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Lay Abstract

This thesis contributes to the automobile insurance field through applications of non-

parametric statistical models with data collected from a GPS device installed on the

vehicle. In the introductory chapter, the steps of determining prices paid by insur-

ance policyholders to the insurance company are outlined and discussed. The second

chapter includes the theoretical background for the nonparametric statistical model

and its application in the insurance industry. Chapter 3 introduces an extension over

the nonparametric statistical model where data points that are seen as abnormal com-

pared to the rest are automatically suppressed for their influence to model fit. The

final chapter illustrates our contributions of applying the nonlinear statistical model

and its extensions to synthetic telematics data where an improvement in model fit

can be seen. Thus, insurance companies are able to come up with a more suitable

price for each policyholder which would attract more customers and increase value of

the company.
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Abstract

In this thesis, we introduce a different P&C ratemaking strategy using telematics

where complexity of telematics data is often seen as a challenge for traditional Gener-

alized Linear Modeling. Generalized Additive Model with its flexible model structure

is outlined and recent applications in the insurance industry are discussed and ana-

lyzed. A robust version of the Generalized Additive Model is then discussed where

the modified penalized likelihood is able to reduce the influence of outliers present

in the data. With an application on a synthetic dataset, it is shown that our results

coincide with the referenced paper of Boucher (2017) and our model with the added

telematics variable shows significant improvements. When outliers are introduced

to the dataset, non-robust models quickly deteriorate and thus produce a poor fit

whereas robust counterparts are able to maintain a similar level of model accuracy

and as a result extreme risks are better identified from such policyholders. Actuaries

can now utilize the added benefit of robust Generalized Additive Model for better

risk classification such that a more fair pricing scheme is made possible.

iv



To the present.

v



Acknowledgements

I would like to thank my supervisor Dr. Anas Abdallah for his mentoring and guid-

ance throughout my academic career. The valuable advice he provides inspires me to

pursue a career in actuarial science.

A special thank-you to Dr. Ben Bolker for answering my questions regarding outliers

simulation and loss functions.

I would like to thank Dr. Jean-Philippe Boucher for helping me locate the synthetic

dataset.

I would also like to thank my families for their unconditional support, love, and trust,

particularly my girlfriend, my parents and my grandparents.

vi



Table of Contents

Lay Abstract iii

Abstract iv

Acknowledgements vi

Notation, Definitions, and Abbreviations xiv

1 Introduction 1

2 GAM Models 6

2.1 Review of Linear Model and Generalized Linear Model . . . . . . . . 6

2.2 Introduction to Generalized Additive Model . . . . . . . . . . . . . . 8

2.3 Modern Development of GAM . . . . . . . . . . . . . . . . . . . . . . 10

2.4 GAM in Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Robust GAM Models 19

3.1 Introduction to Robust Statistics . . . . . . . . . . . . . . . . . . . . 19

3.2 Introduction to Robust Generalized Additive Model . . . . . . . . . . 21

3.3 Robust GAM in Insurance . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



4 Empirical Illustrations 25

4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Referenced Model with Synthetic Data . . . . . . . . . . . . . . . . . 29

4.2.1 Independent Cubic Spline . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Tensor Product Base . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 GLM with Offset . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.4 Model Comparison Results . . . . . . . . . . . . . . . . . . . . 37

4.2.5 GLM with Insured’s Age . . . . . . . . . . . . . . . . . . . . . 38

4.2.6 GAM Pricing Structure . . . . . . . . . . . . . . . . . . . . . 42

4.2.7 Comparisons and Remarks . . . . . . . . . . . . . . . . . . . . 44

4.3 Model Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Addition of More Telematics Variables . . . . . . . . . . . . . 46

4.3.2 A Robust GAM Approach . . . . . . . . . . . . . . . . . . . . 51

5 Conclusion 56

A Figures 58

B Tables 63

viii



List of Figures

4.1 Distribution of annual distance driven (around 80 miles per bin) . . . 29

4.2 Distribution of policy duration (around 6 days per bin) . . . . . . . . 30

4.3 Distribution of claim frequency per annual distance driven . . . . . . 30

4.4 Distribution of claim frequency per policy duration . . . . . . . . . . 31

4.5 Partial effects of non-parametric terms in GAM with independent cubic

spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 3-D perspective plot visualizing the effects of annual distance driven

and policy duration. The left figure belongs to independent cubic spline

model and the right figure belongs to model with tensor product . . . 35

4.7 3-D perspective plot of GLM model . . . . . . . . . . . . . . . . . . . 38

4.8 Distributions of absolute residuals across actual claim value 0, 1, 2 for

all three models. From left to right, actual claim value of 0, 1, and 2 . 39

4.9 3-D perspective plots of the modified GAM with knot locations at every

500 miles for annual distance driven and 0.05 years for policy duration.

The left figure is from GAM with independent cubic splines and the

right figure is from GAM with tensor product. . . . . . . . . . . . . . 44

ix



4.10 Variable importance plots produced by three models. From left to

right, Random Forest, XGBoost, MARS. Variables importance are

evaluated on RSS of claim count reduced. . . . . . . . . . . . . . . . . 47

A.1 Distribution of claim frequency with respect to insured’s age. . . . . . 58

A.2 Distribution of claim frequency with respect to number of sudden

brakes 8mph/s per 1000 miles. . . . . . . . . . . . . . . . . . . . . . . 59

A.3 3-D perspective plot of GAM independent cubic spline with insured’s

age added as a factor variable visualizing the effects of annual distance

driven and policy duration. . . . . . . . . . . . . . . . . . . . . . . . . 59

A.4 Partial dependence plots of effects of Brake.08miles on claim frequency.

The vertical axis represents predicted claim count. From left to right:

Random Forest, XGBoost, MARS. . . . . . . . . . . . . . . . . . . . 60

A.5 Partial effects plot of Brakes.08miles of three-variable GAM model.

The scale is on linear predictors and the limits on y-axis has been

trimmed down to (-10,10). . . . . . . . . . . . . . . . . . . . . . . . . 60

A.6 3-D perspective plot of modified GAM with tensor product base dis-

playing the effects of annual distance driven and policy duration on

claim frequency. Knots are placed at every 500 miles for annual dis-

tance driven and every 0.05 years for policy duration. . . . . . . . . . 61

A.7 3-D perspective plot of robust GAM fitting claim count on distance

driven and policy duration. The left figure is independent cubic spline

model and the right figure is robust tensor product. . . . . . . . . . . 62

x



List of Tables

4.1 Description of some variables in synthetic dataset. . . . . . . . . . . . 27

4.2 Distribution of representing variables. . . . . . . . . . . . . . . . . . . 28

4.3 GAM using independent cubic splines results . . . . . . . . . . . . . . 32

4.4 GAM using tensor product base results . . . . . . . . . . . . . . . . . 34

4.5 Description of annual distance driven indicator variables . . . . . . . 36

4.6 GLM model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 Extended model result of the GAM with independent splines, GAM

with tensor product, and GLM where insured’s age is added to all three

models. Values with * indicate insignificance at a level of 0.001. . . . 40

4.8 Tariff structure of predicted claim frequency for insureds aged 0-25. . 41

4.9 Tariff structure for modified GAM with independent splines where an-

nual distance driven has 95 knots at every 500 miles and policy duration

has 21 knots at every 0.05 years. . . . . . . . . . . . . . . . . . . . . . 43

4.10 Tariff structure for modified GAM with tensor product where annual

distance driven have knots at every 500 miles and policy duration has

knots at every 0.05 years. . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.11 Three-variable GAM using independent cubic splines results . . . . . 48

