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Abstract
This sandwich thesis comprises a comprehensive survey of Cognitive IoT and remote
sensing systems, followed by three technical contributions that advance the state-of-
the-art in data compression, multi-modal fusion, and anomaly detection. The increas-
ing integration of the Internet of Things (IoT) and remote sensing systems has cre-
ated an unprecedented need for efficient data processing, transmission, and integration.
These systems often rely on heterogeneous data (spanning modalities such as numeri-
cal measurements, textual information, and imagery) each with unique characteristics
and structures. While effective at reducing data size, traditional data compression and
processing techniques often fail to retain the contextual and relational information re-
quired for downstream analytical tasks. This limitation is particularly acute in resource-
constrained environments, where computational power, bandwidth, and energy are re-
stricted. This thesis explores Variational Autoencoders (VAEs) as a unifying framework
to address these challenges. VAEs provide a mechanism for encoding complex, multi-
modal data into low-dimensional latent representations that are simultaneously compact,
efficient to transmit, and inherently structured for interpretability. The overarching goal
of this research is to establish a methodology for representing information such that
heterogeneous data can be processed, compressed, and fused seamlessly. The research
is organized around three key objectives: (1) developing and fine-tuning VAE archi-
tectures that generate compressed latent spaces optimized for direct classification and
reconstruction, minimizing the reliance on reconstructive processing while preserving
interpretability, (2) investigating the capacity of VAEs for multi-modal data fusion by
combining disparate data types, such as Synthetic Aperture Radar (SAR) and optical
imagery, into a unified latent representation, and (3) evaluating the potential of VAE-
derived latent spaces for anomaly detection, particularly in applications where identi-
fying critical events or failures is essential. These results collectively underscore the
potential of VAEs not only as tools for compression but also as versatile foundations for
diverse analytical and predictive tasks across varied datasets. In the broader context
of remote sensing and IoT, these methods align well with the overarching theme of the
thesis to increase system efficiency through multi-level intelligence and distributed com-
puting. By leveraging compressive sensing and latent representations, these approaches
facilitate reduced data transmission and enhanced computational efficiency, supporting
the development of scalable architectures for data-rich applications in IoT and remote
sensing environments. The results also demonstrate that compressive VAEs generate
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rich latent spaces, enabling their dual use for direct downstream tasks and reconstruc-
tion as well as for data fusion and anomaly detection. This implies that deploying
VAEs for compression on edge devices could fundamentally transform data transmission
workflows. Rather than transmitting raw data, edge devices could send compressed,
machine-learning-interpretable representations, reducing bandwidth requirements while
preserving essential information for analysis and data fusion. This approach not only
enhances efficiency but also lays the groundwork for intelligent, resource-aware systems
capable of performing complex, real-time tasks through distributed and interpretive data
handling. This thesis highlights the transformative potential of VAEs for addressing the
critical challenges associated with processing and fusing heterogeneous data. By leverag-
ing their inherent flexibility and capacity for structured representation, VAEs provide a
scalable, interpretable, and resource-efficient approach for data-intensive applications in
IoT. cognitive IoT (CIoT) and remote sensing. The findings lay a foundation for future
research into compressive neural networks and their broader applications in intelligent
systems.
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Chapter 1

Introduction

The rapid expansion of interconnected devices within the Internet of Things (IoT)
has revolutionized industries ranging from healthcare and transportation to agriculture
and environmental monitoring by enabling real-time data collection, enhanced decision-
making, and improved operational efficiency. In healthcare, IoT devices facilitate remote
patient monitoring and personalized treatment plans, while in transportation, they opti-
mize traffic management and enable autonomous vehicles. Agriculture benefits from IoT
through precision farming techniques, such as monitoring soil conditions and automating
irrigation systems, and environmental monitoring leverages IoT to track air and water
quality, helping to address pollution and climate change. IoT systems collect and process
vast volumes of data from diverse sources, often encompassing multiple modalities such
as numerical measurements, images, and textual information. However, this growing
complexity poses significant challenges in data integration, transmission, and analysis.
Traditional IoT architectures, which predominantly rely on centralized systems and con-
ventional compression techniques, often fail to manage the heterogeneity and immense
scale of data generated by modern IoT networks.

To address these limitations, Cognitive IoT (CIoT) has emerged as a paradigm that
incorporates elements of artificial intelligence and cognition into IoT systems. CIoT
systems aim to adapt dynamically to changing environments and perform tasks with
minimal human intervention by mimicking cognitive processes such as perception, mem-
ory, and intelligence. Despite these advancements, existing data compression, fusion, and
anomaly detection methods face significant challenges in real-world applications. These
methods often struggle to meet demands for scalability, efficiency, and interpretability.
For example, traditional compression methods frequently sacrifice contextual and re-
lational information, limiting their utility for downstream analytical tasks. Similarly,
existing techniques for fusing data from multiple modalities often fail to capture the
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nuanced relationships between different data types, making it difficult to extract mean-
ingful insights from diverse sensor inputs and data streams, resulting in suboptimal
system performance.

This thesis investigates the application of Variational Autoencoders (VAEs) as a uni-
fying framework to address these challenges. VAEs, a class of generative neural networks,
provide a mechanism for encoding complex, multi-modal data into low-dimensional latent
spaces. These latent representations are compact, efficient for transmission, and struc-
tured in ways that preserve the critical information necessary for downstream tasks. By
leveraging VAEs, it becomes possible to integrate data compression, fusion, and anomaly
detection into a single, cohesive framework.

1.1 Motivation and Problem Statement

The integration of IoT systems into critical applications such as remote sensing, smart
cities, and autonomous vehicles requires novel approaches to manage the heterogeneity
and volume of data. For example, in remote sensing, the combination of Synthetic
Aperture Radar (SAR) data with optical imagery provides a richer understanding of
the environment. However, current methods for fusing such disparate data types often
require substantial pre-processing and computational resources, making them unsuitable
for deployment in resource-constrained environments. Furthermore, traditional anomaly
detection techniques are often ineffective in high-dimensional, noisy datasets, which are
characteristic of IoT applications.

At the heart of these challenges lies the need for a framework that can:

• Compress heterogeneous data efficiently while preserving essential information.

• Fuse disparate data modalities into a unified representation that facilitates down-
stream tasks such as classification and anomaly detection.

• Operate effectively in resource-constrained environments, such as edge devices with
limited computational and energy resources.

This thesis addresses these needs by leveraging VAEs to create structured latent
spaces that serve as both compressed representations and feature-rich inputs for analyti-
cal models. Unlike traditional methods, VAEs enable the direct utilization of these latent
spaces for tasks such as classification, significantly reducing the need for reconstructive
processing.
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1.2 Variational Autoencoders: A Bayesian Framework

Variational Autoencoders (VAEs) are a probabilistic framework rooted in Bayesian rea-
soning, designed to model and generate complex data distributions. At their core, VAEs
encode high-dimensional data into a probabilistic representation, where each data point
is described as a distribution over latent variables rather than a single deterministic
point. This probabilistic nature allows VAEs to capture the inherent uncertainty and
variability in the data, making them highly effective for downstream tasks such as classi-
fication, fusion, and anomaly detection. This section introduces the mathematical foun-
dation of VAEs, highlighting their connection to Bayesian principles and the advantages
of representing data through distributions.

1.2.1 Bayesian Reasoning and VAEs

Bayes’ rule forms the foundation of probabilistic modeling in VAEs. For observed data
x and latent variables z, the posterior distribution p(z|x) is defined as:

p(z|x) = p(x|z)p(z)
p(x) ,

where:

• p(z) is the prior distribution over the latent variables.

• p(x|z) is the likelihood of the observed data given the latent variables.

• p(x) =
∫

p(x|z)p(z) dz is the marginal likelihood, serving as a normalization con-
stant.

The posterior p(z|x) encapsulates our updated beliefs about z after observing x.
However, the computation of p(x) often involves an intractable integral, especially in
high-dimensional latent spaces. To address this, VAEs approximate the posterior p(z|x)
using a variational distribution qϕ(z|x), parameterized by a neural network.

Evidence Lower Bound (ELBO)

The Variational Inference approach maximizes the Evidence Lower Bound (ELBO), a
tractable surrogate to the intractable log-marginal likelihood log p(x). The ELBO is
derived as:

log p(x) ≥ Eqϕ(z|x)[log p(x|z)] − KL(qϕ(z|x)∥p(z)),
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where:

• Eqϕ(z|x)[log p(x|z)] is the reconstruction term, ensuring that the latent representa-
tion can faithfully reconstruct the observed data.

• KL(qϕ(z|x)∥p(z)) is the regularization term, which enforces the learned latent
space to remain close to the prior p(z), typically a standard Gaussian distribu-
tion N (0, I).

1.2.2 Encoder-Decoder Architecture

VAEs employ an encoder-decoder architecture to approximate the posterior qϕ(z|x) and
reconstruct the data via pθ(x|z). The encoder maps x to a latent representation z,
parameterized by a mean µϕ(x) and variance σ2

ϕ(x):

qϕ(z|x) = N (z; µϕ(x), diag(σ2
ϕ(x))).

The decoder reconstructs x from z using the likelihood:

pθ(x|z) = N (x; µ̂θ(z), diag(σ̂2
θ(z))).

1.2.3 Reparameterization Trick

To enable gradient-based optimization, VAEs use the reparameterization trick to sample
z in a differentiable manner:

z = µϕ(x) + σϕ(x) ⊙ ϵ, ϵ ∼ N (0, I),

where ⊙ denotes element-wise multiplication. This formulation ensures that gradients
can flow through the stochastic sampling process during backpropagation.

1.2.4 VAE Loss Function

The loss function for VAEs is derived from the negative ELBO:

LVAE(x; ϕ, θ) = KL(qϕ(z|x)∥p(z)) − Eqϕ(z|x)[log pθ(x|z)].

Minimizing this loss balances two objectives: regularizing the latent space to align with
the prior and ensuring accurate reconstruction of the observed data.
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1.2.5 Bayesian Context in CIoT Applications

The Bayesian framework of VAEs aligns closely with the principles of cognitive reasoning
observed in humans. At its core, Bayesian reasoning involves updating beliefs based on
new evidence, a process that mirrors human cognition when encountering and processing
information. In the context of Cognitive IoT (CIoT), leveraging this framework provides
several key advantages for handling the challenges of uncertainty and data heterogeneity:

• Latent Space Structuring: The learned latent representations in VAEs are
inherently probabilistic, modeled as a posterior distribution qϕ(z|x) approximat-
ing p(z|x). This structured approach enables seamless fusion and classification of
heterogeneous data by capturing nuanced relationships between modalities. This
mirrors the way humans synthesize information from multiple sensory inputs, such
as sight and sound, into a coherent perception of their environment.

• Uncertainty Quantification: The variational posterior qϕ(z|x) provides a mea-
sure of uncertainty in the latent space. For example, when a VAE encounters
incomplete or noisy data, the posterior reflects this uncertainty, guiding the sys-
tem to make probabilistic decisions. Similarly, humans operate under uncertainty
by assigning confidence levels to their beliefs, adjusting them as new informa-
tion becomes available. This is critical in anomaly detection, where the ability to
quantify and respond to uncertainty can improve system reliability in dynamic,
unpredictable environments.

• Scalability through Prior Knowledge: In Bayesian reasoning, the prior p(z)
serves as a foundation of existing knowledge, which is updated as evidence accumu-
lates. For VAEs, this prior ensures the latent space remains regularized, avoiding
overfitting and enabling generalization across diverse datasets. In CIoT systems,
this translates to efficient data compression and transmission, reducing bandwidth
and computational overhead. Humans similarly rely on prior knowledge to make
rapid and scalable decisions, refining their understanding with experience.

• Probabilistic Decision-Making: VAEs, grounded in Bayesian principles, en-
able probabilistic decision-making based on the likelihood of observed data under
the generative model, where decisions often weigh multiple probabilistic outcomes
rather than deterministic absolutes. For instance, in CIoT systems, probabilistic
reasoning can guide resource allocation or anomaly detection under conditions of
limited or ambiguous data.

5
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In the broader context of CIoT, the ability to handle uncertainty, heterogeneity, and
dynamic data environments is paramount. VAEs, as Bayesian models, address these
challenges effectively, supporting applications such as multi-modal data fusion, anomaly
detection, and real-time decision-making. This thesis demonstrates how grounding VAE-
based methods in Bayesian reasoning not only enhances their technical capabilities but
also aligns them with the cognitive principles that underpin human intelligence, paving
the way for smarter and more adaptable IoT systems.

1.3 Research Objectives

The primary objectives of this research are as follows:

1. Study VAE Architectures for Compression and Classification: Design and
optimize VAE models that produce latent representations capable of direct classi-
fication and high-quality reconstruction, balancing efficiency and interpretability.

2. Explore Multi-Modal Data Fusion: Investigate the use of VAEs to combine
heterogeneous data types, such as SAR and optical imagery, into unified latent
spaces that enhance analytical performance.

3. Utilize VAEs for Anomaly Detection: Evaluate the potential of VAE-derived
latent spaces for identifying anomalies in dynamic, resource-constrained environ-
ments.

Through these objectives, the thesis aims to establish VAEs as a versatile tool for
addressing critical challenges in CIoT applications.

1.4 Contributions and Significance

This thesis makes several significant contributions to the fields of data compression,
multi-modal data fusion, and anomaly detection. One of the primary contributions is
the demonstration of the direct utilization of latent representations constructed by neural
compression models for downstream machine learning tasks, such as classification. This
approach leverages the efficiency and compactness of learned latent spaces by bypassing
the need for explicit reconstruction or inverse transformation, enabling immediate ap-
plication to analytical tasks. This represents a departure from conventional methods,
which typically rely on full data reconstruction, and validates the potential of using
lower-dimensional representations directly for diverse machine learning applications.
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Another key contribution lies in developing methodologies for the fusion of hetero-
geneous data modalities using VAE latent spaces. By integrating disparate data types,
such as Synthetic Aperture Radar (SAR) and optical imagery, into unified latent rep-
resentations, these methodologies significantly enhance the accuracy and efficiency of
downstream tasks. The resulting fusion approaches enable more robust and interpretable
analytics, particularly in scenarios involving complex and multi-faceted data, such as re-
mote sensing applications.

Finally, this thesis validates the application of VAEs for anomaly detection in high-
dimensional datasets. By leveraging the structured and probabilistic nature of the latent
space, VAEs are shown to identify critical events and anomalies in challenging environ-
ments effectively. This capability addresses real-world problems that require precise and
reliable anomaly detection, even under conditions of uncertainty and incomplete data.
Together, these contributions highlight the transformative potential of VAEs for address-
ing core challenges in data-rich, heterogeneous, and resource-constrained environments.

The findings presented in this work have broad implications for the design of next-
generation CIoT systems. By integrating compression, fusion, and anomaly detection
into a single framework, VAEs enable the development of intelligent, resource-efficient
systems capable of real-time analytics and decision-making. This research also lays the
groundwork for future studies on compressive neural networks and their applications in
domains such as autonomous systems, smart cities, and distributed sensor networks.
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1.6 Thesis Organization

The remainder of this thesis is structured as follows:

• Chapter 2 provides a comprehensive review of the CIoT paradigm, highlighting its
key components, challenges, and enabling technologies.

• Chapter 3 introduces the proposed VAE architectures and their application to data
compression and classification.

• Chapter 4 explores the use of VAEs for multi-modal data fusion, with a focus on
remote sensing applications.

• Chapter 5 examines the role of VAEs in anomaly detection, presenting experimen-
tal results and analyses.

• Chapter 6 concludes the thesis, underscoring the key findings, their implications,
and potential directions for future research.

This thesis represents a significant step forward in the development of scalable, intelligent
systems for CIoT applications, demonstrating the transformative potential of VAEs in
addressing the challenges of heterogeneous data integration.
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Chapter 2

What is Cognitive IoT

The content of this chapter is a second revision of the manuscript text for publication
under the following citation:

Giuliano, A. (2024). Cognitive Internet of Things: A Review of Theory, Applica-
tions, and Recent Advances. IEEE Communications Surveys & Tutorials.
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Abstract

With the development of increasingly interconnected cyber-physical systems (CPSs),
the Internet of Things (IoT) paradigm must be expanded further to account for the
collection, transmission, and processing of unprecedented amounts of data in uncertain
and changing environments. Cognitive Internet of Things (CIoT) introduces a paradigm
shift in IoT systems by integrating the engineering perspective of cognition, as formu-
lated in cognitive dynamic systems (CDS), into traditional IoT frameworks. This survey
systematically examines how CIoT leverages the five pillars of cognition: perception,
attention, memory, language, and intelligence, to enable context-aware, autonomous,
and adaptive functionality. We trace the evolution from standard IoT architectures to
this cognitively enriched model, detailing how data acquisition and storage, combined
with enabling technologies such as data fusion, reinforcement learning, cognitive com-
munications (via cognitive radios), and the integration of foundation models and large
language models (LLMs), facilitate advanced data analytics and introduce a new intel-
ligent layer for deeper contextual understanding and adaptation. By emphasizing the
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synergy between CDS principles and emerging technologies, the paper demonstrates how
CIoT can address longstanding challenges in scalability, interoperability, and resource
management. Through a critical evaluation of current limitations and lessons learned,
we offer a forward-looking perspective on how these cognitively inspired frameworks can
further enhance intelligent IoT ecosystems. Ultimately, this work serves as a founda-
tional resource for aligning IoT systems with the engineering-driven notion of cognition,
guiding future research and innovation in autonomous, scalable IoT environments.

Keywords: Cloud Computing, Cognitive Computing, IoT, Edge Computing, Federated
Learning.

Nomenclature

AI Artificial Intelligence

AIOTI-HLA Alliance for Internet of Things Innovation - High-Level Architecture

ANN Artificial Neural Network

AMI Advanced Metering Infrastructure

API Application Programming Interface

BERT Bidirectional Encoder Representations from Transformers

BIOCAS Biomedical Circuits and Systems Conference

BLE Bluetooth Low Energy

CAV Connected Autonomous Vehicle

CBTC Communication-Based Train Control

CDS Cognitive Dynamic Systems

CIoT Cognitive Internet of Things

CLIP Contrastive Language–Image Pre-Training

CNN Convolutional Neural Networks

CoAP Constrained Application Protocol
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CPS Cyber-Physical Systems

CPU Central Processing Unit

CPSS Cyber-Physical-Social System

CR Cognitive Radio

CRN Cognitive Radio Networks

CT Computerized Tomography

CTC Cross Technology Communication

CVO Cognitive Virtual Object

D2D Device-to-Device Communication

DAG Directed Acyclic Graph

DHT Distributed Hash Table

DNS Domain Name System

DoF Degrees of Freedom

DRL Deep Reinforcement Learning

DRAM Deep RL-Based Resource Allocation

ECC Edge Cognitive Computing

ECG Electrocardiogram

EHR Electronic Health Record

EMG Electromyography

ERA Economic Resource Allocation

ETSI European Telecommunications Standards Institute

EU European Union

EVD Eigenvalue Decomposition

FA Factor Analysis
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FCC Federal Communication Commission

FDI False Data Injection Attack

FL Federated Learning

fMRI Functional Magnetic Resonance Imaging

FPT Frozen Pre-Trained Transformer

FSYNC Fog Sync Differential Algorithm

GPT Generative Pre-trained Transformer

GPRFCA Gaussian Process Regression for Fog-Cloud Allocation

GSM Global System for Mobile Communications

HDFS Hadoop Distributed File System

HMM Hidden Markov Model

HS Hyper-spectral

HTTP HyperText Transfer Protocol

HTSA Hybrid Tabu-Based Simulated Annealing

HVAC Heating, Ventilation, and Air Conditioning

IaaS Infrastructure as a Service

IBM International Business Machines

ICA Independent Component Analysis

ICU Intensive Care Unit

IEEE Institute of Electrical and Electronics Engineers

INS Inertial Navigation System

IPFS InterPlanetary File System

IoHT Internet of Health Things

IoT Internet of Things
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IoV Internet of Vehicles

ISO International Organization for Standardization

KBL Kernel-Based Learning

KNN K Nearest Neighbor

KNX Konnex Protocol

LED Light Emitting Diode

LIDAR Light Detection and Ranging

LLM Large Language Model

LLaMA Large Language Model Meta AI

LoRA Low-Rank Adaptation

LULC Land Use and Land Cover

LUSI Lunar Spectral Irradiance

LTE Long-Term Evolution

M2M Machine-to-Machine Communication

MAC Media Access Protocol

MDP Markov Decision Process

MEC Mobile Edge Computing

MLE Maximum Likelihood Estimation

MQTT Message Queuing Telemetry Transport

MRI Magnetic Resonance Images

MVAE Multimodal Variational Autoencoders

NCS Networked Control System

NLG Natural Language Generation

NPU Neural Processing Unit
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OFDM Orthogonal Frequency-Division Multiplexing

P2P Peer-to-Peer

PAC Perception-Action Cycle

PaaS Platform as a Service

PBRA Prediction-Based Resource Allocation Algorithm

PCA Principal Component Analysis

PCEN Portable Cognitive Emergency Network

PCR Principal Component Regression

PET Positron Emission Tomography

PLC Programmable Logic Controller

PPDR Public Protection and Disaster Relief

PU Primary User

QoD Quality of Data

QoE Quality of Experience

QoI Quality of Information

QoS Quality of Service

RA Reference Architecture

RAM Random Access Memory

RACE Risks Sensitive, Autonomous, and Connected Electrical Vehicles

RF Radio Frequency

RFID Radio Frequency Identification

RL Reinforcement Learning

RLHF Reinforcement Learning from Human Feedback

RM Reference Model
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RNN Recurrent Neural Network

RS-FSYNC Reed-Solomon Fog Sync

RSM Request Situation Matching

SAS Symbiotic Autonomous Systems

SAR Synthetic-Aperture Radar

SG Smart Grid

SMOTE Synthetic Minority Over-sampling Technique

SPO2 Blood Oxygen Saturation

SU Secondary User

SSL Secure Sockets Layer

SVD Singular Value Decomposition

TCP Transmission Control Protocol

TLS Transport Layer Security

TinyML Tiny Machine Learning

TinyTL Tiny Transfer Learning

TUF Tensor Unified Fusion

TUFF Task-Utility Function Framework

UAV Unmanned Aerial Vehicle

UHF Ultra High Frequency

UID Unlicensed IoT Devices

UWB Ultra-Wideband

V2V Vehicle-to-Vehicle Communication

V2X Vehicle-to-Everything Communication

VAE Variational Autoencoders
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VATT Video-Audio-Text Transformer

VO Virtual Object

VHF Very High Frequency

2.1 Introduction

The proliferation of electronic devices and the integration of processing and communi-
cation capabilities into physical objects have become key drivers of the fourth industrial
revolution. Many aspects of everyday life are becoming increasingly interconnected,
particularly in areas such as wearable technology, healthcare, home appliances, and
transportation. The Internet of Things (IoT) paradigm has emerged in response to this
progress, envisioned as a seamless integration of physical objects with the cyber world.
This technology’s potential impact is vast and being actively explored across various dis-
ciplines. For example, in industrial applications, IoT can transform simple sensor and
actuator-based control systems into sophisticated networks that cooperate to share data,
enabling more accurate and effective decision-making through multi-level intelligence.

In this new era of increased interconnectivity, novel cyber-physical systems (CPS)
are constantly being introduced, enhancing objects and infrastructure with the ability
to perceive and control the environment around them, process the collected data, and
communicate it through the internet [24]. The crux of IoT development is the unifica-
tion of the physical and digital realms required for such advanced systems. New IoT
architectures are hypothesized to be able to make semantic inferences from obtained
and contextual data, increasing the system’s performance and efficiency autonomously
and allowing self-adjustment in response to variable conditions and unexpected events.
In the pursuit of this level of autonomy, researchers have turned to the most adaptable
system known, the brain, for inspiration. Biomimicry is not a novel concept, having been
demonstrated as a powerful tool in engineering design and computation for many years
[25, 26, 27, 28]. Emulating the human mind is considered the pinnacle of biomimicry, as
it is proficient in its capability to move between multiple functional states to meet the
demands of the environment [29]. The critical question is then how can we draw from
elements of human cognition to implement them in engineering systems and allow for
contextual dynamic adaptability?

The research of Dr. Simon Haykin formally introduced the novel concept of cognitive
dynamic systems (CDS) in an article published in 2006 [30]. He later expanded his ideas
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to radio and radar systems in two very influential publications in electrical engineering,
[1] and [31]. In these, the author defines the workings of CDS as follows:

"Cognitive dynamic systems build up rules of behavior over time through learning
from continuous experiential interactions with the environment, and thereby deal with
environmental uncertainties."

This early concept was later refined by Haykin in [32], in collaboration with neurosci-
entist Dr. Joaquin Fuster, outlining the correlations between adaptation and cognition,
and presenting the principles by which an engineering system can be defined cognitive;
namely the perception action cycle (PAC), memory, attention, language, and intelligence.

Based on Haykin’s work, Wu et al. proposed Cognitive IoT (CIoT) in [33] to enhance
current IoT systems by mimicking human cognitive capabilities, efficiently utilizing large
datasets and addressing the challenges inherent to scalability and adaptability. The goal
of CIoT is to enable IoT systems to understand and develop contextual awareness in
response to variable environmental conditions, crucial considerations for ever-changing
dynamic systems.

The CIoT paradigm in a broader sense can be defined as a worldwide network of
objects which are interconnected and uniquely addressable based on standard commu-
nication protocols [34]. This definition embraces a theoretical model of complex mul-
tidimensional systems composed of interlinked and interdependent objects [35], gated
by encryption protocols, passwords, and private networks. As part of this framework,
smaller subsystems work together to achieve local or global goals in the most optimal
manner. Tools like social network analysis are also important, used to describe the net-
work of relations present among the various objects composing the broader IoT and to
discover their effects on data analysis, context extrapolation, and semantic derivation.
This is particularly useful in large-scale dynamic IoT systems, such as smart cities, smart
grids [36], and distributed manufacturing [27]. By effectively integrating cognition pro-
cesses in a variety of IoT systems, we can expect to obtain the ability to sufficiently
learn and understand the dynamics of physical and social environments through data
and interaction. This ultimately enables the creation of a new generation of systems that
require minimal human intervention [33]. However, to construct such systems, numerous
technical challenges for a scalable and efficient IoT must be addressed and resolved a
priori.
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Figure 2.1: This flowchart organizes the survey structure, illustrating the intercon-
nections between core topics and their subsections in the CIoT field. Beginning with
foundational concepts like CDS principles and IoT fundamentals, it outlines the evolution
towards CIoT, emphasizing the roles of perception (data acquisition), language (cogni-
tion in data transmission), memory (data storage and processing), attention and intelli-
gence (cognitive data analytics, including data fusion and machine learning approaches).
The framework culminates in future directions, addressing current limitations, lessons
learned, and forward-looking statements, providing a comprehensive roadmap for un-
derstanding and advancing the CIoT paradigm. This flowchart uses various types of
connections to represent different relationships: solid arrows indicate direct, hierarchi-
cal relationships or causal dependencies; dotted arrows represent indirect or inferred
relationships, such as conceptual links or secondary influences; and dotted lines with-
out arrowheads signify associative or parallel relationships between topics that coexist
or share contextual relevance but lack a hierarchical or directional dependency.
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The primary concern in scaling such systems lies in the limitations of current wireless
technologies and mobile networks. Although advancements in smart host technologies
and communication interfaces help alleviate bandwidth constraints in localized environ-
ments, significant challenges persist in broader, large-scale IoT deployments. Limited
range, data bandwidth, and spectrum availability remain critical issues for large-scale
CIoT systems [37]. These challenges are exacerbated in high-density scenarios, such
as smart cities and industrial IoT ecosystems, where diverse devices interact across
heterogeneous networks. Additionally, the number of devices that can be connected si-
multaneously is limited by the underlying technology. For instance, while LoRaWAN
and ZigBee are effective for low-power, low-bandwidth use cases, they support fewer
devices per gateway compared to cellular networks. Conversely, 5G offers massive de-
vice connectivity, but its deployment costs and spectrum availability may still restrict
scalability in certain regions. Even when a large number of devices can be connected
simultaneously, issues such as network congestion, latency, and quality of service (QoS)
degradation can arise in scenarios with dense device clusters or highly dynamic com-
munication requirements. Given the rapid growth of IoT and device usage, these issues
could have cascading effects in the future.

Another major barrier is the wide variety of protocols used across IoT devices, which
hampers seamless machine-to-machine (M2M) communication. IoT architectures are
often tailored to specific applications due to the diverse domains in which IoT is de-
ployed (e.g., smart vehicles, cities, grids, healthcare, transportation, manufacturing, and
homes). While this specialization has been effective, it limits interoperability and hinders
progress toward cross-domain architectures [38]. Efforts toward protocol standardization
have focused on multiple layers, including the application layer (e.g., CoAP, MQTT),
service discovery layer (e.g., mDNS, DNS-SD, uBonjo), and infrastructure layer (e.g.,
IEEE 802.15.4, 6LoWPAN, LoRaWAN, ZigBee). Although these initiatives have im-
proved compatibility within specific domains, a unified solution remains elusive [39].
Cross-technology solutions [40], which harmonize communication across heterogeneous
standards, offer a promising alternative by reducing reliance on full protocol unification.
However, a definitive solution has yet to emerge.

Recently, cognitive radio (CR) and cognitive radio networks (CRN) have attracted
significant attention from industry and academia as potential solutions to these chal-
lenges [37]. CR’s core functions—spectrum sensing, decision-making, management, and
mobility—aim to maximize licensed spectrum utilization through dynamic allocation to
fill existing spectrum gaps. The applications and mechanisms of CR will be further
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explored in Sections 2.2.1 and 2.3.

Another limitation in large-scale IoT systems is the difficulty in aggregating data
that is diverse in nature. Sensory data in a multi-sensor IoT system can be highly
heterogeneous, encompassing various data types such as numerical readings, categorical
labels, images, or text. This heterogeneity necessitates the adaptation of data analytics
techniques to effectively process and interpret the data. Additionally, the collected data
can be nonlinear, high-dimensional, or incomplete, further complicating its application
for intelligent decision-making and service provisioning [30, 33].

Cognitive computing stands as the intelligence pillar of CDSs, providing the adaptive
decision-making and data analytics capabilities necessary for CIoT to cope with various
data types, contexts, and environments. By leveraging machine learning algorithms and
artificial intelligence, CIoT systems can dynamically select suitable processing methods
based on the characteristics of incoming data—whether structured, unstructured, numer-
ical, or categorical—and adjust to changing environmental conditions such as network
constraints, resource availability, or hazards.

Moreover, CIoT systems incorporate contextual information (e.g., time, location,
user behavior, and surrounding conditions) into their data analyses, enabling them to
interpret information within the correct situational framework and generate more pre-
cise insights. This approach is further strengthened by techniques such as association
analysis, clustering, and regression, which allow the system to identify patterns, group
similar data, and predict future trends for intelligent, context-aware decision-making.
Such decision-making is vital for big-data-driven applications that benefit from flexible,
efficient, and self-optimized operations.

From a broader perspective, cognitive computing is more than just a collection of
machine learning or data analytics methods. It is a cohesive framework composed of
multiple processing subsystems that extract features and knowledge from the environ-
ment, feeding insights to a cognitive engine capable of enacting corrective actions and
interacting with humans and machines in a dynamic and adaptive manner. CDSs, in
turn, learn from the past, understand the present, and anticipate the future. By integrat-
ing this cognitive engine within a feedback control loop, CDSs update their knowledge
over time and adapt to diverse environmental scenarios in real-time.

Within CIoT, both cognitive computing and CDSs are foundational. Cognitive com-
puting imparts the computational intelligence for data processing and decision-making,
while CDSs emphasize real-time adaptation driven by continuous feedback from the
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environment. This synergy grants CIoT devices an elevated degree of autonomy and
intelligence, allowing them to interpret large volumes of data, make informed decisions,
and respond effectively to shifting conditions. As a result, these systems exhibit superior
problem-solving capabilities, enhanced adaptability, and more efficient decision-making.

Advancements in architectures that integrate data analytics, cognitive computing,
and multi-level intelligence for IoT systems will be explored in Section 2.4.

Furthermore, central data processing poses a substantial limitation for large-scale
IoT systems. Single-node failure, limited scalability, and colossal exchange overhead
are characteristic problems associated with the central data processing structure [33].
Considering these inhibiting factors, parallel and distributed data processing is a prefer-
able solution for IoT systems, though it also presents challenges of its own and will be
explored further in Section 2.3.

Surveys in the field have predominantly focused on the application of machine learning
techniques in the context of CIoT for various components of IoT architectures. Examples
include analyses of various model-based approaches and CR applied to wireless commu-
nication systems in IoT [41, 37, 42]. Others have focused on the use of machine learning
for data processing and context information sharing in IoT systems [43, 44]. It has been
identified that there has not been a comprehensive survey discussing cognition-integrated
IoT systems in all its components and aspects. The objective of this paper is to further
the discussion on CIoT making use of recent technological advances and expanding on
the CIoT paradigm as introduced by Wu et al. [33]. The CIoT topic has been briefly
explored in existing literature, but to the author’s best knowledge, it has not yet been
considered in relation to CDS [17, 19]. Furthermore, previous research fails to discuss
relevant emerging technologies crucial to cognitive computing, such as the rise of LLMs
and multimodal machine learning models. Utilizing these methods in conjunction with
typically adopted technologies can potentially overcome current limitations in IoT and
CIoT data processing. Moreover, existing literature on this topic does not address the
concept of multi-level intelligence, introduced in this paper as a significant breakthrough
for realizing CIoT’s potential. The paper’s contributions can be summarized as follows:

• The concept of cognition in engineering systems as defined by Haykin and Fuster
is thoroughly examined, providing a novel framework for CIoT and highlighting
its history and development.

• The CIoT paradigm is newly extended to modern enabling technologies, exploit-
ing machine learning, data fusion techniques, and foundation models to enhance
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context awareness and adaptability.

• Distributed learning through multi-level intelligence and federated learning is ex-
plored within the CIoT framework, providing innovative solutions to the scalability
problems of IoT systems.

• The history of CIoT and its possible future directions are explored through an
extensive review of the existing literature.

• Parallelisms are drawn to relate modern machine learning techniques and cogni-
tive paradigms with the structure and functioning of brain operations in humans,
providing further insights under a biomimicry lens.

This foundational understanding provides the basis for exploring the evolution of
cognitive systems and their integration into IoT, which is detailed in the following sec-
tions. The remainder of this paper is structured as follows. Section 2.2 provides a
comprehensive discussion on CDS and IoT, outlining their fundamental principles, key
applications, and the role they play in modern technological ecosystems. Section 2.3
discusses the CIoT paradigm and how it is defined in the literature, including the com-
munication and architectural design components of related applications specific to CIoT.
Section 2.4 covers the fundamental data analytics aspects of CIoT, beginning with con-
ventional IoT data analytics techniques discussed in the previous section and progressing
to cognitive computing, multi-level intelligence, and large language models (LLMs). Sec-
tion 2.5 encompasses the current limitations of CIoT systems, lessons learned, and future
directions. Finally, Section 2.6 concludes the paper, summarizing the contents and key
findings.

2.2 Background and Foundations

2.2.1 Cognitive Dynamic Systems

The refined CDS paradigm outlined by Haykin [45] builds on Fuster’s five pillars of hu-
man cognition for engineering applications. A system can be considered cognitive if ca-
pable of performing five fundamental processes: the PAC, memory, attention, language,
and intelligence. Applied to CIoT, the PAC refers to the cyclical process of using sensors
to derive information describing the system’s state and performance, where actions are
initiated according to this information, affecting the environment and the system itself.
This process is comparable to feedback control systems but uses advanced data analyt-
ics and relies on the other pillars to achieve intelligent decision-making. When multiple
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PAC systems are employed in CIoT, system intelligence is significantly enhanced. Each
PAC system can focus on different aspects of the environment or various subsystems, col-
lecting specialized data and making localized decisions. By integrating the insights and
actions of multiple PAC loops, the overall system benefits from distributed intelligence
and collaborative decision-making. This multi-PAC architecture enables the system to
address complex, large-scale challenges by leveraging diverse data sources and perspec-
tives, leading to more robust and scalable intelligence.

Building on the PAC, memory is used to store relevant data about the environment,
the system, and the previous actions taken to improve the response for future scenarios.
As outlined below, memory can be divided into three separate components: perceptual,
executive, and working memory.

• Perceptual memory stores the information extracted by the system’s sensors,
providing both long-term and short-term records of the collected data.

• Executive memory keeps track of the decisions undertaken by the cognitive
controller to be used as a reference for future cognitive actions.

• Working memory couples the previous two components and records the outcome
of the actions taken, which the system will then use to learn from and model future
behavior.

In a machine-learning sense, executive memory refers to the model’s capacity to
store and utilize learned representations. It is primarily encoded in the form of the
learned weights and biases of the model. These parameters are optimized during training
to capture patterns in the data and are subsequently used to guide decision-making
during inference. Executive memory is what enables a model to generalize from past
experiences, allowing it to improve its responses to future inputs.

Perceptual memory, on the other hand, refers to the system’s ability to retain and
process sensory input or raw data from the environment. In machine learning, perceptual
memory can be thought of as the input data that the model is exposed to over time,
such as time-series data, images, or sensor readings. This memory represents the model’s
continuous interaction with its environment and how it ‘perceives’ new information.
While executive memory deals with learned weights, perceptual memory is concerned
with the representation and integration of incoming data, typically in the form of feature
extraction or pre-processing steps.
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Together, executive memory and perceptual memory form the working memory of a
machine-learning model. Working memory represents the dynamic interaction between
the model’s learned knowledge (executive memory - past experiences) and the incoming
data (perceptual memory - new experiences), enabling the model to handle new situ-
ations. Mathematically, this interaction occurs as the model processes new inputs by
combining these inputs with the learned parameters, leading to predictions, decisions,
or actions. It is not a static memory but rather a fluid process that combines feature ex-
traction and parameter-based decision-making during inference. This interaction allows
the model to generalize from previous data while adjusting to new inputs, resulting in a
more adaptive and intelligent system. In practice, working memory is realized through
the architecture of neural networks, where the incoming data flows through layers of
the network, interacting with stored weights to produce outputs. The working mem-
ory of the model evolves during training and is constantly updated through learning
algorithms, allowing the model to improve over time.

Attention is an extension on the PAC and memory components of CDS, enabling a
cognitive system to optimize these processes by efficient data interpretation and resource
assignment. In [32], it is defined as providing "the mechanism needed to prioritize the
allocation of computational resources to mitigate the information overload problem."
As such, actively filtering the processed information by relevance can facilitate learning
and improvement of the cognitive controller. Attention in CDS is not represented by a
physical state but manifests itself within the framework through an algorithmic mech-
anism. Modern attention mechanisms include self-attention and multi-head attention,
both widely used in deep learning models like transformers. These mechanisms allow
the model to dynamically focus on the most relevant parts of the input data by assign-
ing different weights to different pieces of information, improving tasks such as natural
language processing, machine translation, and image recognition.

Language in engineering systems is defined by communication protocols adopted by
machines to communicate information to other system components. Cognitive systems
should be able to adapt to any communication protocol to be able to exchange infor-
mation, although efforts towards the standardization of such protocols in IoT aim to
resolve this issue as well (i.e., interoperability). These systems should also be able to
process natural language to receive instructions directly from humans in a seamless fash-
ion. Foundation models are a promising enabling technology towards this goal and will
be discussed in Section 2.4, which is focused on cognitive data analytics.
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Intelligence bases itself on the previous four cognition traits (perceiving, memoriz-
ing, communicating, and adapting), incorporating them into an algorithmic mechanism
capable of optimal decision-making. In the face of unpredictable circumstances, intelli-
gent systems can understand the situation, enact corrective actions, and learn from the
scenario’s outcome in a Bayesian statistical fashion.

2.2.1.1 Cognitive Radio

Applying the pillars of CDS, CR aims to maintain highly reliable communications while
efficiently utilizing the radio spectrum by analyzing the radio scene, identifying chan-
nels, and transmitting information using dynamic spectrum management. The receiver
carries out the radio scene analysis, which senses the environment to discover spectrum
holes, categorized as black and grey spaces, and estimates the interference tempera-
ture [1]. Correspondingly, this passive task involves processing nonstationary temporal
signals to account for the spatial characteristics of RF stimuli, resorting to adaptive
beamforming for inference control [1]. The continuous monitoring of the spectrum and
the calculation of alternative routes to identified spectrum holes is vital to this system,
providing redundancy when a primary user needs the spectrum for its own use. A graph-
ical representation of the dynamic assessment of spectrum holes can be seen in Figure
2.2.

Figure 2.2: Dynamic spectrum transmission (adapted from [1])
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The problem of channel state estimation is addressed using semi-blind training of
the receiver, first introduced in [46], implementing a receiver with two operation modes:
supervised training mode and tracking mode. The first mode uses a short training
sequence to acquire and calculate the channel estimate. In contrast, the second is meant
to be the operational mode and iteratively assesses the channel state. The calculations
are carried out using a state-space model of the channel parameters, with process and
measurement equations, assuming linearity. Autoregressive (AR) coefficients, dynamic
noise, and measurement noise are addressed by selecting an appropriate tracking strategy
and filter selection.

Spectrum licenses represent a cost for companies; therefore, the deployment of large-
scale heterogeneous networks composed of multiple objects can sum up to be significant
capital expenditures. The application of a CRN can reduce this cost by efficient utiliza-
tion of the available spectrum. The size of the data to be shared is another limitation
of large-scale IoT adoption, depending on the application under consideration and the
type of sensors deployed. The introduction of edge computing could provide a solution
to this, reducing the amount of data to be transmitted by filtering the data and par-
tially processing it on the edge layer [47, 48, 49, 50]. The integration of CR and edge
computing as an essential need for CIoT will be discussed more in Section 2.3.2.

Beyond IoT applications, the theoretical advancement of CR has seen useful appli-
cations in a variety of technical fields over the past decade. Villardi et al. [51] apply
CR for emergency broadcasting operating in the television white space. With their
portable cognitive emergency service network (PCEN) and novel fractional service area
metric, they determine that a relatively small amount of channels is sufficient to ensure
emergency services, minimizing area degradation. Ferrus et al. propose the application
of CR for public service networks in similar critical public protection and disaster relief
(PPDR) situations, developing an overview of spectrum-sharing models to mitigate issues
as a result of limited network capacity [52]. In their comprehensive survey, Joshi et al.
[53] outline several potential areas where CR can be implemented for wireless sensor net-
works, with security applications (e.g., military or public), health care, home appliances,
transportation, and surveillance. CR’s utility in healthcare is especially prevalent, due
to interference-vulnerable patient data and critical communications transmitted across
the Wireless Medical Telemetry Services band. CR has been proposed as a solution to
this problem by several, offering reduced network load with increased QoS and safety
of transmission [54]. Further efforts in CR have been developed recently in this sector
considering IoT aspects of health monitoring [55] and security of CR [56].
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CR has also seen extensive use in autonomous instrument communication. For un-
manned aerial vehicles (UAVs), CR provides an alternative mode of transmission for
increasing general communication performance, security, energy efficiency, and address-
ing spectrum scarcity. Santana et al. [57] discusses this application, providing a review
of challenges, IoT, and prospective applications. Similarly, the application of CR can al-
leviate some of these same concerns in satellite communication, using its software-defined
radio concept to adapt transmission parameters and demonstrate flexibility against ob-
solescence [58]. The authors of [59] propose CR and rate splitting multiple access for
the improvement of low Earth orbit communication (SatCom), increasing spectral ef-
ficiency for massively connected systems, where Li et al. [60] apply CR for integrated
satellite-terrestrial communication towards 6G mobile networks. Further, several au-
thors propose to implement CR into smart grid communication frameworks, improving
QoS, traffic scheduling, and implementing backup protection [61, 62].

2.2.1.2 Cognitive Control

Fatemi et al. [63] extend upon the CDS framework, describing a new way of thinking
about cognitive control, focusing mainly on two essential components: learning and
planning. Each of these are built upon the following fundamental notions.

• The two-state model is composed of the target state, or target of interest, and the
entropic state of the perceptor. The entropic state can be viewed as a measure of
the lack of sufficient data in the cyclic flow of information from the global PAC.
Mathematically it is represented by a state-space model of the environment defined
by a process and measurement equations. Alternatively, the entropic state can be
modeled using an entropy-based model, where entropy quantifies the amount of
uncertainty or disorder within the system. In this context, a high entropy state
indicates insufficient or noisy data, which impacts the model’s ability to accurately
track or predict the target state. By incorporating these two states, the model
balances the interaction between uncertainty (entropy) and the target of interest,
enabling better decision-making and control.

• The first principle of cognition, the global PAC, which in this context is a cyclic
directed flow of information from the environment.

The goal of cognitive control, through learning and planning, is to optimize cognitive
policy, specifically the probability distribution of cognitive actions, including the influ-
ence of previous actions on current states. Shannon’s entropy concept is used to describe
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Figure 2.3: Cognitive Control Diagram (adopted from [2])

the current state of the perceptor, quantifying the noise present as a distribution of col-
lected data. The system modifies the entropic state through incremental deviations,
formalized by an immediate rewarding process at the end of each cycle, attempting to
predict the future entropic state of the system and use it in the planning phase of the
cycle [63]. The algorithm that converges to the optimal policy is the core of the cognitive
controller functionality, as illustrated in 2.3. It is derived and demonstrated as a partic-
ular case of dynamic programming, inheriting the basic properties of such convergence
and optimality. To accelerate this property, the authors also describe a mixed strategy
of pure explore (selecting actions randomly) and pure exploit (selecting actions based on
maximum value criterion) called the ϵ-greedy strategy adopted from Powell et al. [64].
The implementation of this trade-off may be viewed as a facilitator for attention. As
previously touched on, allocating computational resources is vital to continuously im-
prove the knowledge of the environment without falling into local sub-optimal solutions
[63].

