:t:o:c:";
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check.help J;

sftilo ((c ■ pgotcpt(argc. arp. paras.string)) •• -1) 
svitch(c)

<
case ’M': ".flag • »W

n.tct • atof(poptarg);
break;

cue T: Ml* • WVE;
r.vlr ■ atcf(pcptarg);
break;

case '5': QJ1M ■ WOE;
q.v:r ■ atof(pcptarg);
break;

case *T': T.flag - USE;
t.vir ■ atcf(pcptarg);
break;

case *t’: TJlag - TRUE;
t_rel ■ atof(poptarg);
break;

case ’a*: s.flag ■ true;
star.type.string ■ poptarg;

type ■ extract.stollar_type.string(star_type_strlng);
case 'c*: c.flag ■ TRUE;

correct ■ poptarg;
break;

case ’7’: params.to.usageCcerr, argv[0], param_string);
pt .help 0; 
exit(l);

)

tod# eb;
b ■ get^ode(cin);

if (c.flag - TRUE)
b->lcg.cxmemt(cnmsont);

b->Xcg^istcry(argc, argv);

// See if ary scaling parameters are specified in the input snapshot.

real nev.r.vlr—1, nov.t.vir—1, nev_n_tQt—1;

// Systen mass in sclar units:
real old_n_tct ■ b->get.8tarbaso()->ccavj^dya.to_8tar(l);

•define Rsum.pc 2.256e-8 // R_sun/1 parsec ■ 6.M0o*10/3.0No*18;

// Code length unit in parsecs:
real cld.r.vir ■ b->get.staxbasa()->ccnvjr_dya.to.star(X) • Rsun_pc;

// Code tine unit in Myr:
real cld.t.vir ■ b->getjstarbaso()->coav.t.dyn.to.star(i);

// Set new parameters free old cues or command line.

if Coldjutct > 0 U IMJlag) 
nev_E.tex ■ cld_t_tct;

else if OUlag)
newjn.tot ■ n.tct;

else
err.exit("addstar: Xs rasa scaling available.*);

if (olO.Tlr > 0 u IMhg)
Bwjr.vir ■ cld.r.vir;

else
ne._r_Tir ■ r.vir;

if (old.t_»lr > 0 U KTJlag 11 QJlag)) 
new.t.vlr ■ cld.t.vir;

// Try to derive quantities net yet known.

bool chotk.ccns!stent ■ true;

if (nev.t.vir <- 0) {
if (nev.A.tot > 0 U new.r.vir > 0) {

// If no tine unit is explicitly specified, derive it from 
// the other units.

// Standard (K-tedy / Reggie k Mathieu) tine unit, in Myr:

Mv.t.vlr - 21.0 • Bqrt(q.vJr/now^.tot) • povfMVjr.Ylr, 1.5); 
check.ccnsistent ■ false;
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orr_oxit("addstar: Unable to sot tico scaling"); 
>

if (nov_r_vir <- 0) {
if (nov_n_tot > 0 Mt new_t_vir > 0) {

// If no length unit is explicitly specified, derive it fron 
// tho other units.

now_r_vir ■ pow(now_t_vlr / (21.0 • cqrt(q_vir/nov_n_tot)), 2.0/3); 
check-consistent ■ false;

orr_oxit("addstar: Unable to sot radius scaling");

if (chock_consintont) {

// Chock that tho various units arc consistent.

real tv ■ 21.0 • sqrt(q_vir*pov(nov_r_vlr, 3)/nov_n_tot);
if (abs(l-nov_t_vir/tv) > l.o-4) {

corr « "Warning: inconsistent units: ";
PRC(now_t_vir);
PRL(tv);

}
>
// Finally, sot tho scalings end croato otar parts.

if (old_n_tot > 0 ti IH.fleg) <

// Existing dynamical casses are to bo interpreted ns
// solar units. Sot scaling accordingly boforo sotting
// up star parts.

b->got_starbaso () ->sot_s tel 1 cx_c volution.scal ing( 1,1,1);
addstar(b, T.otart, typo, true);

// Nov scaling assuaos that total dynanical caso will bo 
// rescaled to 1.

b->got_starbaso () ->Bot_otollar_avolution_ccaling(nov_u_tot • 
ncu_r_vir, 
nov_t_vlr);

also {

// Nov scaling assunos that total dynamical aass will bo 
// rescaled to 1.

b->got-starbaso()->cot_stollar_ovolutlon_ocallng(nov_n_tot, 
now-r-Vir, 
now_t_vir);

addstar(b, T.start, typo, false);
}

•if 0
real c_sua - 0;
for_all_daughtoro(nodo, b, bl) { 

a_sua ♦- bl->got_naso();

!>**>■• tjBMota-Bua);

real old.ctot ■ b->got_ctarbaso()->conv_n_dyn_to_ctar(l);
if(old_ntotl"3.oua) {

real old_r_vlr“ b->got_Dtarbaoo()->conv_r_etar_to_dyn(l); 
real old_t_vlr“ b->got_otarbaso()->conv_t_3tar_to_dyn(l); 
b->got_otarba5o()->sot.otollar_ovolution.ocaling(n.8ual 
old_r_vir, 
old_t_vlr);

Mondif

put .node(cost, »b);
doloto b;

}

•endif

/• ondof: addstar.c •/
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