4.12 Three-variable GAM using tensor product base results . . . . . . . . 49

xi



4.13 MAR results across GAM with independent splines, tensor product

base and GLM with factor variables for two-variable and three-variable

models. * indicates that the model is fitted with factor variables using

cut rules correspond to respective basis dimensions in GAM. . . . . . 50

4.14 Robust GAM using independent cubic splines results . . . . . . . . . 52

4.15 MAR results for robust GAM with both two variables and three vari-

ables scenarios. All are fit with Poisson distribution with log link and

extended Fellner-Schall method for smoothing parameter selection. . . 52

4.16 Comparison of MAR produced by two-variable GAM and robust GAM

as outliers increase from 0% to 3%. . . . . . . . . . . . . . . . . . . . 53

4.17 Comparison of Lift produced by two-variable GAM and robust GAM

as outliers increase from 0% to 3%. . . . . . . . . . . . . . . . . . . . 54

B.1 Tariff structure of predicted claim frequency for insureds aged 25-40. . 63

B.2 Tariff structure of predicted claim frequency for insureds aged 40-103. 63

B.3 Robust GAM using tensor product base results . . . . . . . . . . . . 64

B.4 Outlier frequency and p-value for outliers test. Models are Poisson

GAM with independent splines and Poisson GAM with tensor prod-

uct base. The p-values are based on test of outliers produced by

testOutliers in R package DHARMa. The hypothesis test is to use

bootstrap to simulate fitted values from the specified model and to

test whether observed data has more values that is larger than expected

setting alternative="greater", margin="upper", type="bootstrap". 64

B.5 Comparison of MAR produced by three-variable GAM and robust

GAM as outliers increase from 0% to 3%. . . . . . . . . . . . . . . . . 64

xii



B.6 Comparison of Lift produced by three-variable GAM and robust GAM

as outliers increase from 0% to 3%. . . . . . . . . . . . . . . . . . . . 65

xiii



Notation, Definitions, and

Abbreviations

Notation

g′′(x) Second derivative of function g() with respect to x

Definitions

Outliers Data points that are seen far away from the average behavior of a

point belonging to a same group

Abbreviations

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

GAM Generalized Additive Model

GCV Generalized Cross Validation

xiv



GLM Generalized Linear Model

REML Restricted Maximum Likelihood

xv



Chapter 1

Introduction

Insurance ratemaking is the process of determination of amount of money to be

paid to the insurance company by the insured. The amount of money paid by the

insured, often referred to as the premium, is calculated from the future loss of the

insured estimated by the insurance company. Unlike other industries where goods or

services is delivered at the moment of the payment, insurance premiums are paid some

time before the service is provided. This makes calculation of insurance premiums a

challenging task as the uncertainty greatly resides in the unforeseen future.

This thesis aims to provide applications in automobile insurance ratemaking in Prop-

erty and Casualty (P&C), or non-life insurance which obligates the insurer to com-

pensate the policyholder in the event of a loss incurred in relation to automobiles.

Compared to the other major branch of insurance, Life Insurance, P&C exhibits a

more dynamic nature where policies with less than a year of coverage appear more

frequently and variables used in the pricing structure are more diverse, normally in-

cluding the characteristics of the insured who is the driver of the vehicle, the driving

habits of the insured, policy duration, etc., in the case of car insurance.
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The industry standard method of determining P&C insurance premiums is to use the

Generalized Linear Model (GLM) for its good predictive power and ease of interpre-

tation. GLM is a statistical modeling method introduced by Nelder and Wedderburn

(Nelder and Wedderburn, 1972); it is an extension of the Simple Linear Model (SLM),

which only allows a normally distributed response. GLM extends the distribution of

the dependent variable to follow the exponential family of distributions which conve-

niently covers many more distributions such as the discrete distributions of Poisson

distribution, Binomial distribution and continuous distributions such as Gamma dis-

tribution. Generalized Linear Models for Insurance Rating 2nd (Goldburd et al.,

2016) showcases the steps of building a GLM model for insurance rate estimation in

detail. This monograph also describes model building in general by going through

data preparation, model fitting and adjustment, model evaluation and validation.

One approach frequently used in practice to estimate P&C insurance premiums is to

view the pure premium (i.e., the premium before adding profit margin and overhead

costs) as the product of two components: the frequency of the claim and the severity

of the claim. The frequency of the claim describes how many times the insured incurs

a loss; it is a nonnegative integer. The severity of the claim is a monetary amount

depicting the seriousness of an average claim made by the insured. In order to estimate

pure premium using aforementioned strategy, two models are fit separately on claim

frequency and claim severity and then the estimated pure premium is obtained by

multiplying the frequency estimate with the severity estimate. The estimates of both

claim frequency and claim severity can be performed using GLM in software like R

(R Core Team, 2023), SAS, and Python.

Compared with claim severity, which is often found to be difficult to estimate because

2
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of its uncertainties associated with catastrophic events and multi-period claim set-

tlement process, claim frequency appears easier to work with. Claim frequency is a

special representation of claim count; it is the claim count divided by exposure which

is normally taken as coverage duration for insurance policy. To model claim count

using GLM, we often set the family of distribution to Poisson with log link structure

to enable a multiplicative effect between the response and the covariates. In a sim-

ilar fashion, claim frequency is modeled where claim count acts as the response but

exposure is treated as an offset.

Exposure, along with characteristics of the insured such as age, gender and marital

status and characteristics of the car such as the age of the car, the model of the

car and the fuel type of the car, constitutes the traditional rating variables in auto

insurance rating structure. With the help of technology and digitization, more and

more advanced tools are being invented and implemented in the insurance industry.

Telematics is a prominent example of this which acts as a bridge between the actuary

and data that are challenging or even impossible to collect in a traditional rating

procedure.

If they agree to install a GPS device on their vehicle, policyholders are often offered a

discount in insurance premiums with the exchange of driving behavior data sent to the

insurance company on the fly. This gadget collects driving patterns and anomalies

and sends the data to the insurer. The granularity across driving behavior data

collected in the form of telematics makes more advanced fair pricing structure and

risk segmentation possible. Such data is collected in the forms of driving activity

variables such as distance driven, brake and acceleration intensities, and whether the

insured is driving in rush hours. The added information obtained from this device

3
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requires careful treatment; a more advanced modeling process is needed to gain the

extra insights from these data.

The Generalized Additive Model or GAM adds this needed flexibility over GLM, at

the same time maintaining a level of interpretability over machine learning methods

such as Neural Networks and Random Forest. Thus, this makes GAM a potential

candidate for nontraditional insurance data where telematics information is available.

Similar to GLM, nonlinear relationships between the response and the covariates are

allowed except that the covariates are now represented by nonparametric smooth

terms. Therefore, with the added flexibility GAM enables data to speak for itself.

An overview of GAM and a literature review of GAM in insurance are provided in

the next chapter (Chapter 2) whereas an application of GAM with automobile count

data is illustrated in Chapter 4.

Outliers are almost always present in real-life data; actuaries are often tasked with

predictive modeling that involves this type of data where the presence of outliers

would jeopardize model accuracy. In an attempt to deal with this challenge, we

introduce a robust extension of GAM which in theory is more resilient to deviations

from model assumptions caused by outliers and hence would produce a better fit. It

behaves like a filter where it automatically selects and down-weighs the influence of

points that are seen as abnormal from the rest of the data. It is a robust method in

a sense that ideally it will perform similarly to non-robust models with no outliers

and will outperform non-robust models with outliers present. Chapter 3 will provide

theoretical background on robust GAM and its applications in the insurance industry.

In Chapter 4, an application of robust GAM with the same telematics data will

be presented as an extension to traditional GAM in the framework of claim count

4
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prediction followed by Chapter 5 which concludes the thesis.
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Chapter 2

GAM Models

2.1 Review of Linear Model and Generalized Lin-

ear Model

The traditional Simple Linear Model (SLM) is a regression method that is used to

find linear relationships between the response and a single covariate. It has the form

yi = β0 + β1xi + εi

where yi represents the response or dependent variable of interest and xi is the single

covariate. It also assumes that the random error term εi is independently and identi-

cally distributed as a Normal distribution with mean 0 and variance σ2. The β0 and

β1 are model coefficients they can be estimated by Least Squares (LS) method where

n∑
i=1

(yi − β0 − β1xi)2

6
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is minimized. The LS estimates of β0 and β1 are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

β̂0 = ȳ − β1x̄

where the estimates are found by taking the derivatives of the objective function with

respect to β0 and β1 and then setting the results to 0.

An extension of this is the Multiple Linear Model (MLM) where the response is

modeled by a group of predictor variables which expressed in matrix form as

~Y = ~X~β + ~ε

where again ~ε follows as Normal distribution with mean 0 and a variance covaraince

structure of Σ with diagonal values being σ2. As in the case of SLM, the coefficient

estimates can be found by Least Squares

~̂β = (X>X)−1X>Y

The Generalized Linear Model (GLM) introduced by Nelder and Wedderburn (Nelder

and Wedderburn, 1972) extends MLM by enabling ~Y | ~X to follow a distribution from

Exponential distribution family. With GLMs, we are no longer limited to Normal

distribution and the various choices of distributions such as Poisson distribution,

Binomial distribution and Gamma distribution create a powerful toolbox for mod-

eling of data across different scenarios. The coefficient estimates are found through

7
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maximization of likelihood and it is usually done using an iterative method such as

Newton-Raphson or Fisher Scoring.