A computational experiment is presented in their seminal work by applying this new
concept of the cognitive controller to a radar tracking problem. The cognitive con-
troller adapts the system’s variables to improve the estimation of the object’s position,
velocity, and ballistic coefficients. Dynamically changing the radar waveform resulted
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in an improvement of four orders of magnitude compared to the fixed waveform radar.
The field of cognitive control has since been further developed for a variety of applica-
tions, focused in robotics and networked systems. Wang et al. adopted this technology
for communication-based train control (CBTC) systems, utilizing the entropic state to
quantify the communication between trains and ground [65]. Using their reinforce-
ment learning (RL)-based decision maker, the cognitive control approach significantly
improved the CBTC performance and efficiency through the compensation of channel
fading and packet loss. Fatemi later applied cognitive control to optimize complex sensor
networks, maximizing information [66]. For mobile robots utilizing networked control
systems (NCS), Wang et al. [67] apply a Q-learning-based cognitive control framework
with a backstepping controller to detect and compensate for random packet dropouts.
The entropic state is used to characterize this phenomenon, induced through the appli-
cation of a wireless network as an intermediate feedback medium. This idea is further
extended to 3 DoF robotic manipulators [68] and compensating for additional time delay
[69] with robust and event-triggered control schemes.

2.2.1.3 Cognitive Risk Control

In the presence of unexpected uncertainty, cognitive control lacks a mechanism of predic-
tive adaptation to adverse events or obstacles, commonly referred to as risk. In [70], the
authors take this concept a step further, recognizing the need for a subsystem capable
of interacting with the various aspects of CDS such as the perceptor, working memory,
and executive memory to predictively adapt the system to a new uncertain environment.
This newly defined subsystem uses a Bayesian filtering mechanism and Bayesian gen-
erative model to guide the CDS through timely risk-avoiding actions [70]. Under this
generative model, the posterior is computed on the current iteration based on previous
actions, where there might be several iterations for each PAC cycle.

The objective of the Bayesian filtering process is to capture relevant information from
the generative model and reject irrelevant information, jointly improving the relevant
information fed to the entropic information processor. This process is referred to as
top-down attention. A shunt cycle is also defined to bring bottom-up attention from the
planner to the RL algorithm, resulting in local feedback between the two. The internal
rewards process results from the entropic state calculation and feeds into the executive
for RL and the task switch control. To characterize different situation, the internal re-
wards are either always positive under the assumption that the physical system is free of
uncertainties or consistently negative under the presence of uncertainties. The rewards
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are computed and transformed by the RL algorithm in a value-to-go function that con-
stitutes the input to the cognitive controller. The value-to-go function is influenced by
the actions space (containing all hypothesized actions), internal rewards, discount factor
(weight assigned to discount previous actions exponentially), and the policy (the action
taken at the immediately preceding PAC).

The cognitive controller is composed of the planner (which schedules the possible
prospective actions) and the policy (the function that leads to decision-making). Under
uncertainty, the risk-sensitive cognitive actions are selected by a classifier responsible for
decision-making. Given N past experiences, the classifier assigns the posterior to past
perturbed cognitive actions recorded in the executive memory.

Furthermore, task switch control is introduced to prevent the perturbed cognitive
actions from affecting the executive memory. This correlates directly with the double
nature of the internal reward systems, such that pre-adaptation is achieved by success-
fully classifying events that occurred under risk-sensitive uncertain environments and
non. A pair of switches is used to direct the flow of information to different sections in
the CDS framework, requiring further analysis if perturbed cognitive actions are neces-
sary [70], illustrated in 2.4. Cognitive control is particularly relevant in the IoT domain,
as the application of optimal policy selection are of primary importance in the manage-
ment of such systems.

Figure 2.4: Cognitive risk control switching mechanism (adopted from [2])
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Building on the cognitive principles discussed, the next section explores how these
concepts relate to the IoT paradigm through cognition.

2.2.2 Internet of Things

2.2.2.1 Overview of Standard IoT Components

IoT refers to a network of interconnected devices that utilize sensors and actuators
to gather and exchange data over the Internet. These systems comprise several key
components that operate in harmony to support automation, data collection, and remote
control across diverse applications.

At the heart of every IoT system are the devices themselves, which include a diverse
array of sensors, actuators, and embedded systems. These components act as a bridge
between the physical and digital worlds, enabling the acquisition and manipulation of
environmental data to execute meaningful actions [71].

Sensors Sensors are devices that detect events or changes in the environment or the
system and send the information to other electronics, typically a computer processor.
They gather data from various sources, such as:

• Temperature Sensors: Measure heat energy to detect temperature changes,
crucial for climate control systems and weather monitoring.

• Humidity Sensors: Monitor moisture levels in the air, important for environ-
mental monitoring and agricultural applications.

• Motion Sensors: Detect movement or vibrations, used in security systems, au-
tomated lighting, and smart appliances.

• Light Sensors: Sense ambient light levels, enabling automatic brightness adjust-
ment in devices and energy-saving lighting systems.

• Pressure Sensors: Measure pressure in gases or liquids, essential in industrial
processes and fluid dynamics.

• Proximity Sensors: Detect the presence of objects without physical contact,
utilized in touchless interfaces and obstacle detection.

• Gas and Chemical Sensors: Identify the presence of gases or chemicals, vital
for air quality monitoring and hazardous material detection.
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• Accelerometers and Gyroscopes: Measure acceleration and orientation, used
in mobile devices, drones, and wearable technology.

These sensors convert physical parameters into electrical signals that can be processed
and analyzed. They are fundamental in collecting real-time data, which forms the basis
for informed decision-making in IoT applications.

Actuators Actuators are devices that take electrical input and convert it into physical
action, allowing IoT systems to interact with the environment. They perform actions
based on received commands, such as:

• Electric Motors: Provide rotational movement, used in robotics, conveyor belts,
and adjustable components.

• Solenoids: Generate linear motion, applicable in locking mechanisms and valve
controls.

• Servos: Offer precise control of angular or linear position, velocity, and accelera-
tion, essential in robotics and automated systems.

• Heaters and Coolers: Regulate temperature, important in HVAC systems and
thermal management.

• LEDs and Display Units: Provide visual feedback or illumination, used in user
interfaces and signaling.

• Speakers and Buzzers: Deliver audio output for alerts and communication.

Actuators enable IoT devices to affect changes in the physical world, executing tasks
such as adjusting environmental conditions, controlling machinery, or providing feedback
to users.

Embedded Systems Embedded systems integrate sensors and actuators with pro-
cessing units and communication interfaces to execute tasks autonomously. They are spe-
cialized computing systems that perform dedicated functions within larger systems[71].
Key features include:

• Microcontrollers and Microprocessors: Serve as the brains of the device, pro-
cessing data from sensors and sending commands to actuators. Examples include
Arduino, Raspberry Pi, and ESP32.
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• Memory and Storage: Store firmware, operating systems, and data collected
from sensors.

• Communication Modules: Facilitate connectivity through Wi-Fi, Bluetooth,
Zigbee, LoRaWAN, or cellular networks, enabling data exchange with other devices
and cloud services.

• Power Management Units: Manage energy consumption efficiently, crucial for
battery-powered and remote devices.

• Input/Output Interfaces: Allow interaction with other hardware components,
such as analog/digital converters and serial communication ports.

Embedded systems are designed to be resource-efficient and reliable, often operating
under real-time constraints. They execute programmed instructions to perform specific
tasks, from simple control functions to complex data processing.

Integration of Components The integration of sensors, actuators, and embedded
systems allows IoT devices to function intelligently. For example:

• Smart thermostats use temperature sensors to monitor room temperature, pro-
cessing the data with embedded algorithms, and controlling heating or cooling
systems through actuators to maintain desired settings.

• Automated irrigation systems employ soil moisture sensors to assess hydration
levels and activate water valves via actuators to irrigate crops as needed.

• Wearable health monitors collect biometric data like heart rate and activity
levels using sensors, process the information to track health metrics, and can alert
users or healthcare providers if anomalies are detected.

These examples demonstrate how the synergy of sensors, actuators, and embedded sys-
tems enables IoT devices to perform complex tasks autonomously, improving efficiency,
safety, and user experience across various domains.

Communication Protocols Communication between IoT devices and networks is fa-
cilitated through various protocols, each designed to meet specific requirements regard-
ing data transmission, energy efficiency, and connectivity [71]. Standard IoT protocols
involve:
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• MQTT (Message Queuing Telemetry Transport): A lightweight messaging
protocol ideal for constrained devices and low-bandwidth networks.

• CoAP (Constrained Application Protocol): Designed for use with resource-
constrained devices, allowing them to communicate over the internet.

• HTTP (HyperText Transfer Protocol): A widely-used protocol for transmit-
ting hypermedia documents, commonly used in web services.

• BLE (Bluetooth Low Energy): Enables wireless communication over short
distances with low energy consumption.

Network Architecture IoT devices connect through layered network architectures
that include edge computing, fog computing, and cloud services. Edge computing brings
data processing closer to the data source, reducing latency and bandwidth usage. Fog
computing extends cloud computing to the network edge, providing intermediate process-
ing. Cloud services offer scalable storage and computational resources for data analytics
and application deployment [71, 39].

Security and Privacy Security is a critical aspect of IoT systems due to potential
vulnerabilities arising from interconnected devices. As these devices communicate and
share data, they can become targets for cyber threats, making it essential to implement
robust security measures to protect data integrity and user privacy [72].

Standard security measures include:

• Encryption Protocols: Utilizing encryption methods like TLS/SSL to secure
data transmission and prevent unauthorized access to sensitive information.

• Authentication Mechanisms: Implementing strong authentication processes to
verify the identities of users and devices, reducing the risk of unauthorized access.

• Secure Communication Channels: Establishing protected channels for data
exchange to safeguard against interception and tampering.

By incorporating these security measures, IoT systems mitigate risks associated with
data breaches and unauthorized control, ensuring that both system functionality and
user privacy are maintained [72].
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2.2.2.2 Unified Internet of Things Framework

The development of novel IoT frameworks and architectures has been the subject of
research in both industry and academia, due to the variety of IoT applications. However,
due to the heterogeneity of the various domains within IoT, these architectures vary in
components, functionalities, and often in terminology and protocols used. To add, no
holistic architecture of IoT or CIoT exists at present, valuing global goals over local
ones within the system. The different scopes to which the architectures are developed
have resulted in limited interoperability between the systems, effectively hampering the
development of a cross-domain holistic architecture. This discrepancy prompted the
development of IoT-A and IoT-I, ETSI M2M, FI-WARE, AIOTI-HLA, and ITU-T,
which are large-scale projects focused on designing a comprehensive IoT framework as
described in [38].

Even governing bodies such as the European Union (EU) under multiple technical
commissions have attempted to create a solution for this problem. Various programs,
such as the EU FP7, allowed thousands of organizations to receive EU funding. In
addition to the EU efforts, a global initiative under the European Telecommunications
Standards Institute (ETSI) auspices was initiated to define a standard structure for
the service layer and M2M communication. The architecture proposed under the ETSI
initiative focuses on two specific domains, the gateway domain and then the network
domain, trying to establish standard protocols and application programming interfaces
(APIs) based on the proposed architecture.

Furthermore, several technical committees, working groups, and standardization or-
ganizations are working on the standardization of communication protocols, interference
control, and data storage. Such groups include EPC Global and ITU SG13, SG16 techni-
cal groups, STF 396, and CEN TC 225 for informational security and data privacy, ISO
and EMA committees for spectrum usage and radio frequency identification (RFID), as
well as IEEE, 3GPP, and IP for smart objects [73]. Moreover, the Federal Communi-
cation Commission (FCC) is considering the use of CR’s dynamic spectrum access for
very high frequency (VHF) and ultra-high frequency (UHF) bands, contributing to its
popularization and likelihood for widespread adoption. The generic enablers for offering
reusable shared functions serving multiple service areas include cloud hosting, data and
context management, applications and services, IoT service enablement, interfaces to
networks and devices, and security [38].

Primarily, IoT-A aims to offer IoT architecture developers a common technical ground
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to optimize interoperability and avoid IoT architectures being built as stand-alone silos.
ARM is used as a structure for common technical ground in designing new architectures.
It consists of three interconnected parts involved in developing an IoT framework. The
first part is the IoT Reference Model (RM), which provides a set of models used to define
architectural views [38]. This framework also outlines a taxonomy of IoT concepts and
provides an information model, communication model, functional model, and security,
trust, and privacy models. The second part is the Reference Architecture (RA), which
uses the views and perspectives of various stakeholders to analyze and address design
problems. The last part is guidance, which defines the process that will lead to creating
a concrete architecture based on RM and RA [38]. These initiatives will foster new ar-
chitectures based on standard design techniques, especially on the FP7 IoT projects, like
IoT-A ARM, effectively enabling straightforward repurposing of results, functionalities,
and components [73].

A significant challenge in the IoT domain remains the development of standardized
communication protocols capable of handling massive device-to-device transmissions.
However, recent advancements in smart host technologies have mitigated the need for
extensive, distributed inter-device communication. These smart hosts act as centralized
gateways, connecting devices across multiple network types and efficiently managing
data flows. By aggregating and forwarding data to relevant entities or services while
translating between different protocol requirements, smart hosts reduce network con-
gestion and simplify interoperability by limiting the number of direct communication
pathways each device must support.

Furthermore, cross-technology communication solutions, such as those discussed in
[74], enable seamless interaction among heterogeneous devices operating under diverse
standards and protocols. By introducing an abstraction layer between disparate commu-
nication mechanisms, these solutions eliminate the need for rigid, unified protocols, which
can be difficult to deploy across fragmented IoT ecosystems. Instead, interoperability
platforms, protocol translation layers, and context-aware gateway solutions collectively
create a flexible and adaptable infrastructure that simplifies integration among a wide
array of devices.

As IoT systems architectures continue to evolve, the need for enhanced intelligence
and autonomy has led to the emergence of CIoT. With these theoretical foundations,
having defined cognition in the context of engineering artificial systems, explored what
IoT is, and examined its current limitations, we now delve into CIoT. We analyze how
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CIoT has been conceptualized through the lens of CDS, exploring its key components,
applications, and future directions.

2.3 Cognitive Internet of Things

The International Telecommunication Union (ITU) has documented a four-stage pro-
gram for future IoT development in smart IoT or CIoT [73]. This program suggests that
future IoT architectures integrate key capabilities: service sensing, data sensing, envi-
ronment sensing, and intelligent cognitive abilities. CIoT is still a relatively young field,
but it is gaining popularity following research efforts in CDS and cognitive computing. It
can be considered a framework for developing novel IoT architectures, addressing specific
issues within the IoT domain by equipping systems with a cognitive layer that enables
them to learn, think, and understand both the physical and social worlds [33]. The suc-
cessful and widespread application of CIoT allows for the integration of many disciplines
and fields, such as computer science, mathematics, neuroscience, and engineering. The
adaptive features of CIoT allow it to be deployed across various domains and industries,
bridging the physical and cyber worlds to facilitate smart resource allocation, automatic
network operation, and intelligent service provisioning.

Modern autonomous systems and self-operating technologies are enhanced by dis-
ruptive innovations such as artificial intelligence, machine learning, and robotics, which
augment human capabilities by performing tasks without direct human intervention.
These advancements have enabled researchers to work towards a future where human-
machine interaction and interdependence, are increasingly prevalent.

Many definitions have been proposed to describe future generation systems capable
of full autonomy, such as CDS and Symbiotic Autonomous Systems (SAS). CDS and
SAS share many similarities [75]; they both aim to enhance the autonomy and capa-
bilities of synthetic machines, focusing on embedding IoT systems with the ability to
evolve, adapt, and learn. A crucial aspect of this evolution is the interplay and bridg-
ing between the physical and cyber spaces [76]. These new technologies aim to create
heterogeneous and synergized IoT structures capable of autonomous behavior through
collective intelligence [77].

This will give rise to new hybrid societies where the symbiosis between humans and
smart machines is an integral part of every aspect of life. This vision entails that ma-
chines will be capable of full autonomy in decision-making, exploration, goal setting,
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and replication [77], finding applications in transportation, healthcare, consultancy, ed-
ucation, manufacturing, and more [78, 79, 77].

By building upon the foundation of standard IoT components, CIoT introduces a cog-
nitive layer that empowers IoT systems with artificial intelligence and machine learning
capabilities. This integration enables systems to not only perform predefined functions
but also learn, adapt, and make autonomous decisions, thereby enhancing their effec-
tiveness and efficiency in complex environments.

2.3.1 Related Work in CIoT

Wu et al. argue that only being connected is not enough. IoT systems should be capable
of learning, thinking, and understanding the physical and social world themselves, em-
powering them with "high-level intelligence" [33]. The paper develops a new paradigm,
the CIoT, based on the foundations laid down by Haykin and Fuster. The article pro-
poses a new operational framework built upon the interactions among five fundamental
cognitive tasks: the PAC, massive data analytics, semantic derivation, knowledge dis-
covery, intelligent decision-making, and on-demand service provisioning [33] and shown
in Figure 2.5. The authors present a new network paradigm in which physical/virtual
objects are interconnected and behave as agents with minimum human intervention by
bridging the physical, digital, and social world, while also enabling smart resource allo-
cation, automatic network operation, and intelligent service provisioning.

From a bottom-up point of view the system can be divided into four layers:

• The sensing control layer, directly related to the global PAC, interfaces directly
with the environment by processing incoming stimuli and feedback observations.

• The semantic knowledge layer, related to semantic and ontological derivations,
further processes the data to enable context-awareness.

• The decision-making layer uses the knowledge abstracted from the previous layer
to reason, plan and select the most suitable action for the interacting agents to
implement.

• The service evaluation layer assesses the provisioned services and feedback evalu-
ation through novel performance metrics related to the social world.

The paper thoroughly presents the challenges of processing nonlinear, high-dimensional,
and heterogeneous data before discussing steps for intelligent decision-making. Decision-
making is generally characterized by two components planning and selecting. Within
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the decision-making process focus is placed on the choosing an action from the action
set based on collected data and inferred information motivated by the learning ability
in CRNs. Cognitive selection is defined as the ability to adjust based on historical and
current data intelligently. There are three kinds of cognitive selecting highlighted in the
paper: Markovian decision process, multi-armed bandit, and multiagent learning.

Given the expected large number of decision-makers in a distributed CIoT architec-
ture, the authors focus on game theory, and investigating the learning approach with
uncertain, dynamic, and incomplete information [33]. Precisely, non-cooperative game
models fit the problem, characterizing the interactions among single decision-makers, in
which each player maximizes their own utility function. The main concerns in develop-
ing such a system is the convergence to desirable stable solutions. In large-scale CIoT
systems, further challenges arise in the context of local interactions between agents and
spatial game models. Although global information exchange is unrealistic in a classical
large-scale CIoT system, local interactions among agents are possible through regional
cooperation, leading to near-optimal results.

The system’s performance evaluation is a complicated task in CIoT and is simplified
by categorizing the metrics in two dimensions, cost, and profit. In the profit dimension,
three main metrics are discussed. The quality of data (QoD) metric evaluates the data
acquisition process and the quality of sensed data. In addition, the QoD should be able to
quantify the data completeness, truthfulness, and currentness. The second metric is the
quality of information (QoI), which represents the amount of valuable data the decision-
maker obtains for a specific task based on precision, accuracy recall, and quantity. These
details characterize the quality of the information quantity provided to the decision-
maker. Third, quality of experience (QoE) is the last metric used in the profit dimension
and evaluates user experience based on access, stable operation, efficiency, and user
application [33]. On the other hand, the cost dimension metrics proposed in the paper
are device utilization efficiency, computational efficiency, energy efficiency, and storage
efficiency.

2.3.1.1 Energy Management and Resource Optimization

Energy efficiency is a cornerstone of scalable CIoT systems, particularly in resource-
constrained environments. Several studies have explored how cognitive capabilities can
address this challenge by leveraging predictive modeling and optimization techniques.
Following the works of Wu et al. the CIoT paradigm started to become popular in
the literature, inspiring further studies in the subject. Braten et al. built a testbed
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to explore autonomous resource management and autonomous learning processes using
machine learning, framed in the CIoT paradigm [80]. Arguing that the optimal control
of an IoT system cannot be obtained through centralized device management, Braten et
al. also proposed the autonomous orchestration to be carried out by a cognitive device
manager. Specifically, the problem considered was energy management, a prominent
issue in resource constrained IoT systems. The cognitive manager was tasked with han-
dling the collection of meta-data, triggering the machine learning process and planning
the energy consumption based on external factors. Adaptation was implemented in the
system through predictive model selection to mitigate the bootstrapping problem of
predicting prior to have collected enough data for reliable training [81]. The work was
expanded in subsequent publications, fusing the data collected with contextual data,
which aggregated solar intake data with weather forecast data [82]. Furthermore, the
authors recently published a structured review of IoT device management and cogni-
tive model in which adaptation mechanisms for IoT management are discussed in detail
[83]. The emphasis when explaining cognitive architecture is placed on the adaptation
mechanism and the separation of knowledge to be processed by different computational
models, depending on case scenario and data type [83].

In the context of bridging the cyber-physical world and human experience, smart
homes provide an excellent ground to analyze the potential of CIoT as a people centric
IoT, enhancing quality of life by intelligently adapting to the living environment. Fur-
thermore, the growing presence of smart objects in houses makes it possible to bring
cognition to modern-day smart homes.
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Figure 2.5: CIoT Structure as defined by Wu et al., adapted to fit CDS conceptual
framework.
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2.3.1.2 Smart Home and Personalized Adaptation

Smart homes provide an ideal testbed for CIoT technologies, showcasing how systems
can adapt to user behaviors and preferences to enhance comfort and energy efficiency.

Feng et al. introduce the use of CDS in smart home scenarios [84]. The authors use
the "falling asleep problem" as an example scenario of the functioning of the smart home
on a day-to-day basis. In this scenario, a person is gradually falling asleep on the couch
of their house. With the aim to maximize the user’s comfort and ensure a good sleeping
environment, the home can recognize the event taking place and adjust its variables
to such conditions. Based on the information perceived, for example, the house could
lower the TV volume or gradually turn it off while modifying the room temperature to
an optimal temperature suitable for sleeping and changing the shape of the couch to a
laid-back position resembling a bed.

The paper bases itself on the previously mentioned five pillars of cognition. It uses
a Bayesian filter coupled with a modified RL algorithm in its structure, similar to the
cognitive control architecture outlined in Section 2.2.1. Moreover, attention plays a
crucial role in the CIoT smart home scenario; for example, referencing the "falling asleep
problem", the CDS may wrongfully interpret actions such as movements while sleeping
and interpret them as a sign the person is waking up [84]. Therefore, the CDS should
be able to use various sensors present in the house to understand the behavioral pattern
of the resident, predicting the time interval over which the person will not move and
adjust accordingly. The sensors used for this purpose could be, for example, a pressure
sensor installed directly into the couch and a temperature sensor present in the room.
The authors define three types of cognitive actions in the context of an intelligent home
scenario [84].

1. Cognitive actions applied to the environment to affect people’s perception process.

2. Cognitive actions applied to the system itself to reconfigure sensors and actuators.

3. Cognitive actions are applied as part of the state control actions, therefore modi-
fying the environment to decrease the information gap.

This architecture leverages the same set of sensors already used in smart homes,
enhancing the entire system to establish a comfortable and efficient living environment.
By utilizing the perceptual capabilities through the executive part of the CDS equipped
with attention and intelligence, it adapts to the occupants’ lifestyle preferences and
habits. This approach not only improves operational efficiency, such as optimizing energy
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consumption and resource usage but also enriches the residents’ lifestyle by providing
personalized and responsive services that align with their daily routines and comfort
needs.

The management of thermal comfort in smart homes has also been explored by Se-
rianni et al. [85]. This research does not explicitly follow the definition used in this
paper for CDS and CIoT (that is, make use of all of Haykin’s pillars of cognition, such
as attention and language). Still, it proposes a different architecture based on message
queuing telemetry transport (MQTT) and neural networks to elaborate suggested action
prediction and anomaly detection based on the user’s habits. An ANN is used to actively
control the HVAC system to maintain an optimal living temperature in the house envi-
ronment while also reducing energy consumption costs, training the ANN directly on the
user’s comfort habits. The system’s performance was evaluated based on the analysis of
the interaction between the user and the HVAC system used to manage thermal conform
in the home environment and showed promising results.

Expanding the scope beyond individual homes, researchers have also investigated how
similar strategies can be applied to larger-scale environments. Rinaldi et al. propose a
framework for cognitive buildings, involving user preferences and recurring patterns to
be used for learning and planning day-to-day management [86]. The goal is to create
a building capable of maintaining responsive environments and adaptable indoor spaces
optimizing energy consumption and enhancing user comfort. The authors showcase the
results obtained using the prototypes of the ELISIR installation, using Schneider Electric
hardware for home automation and the KONNEX (KNX) protocol. The experiment
focused on the use of smart windows and smart manifold for indoor environmental
management and natural resource management [86].

2.3.1.3 Smart Cities and Infrastructure

The success of CDS and CIoT for smart home applications in previous works demon-
strates the applicability of this technology for subtle prediction and decision-making
based on human or machine patterns captured with sensor data. Naturally, it can be
suggested that this property can be scaled to smart city frameworks, encompassing
numerous simultaneous “falling asleep problems” across large distances. For instance,
larger-scale modern grids must accommodate load demand variability of renewable re-
sources and employ advanced metering infrastructure (AMI) at smaller scales to collect
data for pattern recognition, enhancing distribution efficiency. These frameworks must
also consider large-scale interoperability, cybersecurity, and other risks linked to digital
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communications, such as QoS. Such issues are discussed at length by Gunduz and Das
[87] and Song et al. [88]. As an example, the authors of [89] explore the predictive
component of CDS for security, detecting bad data and false data injection attacks in
IEEE bus systems.

In a broader context, the principles of CIoT can be extended to numerous domains
within smart cities. In [90] Feng et al. outline a case study using the CDS framework
for the Internet of Vehicles (IoV) in smart cities, asserting that the modernization of
the transportation system will offer great potential to prevent traffic, vehicle collisions
and reduce commute costs. Connected autonomous vehicles (CAVs) are necessary for
such purposes since they’re capable of adjusting their actions based on perceived en-
vironmental information. The article further expands this definition to RACE vehicles
(risk-sensitive, autonomous, and connected electrical vehicles) to follow the recent trends
in the adoption of electric cars. The deployment of such large-scale CAV networks would
benefit private and public transportation, while also opening the door for possible cyber-
attacks. Before diving into the CDS framework for smart vehicles, the authors consider
the cyber threats that such networks could be exposed to and propose measures that
must be put in place to ensure the availability, integrity, and confidentiality of the sys-
tem. This analysis considers active attacks such as jamming, binding, false data injection
(FDI) attacks, and passive attacks such as eavesdropping and stalking [90]. Given the
complex, dynamic, and adversarial environment CAV operate in, the addition of CDS
as an active supervisor of all subsystems present in a car is desirable to enhance the
risk control mitigation through joint interoperability and adaptation. The operational
sensors such as LIDAR, video cameras, radio receivers, and radar receivers could be ac-
tively adapted to the situation based on the context extrapolation capabilities of CRC,
improving their functionality. To achieve this goal, the authors propose an upgraded
CRC framework based on the Bayesian generative model and entropic information pro-
cessing, using the task switch control mechanism to control operational mode depending
on the situation. The executive part of CDS would be composed of the RL portion
and planner, action library, policy, classifier, working memory, and executive memory to
estimate the best cognitive action or policy based on the adapted and filtered feedback
information.

Vlacheas et al. bring this vision further, proposing a cognitive management frame-
work that interconnects various smart city systems [91]. The paper defines VOs as the
virtual representation of any real-world object and cognitive virtual objects (CVOs) as
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a set of interoperable semantic VOs. Cognition is used for self-management and self-
configuration of VOs using a concept called proximity to define the interoperability of
such objects. Proximity is defined as the level of relatedness between any IoT application
and the relevant objects that could be used to deliver the desired outcome. Semantic
extrapolation is mentioned in the paper as a requirement for high-level description, reg-
istration, discovery, and access invocation of the cognitive objects and processes. The
request and situation matching (RSM) algorithm is introduced to match potential ex-
isting CVOs to be used in any given situation or to task the creation of new CVOs in
the case no existing CVOs are suitable. The scenario utilized to describe the opera-
tional framework conceptually is the autonomous trigger of medical intervention based
on personal health monitoring devices. In this scenario, an elderly woman suddenly has
a heart attack recognized by the heart monitoring device she wears. The device triggers
an immediate response to an autonomous driving ambulance directed to the scene based
on the city traffic monitoring system for faster response. The interoperation of these
IoT subsystems shows the potential for this CIoT framework to act autonomously with
minimal human intervention, improving the efficiency of associated services and dynamic
provisioning [91].

Another architecture proposed by Park et al. is CIoT-Net, demonstrating that the
various domains in a smart city share similar sets of cognitive data and make use mul-
tiple cognitive computing-based applications [92]. Such architecture requires the least
number of separate configurations intended for different applications and bases itself on
five layers, the smart city platform, IoT layer, data layer, cognitive computing layer,
and service layer. For example, the smart city platform detailed in the article consists
of multiple sublayers for each IoT domain present in a smart city, such as intelligent
buildings, smart homes, transportation, agriculture, industry, and SGs [92]. A visual
representation of the architecture can be seen in Figure 2.6 and includes the various
subsystems present in each architecture layer. Section 2.4 will discuss the arguments
tackled in this paper regarding the management of heterogeneous and high-dimensional
data in more detail.
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Figure 2.6: CIoT layers in smart city scenario, bottom-up view starting from hardware,
sensors, data processing, and finally service implementation based on the previous layers.
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Within smart cities, the energy infrastructure is a crucial aspect of the realization of
sustainable growth. The deployment of SGs has become prevalent with the integration
of smart meters for energy monitoring. Moreover, it enables the gathering of urban
informatics to improve energy services’ availability, efficiency, reliability, economics, and
sustainability.

Pranaya et al. propose a similar architecture to the one proposed by Park et al.
consisting of a perception layer, attention-memory layer, and decision layer as a possible
solution for energy conservation, thereby reducing operational cost, and exploiting data
analytics [93]. In the paper, the authors break down SGs into three layers. The user end
layer encompasses smart homes, smart vehicles, and renewable energy, capturing data by
RFID, cameras, and environmental sensors. The communication and network layer en-
compasses the data communication, management, storage, servers, Cloud, transmission
means such as GSM, LTE, cable broadband, and private networks. The power gener-
ation layer encompasses power generation, transmission, and distribution based on the
previous two layers. Uplink and connectivity of can be further enhanced by combining
energy harvesting techniques and CR. Considering the challenges in spectrum scarcity
and saturated conditions present in crowded cities, energy harvesting could be a reason-
able alternative to batteries, with applications in SGs [94, 95, 96]. Guo et al. tackle the
transmission optimization of energy and spectrum efficiency using a deep reinforcement
learning (DRL) approach. The optimization problem is modelled as an incompletely
known Markov decision process (MDP) without complete non causal a priori knowledge.
The results show that the proposed deep deterministic policy gradient model converges
and performs better than random transmission policy, myopic transmission policy, and
deep Q RL algorithm [97].

CIoT has also been applied to energy-saving, recognizing users’ mobility habits, and
understanding such variable patterns with the goal of reducing the unneeded energy
consumption of the device during operation. In addition, exploiting location and en-
vironmental information derived from smartphones can provide valuable insights into
the functioning of a smart city but at the cost of reducing the device’s battery life due
to the continuous usage of power-hungry sensors such as GPS receivers. The trade-off
between accuracy and energy consumption is a relevant problem in the battery man-
agement of smartphones. Torres et al. tackle this problem by applying CDS to identify
mobility states, aiming to reduce the sampling rate in a process that resembles the
definition we outlined earlier for attention [98]. In this work, the authors show that
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Table 2.1: Relevant papers in CIoT, classified by application area and the use of the
5 pillars of cognition: perception (P), attention (A), memory (M), intelligence (I), and
language, which in this context is represented by CR.

Year Authors Reference Applications P A M I CR

2006 Haykin [30] Theoretical ✓ ✓ ✓
2011 Haykin [32] Theoretical ✓ ✓ ✓ ✓ ✓
2014 Wu [33] Theoretical ✓ ✓ ✓ ✓ ✓
2014 Fatemi [63] Control ✓ ✓ ✓ ✓
2016 Sheth [34] Theoretical ✓ ✓
2017 Haykin [70] Risk Control ✓ ✓ ✓ ✓
2017 Al-Turjman [100] Networks ✓ ✓ ✓ ✓
2017 Khan [37] IoT ✓ ✓ ✓ ✓ ✓
2017 Feng [84] Smart Home ✓ ✓ ✓ ✓
2018 Ploennigs [101] Smart Buildings ✓ ✓ ✓ ✓
2017 Braten [80] IoT ✓ ✓ ✓
2018 Braten [81] IoT ✓ ✓ ✓
2019 Park [92] Smart City ✓ ✓ ✓
2019 Feng [90] Smart City ✓ ✓ ✓ ✓ ✓
2019 Zhang [102] IoT ✓ ✓ ✓
2020 Foukalas [103] Industrial IoT ✓ ✓ ✓
2020 Li [73] IoT ✓ ✓ ✓ ✓
2021 Braten [83] IoT ✓ ✓ ✓

applying a CDS approach to the user mobility problem effectively extracted features de-
scribing human mobility for mobile mining without strongly compromising the device’s
energy consumption. The authors further refined these concepts in another subsequent
publication, which can be found in [99], proposing a cognitive controller with event-
based processing for energy efficiency and spatio-temporal accuracy in mobility-based
and location-based sensing.

Furthermore, cognitive computing and CIoT have been proposed as possible frame-
works for smart crowd management within a smart city environment. Crowd monitoring
has been a difficult problem to tackle due to the variety of behavioral traits that can
be extracted from a crowd [104]. For example, identifying abnormal movements, group
formations, or sudden dispersals can be challenging in large gatherings. The aim is
to develop smart surveillance systems, operating within the framework of a smart city
with minimal human intervention, that can effectively monitor events such as concerts,
protests, or sporting events, and automatically raise alarms when suspicious or danger-
ous activities are detected. Varghese et al. also tackles the issue noting how cognitive
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computing itself is not enough to accomplish this task, the need for distributed process-
ing through edge/fog computing must also be considered due to the high latency and
high bandwidth usage of cloud servers for video processing [105].Table 2.1 summarizes
the relevant literature by categorizing key contributions in CIoT according to their ap-
plication areas and the integration of the five cognitive pillars—perception (P), attention
(A), memory (M), intelligence (I), and language (CR)—providing a clear overview of the
field’s evolution.

Additional related work that falls outside the scope of this literature review can be
found in the following papers regarding smart homes [106, 84, 85], astronomy [107, 108],
industrial applications [103, 73, 109], smart cities and more [110, 111].

Although much progress has been made in the abstraction of CIoT architectures,
multiple research gaps have yet to be addressed. The role of distributed processing in the
creation of architectures leveraging new machine learning methods and the potential of
new LLMs and multimodal models have yet to be addressed in the CIoT context. These
models could potentially provide CIoT systems with the ability to understand, interpret,
generate, and translate human language, and pair it with contextual data presented in
different modalities. This will enable more natural and intuitive interactions between
humans and IoT devices. Thus, there is a pressing need for more research to bridge these
gaps, which could potentially unlock new capabilities and applications for CIoT systems.
Furthermore, the current literature fails to bridge the theoretical and practical aspects
of CIoT, while this manuscript emphasizes enabling technologies capable of bringing the
idea to fruition while further expanding it.

2.3.2 Communication Components in CIoT

The rapid expansion of the IoT, combined with the emergence of intelligent systems,
is driving an ever-growing demand for spectrum and wireless bandwidth. This trend
is expected to intensify as global deployments of massive CPSs increase, thereby ex-
acerbating bandwidth constraints in localized areas. For instance, Khan et al. [37]
argues that semantic-oriented IoT applications are unfeasible without the integration of
CR technologies. Recent advances—including cross-technology communication (CTC)
frameworks and smart host systems—have partially mitigated these local capacity bot-
tlenecks. For example, modern smart control centers can seamlessly connect over 500
devices using technologies such as PLC, Wi-Fi, and BLE within a single apartment,
illustrating that careful system design and emerging standards can ease the pressures
imposed by high-density IoT environments.
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A major challenge for deploying advanced CIoT communication components is en-
suring their compatibility with legacy IoT systems. Many currently deployed devices
rely on outdated protocols or proprietary standards, which hinders seamless integration
with modern solutions such as cross-technology interfaces, CR frameworks, and smart
host systems. Overcoming this barrier requires the development of backward-compatible
protocols, modular gateways that translate legacy communications into contemporary
formats, and middleware that standardizes data exchange. These measures not only
reduce the technical debt associated with older systems but also facilitate a gradual
transition toward scalable, interoperable CIoT infrastructures.

Currently, most IoT devices operate on unlicensed spectrum bands (e.g., WiFi and
Bluetooth). However, as trillions of devices are expected to connect in the near future
[42], spectrum congestion will likely intensify. One promising solution is the efficient
sharing of licensed 4G and 5G spectrum resources. By integrating CR with machine
learning and advanced signal processing, IoT networks can substantially expand their
transmission capacity. As discussed in Section 2.2.1.1, CR addresses issues such as col-
lisions and excessive contention in wireless access networks, enhancing the automation,
scalability, reliability, energy efficiency, and QoS of networked communications. More-
over, CR enables dynamic spectrum allocation and management, thereby improving
accessibility, usability, adaptability, and interconnectivity within IoT networks.

2.3.2.1 Approaches in Cognitive Radio

CR strategies can be broadly categorized into two approaches:

• Efficient Networking: This approach focuses on spectrum management and
spectrum-aware optimization to improve QoS. By carefully managing limited fre-
quency resources, efficient networking helps prevent overcrowding and overlapping
communications.

• Flexible Networking: This approach emphasizes environment discovery, self-
organization, reconfigurability, and the coexistence of nodes to dynamically adapt
to changing network conditions.

The CIoT paradigm envisions a system of interconnected physical and virtual ob-
jects—acting as interdependent agents—that require high levels of interoperability. So-
cial network analysis offers one method for addressing this challenge by examining the
interrelationships among these objects. Parameters such as analysis relations, ties, mul-
tiplexing, and composition can be explored through ego networks (focusing on a single
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node and its neighbors) or whole networks (illustrating the interactions among all nodes)
[35].

Figure 2.7: Routing cooperation among secondary users. Black indicates a direct
connection, while red shows that a device is out of range.

Enhancing network performance can also be achieved by leveraging node proximity
to mitigate channel impairments such as fading. In cooperative models, nodes relay
signals for one another effectively forming a virtual antenna array and harnessing spatial
diversity. In [112], two paradigms are discussed: (1) cooperation between primary users
(PUs) and secondary users (SUs) and (2) cooperation among SUs. In the first paradigm,
PUs with weak transmission links can partner with SUs, who are then incentivized with
additional transmission time, access to frequency bands, or licensed spectrum relaying.
In the second paradigm, SUs enhance their channel gains through cooperative diversity,
relaying each other’s signals to provide multiple transmission paths, reducing the risk
of deep fades, and improving energy efficiency by lowering transmission power. Figure
2.7 illustrates secondary user cooperation through multi-hop routing, while Figure 2.8
provides an overview of CR integration within CIoT.
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Figure 2.8: CR for CIoT. Left: CR elements; Right: decentralized IoT architectures
forming the theoretical framework of future CIoT communication components. Arrows
indicate the interdependence and continuous cooperation required in CR-CIoT applica-
tions.

Both centralized and decentralized networks rely on robust routing protocols. How-
ever, traditional single-hop and multi-hop routing algorithms often overlook function-
alities introduced by CR, such as dynamic spectrum allocation. Various CR network
types have been studied, including CR mesh networks (semi-static) and CR ad hoc net-
works (adaptable and self-reconfiguring through peer-to-peer communication) [42]. In
centralized architectures, a common infrastructure or cluster leader collects spectrum
information (e.g., interference zones) and disseminates it to optimize metrics like de-
lay, hop count, energy consumption, channel availability, and route stability. These
networks often support single-hop, device-to-device (D2D) connections when within the
transmitter’s range.

In contrast, distributed architectures typically utilize multi-hop, single-transceiver
CR routing protocols [42], where route requests, destination estimates, and spectrum
characteristics are propagated among neighboring nodes. Although this method may
face scalability challenges, one proposed solution is to map spectrum characteristics to
routing delay [112], thereby intentionally delaying routing requests to avoid transient
spectrum constraints.

Media access control (MAC) protocols also present challenges in CR networks. They
must effectively manage available channels while avoiding collisions with PU transmis-
sions. In dense networks, coordinating a silent period is essential for detecting PU
activity, and MAC protocols must be capable of halting transmissions upon collision
detection. Time-slotted schemes using rendezvous and backup channels have been pro-
posed [42], along with OFDM-based CRN approaches. For instance, [113] introduces
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a contract theory-based model that negotiates cooperation between unlicensed IoT de-
vices (UIDs) and SUs. In this model, negotiations between PUs, UIDs, and SUs are
likened to a labor market, where resources, payments, or reputation serve as incentives
to encourage spectrum sharing in OFDM-based CRNs.

Gateways, which connect IoT objects and virtual objects (VOs)—such as sensors or
digital twins—to the Internet, must be flexible, scalable, secure, and energy efficient.
In [114], the authors propose incorporating cognitive analytics and machine learning to
enhance IoT performance via cognitive gateways. These gateways classify applications
based on their computational and traffic requirements into four types:

• Type A: Low traffic, minimal data preprocessing.

• Type B: High traffic, minimal data preprocessing.

• Type C: Low traffic, substantial data preprocessing.

• Type D: High traffic, substantial data preprocessing.

Once an application is classified, the gateway uses a multi-objective optimization scheme
to decide whether the service should reside in the cloud or at the fog/edge layer. Such
cross-layer techniques not only enhance overall efficiency but also improve performance
and QoS. For example, traditional Transmission Control Protocol (TCP) may underper-
form in CR environments, where unpredictable channel availability and frequent han-
dovers can be misinterpreted as network congestion—leading to unnecessary timeouts
and backoff procedures. Short-lived disconnections, due to spectrum sensing or PU-SU
handovers, further impact throughput and reliability.

2.3.3 Decentralized Systems and Big Data

Multiple solutions have been proposed in recent years to address the challenge of big data
processing. The increasing amount of data collected across domains of IoT applications
can be computationally challenging to manage, store and process. Data preprocessing
and analytic algorithms can require high amounts of power and time to run on large
datasets, increasing the delay of the feedback information flow and increasing the cost of
deployment [115]. Hence, posing limitations for applicability and efficiency. Depending
on the application, these limitations can be decisive in implementing IoT and CIoT
architectures. For instance, real-time data analysis requires data to be transmitted and
analyzed at high frequencies, which is not achievable through conventional methods at
the edge nodes if the processing is computationally expensive (e.g., anomaly detection
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[116, 117]). Since most microcontrollers and CPS have limited hardware and battery
capabilities, implementing computationally expensive algorithms such as on a large-scale
artificial neural network (ANN) on such devices is often not an option.

Cloud computing technology has been a prominent solution for companies and private
users to outsource the hardware and systems required to store, manage, and process
data, allowing data to be uploaded to third-party remote servers. Infrastructure as a
service (IaaS) and platform as a service (PaaS) are becoming more popular as companies’
digitalization expands further, providing clients with a prepackaged system, including
hardware and software solutions [118]. Among these providers, there are the biggest
tech companies in the world, such as Google Cloud, Microsoft Azure, and Amazon web
services, competing for the market share of this new lucrative market.

Cloud storage and processing partially resolve the energy and computational power
problems needed to run classification, clustering, and other algorithms based on data,
but still present challenges in integrating IoT systems. Mainly, scalability issues arise
in continuous, uninterrupted big data transmission to the cloud servers. Depending on
the application, aspects such as latency and availability can be crucial to the operation
of the IoT system [119]. Moreover, big data processing can be time-consuming, even
for the most powerful hardware components. To cope with these issues, three main
requirements for CIoT with significant data processing and storage are needed in cloud
computing. These requirements are outlined by Cai et al. as distributed execution (par-
allel processing), multitenant storage (distributed file systems), and flexible scalability
[120].

Edge computing is an alternative solution for the dynamic management and process-
ing of big data. IoT architectures based on edge computing can vary depending on the
domain. Fog computing is the combination of edge computing and cloud computing and
is often implemented in the form of cloudlets [18]. Cloudlets are highly virtualized data
centers placed closer to the network’s edge. Edge and fog computing rely on decentral-
ized server clusters located in the proximity of the nodes, and mobile edge computing
(MEC), which utilizes the computational power of mobile devices and CPS for data
processing [119]. These architectures are generally more effective, processing the data
with low latency, higher efficiency, and agility, but are however constrained by hardware
capabilities and cost. For example, several machine learning algorithms need to run on
compelling hardware because of their complexity and random-access memory (RAM)
requirements, especially deep neural networks and convolutional neural networks.
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Furthermore, in a CIoT framework, context-aware algorithms require even more data
to be transmitted and processed. To this end, a combination of edge servers and cloud
computing can be used to implement data processing. As a result, CIoT architectures
can actively manage data flow optimally depending on the application, reducing latency,
and selecting relevant data to upload to the cloud. Cloud computing and edge computing
are complementary, compensating for each other’s limitations. Edge computing ensures
availability and low latency since it is physically closer to the end-user, being performed
either on the device or a local server. In contrast, cloud computing provides the hard-
ware needed to run more computationally expensive data processing and a redundant
distributed storage system.

Zhang et al. introduce the discourse of edge intelligence in CIoT systems, asserting
how edge computing could enable CIoT to effectively assist humans in real-time through
customized service based on the perception cycle of IoT systems [102]. Furthermore,
decentralized control mechanisms are crucial for prompt control in smart buildings and
cities to achieve flexible communication and scalable computing in such environments
[102]. The paper also lists sample services and applications of edge intelligence in CIoT,
such as content sharing in vehicular networks, predictive analytics in healthcare, content-
oriented caching on edge, and data-driven public bicycle service [102].