2.2 Introduction to Generalized Additive Model

One might pose a question like this: is there a modeling method that can save us the

efforts of specifying a particular model form? Generalized Additive Model (GAM)

is an answer to this. Introduced by Hastie and Tibshirani in 1986, GAM enables us

to estimate the relationships between the response and the predictor variables in a

nonparametric manner while maintaining a likelihood based modeling procedure and

making normal statistical inference possible. In the case of a single predictor

yi = s(xi) + εi

where s(·) represents a nonparametric smooth function that is allowed to fit auto-

matically by the data. That is, without the need to specify a parametric form of the

curve, we are able to fine tune the smoothed curve to capture the local patterns of

the data.

This is done by introducing the concept of neighborhood w. w which is defined as the

span of the model describes the size of group of points that are recognized to be close

to each data point and is used to estimate the local effects of the predictor. With w

specified, covariate values will be sorted in ascending order where half of bnwc (n, the

number of total data points) will be included to the left of xi and the other half to

the right symmetrically in the estimation process. Span usually takes value between

0 and 2 with 0 only including the point itself resulting in a perfect fit to the data and

8
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2 enabling the inclusion of all data points for every neighborhood which is in fact the

least squares fit under the running lines scatterplot smoother (i.e., ŝ(xi) = β̂0i + β̂1ixi

fitted locally to neighborhood of point xi). Therefore, the span specifies the size of

the neighborhood of each point where scatterplot smoother comes up with the local

estimate of the covariate effects to the response.

The determination of the span w is an automatic process where it is chosen to mini-

mize Cross Validated Sum of Squares (CVSS)

CV SS(w) =
1

n

n∑
i=1

(yi − ŝ−i(xi))2

where ŝ−i(xi) is the smooth estimate of point xi without including it during the fitting

process.

One example of the scatterplot smoother is the local average smoother or running

average smoother where arithmetic mean is calculated over the span which means

ŝ(xi) is estimated to be the average value of corresponding yi around xi. However,

due to the weird behavior of it around the end points, running lines smoother is often

preferred (Hastie and Tibshirani, 1986).

The usual Fisher Scoring fitting algorithm in GLM is used with modification that

the updating formula is estimated locally using the smoother. The iterative process

still proceeds as before until convergence. However, here we use Local Scoring or

Local Likelihood procedure where the solution to the score equation still follows from

the Taylor series expansion but now estimated locally by the smoother (Hastie and

Tibshirani, 1986).

Moving into the multiple covariate case, instead of estimating a single smoothed

function for all of the predictors which would be problematic because of the curse of

9
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dimensionality where neighborhood breaks down and points become sparse in the case

of high dimensions, we estimate smoothed functions for every covariate one by one

sequentially. This is called the Backfitting algorithm where we iterate through the

process of estimating smoothed function effect for sj(xj) (j = 1, ..., p covariate) using

partial residuals in the case of Gaussian distribution and using adjusted dependent

variable in other cases (Hastie and Tibshirani, 1986).

2.3 Modern Development of GAM

Despite the appeal of the Backfitting algorithm in allowing different smoothers to

be selected for each smoothed terms, it becomes difficult to incorporate methods for

smoothness control such as Generalized Cross Validation (GCV).

This section introduces the concept of building GAM using bases which is described

in detail in the book by Wood (2017) and the accompanying R package mgcv.

As in the previous section, the general model form of GAM outlined by Simon Wood

is

g(µi) = ~X~β + f1(x1i) + f2(x2i) + f3(x3i, x4i)

where g(·) is the link function, ~X~β is the parametric effect term, and fi(·) is the

smoothed effect term. The idea is to represent the smoothed functions fi(·) with

basis expansions.

Let us first look at the simple univariate smooth case where a single smoothed function

is required to be estimated

10
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yi = f(xi) + εi

.

To estimate smooth function f(·), we first need to select a basis for which a set of

functions is treated as known and is believed to be a close approximation to the true

f(·) so that

f(x) =
k∑
j=1

bj(x)βj

where bj(x) is the jth basis function and βj is the corresponding coefficient. That is,

we aim to transform nonparametric smooth function into linear representatives. The

simple choice is the polynomial basis where an mth order polynomial basis result in

f(xi) = β0 + β1xi + ...+ βmx
m
i

.

Another basis, the piecewise linear basis, is often used in place of polynomial basis due

to its improved performance near end points. The concept of w, the neighborhood, is

defined in previous section and introduced by Hastie and Tibshirani to measure the

number of points that are chosen to be close to each datum in smooth function so

that the local behavior could be estimated. But here we introduce a similar concept

of knots for realization of closeness. Knots represented here by x∗j where j = 1, ..., k

are points where linear basis functions connect. They are the locations of function

discontinuities where derivatives become discontinuous. bj(x) then will be formed

with tent functions for which the functional value bj(x) of an arbitrary point x only

11
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depends on adjacent knots x∗j−1 and x∗j+1 on either side of the point x (i.e., x∗j−1 <

x < x∗j+1) (Wood, 2017, Section 4.2.1). f(x) then becomes the linear model

f(x) = ~X~β

where xij = bj(xi). As it can be seen above, now our smooth function is written in

the form of parametric terms.

Besides choosing a basis to approximate the smooth function, function wiggliness also

needs to be quantified and measured so that model obtains an appropriate degree of

smoothness. What is normally done in practice is to decide on a basis dimension k or

number of knots that is more than needed and then introduce a penalty parameter λ

to control function wiggliness. Therefore, rather than minimizing LS we have

||Y −Xβ||2 + λβ>Sβ

which is the objective function in penalized regression. The second term in the objec-

tive function above is used to measure function wiggliness and usually can be approx-

imated by squared second order difference
∑k−1

j=2 = (f(x∗j−1)−2f(x∗j)+f(x∗j+1))
2. We

then can proceed similarly as we would in penalized regression method and obtain

coefficient estimates

β̂ = (X>X + λS)−1X>Y

and the influence matrix A = X(X>X + λS)−1X>.

Before computing coefficient estimates β’s, we first need to decide which value λ the

smoothing parameter should take. This is achieved through cross validation where

12
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M =
1

n

n∑
i=1

(f̂i − fi)2

is minimized. M here measures the average squared difference of our estimated

smooth function with the true function and since the true function is unknown it

is often approximated by computing OCV (Ordinary Cross Validation) score

OCV =
1

n

n∑
i=1

(f̂i
[−i]
− yi)2

where f̂i
[−i]

is the fitted estimate of datum i without i during the fitting process.

It can be shown that E[OCV ] = E[M ] + σ2 which is the expected squared error of

predicting new data. Generalized Cross Validation (GCV) score is often used in place

of OCV for its ease of computation and invariance property

GCV =
n
∑n

i=1(yi − f̂i)2

(n− tr(A))2

where A is the influence matrix.

Such GAM can also be written in the forms of Bayesian model and mixed model for

which marginal likelihood maximization or Restricted Maximum Likelihood (REML)

could be used to estimate σ2 and λ.

For multiple variates, the similar additive model could be constructed but now with

multiple penalty terms correspond to each smoothed covariate while a constraint∑n
i=1 fj(xi) = 0 is required for each smoothed function fj(·) to ensure identifiability

of each term. Penalized likelihood maximization is used for distributions other than

Gaussian distribution and this is typically done in practice via Penalized Iteratively

Reweighted Least Squares (PIRLS).
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Next, we will introduce cubic regression spline basis and tensor product basis which

have more appealing properties compared to the piecewise linear basis.

It can be shown that the cubic smoothing spline basis is the smoothest univariate

smoother minimizing our score objective where it achieves the lowest squared error

and the lowest smooth penalty term. Therefore, ideally we would want to build our

smoother with cubic smoothing splines. But due to the computation complexity of

the cubic smoothing spline where every datum is needed during the fitting process,

we turn to the cubic penalized regression spline, which unlike cubic smoothing spline,

only requires a set of k knots to be used for fitting. The rest of the data can be fitted

accordingly based on the fit at the knots. Univariate base other than cubic penalized

regression spline basis could be used in different scenarios. Cyclic cubic regression

spline is suitable for data with seasonal trends and this is achieved by constraining

on an equal functional value as well as first and second derivatives at the boundaries

around the knots, whereas the P-spline basis is constructed by putting smoothness

penalty directly on coefficient β’s and it is particularly useful in Bayesian GAM where

its low rank nature provides computational efficiency.