Chen et al. propose a cognitive computing and edge computing-based healthcare sys-
tem [121]. The article highlights issues in the current architectures regarding inefficient
resource allocation, inflexible network resource deployment, high latency of cloud-based
systems, and the limitations of conventional machine learning methods in discovering
hidden values and correlations in data [121]. The system employs edge cognitive comput-
ing to carry out a comprehensive analysis of the user’s physical health data and network
resources. Using a cognitive data engine and a cognitive resource engine, the architecture
can carry out extensive data analysis involving external and internal data as well as meta-
data such as network type, service data flow, communication quality and other dynamic
environmental parameters to assess the status of the network resource environment [121].
In addition, the article emphasizes the importance of distributed architectures for effi-
cient resource allocation by virtualizing physical infrastructure resources into multiple
parallel virtual network slices mutually independent. This handover strategy aims to
provide seamless resource connection. The proposed edge cognitive computing system
(ECC) comprises three main layers. The first layer is the user side or data-collection
layer, composed of CPS such as smart clothing, mobile phones, and portable health mon-
itoring devices, which collect real-time physiological data of the patient [121]. Examples
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of data extracted from these devices include electrocardiography (ECG), electromyogra-
phy (EMG), heartbeat, temperature, and blood oxygen saturation (SpO2). The second
layer is the computing-analysis layer or edge computing side, composed of the computing
devices of the user computing. The third and last layer is the storage-management layer
or cloud platform side, which stores the basic and medical information of the patient
and is managed and operated by the hospital [121].

The management of large-scale, heterogeneous IoT architectures is a major challenge
and a critical consideration in designing future generation CIoT systems. Device man-
agement addresses the orchestration of resources in dynamic spatio-temporal dimensions
allowing adaptation in mutable environmental conditions [83]. Perhaps adaptation is
again a key component and fundamental characteristic of CIoT and future autonomous
systems, which manifests in this case with self-adaptation and self-management of com-
putational resources. Much like Haykin, Braten et al. identify three distinct adaptation
mechanisms: reasoning, learning, and planning. These manifest in concrete situations
through linear and nonlinear programming, probabilistic analysis, fuzzy logic, dynamic
programming and recursive optimization, rule-based inference, ontologies, knowledge
graphs, case-based reasoning, machine learning, and RL [83].

Moreover, many algorithms have been created specifically to orchestrate and manage
existing resources in a network efficiently. Overload, congestion, and low-load resource
management challenges are all addressed by workload balance optimization techniques.
There are several in the literature, including Gaussian process regression for fog-cloud
allocation (GPRFCA) [122], DRL-based resource allocation (DRAM) [123, 124, 125],
prediction-based resource allocation algorithm (PBRA) [126], hybrid tabu-based simu-
lated annealing (HTSA) optimization algorithm [127] and economic resource allocation
(ERA) [128]. A comparative analysis between these methods can be found in [129].
Depending on the domain to which the IoT architecture will be applied, different opti-
mization methods can be used to create an application-specific cognitive controller. The
latency and orchestration need, in the proposed architecture, should be addressed using
a combination of resource provisioning and job scheduling techniques. Task schedul-
ing techniques such as fog sync differential algorithm (FSYNC) and Reed-Solomon fog
sync (RS-FSYNC) should be able to supplement the design of a comprehensive cognitive
controller in addition to any of the stated algorithms [130].

Jalali et al. propose an automatic task sharing and switching between cloud and
edge/fog computing using machine learning [114]. The specific classification model used
by the authors was the support vector machine, where its supervised learning was based
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on available CPU, memory, bandwidth, and remaining battery, on top of other factors
such as the required execution time and accuracy [114].

Chen et al. also proposes a dynamic service migration mechanism ECC based on
dynamic systems [131], expanding on previous work [132]. The architecture uses elastic
storage and computing services, resource allocation, and user mobility. ECC and the
proposed mechanism aim to reduce network load, improve network efficiency, reduce
transmission delay or latency, and improve the QoS. This mechanism differentiates from
other methods because it considers user or actor behavior. It can decide when to migrate
the service from one edge node to another based on behavior and mobility patterns. An
optimization problem is then formulated based on migration cost, which depends on the
server’s capacity, the bandwidth available, migration goal, and desired service resolution
based on user demands, mobility, and dynamic network resources. The same author
also proposed a DRL approach to solve the resource allocation problem and which is
discussed in [133, 134].

2.3.3.1 Tiny Machine Learning

Tiny machine learning (TinyML) is a recent paradigm that tries to integrate machine
learning models into hardware with limited computational capability and resource con-
straints [135]. Next-generation computational sensing systems will be able to reduce the
data burden while improving accuracy, bringing the computing closer to the environment
in a distributed manner [136]. The results of the processing done on sensing hardware
can also be leveraged to create reconfigurable sensor systems, capable of adapting their
settings based on a group consensus of the current environmental state in which they op-
erate. At the same time these systems could relay this information to abstract contextual
information regarding the environment. Applications of these intelligent multi-sensor
systems extend from environmental monitoring to wearable devices.

The integration of TinyML into consumer electronics has revolutionized smart home
applications, particularly in smart TVs and voice-controlled systems. Recent advance-
ments in speech recognition have enabled on-device, low-latency voice processing, en-
hancing user interaction with smart devices. One notable implementation is in speech
recognition devices that determine a user’s intention based on the direction of the sound
source, as described in a patent by Samsung Electronics [137]. This system employs
multi-microphone beamforming and deep learning-based direction estimation to improve
speech recognition accuracy in noisy environments, allowing smart TVs and AI assistants
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to identify which user is speaking and filter out background noise effectively. Addition-
ally, TinyML has been utilized for enhancing media recommendation systems in smart
TVs, as demonstrated in a patent outlining an energy-efficient neural network for con-
tent personalization and display optimization [138]. These edge AI solutions reduce
reliance on cloud-based processing, improving privacy, responsiveness, and power effi-
ciency, which are crucial for embedded AI applications. As TinyML continues to evolve,
its deployment in consumer electronics will expand, enabling adaptive, context-aware
interactions in real-time while minimizing computational overhead.

Recent advancements in TinyML have focused on optimizing deep learning inference
for highly resource-constrained edge devices by leveraging model compression, optimiza-
tion techniques, and specialized hardware accelerators. Deep learning models, which are
typically computationally expensive and memory-intensive, pose significant challenges
for deployment on low-power microcontrollers and IoT devices. To address these limita-
tions, various model compression techniques such as pruning, quantization, and knowl-
edge distillation have been employed to reduce model size and inference latency while
maintaining high accuracy. Architectures such as MobileNet [139], ShuffleNet [140], and
SqueezeNet [141] utilize depthwise separable convolutions and grouped convolutions to
minimize the computational footprint of convolutional neural networks (CNNs). More-
over, hardware-aware deep learning optimizations, including algorithm-hardware code-
sign, have facilitated the development of specialized AI accelerators such as Edge TPUs,
FPGAs, and reconfigurable ASICs, enabling efficient execution of deep learning models
with minimal power consumption. These advancements are crucial for real-time TinyML
applications in domains such as healthcare monitoring, industrial IoT, and autonomous
systems, where low-latency, energy-efficient processing is essential. Furthermore, the
integration of neural architecture search (NAS) has enabled automated model design
tailored for edge devices, ensuring a balance between performance, energy efficiency,
and computational feasibility. As TinyML continues to evolve, the synergy between
model compression, hardware-aware optimizations, and emerging AI accelerators will
drive the next generation of ultra-low-power deep learning applications [142].

Furthermore, tiny transfer learning (TinyTL) has been proposed to train small neu-
ral networks on resource-constrained devices with minimal memory usage and loss of
accuracy from bigger models. Therefore, optimizing the learning process of application-
specific models on edge devices [143].

Further CIoT deployment examples could be a set of environmental sensors capable
of adjusting where and how to sense based on a classification algorithm [136], to then
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transmit the results of such classification to give context to an unsupervised monitoring
system. A concrete application example was implemented by Veiga et al., which applied
the CIoT framework to a person counting system in skiing areas through camera sensors.
The idea was limiting the amount of information transmitted for processing to save
energy in constrained situations, dissecting the image into tiles and only relaying the
most relevant ones using a planning algorithm and an attention model [144].

2.3.3.2 Multi-Level Intelligence

While TinyML and edge AI optimizations have significantly improved deep learning in-
ference on resource-constrained devices, there are still scenarios where local processing
remains infeasible due to memory, computation, and power limitations. In such cases,
hybrid cloud-edge architectures are employed, where edge devices perform partial com-
putations while offloading resource-intensive tasks to cloud servers. According to Shuvo
et al. [142], three primary hybrid inference strategies have emerged:

• Edge-Server Inference: Raw data from IoT sensors and smart devices is transmitted
to edge servers, which store deep learning models and perform inference before
sending back results. This approach reduces bandwidth requirements compared to
full cloud processing while improving real-time responsiveness.

• Edge-Device Inference: Pretrained lightweight models are deployed directly on
resource-constrained devices, ensuring low-latency execution. However, this re-
quires substantial compression, quantization, and model optimization to fit within
the hardware constraints.

• Collaborative Inference: Deep learning models are partitioned between the edge
device and an edge server or cloud. Early-stage feature extraction occurs locally,
and intermediate activations are transmitted for final processing in the cloud. This
approach balances computational efficiency and real-time performance.

Notable applications of hybrid cloud-edge architectures include:

• Real-time health monitoring in intensive care units (ICUs): Edge AI processes
physiological signals locally for quick anomaly detection, while cloud servers handle
deeper analysis for long-term health trends.

• Autonomous driving systems: Vehicles perform immediate perception tasks on-
board (e.g., obstacle detection), but offload complex route planning and map up-
dates to cloud infrastructure.

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

• Industrial IoT and predictive maintenance: Embedded sensors in manufacturing
environments run local machine learning models for real-time fault detection, while
cloud-based analytics refine predictions and optimize long-term maintenance sched-
ules.

These hybrid approaches ensure deep learning solutions can be deployed effectively
across diverse real-world applications by balancing energy efficiency, latency, privacy,
and computational feasibility.

In addition to protocol-based advancements, alternative communication methods
have emerged to address challenges in scalability and efficiency. For instance, instead of
relying on raw data transmission, IoT devices can transmit extracted representations or
latent features derived from local processing. This approach not only minimizes band-
width usage but also enhances privacy and security by reducing the exposure of raw data.
Such representation-based communication is particularly valuable in scenarios involving
edge computing or federated learning, where only the essential compressed or encoded
information is transmitted, ensuring efficient resource utilization.

The integration of data processing capabilities can be implemented in multiple levels
of a CIoT architecture, to decrease the magnitude of the information flow and transmis-
sion overhead. Complex abstractions can be carried out by implementing lightweight
machine learning models such as regression, support vector or small-sized neural net-
works. The results of the processing can be used either directly from the node to adapt
itself or in combination with a bigger overarching model architecture that resides higher
in the hierarchy of computational hardware through compressive sensing [136]. By trans-
mitting encoded information to a pre-trained decoder residing on the cloud or the edge
the security and transmission size of the data can be improved, as shown in Figure
2.9. The transmission of encoded data will furthermore provide a security layer to some
known IoT attacking techniques such as eavesdropping, also known as man-in-the-middle
attacks.

Compressive sensing techniques further improve efficiency by encoding data before
transmission, allowing a pre-trained decoder at the cloud or edge to reconstruct the
information with minimal loss [142, 145, 146]. This method not only reduces trans-
mission size but also enhances security against known IoT attack techniques such as
eavesdropping, often referred to as man-in-the-middle attacks. Privacy-preserving AI
methodologies, such as federated learning and homomorphic encryption, are also being
explored to maintain security in multi-level intelligence frameworks [142].
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Figure 2.9: High-level schematic of multi-level intelligence, depicting the incorporation
of TinyML with foundation models for decision fusion. Data is processed both on the
edge by sensors equipped with machine learning algorithms and on the cloud by more
powerful foundation models that require higher computational capacity.
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2.3.3.3 Federated Learning

Building on the concept of edge computing, distributed intelligence, and the implemen-
tation of machine learning on edge and resource-constrained devices, federated learning
is a prominent research area that aims at further tying these concepts together in a
collaborative manner [147]. Multiple actors within a federated learning system process
data collected in loco to update a local model and act as workers for a central aggre-
gator of information or overarching machine learning model. Each node of the system
receives a model to be used on the data collected to then relay the computed loss back to
the central aggregator. Once the aggregator receives all the losses from the distributed
devices, it solves an optimization problem to minimize a global loss function [147]. An
example of the algorithms that can be used to solve such optimization problems is fed-
erated averaging [148]. Before the next round of learning the central computing server
broadcasts the updated weights for the local models.

Federated learning can also be modelled without a central aggregator in a fully dis-
tributed fashion. These architectures leverage P2P communication to transmit the data
needed for collaborative training. The aggregation is performed by every node after it
has received updates from neighboring nodes. Blockchain has been proposed as an effec-
tive means of communication between nodes, the shared ledger can be used to update a
common global perspective of the state of the distributed system. Within this structure,
smart contracts can be used to share data among users reliably and securely.

In both centralized and decentralized architectures several benefits of collaborative
processing can be extrapolated. Since the raw data is never transmitted among users and
centralized servers, eavesdropping and man-in-the-middle attacks would be mitigated,
improving data sharing privacy. It is virtually impossible to recreate trained models that
could digest the encoded information shared, although this system does not prevent false
data injection attacks and denial of service attacks that could be implemented to take
down the system by overloading or misleading it. Furthermore, the data transmission
would be faster as the raw data is compressed in latent space representations that could
encompass a larger window of data. The performance and learning quality of the overall
system could also be improved by a more efficient distribution of the processing load,
enabling better scalability of CIoT systems.

Moreover, central aggregation algorithms could be biased through the encoding of
further semantic contextual information using foundation models. This would allow for
distributed systems to benefit from data not directly collected by the nodes of the system
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but publicly available through official channels. Contextual data of this form could be,
for instance, weather predictions, to be integrated into a distributed system managing a
transportation network or autonomous driving network of vehicles. Further improving
the adaptability and redundancy of the systems through bias injection [83].

2.3.4 Distributed Storage and Parallel Processing

In order to achieve a high level of autonomy, CIoT systems will have to perform data
storage, processing, and retrieval in a timely, efficient, and reliable manner. This is
particularly important if taking into consideration smart cities or smart grid (SG)-based
CIoT architectures where a failure in the data pipeline could cause widespread outages or
malfunctions. Big data processing and storage has been widely covered in the literature
[149, 150, 151, 152, 153], where operations are parallelized to improve speed and efficiency
at large-scales.

As open-source software, a variety of distributed storage options are available and
could be easily integrated into a CIoT architecture. The Hadoop distributed file system
(HDFS) is the most well-known and is a distributed storage solution that offers several
essential features such as sharding and redundancy to ensure the integrity and reliability
of the data storage [154]. For instance, the use of sharding techniques to divide files into
smaller chunks of data and store them across multiple network nodes offers redundancy,
integrity, and efficiency in an IoT structure. Furthermore, these features ensure that even
if one of the nodes fails or is compromised, the data may still be retrieved and restored to
its original state. These open-source big data analytics engines are based on distributed
file systems that leverage clusters of servers to store their data and implement parallel
processing to increase processing time by splitting the computation into multiple tasks
distributed among various resources or executors [155]. Specifically, Apache Hadoop is
divided into four main modules seen in Table 2.2.

It also has further modules to address real-time data streaming (Apache Kafka) and a
scalable multi-master database (Apache Cassandra). Apache Spark is a multi-language
engine that works within the Hadoop framework but has its own ecosystem, consisting
of the main modules also listed in Table 2.2.

There are also several other platforms for big data analytics, proposing alternative
solutions or expanding upon the Hadoop system. A few notable ones are 1010data,
Cloudera data hub, Flink, Storm, Samza, SAP-Hana, HP-HAVEn, Hortonworks, Pivotal
big data suit, Infobright, and MapR [156, 155].
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Table 2.2: Software packages and modules for distributed storage and processing.

Environment Module Function

Hadoop Common Library access

Hadoop File System High throughput access
to data

Hadoop YARN Job and cluster scheduling

Hadoop MapReduce Parallel processing based on
YARN scheduling

Spark Core Data processing engine
Spark SQL SQL database interactions
Spark Streaming Real-time data streaming

Spark MLib Machine learning dedicated
library

Spark GraphX Graph-based visual representations

Furthermore, new parallel storage solutions arise as open-source projects continu-
ously, innovating and creating more robust and distributed architectures. An outstand-
ing example is the interplanetary file system (IPFS). IPFS is a distributed file system
based on the libp2p library for M2M communication that differs significantly from HDFS.
The secure Kademlia protocol [157, 158], comparable to a gossip-like protocol, is used
to retrieve file chunks using acyclic Merkle directed acyclic graphs (DAGs) instead of
a master node. Merkle DAGs are an alternative to distributed hash tables (DHT) for
breaking up files into chunks and reconstructing them; the system may collect all the
shards that make up any given file from the network of nodes and check data integrity by
having the root hash of the file [159]. The real benefit of employing IPFS based storage
systems is that it may be deemed truly redundant due to its features and decentralized
character.

Therefore, a combination of dynamic resource management coupled with existing
open-source distributed storage and processing could be the answer to creating scalable
decentralized self-managing architectures in CIoT.

2.3.5 Data Mining in CIoT

Data mining refers to the exploitation of available data to extract knowledge about the
environment and process it is associated with. Hence, it extracts high-level information
from low-level raw data [120]. To extrapolate such high-level information the data must
go through preprocessing, feature extraction, abstraction, and semantic derivation as
shown in Figure 2.10.
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Figure 2.10: Conventional analytics stages of data processing.

2.3.5.1 Data Preprocessing

is the first step of data analysis and utilization. Different layers can adapt this step
to reduce transmission costs, as mentioned in the previous sections. Generally, some
preprocessing will always be carried out by hardware or software features at the node
level. Signal preprocessing, for instance, is done using low/high pass filters and bandpass
filters using specifically designed circuits.

Mathematical preprocessing, in contrast, does not modify the signal and utilizes
the output instead. Such techniques aggregate the data over time windows and transmit
such aggregations’ characteristics, such as minimum, maximum, mean, median, variance,
standard deviation, derivatives, integrations, and correlations [160].

The problems of heterogeneity, nonlinearity, and high dimensionality must be ad-
dressed in the processing of the data before abstraction, knowledge discovery, and se-
mantic derivations. Heterogeneous data processing brings both challenges and new pos-
sibilities in analyzing sensory data. Mathematically, joint probability density functions
can be exploited based on copula theory (couples’ multivariate joint distributions to
their marginal distribution functions) to model random variables characterized by het-
erogeneous data. Furthermore, practically adaptive mechanisms could be used to auto-
matically select algorithms developed to address the data type in question. Nonlinear
data processing can often outperform the linear counterparts in many applications, as
often linear methods are oversimplified to deviate to optimality. Kernel-Based Learning
(KBL) is proposed to tackle the mathematical problems associated with nonlinear data
processing [33]. High-dimensional data processing is often challenging, due to the large
amounts of data being processed. To cope with this, dimensionality reduction techniques
can be applied to reduce the size and complexity. Several methods are presented in [160]
to address the problem, such as discrete Fourier transformation, wavelet transformation,
piecewise aggregation approximation, and symbolic aggregate approximation.

68

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

2.3.5.2 Feature Extraction

is performed after the data has been preprocessed. It can be an ambiguous term, but it
generally refers to cluster analysis and feature selection processes. An example in image
processing would be the use of attention-based mechanisms to weight in the position
of different regions or characteristics to improve the performance of image recognition
software. Classifying the data or clusters helps make patterns emerge from the data.
This process can be carried out using various algorithms in unsupervised learning and
following different methods [161]. For example, hierarchical clustering is defined as com-
bining data in subgroups and then constructing subgroups made of subgroups, ultimately
forming a hierarchy tree. This is an iterative process of agglomerating, where divisive
clustering is helpful for further analysis to define sets of clusters. Another method is
partitioning clustering, an iterative solution that reallocates data points between sub-
sets. It can also be used along density-based functions to recognize data clusters; for
instance, k-medoids and k-means are examples of this type of clustering [161]. Further-
more, unsupervised machine learning techniques can be used to highlight correlations
between groups and association analysis, multilevel association, multidimensional as-
sociation, and quantitative association. Latent features can also be generated using a
Bayesian generative model as discussed by Haykin et al. in cognitive risk control [70].

2.3.5.3 Abstraction

is defined as deriving contextual data from sensory data by coupling the raw mea-
surements with meta data and additional knowledge to gain better insights and adjust
sensory devices to current factors. In [160], the authors define two types of abstraction.
Lower-level abstraction represents static information, such as a single, independent ob-
servation made at a specific time step, gathered from sensors along with metadata like
sensor range, type, and capabilities. For example, a temperature sensor may report a
reading of 25°C, accompanied by details about the sensor’s accuracy and operational
range. Higher-level abstraction is achieved by analyzing several lower-level abstractions
together to better understand complex, multivariate events. For instance, combining
temperature, humidity, and wind speed data over time can help detect weather patterns,
while aggregating data from motion sensors, door sensors, and camera feeds can infer oc-
cupancy patterns in a smart building. Common abstraction techniques are classification,
Markov chains, and hidden Markov models (HMMs). Classification is a standard ab-
straction method to find the correlation between group samples with similar attributes
and characteristics. Markov chains are used to represent the likelihood of temporal
relations among groups.
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Understanding the context in which smart systems exist and to induct such infor-
mation into the processing is the key enabler to create cognitive systems. Contextless
processing, blind to the relativity of the perceived environment, could never lead to
informed adaptation. In CIoT context acquisition can be evaluated based on how the
processing is biased to account for relative information, the frequency of acquisition,
how it is shared within the system, and its relevancy. Many context modeling tech-
niques exist, each aimed at influencing different components of an IoT or CIoT system
in various ways. For instance, location-based context modeling can optimize resource
allocation in smart homes by adjusting heating or lighting based on occupant behavior,
while activity-based modeling can improve wearable health monitoring systems by tai-
loring alerts based on detected physical activity patterns. Additionally, environmental
context modeling can be used in agriculture to automatically adjust irrigation based on
soil moisture levels or weather conditions. Logic-based modeling is the most basic tech-
nique used to express context through a set of rules and logical expressions to establish
direct cause-effect relationships, but fails to define non-linear relationships. Similarly,
key-value, ontology, and markup scheme modeling are used to define simple system data
structures providing flexible and efficient storage of such relationships. Spatial modeling
can be used to integrate physical space and location meta data to be associated with
data extracted, providing some level of context to be used in the processing. Defining
the relationships between nodes in multi-agent systems is an example of graphical mod-
eling, and embeds the bilateral influence that nodes have on each other expressing their
conditional dependencies in a probabilistic fashion. For instance, in a production line
composed of multiple sub-stages, the processes influence the subsequent stages by means
of variable middle product properties. In a distributed network system, the agents will
occupy certain frequencies using communication, crowding the space and possibly in-
fluencing other devices that are transmitting on the same frequency. While modeling
environmental contexts, uncertainty presents a limitation in establishing contextual in-
formation, environmental conditions, especially in relation to complex systems such as
the weather can only be modeled and integrated in a probabilistic way, being hard to
capture [162].

Furthermore, HMMs are built upon Markov chains adding temporal dimensions for
classification purposes. Decision trees and K nearest neighbor (KNN) algorithms are the
most notable classification methods. Bayesian networks (including naïve Bayes, selective
naïve Bayes, semi naïve Bayes, one-dependence Bayesian classifiers„ and more), and
support vector machine algorithms [161].
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2.3.5.4 Semantic Derivation, Reasoning, and Decision Making

The semantic derivation is the last step in data analysis and allows models to represent
the correlation between related context information, metadata and data. For example,
in semantic ontology, events can be linked to reason from simple to more abstract [160].
In addition, domain ontologies-based schemas represent the data from different sources,
increasing interoperability.

Once context is modelled, the reasoning and elaboration over abstractions and se-
mantic derivations can be carried out as mentioned. The next step is to integrate the
information extracted into inference models capable of reasoning and decision making.
To this end, context reasoning can be modelled using rules engines, probabilistic logic,
fuzzy logic, supervised learning, unsupervised learning, and RL. This is the last step of
the multilevel processing of data that distributes upwards in CIoT systems, and outputs
the executive commands to be executed by the systems to self-adapt or influence the
environment. The agglomeration of lower-level processing is a challenge in cognitive
systems. The curse of dimensionality, the result of the integration of large corpora of
multivariate data, presents the first limiting factor, which will be addressed more in
Sections 2.4.1 through the decomposition of the processing and parallelization.

The ’no free lunch theorem’ for machine learning highlights how no single model can
properly generalize without some inductive bias, in the sense that there is no general-
purpose learning algorithm [163]. A model can be therefore influenced by the dataset
it was trained on in the form of the data distribution, and by the way it was trained,
in the form of the learning algorithm and loss function used. Context-dependant pro-
cessing is a form of inductive bias, integrating sensory signals with the bias brought via
contextual information. In this perspective, the main question and major hurdle to cog-
nitive systems in general is how to develop a model capable of learning to piece together
a puzzle of relative information and marginal distributions to optimize over a specific
loss function of a given process and achieve a goal in an adaptable and flexible way.
The human brain is capable of adaptation mechanisms far beyond any computational
algorithm ever created. An example is cross-modality reassignment, where previously
learned structures assigned to process a specific input are reprogrammed to accept input
from a different sensory modality [164]. How to create a system flexible enough to mimic
this behavior is still largely unanswered.
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2.4 Cognitive Data Analysis

Having detailed how CIoT systems extract high-level insights from raw sensor data,
beginning with data preprocessing to address heterogeneity, nonlinearity, and high di-
mensionality; advancing through feature extraction and abstraction to enrich and con-
textualize the data; and culminating in semantic derivation that integrates metadata
and context, we have established a robust conceptual foundation. Yet, these analyti-
cal building blocks represent only the first step. The true potential of CIoT emerges
when these insights are harnessed to drive intelligent, adaptive behavior in real-world
applications.

Looking ahead, the future of CIoT lies in translating these foundational principles
into practical, forward-thinking solutions. In the sections that follow, we present a
roadmap for this evolution by exploring cutting-edge approaches in cognitive comput-
ing. We delve into the architecture of cognitive systems, examine reinforcement learning
and reward-based adaptation, and highlight pioneering systems such as IBM Watson
that exemplify the current state-of-the-art. Further, we shift our focus to transforma-
tive models, foundation models, and large language models (LLMs), which promise to
enable seamless data fusion, efficient transfer learning, and the dynamic embedding of
AI capabilities across all CIoT layers.

This journey from theoretical underpinnings to applied intelligence not only under-
scores the potential of integrating advanced analytics into CIoT but also charts a clear
path forward for designing systems that continuously learn, adapt, and thrive amid the
complexities of an ever-evolving, interconnected world.

2.4.1 Cognitive Computing

In recent years, cognitive computing has emerged as an evolution of conventional data
analytics, integrating disciplines such as linguistics, psychology, artificial intelligence,
neuroscience, anthropology, engineering, and computer science [165]. Similar to CDS,
cognitive computing seeks to emulate and embed elements of human cognition into au-
tonomous systems [166], enhancing machine intelligence through multimodal, adaptive
data analysis. By combining traditional data analytics techniques, cognitive computing
enables systems to ingest, analyze, and aggregate vast amounts of unstructured data,
facilitating optimal action selection and policy decisions.
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Cognitive computing can thus be defined as the adaptive integration of multiple
machine learning and data analytics techniques to extract knowledge from the envi-
ronment, enabling cognitive engines to enact corrective actions through actuators and
machine-human interaction in dynamic and adaptable ways. Beyond being a mere ma-
chine learning technique, cognitive computing represents a comprehensive architecture,
integrating multiple subsystems of machine learning and analytics [167]. Within a CIoT
architecture, distributed intelligence is achieved through mechanisms such as distributed
computing and federated learning, which have been further discussed in Section 2.3.3.2.

Moreover, cognitive systems leverage past interactions with the environment to main-
tain representations of entities through short- and long-term memories, encompassing
the system’s assumptions, motives, ideas, and knowledge [168]. The ultimate goal of
human-centric cognitive computing is to process increasingly diverse data and deliver
knowledge tailored to the needs of a specific individual in a given context [169]. DARPA
defined cognitive computing in 2002 as the ability to accumulate knowledge, reason, use
represented knowledge, learn from experience, follow directions, operate robustly un-
der uncertainty, adapt to sudden events, and be aware of the system’s behavior and its
influence on the environment [169].

2.4.1.1 Reinforcement Learning and Reward-Based Adaptation

RL is a powerful class of machine learning algorithms that enable agents to learn op-
timal behaviors through iterative interactions with their environment. At the core of
RL is the concept of learning from rewards and punishments: agents take actions in an
environment, receive feedback in the form of rewards or penalties, and adjust their poli-
cies accordingly to maximize cumulative rewards over time. This process is formalized
through the maximization of a specific cost function, often involving expected future re-
wards discounted over time. RL algorithms are particularly adept at handling problems
where the optimal action is not immediately apparent and must be discovered through
exploration and exploitation strategies.

This learning paradigm draws parallels with cognitive neuroscience, specifically the
functioning of the striatal-dopaminergic system in the human brain [170]. The stria-
tum and dopaminergic neurons play a critical role in motivation, reward processing, and
motor control. Dopamine signals are believed to encode reward prediction errors (the
difference between expected and received rewards), a fundamental concept in RL algo-
rithms for updating value functions and policies. This neurobiological basis provides a
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compelling connection between artificial learning systems and natural intelligence, sug-
gesting that RL algorithms may capture essential aspects of how humans and animals
learn from their environments.

Similarly, deep learning methods have been inspired by the hierarchical and intercon-
nected nature of neural networks in the human brain. Deep learning utilizes artificial
neural networks with multiple layers, comprising of input, hidden, and output layers, to
model complex and non-linear relationships in data. These networks can automatically
learn and extract high-level features from raw inputs, enabling breakthroughs in areas
such as image recognition, natural language processing, and speech synthesis.

Combining the strengths of RL and deep learning has led to the emergence of DRL, a
paradigm that leverages deep neural networks to approximate value functions, policies, or
models of the environment [171]. DRL enables RL algorithms to handle high-dimensional
state and action spaces, which were previously intractable with traditional RL methods.
By integrating deep learning, DRL agents can process unstructured inputs like images
or sound, allowing them to make decisions based on rich sensory data.

Generally, RL and DRL models are employed for dynamic and sequential decision-
making and control problems. These problems are often formally modeled as MDPs
[172], which provide a mathematical framework for modeling decision-making scenarios
where outcomes are partly under the control of an agent and partly random. An MDP
consists of a set of states, a set of actions, transition probabilities, and reward functions.
The goal in an MDP is to find a policy (a mapping from states to actions) that maximizes
the expected cumulative reward.

In recent years, hybrid DRL approaches have achieved remarkable success, outper-
forming humans in complex games such as Go and various Atari games [173, 174]. No-
tably, Google’s DeepMind developed AlphaGo, which defeated world champion Go player
Lee Sedol in 2016. AlphaGo combined deep neural networks with advanced search algo-
rithms, demonstrating the potential of DRL in mastering tasks with vast search spaces
and intricate strategic elements. Similarly, DRL agents have been trained to play Atari
2600 games directly from raw pixel inputs, achieving superhuman performance in many
cases.

RL algorithms have also been successfully applied to a wide range of robotics prob-
lems, such as indoor navigation, manipulation tasks, and control-related challenges
[171, 175]. In robotics, RL enables agents to learn control policies through interac-
tions with either real or simulated environments, reducing the reliance on hand-crafted
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controllers. For example, robots can learn to navigate complex environments, avoid
obstacles, and perform tasks like object grasping by learning from trial and error.

As mentioned earlier in this paper, RL was the algorithm chosen by Feng and Haykin
for developing cognitive control and cognitive risk control architectures. Their work high-
lights the suitability of RL for modeling adaptive decision-making processes in complex,
uncertain environments. By leveraging RL, these architectures aim to mimic cogni-
tive functions such as attention, learning, and risk assessment, which are essential for
intelligent systems operating in real-world scenarios.

However, modern RL and DRL, despite their prowess in policy and action selection,
face limitations in generalization and handling unstructured data. These models often
require large amounts of training data and computational resources, and they tend to
learn policies that are specific to the training environment. Consequently, their ability to
ingest unstructured data, that does not have a predefined data model or is not organized
in a pre-defined manner, is limited. This constraint hampers the application of RL and
DRL in domains where data is heterogeneous and lacks clear structure.

Furthermore, the transferability of pre-trained RL and DRL algorithms to other
applications is severely limited. Unlike humans, who can apply learned knowledge to
new contexts with minimal adaptation, RL agents typically need to be retrained when
the environment changes or when faced with new tasks. This lack of transfer learning
capabilities reduces the practicality of deploying RL solutions across multiple domains,
as it incurs significant time and resource costs for retraining.

Humans possess the remarkable ability to integrate prior knowledge with new infor-
mation, a process formalized by the tendency to search for structures during interac-
tions with the environment [170]. This cognitive process involves abstracting underlying
patterns and relationships, even when no explicit structure is apparent. By forming
structured representations of the environment, humans can generalize learning and ap-
ply it to novel situations, a strategy that proves advantageous for long-term learning
and adaptation.

This tendency to abstract structured representations facilitates computational ef-
ficiency. By representing learned rules independently of specific sensory and motor
outputs, humans can apply these rules flexibly across different contexts. This abstrac-
tion reduces the cognitive load and enables the reuse of learned behaviors, which is a
significant computational gain. Policies derived from such structures are extensively
generalizable and transferable, allowing humans to adapt quickly to new environments
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or tasks. The ability to transfer and generalize learned knowledge and policies to other
situations is a fundamental behavioral hallmark of human learning [170].

An illustrative example is how humans adjust their behavior according to situational
context. For instance, one might communicate differently in a professional meeting
compared to a casual gathering with friends. Humans can translate specific context-
dependent policies, selecting appropriate actions based on cues from the environment.
This context-aware decision-making showcases the flexibility and adaptability of human
cognition.

The concept of state abstraction is crucial for lifelong RL, where the goal is to develop
agents capable of learning and adapting over extended periods [176]. State abstraction
involves simplifying the representation of the environment by focusing on relevant fea-
tures and ignoring irrelevant details. By developing reusable policies and adapting pre-
viously created structures to new contexts, agents can generalize learning and improve
efficiency. This approach mirrors human cognitive strategies, where abstract represen-
tations enable the application of knowledge across diverse situations.

2.4.1.2 IBM Watson: A Pioneer in Cognitive Systems

The first valid attempt to build a cognitive system covered in literature is IBM Watson
and the Deep QA project, which can utilize a vast array of structured and unstructured
data by adaptively integrating multiple analytics and machine learning techniques [177,
178]. This tool is commercially available as sub-packages within IBM Cloud services
such as Watson Assistant, Watson Studio, Watson Discovery, and Watson Analytics
[179]. The key feature that originally differentiated the Deep QA architecture from
earlier analytics solutions offered by companies like Microsoft (Azure) and Amazon Web
Services (AWS) is that Watson did not simply map questions to a database of predefined
answers. Instead, it relied on principles such as massive parallelism, pervasive confidence
estimation, and the integration of both shallow and deep knowledge [180]. While modern
LLMs share some of these characteristics, the Deep QA architecture was among the
pioneers in using such techniques. The high dimensionality of arrays produced by Watson
in terms of the analysis and processing of hundreds of features or scores using various
analytics tools and the ability to combine them into a statistical reference value inside an
action space differentiates Watson. Deep QA can train and functionally adapt to domain-
specific taxonomies and reasoning by detecting context and adapting specific content
[181]. This architecture can be considered a first attempt to design a foundation model
capable of utilizing knowledge extracted from large corpora of data and transferring the
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learning to downstream tasks. The original depiction of the Deep QA architecture can
be seen in Figure 2.11. This ability can be tied back to the five principles of cognition
outlined by Haykin since it fits within the attention mechanism of cognition. It also
possesses all other pillars of cognition, so it can be considered a cognitive engine. IBM
Watson’s development has mainly focused on the healthcare industry and the potential
applications of the Deep QA architecture to aid doctors and researchers in making the
most informed decisions [182]. This adds to the growing pool of research and new clinical
studies published daily in medical journals, which constantly advance state of the art
for treatments and procedures.

Through various techniques such as natural language processing (NLP), dynamic
learning, and hypothesis generation, cognitive systems can effectively and intelligently
parse through this massive amount of data to aid the coordination of care by healthcare
professionals. Currently, Watson is being used to aid cancer treatment in partnership
with New York’s Memorial Sloan-Kettering Cancer Center, the MD Anderson Cancer
Center, and the University of Texas [182]. IBM has also partnered with Apple, John-
son & Johnson, and Medtronic to further enhance patient monitoring, to better utilize
information gathered by personal health, medical and fitness devices leaping into the fu-
ture of healthcare IoT-based devices, to provide better patient monitoring and real-time
feedback and recommendations to doctors in chronic and acute care [182].

IBM Watson can also be applied across domains, and it is capable of aggregating
diverse data into a single repository called corpus or body, which is domain-specific.
This flexibility allows Watson to be applied to law, medicine, engineering, finance, and
more using a tailored corpus of information [183].

Figure 2.11: Watson Deep Question Answering Model Representation.

77

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

Moreover, as recent work in cognitive science shows, human learning capabilities can
only be understood in the context of numerous independent, interacting memory sys-
tems rather than as a single, complex learner [170]. This characterization highlights
how to create an artificial cognitive system, the parallel use of multiple analytics tools
is needed. No general model can reproduce the context extrapolation, abstraction, and
learning ability to efficiently adapt to new environments and sudden unexpected events
or changes in the system’s parameters. Although an aggregation model, biased by con-
textual encoded data at the edge could be used to optimize over an optimization problem
of various objectives loss functions [147].

2.4.2 Transformers, Transfer Learning and LLMs

The transformer architecture was first proposed by Vaswani et al. in [184] and remains
one of the most prominent machine learning models today. Transformers inherently
possess strong generalization abilities, which enable them to excel across various tasks
and modalities. In [185], Lu et al. tested the hypothesis that transformers pre-trained
on data-rich modalities, such as massive natural language corpora, can be effectively
utilized for tasks in different modalities, including image classification and protein folding
prediction.

Table 2.3: Large pretrained language models based on transformer architectures.

Name Model Size Citation

BERT-Large Transformer 345 M [186]
CLIP Transformer 428 M [187]

GPT-3 Transformer 175 B [188]
GPT-4 Transformer 1.76 T (Unofficial) [189]
PaLM Transformer 540 B [190]

PaLM 2 Transformer 340 B [191]
LLaMA Transformer Up to 65 B [192]

Megatron-Turing NLG Transformer 530 B [193]
BLOOM Transformer 176 B [194]
DeepSeek Transformer 67 B [195]

To test this hypothesis, the authors used a pre-trained language model termed the
Frozen Pretrained Transformer (FPT); specifically, they utilized a version of GPT-2
[187]. After fine-tuning certain parameters, excluding self-attention or feedforward lay-
ers, the FPT demonstrated performance comparable to or better than long short-term
memory networks (LSTM) and transformer models trained entirely from scratch on
the given tasks and datasets [185]. This finding highlights the significant potential of
language models for transfer learning and suggests that they might inherently possess
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the capacity for universal data computation and structural learning for predictive tasks
across different modalities [185].

Figure 2.12: Foundation models visualization, adapted from [3]. Multi-modal data is
fed to the foundation model for training, which is then able to utilize it and adapt to
perform a multitude of tasks.

The term foundation models was introduced by researchers from the Stanford In-
stitute for Human-Centered Artificial Intelligence (HAI) at Stanford University [3]. A
foundation model is defined as any model trained on a broad, diverse dataset at a scale
that allows it to be efficiently adapted to perform a wide range of tasks. Examples in-
clude Bidirectional Encoder Representations from Transformers (BERT) [186], LLaMA
[192], GPT-3 [188] and GPT-4 [189].

These models leverage self-supervised learning and various implementations of trans-
former architectures at an unprecedented parametric scale, enabling effective transfer
learning across tasks. As a result, they can apply "knowledge" acquired from one task,
such as object recognition in images, to other tasks not explicitly trained on, like ac-
tivity recognition in videos [3]. Recent developments have expanded the capabilities of
foundation models, with examples like PaLM [190], PaLM 2 [191], LLaMA [192], and
BLOOM [194] pushing the boundaries of model size and performance. These advance-
ments highlight the increasing versatility and generalization capabilities of foundation
models across various modalities and complex tasks. A comparison of model size can be
seen in 2.3.

79

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

Multimodal models such as CLIP [187] have further reinforced this trend by integrat-
ing visual and textual data, enabling zero-shot image classification without task-specific
fine-tuning. The introduction of GPT-4 [189], which can process both text and image
inputs, exemplifies the expanding versatility of transformer-based models across different
modalities. Moreover, models like PaLM 2 [191] and LLaMA [192] have advanced lan-
guage understanding and generation, signaling a trend toward increasingly generalized
and multimodal AI systems.

Furthermore, transformers-based foundation models have led to unprecedented lev-
els of homogenization as most state-of-the-art NLP models effectively adapt one of the
foundation models [3]. This ability could potentially enhance the performance of models
in domains where task-specific data is heavily limited [3]. The aggregation of diverse
data types such as text, images, and speech as well as unstructured data and sensory
feedback could be used in the training of foundation models, which then adapt to down-
stream tasks such as sentiment analysis, object recognition, question answering, and
more through minor parameter fine-tuning, a depiction of the training and adaptation
of foundation models can be seen in Figure 2.12.

The flexibility of foundation models comes from three primary characteristic abilities
[3]:

• Generalization: the ability to generate suitable candidates in the action space of
an optimal decision-making process. Foundation models can carry out this process
entirely unconstrained, given their ability to model the output space as a sequence.

• Grounding: the ability to ingest and process diverse data types that may hold deep
underlying semantic meanings, such as mathematical and symbolic language, and
to use them in the correct context. Through inductive bias learning and pretrain-
ing, transformers have also been explicitly researched for mathematical reasoning,
thanks to their flexibility. For example, in [196] the authors simulated three main
features of primitive reasoning, deduction, induction, and abduction, embedding
them within a classic transformer architecture for mathematical reasoning.

• Universality: the ability to transfer knowledge across tasks, either through the
generalization of low-level techniques or by efficiently utilizing metadata techniques
across domains [3]. Foundation models can leverage similarities between reasoning
problems and latent structures through the use of meta-knowledge encoded in the
models’ weights. This ability is comparable to humans’ ability to create structures
and use them if applicable in different settings, as discussed earlier.
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Moreover, self-supervised learning, which can be considered a subset of unsupervised
learning, enables models to learn from diverse unstructured data without expensive
labeled datasets [197]. Generally, self-supervised and supervised objectives are very
similar, with the difference that the first one is only evaluated on a subset of the se-
quence. The challenge is to optimize the unsupervised objective to converge to the
global minimum [187]. All major foundation models such as GPT-4 and LLama are
trained using self-supervised learning, making them broadly task-agnostic by nature.
Although to perform up to state-of-the-art, these models still need some fine-tuning for
most applications, involving supervised learning but on a much smaller scale, especially
for downstream tasks that the models were not explicitly trained for [188].

Tying back to CIoT, the challenge presented by heterogeneous data processing still
presents significant obstacles to traditional models. The longstanding challenge of em-
bedding IoT and robotics systems with the ability to efficiently handle the multitude
of conditions and dynamicity of real-world scenarios could be potentially solved by the
evolution of foundation models. Foundation models for robotics present opportunities
for task specification, adding the ability to adjust structures to new contexts dynami-
cally, adapting to downstream task learning, and taking the mathematical form of joint
distributions over action and observation spaces [3]. To this end, a combination of trans-
formers architectures and RL models could be a powerful combination for task learning
and adaptation, through the aggregation of collected data. Some researchers have at-
tempted to create hybrid architectures found in [198, 199, 200, 201] with promising
results.

2.4.2.1 Data Fusion

The concept of combining sensory and contextual data of different modalities is central
to the CIoT paradigm and is one the main enhancements from IoT systems. By virtue
of utilizing diverse data sources that inform and complement each other it is possible
to obtain a more comprehensive view of the environment, the system, and their inter-
actions. A set of complimentary sensors that collect data on the same time frame to
observe a common system or environment can provide different perspectives and en-
hance the overall information used in processing. To this end an ensemble of datasets
and data types is more than the sum of its parts [202]. Furthermore, by linking together
multimodal data a new form of diversity is introduced aiding the optimization problem
to converge to a unique solution in techniques such as tensor decomposition [127].
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The fusion of different sensors can be interpreted as cooperative, competitive, or
complementary. Cooperative fusion relies in sensors that inform each other and is used
for example in triangulation problems. Competitive fusion also referred to as redundant
fusion, refers to the fusion of multiple sensors that are independent and provide the same
type of information, used to improve reliability and accuracy. Complementary fusion,
which is the focus of discussion in this article, can complement each other and provide
a more complete picture of the system or environment [203].

The problem of data fusion as seen in cognitive risk control can be interpreted using
Bayesian statistics. In fact, probabilistic data fusion methods were among the first
proposed along with fuzzy logic methods for fusing multiple sensory measurements, of
the same nature. Bayesian data fusion methods have found use in the past in tracking
and position estimation problems. Using Bayesian inference prior knowledge of the
parameters, parameter relationship, and environment uncertainty is integrated to obtain
posterior probabilities or estimates [204]. A multisensory fusion model based on Bayesian
statistics can be formulated as:

P (z1|y) =
M∏

m=1

N∏
n=1

N (yn,m|z, Σm) (2.1)

Where M is the number of sensors and N is the number of observations from sensors
m, and y = y1:N,1:M ∈ RK [205]. Bayesian filtering techniques such as the Kalman
filter (KF) have been also used to model temporal multivariate Gaussian distributions
that aim to measure the same state such as in the case of GPS and inertial navigation
system (INS) sensors [206, 207, 208]. Although these methods are harder to frame for
heterogeneous data fusion.

Data fusion techniques that don’t rely strictly on the Bayesian framework can be
categorized into two main groups:

• Algorithms that focus on decomposition techniques such as tensor decomposition,
principal component analysis (PCA), singular value decomposition (SVD), inde-
pendent component analysis (ICA), eigenvalue decomposition (EVD), and factor
analysis (FA)

• Machine learning algorithms [209].

Where the former can be used in maximum likelihood estimation (MLE) or tensor
regression techniques, while the latter takes the form of various types of neural networks.
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Decomposition techniques can be used in combination with machine learning and imple-
mented at different stages of processing for example they can be used as a preprocessing
step to a neural network architecture as seen in [210, 211], but also as part of the feature
extraction process [212].

In general data fusion implementation levels can be categorized as follows and as
shown in Figure 2.13:

• Early fusion: also known as feature fusion occurs as a preprocessing step. Com-
mon methods include concatenation, averaging or weighted combination of input
data into a single matrix or tensor [213]. The concatenated features are then fed
as a single input to a neural network. Decomposition techniques can be used to
extract lower dimensional meaningful representation of the data to then be fused
together by the same means, an example of this process is principal component
regression (PCR) [209]. Machine learning models can also be creating feature
maps that are concatenated to serve as a single modality input to the inference
model. Variational autoencoders (VAE) and multimodal autoencoders (MVAE)
are often used to learn a joint representation of the different inputs by means of
signal reconstruction.

• Intermediate fusion: also known as joint fusion, combines latent representations
of data obtained through neural networks. This method uses multiple neural net-
works to extract feature maps which are then jointly fused into an inference model.
The key difference with early fusion lies in the backpropagation of the error to the
feature extracting neural network [214]. Decomposition techniques do not fall un-
der this category but can be complementary to the feature extracting networks in
the preprocessing stages.

• Late fusion: also known as decision fusion combines the outputs of multiple
machine learning models (trained separately) to make a final decision. The dif-
ferent model outputs are combined using aggregation functions such as average,
majority voting, maximum value, Bayesian decision rule, metaclassifiers, and more
[209, 214]. Late fusion can be particularly useful for multimodal heterogeneous
applications since it doesn’t need dimensionality reductions and other techniques
to aggregate types of data which are diverse in nature and format [213].
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Figure 2.13: Data fusion levels in machine learning, schematic diagram. Early fusion
(left), intermediate fusion (center), late fusion (right).

The use of data fusion for multimodal data utilization has shown promise in the fields
of biomedical fusion, remote sensing, and autonomous vehicles. As already mentioned,
IBM Watson is the first example of cognitive computing that has been leveraged to aid
doctors in making diagnosis, as well as in smart patient monitoring and internet of med-
ical things (IoMT) applications, making use of diverse multimodal data. In this context,
data fusion techniques have also been used to fuse together different imaging modalities
such as PET-MRI, MRI-CT scans [215, 216]. Data fusion techniques have also been
proposed to fuse together time series data and imaging data in the biomedical context
such as electroencephalograms (EEG) and functional magnetic resonance images (fMRI)
which provide complementary information about brain functions [217, 202]. Moreover,
data fusion techniques have been used in the diagnosis, prediction, and classification of
several diseases. For the interested reader, more information is provided in [214].

Remote sensing refers to the acquisition of data about an object or phenomenon from
a distance and typically refers to the use of sensors mounted on satellites and aircraft
to collect data about the Earth surface, atmosphere, and oceans. Such data can pro-
vide information on the topography, land cover, vegetation, pollution levels, and climate
patterns that can be used for a wide range of applications across many fields [218].
Examples include environmental monitoring, urban planning, disaster management, cli-
mate change research, and defense applications. The sensors used in these types of
applications are usually complementary as they capture different aspects of the Earth’s
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surface, for example, optical sensors provide detailed color images while radar sensors
can penetrate clouds and provide data on the surface topography. Data fusion has been
widely used in this field in both homogeneous fusions, and the utilization of complemen-
tary optical imaginings such as pansharpening, hyperspectral (HS) pansharpening, and
spatiotemporal fusion; but also, in heterogeneous fusion such as in LIDAR-optical and
synthetic aperture radar (SAR)-optical fusion for applications such as identifying land
use and land cover (LULC), object detection, change detection and terrain monitoring
[219]. Many data fusion datasets openly available, apart from audio vision fusion, have
been provided by the recurring IEEE GRS data fusion contest for land cover classification
and semantic urban reconstruction among others [220, 221].

The application of CDS and cognitive control in the context of self-driving cars has
already been covered in Section 2.3.1, as we discussed adaptation and cooperation for
CAVs. In this section, a more concrete explanation of the state of the art in sensor fusion
applied to smart vehicles is intended in noncooperative and not necessarily in a Bayesian
framework. Autonomous vehicles have been the subject of extensive research both in the
academic and industrial sectors to reduce car fatalities, reduce emissions and improve
overall traffic efficiency. The design of a fully automated controller for automobiles is
particularly challenging due to the highly complex environment and diversity the system
may encounter during deployment [222]. The most common combinations of sensors
for data fusion in autonomous vehicles are camera-LIDAR, camera-radar, and camera-
LIDAR-radar [223]. These combinations provide complementary information regarding
the surrounding environment and are commonly used to perceive objects and people in
the surrounding environment for pedestrian, vehicle, and lane detection. Furthermore,
a combination of GPS and inertial sensors have been used for navigation as well as in
combination with vision for ego positioning [224].

In the context of CIoT the integration of multimodal data from the cyber-physical-
social systems (CPSS) is of particular importance as already examined in section 2.3.1
and covered extensively by [33]. Wang et al. propose a series of tensor-based decompo-
sition fusion methods as well as a comprehensive data fusion framework for CPSS data.
The first tensor method aim to represent and fuse the data into a single unified repre-
sentation named tensor-based unified fusion (TUF), which can be considered a form of
early fusion to a Markov chain or decision process [225]. The second tensor method aims
to integrate spatio-temporal elements in a probabilistic way employing a multivariate
multi-step transition tensor named "M2T2". The last tensor method relied on multiple
multivariate Markov chains interact and inform each other. This Cyber-Physical-Social
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transition tensor is named the (CPST2) model and was proposed to fuse the CPSS data
in a unified form [225].

Taking a step back and returning to machine learning-based fusion, attention-based
architectures have emerged as a powerful tool in recent years, demonstrating remark-
able results, particularly in generative models [226]. The core concept behind attention
mechanisms is to assign different levels of importance, or "attention weights," to various
parts of the input. By doing so, the model can selectively focus on the most relevant
features or modalities, enhancing its ability to capture nuanced information that directly
contributes to the task at hand. This approach is particularly advantageous in multi-
modal fusion, where integrating diverse data types (e.g., audio, video, and text) requires
identifying and combining the most critical aspects of each modality.

One notable example of this is the Video-Audio-Text Transformer (VATT) [227], a
convolution-free model that leverages the transformer architecture’s multi-head atten-
tion mechanism. Multi-head attention allows the model to attend to different parts
of the input simultaneously, improving its ability to understand complex interactions
between multiple data streams. In their work, Akbari et al. show that VATT achieves
state-of-the-art performance across several tasks, including image recognition from video
sequences and waveform-based audio event classification. This highlights the potential
of attention-based models not only to process individual modalities effectively but also
to fuse them in a way that enhances overall task performance.

The use of transformers to generate rich, high-dimensional latent spaces presents
a unified approach to embedding heterogeneous contextual data. By leveraging these
latent spaces, attention-based models can generalize well across various downstream
tasks, regardless of whether the input consists of visual, auditory, or textual data. This
flexibility is particularly valuable for tasks requiring the integration of multiple types of
contextual information, such as multi-modal sentiment analysis, video understanding,
or audio-visual scene recognition [228].

In the context of data fusion, transformers offer a scalable and adaptable framework
for processing and combining diverse data types. As machine learning systems increas-
ingly rely on multi-modal inputs, attention-based architectures stand out as a promising
solution for creating embeddings that capture both the shared and distinct features of
each modality. In the following section, we will delve deeper into how transformers
and attention mechanisms can be harnessed to create effective latent representations for
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multi-modal fusion and the role they play in improving downstream task performance
[229].

Traditional solutions often require laborious data preprocessing and specialized pipelines
to transform heterogeneous inputs such as numerical sensor readings, images, audio, and
textual logs into a consistent format. LLMs streamline these processes by automatically
harmonizing diverse data types through multimodal learning. By encoding and inter-
preting textual information, images, and other data modalities in a unified representa-
tion space, these models substantially simplify downstream tasks like anomaly detection,
predictive maintenance [230], and context-aware decision-making.

2.4.2.2 Embedding LLMs Across CIoT Layers

One of the key advantages of LLMs is their flexibility to operate at various levels of
a CIoT architecture. Nonetheless, it is important to highlight that edge deployments
do not necessarily require full-scale LLMs. Simpler or specialized encoder models, rule-
based agents, or smaller knowledge extraction frameworks may be more suitable for the
computational and power constraints found in many edge scenarios.

• Edge Devices: At the edge, models (LLMs or otherwise) can perform lightweight
inference for tasks such as real-time data preprocessing, encoding sensor readings,
or detecting anomalies. By doing so, extensive upstream processing is reduced,
and response times are faster [231]. However, deploying any form of AI (including
LLMs) on edge devices introduces significant constraints related to power consump-
tion, memory footprint, and compute capacity. Techniques such as quantization,
pruning, or knowledge distillation may be employed to reduce model size and power
usage without sacrificing too much accuracy [232]. Moreover, recent methods for
reducing computational complexity and memory costs have shown promising re-
sults [233]. In scenarios where LLMs are too large or expensive to run locally,
simpler encoder-based models or rule-based agents can still provide meaningful,
context-aware insights while maintaining a small operational footprint.

• Cloud Platforms: In the cloud, LLMs can process complex queries, generate
comprehensive reports, and handle large-scale analytics [234]. Their ability to
unify data streams from diverse sources ensures seamless interoperability between
devices and systems. Cloud-based LLM deployments also benefit from virtually
unlimited compute resources, making them well-suited for more computationally
demanding tasks, such as full-scale language generation or large-batch processing
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of device logs. This division of labor between edge and cloud helps maximize
efficiency across the CIoT ecosystem.

By embedding LLMs and other suitable AI components throughout the CIoT ecosys-
tem, organizations can simplify data management pipelines and achieve greater scala-
bility and resilience. Depending on power and compute budgets, different parts of the
system can leverage different model architectures to balance performance with opera-
tional constraints.

2.4.2.3 LLM Architectures and Alternatives

LLMs with encoder-decoder architectures offer a universal solution for tasks requiring
both language understanding and generation. These models are particularly well-suited
for CIoT systems that need to handle tasks such as summarizing device logs, generat-
ing actionable insights, or translating complex error codes into human-readable formats.
However, depending on the specific use case and device-level constraints, other architec-
tures or smaller models may be preferable [235]:

• Encoder-Only Models: These models are ideal for classification and semantic
representation tasks, such as detecting the type of error in device logs. They typi-
cally have lower computational overhead, making them more amenable to efficient
edge deployments. Techniques like weight pruning or reduced-precision arithmetic
can further shrink memory footprints and power usage.

• Decoder-Only Models: Decoder-based models are designed for generative tasks,
such as creating detailed reports or synthesizing user commands. While they can
be deployed on edge devices in simplified forms, they often benefit from offload-
ing compute-intensive portions of the generation process to more powerful cloud
resources [236].

• Encoder-Decoder Models: Encoder-decoder models (e.g., GPT-like) combine
the strengths of both encoder and decoder components, enabling advanced tasks
like context-aware summarization and complex query resolution [184]. Edge-friendly
adaptations may incorporate smaller encoder-decoder architectures or efficient
compression techniques to reduce power draw, while deferring heavier computa-
tions to cloud-based pipelines when necessary.

• Smaller Models and Knowledge Extraction Agents: In many cases, full-
scale LLMs are not strictly necessary on edge devices. Simpler encoder-based
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models, specialized neural networks, or agent-based frameworks can extract knowl-
edge from sensor data or logs, focusing on specific tasks (e.g., anomaly detection,
rule-based triggers) while minimizing power requirements [237].

This versatility ensures that CIoT systems equipped with the right mix of models can
adapt to a wide range of operational demands and power constraints. Strategic partition-
ing of tasks between on-device intelligence and cloud-based computational capabilities
optimizes performance while respecting the limitations inherent to edge deployments.
The integration of LLMs into CIoT enhances both decision-making and automation
across various industrial and consumer applications. Here are some real-world use cases
that demonstrate the potential of LLMs in CIoT:

• Smart Manufacturing: LLMs can analyze data from machine sensors, produc-
tion logs, and operator feedback to identify inefficiencies, predict maintenance
needs, and even suggest optimal production schedules. For example, a factory
could use an LLM to process sensor readings and historical failure data to pre-
dict machine breakdowns, minimizing unplanned downtime and improving overall
equipment effectiveness [238].

• Autonomous Vehicles and Traffic Systems: LLMs can assist in enhancing
autonomous vehicle systems by analyzing traffic data, road conditions, and sensor
inputs in real-time [239]. In a connected transportation network, an LLM could
interpret sensor data from vehicles and roadside units to predict traffic congestion
and dynamically adjust traffic signal timings, reducing congestion and improving
traffic flow [240].

• Healthcare Monitoring Systems: LLMs can be used to process data from
wearable health devices, such as heart rate monitors, glucose sensors, or sleep
trackers, to provide personalized health insights and early warnings of potential
health issues [241]. For example, an LLM could analyze data from a diabetic
patient’s glucose monitor and historical trends to alert the patient or healthcare
provider about a potential spike in blood sugar, suggesting proactive measures.

• Supply Chain and Logistics Optimization: LLMs can analyze data from
IoT-enabled supply chain sensors such as RFID tags, GPS trackers, and inventory
systems, to optimize stock levels, predict delays, and suggest routing adjustments
[242]. In logistics, LLMs could process real-time data on weather conditions, vehicle
performance, and traffic reports to optimize delivery routes and schedules, saving
both time and fuel.
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These applications show how LLMs transform raw data from IoT devices into action-
able insights, improving efficiency, safety, and decision-making across industries. Their
modularity and ability to handle multi-modal inputs make them powerful tools for en-
hancing Cognitive IoT systems in both consumer and industrial environments.

AI agents that incorporate LLMs excel at parsing and extracting semantic content
from unstructured text, enabling CIoT systems to interpret nuanced information from
device logs, user commands, and other textual inputs in real time. By embedding these
agents at different layers, ranging from edge devices to centralized cloud platforms, orga-
nizations can manage a diverse range of data inputs without relying on overly complex
or brittle pipelines. Through foundational pre-training, LLMs provide robust gener-
alization across numerous tasks, reducing the need for siloed or task-specific modules
in traditional CIoT architectures. Prompting mechanisms, including instruction-based
queries and in-context learning, further enhance the adaptability of LLMs, allowing them
to handle zero-shot and few-shot tasks when explicit training data may be limited or
unavailable [184]. This unified processing layer (composed of multiple agents) not only
segments, normalizes, and contextualizes text dynamically, but also lowers overhead by
minimizing redundant preprocessing pipelines. As a result, CIoT deployments benefit
from more efficient data integration, faster decision-making, and a broader capacity to
accommodate evolving operational requirements.

2.4.2.4 Role of Fine-Tuning

Fine-tuning is a critical process that extends the capabilities of pre-trained models by
adapting them to specific tasks or environments. While pre-training equips LLMs with
general knowledge from diverse datasets, fine-tuning ensures these models can meet the
nuanced requirements of real-world applications. In the context of RL with Human
Feedback (RLHF), fine-tuning plays an essential role in aligning the behavior of LLMs
with task-specific objectives, user preferences, and operational constraints.

Fine-tuning operates across two primary paradigms:

• Single-Consumer Scenarios: Tailored adaptation to a single user’s feedback, en-
abling the model to specialize in narrowly defined tasks or domains.

• Multi-Consumer Scenarios: Balancing generality and user-specific needs across
diverse applications, often requiring modular or parameter-efficient approaches.

By integrating fine-tuning with RLHF, LLMs achieve a balance between specialization
and generalization. This synergy allows models to dynamically adapt to both highly
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specific and broadly applicable tasks, offering solutions that are scalable, efficient, and
responsive to user feedback [243].

Figure 2.14: Schematic illustrating how an LLM is optimized via a reward model
trained on human preference data.

RLHF for Single vs. Multi-Consumer Scenarios RLHF has emerged as a pow-
erful method for aligning LLMs with user-defined objectives by incorporating explicit
feedback into the training process. The distinction between single and multi-consumer
scenarios poses unique challenges for generalization, world modeling, and fine-tuning
[243].

Single-Consumer Scenarios In single-consumer settings, RLHF focuses on aligning
the LLM’s behavior with the specific preferences and objectives of a single user or system.
Fine-tuning plays a crucial role here, allowing the model to specialize based on narrowly
defined feedback loops.

• Knowledge Specialization:By fine-tuning on feedback data from a single con-
sumer, the LLM develops a world model tailored to that consumer’s requirements,
such as domain-specific terminologies or unique operational patterns.

• Efficiency and Optimization: Since the model is optimized for one set of pref-
erences, it can prioritize performance and efficiency for highly specific tasks, such
as device-specific command synthesis or custom reporting formats.

• Risk of Overfitting: A potential downside is the risk of overfitting to the single
consumer’s preferences, limiting the model’s ability to generalize to new tasks or
contexts without further retraining.
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Multi-Consumer Scenarios In multi-consumer contexts, RLHF is used to generalize
the model’s behavior across diverse user needs and preferences. This requires balancing
competing objectives and maintaining broad applicability.

• Generalization Across Preferences: The model learns a more robust world
model that captures commonalities across users while adapting to variations. For
example, it can process device logs from various manufacturers while accounting
for specific formatting differences.

• Trade-Offs in Feedback Integration: Feedback from multiple consumers may
conflict, requiring sophisticated reward modeling to balance priorities effectively.
RL techniques, such as preference aggregation, are critical here.

• Scalability of Fine-Tuning: Fine-tuning in multi-consumer scenarios often in-
volves parameter-efficient techniques, such as LoRA (Low-Rank Adaptation) or
adapter layers, to allow simultaneous adaptation without fully retraining the model.

2.4.2.5 Context of Generalization and World Models

The distinction between single- and multi-consumer scenarios highlights the role of RLHF
in shaping a model’s generalization capabilities and its underlying world model:

• Single-Consumer World Models: These are highly detailed and specialized,
optimized for efficiency and performance in well-defined contexts.

• Multi-Consumer World Models: These models aim to be broader and more
flexible, capturing diverse knowledge to support a wide array of applications.

Furthermore, multimodality in meta-learning could be the key to exploiting highly
parameterized models for transfer learning to other domains’ downstream tasks. Various
approaches have been presented for meta-learning, such as optimization-based meta-
learning, which includes within-task modality alignment and cross-modality alignment.
Extensive surveys on these methods can be found in [244, 245, 246]. Additionally, for
the readers interested in the state of the art in LLMs, the following highly influential
surveys provide valuable insights: [243, 247, 248, 249, 250, 251].

Pre-trained large-scale models demonstrate strong adaptability to downstream tasks
by generalizing previously learned knowledge. However, challenges remain in the data
transmission capacity and the processing of heterogeneous data. If no single model can
effectively aggregate raw data, it is possible to develop a system capable of utilizing
latent spaces generated by lower-level, mode-specific models through data fusion. By
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leveraging distributed intelligence, the transmission size and processing load on a central
computing model can be significantly reduced, enabling efficient aggregation through the
integration of latent space vectors.

2.5 Future Directions

2.5.1 Current Limitations

Despite the significant advancements in CIoT technologies, several critical limitations
persist that warrant further exploration and resolution. These limitations include chal-
lenges in communication standardization, decentralization, evolving data processing
methodologies, and the adaptability of foundation models to application-specific sce-
narios.

Standardized Communication Protocols: Some authors as detailed in Section
2.2.2.2 emphasize the necessity of standardized communication protocols to manage the
massive data transmissions among devices. However, with the increasing prevalence
of smart hosts and control interfaces, the requirement for distributed communication
among end devices may not be as critical. Smart hosts can connect devices via various
networks while managing data flow, effectively reducing the need for direct device-to-
device communication. Furthermore, techniques like CTC enable heterogeneous devices
using different standards and protocols to interact seamlessly, which may alleviate the
urgency of establishing universal communication standards.

Decentralization vs. Edge Computing: Decentralized systems are frequently
proposed as a solution for processing large datasets and handling computationally in-
tensive tasks, such as neural network inference. However, the capabilities of modern
end devices are evolving quickly, with some equipped with CPUs, GPUs, or specialized
NPUs that offer limited on-device acceleration. While these advances enable certain AI
tasks (e.g., real-time processing or local inference), overall computational capacity at
the edge remains constrained compared to server-based infrastructure. Consequently,
edge computing often finds a complementary role rather than replacing decentralized or
cloud-based systems entirely. This highlights the ongoing balance between leveraging
local, device-level processing for lower-latency tasks and distributing heavier workloads
across more powerful, decentralized resources in CIoT environments.

Evolving Data Processing Techniques: While RL, IBM Watson, and data fusion
techniques are central cornerstones to CIoT data processing, these methods have seen
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reduced relevance in current applications. LLMs and foundation models have emerged as
the dominant technology for handling multimodal data, predicting user behaviors, and
facilitating natural language interactions. LLMs serve as powerful engines for extract-
ing meaningful insights and generating creative outputs, making them indispensable in
modern CIoT systems. Their ability to process diverse data types and provide intuitive
user interactions positions them as superior alternatives to earlier methods. This is es-
pecially relevant when looking at the use of lower level AI systems or agents aiding the
language model make sense of data [237].

2.5.2 Lessons Learned

The insights gained from this study underscore the critical importance of addressing
these limitations to advance the CIoT paradigm effectively. While standardized proto-
cols remain important, leveraging technologies like cross-technology communications and
smart hosts can reduce the reliance on direct inter-device communication, streamlining
the system’s operation without compromising efficiency. The growing computational
power of end devices highlights the potential of edge computing to process tasks locally,
reducing dependency on centralized or decentralized systems. This shift can lead to more
efficient and scalable solutions for CIoT applications. The dominance of LLMs in data
processing showcases their versatility and capability in handling multimodal data and en-
abling intuitive interactions. Their integration into CIoT systems can revolutionize data
processing, prediction, and decision-making processes. Developing foundation models
that strike a balance between generalization and application-specific customization will
be essential. Context-aware designs that cater to the unique requirements of different
scenarios, such as households versus commercial spaces, will enhance the practical util-
ity of CIoT systems. Addressing these challenges and leveraging the opportunities they
present will guide the evolution of CIoT systems towards greater adaptability, efficiency,
and user-centricity.

2.5.3 Forward Looking Statements

CIoT is poised to benefit from the rapid evolution of microcomputing and CPS. In the
near future, technology will integrate more seamlessly into everyday life, demanding
systems that can adapt to both human needs and the inherent uncertainties of dynamic
environments. Although current implementations are limited—especially in terms of
integrating robust cognitive functions—the trajectory is clear: CIoT architectures must
evolve to accommodate flexible, distributed processing and the dynamic integration of
foundation models.
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Key areas for future research include:

• Scalable Communication Frameworks: Investigating how adaptive commu-
nication layers can be standardized to support diverse device ecosystems without
sacrificing performance.

• Hybrid Processing Architectures: Exploring novel architectures that balance
edge, fog, and cloud computing, including parallel processing strategies to overcome
the limitations of current hardware.

• Deployable Foundation Models on the Edge: Developing methods for run-
ning large-scale models in resource-constrained environments, leveraging techniques
from federated learning and TinyML to enable distributed intelligence.

• Integrated Cognitive Frameworks: Creating systems that seamlessly merge
data abstraction with real-time decision-making, paving the way for multi-level
intelligence in CIoT environments.

By addressing these limitations through targeted research and innovative design,
future CIoT systems can achieve greater adaptability, efficiency, and intelligence—paving
the way for a truly integrated technological symbiosis.

2.6 Conclusions

This paper has explored the emerging field of CIoT and its potential to revolutionize
various domains such as smart homes, smart vehicles, and smart cities. The study has
contributed to a deeper theoretical understanding of CIoT by examining its underlying
mechanisms and exploring its applications across diverse IoT subdomains. Practically,
CIoT holds the promise of transforming the technological landscape by enhancing the
functionality, adaptability, and efficiency of IoT systems. By tracing the evolution of
cognitive processes in engineering, from early theories by Haykin and Fuster to mod-
ern interpretations of IoT and CIoT, this work has positioned CIoT as a framework
that addresses longstanding challenges in IoT systems, such as transmission limitations,
scalability, and data fusion. The integration of foundation models, alongside multi-level
deployment of machine learning algorithms through technologies like TinyML, federated
learning, and cloud and edge computing, underscores a novel approach within the CIoT
paradigm.
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The findings presented here shed light on CIoT’s capacity to address current is-
sues in IoT data processing through cognitive computing and distributed architectures.
Moreover, the study emphasizes the importance of standardization and interoperabil-
ity for developing large-scale, holistic IoT and CIoT architectures. The potential of
CIoT to facilitate intelligent decision-making suggests significant improvements in the
performance of engineering systems, as its contextual understanding and higher-level ab-
straction capabilities can lead to more efficient and effective IoT architectures. Despite
these promising developments, the research acknowledges that the field of CIoT is still in
its infancy. Numerous challenges remain, and substantial work is needed to fully realize
its potential. In response to these limitations, this study outlines promising research
pathways that include the development of standardized communication protocols, the
exploration of parallel processing strategies, the refinement of cognitive radios for IoT,
and the advancement of foundational models and multi-level intelligence architectures.

By linking theoretical insights with practical applications, this work provides a foun-
dation for future research and development in CIoT. The continued pursuit of these
research avenues is essential to overcome current limitations and to harness the full
potential of CIoT in shaping the future of intelligent, interconnected systems.
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Chapter 3

How VAE Latent Spaces can be
Utilized for Direct Integration

The content of this chapter is a reformatted version of the manuscript text published
under the following citation:

A. Giuliano, S. Andrew Gadsden and J. Yawney, "Optimizing Satellite Image Anal-
ysis: Leveraging Variational Autoencoders Latent Representations for Direct Inte-
gration," in IEEE Transactions on Geoscience and Remote Sensing,
doi: 10.1109/TGRS.2024.3520879.
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Abstract

Variational Autoencoders (VAEs) have emerged as powerful tools for data compression
and representation learning. In this study, we explore the application of VAE-based
neural compression models for compressing satellite images and leveraging the latent
space directly for downstream machine learning tasks, such as classification. Traditional
approaches to image compression require decoding the compressed format for subsequent
analysis. However, we propose that the latent representation constructed by these models
can be utilized directly by another machine learning model without explicit reconstruc-
tion, or inverse transform. We utilize latent spaces derived from neural compression
model-encoded Sentinel-2 images for downstream classification tasks. We demonstrate
the viability and flexibility of this approach, showcasing the impact of fine-tuning the
neural compression models to further increase classification performance, achieving the
same accuracy as state-of-the-art models at lower bitrates. By training these models to
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compress satellite images into a low-dimensional latent space, we show that the latent
representations capture meaningful information about the original images, facilitating
accurate classification without the overhead of reconstruction. Our results highlight
the potential of neural compression methods for direct satellite image analysis, offer-
ing a promising avenue for efficient data transmission and processing in remote sensing
applications.

Keywords: Remote Sensing, Variational Autoencoders, Neural Compression

3.1 Introduction

Remote sensing plays a critical role in numerous applications such as environmental
monitoring, disaster management, and agricultural planning. Satellites like Sentinel-
1,2,3,5 provide high-resolution imagery essential for these tasks. However, the sheer
volume of data generated by these satellites presents significant challenges for storage,
transmission, and analysis.

Traditional image compression techniques aim to reduce data size while preserving
visual quality. These methods typically involve quasi-lossless or lossless compression
algorithms that require the compressed images to be decompressed before any analysis
can be performed. While effective for reducing storage requirements, this two-step pro-
cess of compression and decompression can be computationally expensive and inefficient,
especially when real-time analysis is needed.

Compressed data is relayed back to Earth, preprocessed and analyzed to be used for
a wide variety of tasks. In recent years deep learning based image analysis has grown
in popularity and represents the state of the art for many image analysis tasks [252],
including image fusion [253], image registration [254], scene classification [255] , object
detection [256], land use and land cover (LULC) classification [257], segmentation [258],
and object-based image analysis (OBIA) [259].

With the advancement of machine learning new compression methods also emerged.
Neural compression techniques, particularly those based on Variational Autoencoders
(VAEs), have shown great promise for compressing complex data while retaining mean-
ingful features in the compressed representation. Neural compression has been shown to
outperform conventional compression methods such as JPEG on a broad scale [260, 261,
262], and specifically in compressing satellite images as well [263]. VAEs are generative
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Figure 3.1: General architcture of a variational autoencoder (VAE).

models that learn to encode input data into a lower-dimensional latent space iteratively
through composite optimization and then decode it back to the original format. The la-
tent space, a compressed representation of the input data, captures essential information
and underlying structures through multiple non linear projections.

A novel approach to neural compression utilization is to leverage the latent spaces
generated by the transformation of the original data directly for downstream tasks,
bypassing the need for reconstruction. This can potentially streamline the process,
reducing computational overhead and enhancing efficiency. The hypothesis is that the
latent representations produced by VAEs are rich enough to serve as inputs for machine
learning models, such as classifiers, thereby facilitating direct and effective analysis of
compressed data.

This study aims to investigate the viability of using neural compression derived latent
spaces specifically for direct classification of Sentinel-2 satellite images. By fine-tuning
these models, we seek to understand the impact on the quality of the latent space, clas-
sification accuracy and reconstruction quality performance. The approach is validated
through extensive experiments on Sentinel-2 satellite images, demonstrating the validity
of the approach and flexibility of using neural compression model-derived latent spaces
for downstream machine learning tasks. Demonstrating the effectiveness of this approach
could significantly advance the field of remote sensing, offering a more efficient method
for handling large-scale satellite imagery.

This paper makes the following key contributions:
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• The study proposes using the latent representation constructed by neural compres-
sion models directly for downstream machine learning tasks, such as classification.
Without the need for explicit reconstruction or inverse transform, the learned la-
tent space can be leveraged immediately for downstream tasks like classification,
making the process more efficient. The results validate the possibility of using the
lower dimensional representation of the data directly in contrast with conventional
methods.

• It demonstrates the viability and flexibility of this approach through experiments
with latent spaces derived from neural compression model-encoded Sentinel-2 im-
ages, specifically for classification tasks.

• The impact of fine-tuning state-of-the-art compression models is examined, show-
ing how it can enhance downstream task accuracy while maintaining compression
performance.

• A new metric is introduced for evaluating the Rate-Distortion-Accuracy tradeoff,
providing a comprehensive measure that balances compression efficiency, recon-
struction quality, and classification performance.

To the best of the authors’ knowledge, this is the first attempt at leveraging neu-
ral compression latent spaces for direct use in downstream machine learning tasks. By
eliminating the need for explicit decompression, this approach significantly reduces com-
putational overhead, making it possible to develop more efficient and streamlined archi-
tectures. Furthermore, by transmitting the latent space representation of the original
data, an additional security layer is implemented in terms of masking the original data
through nonlinear transforms. Masking the data makes it more difficult for unauthorized
parties to reconstruct the original data without access to the specific decoding model or
to make use of it without models trained explicitly using clear data.

Unlike traditional image compression methods that require full reconstruction for
analysis, our approach leverages the latent representations directly for classification
tasks. This eliminates the need for the inverse transform, significantly reducing compu-
tational overhead and improving efficiency in real-time applications. The ability to use
compressed representations directly could lead to advancements in various fields that
rely on large-scale data analysis, such as remote sensing, environmental monitoring, and
urban planning. This study sets a precedent for future research to explore and opti-
mize the integration of neural compression models with machine learning frameworks,
ultimately aiming to achieve higher performance and greater scalability.

101

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

The rest of the paper is structured as follows: Section 3.2 covers conventional data
compression methods, neural compression and how neural compression has been applied
for satellite imagery. Section 3.3 covers dataset used, neural compression and classifi-
cation models, latent space representation techniques, fine tuning methods, as well as
overall architecture, experimental setup and evaluation metrics. Section 3.5 covers qual-
itative and quantitative results, a comparison between baseline and fine tuning, latent
space visualizations, and rate distortion accuracy plots. Section 3.6 covers insights, ad-
vantages, limitation and future work as well as security considerations. Finally Section
3.7 concludes paper remarking the findings.

3.2 Related Work

3.2.1 Deep Learning in Satellite Image Analysis

The use of deep learning in satellite image analysis has gained significant attention in
recent years, driven by the increasing availability of high-resolution satellite imagery and
advances in neural network architectures. These techniques have been applied to a wide
range of tasks, including land cover classification, object detection, change detection,
and image segmentation.

Recent advancements in hyperspectral imaging have further highlighted the signifi-
cance of fusion-aware computational techniques for improving image quality, particularly
in complex scenes. For instance, the CasFormer model proposed by Li et al. introduces a
novel cascaded transformer architecture that effectively enhances hyperspectral imaging
by integrating RGB and spectral data through spatial coherence alignment and spectral
recovery. This approach demonstrates state-of-the-art performance by achieving high
spatial consistency and spectral fidelity, which is crucial for applications in environmen-
tal monitoring, medical diagnosis, and remote sensing [264].

Interpretability and robustness remain critical challenges in hyperspectral anomaly
detection, particularly in complex environments. To address these issues, Li et al. in-
troduce a novel paradigm that integrates model-driven low-rank representation (LRR)
methods with data-driven deep learning techniques. By leveraging disentangled priors
(LDP), their approach effectively separates explicit from implicit priors, resulting in im-
proved detection accuracy and enhanced generalization across a variety of hyperspectral
datasets. This integration of explicit low-rank priors with implicitly learned features
represents a significant advancement in hyperspectral anomaly detection [265].
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Figure 3.2: General neural compression model structure.

Additionally, the authors propose a deep unfolding solution, LRR-Net+, which fuses
low-rank representation with deep learning to bolster anomaly detection while main-
taining interpretability. This approach bridges the gap between data-driven and model-
driven methods by incorporating the Alternating Direction Method of Multipliers (ADMM)
optimizer, which strikes an effective balance between performance and explainability in
hyperspectral anomaly detection tasks. The introduction of the AIR-HAD dataset fur-
ther demonstrates the robustness of this method across diverse scenarios [266].

Addressing the challenges of generalization in remote sensing tasks across different
urban environments, Hong et al. introduce the CrossCity multimodal dataset, which
facilitates cross-city semantic segmentation through domain adaptation techniques. The
authors present the HighDAN network, a high-resolution domain adaptation framework
that improves the transferability of learned models between cities by minimizing domain
shifts. This work is particularly relevant for tasks involving multimodal data integration
and has set a new benchmark for semantic segmentation across diverse geographical
regions [267].

The emergence of foundation models has also opened new avenues in remote sensing,
particularly in spectral data analysis. The SpectralGPT model, introduced by Hong et
al., represents a significant advancement by tailoring the generative pretrained trans-
former (GPT) architecture to spectral remote sensing. This model excels in handling
large-scale spectral data through its innovative 3D masking strategy and multi-target
reconstruction, leading to superior performance across various downstream tasks such as
classification, segmentation, and change detection. SpectralGPT’s ability to generalize
across diverse datasets highlights its potential in advancing remote sensing applications
[268].
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3.2.2 Conventional Satellite Data Compression Techniques

Traditional methods for satellite data compression have relied heavily on both lossless
and lossy compression techniques to reduce the volume of data while attempting to
preserve the essential information needed for analysis. These conventional techniques
include methods like JPEG, JPEG2000, and other domain-specific algorithms.

Lossless compression techniques, such as Run-Length Encoding (RLE) [269], Huff-
man Coding [270], and Lempel-Ziv-Welch (LZW) [271], aim to reduce data size without
any loss of information. These methods are particularly valuable in applications where
the integrity of the original data must be maintained, such as in scientific and technical
imagery analysis. However, the compression ratios achieved by these methods are lim-
ited by Shannon theoretical lossless compression limit, equivalent to the corresponding
entropy of the data being transmitted. Lossy compression techniques, such as JPEG
and JPEG2000, provide higher compression ratios by allowing some loss of information
[272]. These techniques are designed to exploit the human visual system’s limitations,
removing less noticeable details to achieve more significant data reduction. JPEG2000,
in particular, has been widely used in satellite image compression due to its ability to of-
fer higher compression ratios and better quality at lower bitrates compared to standard
JPEG. Satellites also use several near-lossless image compression techniques, such as
multi-stage vector quantization (SAMVQ) and cluster vector quantization (HSOCVQ).
These methods aim to limit compression errors to levels comparable to the intrinsic
noise of the original data, reducing the impact on remote sensing applications [273].
SAMVQ works by organizing 2D focal plane frames into regional datacubes, which are
then split into subsets for parallel processing. Each subset is classified based on spec-
tral similarity, enabling faster processing and better memory use through independent
compression. Conversely, HSOCVQ classifies the entire datacube into clusters based on
spectral similarity rather than splitting it into smaller sections. This technique enhances
compression by grouping similar spectra, aligning clusters with specific scene targets.
Predictive coding methods, such as Differential Pulse Code Modulation (DPCM) and
the more advanced Context-based Adaptive Binary Arithmetic Coding (CABAC) used
in H.264/AVC, predict pixel values based on neighboring pixels, encoding only the pre-
diction errors [274]. These methods are effective in reducing redundancy in satellite
images, which often contain large areas of homogeneous regions.
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3.2.3 Neural Compression

Recent advancements in image compression using neural networks have shown significant
improvements over traditional methods [260]. Various architectures and techniques have
been proposed to address specific challenges in this field.

Neural compression employs neural networks and machine learning techniques to
optimize data compression processes, specifically in the transform phase. This innovative
approach utilizes deep generative models such as variational autoencoders (VAEs) [260],
generative adversarial networks (GANs)[275], normalizing flows [276], and autoregressive
models [277] to learn compression algorithms directly from data end to end. By capturing
complex data distributions, neural compression can significantly enhance the efficiency
and effectiveness of data reduction compared to traditional methods such as discrete
cosine transform (DCT) used in JPEG coding [272]. Different entropy models, including
fully factorized models [261], and hyperprior models [278], have been explored to improve
the rate-distortion performance of learned image compression methods. The selection
of an appropriate entropy model is essential for optimizing bit-rate and maintaining
high-quality reconstructions.

The core idea behind neural compression is the replacement of linear transforms with
neural network-based nonlinear transforms, enabling more flexible and adaptive data
representations. The field has evolved rapidly since the introduction of deep generative
models for data compression around 2016, when the parallels between variational infer-
ence and both lossless and lossy compression methods came to light. The introduction of
hyperprior models [278], discretized Gaussian mixture likelihood models [262], hierarchi-
cal structures [279] and more [280, 281], has significantly advanced image compression
performance since. These models estimate the likelihoods of the latent representations
more accurately by capturing spatial dependencies, thereby enhancing the entropy cod-
ing process. The hyperprior approach, originally proposed for natural images, has been
adapted and optimized for satellite imagery, showing considerable improvements in com-
pression efficiency [263].

A typical neural compression pipeline involves transforming the input data into a
lower-dimensional latent space using an encoder, followed by quantization and entropy
coding to achieve a compressed representation, as seen in Figure 3.2. The decoder
then reconstructs the data from this compressed form. This end-to-end learning process
optimizes both the bit rate and the distortion, balancing compression efficiency with
the quality of the reconstructed data. Additionally, advancements in neural compression
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often integrate perceptual metrics and adversarial losses to enhance the realism and
perceptual quality of the reconstructions.

Neural compression’s flexibility is particularly beneficial for new and domain-specific
data types where traditional codecs fall short. However, challenges remain, such as opti-
mizing neural architectures, managing the trade-offs between distortion and realism, and
addressing the specific requirements of various data types. Despite these challenges, neu-
ral compression holds significant promise for revolutionizing data compression through
its data-driven, adaptive methodologies [260].

3.2.4 Neural Compression in Satellite Images

In recent years, neural compression has been applied to satellite imagery and is starting
to become a topic of interest, although there are still a limited number of studies on
the subject. The most relevant is the one by Oliveira et al. which propose a reduced-
complexity VAE tailored for on-board satellite image compression [263], addressing time
and memory constraints while maintaining performance. This approach simplifies the
entropy model by leveraging a statistical analysis that shows most features follow a
Laplacian distribution, thus replacing complex non-parametric models with a simpler
parametric estimation. The proposed model outperforms the Consultative Committee
for Space Data Systems (CCSDS) standard and remains competitive with state-of-the-art
learned compression schemes. Also a few more have attempted to use neural compres-
sion in satellite images with promising results [282, 283]. Despite these advancements,
the challenge of efficiently compressing and transmitting fast-increasing large volumes
of satellite data remains. This study builds on the existing body of work by exploring
the application of Variational Autoencoders (VAEs) and other advanced neural com-
pression models for satellite image analysis, aiming to leverage the latent space directly
for downstream machine learning tasks.

3.3 Methodology

3.3.1 Proposed Architecture

While neural compression techniques, such as those proposed in [261, 278, 279, 262, 280],
have significantly advanced the field of image compression, their primary focus has been
on optimizing the compression and reconstruction stages. These methods, although
effective in minimizing data loss during compression, typically require decompression

106

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

Figure 3.3: Pipeline diagram for direct utilization of neural compressed images.

before the data can be utilized for downstream tasks such as classification or segmen-
tation. In our approach, we build upon these models and demonstrate that they can
be adapted to function without the need for decompression. Specifically, we fine-tune
these models to show that the latent spaces they generate can be directly exploited for
downstream tasks. Our method thus diverges from the traditional workflow by utilizing
the latent representations for classification tasks, thereby eliminating the need for recon-
struction or inverse transformation and enhancing the overall efficiency of the process.
In this study, we propose a novel architecture that integrates neural compression and
classification within a unified framework.

To illustrate the difference between the proposed architecture and conventional meth-
ods, Figure 3.2 presents a typical pipeline for a traditional compression workflow. In
this pipeline, the original image undergoes a transformation (e.g., Discrete Cosine Trans-
form for JPEG or Discrete Wavelet Transform for JPEG2000), followed by quantization
and encoding through an entropy encoder. The entropy-coded data is then transmit-
ted through a channel, decoded by an entropy decoder, and transformed back into the
original image via an inverse DCT or a trained decoder, as in neural compression. Only
after this final reconstruction step can the image be used for downstream tasks, such as
classification.

In contrast, as shown in Figure 3.3, we propose that the lower-dimensional transfor-
mation of the original image, produced by neural compression, can be directly used for
downstream tasks such as classification, once entropy decoding has restored the data
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to a tensor format. Here, the neural network itself performs the transformation, gener-
ating a compact, lower-dimensional ’latent representation’. This representation is then
quantized, encoded using an entropy encoder, transmitted, and decoded by the entropy
decoder on the other end of the transmission channel. Without the need for explicit
reconstruction or inverse transformation, the learned latent space can be immediately
leveraged for downstream tasks like classification, making the process more efficient.

The proposed architecture comprises two key components: a neural compression
model and a classification model. The neural compression model, built on advanced
aforementioned VAE architectures, compresses high-dimensional satellite images into
compact latent representations that preserve essential features for classification. The
classification models are trained directly on these latent representations, effectively dis-
tinguishing between different classes of satellite images. We employ various classification
models, each suited to different characteristics of the latent space: MLPs were selected
due to their straightforward architecture and basic feedforward neural network model,
CNNs for spatial pattern recognition, and Transformers for handling complex dependen-
cies. This diverse set of classifiers enables a comprehensive evaluation of our approach
across multiple architectures. The full training process is detailed in Algorithm 1 below.

To classify satellite images based on the latent spaces created by neural compres-
sion models, we employed the described architecture where we first trained six advanced
Variational Autoencoder (VAE) models for image compression: bmshj2018_factorized,
bmshj2018_hyperprior, mbt2018_mean, mbt2018, cheng2020_anchor, and cheng2020_attn,
from the CompressAI library (official port of Tensorflow neural compression library)
[278, 262, 284]. The pretrained models weights were frozen at first to maintain the
integrity of the learned latent spaces. Subsequently, we used these frozen models to gen-
erate latent representations of satellite images. These latent representations were then
used as inputs to three different classification models: a Convolutional Neural Network
(CNN), a Multi-Layer Perceptron (MLP), and a Transformer.