For modeling interactions among multiple covariates, tensor product basis will be

used. Tensor product basis is one popular example of multivariate smooth which al-

lows straightforward generalization of multiple variables smoothing while maintaining

scale invariant property. This is achieved by making the coefficients of each smooth

change with smooths of other variables. Thus, it enables the tensor product smooth

to model variables with different scales which is used later in subsection 4.2.2 where

distance traveled (in km) is modeled along with policy duration (in years).
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2.4 GAM in Insurance

The uses of GAM in insurance has been less popular than GLM. Particularly, the

focus of GAM applications in the insurance industry has been on ratemaking where

the benefit of flexible nonparametric modeling of GAM can be taken advantage of

to discover complex relationships between the response and predictors that are seen

either to be difficult or impossible to uncover with a traditional GLM.

In life insurance, GAM is used to incorporate nonlinear effects of covariates. In Czado

et al. (2009), Poisson GLM and GAM are used to model number of deaths with

smoothed effects of age and its interactions with other variables for endowment life

insurance policies where it is found that GLM performs similarly to GAM. A natural

cubic spline basis GAM is used in Mau et al. (2020) with Gamma distribution to model

the relationships between healthcare costs and days since initiation of Chemotherapy

treatment for patients diagnosed with a type of Leukemia in USA.

The implementation of GAM in P&C insurance is more prominent compared with

the health insurance industry with emphasis on automobile insurance pricing. There

are dozens of references pointing to the use of GAM in non-life insurance which are

all written after the year of 2000.

Chen et al. (2023) implements cubic spline GAM to model dependent structure in

aggregate claims with applications in simulation as well as an auto insurance dataset

where it shows that both dependent GAM with either frequency and severity modeling

or pure premium Tweedie modeling performs better than the GLM counterparts with

a higher adjusted R2 and a lower AIC. The comparison of differences in approaches of

actuarial modeling of frequency and severity using GLM and GAM in general with a

Spanish auto insurance dataset is outlined in Dı́az Mart́ınez et al. (2023). It is found
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that despite the excess of computation time of GAM compared with GLM, GAM

can take advantage of additional information and thus produce an improvement in

predictions. The utilization of Bayesian P-spline GAM can be found in Fahrmeir et al.

(2003) where it is used to model frequency and severity using Poisson and log-normal

with respect to spatial covariates with application in auto insurance data in Germany.

Novkaniza et al. (2025) considers cubic spline GAM with Poisson distribution to model

claim frequency based on distance traveled and policy duration with application in the

same auto insurance data as ours but with three knots selected and placed at 0, 0.5 and

1 quantiles for each predictor. The relative risks are derived in a tariff structure where

the similar estimates and trends that the predicted risk increases for corresponding

distance traveled as duration increases are observed. Roznik et al. (2019) uses thin

plate spline in GAM to predict air temperature in agricultural insurance with the goal

of reducing interpolating error due to sparse weather stations for better risk estimation

in index based weather insurance. The model incorporates elevation data and found

that GAM performs on par with Universal Kriging where both performed better than

Nearest Neighbor in terms of a lower RMSE and a lower MAE with a real data set in

Alberta, Canada. Cubic spline GAM and GLM are implemented in Tingting (2018)

to estimate pure premium in a dependent frequency severity structure where it is

shown that the dependent GAM model performs better in estimating pure premiums

with both applications on simulated data and one year auto insurance claims. Xie

(2024) uses GAM and GLM with territory (e.g., urban or rural) and class (i.e., types

of use) variables to model aggregated loss cost and premiums for different coverage

types where it is found that GAM performs better with a higher adjusted R2. The

application of GAM for pure premium estimation with addition of UBI data can
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be found in Xie and Shi (2023) where the same telematics data as ours is included

with territorial variable generated using K-means clustering. The incorporation of

territory variable improves the original model resulting in a lower GCV score and a

lower AIC. In Kaivanipour (2015), the author investigates the performance of L-curve

which chooses smoothing parameter with a balance between regularization (i.e., model

smoothness) and deviance (i.e., model fit) with cross validation in choosing smoothing

parameter in GAM. Although L-curve excels in computation efficiency, it suffers from

under smoothing compared with cross validation using non-life test data. Finally, we

have Boucher et al. (2017) which is our main paper of discussion where a cubic spline

basis and a tensor product basis GAM are implemented with application in telematics

motor insurance data.

Other than applications of GAM in insurance, there are a few uses of GLMM (Gener-

alized Linear Mixed Model) and GAMLSS (Generalized Additive Model for Location,

Scale and Shape) in non-life insurance field where random effects in GLMM and multi-

parameters modeling in GAMLSS are seen as potential improvements over GAM.

Seyam and Hussien (2022) implements GLM, GLMM, and GAM to estimate pure

premium for an auto insurance company in Egypt where it is found that GLMM is

the most preferable as it has the lowest AIC. In Pitt et al. (2020), GAMLSS is used to

model mean and scale parameters for aggregated loss using a compound Poisson dis-

tribution with a heavy tailed Beta distribution for catastrophe risks in natural perils

where they find GAMLSS performs better comparing to GLM in estimating condi-

tional distribution based on both graphical representation and Kolmogorov Smirnov

test. Denuit and Lang (2004) develop and analyze a Bayesian GAM with incorpora-

tion of spatial variables for non-life ratemaking using a Belgian motor insurance data.
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Klein et al. (2014) modifies Bayesian GAMLSS to capture effects from geo-spatial data

and its interactions on insurance premiums with help of the same Belgian dataset.

Distributions such as Negative Binomial and zero-inflated Poisson with random ef-

fects are used to take into account of group-specific variations for claim frequency

and zero adjusted log-normal, Gamma, and inverse Gaussian are used to model zero

amount claims directly for severity.
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Chapter 3

Robust GAM Models

3.1 Introduction to Robust Statistics

The concept of robustness arises from dealing with deviations to model assumptions.

As noted in Casella and Berger (2001), Huber explains the idea of robustness by

emphasizing its three characteristics. Firstly, the robust statistical procedure should

possess a good efficiency under assumed model. Secondly, small deviations from model

assumptions should only damage performance slightly. Thirdly, relatively large devi-

ations from model assumptions should not destroy model performance. In short, a

robust model is one such that performs on par with non-robust models under model

assumptions and is more resilient of mild to large deviations than non-robust coun-

terparts.

One example of a robust estimator can be seen through finding an alternative esti-

mator from sample mean and sample median. This estimator, considered by Huber
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(Casella and Berger, 2001), is found by minimizing

n∑
i=1

ρ(xi − a) (3.1.1)

where ρ(·) is a function characterized as

ρ(x) =


1
2
x2 if |x| ≤ k

k(|x| − 1
2
k) if |x| ≥ k

(3.1.2)

with k being a tuning parameter controlling the robustness of the estimator. It can

also be seen that if ρ(·) is the square function then 3.1.1 becomes
∑n

i=1(xi−a)2 which

is the least squares objective and the sample mean estimator achieves the minimum.

If on the other hand we take ρ(·) as the absolute value function, then 3.1.1 becomes∑n
i=1 |xi − a| and as a result the sample median minimizes this objective. Close

examination of ρ(·) in 3.1.2 shows that the function is continuous and differentiable

at |x| = k where ρ(x) = 1
2
k2.

With ρ(·) specified in 3.1.2, it can be observed that the objective function in 3.1.1

would behave similarly to the least squares objective with |x| ≤ k and behave close to

the absolute value objective where the effect of outliers is diminished when |x| ≥ k.

Hence, this further justifies the fact that Huber wants it to be the middle ground

between the sample mean estimator and the sample median estimator. As the value

of k increases, the resulting estimator approaches the sample mean estimator.

In general, the estimator minimizing 3.1.1 is termed the M-estimator (Maximum

Likelihood Estimator) for which a particular ρ(·) is specified. In the case of ρ(·) being

set to the negative log likelihood, the estimator becomes the MLE. The efficiency of

the robust estimator can be compared with the efficiency of the non-robust estimator
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by computing ARE (Asymptotic Relative Efficiency)

ARE(ârobust, â) =
Asymptotic Variance of â

Asymptotic Variance of ârobust

It is shown that the ARE of an M-estimator to the MLE is always less than or equal

to 1 meaning that the M-estimator is always less efficient than MLE and it trades off

between efficiency and robustness (Casella and Berger, 2001).

3.2 Introduction to Robust Generalized Additive

Model

In Aeberhard et al. (2021), a robust procedure for GAMLSS was developed where

robustness is achieved through modifying the likelihood function inside the objective

function. GAMLSS was introduced by Rigby and Stasinopoulos (2005) and similarly

to GAM it allows both the parametric and nonparametric effects to be modeled with

the response. In addition, GAMLSS enables us to model parameters of a distribution

other than the location parameter and this enables the modeling for distributions

outside the exponential family of distributions. Thus, parameters such as scale and

shape of a distribution can be modeled

gσ(σ) = ~Xσ
~βσ

gν(ν) = ~Xν
~βν

where gj(·) is the corresponding link function for jth parameter and ~Xj
~βj is either the

parametric effects term or parametric representation of the smoothed effects term.

It is described in Aeberhard et al. (2021) that the robust GAMLSS proposed here
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applies robustness directly on the penalized likelihood objective function. And it is

said to be an improvement over other robust GAMLSS procedures in the literature

since the sampling distribution can be derived for inference and the direct application

on the objective function enables natural derivation of robust information criterion

for choosing the smoothing parameter. Normally, in penalized likelihood we would

have

lpenalized(µ, σ, ν) = l(µ, σ, ν)− 1

2
δ>Sδ (3.2.1)

where δ is the parameter vector (µ, σ, ν) and S involves smoothing parameters λj’s.

Therefore, the first term on the right hand side is the normal log likelihood and the

second term is the term controlling wiggleliness of the fitted line. Our goal then is to

maximize 3.2.1 or minimize negative 3.2.1.

The magic of robustness happens at the level of log likelihood where normal log

likelihood l(µ, σ, ν) is replaced with its robust version

l̃(µ, σ, ν) =
n∑
i=1

ρc(l(δ)i)− bρ(δ) (3.2.2)

for which ρc(·) is specified to control contributions of data points to the likelihood

value and bρ(δ) is a correction term for Fisher consistency. ρc(·) used here in robust

GAMLSS is

ρc(z) = log
1 + exp(c+ z)

1 + exp(c)
,where c > 0

where c acts like a tuning parameter for robust fitting. It can be further observed

that the derivative with respect to z, ρ′c(z), acts like a weighting function for each
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data point and ranges from 0 to 1 as it is the logistic function.

A modified version of the trust region algorithm can be used to maximize 3.2.1 where

it exhibits stable convergence. gamlss() function in R package GJRM is built for fitting

such models (Marra and Radice, 2023). The selection of smoothing parameter λj can

be chosen by minimizing the robust version of AIC and BIC

rAIC(λ) = −2l̃(δ) + 2tr[(M̂(δ) + S)−1Q̂(δ)]

rBIC(λ) = −2l̃(δ) + log(n)tr[(M̂(δ) + S)−1Q̂(δ)]

(3.2.3)

where the second term on the right hand side can be interpreted as the total effective

degrees of freedom from fitting the smoothed model. M̂(δ) and Q̂(δ) are the observed

values of M(δ) = −E[l̃′′(δ)] and Q(δ) = E[l̃′(δ)l̃′(δ)>]. Since the smoothing parameter

selection based on rIC (robust Information Criterion) described here involves iteration

of a two step procedure where we first optimize λ given values of δ̂ and then we

update parameter estimates δ̂ based on selected smoothing parameter, this process

would become rather slow. Hence, an alternative procedure, a robust version of

Fellner-Schall (Wood, 2017, section 6.4) would be used for efficient computation.

To illustrate model improvements, the authors first use a simulation dataset of two co-

variates constructed by randomly selecting 5% of the MRI brain imaging data studied

in Wood (2017) and enlarging the corresponding response by adding 10 comparing to

a response median of 0.86. A robust Gamma thin plate regression spline basis model

is fitted with a non-robust alternative and the result shows that the robust model

produce a much better fit with a lower MSE whereas the non-robust version produce

a large positive bias. The same promising results can also be concluded through an-

other set of simulation data where other robust GAM alternatives in the literature
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are fitted. The robust GAMLSS performs on par with other robust GAM alternatives

and shows a lower MSE and a lower deviation among others.

3.3 Robust GAM in Insurance

There have not been many applications of robust GAM in insurance to our best

knowledge. There appears to be only one example of Chang et al. (2024) recently

where a robust GAM is developed for claim reserves estimation. The robust GAM

is used to model incremental claim amount with smoothed effects of accident year

and development year in a loss triangle. The model uses cubic regression spline

setting each accident year and development year as knots. The robustness of the

model is achieved by modifying the score equation of the penalized likelihood where

a winsorizing bounded function is introduced to limit the influence of extreme values

in the response. Finally, the robust reserve estimates are determined by stratified

bootstrapping where residuals are drawn randomly with replacement in each strata

and this ensures the outliers would be sampled equally likely as the original data.

In addition, the robust GAM is fitted along with GLM, GAM, and robust GLM

on a simulation data and a real dataset under both scenarios of outliers absent and

outliers present. The results show that the robust GAM developed performs similarly

to GAM and both perform better than GLM and robust GLM without contamination.

Moreover, the robust GAM achieves both the lowest MAE (Mean Absolute Error)

and RMSE (Root Mean Squared Error) among others by a large margin and thus

performs the best among all four models with contamination introduced where one

preset incremental claim is enlarged 10 times.
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Chapter 4

Empirical Illustrations

Boucher et al. (2017) investigate the effect of distance driven and policy duration on

claim count using GAMs. Unlike traditional insurance pricing strategies where policy

duration is used as the only factor determining accident risks of each insured, the

paper suggests the addition of annual distance driven, which is obtained through an

onboard GPS device. With the help of the GPS device, more telemetics data such as

annualized percentage time on the road, number of sudden accelerations and number

of sudden brakes can be obtained.

First, we introduce the used synthetic automobile claims data. The preliminary

descriptive analysis shows the nonlinear relationship between claim frequency and

annual distance driven, whereas the relationship between claim frequency and policy

duration is linear. Next, two Poisson GAMs are modeled and compared where the

first models annual distance driven and policy duration separately to predict claim

frequency using independent cubic splines and the second models them together by

incorporating a tensor product basis. A third model is introduced as a Poisson GLM

setting policy duration as an offset and transforming annual distance driven as an
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ordered factor variable. The predictive results of the three aforementioned models

are compared through Mean Absolute Residuals (MAR) computed using a validation

dataset. The conclusions are that the GLM model obtains similar predictive power

by achieving similar MAR as the other two GAMs but produces a more volatile

distribution of absolute residuals. In the last section of the paper, results of two

new GAMs mimicking traditional GLM pricing structure through adding knots and

customizing knot locations are shown. The main contributions of the paper lies

in the addition of telemetry variable annual distance driven along with traditional

rating variable policy duration in the process of predicting claim frequency and the

connection between old school GLMs and newly developed GAMs.

This chapter is structured as follows. An introduction to the synthetic dataset used

fills section 1. Section 2 details the replication results according to flow of the original

paper. Section 3 concludes the remarks from comparing and contrasting the results

of ours to those of the paper. Finally, the last two sections extends the GAM model

on the ideas of adding more telematics information and introducing a robust GAM

method.

4.1 Data Description

The dataset being used in Boucher et al. (2017) belongs to an insurance company

in Spain and is not available in public. However, luckily So et al. (2021) create

a synthetic telematics dataset based on data used in Boucher et al. (2017). The

synthetic dataset greatly resembles the real dataset by design and thus it is possible

to re-perform the analysis and to replicate the results from the original paper.

The synthetic dataset consists of 100,000 insurance policy entries and 52 variables.
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Variable Description Type

Duration policy duration in days continuous
Insured.age age of the insured in years continuous
Insured.sex sex of the insured categorical

Annual.pct.driven annual percentage time driven continuous
Pct.drive.mon percentage driven on Mondays continuous

NB Claim claim count of the insured discrete
Total.miles.driven miles driven during coverage continuous

Table 4.1: Description of some variables in synthetic dataset.

The 52 variables include claim count variable, insured characteristics variables such

as insured’s age, insured’s sex and insured’s credit score, and telematics variables such

as annual distance driven, annual percentage of driven on days (Mon/Tue/Wed etc.)

of the week, annual number of turning intensities and so on. Table 4.1 gives a glimpse

to characteristics of a few variables. So et al. (2021) give a detailed descriptions of

each variable.