Mathematically, let x represent an input satellite image, and E(·) and D(·) denote the
encoder and decoder of the compression models, respectively. The latent representation
z is obtained as:

z = E(x) (3.1)

For classification, we denote the classification model as C(z; θC), where θC are the train-
able parameters of the classification model. The output class probabilities ŷ are given
by:
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ŷ = C(z; θC) (3.2)

The training process involves minimizing a classification loss function Lclass (e.g.,
cross-entropy loss) between the predicted class probabilities ŷ and the true labels y:

Lclass = −
∑

i

yi log(ŷi) (3.3)

Algorithm 1 Training the Classifier on Latent Spaces
Require: Pre-trained and frozen VAE model with encoder E and decoder D
Require: Satellite image dataset {(xi, yi)}N

i=1
Require: Classification model: Classifier
Ensure: Trained classification model: θC

1: Freeze weights of the VAE model
2: for each image xi in dataset do
3: Generate latent representation zi = E(xi)
4: Initialize classification model C with parameters θC

5: repeat
6: Sample a batch of latent representations {zb} and labels {yb}
7: Compute class probabilities ŷb = C(zb; θC)
8: Compute classification loss Lclass
9: Update θC to minimize Lclass

10: until convergence
11: Save trained parameters θC

3.3.2 Fine Tuning

To further improve classification performance while maintaining low bit rates for reduced
latency and transmission size, the models were fine-tuned to improve classification per-
formance while retaining reconstruction capabilities and low bitrate. To do so the fine
tuning loss function was a composite objective containing a term for each objective tem-
pered by a multiplier, as shown in Algorithm 2. The reconstruction loss (Lrec) ensures
that the VAE retains the ability to accurately reconstruct the original satellite images
from the latent space. The classification loss (Lclass) drives the VAE to create latent
representations that are useful for predicting the correct class labels. The bit rate loss
(Lbpp) encourages the VAE to maintain an efficient compression, reducing the size of the
latent representations. This composite loss is formulated using Lagrangian multipliers
λrec, λclass, λbpp to balance the trade-offs between these objectives:
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Ltotal = λrecLrec + λclassLclass + λbppLbpp (3.4)

Algorithm 2 Fine-tuning VAE and Training the Classifier on Latent Spaces
Require: Pre-trained VAE model with encoder E and decoder D
Require: Satellite image dataset {(xi, yi)}N

i=1
Require: Classification model: Classifier
Require: Weights for loss terms: λrec, λclass, λbpp
Ensure: Fine-tuned VAE and trained classification model: θE , θD, θC

1: Initialize VAE model with parameters θE , θD

2: Initialize classification model C with parameters θC

3: repeat
4: Sample a batch of images {xb} and labels {yb}
5: Generate latent representations {zb} = E({xb})
6: Reconstruct images {x̂b} = D({zb})
7: Compute class probabilities ŷb = C({zb}; θC)
8: Compute reconstruction loss Lrec = ∥xb − x̂b∥2

9: Compute classification loss Lclass = −
∑

i yb,i log(ŷb,i)
10: Compute bit rate loss Lbpp = R(zb)
11: Compute total loss Ltotal = λrecLrec + λclassLclass + λbppLbpp
12: Update θE , θD, θC to minimize Ltotal
13: until convergence
14: Save fine-tuned parameters θE , θD and trained parameters θC

where:
R(zb) = log(latent).sum()

− log(2) · num_pixels

By incorporating a composite loss function that balances reconstruction accuracy,
classification performance, and bit rate efficiency using Lagrangian multipliers, we en-
sure that the VAE is fine-tuned to produce latent spaces that are both efficient and highly
discriminative, the change in latent space composition is shown in Section 3.5 through
t-SNE projections. This integrated training approach allows for a more comprehensive
optimization, where the VAE and classifier are jointly trained to maximize overall per-
formance. As a result, the latent spaces generated by the fine-tuned VAE are optimized
for multiple objectives, making them particularly effective for classification tasks while
still benefiting from the compactness and efficiency of the VAE-based compression. This
approach to temper composite loss functions has been seen, for example, in Beta-VAEs.
By incorporating the Beta-VAE, the latent spaces generated are not only compact and
efficient but also disentangled, which is particularly beneficial for classification tasks.
The β parameter in the Beta-VAE acts similarly to a Lagrangian multiplier, balancing
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the trade-off between reconstruction fidelity and latent space regularization [285].

3.3.3 Latent Space Visualization

To visualize and compare the latent spaces generated by the VAE, we utilized t-distributed
Stochastic Neighbor Embedding (t-SNE). t-SNE is a powerful dimensionality reduc-
tion technique that is particularly well-suited for visualizing high-dimensional data in a
lower-dimensional space, typically two or three dimensions. It is similar to Stochastic
Neighborhood Embedding but works better on high dimensional data composed several
low-dimensional manifolds such as the ones produced by VAE for multiclass images [286].

t-SNE operates by converting the similarities between data points in the high-dimensional
space into joint probabilities and then tries to optimize the low-dimensional represen-
tation to preserve these similarities. This is achieved through a probabilistic approach
where a Gaussian distribution represents the similarity between two points in the high-
dimensional space, while in the low-dimensional space, it is represented by a Student’s
t-distribution with one degree of freedom (a Cauchy distribution). This choice of distri-
bution in the low-dimensional space helps to manage the so-called "crowding problem,"
where too many points are mapped too closely together.

Mathematically, t-SNE works as follows:

For each pair of points (i, j), t-SNE calculates the conditional probability pj|i that
point j would be chosen as a neighbor of point i if neighbors were picked in proportion
to their probability density under a Gaussian centered at i:

pj|i = exp(−∥xi − xj∥2/2σ2
i )∑

k ̸=i exp(−∥xi − xk∥2/2σ2
i )

(3.5)

where xi and xj are the high-dimensional input data points, and σi is the variance
of the Gaussian centered at xi.

The joint probability pij is then symmetrized:

pij =
pj|i + pi|j

2N
(3.6)

where N is the number of data points.
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In the low-dimensional space, a similar joint probability qij is computed using a
Student’s t-distribution:

qij = (1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1 (3.7)

where yi and yj are the low-dimensional representations of the data points.

t-SNE aims to minimize the Kullback-Leibler (KL) divergence between the high-
dimensional and low-dimensional joint probabilities:

KL(P∥Q) =
∑
i ̸=j

pij log pij

qij
(3.8)

This is typically done using gradient descent, where the positions of the points in the
low-dimensional space are iteratively adjusted to minimize the KL divergence.

t-SNE is particularly suitable for our application because it effectively captures the
local structure of the data, making it easier to identify clusters and patterns within
the latent space. By visualizing the latent spaces using t-SNE, we can gain insights
into how well the VAE has learned to represent the data and how distinct the latent
representations are for different classes. This visualization helps in evaluating the quality
of the latent space and the effectiveness of the VAE model in capturing essential features
of the satellite images.

In our study, t-SNE was used to project the high-dimensional latent representations
into a 2D space using perplexity = 30, and 500 iterations, where each point represents a
data sample’s latent vector. The resulting 2D plot provides a visual comparison of the
latent spaces, highlighting the clustering of data points based on their class labels, as
shown in Figure 3.4.

3.3.4 The Rate Distortion Accuracy Index

To compare the efficacy of fine-tuning and assess the results of various neural compression
and classification models on both reconstruction quality and classification performance,
we introduce the Rate Distortion Accuracy Index (RDAI) inspired by the works of Luo
et al. [287] on the rate distortion accuracy tradeoff in JPEG. This novel metric integrates
the critical aspects of rate, distortion, and accuracy, providing a comprehensive evalu-
ation framework for neural compression methods. The RDAI is defined as a weighted
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Figure 3.4: Sample t-SNE manifold of testing set of the EuroSAT dataset encoded
using a VAE with a scale hyperprior, image patches from Sentinel-2 mission.

combination of rate, distortion, and accuracy. Given that BPP will be between 0 and
10, PSNR between 0 and 60, and F1 between 0 and 1, we normalize PSNR to the range
[0, 1] as follows:

PSNRnormalized = PSNR
60 (3.9)

The formula for RDAI is then given by:

RDAI = α ·
(10 − BPP

10

)
+ β ·

(PSNR
60

)
+ γ · F1 (3.10)

where:

• α, β, and γ are the weights assigned to each component, such that α + β + γ = 1.
During this study, we gave all three components equal weight and importance, and
therefore α = β = γ = 1

3 .

• PSNR is the Peak Signal-to-Noise Ratio, measuring the distortion. Higher peak
signal-to-noise ratio (PSNR) values indicate better preservation of image quality
based on the mean squared error of all pixels.

PSNR = 10 · log10

(
MAX2

MSE

)
(3.11)
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Figure 3.5: Models compression performance comparison performed on EuroSAT test
set.

where MAX is the maximum possible pixel value of the image (e.g., 255 for an 8-bit
image), and MSE is the mean squared error between the original and compressed
image. In our case we use MAX = 1 since the images are transformed to float32
tensors during preprocessing.

• F1 is the F1 score of the neural network on the compressed images, used as our
accuracy metric. Higher F1 scores indicate better classification performance.

F1 = 2 · precision · recall
precision + recall (3.12)

The F1 score is preferred over accuracy for evaluating the performance of a neural
network on compressed images due to its robustness in handling imbalanced classes.
Accuracy measures the proportion of correct predictions out of all predictions, which can
be misleading when class distribution is imbalanced. The F1 score, being the harmonic
mean of precision and recall, balances false positives and false negatives, providing a
more comprehensive assessment of the model’s performance.
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3.4 Experimental Setup

3.4.1 Hardware

All of the experiments were carried out with PyTorch and CUDA cores using GPU
NVIDIA GeForce RTX 4070 Ti Super (16 Gb), CPU Intel(R) Core(TM) i7-14700KF,
3400 Mhz, 20 Core(s), 28 Logical Processor(s), and RAM DDR5 128 Gb at 6000 Mhz.
Tensorboard was used to log all results including time series, scalar and image data.

3.4.2 Neural Compression Models Used

In this study, we employ a variety of advanced Variational Autoencoder (VAE) architec-
tures and their derivatives to achieve efficient image compression and examine the utiliza-
tion of the constructed latent space. The models examined include bmshj2018_factorized,
bmshj2018_hyperprior, mbt2018_mean, mbt2018, cheng2020_anchor, and cheng2020_attn
extensively pretrained to compress images. Each of these models leverages different tech-
niques to encode images into compact latent representations while preserving essential
information for accurate reconstruction and downstream tasks.

The bmshj2018_factorized model employs a fully factorized density model for la-
tent variables. Each latent variable yi is assumed to be independent and identically
distributed (i.i.d.), such that

p(y) =
∏

i

p(yi) (3.13)

This model uses a non-parametric piecewise linear density to approximate each factor
of the prior. The density p is defined using its cumulative distribution function (CDF)
c, where

p(x) = ∂c(x)
∂x

(3.14)

By ensuring that the cumulative function c is monotonic and maps R to [0, 1], a valid
density function can be constructed as:

c = fK ◦ fK−1 ◦ · · · ◦ f1 (3.15)
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with

p = f ′
K · f ′

K−1 · · · · · f ′
1

where fk are vector functions composed of matrices H(k), biases b(k), and element-wise
nonlinearities gk defined as:

gk(x) = x + a(k) ⊙ tanh(x) (3.16)

where a(k) are vectors controlling the expansion or contraction rate.

The bmshj2018_hyperprior model introduces a hyperprior to capture spatial depen-
dencies among the elements of the latent representation y. This is achieved by an auxil-
iary autoencoder which models the latent scales using another set of latent variables z,
defined as

z = ha(y; ϕh) (3.17)

and

p(y|z) = N (y; 0, σ2(z; θh)) (3.18)

Here, ha and hs denote the analysis and synthesis transforms in the auxiliary autoen-
coder. The hyperprior model enhances the entropy model by conditioning on z, leading
to more accurate and spatially adaptive entropy estimates.

The mbt2018_mean model extends the bmshj2018_hyperprior by incorporating a
mean prediction in addition to the scale prediction for the Gaussian distribution of the
latent variables:

p(y|z) = N (y; µ(z; θh), σ2(z; θh)) (3.19)

This allows the model to capture the mean shift in the latent space, providing a more
flexible and accurate entropy model by predicting both mean µ and scale σ from the
hyperprior.
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The mbt2018 model combines the hyperprior with an autoregressive context model
to further refine the entropy estimation. The context model uses previously decoded
latents to improve the prediction of the current latent:

p(yi|y<i, z) = N (yi; µ(y<i, z), σ2(y<i, z)) (3.20)

This joint model leverages both the spatial dependencies captured by the hyperprior
and the sequential dependencies captured by the autoregressive model, leading to a
significant improvement in compression performance.

The cheng2020_anchor model introduces discretized Gaussian mixture likelihoods to
model the distributions of latent codes more flexibly. This is formulated as

p(y|z) =
K∑

k=1
w(k)N (y; µ(k)(z), σ2(k)(z)) (3.21)

This mixture model is designed to capture complex distributions of latent variables
by using multiple Gaussian components, each with its own mean and scale parameters
conditioned on the hyperprior. This approach reduces spatial redundancy and improves
the accuracy of entropy models, achieving better compression performance.

Finally, the cheng2020_attn model incorporates attention mechanisms to improve the
performance of the image compression model. The attention modules help the network
focus on complex regions of the image, enhancing the rate-distortion performance. The
attention mechanism is integrated into the network architecture as

y = f(x; θ, A) (3.22)

where A represents the attention module parameters. The attention module mod-
ifies the convolutional features to prioritize information-rich regions, leading to better
compression results.

It is important to note that each of the model was evaluated at 3 distinct quality levels.
These levels represent directly the magnitude of the Lagrangian multiplier and channel
size of the latent representation itself, which increases from 192 to 320 for the former and
128 to 192 for latter and are used to weight the compression vs distortion performance of
the models. The levels go from 1 to 8 for bmshj2018_factorized, bmshj2018_hyperprior,
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Neural Compression Model Number of Parameters
bmshj2018_hyperprior_2 4,968,963
bmshj2018_hyperprior_5 4,968,963
bmshj2018_hyperprior_8 11,582,275
bmshj2018_factorized_2 2,887,363
bmshj2018_factorized_5 2,887,363
bmshj2018_factorized_8 6,788,675
mbt2018_mean_2 6,921,123
mbt2018_mean_5 17,327,651
mbt2018_mean_8 17,327,651
mbt2018_2 13,896,419
mbt2018_5 25,270,548
mbt2018_8 25,270,548
cheng2020_anchor_2 11,726,269
cheng2020_anchor_4 26,364,908
cheng2020_anchor_6 26,364,908
cheng2020_attn_2 13,076,413
cheng2020_attn_4 29,397,740
cheng2020_attn_6 29,397,740

Table 3.1: Number of parameters in various neural compression models.

mbt2018_mean, mbt2018 and 1 to 6 for cheng2020_anchor, and cheng2020_attn. The
former were evaluated at 2, 5 and 8 while the latter at 2, 4 and 6. A comparison of the
size of of each neural compression model at different quality levels can be seen in Table
3.1. All networks were pretrained for 4-5M steps on 256x256 image patches randomly
extracted and cropped from the Vimeo90K dataset [288]. In Section 3.5 the results are
presented for each model underscoring the quality level of the pretrained models.

3.4.3 Classification Models Used

In this study, we utilized three different types of classification models: a Multi-Layer
Perceptron (MLP), a Convolutional Neural Network (CNN), and a Transformer. Each
model was specifically designed to leverage the latent spaces generated by the pre-trained
and fine-tuned VAE for classifying satellite images.

3.4.3.1 Multi-Layer Perceptron (MLP)

The MLP model consists of three fully connected layers. The input dimension is de-
termined by the size of the latent space produced by the VAE. The architecture of the
MLP can be represented as follows:
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Layer 1: h1 = σ(W1z + b1)

Layer 2: h2 = σ(W2h1 + b2)

Output Layer: ŷ = W3h2 + b3

where z is the input latent representation, Wi and bi are the weights and biases of
layer i, σ is the activation function (ReLU), and ŷ is the output class probabilities.

3.4.3.2 Convolutional Neural Network (CNN)

The CNN model is designed to handle the spatial dimensions of the latent representa-
tions. In this case, we use a custom ResNet architecture, which is adjusted to accommo-
date the specific input dimensions and number of output classes. The architecture can
be summarized as follows:

Convolution: h1 = σ(conv1(z))

Residual Blocks: h2 = ResNet blocks(h1)

Pooling: h3 = global average pooling(h2)

Output Layer: ŷ = fully connected(h3)

(3.23)

where z is the input latent representation, conv1 is the first convolutional layer tai-
lored to the dimension of the relative latent space, σ is the activation function (ReLU),
and the ResNet blocks represent the sequence of residual blocks in the ResNet archi-
tecture. The global average pooling and fully connected layer produce the final output
class probabilities ŷ.

3.4.3.3 Transformer

The Transformer model incorporates positional encoding and a multi-layer transformer
encoder. This model is well-suited for capturing long-range dependencies in the latent
space. The architecture includes an input projection layer, positional encoding, and a
transformer encoder followed by a fully connected layer. The process can be described
as follows:
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Classification Model Number of Parameters
MLP (128) 16,911,626
MLP (192) 25,300,234
MLP (320) 42,077,450
ResNet50 (128) 23,920,522
ResNet50 (192) 24,121,226
ResNet50 (320) 24,522,634
Transformer (128) 35,697,162
Transformer (192) 44,085,770
Transformer (320) 60,862,986

Table 3.2: Number of parameters in various classification models.

Input Projection: h0 = proj(z)

Positional Encoding: h1 = h0 + pos_enc(h0)

Transformer Encoding: h2 = transformer_encoder(h1)

Global Average Pooling: h3 = mean(h2, dim = 1)

Output Layer: ŷ = Wh3 + b

where z is the input latent representation, proj denotes the input projection, pos_enc
is the positional encoding, transformer_encoder represents the transformer encoder lay-
ers, mean denotes global average pooling, and ŷ is the output class probabilities.

These models were selected for their distinct architectures and capabilities in han-
dling different aspects of the latent representations generated by the VAE. The MLP is
straightforward and efficient for general-purpose classification, the CNN leverages spa-
tial information, and the Transformer is adept at capturing complex dependencies within
the data. Pretrained models for image classification, such as those trained on large-scale
datasets like ImageNet, were not suitable for our application. The latent representa-
tions generated by the VAE are inherently different from raw image data, as they are a
compressed and abstract representation of the original images. Consequently, using pre-
trained models directly on these latent spaces would not effectively capture the specific
features encoded by the VAE. Therefore, we opted to design and train custom classifi-
cation models tailored to the latent space characteristics. The dimensions, in terms of
parameters, for each classification model can be seen in Table 3.2.
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3.4.4 Dataset

Three different datasets were used to test the proposed architecture: EuroSAT [289],
RSI-CB256 [290], and PatternNet [291]. The EuroSAT dataset consists of Sentinel-
2 satellite images covering 13 spectral bands, with 27,000 labeled images divided into
10 classes: Annual Crop, Forest, Herbaceous Vegetation, Highway, Industrial, Pasture,
Permanent Crop, Residential, River, and Sea/Lake. Each image has a spatial resolution
of 10 meters per pixel and is provided in 64x64 pixel patches. EuroSAT is a well-regarded
benchmark for satellite image classification tasks due to its diverse range of land cover
classes and high-quality imagery.

In addition to the EuroSAT dataset, we utilized the RSI-CB-256 dataset, which con-
sists of 24,000 images spanning 35 land-use classes, each with a resolution of 256x256
pixels and a spatial resolution of 0.3 meters. This dataset covers a diverse range of land-
use categories, including woodlands (e.g., forest, sapling, shrubwood) and transportation
scenes (e.g., crossroads, highways, marinas, river bridges), making it a valuable resource
for evaluating the differentiation of various land-use types. The comprehensive labeling,
large size, and varied environmental conditions make it an excellent choice for evaluating
the performance of our variational autoencoder-based image compression and classifica-
tion approach.

We also integrated the PatternNet dataset, another well-regarded dataset, comprising
30,400 images across 38 classes that represent various urban and suburban environments,
such as airports, harbors, and stadiums. Each image in PatternNet has a resolution of
256x256 pixels and captures intricate patterns characteristic of human-made structures,
collected from Google Earth. The inclusion of PatternNet enables us to assess the
model’s robustness in identifying and distinguishing complex, highly structured man-
made environments.

To ensure compatibility with our model, the original image patches from the EuroSAT
dataset were preprocessed and resized to 256x256 pixels using bilinear interpolation,
preserving the integrity of the images while adapting them to the required dimensions.
For all datasets, we restricted our usage to the RGB bands (Red, Green, Blue) to
ensure compatibility with standard image processing pipelines. Although we explored
normalization techniques to standardize the datasets, normalization proved ineffective
in enhancing model performance and was therefore not utilized. The images were used
in their raw form without any normalization, ensuring that the intrinsic characteristics
of the data were maintained.
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We also explored normalization techniques to standardize the dataset during the
preprocessing phase. However, normalization proved to be ineffective in enhancing model
performance, likely due to the reduction in variance of the dataset, and was therefore not
utilized. The images were used in their raw form without any normalization, ensuring
that the intrinsic characteristics of the data were maintained.

To maintain conciseness, the results presented in the main section of the paper are
based exclusively on the EuroSAT dataset. Corresponding results for the other two
datasets are provided in Appendices A and B.

3.5 Results

3.5.1 Baseline

To establish a baseline comparison between the proposed architecture and standard com-
pression models, we tested JPEG compression at various quality levels. We compared
these models not only in terms of compression capabilities but also in terms of clas-
sification accuracy using pretrained classifiers similar to the custom ones built for our
experiments. We applied JPEG compression to the Sentinel-2 images at various quality
levels (e.g., 10%, 30%, 50%, 70%, and 90%) to assess the impact of compression on
image quality and size, especially in terms of loss of information and accuracy at lower
levels. As shown in Figure 3.5 each method’s performance demonstrates how image
quality, as measured by PSNR, improves with an increase in BPP. The JPEG method
(pink) shows a consistent but less efficient performance compared to neural methods,
especially at higher BPP values, indicating poorer compression efficiency, also shown in
Figure 3.7. In contrast, methods like bmshj2018_hyperpriorr (blue) and mbt2018_mean
(green) exhibit significantly higher PSNR values at equivalent BPPs, showcasing their
superior ability to retain image quality at lower bit rates as expected.

As JPEG reconstruction quality levels increases, the F1 scores for all classifiers gen-
erally improve, indicating better classification performance with higher image quality,
as shown in Figure 3.6 as well as better reconstruction quality as shown in Figure 3.7.
The ResNet classifier shows the most significant improvement, achieving an F1 score
above 0.95 at higher JPEG quality levels. The vision transformer (ViT) classifier also
demonstrates strong performance, with F1 scores approaching 0.9. The MLP classifier,
while improving with higher quality levels, shows a more modest increase in F1 scores
compared to the other two classifiers, probably due to the simplicity of its architecture.
The average BPP, depicted by the red line in Figure 3.6, increases significantly with
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Classifier Quality Average BPP ↓ PSNR ↑ F1 ↑ RDAI ↑
MLP 10 0.2467 32.14 0.3967 0.6353
MLP 40 0.3766 39.86 0.4450 0.6899
MLP 70 0.5933 43.39 0.4586 0.7068
MLP 100 2.8203 42.85 0.4606 0.6303

ResNet 10 0.2467 32.14 0.4398 0.6496
ResNet 40 0.3766 39.86 0.8854 0.8365
ResNet 70 0.5933 42.85 0.9361 0.8628
ResNet 100 2.8203 46.56 0.9520 0.8145

ViT 10 0.2467 32.14 0.4852 0.6647
ViT 40 0.3766 39.86 0.8345 0.8196
ViT 70 0.5933 42.85 0.8931 0.8485
ViT 100 2.8203 46.56 0.9169 0.8028

Table 3.3: Evaluating pre trained classifiers performance on multiple JPEG compres-
sion quality levels on EuroSAT dataset; multi layer perceptron (MLP), convolutional
neural network with residual connections (ResNet), and vision transformer (ViT).

higher JPEG quality levels, reflecting the trade-off between compression efficiency and
image quality. The equally weighted RDAI metric peaks at quality level 70 for both
ResNet and ViT, indicating an optimal trade-off between compression, reconstruction
quality, and classification accuracy at this level as shown in Table 3.3.

3.5.2 Frozen Weights

To assess the performance of the neural compression models in creating meaningful latent
spaces that are utilizable from other machine learning models, we used quantitative
and qualitative metrics. Quantitatively, metrics such as F1 score, PSNR, BPP, and
RDAI were employed to measure the classification performance, reconstruction quality,
compression efficiency, and the trade-offs between these factors, respectively. These
metrics provide a comprehensive evaluation of how well the neural compression models
balance the competing requirements of high compression rates and high classification
accuracy.

Qualitatively, t-SNE visualizations were used to assess the structure of the latent
spaces generated by the neural compression models. The t-SNE plots, as shown in
Figure 3.8, illustrate how different models organize the latent representations of the
EuroSAT test set. These visualizations highlight the clustering and separability of the
latent features, which are crucial for downstream classification tasks.

We performed a first round of experiments using the logic explained previously in
Algorithm 1. The pretrained neural compression models’ parameters were frozen and
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Figure 3.6: Reconstruction F1 and BPP vs JPEG quality levels.

then used to compress images from the EuroSAT train dataset. The latent spaces created
were used to train three separate classifiers (MLP, CNN, Transformer), results can be
seen in Table 3.4.

When comparing the performance with JPEG compression at quality level 100, which
serves as a high-quality baseline, it is evident that neural compression models signifi-
cantly enhance classification performance while maintaining lower BPP values. For in-
stance, the MLP classifier using bmshj2018_hyperprior_8 achieves an F1 score of 0.6856
and a PSNR of 49.14 with a BPP of 0.3459, substantially better than the JPEG’s F1
score of 0.4606 and PSNR of 42.85, and at a fraction of the BPP for a similar clas-
sifier. Similarly, the ResNet50 classifier with bmshj2018_hyperprior_8 shows an F1
score of 0.5011 and a PSNR of 49.14 at a BPP of 0.3389, surpassing the JPEG’s per-
formance. The Transformer classifier exhibits the highest performance gains, with the
bmshj2018_hyperprior_8 configuration achieving an F1 score of 0.794, a PSNR of 49.14,
and an RDAI of 0.8608, all at a BPP of 0.2816. This trend is consistent across other
neural compression models; for instance, mbt2018_mean_8 and mbt2018_8 configu-
rations show significant improvements in F1 scores and PSNR values while maintain-
ing lower BPP compared to JPEG. These results highlight the superiority of neural
compression techniques in balancing compression efficiency and classification accuracy.
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Figure 3.7: Reconstruction PSNR and BPP vs JPEG quality levels.

From these results we can also extrapolate that by interpreting directly the latent spaces
some of the information that would be lost during decompression is preserved. Addi-
tionally, the RDAI metric, which provides a comprehensive measure of the trade-offs
between rate, distortion, and accuracy, consistently shows higher values for neural com-
pression models across all classifiers, further validating their effectiveness over tradi-
tional JPEG compression. In particular, the Transformer classifier, when paired with
bmshj2018_hyperprior_8, achieves an RDAI of 0.8608, indicating an optimal balance
and best performance for both neural compression and JPEG values.

The t-SNE plots in Fig. 8 illustrate how different models, such as cheng2020_anchor,
mbt2018_mean, bmshj2018_hyperprior, bmshj2018_factorized, and cheng2020_attn, or-
ganize the latent representations of the EuroSAT test set. For example, the bmshj2018_hyperprior
models show better-defined clusters at higher bitrates, indicating that the latent space
captures meaningful structures
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(a) bmshj2018_hyperprior 2 (b) bmshj2018_hyperprior 5 (c) bmshj2018_hyperprior 8

(d) bmshj2018_factorized 2 (e) bmshj2018_factorized 5 (f) bmshj2018_factorized 8

(g) mbt2018 2 (h) mbt2018 5 (i) mbt2018 8

(j) mbt2018_mean 2 (k) mbt2018_mean 5 (l) mbt2018_mean 8

(m) cheng2020_anchor 2 (n) cheng2020_anchor 4 (o) cheng2020_anchor 6

(p) cheng2020_attn 2 (q) cheng2020_attn 4 (r) cheng2020_attn 6

Figure 3.8: t-SNE visualizations of models constructed latents of EuroSAT test set,
with labels.
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Method MLP ResNet50 Transformer

Accuracy ↑ F1 ↑ BPP ↓ PSNR ↑ RDAI ↑ Accuracy ↑ F1 ↑ BPP ↓ PSNR ↑ RDAI ↑ Accuracy ↑ F1 ↑ BPP ↓ PSNR ↑ RDAI ↑

bmshj2018_hyperprior 2 0.6619 0.6561 0.0541 37.04 0.755 0.5067 0.4744 0.07 37.04 0.694 0.7481 0.7477 0.0584 37.04 0.786

bmshj2018_hyperprior 5 0.6478 0.6247 0.1251 42.75 0.774 0.3785 0.2942 0.1288 42.75 0.664 0.7907 0.7898 0.127 42.75 0.829

bmshj2018_hyperprior 8 0.6931 0.6856 0.3459 49.14 0.8225 0.5144 0.5011 0.3389 49.14 0.761 0.7939 0.794 0.2816 49.14 0.861

bmshj2018_factorized 2 0.3228 0.2613 0.1047 37.23 0.623 0.313 0.2422 0.1012 37.23 0.616 0.6711 0.6721 0.1061 37.23 0.760

bmshj2018_factorized 5 0.7135 0.7068 0.2675 42.87 0.797 0.2941 0.2172 0.2801 42.87 0.634 0.7581 0.7574 0.2637 42.87 0.814

bmshj2018_factorized 8 0.6587 0.6451 0.6893 49.62 0.800 0.3789 0.274 0.6893 49.62 0.677 0.7369 0.7309 0.6566 49.62 0.830

mbt2018_mean 2 0.6019 0.5881 0.0474 37.38 0.735 0.3937 0.3156 0.0384 37.38 0.644 0.6983 0.6992 0.0332 37.38 0.772

mbt2018_mean 5 0.5372 0.5167 0.1077 42.58 0.734 0.4528 0.3775 0.0959 42.58 0.691 0.7806 0.7784 0.0948 42.58 0.826

mbt2018_mean 8 0.7476 0.7479 0.279 48.68 0.843 0.3536 0.3119 0.3053 48.68 0.697 0.7928 0.7919 0.252 48.68 0.858

mbt2018 2 0.5317 0.5243 0.0491 37.91 0.716 0.3369 0.2929 0.0371 37.91 0.640 0.6128 0.6002 0.0448 37.91 0.741

mbt2018 5 0.722 0.7161 0.0834 43.01 0.807 0.1957 0.1168 0.1015 43.01 0.607 0.7715 0.7694 0.1065 43.01 0.824

mbt2018 8 0.75 0.7471 0.281 49.15 0.845 0.3441 0.3105 0.2935 49.15 0.699 0.7848 0.7864 0.2709 49.15 0.859

cheng2020_anchor 2 0.5709 0.5655 0.0388 37.53 0.728 0.2785 0.1584 0.0495 37.53 0.592 0.6793 0.6783 0.0276 37.53 0.766

cheng2020_anchor 4 0.63 0.6288 0.079 41.13 0.768 0.332 0.271 0.0555 41.13 0.650 0.7393 0.737 0.0817 41.13 0.804

cheng2020_anchor 6 0.7374 0.7375 0.1248 44.83 0.823 0.4539 0.391 0.1598 44.83 0.707 0.7635 0.7635 0.0876 44.83 0.833

cheng2020_attn 2 0.5863 0.5696 0.032 37.87 0.732 0.2974 0.2209 0.042 37.87 0.615 0.6969 0.6968 0.0495 37.87 0.773

cheng2020_attn 4 0.6798 0.6748 0.0745 41.43 0.786 0.4489 0.3939 0.0781 41.43 0.6915 0.7444 0.7423 0.0624 41.43 0.808

cheng2020_attn 6 0.7119 0.7127 0.1296 44.83 0.815 0.3891 0.3537 0.1369 44.83 0.695 0.7563 0.7562 0.0994 44.83 0.83

Table 3.4: Performance comparison of MLP, CNN, and Transformer models, using Al-
gorithm 1 and frozen weights for neural compression models. Accuracy and F1 represent
classification results of models using neural compressed latent representations.

even at lower compression rates. The bmshj2018_hyperprior and cheng2020_attn mod-
els, particularly at higher bitrates, demonstrate clear separations between clusters, sug-
gesting that these models retain significant feature information necessary for high clas-
sification. It also shows that there is a direct correlation between better separation in
the latent space and higher classification accuracy, which makes sense. The visualiza-
tions also reveal that models like bmshj2018_factorized_8, while achieving high PSNR
and F1 scores, might have more overlapping clusters, which could impact classification
performance in more challenging scenarios.

3.5.3 Fine Tuning

The second set of experiments was carried out following the logic outlined in Algorithm
2 for fine-tuning the VAE along with the training of the classifiers. To test this, we
selected the best-performing classifier from the previous experiments (the Transformer
architecture) and trained it jointly using the composite loss shown in Equation 3.4. This
composite loss function was designed to optimize both the reconstruction quality and
classification performance simultaneously, allowing the VAE to adapt its latent space to
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Figure 3.9: Effects of tuning the λbpp multiplier on RDAI (left axis) and BPP (right
axis) values.

better suit the classification task. To temper and balance the various elements of the
composite loss function, the Lagrangian multipliers were fine-tuned using a grid search
on various models, which resulted in the best values to be λrec = 10, λclass = 1, λbpp =
0.075. The grid search spanned values between [0.01, 1, 10] for all multipliers. It was
then narrowed down using halfway points [0.05, 0.075] to further improve performance.
Choosing the right multiplier parameters turned to be crucial to improve the overall
performance of the models. An example of the effects of choosing the λbpp parameter can
be seen in Figure 3.9. Choosing a λbpp that is too low results in high bitrate as not enough
importance is assigned to compression during the multi objective optimization process.
While if λbpp is too large, then the data is compressed excessively and information is
lost in the process lowering the reconstruction and classification performance, ultimately
hurting RDAI scores.

When comparing the performance of the fine tuned combinations of neural compres-
sion models and transformer classifier we see a substantial increase in performance. The
fine-tuned Transformer model consistently outperformed the frozen weight counterpart
and the JPEG baseline. We can see in Table 3.5 that the fine tuned cheng2020_attn_6
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(a) bmshj2018_hyperprior 2 (b) bmshj2018_hyperprior 5 (c) bmshj2018_hyperprior 8

(d) bmshj2018_factorized 2 (e) bmshj2018_factorized 4 (f) bmshj2018_factorized 8

(g) mbt2018 2 (h) mbt2018 5 (i) mbt2018 8

(j) mbt2018_mean 2 (k) mbt2018_mean 5 (l) mbt2018_mean 8

(m) cheng2020_anchor 2 (n) cheng2020_anchor 4 (o) cheng2020_anchor 6

(p) cheng2020_attn 2 (q) cheng2020_attn 4 (r) cheng2020_attn 6

Figure 3.10: t-SNE visualizations of fine tuned models constructed latents of EuroSAT
test set, with labels.
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Method Accuracy F1 BPP PSNR RDAI
bmshj2018_hyperprior 2 0.9365 0.9363 0.1996 33.81 0.826
bmshj2018_hyperprior 5 0.9456 0.9456 0.3998 37.15 0.841
bmshj2018_hyperprior 8 0.937 0.9371 0.4278 43.1 0.87
bmshj2018_factorized 2 0.8533 0.8525 0.3257 41.04 0.834
bmshj2018_factorized 5 0.8609 0.8605 0.7613 42.02 0.827
bmshj2018_factorized 8 0.8924 0.8916 1.262 46.97 0.849

mbt2018_mean 2 0.9209 0.9209 0.2632 41.17 0.859
mbt2018_mean 5 0.937 0.937 0.254 42.88 0.875
mbt2018_mean 8 0.9387 0.9387 0.4037 45.4 0.884

mbt2018 2 0.9044 0.9044 0.2171 40.75 0.853
mbt2018 5 0.9269 0.9265 0.2351 42.69 0.871
mbt2018 8 0.9304 0.9302 0.4179 46.37 0.886

cheng2020_anchor 2 0.9424 0.9427 0.2181 41.16 0.868
cheng2020_anchor 4 0.9006 0.9006 0.1776 42.29 0.862
cheng2020_anchor 6 0.892 0.8922 0.5173 44.06 0.857

cheng2020_attn 2 0.9439 0.9439 0.163 41.65 0.873
cheng2020_attn 4 0.9491 0.949 0.1845 41.67 0.874
cheng2020_attn 6 0.9487 0.9487 0.2615 44.94 0.890

Table 3.5: Fine tuning performance using various methods and transformer classifier.

achieves and RDAI of 0.890, the highest of all experiments and a substantial increase
from the performance using pretrained frozen weights with an RDAI of 0.83. When com-
paring this result with the JPEG baseline we can see better reconstruction performance
44.94 at a bit rate of 0.2615 where JPEG is only able to achieve 32.14 and much better
classification performance with an F1 score of 94.87 vs JPEG ViT F1 score of 66.47.
Therefore the lossy neural compression model is able to achieve better performance at
lower bitrates in both clasification and reconstruction. If we compare the performance
of the various neural compression models qualitatively on top of quantitatively we can
see from Figure 3.10 that the best performing neural compression models learn to in-
duce separation in the latent spaces between classes, effectively clustering similar images
together. This proves particularly beneficial for classification with the cheng2020_attn
models performing best and showing the greatest separation between clusters, while the
bmshj2018_factorized performing the worse and showing a lot more overlapping between
clusters and poor separation.

3.5.4 Ablation Study

During parameter selection for the Lagrange multipliers through grid search, various
scenarios were explored, including the absence of some components from the composite
objective function to study the effects. The aim was to understand how each component
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influenced the overall performance of the model. For instance, by omitting certain terms,
we could observe changes in the model’s ability to balance different objectives, such as
compression efficiency and reconstruction quality.

Since the neural compression models were pretrained, there was no point in exper-
imenting with λclass being zero. This would have simply meant trying to fine-tune the
neural compression model to the dataset, which would have reduced generalizability and
generally shown to reduce performance. Instead, we focused on testing three specific
scenarios that allowed us to investigate the trade-offs between different components of
the objective function. These scenarios are illustrated in Figure 3.11 and are detailed
below:

• No Constraint on Bit-Rate:

λclass = 1, λbpp = 0, λrec = 10

• No Constraint on Bit-Rate and Reconstruction:

λclass = 1, λbpp = 0, λrec = 0

• No Constraint on Reconstruction:

λclass = 1, λbpp = 1, λrec = 0

As seen in Figure 3.11, both scenarios that cancel out the "bpp" term and do not
optimize for bitrate result in poor compression performance, with bitrates all higher
than 3 BPP. The "No Constraint on Bit-Rate and Reconstruction" scenario performs the
worst, achieving low reconstruction and compression performance. Additionally, it does
not significantly increase classification performance, remaining comparable to the better-
performing fine-tuned models shown earlier. The "No Constraint on Reconstruction"
scenario results in lower bitrates and similar classification performance, but very poor
reconstruction performance as expected. Therefore, while it could be a viable solution if
the only goal is known classification, it might not be possible to reconstruct the original
image.
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Figure 3.11: Fine tuning performance in terms of RDAI vs BPP for
bmshj2018_hyperprior [2,5,8] with no bit rate loss constraint (red), with no reconstruc-
tion loss constraint (blue), with no reconstruction and bit rate loss constraint (green).

3.6 Discussion

The findings from this study demonstrate the potential of using neural compression
models, specifically Variational Autoencoders (VAEs), to enhance satellite image anal-
ysis by leveraging latent representations directly for classification tasks. This approach
offers a significant improvement over traditional methods, in terms of the comperssion,
reconstruction and accuracy tradeoff. The results highlight several key aspects. First, in
terms of compression efficiency and reconstruction quality, neural compression models,
such as bmshj2018 hyperprior and cheng2020 attn, achieve higher compression ratios
while maintaining excellent reconstruction quality. The PSNR values for these models
are significantly higher than those obtained with JPEG compression, even at lower bit
rates, indicating better preservation of image quality. This improvement is crucial for
applications where both storage and transmission efficiency are paramount, such as re-
mote sensing and environmental monitoring. The higher compression efficiency means
that more data can be stored and transmitted without significant loss of quality, making
it feasible to handle the large volumes of data generated by satellite imagery.

Moreover, the latent representations generated by these neural compression models
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are highly effective for classification tasks, in future studies the utilization of such latent
spaces for other tasks such as segmentation and object detection will be explored. The
Transformer classifier, when fine-tuned with these latent spaces, achieves remarkable
F1 scores, demonstrating that the latent spaces retain essential features for accurate
classification as well as the viability of using the proposed architecture. This performance
indicates that neural compression models do not just compress the data but also preserve
critical information necessary for downstream tasks. By using the latent spaces directly,
the approach eliminates the need for decompression, reducing computational overhead
and loss of information.

The visualizations of latent spaces using t-SNE further support these findings, show-
ing well-defined clusters corresponding to different classes, particularly for models like
cheng2020 attn. This clear separability in the latent space is crucial for high classification
performance, as it indicates that the model has effectively learned to distinguish between
different types of images. The t-SNE plots illustrate that the best-performing models
induce a structured and meaningful organization in the latent space, which is directly
correlated with their classification performance. This proves that neural compression
models can successfully be fine tuned for specific tasks without sacrificing reconstruc-
tion quality and compression ratios.

3.6.1 Limitations and Future Work

While our study demonstrates the potential of variational autoencoder (VAE) models
with Gaussian and discretized Gaussian mixture likelihoods for neural compression and
classification tasks, it does not include more recent neural compression models due to
several limitations that must be acknowledged. A key constraint is our reliance on pre-
trained models available through the CompressAI library. These models were trained
using specific and undisclosed configurations, techniques, and hyperparameters, such as
the application of an exponential moving average for weight updates and the imple-
mentation of a gradually decaying learning rate schedule, both of which are commonly
used in VAE training to mitigate instability. The lack of transparency and control over
the pretraining process introduces challenges in maintaining consistency across models.
Attempting to incorporate more recent methods, such as hierarchical VAEs or diffusion
models, without consistent pretraining conditions could lead to biased comparisons and
potentially compromise the validity of our results.

Moreover, integrating these other advanced models would have required a significant
shift in the focus of the study. Hierarchical VAEs [279], diffusion models [280], and other

133

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

hybrid architectures [281] represent distinct classes of neural compression techniques that
would necessitate different experimental setups, comparisons, and analyses. This paper
is specifically focused on exploring the capabilities of Gaussian-based VAE models for
classification tasks. Including these more recent models would extend the scope of the
paper beyond the primary objective and would require a different research approach
to thoroughly evaluate and compare the diverse set of models. Therefore, while these
advanced models offer promising avenues for future research, they were intentionally
excluded from this work to maintain clarity and focus in addressing our specific research
goals. Future work should focus on experimenting with new neural compression archi-
tectures, such as hierarchical VAEs and diffusion models, as well as expanding the scope
to other tasks beyond classification, including segmentation and object detection.

3.6.2 Security considerations

In addition to the benefits of compression efficiency and classification performance, the
use of neural compression models for satellite image analysis also offers notable secu-
rity advantages. The process of transforming satellite images into latent representations
inherently applies a form of data masking. This transformation makes it significantly
more difficult for unauthorized parties to reconstruct the original images without access
to the specific neural compression model used for encoding and decoding. This added
layer of security is particularly important for sensitive applications, such as military or
confidential environmental monitoring, where the protection of raw data is paramount.
By transmitting only the latent representations instead of the raw images, we reduce
the risk of data interception and misuse during transmission. Furthermore, the neural
compression models can be designed to incorporate additional security measures, such
as encryption of the latent space, further enhancing data protection. This approach can
be integrated seamlessly into existing data processing pipelines, ensuring that security
does not come at the expense of efficiency or accuracy. The robustness of these neural
compression models against potential attacks aimed at extracting sensitive information
from the latent space is an area worthy of further research. Investigating the resilience of
different neural architectures and training methodologies to adversarial attacks will be
crucial in ensuring the security and reliability of these systems in practical applications.
Overall, leveraging neural compression models for satellite image analysis not only opti-
mizes data handling but also provides an enhanced security framework, addressing one
of the critical concerns in the transmission and storage of satellite imagery.
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3.7 Conclusion

This study demonstrates the effectiveness of neural compression models for satellite
image analysis within the proposed architecture. By utilizing the latent spaces generated
by these models, we achieve significant improvements in both compression efficiency and
classification accuracy, with additional benefits for data transmission and analysis. The
compact latent representations not only enable efficient storage and transmission but
also enhance the speed and accuracy of downstream tasks, while providing a degree of
data security by obfuscating the original images.

Future research could build on this work by integrating neural compression models
with other machine learning frameworks, potentially expanding their applicability and
improving performance across a broader range of scenarios. Further advancements in
the architecture could optimize compression and classification tasks beyond current lim-
itations. Additionally, applying these latent spaces to tasks such as segmentation, object
detection, and anomaly detection would help generalize and validate this approach across
diverse remote sensing applications, offering new insights and capabilities for satellite
image analysis.

Furthermore, expanding the use of these compressed representations in multi-modal
learning scenarios, combining satellite imagery with other data sources like sensor data
or textual information, could significantly enhance the ability to extract meaningful
patterns across complex datasets. Embracing these advancements could revolutionize
the way we process and analyze satellite imagery in the future.
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3.8 PatternNet Dataset Results

Method MLP ResNet50 Transformer

Accuracy ↑ F1 ↑ BPP ↓ PSNR ↑ RDAI ↑ Accuracy ↑ F1 ↑ BPP ↓ PSNR ↑ RDAI ↑ Accuracy ↑ F1 ↑ BPP ↓ PSNR ↑ RDAI ↑

bmshj2018_hyperprior_2 0.7173 0.7135 0.2128 28.7236 0.7229 0.2530 0.1960 0.2414 28.6717 0.5494 0.7742 0.7717 0.2065 28.7275 0.7425

bmshj2018_hyperprior_5 0.7939 0.7875 0.7109 33.7323 0.7588 0.6237 0.6251 0.6703 33.6864 0.7058 0.8372 0.8367 0.7991 33.7265 0.7722

bmshj2018_hyperprior_8 0.8413 0.8392 1.6141 39.9900 0.7806 0.4266 0.3955 1.5120 39.9649 0.6362 0.8604 0.8598 2.0504 39.9937 0.7730

bmshj2018_factorized_2 0.3794 0.3665 0.2023 27.5458 0.6012 0.4987 0.4705 0.1962 27.4860 0.6357 0.6809 0.6795 0.2080 27.5481 0.7052

bmshj2018_factorized_5 0.4725 0.4601 0.6981 32.1816 0.6416 0.5025 0.5007 0.6327 32.1118 0.6569 0.7839 0.7834 0.5954 32.1878 0.7527

bmshj2018_factorized_8 0.4816 0.4465 2.0057 39.1262 0.6320 0.2997 0.2822 1.7339 39.0857 0.5862 0.7785 0.7838 2.3702 39.1238 0.7322

mbt2018_mean_2 0.7036 0.7042 0.2093 28.8692 0.7208 0.0735 0.0476 0.1918 28.8160 0.5024 0.7595 0.7564 0.2165 28.8752 0.7379

mbt2018_mean_5 0.8146 0.8137 0.7283 34.3152 0.7702 0.5408 0.5522 0.7717 34.2862 0.6815 0.8362 0.8372 0.7690 34.2781 0.7764

mbt2018_mean_8 0.8512 0.8509 1.3572 40.1849 0.7942 0.4651 0.4573 1.4883 40.1599 0.6586 0.8497 0.8485 1.7180 40.1566 0.7812

mbt2018_2 0.5972 0.5977 0.2854 29.0184 0.6836 0.0839 0.0682 0.2310 28.9651 0.5088 0.6806 0.6687 0.1735 29.0129 0.6940

mbt2018_5 0.8345 0.8360 0.6473 34.5062 0.7813 0.5276 0.5157 0.7395 34.4741 0.6714 0.8653 0.8649 0.5551 34.5023 0.7837

mbt2018_8 0.7895 0.7899 1.6005 40.2685 0.7662 0.6416 0.6356 1.6126 40.2361 0.7143 0.8561 0.8551 1.6308 40.2697 0.8127

cheng2020_anchor_2 0.7937 0.7906 0.2165 29.0947 0.7505 0.2240 0.1910 0.1805 29.0311 0.5517 0.8237 0.8231 0.2301 29.0942 0.7609

cheng2020_anchor_4 0.8173 0.8190 0.3848 32.4883 0.7732 0.2577 0.2311 0.4854 32.4447 0.5739 0.8464 0.8461 0.3634 32.4882 0.7830

cheng2020_anchor_6 0.8225 0.8196 0.8840 35.8766 0.7756 0.6798 0.6917 0.8331 35.8375 0.7345 0.8317 0.8309 1.0572 35.7953 0.7731

cheng2020_attn_2 0.7164 0.7134 0.2125 29.1918 0.7255 0.1840 0.1406 0.2036 29.1313 0.5347 0.8206 0.8186 0.1796 29.1379 0.7613

cheng2020_attn_4 0.8141 0.8129 0.4378 32.5416 0.7697 0.3620 0.3300 0.4811 32.4898 0.6072 0.8479 0.8477 0.4563 32.4909 0.7804

cheng2020_attn_6 0.8258 0.8263 1.0323 35.8179 0.7726 0.6646 0.6618 0.7824 35.7788 0.7259 0.8352 0.8342 0.8692 35.7796 0.7804

Table 3.6: Performance comparison using frozen weights for neural compression models
applied to the PatternNet dataset.