Additionally, similar to Table 1 from the original paper, we have Table 4.2 where

distributions of a few representing variables are described. According to Table 4.2,

the distribution of annual distance driven is very similar to what the original data

has but insured’s age and vehicle’s age have quite different distributions than the

ones from the original data. Particularly, insured’s age has an average of 51.38 years

compared to the much younger age of 25.97 years of the original one. Vehicle age has

an average of 5.64 years and a minimum of −2 years compared with an average of

7.91 years and a minimum of 0 years of the original. It is mentioned in the original

paper that the younger age of 25.97 years is the result of a selection of policyholders

who agree to have the GPS device installed in the car and thus this makes telematics

information available. The average driving age of Spain (Boucher et al., 2017) is
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Variable Average Standard Deviation Minimum Maximum

Total.miles.driven 4833.6 4545.943 0.1 47282.6
Insured.age 51.38 15.467 16 103

Car.age 5.64 4.06 −2 20
NB Claim 0.04494 0.218 0 3

Table 4.2: Distribution of representing variables.

around 48.63 years which is much older than the one in the paper but very close to

what we have in synthetic dataset. The negative minimum value of vehicle’s age in

synthetic data set is explained by purchase of newer model cars in advance. Since

negative values may influence our results and all values of vehicle’s age in the original

paper are non-negative, a value of 2 years are added so that the synthetic dataset has

a minimum vehicle’s age of 0 years and a mean value of 7.64 years.

Gender composition of our data is very similar to the one from the original paper

as we have 46% of females and 54% of males compared to 46.3% of females and

53.7% of males in Table 2 of the paper. Nonetheless, parking type variable is missing

completely from our dataset and it is a variable describing whether the insured parks

the car outside or inside a private garage. A more complete and detailed analysis can

be found in So et al. (2021).

It can be seen from above preliminary data analysis that most of the variables in the

synthetic dataset resemble patterns of the variables from the original dataset but with

a few exceptions. Therefore, it may be of concern that the difference in patterns of

a few variables might deviate our replication results from the original paper and this

will be investigated thoroughly in the next section where replication process takes

place.
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Figure 4.1: Distribution of annual distance driven (around 80 miles per bin)

4.2 Referenced Model with Synthetic Data

In order to assess the predictive power of each model, we use a train-validation set

approach where stratified sampling is done to ensure that a train-validation split of

70-30. Before the replication starts, we examine the distributions of both annual

distance driven and policy duration in Figure 4.1 and Figure 4.2. The distribution

of annual distance driven looks almost identical to Figure 1 in original paper where

the distribution has a mode at 0 then decreases gradually as annual distance driven

increases. Most of the insureds drive less than 20,000 miles during coverage, which is

also in accordance with original paper. However, the distribution of policy duration

greatly differs from Figure 2 of original dataset where there is only one mode at policy

duration of 1 year with the rest of data exhibiting a uniform distribution; here we

have two modes at policy duration of 0.5 years and 1 year respectively in synthetic

dataset. This difference in distribution of policy duration can possibly be explained by

employing a U-shaped distribution instead of a uniform distribution during synthetic

data generation process (So et al., 2021).

Descriptive analysis regarding distribution of claim counts arrives at the same re-

sults as the original paper. That is, the distribution of claim frequency displays an

increasing but nonlinear pattern with annual distance driven (Figure 4.3). And the
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Figure 4.2: Distribution of policy duration (around 6 days per bin)

distribution of claim frequency increases linearly as policy duration increases (Fig-

ure 4.4). Although preliminary analysis gives us an idea of what the data looks like,

more detailed predictive modelling is done next to investigate the effects of annual

distance driven and policy duration on claim count.

Figure 4.3: Distribution of claim frequency per annual distance driven

This section details the paper replication process where part 1 is used for independent

cubic spline model for which annual distance driven and policy duration are fitted

separately. Part 2 describes tensor product basis where the two variables are modelled

together. The GLM model with policy duration as an offset is introduced in part 3

and the comparison of the three models is displayed in part 4. Finally, an extended

GLM model with insured’s age is added in part 5 and part 6 concludes the replication

process with two modified GAM mimicking traditional GLM pricing structure.
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Figure 4.4: Distribution of claim frequency per policy duration

4.2.1 Independent Cubic Spline

In order to model annual distance driven and policy duration separately using cubic

splines in a GAM setting, we have the model formula

log(yi) = β0 + f1(distancei) + f2(durationi) + εi (4.2.1)

where claim count is modelled with a Poisson distribution with log link function.

f1(distance) and f2(duration) are cubic spline basis functions where non linear re-

lationships between annual distance driven and claim frequency along with policy

duration and claim frequency are captured independently. In order to better align

with the original paper, basis dimensions of 7 and 3 are chosen respectively for annual

distance driven and policy duration. Note that the knot locations are automatically

chosen by gam function in package mgcv in R (Wood, 2017). Restricted Maximum

Likelihood (REML) is used here in place of Generalized Cross Validation (GCV) in

original paper for the smoothing parameter estimation due to its improved perfor-

mance (Wood, 2011).

The modelling results of GAM using independent cubic splines can be seen from

Table 4.3 where parametric term the intercept and the two non-parametric terms
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Terms Estimate EDF Significance

β0 −3.715 - < 0.001
f1(distancei) - 4.530 < 0.001
f2(durationi) - 1.975 < 0.001

REML score 11510
AIC 22998.97
BIC 23070.43

Table 4.3: GAM using independent cubic splines results

Figure 4.5: Partial effects of non-parametric terms in GAM with independent cubic
spline

are all statistically significant with a p-value less than 0.001. REML score as well

as AIC and BIC are also displayed for later model comparisons. Although the value

of the intercept differs from the one in original paper (−2.735), they are of similar

magnitude and both EDF (Effective Degrees of Freedom) of the two non-parametric

functions matches the ones in original paper (4.30, 1.95).

For a more clear view at the effects of each predictor variable on the response claim

count, we can take a look at partial effect plots (Figure 4.5) where the response is

plotted against the fitted smooth terms.
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One thing to note from Figure 4.5 is that the y-axis is in the scale of linear predictor

but the results can be easily generalized to response level since exponential function

is a strictly increasing function. Similar to Figure 5 of original paper, as annual

distance driven increases the effect of it on claim count also increases up till around

10000 miles where it reaches a maximum. As for the effect of policy duration, we

observe a similar trend but with one difference where the effect of policy duration

decreases after around 300 days. In addition, although the confidence interval is the

widest around higher values of annual distance driven, the constant effect is significant

and needs to be investigated further.

4.2.2 Tensor Product Base

In contrast to the independent cubic spline fit in the last section where two separate

functions are used for annual distance driven and policy duration, modelling both

variables together using tensor product base needs only a single function to account

for individual variables effect as well as the added combined effect. That is

log(yi) = β0 + f(distancei, durationi) + εi (4.2.2)

where f(distancei, durationi) allows the combined smoothing of two variables on

different scales (Wood, 2017, Section 5.6). Again, the function is fitted with Poisson

distribution using cubic splines with dimensions setting to 7 and 3 respectively for

annual distance driven and policy duration.

Table 4.4 shows that both the intercept and the non-parametric term are significant

at a significance level of < 0.001. The estimate of the intercept is very close to the

estimate from the model fitted using independent cubic splines and this agrees with
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Terms Estimate EDF Significance

β0 −3.722 - < 0.001
f(distancei, durationi) - 11.52 < 0.001

REML score 11505
AIC 22988.88
BIC 23109.29

Table 4.4: GAM using tensor product base results

the original paper (Table 5 ). The GAM using tensor product base performs better

than the GAM using independent cubic spline in terms of a lower REML score and

a lower AIC. In addition, BIC of the tensor product model is higher than the one of

the independent cubic spline model and this may be explained by the heavier penalty

of BIC puts on more covariates.

In order to visualize the combined effect of annual distance driven and policy duration

on claim frequency, we can look at 3-D perspective plots (Figure 4.6). Looking at

the left figure which belongs to the independent cubic spline model, the yellow color

indicates that insureds with a high annual distance driven and high policy duration

combination have highest claims. However, the interpretation of the right figure is

not that clear where claim frequency is fitted using tensor product. The part of the

plot that is missing is the result of setting too.far to 0.08 which prompts the deletion

of data points with predicted claims larger than 0.08 when predicted claim values are

scaled to 0 ∼ 1. Without setting too.far argument in vis.gam the function plots

all data points which will cause the z-axis of claim frequency reaches above 3 million

which is absurd compared to actual maximum claim value of 3. This may indicate

that the tensor product model has ”considerable extrapolation” (S.Wood, personal

communication, November 18, 2024) and as a result a lot of extreme data points are
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Figure 4.6: 3-D perspective plot visualizing the effects of annual distance driven and
policy duration. The left figure belongs to independent cubic spline model and the

right figure belongs to model with tensor product

generated upon prediction. Therefore, only the predicted data points that are close

to range of true values are kept for visualization.