JPEG Quality Classifier Average BPP ↓ PSNR ↑ F1 ↑ RDAI ↑
JPEG_10 MLP 0.4349 27.91 0.38 0.5999
JPEG_40 MLP 0.8985 33.53 0.5144 0.7861
JPEG_70 MLP 1.3458 36.32 0.5279 0.7244
JPEG_100 MLP 6.3135 48.4 0.5036 0.5591
JPEG_10 ResNet 0.4349 27.91 0.8918 0.7704
JPEG_40 ResNet 0.8985 33.53 0.9458 0.8041
JPEG_70 ResNet 1.3458 36.32 0.9324 0.8003
JPEG_100 ResNet 6.3135 48.4 0.9743 0.7158
JPEG_10 ViT 0.4349 27.91 0.7046 0.7081
JPEG_40 ViT 0.8985 33.53 0.8902 0.7856
JPEG_70 ViT 1.3458 36.32 0.9177 0.7954
JPEG_100 ViT 6.3135 48.4 0.9084 0.6939

Table 3.7: Performance of pre-trained classifiers on different JPEG compression levels
applied to the PatternNet dataset.
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Method Accuracy F1 BPP PSNR RDAI
bmshj2018_hyperprior 2 0.9064 0.9073 0.5093 28.5868 0.777
bmshj2018_hyperprior 5 0.9439 0.9441 0.6741 30.3419 0.793
bmshj2018_hyperprior 8 0.9475 0.9471 0.6571 30.1022 0.794
bmshj2018_factorized 2 0.8653 0.8642 0.3673 27.1 0.759
bmshj2018_factorized 5 0.9094 0.9092 0.7469 30.874 0.782
bmshj2018_factorized 8 0.8715 0.8739 1.03 32.5343 0.770

mbt2018_mean 2 0.9211 0.9203 0.4002 29.2967 0.789
mbt2018_mean 5 0.9365 0.9357 0.5167 30.3864 0.796
mbt2018_mean 8 0.9474 0.947 0.5482 30.8431 0.801

mbt2018 2 0.7959 0.7919 0.4152 29.3315 0.746
mbt2018 5 0.9117 0.9106 0.5086 30.4802 0.788
mbt2018 8 0.9434 0.9433 0.5561 30.9452 0.800

cheng2020_anchor 2 0.9401 0.9397 0.4331 29.2683 0.794
cheng2020_anchor 4 0.952 0.952 0.3504 30.243 0.806
cheng2020_anchor 6 0.9319 0.9317 0.6106 32.4809 0.803

cheng2020_attn 2 0.9424 0.9425 0.4912 29.3601 0.793
cheng2020_attn 4 0.9548 0.9544 0.4449 29.6791 0.801
cheng2020_attn 6 0.9638 0.9638 0.476 29.8219 0.804

Table 3.8: Fine-tuning performance using various methods and Transformer classifier
applied to the PatternNet dataset.
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(a) bmshj2018_hyperprior 2 (b) bmshj2018_hyperprior 5 (c) bmshj2018_hyperprior 8

(d) bmshj2018_factorized 2 (e) bmshj2018_factorized 4 (f) bmshj2018_factorized 8

(g) mbt2018 2 (h) mbt2018 5 (i) mbt2018 8

(j) mbt2018_mean 2 (k) mbt2018_mean 5 (l) mbt2018_mean 8

(m) cheng2020_anchor 2 (n) cheng2020_anchor 4 (o) cheng2020_anchor 6

(p) cheng2020_attn 2 (q) cheng2020_attn 4 (r) cheng2020_attn 6

Figure 3.12: t-SNE visualizations of models constructed latents of PatternNet test set,
with labels.
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(a) bmshj2018_hyperprior 2 (b) bmshj2018_hyperprior 5 (c) bmshj2018_hyperprior 8

(d) bmshj2018_factorized 2 (e) bmshj2018_factorized 4 (f) bmshj2018_factorized 8

(g) mbt2018 2 (h) mbt2018 5 (i) mbt2018 8

(j) mbt2018_mean 2 (k) mbt2018_mean 5 (l) mbt2018_mean 8

(m) cheng2020_anchor 2 (n) cheng2020_anchor 4 (o) cheng2020_anchor 6

(p) cheng2020_attn 2 (q) cheng2020_attn 4 (r) cheng2020_attn 6

Figure 3.13: t-SNE visualizations of models constructed latents of PatternNet test set,
with labels.
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3.9 RSI-CB256 Dataset Results

JPEG Quality Classifier Average BPP ↓ PSNR ↑ F1 ↑ RDAI ↑
JPEG_10 MLP 0.4337 27.94 0.312 0.5775
JPEG_40 MLP 0.8949 33.58 0.4622 0.7537
JPEG_70 MLP 1.3401 36.37 0.4993 0.6952
JPEG_100 MLP 6.2916 48.45 0.4793 0.5520
JPEG_10 ResNet 0.4337 27.94 0.7932 0.7378
JPEG_40 ResNet 0.8949 33.58 0.9819 0.8165
JPEG_70 ResNet 1.3401 36.37 0.9860 0.8186
JPEG_100 ResNet 6.2916 48.45 0.9837 0.7200
JPEG_10 ViT 0.4337 27.94 0.6154 0.6786
JPEG_40 ViT 0.8949 33.58 0.9012 0.7897
JPEG_70 ViT 1.3401 36.37 0.9286 0.7995
JPEG_100 ViT 6.2916 48.45 0.9323 0.7028

Table 3.9: Performance of pre-trained classifiers on different JPEG compression levels.
The table shows the values of Average BPP, PSNR, F1, and RDAI for MLP, ResNet,
and ViT classifiers applied to the RSI-CB256 dataset.

Method MLP ResNet50 Transformer

Accuracy ↑ F1 ↑ BPP ↓ PSNR ↑ RDAI ↑ Accuracy ↑ F1 ↑ BPP ↓ PSNR ↑ RDAI ↑ Accuracy ↑ F1 ↑ BPP ↓ PSNR ↑ RDAI ↑

bmshj2018_hyperprior_2 0.6194 0.5903 0.1787 29.3387 0.6864 0.319 0.2531 0.1597 29.3309 0.5748 0.8271 0.8261 0.2060 29.3277 0.7640

bmshj2018_hyperprior_5 0.7598 0.7535 0.5149 34.6062 0.7588 0.6368 0.6384 0.6018 34.6086 0.7176 0.8814 0.8797 0.7021 34.6110 0.7947

bmshj2018_hyperprior_8 0.7851 0.7705 1.725 41.2658 0.7612 0.6947 0.6839 1.3649 41.2805 0.7444 0.876 0.8737 1.307 41.2819 0.8095

bmshj2018_factorized_2 0.3432 0.3038 0.2076 28.3281 0.5845 0.5467 0.5344 0.1951 28.2901 0.6615 0.7147 0.7147 0.2094 28.3179 0.7212

bmshj2018_factorized_5 0.5087 0.6840 0.6094 33.2297 0.7249 0.4356 0.4326 0.6577 33.2264 0.6396 0.7913 0.7891 0.4583 33.2080 0.7648

bmshj2018_factorized_8 0.5578 0.5124 1.2091 40.3815 0.6875 0.4374 0.4318 1.4207 40.3835 0.6536 0.818 0.8145 1.6786 40.3854 0.7725

mbt2018_mean_2 0.616 0.5864 0.2281 29.4829 0.6843 0.3465 0.3164 0.1212 29.4894 0.5980 0.7754 0.7700 0.1354 29.4935 0.7486

mbt2018_mean_5 0.7281 0.7165 0.5921 35.1885 0.7472 0.5081 0.4922 0.5941 35.2007 0.6725 0.8263 0.8258 0.3066 35.2019 0.7932

mbt2018_mean_8 0.7875 0.7764 1.4715 41.5130 0.7729 0.6368 0.6204 1.0462 41.5313 0.7353 0.8669 0.8671 1.4205 41.5296 0.8049

mbt2018_2 0.5489 0.5252 0.2295 29.5786 0.6644 0.218 0.1907 0.1677 29.5674 0.5550 0.7327 0.7267 0.1549 29.5779 0.7147

mbt2018_5 0.7362 0.7252 0.6394 35.3631 0.7495 0.3349 0.3467 0.6500 35.3693 0.6231 0.857 0.8563 0.4874 35.3656 0.7859

mbt2018_8 0.8032 0.7932 1.4109 41.6113 0.7811 0.6778 0.6911 1.5225 41.6259 0.7435 0.8715 0.8692 1.4960 41.6188 0.8244

cheng2020_anchor_2 0.6648 0.6478 0.2136 29.6633 0.7062 0.3192 0.3124 0.2051 29.6627 0.5948 0.8034 0.7993 0.2329 29.6612 0.7560

cheng2020_anchor_4 0.7388 0.7270 0.3470 33.3501 0.7486 0.5683 0.5803 0.3607 33.3510 0.6993 0.8499 0.8484 0.5859 33.3534 0.7811

cheng2020_anchor_6 0.7911 0.7805 1.1125 36.8395 0.7603 0.7491 0.7521 0.6999 36.8243 0.7645 0.8634 0.8626 0.7805 36.8401 0.7987

cheng2020_attn_2 0.6527 0.6360 0.2434 29.8007 0.7021 0.402 0.3807 0.1533 29.7939 0.6200 0.8012 0.7968 0.2016 29.7883 0.7569

cheng2020_attn_4 0.7172 0.7035 0.3629 33.4527 0.7408 0.5634 0.5491 0.5153 33.4597 0.6844 0.8347 0.8325 0.3945 33.4562 0.7828

cheng2020_attn_6 0.7594 0.7454 0.9044 36.8170 0.7554 0.6638 0.6667 0.7924 36.8132 0.7329 0.8602 0.8573 0.9029 36.8076 0.7927

Table 3.10: Performance comparison using frozen weights for neural compression
models applied to the RSI-CB256 dataset.
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Method Accuracy F1 BPP PSNR RDAI
bmshj2018_hyperprior_2 0.9473 0.9465 0.3575 28.393 0.794
bmshj2018_hyperprior_5 0.9592 0.9587 0.6019 31.2434 0.806
bmshj2018_hyperprior_8 0.9608 0.9605 0.7183 31.2724 0.802
bmshj2018_factorized_2 0.9034 0.9020 0.3524 28.0888 0.778
bmshj2018_factorized_5 0.9275 0.9263 0.8842 32.3250 0.791
bmshj2018_factorized_8 0.9214 0.9205 1.1057 35.5023 0.800

mbt2018_mean_2 0.9293 0.9282 0.4197 30.0056 0.795
mbt2018_mean_5 0.9576 0.9573 0.5344 31.1483 0.807
mbt2018_mean_8 0.9620 0.9617 0.5955 32.3721 0.813

mbt2018_2 0.9416 0.9408 0.4445 29.6112 0.796
mbt2018_5 0.9576 0.9574 0.5408 31.1927 0.807
mbt2018_8 0.9642 0.9639 0.7441 31.9874 0.807

cheng2020_anchor_2 0.9618 0.9617 0.3905 29.4765 0.804
cheng2020_anchor_4 0.9485 0.9475 0.3779 30.7447 0.807
cheng2020_anchor_6 0.9576 0.9573 0.4891 32.5162 0.816

cheng2020_attn_2 0.9541 0.9536 0.4009 29.9058 0.803
cheng2020_attn_4 0.9644 0.9646 0.3258 29.9594 0.810
cheng2020_attn_6 0.9715 0.9715 0.4300 30.3372 0.811

Table 3.11: Fine-tuning performance using various methods and Transformer classifier
applied to the RSI-CB256 dataset.
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(a) bmshj2018_hyperprior 2 (b) bmshj2018_hyperprior 5 (c) bmshj2018_hyperprior 8

(d) bmshj2018_factorized 2 (e) bmshj2018_factorized 4 (f) bmshj2018_factorized 8

(g) mbt2018 2 (h) mbt2018 5 (i) mbt2018 8

(j) mbt2018_mean 2 (k) mbt2018_mean 5 (l) mbt2018_mean 8

(m) cheng2020_anchor 2 (n) cheng2020_anchor 4 (o) cheng2020_anchor 6

(p) cheng2020_attn 2 (q) cheng2020_attn 4 (r) cheng2020_attn 6

Figure 3.14: t-SNE visualizations of models constructed latents of RSICB-256 test set,
with labels.
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(a) bmshj2018_hyperprior 2 (b) bmshj2018_hyperprior 5 (c) bmshj2018_hyperprior 8

(d) bmshj2018_factorized 2 (e) bmshj2018_factorized 4 (f) bmshj2018_factorized 8

(g) mbt2018 2 (h) mbt2018 5 (i) mbt2018 8

(j) mbt2018_mean 2 (k) mbt2018_mean 5 (l) mbt2018_mean 8

(m) cheng2020_anchor 2 (n) cheng2020_anchor 4 (o) cheng2020_anchor 6

(p) cheng2020_attn 2 (q) cheng2020_attn 4 (r) cheng2020_attn 6

Figure 3.15: t-SNE visualizations of models constructed latents of RSICB-256 test set,
with labels.
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Chapter 4

Data Fusion Using VAE Latent
Representations

The content of this chapter is a first version of the manuscript text for publication under
the following citation:

Giuliano, A. (2024). Enhancing Data Fusion and Classification of Sentinel-1 and
Sentinel-2 Imagery Using Neural Compression. Informatin Fusion.
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Abstract

This study introduces a novel approach to data fusion and classification by integrating
Synthetic Aperture Radar (SAR) and RGB images from the Sentinel-1 and Sentinel-2
satellites using compressive neural networks. By leveraging neural compression, we fuse
the diverse data sources into a unified latent space, enhancing information content and
enabling direct classification without the need for explicit decompression. The proposed
method is evaluated against several advanced data fusion techniques, including PCA,
DWT, and SA, as well as traditional JPEG compression, with a comprehensive anal-
ysis of classification accuracy, compression efficiency, and reconstruction quality. Our
findings demonstrate that the proposed approach significantly outperforms conventional
methods in classification performance through multimodal fusion. This work highlights
the potential of neural compression models for latent data fusion in remote sensing ap-
plications.
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4.1 Introduction

The advent of advanced satellite technologies has led to an exponential increase in the
volume and variety of remote-sensing data. Among the various types of sensors deployed,
Synthetic Aperture Radar (SAR) and optical sensors from platforms such as Sentinel-
1 and Sentinel-2 have proven very valuable due to their complementary capabilities.
SAR provides all-weather, day-and-night imaging capabilities with excellent penetration
through clouds and vegetation. At the same time, optical sensors offer high-resolution
images that capture the visual characteristics of the Earth’s surface. However, integrat-
ing these diverse data sources into a coherent and informative representation remains a
significant challenge [292, 293, 294].

Traditional data fusion techniques, such as Principal Component Analysis (PCA)
[295], Discrete Wavelet Transform (DWT) [296], and spectral analysis (SA) through fast
Fourier transform [293], have long been utilized to integrate SAR and optical imagery.
These methods aim to merge the complementary strengths of different data sources
to create a more comprehensive representation of the observed scenes. PCA reduces
dimensionality by transforming the data into a set of orthogonal components, DWT
decomposes the data into distinct frequency components for more detailed analysis, and
SA uses Fourier transform to analyze the spectral properties of the data. While these
approaches have been valuable in various applications, they often fall short in several
key aspects. One significant limitation of these traditional methods is their inability
to maximize the information content from the diverse data sources fully. PCA, for in-
stance, might discard subtle yet important details during the dimensionality reduction
process. Similarly, DWT can sometimes lead to loss of spatial resolution due to its focus
on frequency components. Consequently, these techniques may not capture the intricate
relationships and complementary information inherent in SAR and optical data. More-
over, conventional compression techniques like JPEG, designed primarily for visual data,
are not well-suited for preserving the critical information contained in remote sensing
imagery. JPEG compression reduces the file size through lossy compression, which can
eliminate fine details and introduce artifacts that degrade the data quality. This loss of
information is especially problematic in remote sensing applications where precision and
accuracy are paramount. For example, subtle changes in terrain or vegetation, which
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are crucial for environmental monitoring and disaster management, may be obscured or
lost entirely due to compression artifacts.

Recent advancements in machine learning, particularly in neural networks, have
opened new avenues for addressing these challenges [297]. Neural compression and mul-
timodal fusion techniques leverage the power of deep learning to create unified latent
representations that capture the essential features of diverse data sources [261]. By em-
ploying these techniques, it is possible to enhance the information content and enable
direct classification from the latent space without the need for explicit decompression.
This approach improves classification accuracy and offers better compression efficiency
and reconstruction quality compared to conventional methods.

This study introduces a novel approach that integrates SAR and RGB images from
Sentinel-1 and Sentinel-2 satellites using compressive neural networks. The proposed
method employs VAE-based neural compression to fuse diverse data sources into a unified
latent space, thereby enhancing the information content and enabling direct classification
without explicit decompression. The key contributions of this work are as follows:

• The introduction of a neural compression framework for efficient multimodal data
fusion, offers a new way to process SAR and optical imagery together.

• Fusion of SAR and RGB data into a unified latent space, leading to an enriched
and more informative data representation compared to traditional methods.

• Direct classification from the latent space without requiring decompression, signif-
icantly improving computational efficiency in the classification process.

The effectiveness of this approach is evaluated against advanced data fusion techniques
such as PCA, DWT, and SA, as well as traditional JPEG compression. Comprehen-
sive analyses of classification accuracy, compression efficiency, and reconstruction qual-
ity demonstrate that the proposed method significantly outperforms conventional tech-
niques. These results highlight the potential of neural compression models in remote
sensing data fusion and classification, offering enhanced performance and practicality
for future applications.

4.2 Related Work

Remote sensing involves the collection of data about objects or phenomena from a dis-
tance, typically using sensors mounted on satellites and aircraft to gather information
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about the Earth’s surface, atmosphere, and oceans. This data provides insights into the
topography, land cover, vegetation, pollution levels, and climate patterns, supporting a
diverse range of applications across numerous fields [218]. These applications include en-
vironmental monitoring, urban planning, disaster management, climate change research,
and defense operations. The sensors employed in these applications are often comple-
mentary, capturing various aspects of the Earth’s surface. Data fusion is extensively
utilized in remote sensing, encompassing both homogeneous fusion techniques, such as
pansharpening, hyperspectral (HS) pansharpening, and spatiotemporal fusion, as well
as heterogeneous fusion approaches, like LIDAR-optical and synthetic aperture radar
(SAR)-optical fusion. These methods are employed for various applications, including
land use and land cover (LULC) classification, object detection, change detection, and
terrain monitoring [298]. Many publicly available data fusion datasets, beyond the scope
of audiovisual fusion, have been contributed by the recurring IEEE GRS Data Fusion
Contest, which focuses on tasks such as land cover classification and semantic urban
reconstruction [299, 300].

4.2.1 Data Fusion in Remote Sensing

Multimodal data fusion is a critical field in modern remote sensing and data analysis,
aiming to combine information from different sources to provide a more comprehensive
understanding of complex phenomena. This approach is driven by the limitations of in-
dividual sensors and the complementary nature of the data they provide. For instance,
while optical sensors capture detailed spectral information essential for land cover clas-
sification and material identification, their performance is hampered by cloud cover and
varying illumination conditions. Conversely, Synthetic Aperture Radar (SAR) provides
consistent spatial data unaffected by weather, but often suffers from speckle noise and
lower interpretability. By integrating data from multiple sources, multimodal data fusion
seeks to overcome these individual limitations, creating a richer dataset that enhances
the accuracy and reliability of remote sensing applications [301]. The use of diverse data
sources has significantly improved decision-making in fields ranging from environmental
monitoring to disaster management.

Pixel-level fusion techniques represent one of the foundational approaches in multi-
modal data fusion, directly combining the pixel values from different sources to generate
a single fused image. These techniques include Intensity-Hue-Saturation (IHS), and
Brovey Transform, which aim to enhance spatial resolution while preserving spectral
characteristics. Such methods are particularly useful in applications where high spa-
tial resolution is crucial, such as urban mapping and agricultural monitoring. However,
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pixel-level fusion often requires precise geometric registration of input images and can be
computationally intensive, especially when dealing with large datasets or high-resolution
images. Recent advancements have seen the integration of more sophisticated models,
such as multi-scale decomposition and hybrid techniques, which combine several fusion
methods to balance spatial and spectral fidelity effectively [293]. Despite these advance-
ments, challenges remain in mitigating artifacts and ensuring that the fused images
retain meaningful information for subsequent analysis.

4.2.2 Traditional Data Fusion Methods

Traditional multimodal fusion methods have been foundational in integrating data from
multiple sources to enhance the accuracy and interpretability of the resulting informa-
tion. These methods typically involve three levels of fusion: pixel-level, feature-level, and
decision-level fusion, as illustrated in Figure 4.1. Pixel level fusion, while straightforward,
often requires precise geometric alignment of the datasets and can be computationally
intensive. Feature-level fusion, on the other hand, involves extracting and combining
features from each modality before performing the analysis. This method allows for the
integration of more abstract representations of the data, reducing the impact of registra-
tion errors and enhancing the robustness of the analysis. Decision-level fusion combines
the outputs of individual classifiers or decision-making processes, which is useful in sce-
narios where the data sources are significantly heterogeneous or when the individual
decisions are more reliable than the fused data itself. Multimodal fusion methods, such
as multiset canonical correlation analysis (CCA), parallel factor analysis (PARAFAC),
and various tensor decomposition techniques, have been extensively employed in remote
sensing to exploit complementary information from diverse modalities.

Multiset CCA extends canonical correlation analysis to handle multiple datasets si-
multaneously, identifying shared structures across different modalities. This method has
been used in integrating multispectral and SAR data for enhanced land cover classifica-
tion and environmental monitoring, addressing challenges like varying spatial resolutions
and sensor-specific noise [301, 302, 303].

PARAFAC is a well known technique for decomposing multi-way data into a sum of
rank-1 tensors, which allows for a structured extraction of latent features from complex
datasets. In remote sensing, it has been applied to fuse spatial and spectral information
from hyperspectral images, thereby improving the robustness of data interpretation and
reducing the impact of noise and misalignment. This method has proven effective for
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applications such as vegetation mapping and soil analysis, where maintaining spectral
integrity is essential [304].

Tensor decomposition methods, including canonical polyadic decomposition (CPD)
and Tucker decomposition, extend these capabilities by modeling interactions in multi-
way arrays common in high-dimensional datasets like those used in SAR-optical fusion.
These techniques enable the integration of multimodal data while preserving the unique
features of each modality, thereby improving the accuracy of applications such as ter-
rain mapping and urban monitoring [301]. Recent advancements in SAR-optical fusion
techniques have highlighted the effectiveness of hybrid and multi-scale decomposition
approaches. For example, wavelet-based methods have been combined with component
substitution techniques to overcome limitations such as spectral distortion and low spa-
tial resolution, as demonstrated in recent studies on SAR-optical fusion [293]. These
methods provide robust solutions to the challenges posed by multimodal data fusion,
ensuring high-quality outputs that are essential for decision-making in diverse remote
sensing applications [305].

Pixel-level fusion techniques for SAR and optical images include component substi-
tution methods, multiscale decomposition methods, hybrid methods, and model-based
methods [293]. Component substitution (CS) methods, such as Principal Component
Analysis (PCA), Intensity-Hue-Saturation (IHS) transformation, and Brovey Transform,
involve projecting multispectral data into another space where spatial and spectral in-
formation is separated. The spatial component is then substituted with high-resolution
SAR data to enhance spatial details while maintaining spectral characteristics. However,
these methods often result in spectral distortions due to differences in data character-
istics between SAR and optical images. Multiscale decomposition methods, including
wavelet and pyramid transforms, aim to overcome these limitations by decomposing
the images into multiple scales and fusing them at different resolution levels, providing
better localization in both spatial and spectral domains. Hybrid methods combine the
strengths of CS and multiscale decomposition to reduce both spatial and spectral distor-
tions. Model-based methods, such as sparse representation and variational models, treat
fusion as a restoration problem and employ advanced mathematical models to achieve
high-quality fusion results

4.2.3 Multimodal Data Fusion with Neural Networks

Deep learning has significantly advanced the field of multimodal data fusion by providing
tools to capture complex, non-linear relationships between diverse data sources. Instead
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Figure 4.1: Illustration of different levels of multimodal data fusion: Pixel-level fusion
(left): Input modalities are combined directly at the raw data level to create a fused
representation, which is then processed by a model for output. Feature-level fusion
(center): Features are extracted independently from each modality, then combined into
a fused representation, which is processed by a model. Decision-level fusion (right):
Each modality is processed separately, and their individual outputs are fused at the
decision level to generate the final output.

151

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

of merely combining raw data, these methods focus on extracting and integrating features
from each modality to build robust models that enhance performance across a range of
applications. For example, Convolutional Neural Networks (CNNs) have been effectively
employed to capture spatial patterns from Synthetic Aperture Radar (SAR) images and
rich spectral information from optical images, leading to superior performance in tasks
such as object detection and land cover classification. Generative Adversarial Networks
(GANs) have been used to generate high-quality fused images, synthesizing the strengths
of each modality while reducing the noise and artifacts often associated with traditional
fusion techniques [306].

Recent research has explored various deep learning architectures to model complex in-
termodal relationships. Gao et al. [307] reviewed the use of Deep Belief Networks (DBN)
and Stacked Autoencoders (SAE) for multimodal data fusion, demonstrating their effec-
tiveness in applications ranging from image annotation to medical diagnosis. Similarly,
Zhang et al. [308] emphasized the importance of tailored fusion strategies—early, late, or
hybrid—specifically for semantic image segmentation, to fully exploit the complementary
strengths of different data sources. These approaches highlight the need for innovative
methods that can effectively integrate diverse data types to improve classification and
interpretation.

The use of Transformers in multimodal data fusion has recently gained traction due
to their ability to handle multiple modalities with minimal architectural modifications.
Akbari et al. [309] introduced a convolution-free Transformer model for self-supervised
learning from raw video, audio, and text data, achieving state-of-the-art results across
various downstream tasks. This modality-agnostic approach shows potential for en-
hancing feature extraction and fusion in remote sensing applications. Xu et al. [310]
provide a comprehensive review of multimodal learning with Transformers, underscoring
their advantages in achieving effective cross-modal interactions and modality-agnostic
processing.

Additionally, Shi et al. [311] proposed a Variational Mixture-of-Experts Autoencoder,
which facilitates coherent joint and cross-generation of multimodal data, enhancing the
flexibility and robustness of fusion models.

In the context of remote sensing, traditional methods such as PCA, DWT and SA
have been widely used for data fusion, but they often fall short in preserving the rich
information contained in multimodal datasets.
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The continuous development of advanced deep learning techniques in multimodal
data fusion offers promising prospects for remote sensing, as evidenced by the signifi-
cant improvements in classification accuracy, compression efficiency, and reconstruction
quality achieved through neural compression models. This progress suggests a future
direction for leveraging these sophisticated architectures to enhance the accuracy and
interpretability of satellite image analysis.

4.2.4 Compressive Neural Networks in Remote Sensing

In recent years, neural compression has gained attention for its application to satellite
imagery, although research in this area remains limited. A notable contribution is the
work by Oliveira et al., which introduces a low-complexity VAE specifically designed for
on-board satellite image compression [263]. This model addresses constraints related to
time and memory while preserving compression performance. The approach simplifies
the entropy model by demonstrating that most features follow a Laplacian distribu-
tion, replacing complex non-parametric techniques with a straightforward parametric
estimation. The proposed model surpasses the Consultative Committee for Space Data
Systems (CCSDS) standard and holds its own against cutting-edge learned compression
methods.

Additionally, a few other studies have explored neural compression for satellite images
with encouraging outcomes [282, 283]. However, efficiently compressing and transmit-
ting the rapidly growing volumes of satellite data remains a significant challenge. This
research extends the current work by investigating the use of Variational Autoencoders
(VAEs) and other sophisticated neural compression models for satellite image analysis,
with the goal of utilizing the latent space directly for subsequent machine learning tasks
and data fusion.

4.3 Methodology

4.3.1 Proposed Architecture

In this work, we introduce a novel architecture for satellite image classification that
leverages latent space representations generated by neural compression models. Our
approach is motivated by the observation that latent representations, which are compact
and informative versions of the original data, can be directly utilized for downstream
tasks like classification without the need for full image reconstruction. By fusing the
latent spaces of different data modalities—specifically, optical and Synthetic Aperture
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Radar (SAR) images—our method effectively combines complementary information from
both sources, leading to enhanced classification performance.

The proposed architecture consists of three primary stages: individual compression of
optical and SAR images, fusion of their latent representations, and classification based
on the fused latent space.

At the core of our approach is the use of Variational Autoencoders (VAEs) for neural
compression. Both optical and SAR images are independently compressed using a set
of pre-trained VAEs from the CompressAI library. These VAEs, including models such
as bmshj2018_factorized, bmshj2018_hyperprior, and cheng2020_attn, were trained on
large image datasets (e.g., Vimeo90K) to learn compact, lower-dimensional representa-
tions of the input images.

Each VAE consists of an encoder E(·) that transforms the input image into a latent
space, and a decoder D(·) that reconstructs the image from this representation. The
encoder is probabilistic, meaning it outputs a distribution over the latent space instead of
a deterministic point. This design allows the model to capture uncertainty and variability
in the data, which is crucial for efficient compression.

Let xoptical and xsar denote the input optical and SAR images, respectively. The
encoder E(·) maps each image to its corresponding latent representation:

zoptical = E(xoptical), zsar = E(xsar)

The latent spaces zoptical and zsar are compact representations of the original images,
containing the most essential features while reducing the dimensionality significantly.
These latent spaces are further quantized and entropy encoded to reduce their size for
transmission over communication channels, ensuring efficient use of bandwidth. At the
receiving end, the encoded representations are entropy decoded back into the latent
spaces for further processing.

One of the key contributions of our architecture is the fusion of latent representa-
tions from multiple modalities—optical and SAR images. Rather than relying on the
individual characteristics of each image modality for classification, we combine their la-
tent spaces to create a unified representation that integrates the strengths of both data
sources.
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The fusion process is performed element-wise, where the latent representation zoptical

of the optical image and the latent representation zsar of the SAR image are added
together to form the fused latent space zfused:

zfused = zoptical + zsar

This element-wise addition serves to merge complementary information from the two
modalities. Optical images provide detailed visual information that is affected by weather
and lighting conditions, while SAR images capture structural details independent of these
factors. By fusing the two, we create a representation that is both robust and rich in
features, suitable for more accurate classification.

The fused latent space zfused is then entropy encoded and transmitted through the
communication channel, similar to the individual latent spaces. Once decoded, it serves
as the input for both image reconstruction and classification.

After decoding the fused latent representation, our architecture proceeds with clas-
sification. The fused latent space, zfused, is used as input to a Multi-Layer Perceptron
(MLP) classification model, which is tasked with predicting the class label of the input
images. This classification model, denoted C(·; θC), is trained to learn decision bound-
aries that separate the different classes based on the fused features.

The classification process can be described mathematically as follows: Given the
fused latent representation zfused, the classifier outputs the predicted class probabilities
ŷ:

ŷ = C(zfused; θC)

The model is trained using a standard cross-entropy loss function, which compares
the predicted class probabilities ŷ with the ground truth labels y:

Lclass = −
∑

i

yi log(ŷi)

Here, yi is the true label for class i, and ŷi is the predicted probability for that class.
By minimizing this loss function, the model learns to improve its classification accuracy.
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An important aspect of our architecture is the separation of tasks between the VAE
models and the classifier. The VAE models are responsible for feature extraction, trans-
forming the high-dimensional input images into compact latent spaces that capture es-
sential information. Once the latent spaces are generated, the VAE weights are frozen,
ensuring that the learned representations remain stable throughout the training process.
This allows the classifier to focus solely on learning the decision boundaries required for
accurate classification.

Freezing the VAE weights also reduces the computational complexity of training.
Rather than training the entire architecture end-to-end, we can focus on optimizing the
classifier, which is a much simpler model compared to the VAE. This division of labor
simplifies the training process and accelerates convergence.

In addition to classification, our architecture allows for the reconstruction of the
original images from the fused latent space. Although classification is the primary task,
the ability to reconstruct images is a useful secondary feature that demonstrates the
quality of the latent space encoding. Using the probabilistic decoders of the VAE models,
the fused latent space can be decoded back into its original optical and SAR components,
providing visual confirmation of the compressed and fused representations’ effectiveness.

The proposed architecture offers several key advantages:

• Compact and Efficient Representations: By using VAEs for neural compres-
sion, the architecture generates highly compact latent spaces that preserve essential
image features while significantly reducing the dimensionality.

• Fused Representation: The fusion of optical and SAR latent spaces creates a
unified representation that leverages complementary information from both modal-
ities, improving classification accuracy.

• Modular Design: The separation of feature extraction and classification tasks
simplifies training, reduces computational complexity, and speeds up convergence.

• Dual Functionality: In addition to classification, the architecture allows for the
reconstruction of original images from the fused latent space, ensuring that the
latent representations are informative and compact.

4.3.2 Neural Compression Models

To focus on the fusion of the latent manifolds from different data modalities, we exclu-
sively selected VAE-based neural compression models. Specifically, we utilized models
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Figure 4.2: Proposed architecture: The top box illustrates conventional image trans-
mission using neural compression; the bottom box shows conventional SAR image trans-
mission using neural compression. The center represents the fused latent space transmis-
sion, with options for transforming it back to an image or using the latent space directly
for classification.
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that employ Gaussian latent variables and discretized Gaussian mixture models, as they
provide flexible and expressive latent representations. The Gaussian latent variable
models capture the continuous underlying structure of the data, while the discretized
Gaussian mixture models enhance the model’s ability to capture more complex data
distributions. This choice was motivated by the need to fuse latent spaces in a way that
preserves the essential features of both image modalities, optical and SAR, while main-
taining the probabilistic interpretability inherent to VAEs. By leveraging these specific
latent space formulations, we ensure that the fused representations retain both the com-
pactness and informativeness required for downstream classification tasks, improving
overall model performance.

Neural Compression Model Number of Parameters
bmshj2018_hyperprior_2 4,968,963
bmshj2018_hyperprior_5 4,968,963
bmshj2018_hyperprior_8 11,582,275
bmshj2018_factorized_2 2,887,363
bmshj2018_factorized_5 2,887,363
bmshj2018_factorized_8 6,788,675
mbt2018_mean_2 6,921,123
mbt2018_mean_5 17,327,651
mbt2018_mean_8 17,327,651
mbt2018_2 13,896,419
mbt2018_5 25,270,548
mbt2018_8 25,270,548
cheng2020_anchor_2 11,726,269
cheng2020_anchor_4 26,364,908
cheng2020_anchor_6 26,364,908
cheng2020_attn_2 13,076,413
cheng2020_attn_4 29,397,740
cheng2020_attn_6 29,397,740

Table 4.1: Number of parameters in various neural compression models.

4.3.2.1 Gaussian Latent Variable Models

The bmshj2018_factorized model employs a fully factorized density model for the latent
variables. Each latent variable yi is assumed to be independent and identically dis-
tributed (i.i.d.), allowing the prior distribution over the latent variables to be factorized
as:
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p(y) =
∏

i

p(yi) (4.1)

This model uses a non-parametric piecewise linear density to approximate each factor
of the prior. The density p is derived from its cumulative distribution function (CDF)
c, where:

p(x) = ∂c(x)
∂x

(4.2)

The cumulative function c is designed to be monotonic, mapping R to [0, 1], ensuring
a valid density function. This is constructed through a series of transformations:

c = fK ◦ fK−1 ◦ · · · ◦ f1 (4.3)

with the density derived from the derivatives of these transformations:

p = f ′
K · f ′

K−1 · · · · · f ′
1

Here, fk are vector functions composed of matrices H(k), biases b(k), and element-wise
nonlinearities gk, defined as:

gk(x) = x + a(k) ⊙ tanh(x) (4.4)

where a(k) are vectors controlling the expansion or contraction rate. This setup
efficiently approximates the latent distribution using piecewise linear segments, which is
useful for compression.

The bmshj2018_hyperprior model builds upon this by introducing a hyperprior to
capture spatial dependencies among the elements of the latent representation y. This is
achieved by using an auxiliary autoencoder that models the latent scales with another
set of latent variables z, such that:

z = ha(y; ϕh) (4.5)
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and the conditional distribution of the latent variables given the hyperprior is modeled
as a Gaussian distribution:

p(y|z) = N (y; 0, σ2(z; θh)) (4.6)

Here, ha and hs represent the analysis and synthesis transforms in the auxiliary
autoencoder, respectively. The hyperprior enhances the entropy model by conditioning
the latent variable y on the auxiliary latent variable z, leading to more accurate, spatially
adaptive entropy estimates.

The mbt2018_mean model further extends the
bmshj2018_hyperprior by incorporating mean prediction alongside the scale prediction
for the Gaussian distribution of the latent variables. The latent variable distribution is
modeled as:

p(y|z) = N (y; µ(z; θh), σ2(z; θh)) (4.7)

This addition allows the model to capture not only the scale but also the mean shift
in the latent space, leading to a more flexible and accurate entropy model. The model
predicts both the mean µ and scale σ from the hyperprior, improving the ability to
compress complex data distributions.

The mbt2018 model combines the hyperprior with an autoregressive context model,
further refining the entropy estimation by incorporating dependencies between latent
variables. The context model conditions the current latent variable on previously de-
coded latents, using the following autoregressive distribution:

p(yi|y<i, z) = N (yi; µ(y<i, z), σ2(y<i, z)) (4.8)

By using previously decoded latents y<i in combination with the hyperprior z, this
model improves the prediction of each latent variable, leading to a more accurate and
efficient entropy model.

4.3.2.2 Discretized Gaussian Mixture Models

In addition to Gaussian latent variable models, we employed models based on discretized
Gaussian mixture models, which provide a more flexible and expressive representation
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of the latent spaces. These models are effective at capturing complex distributions in
the latent space, improving the accuracy of the compression and fusion processes.

The cheng2020_anchor model introduces discretized Gaussian mixture likelihoods
to model the distribution of the latent variables more effectively. Instead of assuming
a single Gaussian distribution for each latent variable, this model uses a mixture of K

Gaussian components, each with its own mean and variance, to provide a more expres-
sive and flexible prior. The conditional probability of the latent variable y given the
hyperprior z is formulated as:

p(y|z) =
K∑

k=1
w(k)N (y; µ(k)(z), σ2(k)(z)) (4.9)

Here, w(k), µ(k)(z), and σ2(k)(z) represent the mixture weights, means, and variances
of the k-th Gaussian component, respectively, all of which are conditioned on the hy-
perprior z. This mixture model is good at capturing the complex, multimodal nature
of the latent space, allowing the model to handle a wider variety of spatial structures
and features in the data. By using multiple Gaussian components, the model can better
approximate the true distribution of the latent codes, reducing spatial redundancy and
significantly improving the compression performance.

The flexibility of the discretized Gaussian mixture model allows it to model intricate
variations in the data more accurately, especially when there are discontinuities or com-
plex dependencies within the latent space. This improvement in entropy modeling leads
to better compression, especially when combined with the spatial dependencies captured
by the hyperprior.

Finally, the cheng2020_attn model extends the performance of the image compres-
sion system by incorporating attention mechanisms. Attention modules help the model
focus on specific regions of the image that contain more complex or important infor-
mation, enhancing the overall rate-distortion performance. The attention mechanism is
integrated directly into the model’s architecture, modifying the convolutional features
to prioritize information-rich areas. Mathematically, this is expressed as:

y = f(x; θ, A) (4.10)
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where A represents the parameters of the attention module, and f is the function
parameterized by θ that includes the attention-based transformations. The attention
module dynamically adjusts the focus of the network during compression, leading to a
more efficient allocation of the available bits and better compression performance. This
mechanism is beneficial for complex image regions where simple spatial dependencies are
insufficient, further boosting both compression efficiency and the quality of the latent
representations.

4.3.3 Classification Model

The MLP model used in our approach is designed to process the latent space represen-
tations produced by the VAE models. These latent representations serve as compact,
informative summaries of the input satellite and SAR images, and the role of the MLP
is to map these representations to the corresponding class labels.

The MLP architecture consists of three fully connected layers, each responsible for
progressively refining the extracted features from the latent space. The input dimension
of the MLP is determined by the size of the latent space produced by the VAE, which
varies depending on the complexity of the data and the architecture of the compression
model. Between each fully connected layer, non-linear activation functions are applied
to introduce non-linearity, allowing the model to learn complex decision boundaries,
structured as follows:

Layer 1: h1 = σ(W1z + b1)

Layer 2: h2 = σ(W2h1 + b2)

Output Layer: ŷ = W3h2 + b3

where z is the input latent representation, Wi and bi are the weights and biases of
layer i, σ is the activation function (ReLU), and ŷ is the output class probabilities.

In addition to non-linearity, dropout regularization is employed between layers to
prevent overfitting by randomly deactivating a fraction of neurons during training. The
final layer of the MLP is a softmax output layer, which outputs class probabilities for
classification.
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4.3.4 Dataset

The dataset used in this study originates from the SEN1-2 dataset, introduced by Schmitt
et al. [312]. The SEN1-2 dataset consists of synthetic aperture radar (SAR) and optical
(RGB) image pairs collected by the Sentinel-1 and Sentinel-2 satellites, part of the
European Space Agency’s Copernicus program. This dataset contains 282,384 pairs of
SAR and optical image patches, sampled from locations across the globe and covering
all four meteorological seasons. The dataset is designed to support research in SAR-
optical data fusion, providing co-registered multi-modal images with diverse geographic
and environmental coverage.

For our study, we specifically curated a subset of image pairs. These images were
manually selected from the SEN1-2 dataset to represent four distinct land cover classes:
barren land, grassland, agricultural land, and urban areas. This selection was made
to ensure that each class reflects a wide range of visual and environmental variability.
Representative optical images from each class are included in subsequent sections to
illustrate this diversity.

This dataset is well-suited for training deep learning models, such as Conditional
Generative Adversarial Networks (Conditional GANs) and Variational Autoencoders
(VAEs). The complexity of the SAR and optical images, characterized by their irregular
spatial patterns, lack of geometric consistency, and varied orientations, makes it an
ideal benchmark for evaluating model robustness across diverse tasks. The dataset’s
complexity also provides an excellent testbed for generative modeling, data fusion, and
classification challenges in remote sensing.

By leveraging the rich variability in the SEN1-2 dataset, this study aims to explore
the performance of deep learning models under non-ideal conditions, testing their adapt-
ability and generalization to complex, real-world scenarios.

4.3.5 Quality Metrics

• Rate Distortion Accuracy Index (RDAI) To compare the efficacy of fine-
tuning and assess the results of various neural compression and classification mod-
els on both reconstruction quality and classification performance, we introduce the
Rate Distortion Accuracy Index (RDAI) inspired by the works of Luo et al. [287]
on the rate distortion accuracy tradeoff in JPEG. This novel metric integrates
the critical aspects of rate, distortion, and accuracy, providing a comprehensive
evaluation framework for neural compression methods. The RDAI is defined as a
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weighted combination of rate, distortion, and accuracy. Given that Bits Per Pixel
(BPP) will be between 0 and 10, PSNR between 0 and 60, and F1 between 0 and
1, we normalize PSNR to the range [0, 1] as follows:

PSNRnormalized = PSNR
60 (4.11)

The formula for RDAI is then given by:

RDAI = α ·
(10 − BPP

10

)
+ β ·

(PSNR
60

)
+ γ · F1 (4.12)

where α, β, and γ are the weights assigned to each component, such that α+β+γ =
1. During this study, we gave all three components equal weight and importance,
and therefore α = β = γ = 1

3 .

• Relative Bias

Relative Bias = 1
N

N∑
i=1

(
ŷi − yi

yi

)
(4.13)

This metric measures the average deviation of the estimated values (ŷi) from the
true values (yi) relative to the true values. It provides insight into whether the
estimates are systematically over or under the true values.

• Relative Variance
Relative Variance = Var(ŷ)

Var(y) (4.14)

This metric compares the variance of the estimated values (ŷ) to the variance of
the true values (y). It indicates how the estimates’ dispersion matches the true
values’ dispersion.

• Relative Standard Deviation

Relative Standard Deviation = Std(ŷ)
Std(y) (4.15)

This metric measures the ratio of the standard deviation of the estimated values
(ŷ) to the standard deviation of the true values (y). It helps to assess the relative
spread of the estimates compared to the true values.
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• Correlation Coefficient (Pearson)

r =
∑N

i=1(yi − ȳ)(ŷi − ¯̂y)√∑N
i=1(yi − ȳ)2

√∑N
i=1(ŷi − ¯̂y)2

(4.16)

This metric measures the linear correlation between the true values (yi) and the
estimated values (ŷi). A value of r close to 1 indicates a strong positive correlation,
while a value close to -1 indicates a strong negative correlation.

• Universal Quality Index (UQI)

UQI = 4µxµyσxy

(µ2
x + µ2

y)(σ2
x + σ2

y) (4.17)

The UQI evaluates the quality of an image by considering the mean (µ), variance
(σ2), and covariance (σxy) of the true and estimated images. It is designed to be
a more comprehensive measure of image quality than simple error metrics.

• Spectral Angle Mapper (SAM)

SAM = 1
N

N∑
i=1

arccos
( yi · ŷi

∥yi∥∥ŷi∥ + ϵ

)
(4.18)

SAM measures the spectral similarity between the true (yi) and estimated (ŷi)
spectral vectors. It is commonly used in remote sensing to compare spectral sig-
natures.

• Entropy
H(X) = −

∑
i

p(xi) log p(xi) (4.19)

Entropy measures the amount of information or randomness in an image. A higher
entropy value indicates a more complex image with more information content.

• Standard Deviation

Std(X) =

√√√√ 1
N

N∑
i=1

(xi − µ)2 (4.20)

The standard deviation measures the amount of variation or dispersion of pixel
values in an image. It indicates how much the pixel values deviate from the mean
value of the image.
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• Spectral Frequency

Spectral Frequency = 1
N

N∑
i=1

|F (xi)| (4.21)

Spectral frequency measures the average magnitude of the Fourier transform of an
image. It provides insight into the frequency content of the image, which can be
useful in analyzing texture and other patterns.

• SSIM (Structural Similarity Index)

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2) (4.22)

The SSIM evaluates the visual similarity between two images by considering lumi-
nance, contrast, and structure. It is designed to mimic human perception of image
quality.

• PSNR (Peak Signal-to-Noise Ratio)

PSNR = 10 log10

(
MAX2

MSE

)
(4.23)

PSNR measures the ratio between a signal’s maximum possible power and the cor-
rupting noise’s power. It is commonly used to assess the quality of reconstruction
in image compression.

4.3.6 Latent Space Visualization

To visualize and compare the latent spaces generated by the Variational Autoencoder
(VAE), we utilized t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP). Both are dimensionality reduction
techniques well-suited for visualizing high-dimensional data in lower-dimensional spaces,
typically two or three dimensions.

t-SNE operates by converting the similarities between data points in the high-dimensional
space into joint probabilities and then tries to optimize the low-dimensional represen-
tation to preserve these similarities. This is achieved through a probabilistic approach
where the similarity between two points in the high-dimensional space is represented
by a Gaussian distribution, while in the low-dimensional space, it is represented by a
Student’s t-distribution with one degree of freedom (a Cauchy distribution). This choice
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of distribution in the low-dimensional space helps to manage the so-called "crowding
problem," where too many points are mapped too closely together.

Mathematically, t-SNE works as follows:

For each pair of points (i, j), t-SNE calculates the conditional probability pj|i that
point j would be chosen as a neighbor of point i if neighbors were picked in proportion
to their probability density under a Gaussian centered at i:

pj|i = exp(−∥xi − xj∥2/2σ2
i )∑

k ̸=i exp(−∥xi − xk∥2/2σ2
i )

(4.24)

where xi and xj are the high-dimensional input data points, and σi is the variance
of the Gaussian centered at xi.

The joint probability pij is then symmetrized:

pij =
pj|i + pi|j

2N
(4.25)

where N is the number of data points.

In the low-dimensional space, a similar joint probability qij is computed using a
Student’s t-distribution:

qij = (1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1 (4.26)

where yi and yj are the low-dimensional representations of the data points.

t-SNE aims to minimize the Kullback-Leibler (KL) divergence between the high-
dimensional and low-dimensional joint probabilities:

KL(P∥Q) =
∑
i ̸=j

pij log pij

qij
(4.27)

This is typically done using gradient descent, where the positions of the points in the
low-dimensional space are iteratively adjusted to minimize the KL divergence.
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t-SNE is particularly suitable for our application because it effectively captures the
local structure of the data, making it easier to identify clusters and patterns within
the latent space. By visualizing the latent spaces using t-SNE, we can gain insights
into how well the VAE has learned to represent the data and how distinct the latent
representations are for different classes. This visualization helps in evaluating the quality
of the latent space and the effectiveness of the VAE model in capturing essential features
of the satellite images.

T-SNE was used to project the high-dimensional latent representations into a 2D
space using perplexity = 30, and 500 iterations, where each point represents a data
sample’s latent vector. The resulting 2D plot provides a visual comparison of the latent
spaces, highlighting the clustering of data points based on their class labels, as shown in
Figures ??.

UMAP is another technique used for visualizing high-dimensional data. It is based
on manifold learning techniques and is good at preserving the global structure of the
data. UMAP works by constructing a high-dimensional graph of the data and then
optimizing a low-dimensional graph to be as structurally similar as possible to the high-
dimensional one. This makes UMAP an excellent complementary technique to t-SNE,
as it can provide a different perspective on the data structure.

Mathematically, UMAP optimizes the following objective function:

L = cross-entropy(X, Y ) = −
∑
i ̸=j

[
Aij log(Bij)

+ (1 − Aij) log(1 − Bij)
] (4.28)

where A is the adjacency matrix of the high-dimensional data and B is the adjacency
matrix of the low-dimensional representation.

UMAP was used to project the same high-dimensional latent representations into a
2D space, similarly to t-SNE. The resulting 2D plot provides another visual comparison
of the latent spaces, highlighting the clustering of data points based on their class labels
as shown in Figures 4.5.

Both t-SNE and UMAP are crucial for understanding the latent spaces produced by
the VAE and for assessing the effectiveness of the model in capturing and representing the
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underlying structure of the data. These techniques allow us to observe the distribution
and separability of different classes in the latent space, which is essential for evaluating
the performance of the model in classification tasks.

4.3.7 Experiments

The experiments were conducted using PyTorch and CUDA on an NVIDIA GeForce
RTX 4070 Ti Super GPU (16 GB), paired with an Intel(R) Core(TM) i7-14700KF CPU
running at 3400 MHz, with 20 cores and 28 logical processors. The system also included
128 GB of DDR5 RAM at 6000 MHz. Tensorboard was utilized to log all results,
including time series, scalar, and image data.

4.4 Results

In this section, we present the results of various experiments designed to evaluate the
performance of neural compression models in comparison to singular modalities and
traditional data fusion techniques. The primary goal is to demonstrate the superiority
of fused representations, where Sentinel-1 SAR and Sentinel-2 optical data are combined
in the latent space, as compared to singular modality approaches. Additionally, we
compare the neural compression-based fusion technique with other established fusion
methods, such as Discrete Wavelet Transform (DWT), Spectral analysis, and Principal
Component Analysis (PCA), to assess the advantages of latent space fusion as shown in
other related publications as well [293].

4.4.1 Classification and Compression Performance of Neural Compres-
sion

The performance of neural compression models using fused representations of Sentinel-1
SAR and Sentinel-2 optical data consistently exceeded that of singular modalities (either
SAR or optical) and JPEG compression across all quality metrics. This superiority is
evident in terms of classification accuracy, compression efficiency, and image quality, as
highlighted in Tables 4.2 and 4.3.

4.4.1.1 Baseline Comparison with JPEG

The results of traditional JPEG compression, as shown in Table 2, reveal its limitations
in balancing compression efficiency and classification performance. For instance, at the
lowest quality setting (JPEG_10), the F1 score was 0.543 with a PSNR of 25.12, while
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the average BPP was 0.5111. Although increasing the quality to JPEG_100 improved
the PSNR to 37.41, the F1 score only marginally increased to 0.5918, and the BPP
escalated dramatically to 8.914. This demonstrates that while JPEG compression can
preserve image quality at higher settings, it remains inefficient in terms of compression
and offers limited improvements in classification accuracy.

In contrast, neural compression models, particularly those leveraging fused repre-
sentations, exhibited far superior performance. The bmshj2018_hyperprior model, as
detailed in Table 3, achieved an F1 score of 0.9181 at Quality 2, with a PSNR of 26.5543
and a BPP of 0.6226. This marks a significant improvement over JPEG_10, which had
a much lower F1 score (0.543) with a comparable PSNR of 25.12 and a slightly lower
BPP of 0.5111. Notably, fused neural compression models consistently outperformed
JPEG across all metrics, striking an effective balance between compression efficiency
and classification accuracy.

At Quality 5, the bmshj2018_hyperprior model continued to excel, with the fused
representation achieving an F1 score of 0.9111, a PSNR of 30.8682, and a BPP of 0.4056.
In comparison, JPEG_40, which has a similar PSNR of 28.93, produced a much lower F1
score of 0.5721 and a significantly higher BPP of 1.1732. Additionally, the RDAI metric,
which reflects both compression efficiency and classification accuracy, further emphasizes
the advantage of neural compression: the fused bmshj2018_hyperprior model at Quality
5 achieved an RDAI of 0.79, while JPEG_40 only scored 0.6450. At the highest quality
setting (Quality 8), the model bmshj2018_hyperprior achieved an F1 score of 0.9493
with a PSNR of 34.9266 and a BPP of 0.5308 for the fused representation. In contrast,
JPEG_70 recorded an F1 score of 0.6095, a PSNR of 30.73, and a much higher BPP
of 1.8098. Even JPEG_100, which reached a PSNR of 37.41, only achieved an F1
score of 0.5918, with an inefficient BPP of 8.914. Similarly, the bmshj2018_factorized
model demonstrated the value of fused representations over both singular modalities and
JPEG compression. The mbt2018_mean model further underscored the superiority of
fused neural compression. At Quality 2, the fused representation achieved an F1 score
of 0.9064, a BPP of 0.6235, and a PSNR of 26.6673. In comparison, JPEG_40, which
had a similar PSNR of 28.93, produced a significantly lower F1 score of 0.5721 with a
higher BPP of 1.1732. At Quality 8, the mbt2018_mean model’s fused data yielded an
F1 score of 0.9335, a PSNR of 35.0763, and a BPP of 0.5244. In contrast, JPEG_70
recorded a lower F1 score of 0.6095 with a PSNR of 30.73 and a much higher BPP of
1.8098. The cheng2020_attn model, which incorporates attention mechanisms, further
amplified the advantages of fused representations. At Quality 2, the fused modality

170

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

achieved an F1 score of 0.9014, a PSNR of 26.8801, and a BPP of 0.3686, outperforming
all JPEG settings, including JPEG_100, which only managed an F1 score of 0.5918.
At Quality 6, the fused representation reached an F1 score of 0.9468 with a PSNR of
32.2457 and a BPP of 0.2976.

Overall, across all neural compression models and quality levels, fused representations
consistently demonstrated superior classification accuracy, compression efficiency, and
image quality when compared to singular modalities and traditional JPEG compression.
These results underscore the effectiveness of integrating multimodal data (SAR and
optical) in remote sensing applications.

Method Classifier Average BPP ↓ PSNR ↑ F1 ↑ RDAI ↑
JPEG_10 MLP 0.5111 25.12 0.543 0.6362
JPEG_40 MLP 1.1732 28.93 0.5721 0.6450
JPEG_70 MLP 1.8098 30.73 0.6095 0.6462
JPEG_100 MLP 8.914 37.41 0.5918 0.4409

Table 4.2: Results for JPEG Quality Levels using MLP classifier.

4.4.1.2 Classification Performance: Fused vs Singular Modalities

The neural compression models using fused representations of Sentinel-1 SAR and Sentinel-
2 optical data consistently outperform singular modalities (either SAR or optical alone)
and JPEG compression across all quality metrics, especially in terms of classification
accuracy. The fused representations lead to significantly higher F1 scores across all com-
pression models and quality levels, with negligible impact on reconstruction quality, as
highlighted in Tables 2 and 3.

For example, as shown in Table 3, the bmshj2018 hyperprior model at Quality 2
achieves an F1 score of 0.9181 for fused data, compared to 0.435 for optical-only data
and 0.2725 for SAR-only data. This stark contrast illustrates how the fused latent rep-
resentation effectively captures complementary information from both SAR and optical
sources, enabling the model to extract more discriminative features for classification.
As the compression quality improves, this trend persists: at Quality 8, the F1 score for
fused data reaches 0.9493, while optical and SAR modalities achieve F1 scores of 0.4913
and 0.2884, respectively.

In addition to higher classification accuracy, the fused representations maintain strong
image reconstruction quality. Despite combining two distinct data modalities, the neural

171

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

Model Type Quality Accuracy F1 BPP PSNR RDAI
bmshj2018_hyperprior Image 2 0.435 0.3972 0.651 26.5543 0.59
bmshj2018_hyperprior SAR 2 0.2725 0.145 0.5943 25.9357 0.51
bmshj2018_hyperprior Fused 2 0.9184 0.9181 0.6226 26.5543 0.77
bmshj2018_hyperprior Image 5 0.7594 0.7409 0.4472 30.8682 0.74
bmshj2018_hyperprior SAR 5 0.3381 0.2382 0.364 31.7197 0.58
bmshj2018_hyperprior Fused 5 0.9137 0.9111 0.4056 30.8682 0.79
bmshj2018_hyperprior Image 8 0.4913 0.3919 0.5155 34.9266 0.64
bmshj2018_hyperprior SAR 8 0.2884 0.1775 0.5462 39.4463 0.59
bmshj2018_hyperprior Fused 8 0.9497 0.9493 0.5308 34.9266 0.83
bmshj2018_factorized Image 2 0.4656 0.449 0.449 25.2253 0.61
bmshj2018_factorized SAR 2 0.3291 0.2485 0.6642 23.4472 0.52
bmshj2018_factorized Fused 2 0.7053 0.69 0.6743 25.2253 0.68
bmshj2018_factorized Image 5 0.5531 0.504 0.5428 29.4571 0.65
bmshj2018_factorized SAR 5 0.2762 0.1604 0.4932 29.4293 0.53
bmshj2018_factorized Fused 5 0.6263 0.6222 0.518 29.4571 0.69
bmshj2018_factorized Image 8 0.6344 0.6049 0.6824 34.15 0.70
bmshj2018_factorized SAR 8 0.2456 0.0969 0.647 37.74 0.55
bmshj2018_factorized Fused 8 0.5887 0.5813 0.6647 34.154 0.69
mbt2018 Image 2 0.4938 0.4779 0.6525 26.7201 0.62
mbt2018 SAR 2 0.3059 0.1911 0.5934 26.1436 0.52
mbt2018 Fused 2 0.7753 0.7693 0.623 26.7201 0.72
mbt2018 Image 5 0.5512 0.5024 0.9112 31.4213 0.64
mbt2018 SAR 5 0.3741 0.2641 0.8053 32.6866 0.58
mbt2018 Fused 5 0.94 0.9404 0.8582 31.4213 0.79
mbt2018 Image 8 0.3581 0.2923 0.4987 35.044 0.61
mbt2018 SAR 8 0.3881 0.283 0.4797 40.1978 0.63
mbt2018 Fused 8 0.9181 0.9178 0.4892 35.044 0.82
mbt2018_mean Image 2 0.4356 0.4064 0.6528 26.6673 0.59
mbt2018_mean SAR 2 0.3078 0.2551 0.8942 26.1977 0.53
mbt2018_mean Fused 2 0.9066 0.9064 0.6235 26.6673 0.76
mbt2018_mean Image 5 0.6849 0.6061 0.9349 31.3317 0.68
mbt2018_mean SAR 5 0.42 0.3757 0.8392 32.5241 0.61
mbt2018_mean Fused 5 0.9287 0.9278 0.887 31.3317 0.79
mbt2018_mean Image 8 0.5697 0.4946 0.5277 35.1228 0.68
mbt2018_mean SAR 8 0.4172 0.2852 0.5232 40.2193 0.63
mbt2018_mean Fused 8 0.9337 0.9335 0.5244 35.0763 0.82
cheng2020_anchor Image 2 0.5991 0.5693 0.397 26.9826 0.66
cheng2020_anchor SAR 2 0.4084 0.2818 0.3264 26.5346 0.56
cheng2020_anchor Fused 2 0.9169 0.9168 0.3617 26.9826 0.78
cheng2020_anchor Image 4 0.7625 0.7564 0.5288 29.9655 0.73
cheng2020_anchor SAR 4 0.4553 0.3121 0.4289 30.5567 0.59
cheng2020_anchor Fused 4 0.9306 0.9302 0.4789 29.9655 0.79
cheng2020_anchor Image 6 0.6903 0.6024 0.3572 32.3602 0.70
cheng2020_anchor SAR 6 0.2931 0.1921 0.2382 34.7597 0.58
cheng2020_anchor Fused 6 0.9153 0.9158 0.2977 32.3602 0.81
cheng2020_attn Image 2 0.4431 0.373 0.4014 26.8801 0.59
cheng2020_attn SAR 2 0.3916 0.2697 0.3359 26.5917 0.56
cheng2020_attn Fused 2 0.9013 0.9014 0.3686 26.8801 0.77
cheng2020_attn Image 4 0.7797 0.7754 0.5215 29.9436 0.74
cheng2020_attn SAR 4 0.4781 0.3443 0.4293 30.4895 0.60
cheng2020_attn Fused 4 0.9372 0.9367 0.4754 29.9436 0.80
cheng2020_attn Image 6 0.6759 0.6006 0.3562 32.2457 0.70
cheng2020_attn SAR 6 0.3209 0.2075 0.2416 34.6206 0.59
cheng2020_attn Fused 6 0.9466 0.9468 0.2976 32.2457 0.82

Table 4.3: Classification Performance of Neural Compression Models: This table com-
pares neural compression models across quality levels and data modalities (Sentinel-2
optical, Sentinel-1 SAR, and fused). Metrics include accuracy, F1 score (classifica-
tion), BPP (compression efficiency), PSNR (image quality), and RDAI. Models (e.g.,
bmshj2018_hyperprior, mbt2018, cheng2020_anchor) are tested on individual modal-
ities and their fusion. Fused representations consistently outperform in classification
(F1) while maintaining competitive BPP and PSNR, highlighting the benefits of fusing
Sentinel-1 and Sentinel-2 data for remote sensing.
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compression models achieve comparable or even better PSNR and SSIM values compared
to singular modalities, indicating that the fusion process preserves important structural
and spectral details without degradation. This shows that the additional complexity
introduced by fusion does not negatively affect the model’s ability to accurately recon-
struct the data.

These findings underscore the value of multimodal data fusion in remote sensing
applications. SAR data captures critical structural details and performs well in poor
visibility conditions, while optical data provides essential spectral information for more
nuanced interpretation. When combined into a unified latent space, the neural models
effectively leverage the strengths of both modalities, resulting in a robust improvement
in classification performance without sacrificing the integrity of the original data dur-
ing reconstruction. This fusion strategy has significant implications for enhancing the
accuracy and efficiency of remote sensing tasks.

4.4.1.3 Reconstruction Quality: Fused Representations vs Singular Modal-
ities

One of the primary concerns with fusing disparate modalities into a single latent rep-
resentation is the potential impact on reconstruction quality. However, our results
show that neural compression models maintain excellent reconstruction performance
even when operating on fused data. The fused representations, despite containing a
richer blend of information from both SAR and optical sources, do not suffer from sig-
nificant degradation in terms of reconstruction quality metrics such as PSNR and SSIM.
Moreover, this ability to preserve quality across modalities highlights the robustness of
the neural compression framework in effectively balancing the complexity introduced by
multi-modal fusion without sacrificing reconstruction fidelity.

For instance, in the bmshj2018_hyperprior model at Quality 8, the fused representa-
tion achieves a PSNR of 34.9266, which is virtually identical to the PSNR values for the
optical-only and SAR-only reconstructions, which are 34.9266 and 39.4463, respectively.
This indicates that despite the additional complexity introduced by combining two dif-
ferent data types, the model is able to effectively reconstruct the image without a loss
in quality. Even at lower quality settings, the fused representation holds its ground: at
Quality 2, the PSNR for fused data is 26.5543, compared to 26.5543 for optical-only and
25.9357 for SAR-only. These results underscore that reconstructing from the fused rep-
resentation does not compromise the integrity of the original data, ensuring high-quality
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outputs. This trend is consistent in all neural compression models as shown in Table
4.3.

4.4.1.4 Compression Efficiency and Rate-Distortion Trade-offs

In addition to the enhanced classification performance, fused representations also achieve
superior compression efficiency. Across all models and quality levels, the fused modal-
ity demonstrates competitive bits-per-pixel (BPP) rates, often lower than the singular
modalities for a similar level of classification accuracy and PSNR. For example, in the
bmshj2018_hyperprior model at Quality 5, the fused representation achieves a BPP
of 0.4056 with an F1 score of 0.9111 and a PSNR of 30.8682, whereas SAR-only data
achieves a lower F1 score of 0.2382 but requires a BPP of 0.364 to do so. The fused
representation, therefore, provides a better rate-distortion trade-off, ensuring efficient
compression while maintaining high classification accuracy and image quality.

The RDAI metric, which encapsulates both rate distortion and classification perfor-
mance, further highlights the efficiency of fused neural compression models. At Quality
5, the fused bmshj2018_hyperprior model achieves an RDAI score of 0.79, compared to
0.58 for SAR-only data. Similarly, in the mbt2018_mean model at Quality 2, the fused
representation achieves an RDAI of 0.76, while SAR-only data scores just 0.53. While
the highest RDAI is achieved by both the cheng_2020_attn and mbt2018 models when
fusing the representations at the highest compression quality setting surpassing the best
JPEG results by 30%.

4.4.2 Quality Metrics Comparison

In this section, we compare the performance of the proposed neural compression models
with traditional data fusion techniques, including Principal Component Analysis (PCA),
Discrete Wavelet Transform (DWT), and Spatial Averaging (SA). The comparison is
based on various quality metrics, both with and without reference images, as presented
in Tables 4.4 and 4.5.

4.4.2.1 Quality Metrics with Reference Image

Table 4.4 highlights the quality metrics when the reference image is the original Sentinel-2
optical image. These metrics include Relative Bias, Relative Variance, Relative Stan-
dard Deviation, Correlation Coefficient, Universal Image Quality Index (UIQI), Struc-
tural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Spectral Angle
Mapper (SAM).
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Figure 4.3: Fused representation comparison between original and reconstructed satel-
lite images using different fusion techniques. Each row represents the original image (top)
and its reconstructed counterpart (bottom) using three different fusion methods: Prin-
cipal Component Analysis (PCA), Discrete Wavelet Transform (DWT), and Spectral
Analysis via Fast Fourier Transform (SA-FFT). These transformations fuse data from
different modalities, showing the effects of each method on the visual characteristics of
the reconstructed images.
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(a) Original Images

(b) Cheng2020 attn Fused Reconstruction

Figure 4.4: Comparison of satellite images. The top is the original optical satellite
image, while the bottom image (Cheng Attention 6 Fused) is the result of fusing SAR
and optical data in the latent space using the Cheng2020 VAE at quality level 6. The
fused representation closely resembles the original optical image, demonstrating effective
reconstruction through data fusion.
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The neural compression models consistently outperform PCA, DWT, and SA in all
key quality metrics. For example, at Quality 2, the fused bmshj2018_hyperprior model
achieves a low relative bias and a high relative variance, indicating a close match to the
reference image as shown in Table 4.4. In contrast, PCA and SA exhibit higher relative
bias and variance, suggesting that these traditional methods introduce more distortion
during the compression and fusion process.

With respect to Correlation Coefficient and UIQI the neural models also demonstrate
superior performance. The fused neural compression models achieve high correlation
coefficients, even at lower quality settings, reflecting strong preservation of structural
features in the compressed data. On the other hand, PCA and SA struggle in this area,
with correlation coefficients near zero or negative, reflecting poor structural similarity
with the original data.

On the same line fused models consistently achieve high SSIM values and PSNR val-
ues that increase with quality level. In contrast, traditional methods such as PCA and
SA result in significantly lower SSIM and PSNR values, indicating poorer image recon-
struction quality and higher loss of critical information. The Spectral Angle Mapper
(SAM) values provide additional insights into spectral fidelity. Lower SAM values indi-
cate better spectral reconstruction and the fused neural models perform remarkably well.
In comparison, PCA and SA yield much higher SAM values signaling greater spectral
distortion as shown in Table 4.4.

4.4.2.2 Quality Metrics without Reference Image

Table 4.5 present quality metrics that do not rely on a reference image, instead focusing
on information content and statistical properties such as Spectral Frequency, Standard
Deviation, Entropy, and BPP. This provides a broader perspective on the efficiency and
effectiveness of the compression models in terms of retaining information content.

The results show that the fused neural compression models maintain similar spec-
tral frequencies and standard deviations to the individual modalities, suggesting that
the fusion process does not degrade the variability or frequency content of the data.
For instance, at Quality 2, the fused bmshj2018_hyperprior model achieves a spectral
frequency of 12.3165 and a standard deviation of 0.2124, which are comparable to the
image-only modality. This suggests that the fusion process efficiently integrates infor-
mation from both SAR and optical data without introducing significant distortions.
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Model Type Quality Relative
Bias

Relative
Variance

Relative
Standard
Deviation

Correlation
Coefficient

Universal
Image

Quality
Index

SSIM PSNR Spectral Angle
Mapper

bmshj2018 hyperprior Image 2 0.05023 0.9568 0.9781 0.9778 0.9776 0.9693 26.89 0.1301
bmshj2018 hyperprior SAR 2 2.2061 0.9236 0.8554 -0.094 -0.0867 -0.0749 8.9413 0.551
bmshj2018 hyperprior Fused 2 0.0502 0.9568 0.9782 0.9779 0.9776 0.9695 26.89 0.1301
bmshj2018 hyperprior Image 5 0.0233 0.9834 0.9917 0.9914 0.9914 0.9883 30.9976 0.0828
bmshj2018 hyperprior SAR 5 2.2079 0.8928 0.9436 -0.0942 -0.0868 -0.0732 8.877 0.5569
bmshj2018 hyperprior Fused 5 0.0233 0.9834 0.9917 0.9914 0.9914 0.9882 30.9958 0.0828
bmshj2018 hyperprior Image 8 0.0099 0.994 0.997 0.9966 0.9966 0.9954 35.0437 0.0527
bmshj2018 hyperprior SAR 8 2.2075 0.9048 0.9499 -0.093 -0.0857 -0.0741 8.8618 0.5569
bmshj2018 hyperprior Fused 8 0.0099 0.994 0.997 0.9966 0.9966 0.9954 35.0448 0.0527
bmshj2018 factorized Image 2 0.0657 0.9327 0.9658 0.9673 0.9667 0.9549 25.2336 0.1506
bmshj2018 factorized SAR 2 2.2044 0.8068 0.8968 -0.0957 -0.0879 -0.074 9.0301 0.5429
bmshj2018 factorized Fused 2 0.0657 0.9328 0.9658 0.9673 0.9667 0.955 25.2367 0.1506
bmshj2018 factorized Image 5 0.0291 0.9749 0.9873 0.9878 0.9877 0.9832 29.4689 0.0955
bmshj2018 factorized SAR 5 2.2062 0.8794 0.9364 -0.0928 -0.0856 -0.0737 8.9055 0.5546
bmshj2018 factorized Fused 5 0.0291 0.9749 0.9874 0.9878 0.9877 0.9834 29.469 0.0955
bmshj2018 factorized Image 8 0.011 0.9921 0.9961 0.9959 0.9959 0.9944 34.23 0.0572
bmshj2018 factorized SAR 8 2.206 0.9039 0.9494 -0.0936 -0.0863 -0.0756 8.8651 0.5585
bmshj2018 factorized Fused 8 0.011 0.9921 0.9961 0.9959 0.9959 0.9944 34.2322 0.0572

mbt2018 Image 2 0.0493 0.9581 0.9788 0.9792 0.9789 0.9712 27.156 0.127
mbt2018 SAR 2 2.2061 0.857 0.9244 -0.0947 -0.0871 -0.0747 8.9398 0.5511
mbt2018 Fused 2 0.0493 0.9581 0.9788 0.9792 0.9789 0.9711 27.1558 0.127
mbt2018 Image 5 0.0214 0.9839 0.9919 0.9927 0.9926 0.9899 31.666 0.0783
mbt2018 SAR 5 2.2045 0.8956 0.9451 -0.0935 -0.0861 -0.075 8.8806 0.5575
mbt2018 Fused 5 0.0214 0.9839 0.9919 0.9927 0.9926 0.9898 31.6685 0.0782
mbt2018 Image 8 0.0096 0.994 0.997 0.9967 0.9967 0.9954 35.0855 0.0526
mbt2018 SAR 8 2.207 0.9077 0.9513 -0.0925 -0.0857 -0.0748 8.8601 0.5588
mbt2018 Fused 8 0.0096 0.994 0.997 0.9967 0.9967 0.9954 35.085 0.0526

mbt2018 mean Image 2 0.0503 0.9561 0.9778 0.9783 0.9781 0.9701 26.9901 0.1291
mbt2018 SAR 2 2.2056 0.8537 0.9226 -0.0954 -0.0878 -0.0745 8.9442 0.5507

mbt2018 mean Fused 2 0.0503 0.9562 0.9778 0.9784 0.9781 0.97 26.9879 0.1291
mbt2018 mean Image 5 0.0206 0.9842 0.9921 0.9925 0.9925 0.9896 31.5712 0.079
mbt2018 mean SAR 5 2.203 0.8965 0.9454 -0.0921 -0.085 -0.0741 8.8856 0.5576
mbt2018 mean Fused 5 0.0206 0.9842 0.9921 0.9925 0.9925 0.9897 31.5724 0.079
mbt2018 mean Image 8 0.0096 0.9939 0.9969 0.9967 0.9967 0.9955 35.1463 0.0524
mbt2018 mean SAR 8 2.2246 0.9081 0.9516 -0.0944 -0.0868 -0.0733 8.8491 0.5592
mbt2018 mean Fused 8 0.0096 0.9939 0.9969 0.9967 0.9967 0.9955 35.1456 0.0524

cheng2020 anchor Image 2 0.0479 0.9607 0.9802 0.98 0.9798 0.9721 27.337 0.1248
cheng2020 anchor SAR 2 2.2104 0.8566 0.9242 -0.0942 -0.0866 -0.0735 8.9346 0.5508
cheng2020 anchor Fused 2 0.0479 0.9607 0.9802 0.98 0.9798 0.9723 27.3354 0.1248
cheng2020 anchor Image 4 0.0291 0.9828 0.9914 0.9897 0.9897 0.9857 30.199 0.0917
cheng2020 anchor SAR 4 2.2104 0.8863 0.9402 -0.0941 -0.0866 -0.075 8.8835 0.5555
cheng2020 anchor Fused 4 0.0291 0.9828 0.9913 0.9897 0.9897 0.9857 30.1996 0.0917
cheng2020 anchor Image 6 0.0164 0.9899 0.9949 0.9938 0.9938 0.9914 32.377 0.0711
cheng2020 anchor SAR 6 2.2072 0.8978 0.9463 -0.0918 -0.0848 -0.073 8.874 0.5575
cheng2020 anchor Fused 6 0.0164 0.9899 0.9949 0.9938 0.9938 0.9914 32.3788 0.0711
cheng2020 attn Image 2 0.0484 0.9584 0.979 0.9795 0.9793 0.9715 27.231 0.1264
cheng2020 attn SAR 2 2.2061 0.854 0.9229 -0.0942 -0.0867 -0.0739 8.9412 0.5509
cheng2020 attn Fused 2 0.0484 0.9584 0.979 0.9795 0.9793 0.9715 27.2311 0.1264
cheng2020 attn Image 4 0.0236 0.9796 0.9898 0.9896 0.9896 0.9856 30.1397 0.0919
cheng2020 attn SAR 4 2.2013 0.8879 0.9408 -0.0936 -0.0862 -0.072 8.9016 0.5563
cheng2020 attn Fused 4 0.0236 0.9797 0.9898 0.9897 0.9896 0.9856 30.169 0.0919
cheng2020 attn Image 6 0.0155 0.9897 0.9948 0.9937 0.9937 0.9913 32.33 0.0715
cheng2020 attn SAR 6 2.2013 0.8879 0.9408 -0.0936 -0.0862 -0.072 8.90 0.5563
cheng2020 attn Fused 6 0.0155 0.9896 0.9948 0.9937 0.9937 0.9913 32.32 0.0715

PCA Image 0 0.9913 0.9956 0.5607 -0.001 -0.0176 8.0261 1.4527
PCA SAR 0 0.9497 0.9735 0.2956 -0.0005 -0.005 7.4763 1.509
PCA Fused 0 1.3018 1.1204 0.3356 -0.0006 -0.0026 7.2987 1.5034
DWT Image 0 1 1 0.5607 1 1 133.196 0.0002
DWT SAR 0 0.9546 0.9761 0.4557 0.4649 -0.005 71.0285 0.2795
DWT Fused 0 1.2153 1.0894 0.5355 0.4521 -0.0026 49.0349 0.2998

SA Image 0 1.4952 1.2215 -0.0088 -0.0075 0.0027 7.269 0.579
SA SAR 0 1.4809 1.2155 -0.006 -0.0051 0.0042 7.2068 0.5798
SA Fused 0 1.43 1.194 -0.0062 -0.0052 0.0044 7.1488 0.5723

Table 4.4: Quality Metrics with Reference Image: Performance comparison of neu-
ral compression and other models across different quality levels and data modalities
(Sentinel-2 optical, Sentinel-1 SAR, and fused). The table presents results for various
quality metrics with the reference image being the original optical image. Each model
is evaluated on individual modalities (Image and SAR) and their fusion (Fused). PCA,
DWT and SA transforms are fully inverted to collect metric data before and after fusion
on a modality basis.
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Entropy, which measures the richness of information in the compressed data, remains
high for the fused neural models. At Quality 2, the fused bmshj2018_hyperprior model
retains an entropy value of 22.35, close to that of the individual modalities, indicating
minimal information loss. By comparison, traditional methods such as PCA and SA
demonstrate lower entropy values, indicating the potential loss of important data during
transformation.

Compression efficiency is another key strength of the neural compression models.
The fused representations consistently achieve lower BPP values compared to PCA,
DWT, and SA, demonstrating more efficient compression. For example, the fused
bmshj2018_hyperprior model at Quality 2 has a BPP of 0.5276, whereas PCA, DWT,
and SA maintain fixed high BPP values of 96, reflecting their less efficient compression
techniques.

4.4.2.3 Comparison with Traditional Methods

The results clearly demonstrate that neural compression models significantly outperform
traditional methods such as PCA, DWT, and SA across all evaluated metrics. Struc-
turally, the neural models retain far more information from the original image, with high
SSIM and PSNR values confirming superior reconstruction quality. In contrast, PCA
and SA suffer from poor structural and spectral fidelity, as evidenced by lower SSIM and
PSNR values and higher SAM values.

Neural compression models also excel in compression efficiency. The lower BPP values
achieved by neural models, coupled with high entropy, demonstrate that they provide
more efficient data representation. Traditional methods, lacking the advanced encoding
capabilities of neural networks, result in much higher BPP values, reflecting less efficient
compression and greater storage or transmission requirements.

Furthermore, the information content in the neural compression models is better
preserved, as reflected in the high entropy values. This indicates that neural compression
retains more of the essential details and variability present in the original data. In
comparison, PCA and SA exhibit lower entropy, which points to the potential loss of
important data during the transformation and fusion process. The ability to maintain
higher entropy suggests that neural compression models are more adept at capturing the
full complexity of the data, making them important in applications where data richness
and detail are critical. This preservation of information is crucial for downstream tasks,
such as classification and anomaly detection, where small details can significantly impact
performance.
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Model Type Quality Spectral Frequency Standard D Entropy BPP
bmshj2018_hyperprior Image 2 12.3 0.2124 22.35 0.5833
bmshj2018_hyperprior SAR 2 16.1214 0.2004 22.159 0.5323
bmshj2018_hyperprior Fused 2 12.3165 0.2124 22.35 0.5276
bmshj2018_hyperprior Image 5 14.5822 0.2154 22.33 0.3936
bmshj2018_hyperprior SAR 5 18.6838 0.2047 22.177 0.3239
bmshj2018_hyperprior Fused 5 14.5816 0.2154 22.3336 0.323
bmshj2018_hyperprior Image 8 15.8567 0.2166 22.3596 0.4685
bmshj2018_hyperprior SAR 8 19.9865 0.206 22.2158 0.4927
bmshj2018_hyperprior Fused 8 15.8265 0.2164 22.3592 0.481
bmshj2018_factorized Image 2 10.7259 0.2098 22.3425 0.6767
bmshj2018_factorized SAR 2 12.9859 0.1942 22.1659 0.6604
bmshj2018_factorized Fused 2 10.7259 0.2098 22.3425 0.66
bmshj2018_factorized Image 5 13.6945 0.2144 22.3437 0.5218
bmshj2018_factorized SAR 5 17.4632 0.2029 22.168 0.4801
bmshj2018_factorized Fused 5 13.6944 0.2145 22.3437 0.4764
bmshj2018_factorized Image 8 15.6675 0.2162 22.3355 0.6334
bmshj2018_factorized SAR 8 19.8376 0.2058 22.1842 0.5976
bmshj2018_factorized Fused 8 15.6678 0.2164 22.3357 0.5888

mbt2018 Image 2 12.5095 0.2126 22.3393 0.5814
mbt2018 SAR 2 16.305 0.2004 22.1881 0.5236
mbt2018 Fused 2 12.5102 0.2126 22.3395 0.5194
mbt2018 Image 5 14.9917 0.2154 22.3633 0.8077
mbt2018 SAR 5 19.1415 0.205 22.2093 0.7138
mbt2018 Fused 5 14.9918 0.2154 22.3634 0.7098
mbt2018 Image 8 15.8645 0.2165 22.3606 0.4542
mbt2018 SAR 8 20.0404 0.2061 22.2085 0.4321
mbt2018 Fused 8 15.8643 0.2165 22.3605 0.4286

mbt2018_mean Image 2 12.3655 0.2124 22.3475 0.5842
mbt2018_mean SAR 2 16.1873 0.2001 22.1897 0.5316
mbt2018_mean Fused 2 12.3661 0.2125 22.3476 0.5264
mbt2018_mean Image 5 14.9739 0.2155 22.3494 0.8267
mbt2018_mean SAR 5 19.1709 0.205 22.2025 0.7443
mbt2018_mean Fused 5 14.9742 0.2155 22.3495 0.7472
mbt2018_mean Image 8 15.8444 0.2164 22.3524 0.4742
mbt2018_mean SAR 8 19.9684 0.206 22.1999 0.4713
mbt2018_mean Fused 8 15.8444 0.2161 22.3519 0.4702

cheng2020_anchor Image 2 12.5933 0.213 22.3401 0.3549
cheng2020_anchor SAR 2 15.7871 0.2003 22.1624 0.2912
cheng2020_anchor Fused 2 12.5932 0.213 22.3401 0.2954
cheng2020_anchor Image 4 14.38 0.2154 22.3433 0.4716
cheng2020_anchor SAR 4 18.0338 0.204 22.174 0.3795
cheng2020_anchor Fused 4 14.3801 0.2152 22.3431 0.366
cheng2020_anchor Image 6 15.1874 0.2161 22.3429 0.3224
cheng2020_anchor SAR 6 19.1489 0.2051 22.1718 0.2212
cheng2020_anchor Fused 6 15.1876 0.2161 22.3428 0.2176

cheng2020_attn Image 2 12.451 0.2127 22.3488 0.3584
cheng2020_attn SAR 2 15.5836 0.2003 22.1874 0.2958
cheng2020_attn Fused 2 12.4501 0.2127 22.3487 0.2942
cheng2020_attn Image 4 14.4078 0.215 22.3475 0.4642
cheng2020_attn SAR 4 18.0871 0.204 22.1874 0.3766
cheng2020_attn Fused 4 14.408 0.2151 22.3475 0.3774
cheng2020_attn Image 6 15.1626 0.2161 22.3458 0.3227
cheng2020_attn SAR 6 18.0871 0.204 22.1874 0.3766
cheng2020_attn Fused 6 15.1625 0.2159 22.3457 0.2302

PCA Image 12.715 0.2158 20.0907 96
PCA SAR 12.0723 0.2108 14.6625 96
PCA Fused 14.2561 0.2426 16.8419 96
DWT Image 16.65 0.2167 11.4294 96
DWT SAR 18.4464 0.2112 11.3368 96
DWT Fused 21.1773 0.2358 11.4065 96

SA Image 21.4051 0.2639 23.6063 96
SA SAR 20.6694 0.2626 25.3134 96
SA Fused 20.9059 0.2579 24.5498 96

Table 4.5: Quality Metrics without Reference Image: Performance comparison of neu-
ral compression and other models across different quality levels and data modalities
(Sentinel-2 optical, Sentinel-1 SAR, and fused). The table presents results for various
quality metrics without a reference image focusing on information content. Each model
is evaluated on individual modalities (Image and SAR) and their fusion (Fused). PCA,
DWT and SA transforms are fully inverted to collect metric data before and after fusion
on a modality basis. 180
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4.4.2.4 Comparison of Latent Representations: UMAP vs. t-SNE Visual-
izations

In addition to the classification performance metrics, the t-SNE and UMAP visualiza-
tions provide further insight into the structure and separability of the latent spaces
learned by the neural compression models. These visualizations, presented in Figures
5 through 8, illustrate how the models project the optical, SAR, and fused data into
lower-dimensional spaces. The visual representations help us understand how well the
neural networks separate the data points corresponding to different modalities (opti-
cal, SAR, and fused) and classes, and how effective the fusion process is at combining
complementary information from the two modalities.

The UMAP visualizations in Figure 5 represent the latent space distribution for op-
tical, SAR, and fused modalities. In these visualizations, the three distinct clusters
correspond to the three modalities—optical, SAR, and fused—rather than class separa-
bility within each modality. This reflects how each modality occupies its own region in
the latent space, with the fused representation forming its own distinct cluster, separate
from the singular optical and SAR modalities.

For example, in the bmshj2018_hyperprior model at Quality 2 (Figure 5a), the op-
tical, SAR, and fused modalities are clearly separated. The distinct clustering of the
fused representation suggests that it captures features that combine the strengths of both
SAR and optical modalities, resulting in a richer and more informative latent space. As
the quality of compression increases (Figures 5b and 5c), the separation between these
modalities remains clear, indicating that the neural compression models maintain consis-
tent distinctions between the different data sources, even at higher compression qualities.

The ability of UMAP to maintain clear distinctions between the optical, SAR, and
fused modalities highlights the model’s capacity to encode the unique characteristics of
each modality. While the optical and SAR modalities form distinct clusters, the fused
representation benefits from integrating complementary information from both modali-
ties, leading to more robust and distinct features that are advantageous for downstream
tasks like classification.

The t-SNE visualizations offer a different perspective, showing how the data points
within each modality are distributed in the latent space. Figure 6 presents t-SNE pro-
jections for the optical latent spaces, Figure 7 shows the SAR latent spaces, and Figure
8 illustrates the fused latent spaces. These visualizations allow us to analyze the internal
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structure of each modality’s latent space and assess how well the data points within each
modality are clustered by class.

In Figure 6, the optical latent spaces across different models and quality levels show
moderate clustering by class, though some overlap between class boundaries is present.
The SAR latent spaces in Figure 7, however, exhibit more dispersion and less defined
clustering, reflecting the greater challenge of using SAR data alone for tasks like classi-
fication, where spectral details (lacking in SAR data) are important.

The t-SNE visualizations in Figure 8, which represent the fused latent spaces, show
significantly better clustering by class compared to the singular modalities. For example,
in the bmshj2018_hyperprior model at Quality 2 (Figure 8a), the fused representation
results in tighter clusters, reflecting the model’s improved ability to differentiate between
classes. As the compression quality improves to Quality 8 (Figure 8c), the class clusters
become even more distinct, further demonstrating how the fusion of SAR and optical
data leads to better separation of classes within the latent space. Similar trends are
observed in other models such as bmshj2018_factorized and mbt2018, where fused latent
spaces consistently demonstrate better class separability than the individual optical or
SAR modalities.

Both UMAP and t-SNE visualizations provide complementary insights into the learned
latent spaces. UMAP is particularly effective at showing the overall separation between
the modalities (optical, SAR, and fused), emphasizing how neural compression models
maintain distinctions between the data sources while encoding each modality in its own
subspace. On the other hand, t-SNE focuses more on class separability within each
modality, showing how fused representations lead to more coherent and distinct clusters
by class. This suggests that the fusion of modalities improves the model’s ability to cap-
ture discriminative features, ultimately leading to enhanced classification performance.

The consistency between the UMAP and t-SNE visualizations highlights the strength
of neural compression models in handling multimodal data. By effectively separating the
optical, SAR, and fused modalities, and improving class separability in the fused latent
spaces, these models demonstrate their capacity to integrate complementary information
from different sources, resulting in better feature representation and overall classification
performance.

182

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

4.4.2.5 Analysis of Individual Neural Models

Each neural compression model analyzed exhibits unique strengths in terms of com-
pression efficiency and quality preservation. The bmshj2018_hyperprior model excels at
balancing compression efficiency with reconstruction quality, achieving high SSIM and
PSNR values across different quality levels. The bmshj2018_factorized model performs
similarly, especially at higher quality settings, where it maintains high levels of structural
similarity and information content.