4.2.3 GLM with Offset

In order to approach the claim frequency prediction task like the traditional industry

practice where GLM with Poisson distribution is fitted, we have the model construc-

tion
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log(yi) = β0 + β1 · distance1i + β2 · distance2i + β3 · distance3i

+ β4 · distance4i + β5 · distance5i + log(durationi) + εi

where log(duration) is fitted as an offset and distance is converted into a factor

variable with 6 levels where the base level corresponds to insureds with an annual

distance driven between 1000 to 5000 miles. The distance variable has been cut with

five splits to be comparable with the 7 knot locations of the previous GAM models.

Table 4.5 gives detailed description of each annual distance driven covariate.

Covariate Description

distance1i insureds with distance 0 ∼ 1000 miles
distance2i insureds with distance 5000 ∼ 10000 miles
distance3i insureds with distance 10000 ∼ 15000 miles
distance4i insureds with distance 15000 ∼ 20000 miles
distance5i insureds with distance 20000 ∼ 47300 miles

Table 4.5: Description of annual distance driven indicator variables

As it can be seen from Table 4.6, estimates of coefficients for annual distance driven

are all above zero and have mostly an increasing trend except for the coefficient β1

when distance is between 0 and 1000 miles. This is quite reasonable from intuition as

normally we expect people who drive more to be exposed to more risks and therefore

more likely to incur claims. All terms from the GLM model are significant at a

significance level of 0.001 and the GLM model does produce a higher AIC and a

higher BIC value comparing to both GAM models.

Figure 4.7 shows the 3-D perspective plot of the GLM model and we can see that it
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Terms Estimate Significance

β0 −9.466 < 0.001
β1 −1.626 < 0.001
β2 1.053 < 0.001
β3 1.439 < 0.001
β4 1.408 < 0.001
β5 2 < 0.001

AIC 23308.07
BIC 23363

Table 4.6: GLM model results

is very similar to what we have for the GAM model with independent cubic splines

(Figure 4.6) where the insureds with a high value of annual distance driven and a

high value of policy duration have the largest risks.

4.2.4 Model Comparison Results

In this section, we compare the predictive results of the three models mentioned above

using the data from validation set which contains 30% of the whole dataset. For all

three models, MARs (Mean Absolute Residual) are computed and the distributions

of absolute residuals across different actual claim count are shown in Figure 4.8.

We can see from Figure 4.8 that the three models exhibit similar distributions of

absolute residuals and particularly when actual claim count is 0 both GAM models

have distributions that is more leaned towards 0. When actual claim count is 1,

GLM model displays a wider IQR (Inter Quartile Range) than other two models,

which means GLM has more of a volatile distribution of absolute residuals which is

similar to Figure 14 of the original paper (Boucher et al., 2017). Although actual

claim count spans values of 0, 1, 2, and 3, we decide not to show the distribution of
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Figure 4.7: 3-D perspective plot of GLM model

residuals when claim count is 3 as there is only one data point under this situation

in validation set (the proportions of data points with respect to actual claim count of

0, 1, 2 are: 95.6%, 4.2%, 0.2%). Furthermore, MAR results give us the worst model

being the GLM model (MAR of 0.0843) and the two GAM models (MARs of 0.0841)

display the same predictive power.

4.2.5 GLM with Insured’s Age

Besides annual distance driven and policy duration, we can add other variables into

our model such as insured’s age, vehicle’s age, insured’s sex and type of parking which

describe the drivers’ characteristics and their driving behavior. Similar to Section 3.2

in original paper where all of the above mentioned variables are modelled together

under a GLM model for individual term significance analysis, we have a Poisson
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Figure 4.8: Distributions of absolute residuals across actual claim value 0, 1, 2 for
all three models. From left to right, actual claim value of 0, 1, and 2

GLM with duration as an offset and other variables except the missing variable type

of parking in the synthetic dataset with a log link structure. The modelling results

show that both insured’s age and vehicle’s age are statistically significant (p-value

< 0.01). Nonetheless, only insured’s age are included for further modelling analysis

where it is transformed into a factor variable with three levels (0-25, 25-30, 30-103)

and it is added to all three models mentioned previously.

Therefore, we have the modified modelling formula for GAM with independent splines,

GAM with tensor product, and GLM respectively

log(yi) = β0 + f1(distancei) + f2(durationi) + β1 · age1i + β2 · age2i + εi

and

log(yi) = β0 + f(distancei, durationi) + β1 · age1i + β2 · age2i + εi
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and

log(yi) = β0 + β1 · distance1i + β2 · distance2i + β3 · distance3i

+ β4 · distance4i + β5 · distance5i + log(durationi)

+ β6 · age1i + β7 · age2i + εi

where age1i and age2i represent indicator variables of insured’s age 0-25 and 25-30

(30-103 is set as the base group).

According to Table 4.7, we have very similar results with Table 9 of the original paper

where the estimates of insured’s age are very close across three models and GAM with

tensor product basis outperform GAM with independent splines and GLM in terms

of lower REML and AIC values. In contradiction to the original paper, we do notice

that the estimates of insured’s age group 25-30 are insignificant for all three models

which indicates the models suggest the risks of insured across 25-103 years old to be

the same.

Terms GAM(independent) GAM(tensor) GLM

age1i 0.316 0.316 0.326
age2i −0.021* −0.022* 0*

REML 11505 11500 11655
AIC 22986 22976 23294
BIC 23076 23115 23368

Table 4.7: Extended model result of the GAM with independent splines, GAM with
tensor product, and GLM where insured’s age is added to all three models. Values

with * indicate insignificance at a level of 0.001.

As a result, we decide to change the cut points of insured’s age to 25 and 40 such
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that it has categories of 0-25, 25-40, and 40-103 by examining Figure A.1 where

distribution of claim frequency with respect to insured’s age are shown. Under this

new transformation, the estimates of age′1i and age′2i become statistically significant

with p-value < 0.05 across all three models (note: GLM age′2i estimate has a p-value

of 0.06).

Now we can report the estimated claim frequency for insureds across all possible

age groups using a tariff structure. Table 4.8 gives the first part of the table where

predicted claim frequency of all three models are recorded for insureds with age

between 0 to 25 years. The second and third part of the table where predicted

claim frequency for insureds with age 25-40, 40-103 can be found in Appendix B

(Table B.1,Table B.2).

(distance,duration) GAM(independent) GAM(tensor) GLM

(3500,0.35) 0.0042 0.0025 0.0135
(4500,0.5) 0.0279 0.0297 0.0192
(9000,0.65) 0.135 0.084 0.072
(15500,0.90) 0.231 0.151 0.142

(19000,1) 0.211 0.213 0.158

Table 4.8: Tariff structure of predicted claim frequency for insureds aged 0-25.

We can see from Table 4.8 that predicted claim frequency increases as annual dis-

tance driven and policy duration increase for all three models except for GAM with

independent splines when insureds move from (15500,0.90) to (19000,1). This de-

crease in predicted claim frequency could be explained by looking at 3-D perspective

plot (Figure A.3) where we can observe a gradual decrease in claim frequency from a

distance-duration combination of (15500,0.90) to (19000,1) as we move from the ridge

of the curved surface to upper left direction. Another more intuitive explanation of
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this might be that the insured who drive above certain annual distance as well as

obtain a high policy coverage would experience practice effect. As a result, they get

more good at driving and hence are less risky to obtain a claim.

4.2.6 GAM Pricing Structure

In this last section of the paper replication process, we introduce an insurance pricing

structure with GAM which mimics a traditional GLM pricing structure. Similar

to Section 3.3 of the original paper, two modified GAMs are introduced where knot

numbers are increased with knots locations fine-tuned such that we have a detailed risk

segmentation for each insured. To construct the GAM models, we still have the same

Poisson GAMs with independent cubic splines and tensor product but knot locations

at each 500 miles for annual distance driven and 0.05 years for policy duration. In

order to estimate the potential claim frequency of an insured, we first calculate the

linear predictor effects from both annual distance driven and policy duration. Next,

we exponentiate the added total effect (total effect = distance effect + duration effect)

plus intercept and arrive at the response level effect. Looking at Table 4.9, the fourth

column Total Relativity equals to the product of the second and the third column

which are the separated effects of distance and duration respectively.