The mbt2018 and mbt2018_mean models offer strong overall performance, particu-
larly in entropy retention, highlighting their capability to preserve essential information
during compression. Additionally, the cheng2020_anchor and cheng2020_attn models
show competitive results, achieving lower BPP values while maintaining quality, show-
casing their efficiency in data compression without sacrificing too much on the quality
front.

The comparative analysis highlights the superiority of neural compression models
over traditional data fusion methods such as PCA, DWT, and SA. Neural models not
only deliver enhanced classification performance but also provide superior image qual-
ity and compression efficiency. The fusion of SAR and optical data in these models
leverages the strengths of both modalities without degrading reconstruction quality,
making neural compression models the preferred choice for remote sensing data fusion
tasks. Traditional methods, while useful, fall short in terms of structural and spectral
fidelity, compression efficiency, and overall quality, further underscoring the advantages
of neural-based approaches.

4.5 Discussion

The findings from this study highlight the significant advantages of neural compression
models, especially when applied to multimodal data fusion involving Synthetic Aperture
Radar (SAR) and optical imagery. By utilizing fused representations, these models
consistently outperform traditional compression and fusion techniques, such as PCA,
DWT, and SA, across a variety of image quality, compression efficiency, and classification
accuracy metrics.

A key observation is the ability of neural compression models to capture complemen-
tary information from SAR and optical data, leading to enhanced classification perfor-
mance. SAR data, with its ability to penetrate clouds and provide structural details,
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complements the rich spectral information available from optical data. When fused into
a single latent representation, neural models can extract more discriminative features,
improving classification accuracy without the need for explicit decompression. This ap-
proach contrasts with traditional methods, where each modality is processed separately,
often leading to suboptimal feature extraction and fusion strategies.

The analysis of image quality metrics, such as Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), and Spectral Angle Mapper (SAM), further demon-
strates the superiority of neural compression models in preserving both structural and
spectral fidelity. Despite the compression process, the fused neural models were able to
maintain high PSNR and SSIM values, indicating that the fused representations do not
compromise reconstruction quality. In fact, these models often outperformed singular
modalities in terms of overall image quality, suggesting that the fusion process itself
contributes positively to the preservation of key features.

Moreover, the efficiency of neural compression models is evident in the significant
reduction in BPP compared to traditional methods, without sacrificing classification ac-
curacy or image quality. Traditional compression methods, such as JPEG, require higher
BPP to achieve similar levels of quality, making neural compression models a more effi-
cient solution for remote sensing applications where data transmission and storage are
key considerations. The Rate-Distortion Accuracy Index (RDAI) metric also reinforces
the ability of neural models to balance compression efficiency with classification perfor-
mance, achieving superior trade-offs compared to traditional techniques.

Additionally, the use of neural compression models for data fusion opens up new
possibilities for remote sensing applications beyond classification. The fusion of SAR
and optical data has potential utility in other areas such as object detection, change
detection, and anomaly detection, where the combination of structural and spectral
information can provide a more holistic understanding of the scene. Future work should
explore how neural compression models can be adapted or extended to these tasks, as
the findings presented here suggest promising opportunities for improved performance
in a wider range of remote sensing applications.

4.6 Limitations

Despite the promising results achieved by the neural compression models in this study,
several limitations need to be addressed for a more comprehensive understanding of their
capabilities and applicability.
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First, the computational complexity of neural compression models, especially during
training, is significantly higher compared to traditional methods such as PCA, DWT, and
SA. Neural networks require considerable computational resources, especially when pro-
cessing large-scale datasets and high-resolution satellite images like those from Sentinel-1
and Sentinel-2. Training these models involves optimizing numerous parameters across
multiple layers, making it both time- and resource-intensive. This complexity limits the
accessibility of these models for applications where computational power is constrained
or where real-time processing is required. In contrast, traditional methods like PCA
and DWT are more computationally efficient and easier to implement, though they of-
fer less robust performance. Future advancements in hardware acceleration, such as
the use of specialized AI chips or cloud-based processing, could mitigate some of these
computational challenges.

Another limitation is the sensitivity of neural compression models to hyperparameters
and training conditions. The performance of these models can vary significantly depend-
ing on the chosen architecture, learning rates, batch sizes, and quality settings. Small
variations in these parameters can lead to noticeable differences in classification accu-
racy and image quality, making it difficult to generalize results across different datasets
or sensor modalities without careful tuning. This lack of consistency underscores the
need for more standardized training and evaluation protocols that can ensure reliable
and reproducible results. Moreover, neural models can sometimes exhibit overfitting,
particularly when the dataset is not sufficiently large or diverse, which can reduce their
ability to generalize to unseen data.

Additionally, while the fusion of SAR and optical data has demonstrated significant
benefits in terms of classification accuracy and image quality, multimodal fusion may
not always be suitable for all remote sensing applications. Certain environmental or
meteorological conditions may favor one modality over the other, making the fusion
process less effective or even redundant. For instance, in regions with limited cloud
cover, optical data may already provide sufficient information, and the inclusion of SAR
data might not yield substantial improvements. Moreover, fusing multiple modalities
could potentially introduce irrelevant or conflicting information, leading to decreased
performance in some cases. Thus, further research is needed to better understand the
specific conditions under which multimodal fusion provides the greatest benefit and when
single-modality models might be more appropriate.

A key limitation is also the need for large datasets to train neural compression models
effectively. Neural networks, particularly in the context of multimodal data fusion, rely
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heavily on extensive, high-quality datasets to capture the nuances of the data and extract
meaningful patterns. In cases where data is scarce or the available dataset is too small,
the models may fail to generalize well, and the fused representations might artificially
inflate performance compared to singular modalities. This limitation underscores the
importance of large-scale, well-labeled datasets in achieving the full potential of neural
compression models, especially in scenarios where data collection is expensive or difficult.

Furthermore, although the reconstruction quality of fused representations was shown
to be on par with or even superior to singular modalities, the impact of fusion on
other downstream tasks, such as object detection, time-series analysis, or change detec-
tion—has not been fully explored. The evaluation in this study focused primarily on
image quality metrics and classification performance. However, remote sensing appli-
cations often require more specialized analyses, and it is unclear whether the benefits
of fusion seen here will translate to those tasks. For example, in time-series analysis,
maintaining temporal coherence across multiple observations is critical, and fusion might
introduce inconsistencies that could affect performance. Similarly, object detection and
change detection could be impacted by how well the fused representations retain spatial
and spectral features over time.

4.7 Conclusion

In this paper, we presented a comprehensive evaluation of neural compression models
using fused representations of Sentinel-1 SAR and Sentinel-2 optical data. The results
demonstrate that neural compression models significantly outperform traditional data
fusion techniques such as PCA, DWT, and SA across a range of quality metrics. The
fused representations consistently yielded higher classification accuracy, better compres-
sion efficiency, and superior image quality compared to singular modalities.

One of the key findings is that the fusion of SAR and optical data enhances both
structural and spectral fidelity, without negatively impacting reconstruction quality. The
complementary information provided by the two modalities allows neural models to cap-
ture more discriminative features, leading to substantial improvements in both com-
pression and classification performance. Furthermore, the fused models maintained low
bits-per-pixel (BPP) rates while preserving essential image details, making them highly
efficient in terms of data storage and transmission.

However, the study also highlighted several limitations of neural compression mod-
els, particularly in terms of computational demands and sensitivity to hyperparameters.
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While these models offer substantial improvements over traditional methods, their com-
plexity may limit their use in applications with real-time constraints or limited compu-
tational resources.

Overall, neural compression models represent a significant step forward in multimodal
data fusion for remote sensing applications. By leveraging the strengths of both SAR
and optical data, these models offer a powerful solution for improving remote sensing
data processing quality and efficiency. Future research should address the computational
limitations, explore the impact of fusion on a wider range of downstream tasks, and refine
the models for broader practical applications.

4.8 Appendix: Latent Space Visualizations
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Figure 4.5: UMAP visualizations of models constructed optical, SAR and Fused latent
spaces, with labels.
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Figure 4.6: t-SNE visualizations of models constructed optical latent spaces, with
labels.
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Figure 4.7: t-SNE visualizations of models constructed SAR latent spaces, with labels.
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Figure 4.8: t-SNE visualizations of models constructed fused latent spaces, with labels.
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Using VAEs for Anomaly
Detection
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Abstract

Detecting anomalies in complex sensor-based systems, such as Magnetorheological (MR)
dampers, is critical for ensuring operational reliability and safety. Traditional anomaly
detection methods often struggle with the high-dimensional, noisy nature of MR damper
data, particularly when anomalies are induced through variable voltage inputs. In this
study, we propose a novel hybrid approach using a Variational Autoencoder (VAE)
with an integrated Multilayer Perceptron (MLP) classifier to directly classify anomalies
within the VAE’s latent space. This end-to-end model jointly optimizes unsupervised
representation learning and supervised anomaly classification, effectively balancing re-
construction, regularization, and classification objectives. We evaluate the model on
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MR damper data collected from position and force sensors, with anomalies induced
by over- and under-voltage scenarios. Experimental results demonstrate that our inte-
grated VAE-MLP framework outperforms traditional methods, such as standalone PCA,
Isolation Forest, and conventional Autoencoders, in both classification accuracy and ro-
bustness to noise. Additionally, we show that the inclusion of an MLP during training
enhances the interpretability of the VAE’s latent space, clustering anomalies distinctly
from normal operational data. This approach not only achieves superior anomaly de-
tection performance but also provides a promising framework for hybrid representation
and classification in high-dimensional sensor data applications.

Keywords: Variational Autoencoder, Anomaly Detection, Magnetorheological Dampers,
Machine Learning, Latent Space Classification

5.1 Introduction

Anomaly detection plays a pivotal role in ensuring the reliability and safety of critical
engineering systems. The ability to detect deviations from expected behavior is essential
in applications ranging from industrial automation to aerospace, where system failures
can lead to catastrophic consequences. In recent years, there has been a growing interest
in the use of machine learning techniques to improve anomaly detection capabilities, es-
pecially in systems where traditional methods struggle due to high-dimensional and com-
plex data structures. One such system is the Magnetorheological (MR) damper, which
is widely used in semi-active control applications, such as vibration control [313][314],
automotive suspensions [315] [316], and structural damping [317, 318, 319] and more
[320, 321]. Despite its effectiveness, the complexity of MR damper behavior under dif-
ferent operational conditions poses significant challenges for anomaly detection.

Magnetorheological dampers are devices that use a magnetorheological fluid (a sus-
pension of micrometer-sized magnetic particles in a carrier liquid) that can change its
rheological properties in response to an applied magnetic field [314]. This ability to vary
the fluid viscosity in real time allows MR dampers to adapt their damping character-
istics dynamically, making them ideal for applications requiring precise and responsive
control over vibration. However, the non-linear and complex dynamics of MR dampers,
coupled with the noise-prone data generated by position and force sensors, make it diffi-
cult to detect anomalies using conventional threshold-based methods. Anomalies in MR
dampers can occur due to various factors, including voltage irregularities, mechanical
wear, or degradation in the magnetorheological fluid properties [322]. Identifying these
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anomalies is crucial for predictive maintenance and for preventing potential failures that
could compromise system performance or safety.

Traditional anomaly detection methods, such as statistical process control, rule-based
systems, and threshold monitoring, have been employed in monitoring MR dampers
[323]. However, these approaches often rely on handcrafted features and require ex-
tensive domain knowledge to establish effective detection criteria. Furthermore, these
methods can struggle with distinguishing between normal variations in damper behavior
and actual anomalies, especially when anomalies are subtle or develop gradually over
time. As a result, more sophisticated data-driven techniques are being explored, partic-
ularly in the realm of machine learning. Unsupervised learning models, such as Principal
Component Analysis (PCA), Isolation Forests, and Autoencoders, have shown promise
in detecting anomalies in high-dimensional sensor data by learning patterns of normal
behavior and flagging deviations. However, these models still face limitations in captur-
ing the intricate and multi-modal characteristics of MR damper data, where noise and
dynamic changes add further complexity.

Variational Autoencoders (VAEs) have emerged as a powerful tool for anomaly de-
tection in high-dimensional data. Unlike traditional autoencoders, which aim solely
to reconstruct input data, VAEs impose a probabilistic structure on the latent space,
allowing for a more compact and meaningful representation of data variability. This
characteristic is particularly advantageous in anomaly detection, as the VAE’s latent
space can effectively capture the underlying distribution of normal data while flagging
outliers that do not conform to this distribution. By training a VAE on sensor data
from MR dampers under normal operating conditions, it is possible to learn a latent
representation that encapsulates the typical dynamics of the system. When presented
with anomalous data, the VAE should either produce a high reconstruction error or a
latent representation that significantly deviates from the normal distribution, indicating
an anomaly.

In this study, we propose a novel approach that integrates a Multilayer Perceptron
(MLP) classifier directly within the VAE framework to enhance the model’s anomaly
detection capabilities. The integration of the MLP allows us to perform anomaly clas-
sification within the VAE’s latent space, creating a hybrid model that benefits from
both unsupervised representation learning and supervised classification. This end-to-
end training approach, which simultaneously optimizes the VAE’s reconstruction and
regularization objectives alongside the MLP’s classification objective, enables the model
to learn a latent space tailored specifically for anomaly detection. By incorporating the
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classification task during training, the latent space becomes more discriminative, clus-
tering normal and anomalous samples distinctly and thereby facilitating more accurate
anomaly detection.

Our approach is evaluated on sensor data collected from an MR damper system,
where anomalies are induced through controlled over- and under-voltage scenarios. The
MR damper data consists of time-series measurements from position and force sensors,
capturing the damper’s response to changes in input voltage. This dataset presents
several challenges, including temporal dependencies, and significant noise, making it an
ideal test case for our proposed method. We compare the performance of the VAE-
MLP hybrid model against several baseline models, including traditional PCA, Isolation
Forests, and standalone Autoencoders. Evaluation metrics include accuracy, F1 score,
and area under the precision-recall curve (AU-PRC), as well as qualitative assessments
of the latent space structure to examine the model’s interpretability.

The contributions of this paper are threefold. First, we introduce an integrated VAE-
MLP model that jointly optimizes unsupervised and supervised learning objectives, pro-
viding a robust framework for anomaly detection in complex systems like MR dampers.
Second, we demonstrate that the inclusion of a classifier during training enhances the
discriminative power of the latent space, improving anomaly detection performance and
interpretability. Finally, we conduct extensive experiments on MR damper data, show-
ing that our approach outperforms traditional anomaly detection methods in terms of
both detection accuracy and robustness to noisy sensor data.

In summary, this study aims to advance the field of anomaly detection by presenting
a novel VAE-based approach tailored to the challenges of high-dimensional and noisy
sensor data in MR dampers. The proposed VAE-MLP hybrid model achieves superior de-
tection performance and provides insights into the underlying data distribution, making
it a valuable tool for predictive maintenance and fault diagnosis in engineering systems.
The results of this study demonstrate the potential of hybrid unsupervised-supervised
models for anomaly detection and open avenues for future research in applying methods
similar to those of other sensor-driven applications.

5.2 Related Work

Chong et al. [322] present a first approach employing a nonlinear multiclass support
vector machine (NMSVM) as the core classifier in a comprehensive SHM system for
buildings equipped with MR dampers. This framework, integrating discrete wavelet
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transforms and autoregressive (AR) models to extract damage-sensitive features, aims
to improve detection precision under varying damage scenarios. Notably, this study
represents the only research to date applying machine learning specifically to SHM in
MR-damped buildings, advancing a robust solution capable of effectively distinguish-
ing between multiple damage levels despite the challenges posed by ambient noise and
structural complexity.

5.2.1 Anomaly Detection with VAEs

Anomaly detection is an essential task across diverse fields, including cybersecurity,
industrial monitoring, and healthcare, due to its potential to identify critical events
or irregularities in data. Conventional anomaly detection approaches rely heavily on
statistical models, clustering methods, and prediction-based frameworks [324]. However,
these traditional techniques often struggle with complex, high-dimensional data due to
the lack of robust feature learning mechanisms.

Variational Autoencoders (VAEs) have emerged as a popular tool for anomaly detec-
tion because of their ability to learn low-dimensional latent representations that capture
underlying data structures. Through probabilistic encoding, VAEs can model normal
patterns, making it possible to detect anomalies as deviations from these patterns [325].
VAEs are particularly well-suited for applications in noisy environments, such as web
monitoring systems and industrial sensor networks, where they are employed to recon-
struct normal patterns while isolating anomalies through reconstruction error.

Recent advances in VAE-based anomaly detection have explored various hybrid ar-
chitectures. For example, Lin et al. [326] proposed a VAE-LSTM model tailored for time
series anomaly detection, where the VAE module learns local temporal features and the
LSTM module captures long-term dependencies, effectively identifying both short-term
and sustained anomalies. This hybrid approach improves upon the conventional VAE by
addressing its limited capacity for long-term temporal modeling, a limitation frequently
encountered in purely reconstruction-based models.

Other studies incorporate clustering methods to enhance the interpretability of VAE
latent spaces. Zhu et al. [327] introduced a VAE-SOM (Self-Organizing Map) hybrid
model for monitoring flexible sensors in wearable health devices. The SOM module
clusters the VAE’s latent outputs, translating continuous latent features into discrete
states, which are subsequently analyzed for temporal dependencies using Markov chains.
This method demonstrates that clustering within the latent space can improve anomaly
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interpretability and enable the model to adapt to complex temporal patterns in real-time
sensor data.

Further innovations in VAE architectures include attention-based mechanisms and
graph neural networks (GNNs) to handle multivariate dependencies in time series data.
Shi et al. [328] developed a GCN-VAE model for multivariate time series anomaly
detection, where a GCN captures interdependencies between time-series variables, and an
attention-based VAE reconstructs data while emphasizing the most informative features.
This approach outperforms conventional VAEs in high-dimensional sensor networks by
leveraging correlations across variables, thus providing a more context-aware anomaly
detection framework.

Our work builds on these foundational VAE architectures by proposing a conditioned
VAE-MLP model that introduces a classifier within the VAE framework. This inte-
gration explicitly conditions the latent space, fostering greater separation between nor-
mal and anomalous patterns. Compared to the aforementioned VAE-based models, the
conditioned VAE-MLP optimizes the latent representation for anomaly separability, en-
hancing classification performance and interpretability in anomaly-prone environments
such as sensor networks. Additionally, we demonstrate that conditioning the VAE’s
latent space with a classifier enhances robustness to noise, a persistent challenge in
high-dimensional anomaly detection [329].

5.3 Methodology

5.3.1 Experimental Setup

Magnetorheological (MR) dampers represent a class of devices employed in various en-
gineering applications, such as automotive suspension systems, seismic protection, and
industrial machinery, where they facilitate adaptive control of vibration and energy dis-
sipation. These dampers function based on the unique properties of magnetorheological
fluids, which exhibit a significant change in viscosity in response to an applied magnetic
field, thereby allowing for dynamic adjustments to damping characteristics. The perfor-
mance of MR dampers is characterized by the nonlinear relationship as a result of the
innate hysteretic behaviour. Figure 5.1 presents a labelled cutaway of the various com-
ponents core to the function of a typical MR damper. Its operation centers on converting
mechanical energy into frictional losses by exploiting the rheological characteristics of
the MR fluid housed within the damper. Under an applied external force, MR fluid is
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displaced between chambers via piston orifices. An electrical current induces a mag-
netic field, aligning the ferrous particles in the MR fluid, thereby modifying its viscosity
and consequently altering the damping characteristics [316]. By varying the applied
voltage to the coils, precise control over the damping characteristics in real-time may be
achieved, thus aligning performance with the demands of particular applications. In light
of the significance of controlled damping in engineering systems, the implementation of
condition monitoring for MR dampers becomes necessary. Continuous assessment of the
damper’s performance and operational state enables the maintenance of functionality
within desired parameters, contributing to enhanced reliability and potentially extend-
ing the lifespan of the equipment.

Figure 5.1: A labelled depiction of an MR damper.

The Lord RD 8041-1 MR damper employed in this study is classified as a monotube
shock absorber, pressurized with nitrogen gas at 300 psi to ensure piston extension
under no-load conditions. The response time to changes in the magnetic field for the
Lord RD 8041-1 damper is approximately 15 ms [330]. The inclusion of an accumulator
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compensates for volumetric changes resulting from piston displacement [331, 332]. The
performance of MR dampers is sensitive to ambient temperature fluctuations, with coil
resistance directly affecting the generated magnetic field. At 22°C, the coil resistance is
typically 5 Ω, increasing to approximately 7 Ω at 71°C [330]. This resistance variation
influences the magnetic field strength and particle alignment efficiency. For this study,
the damper operates at room temperature (22°C).

A summary of its operational parameters is provided in Table 5.1, with further elec-
trical details available in Table 5.2.

Properties Value

Stroke length 74 [mm]
Extended Length 248 [mm]
Body Diameter 42.1 [mm] max
Shaft Diameter 10 [mm]
Tensile Strength 8896 [N ] max
Peak to Peak Damper Forces 5 cm/sec at 1 A > 2447 [N ]
Peak to Peak Damper Forces 5 cm/sec at 1 A < 667 [N ]
Operating Temperature 71 [◦C] max

Table 5.1: Typical properties of the LORD RD-8041-1 MR damper.

Properties Value
Input Current: Continuous for 30s 1 [A] max
Input Current: Intermittent 2 [A] max
Input Voltage 12 [V ]
Resistance at ambient temperature 5 [Ω]
Resistance at maximum operating Temperature (71
[◦C])

7 [Ω] max

Table 5.2: Electrical properties of the LORD RD-8041-1 MR damper.

The experimental setup integrates the previously introduced MR damper with a linear
actuation system, force sensing, and control mechanisms to facilitate the validation of
anomaly detection methods. Figure 5.1 depicts the experimental setup and its various
components.
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Figure 5.2: The experimental setup utilized herein, features the MR damper and
necessary components for actuation and sensing.
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Control of MR damper damping properties are controlled through the KORAD pro-
grammable power supply, allowing for the exploration of varied damping characteristics
through excitation adjustments. This power supply’s selection was based on its digi-
tal control features, including encoder-controlled interfaces and USB control capabilities
[333].

The actuation system employs an Ultramotion linear servo, featuring a rod-style
actuator paired with a configurable brushless DC motor controller. It provides position
feedback with a resolution of 3.1 micrometers and includes a self-locking acme screw
mechanism to prevent back driving [334].

In terms of mechanical properties, the actuator exhibits a dynamic continuous load
capacity of 756 N and a peak dynamic load capacity of 1512 N, operating with a power
rating of 180 W. It achieves a maximum speed of 356 mm/s with a stroke length of
76.2 mm [334]. Control is achieved through RS-422 serial communication, with onboard
sensors monitoring position, torque, temperature, and humidity. Position tracking is
provided by a multi-turn magnetic encoder, delivering a resolution of 1024 counts per
revolution [334].

The force sensor integrated into the setup is the RAS1-500S-S resistive S-Beam load
cell, with a capacity of 226.8 kgf (2224.11 N), constructed from tool steel and offering an
accuracy of ±0.02% [335]. Calibration is traceable to the National Institute of Standards
and Technology (NIST). Data collection from the force sensor is handled via the DI-
10000UHS-1K USB interface, enabling data streaming at 1000 Hz [335].

5.3.2 Baseline Models for Anomaly Detection

The proposed VAE-MLP model is evaluated against several baseline anomaly detection
models to establish its effectiveness and robustness. These baseline models include a mix
of traditional statistical methods and deep learning techniques, each of which serves as
a reference point for assessing how well the VAE-MLP can distinguish between normal
and anomalous data in high-dimensional sensor readings. By comparing the VAE-MLP
to these varied approaches, we aim to demonstrate its advantages in both anomaly
separability and classification accuracy.

The following baseline models were used to provide a comprehensive comparison:

• Principal Component Analysis (PCA): PCA is used to reduce data dimen-
sionality by transforming it into a set of principal components that capture the
directions of maximum variance. Anomalies are detected based on their deviation
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from the variance structure of normal data within the transformed space. This
model serves as a simple, interpretable approach to identifying outliers in high-
dimensional data.

• Autoencoder (AE): A standard Autoencoder was employed as a baseline, trained
solely to minimize reconstruction error. The AE compresses data into a lower-
dimensional representation and reconstructs it, identifying anomalies by their high
reconstruction errors, as these data points do not conform to the patterns learned
from normal data.

• Isolation Forest: Isolation Forest is an ensemble-based unsupervised anomaly
detection model that isolates anomalies by creating recursive random partitions in
the feature space. Data points requiring fewer partitions are likely to be anomalies,
as they are more isolated. This method does not rely on assumptions about data
distribution, making it suitable for diverse datasets.

• Vanilla Variational Autoencoder (VAE): A standard VAE, or Vanilla VAE,
was implemented as a baseline. This model includes only the encoder and decoder
components, without an integrated classifier. It learns a latent representation of
the data through reconstruction, with anomalies identified based on either high
reconstruction error or outlier positions in the latent space. This unsupervised
VAE offers a point of comparison to evaluate the benefits of adding a classification
layer to the latent space.

• Convolutional Neural Network (CNN): A CNN was trained on segmented
time-series data from the sensors, leveraging its ability to automatically extract
features from raw data. This model provides a supervised approach to anomaly
detection without relying on latent space regularization, serving as a contrasting
benchmark to latent space-based methods like the VAE.

5.3.3 Proposed Model: Variational Autoencoder (VAE) with Inte-
grated MLP Classifier

The core of our approach is a hybrid VAE model with an integrated Multilayer Per-
ceptron (MLP) classifier, which jointly optimizes representation learning and anomaly
classification. The VAE-MLP model has a two-part architecture consisting of an encoder-
decoder structure for representation learning and an additional MLP classifier to enhance
anomaly detection.
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The VAE Architecture consists of an encoder that compresses high-dimensional input
data into a lower-dimensional latent space by generating both the mean (µ) and log-
variance (log σ2) vectors. This latent representation allows for effective data compression
and regularization through a Gaussian prior. The decoder reconstructs the original input
data from the latent space, with the reconstruction loss guiding the encoder to capture
essential features of normal and anomalous data.

The MLP Classifier operates directly on the latent mean vector, µ, produced by the
encoder, classifying each segment as either normal or anomalous. The classifier network
is a three-layer MLP with GELU activations and a softmax layer, optimized alongside the
VAE. By integrating the classifier, the model is encouraged to organize the latent space in
a way that separates normal and anomalous data, enhancing classification performance
in the latent space.

The training objective for the VAE-MLP model is a composite loss function, which
combines the reconstruction loss, Kullback-Leibler (KL) divergence, and classification
loss:

Total Loss = Reconstruction Loss + β · KL Divergence + α · Classification Loss (5.1)

where β and α are hyperparameters that control the relative contributions of the KL
divergence and classification loss. The reconstruction loss minimizes the error between
the input and reconstructed output, the KL divergence regularizes the latent space, and
the classification loss enables accurate detection of anomalies.

5.3.4 Training and Evaluation Protocol

To train the VAE-MLP model, we performed hyperparameter tuning, adjusting the
latent dimension, learning rate, and the weights of the KL and classification loss com-
ponents (β and α) to achieve optimal performance. The model was trained using the
Adam optimizer over 1500 epochs, monitoring reconstruction, KL, and classification
losses throughout.

The time-series data was preprocessed into fixed-length segments of 500 samples to
ensure consistency in input dimensions for the model. Each segment comprised ‘Force‘
and ‘Position‘ time-series measurements, which were concatenated into a unified feature
array for every sample. If a segment exceeded the target length, it was truncated to the
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first 500 samples, while segments shorter than 500 samples were padded with zeros at
the end to match the required input length. This segmentation process ensured that all
inputs to the model maintained the same dimensionality, making them suitable for batch
training. Furthermore, each segment was labeled based on the associated condition of
the data, with the assumption that labels remained consistent across each segment.

After segmentation, the data was converted into PyTorch tensors for efficient pro-
cessing within the deep learning pipeline. Each segment, originally a two-dimensional
array of shape (500 × 2 ), was flattened into a one-dimensional array of shape (1000 )
to simplify input handling. This transformation preserved all feature information while
aligning with the input requirements of the model.

Normalization was applied to the data to standardize the feature scales and improve
the stability of the training process. Normalization was performed by subtracting the
mean and dividing it by the standard deviation. A small epsilon value (10−8) was added
to the standard deviation to prevent division by zero and ensure numerical stability.
Normalization not only brought the features to a common scale but also mitigated
the effects of varying magnitudes in ‘Force‘ and ‘Position‘ measurements, which could
otherwise hinder model performance.

This preprocessing pipeline, comprising segmentation, tensor conversion, and nor-
malization, was critical in preparing the data for robust and consistent training. It
ensured that the input data was both uniform in shape and scaled appropriately, allow-
ing the VAE-MLP to focus on learning meaningful latent representations rather than
compensating for inconsistencies in the raw input.

For evaluation, we measured both classification accuracy and F1 score on the test
set to assess the model’s ability to distinguish between normal and anomalous data.
Additionally, to gain insights into the latent space organization, we visualized the latent
space using t-SNE and PCA. These visualizations provided a qualitative understanding
of how well the model separated anomalies from normal data within the latent space,
offering further validation of its anomaly detection capability.

5.4 Results and Analysis

This section presents the performance of different anomaly detection models, with results
divided into baseline methods, the Vanilla VAE, and the proposed conditioned VAE-MLP
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model. The performance of each model is evaluated in terms of accuracy, F1 score, and
AUC, as shown in Tables I, II, and III and Figures 5.3, 5.4, and 5.5.

5.4.1 Baseline Methods

Table III summarizes the results for traditional baseline methods, including PCA, Au-
toencoder (AE), Isolation Forest, and CNN. These models are commonly used for anomaly
detection but lack the explicit representation learning capabilities of deep neural net-
works. Among these, PCA achieves the lowest accuracy at 42% and an F1 score of 0.6.
Isolation Forest and AE perform moderately better, with accuracies around 61-63%, but
still fall short in terms of F1 scores, achieving 0.2 and 0.24, respectively.

Table 5.3: Accuracy and F1 Scores for Baseline Methods

Model Accuracy F1
PCA 42%% 60%
AE 63% 24%

Isolation Forest 61% 20%
CNN 63% 36%

Figure 5.3: ROC Curves and AUC Comparison for Traditional Baseline Methods
(PCA, Isolation Forest, Autoencoder (AE), CNN). The AUC scores for these methods
generally show lower performance, reflecting challenges in detecting anomalies in high-
dimensional, noisy data without explicit representation learning.
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CNN achieves the best results among the baselines, with an accuracy of 63% and
an F1 score of 0.36, showing some capacity for capturing complex patterns in the data.
However, the low overall performance of these methods underscores their limitations
when applied to high-dimensional, noisy sensor data. The lack of structured latent rep-
resentation or targeted anomaly classification hinders their ability to effectively separate
anomalous from normal data, as reflected in their low ROC-AUC scores in Figure 5.3.

5.4.2 Vanilla VAE

To improve upon these baseline methods, the Vanilla VAE model (Table II) introduces
an unsupervised representation learning framework by mapping the data into a latent
space through a probabilistic encoder-decoder structure. This model improves perfor-
mance slightly over traditional baselines, with Gradient Boosting and Random Forest
achieving accuracies of 82.08% and 80.19%, respectively, and F1 scores of 76% and 72%.
Consequently, while the Vanilla VAE performs moderately well, it struggles to achieve
clear separation between normal and anomalous data points in the latent space. The
ROC curve in Figure 5.4 reflects this limitation, as the Vanilla VAE’s AUC scores, while
better than traditional baselines, are still lower than those achieved by the conditioned
VAE-MLP.

Table 5.4: Accuracy and F1 Scores for Vanilla VAE

Model Accuracy F1
MLP 78.30% 72%

Logistic Regression 53.77% 0%
SVM 67.92% 41%
KNN 68.87% 52%

Naïve Bayes 54.72% 35%
Gradient Boosting 82.08% 76%

AdaBoost 77.36% 69%
XGBoost 76% 68%

Random Forest (Bagging) 80.19% 72%
Decision Tree (Bagging) 74.53% 65%
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Figure 5.4: ROC Curve and AUC for Vanilla VAE. The Vanilla VAE serves as an
unsupervised variational model baseline, showing moderate AUC performance. It lacks
a dedicated classifier layer to enhance anomaly separability in the latent space, resulting
in less distinct classification compared to the conditioned VAE-MLP.
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5.4.3 Conditioned VAE-MLP (Proposed Model)

The absence of an integrated classifier limits the model’s ability to optimize the latent
space specifically for anomaly detection. The proposed conditioned VAE-MLP model
further enhances the anomaly detection framework by incorporating an MLP classifier
directly within the VAE’s latent space. This integration explicitly conditions the latent
space to optimize for anomaly separability, leading to significantly improved results. As
shown in Table I, the internal MLP classifier achieves an accuracy of 92.45% and an F1
score of 90%, representing the highest performance across all models tested. Even with
an external MLP applied to the conditioned VAE’s latent space, the model achieves a
competitive accuracy of 83.02% and an F1 score of 79%, demonstrating the robustness
of the conditioned latent representations. Additionally, tree-based models, such as Ran-
dom Forest and XGBoost, perform exceptionally well on the conditioned latent space,
achieving accuracies of 81.13% and 82.08%, respectively, with high F1 scores, further
highlighting the value of the learned representations for anomaly detection. The ROC
curves in Figure 5.5 demonstrate the enhanced separability of anomalies, with AUC
scores consistently higher than those of the Vanilla VAE and baseline methods. This
improvement underscores the importance of conditioning the VAE with a classifier, which
shapes the latent space to distinctly cluster normal and anomalous samples, facilitating
more effective classification.

Table 5.5: Accuracy and F1 Scores for Conditioned VAE-MLP

Model Accuracy F1
MLP (internal) 92.45% 90%
MLP (external) 83.02% 79%

Logistic Regression 67.92% 56%
SVM 82.08% 73%
KNN 75.47% 62%

Naïve Bayes 52.83% 43%
Gradient Boosting 80.19% 73%

AdaBoost 63.21% 49%
XGBoost 82.08% 77%

Random Forest (Bagging) 81.13% 75%
Decision Tree (Bagging) 72.64% 62%
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Figure 5.5: ROC Curves and AUC Comparison for Conditioned VAE-MLP. ROC
curves for various standard classifiers (e.g., Logistic Regression, Random Forest, SVM,
KNN) applied to the latent space representations for anomaly classification in the con-
ditioned VAE-MLP. The AUC values indicate the effectiveness of each classifier in dis-
tinguishing between normal and anomalous data, showing improved performance due to
the integrated MLP layer in the VAE.
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5.4.4 Comparative Analysis

Comparing the results across all three groups of models: baseline methods, Vanilla VAE,
and conditioned VAE-MLP demonstrates the clear advantage of the proposed approach.
Traditional baselines lack the capacity to structure the latent space for anomaly sepa-
ration, as evidenced by their lower accuracy, F1, and AUC scores. The Vanilla VAE
improves upon these baselines through unsupervised representation learning, yet it falls
short due to the absence of a classification objective. In contrast, the conditioned VAE-
MLP not only learns a meaningful latent representation but also optimizes it for anomaly
detection through its integrated MLP classifier.

The conditioned VAE-MLP achieves significantly higher accuracy, F1, and AUC
scores, indicating that the explicit conditioning allows for a more discriminative latent
space. This structured approach is particularly effective for high-dimensional sensor
data, where complex patterns are essential for distinguishing subtle anomalies. In sum-
mary, the conditioned VAE-MLP demonstrates superior anomaly detection capabilities,
validating the effectiveness of conditioning the VAE with a classifier layer to achieve
robust and interpretable results in anomaly detection tasks.

Figures 5.6 and 5.7 illustrate the structure of the latent spaces learned by the condi-
tioned VAE-MLP and the Vanilla VAE models, respectively. Both figures use PCA and
t-SNE to project the latent representations of the training and test sets, with anomalies
and normal samples color-coded for visual clarity. These projections provide insight into
the separability of anomalies from normal data within the latent space.

211

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech/


Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

Figure 5.6: Latent space representation of the conditioned VAE-MLP model visualized
with PCA (top) and t-SNE (bottom) for training and test sets. Anomalous samples are
more clearly clustered separately from normal data, especially in the t-SNE projections,
demonstrating the enhanced separability achieved through conditioning.
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Figure 5.7: Latent space representation of the Vanilla VAE model visualized with PCA
(top) and t-SNE (bottom) for training and test sets. The clustering of anomalous sam-
ples is less distinct compared to the conditioned VAE-MLP, indicating limited anomaly
separability in the latent space.

The conditioned VAE-MLP model (Figure 5.6) demonstrates distinct clustering pat-
terns between normal and anomalous data points. In both the PCA and t-SNE projec-
tions, the anomalous samples form noticeably separate clusters from the normal samples,
especially in the t-SNE plots. This indicates that the conditioned VAE-MLP effectively
structures the latent space to enhance separability, likely due to the integrated MLP
classifier, which encourages the VAE to organize the latent representations in a way that
supports anomaly detection. The training and test sets display consistent clustering
patterns, suggesting that the conditioned VAE-MLP generalizes well in distinguishing
anomalies from normal data in unseen samples.

In contrast, the Vanilla VAE model (Figure 5.7) exhibits a less distinct separation
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between anomalous and normal samples. Although some clustering is observed, par-
ticularly in the t-SNE projections, the separation between anomalies and normal data
points is less pronounced compared to the conditioned VAE-MLP. This limited sepa-
rability reflects the absence of an explicit classification objective in the Vanilla VAE,
resulting in a latent space that lacks the structured separability seen in the conditioned
model. The PCA and t-SNE projections for the Vanilla VAE indicate that, while some
latent representations of anomalies are distinguishable, they are often interspersed with
normal data, reducing the model’s effectiveness in reliably identifying anomalies.

By integrating an MLP classifier directly within the VAE framework, the conditioned
VAE-MLP optimizes the latent space for anomaly detection, creating well-defined clus-
ters that facilitate the identification of anomalous samples. This structured separation is
essential for high-dimensional, noisy sensor data, where subtle anomalies are challenging
to detect. The Vanilla VAE, while effective in compressing data, lacks this enhanced
separability, demonstrating the importance of a classification component within the VAE
to maximize anomaly detection performance.

5.5 Discussion

The results of this study demonstrate the advantages of integrating a classifier within the
VAE architecture for enhanced anomaly detection. The conditioned VAE-MLP model
consistently outperforms both the Vanilla VAE and traditional baseline methods across
various metrics, including accuracy, F1 score, and AUC. This performance boost can be
attributed to the structured latent space produced by the conditioned VAE-MLP, which
is explicitly optimized for anomaly separability. By conditioning the VAE’s latent space
with a classification objective, the model is encouraged to learn representations that are
not only compressed but also discriminative, making it highly effective in distinguishing
between normal and anomalous data.

The PCA and t-SNE projections of the latent space provide further insight into the
model’s behavior. For the conditioned VAE-MLP, the latent space clusters anomalies
distinctly from normal data, as visualized in both training and test projections. This
clustering suggests that the model has learned a stable latent representation that gen-
eralizes well to unseen data, a crucial requirement for real-world anomaly detection ap-
plications where new, previously unseen anomalies may emerge. In contrast, the Vanilla
VAE, while capable of compressing data effectively, lacks this enhanced separability, as
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evidenced by the mixed clustering of anomalous and normal samples in its latent space
projections.

Moreover, the conditioned VAE-MLP’s high performance across tree-based and neu-
ral classifiers applied to the latent space suggests that the learned representations are
highly versatile and interpretable, making them suitable for downstream tasks beyond
simple anomaly detection. The enhanced separability seen in the conditioned VAE-
MLP latent space also implies that this approach could be beneficial in scenarios where
interpretability is essential, as it allows practitioners to visually inspect clusters and
potentially identify the nature of detected anomalies.

Despite these promising results, some limitations should be acknowledged. The condi-
tioning process, while effective, adds computational complexity to the VAE framework,
which may not be ideal for environments with limited computational resources. Ad-
ditionally, while the conditioned VAE-MLP shows strong generalizability, future work
could explore techniques to further improve its robustness to highly complex and dy-
namic anomalies, which may require more sophisticated conditioning mechanisms or the
incorporation of domain-specific knowledge.

5.6 Conclusion

In this study, we proposed a conditioned VAE-MLP model for anomaly detection in
high-dimensional sensor data. By integrating a classifier within the VAE framework, the
model is encouraged to learn a structured latent representation that optimizes separa-
bility between normal and anomalous data. The experimental results demonstrate that
the conditioned VAE-MLP significantly outperforms both the Vanilla VAE and tradi-
tional baseline methods, achieving higher accuracy, F1 scores, and AUC metrics. The
visualization of latent space representations via PCA and t-SNE further corroborates
the advantages of the conditioned VAE-MLP, highlighting distinct clusters for anoma-
lies and normal samples, particularly in the test set. This clear separation underscores
the model’s potential for real-world applications where reliable anomaly detection and
interpretability are paramount.

The findings of this research provide strong evidence that conditioning the VAE’s
latent space with a classification objective can enhance anomaly detection capabilities,
making the model a valuable tool for applications in high-dimensional, noisy environ-
ments. Future research could investigate ways to further reduce computational overhead
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and enhance robustness to complex anomaly patterns, potentially through hybrid models
that incorporate domain knowledge or adaptive conditioning strategies.

Overall, the conditioned VAE-MLP represents a promising approach for anomaly
detection, bridging the gap between unsupervised representation learning and supervised
anomaly classification. By fostering a more discriminative latent space, this approach not
only improves detection performance but also provides a foundation for interpretability
and flexibility in subsequent analysis tasks.
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Chapter 6

Conclusion

The integration of IoT and remote sensing systems has created unprecedented chal-
lenges in managing, processing, and transmitting heterogeneous data. These challenges
are amplified by the diversity of data modalities, such as numerical measurements, op-
tical imagery, and radar data, as well as the need for efficient compression, integration,
and anomaly detection. This research leverages existing compressive Variational Au-
toencoders (VAEs), integrating them into a novel architecture to address these chal-
lenges. Through fine-tuning and architectural adjustments, these VAEs are optimized
for tasks such as data fusion, classification, and anomaly detection, demonstrating their
utility as a unifying framework for heterogeneous data integration.

The study is structured around three core contributions:

• Leveraging Compressive VAEs for Data Processing and Classification By
employing a range of pre-existing compressive VAEs, this study fine-tuned these
models within a tailored architecture to optimize their latent spaces for direct clas-
sification and efficient data representation. The approach reduces computational
overhead by utilizing latent spaces directly for downstream tasks such as clas-
sification, bypassing traditional reconstructive processing. Experimental results
illustrate that fine-tuning these models significantly improves classification accu-
racy and interpretability, while maintaining competitive compression performance
metrics such as Bits-Per-Pixel (BPP) and Peak Signal-to-Noise Ratio (PSNR).

• Data Fusion Using Unified Latent Spaces Heterogeneous data modalities,
such as Synthetic Aperture Radar (SAR) and optical imagery, present unique chal-
lenges in integration due to differences in scale, resolution, and semantic content.
The proposed architecture fuses disparate data types into unified latent spaces,

217



Ph.D.– Alessandro Giuliano; McMaster University– Mechanical Engineering

enabling robust analytics and classification. Comparative evaluations against tra-
ditional fusion methods—such as Principal Component Analysis (PCA), Discrete
Wavelet Transform (DWT), and Spectral Analysis—demonstrate that latent-space
fusion outperforms these methods in accuracy and data quality. The fused repre-
sentations also enable more nuanced downstream tasks, such as object detection
or environmental monitoring.

• Anomaly Detection Through Probabilistic Latent Spaces Detecting anoma-
lies in high-dimensional, noisy datasets is critical for applications such as indus-
trial monitoring, smart cities, and autonomous systems. By fine-tuning compres-
sive VAEs to include anomaly detection capabilities, this study capitalized on the
probabilistic structure of latent spaces to identify outliers with high reliability. The
proposed architecture integrates a classification layer directly into the latent space,
enabling the identification of anomalies with precision even under challenging con-
ditions of incomplete or noisy data.

6.1 Summary of Research

This research makes significant strides in the application of compressive VAEs to het-
erogeneous data integration:

• Fine-Tuning for Improved Performance: By fine-tuning pre-existing com-
pressive VAEs, the proposed architecture achieves a balance between compression
efficiency and analytical performance. The approach demonstrates superior results
compared to baseline methods, especially in resource-constrained scenarios.

• Unified Latent Space Representations: Fusing disparate modalities, such as
SAR and optical data, into a single latent representation enables more effective
analysis and interpretation, paving the way for advanced applications in remote
sensing and IoT.

• Direct Latent Space Utilization: The novel utilization of VAE latent spaces
for classification and anomaly detection eliminates the need for reconstructive pro-
cessing, streamlining workflows and reducing computational demands.

• Enhanced Data Fusion: The methodology demonstrates that fine-tuned latent-
space fusion provides superior performance over traditional fusion techniques, en-
suring more reliable and interpretable results for downstream tasks.
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6.2 Recommendations for Future Work and Directions

The findings of this research underscore the transformative potential of compressive
VAEs in addressing core challenges of IoT and remote sensing systems. By leveraging
their inherent flexibility and probabilistic nature, these models provide scalable, inter-
pretable, and resource-efficient solutions for data-intensive applications. The proposed
architecture, built upon fine-tuned compressive VAEs, offers a roadmap for future innova-
tions in multi-modal data integration, real-time anomaly detection, and resource-efficient
analytics.

This study lays the foundation for future work in:

• Deploying compressive VAEs on edge devices for real-time, low-resource analytics.

• Extending the architecture to incorporate advanced neural components, such as
attention mechanisms, to further enhance fusion and classification tasks.

• Expanding anomaly detection frameworks to cover more complex datasets and
evolving operational contexts.

• Exploring federated learning to combine compressive VAEs with privacy-preserving
distributed systems for collaborative model training.

By focusing on the refinement and application of existing VAE models, this research
provides a practical and impactful contribution to the fields of data compression, fu-
sion, and anomaly detection, with broad implications for IoT, autonomous systems, and
beyond.
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