Table 4.9 illustrates the tariff insurance ratemaking structure under a GAM model

using independent cubic splines. We can observe that from second column as annual

distance driven increases, the effect of it on claim frequency also increases monotoni-

cally which agrees with the results from Table 11 of original paper. Same for policy

duration in column 3 where monotonically increasing effects on claim frequency are

shown.
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(distance,duration) Rela.(distance) Rela.(duration) Total Rela. Claim Freq.

(3500,0.35) 1.27 1.56× 10−5 1.99× 10−5 4.64× 10−7

(4500,0.5) 1.70 0.4 0.68 0.016
(9000,0.65) 3.40 1 3.38 0.079
(15500,0.90) 3.60 1.25 4.49 0.10

(19000,1) 4.61 1.34 6.16 0.14

Table 4.9: Tariff structure for modified GAM with independent splines where
annual distance driven has 95 knots at every 500 miles and policy duration has 21

knots at every 0.05 years.

Similarly, we can modify GAM with tensor product to produce such tariff structure.

Table 4.10 gives us the tariff structure under a GAM with tensor product where knot

locations are at every 500 miles for annual distance driven and every 0.05 years for

policy duration. Unlike Table 12 of original paper where monotonically increasing

patterns are observed for the combined effects of distance and duration, Table 4.10

displays a mostly increasing pattern until a change from (distance,duration) combi-

nation of (15500,0.90) to (19000,1). This pattern could be verified by looking at the

predicted surface of the GAM with tensor product base at a different angle. (Fig-

ure A.6)

(distance,duration) Rela.(distance,duration) Claim Freq.

(3500,0.35) 4.04× 10−5 9.29× 10−7

(4500,0.5) 0.80 0.018
(9000,0.65) 2.25 0.052
(15500,0.90) 10.5 0.24

(19000,1) 6.16 0.14

Table 4.10: Tariff structure for modified GAM with tensor product where annual
distance driven have knots at every 500 miles and policy duration has knots at every

0.05 years.

Figure 4.9 gives us the predicted surface for both GAM models. Both figures resemble
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Figure 4.9: 3-D perspective plots of the modified GAM with knot locations at every
500 miles for annual distance driven and 0.05 years for policy duration. The left
figure is from GAM with independent cubic splines and the right figure is from

GAM with tensor product.

the shapes from Figure 4.6 where predicted surface for original GAMs are depicted.

One improvement is that we are seeing a more reasonable scale on z-axis of claim fre-

quency where a maximum value of just over 20 claims are observed whereas a value of

3 million are seen in Figure 4.6 and this may due to the effects being smoothed out for

each (distance,duration) category and thus are less prone to extreme extrapolations

given the added flexibility of the tensor product base.

4.2.7 Comparisons and Remarks

Through our analysis, we have found that although normally a linear effect of policy

duration on claim frequency is assumed in insurance practice, it is often inappropriate

as our model shows that a diminishing effect is seen as policy duration saturates that

is we do not observe a doubling in risks as policy duration of an insured doubles.
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Similarly, insureds who drive twice the distance do not indicate a doubling in risks.

Annual distance driven seems to have a decreasing effect on claim frequency that is

as more distance travelled by an insured the risks increase more slowly which agrees

with Boucher et al. (2017).

Most of our data analysis results agree with the results in Boucher et al. (2017) which

is as expected since we are performing an analysis using a synthetic dataset that is

generated on purpose to mimic the original dataset with the aim to protect privacy

of insureds. However, some of our results differ from the results in original paper and

that is probably due to the difference in data structure of the synthetic dataset from

the original data set. And this could be seen from the different distribution of policy

duration (Figure 4.2) that is potentially caused by data generating algorithm used. In

addition, the decreasing effects patterns that could be seen in Table 4.8 and Table 4.10

as one moves from a lower (distance,duration) combination to a higher segment could

be explained by looking at 3-D perspective plots where predicted frequency surfaces

are displayed (Figure A.3, Figure A.6). This effect could be explained by the combined

influence of both annual distance driven and policy duration. This trend can only

be observed with drivers who drive above a certain (distance,duration) combinations

which means that drivers who drive above a certain number of annual distance and

have a policy duration longer than a certain time would experience practice effects

where they bear a lower risks than drivers who drive less and have a lower policy

duration.

According to section 4.2.4 where two GAMs are compared with GLM, the results from

two GAMs are very similar to the results from GLM. In particular, the GLM obtains

a close value of median absolute residuals as the two GAMs while producing a more
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volatile residuals distribution when actual claims are 1. Nonetheless, we still think

GLM model is the better model in terms of its ease of interpretation and simplicity

of model construction where no knots need to be chosen.

However, the trade-off between interpretability and predictability becomes unbal-

anced if one can find a model which produces more accurate predictions than the

GLM model. Therefore, we attempt to tackle the challenge with two approaches in

the next two sections. One way is to add more telematics variables which hopefully

will give us more insights regarding the driving behavior of the insured and thus might

improve claim frequency prediction. The other method is to introduce a robust al-

ternative to the GAM models where individual data point are evaluated and assessed

for their influence on the whole model thus reducing effects from outliers which may

also improve claim prediction accuracy.

4.3 Model Extensions

4.3.1 Addition of More Telematics Variables

In order to come up with which variable(s) to add to our existing models, we per-

form machine learning methods to evaluate individual variable importance in all 45

continuous variables. Particularly, we employ two different machine learning meth-

ods: Random Forest and Extreme Gradient Boosting (Xgboost) with Multivariate

Adaptive Regression Splines (MARS) using train() in package caret in R (Kuhn

and Max, 2008). Random Forest and Xgboost are chosen for their popularity within

the industry and MARS is chosen for its close relationship with GAM.

46

http://www.mcmaster.ca/
https://www.math.mcmaster.ca


M.A.Sc. Thesis – S. Zeng; McMaster University – Mathematics and Statistics

Figure 4.10: Variable importance plots produced by three models. From left to
right, Random Forest, XGBoost, MARS. Variables importance are evaluated on

RSS of claim count reduced.

All three models are tuned so that Root Mean Squared Error (RMSE) are mini-

mized using 5 fold cross-validation. The idea is to find the variables that predict

claim count most accurately in terms of largest reduction in Residual Sum of Squares

(RSS). Looking at Figure 4.10, we can observe that variable Brake.08miles is in-

cluded in all three plots and it ranks the second just after annual distance driven

for both XGBoost and MARS. Upon close examination, Brake.08miles represents

the telematics information of number of sudden brakes 8 mph/s per 1000 miles and

it displays an increasing relationship with claim frequency in the partial dependence

plots produced by all three machine learning methods (Figure A.4).

Therefore, we decide to add Brake.08miles as an additional variable in our original

GAM models. Looking at Figure A.2 where distribution of claim frequency with

respect to number of sudden brakes 8 mph/s per 1000 miles is shown, one can clearly

see that number of sudden brakes has a positive relationship with claim count around
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Terms Estimate EDF Significance

β0 −3.827 - < 0.001
f1(distancei) - 4.604 < 0.001
f2(durationi) - 1.963 < 0.001
f3(brakesi) - 1.978 < 0.001

REML score 11245
AIC 22469.19
BIC 22560.22

Table 4.11: Three-variable GAM using independent cubic splines results

values where data density is high.

Fitting the Poisson GAM with independent splines while adding the third variable

brakes is mostly the same as we did above except we are estimating three smoothed

functions now instead of two previously. The model fitted with REML is structured

as below:

log(yi) = β0 + f1(distancei) + f2(durationi) + f3(brakesi) + εi

where f1(distancei) and f2(durationi) are fitted using cubic splines with number of

knots 7 and 3 just like before. f3(brakesi) is fitted using cubic splines with 3 knots

since 3 is the minimal knots needed for the brakes variable (k.check() shows sufficient

basis dimensions).

Table 4.11 gives us a summary of the results obtained after fitting the three-variable

GAM model using independent cubic splines. As we can observe, all three smoothed

functions are statistically significant with p-values less than 0.001. Comparing to

Table 4.3, our three-variable GAM with independent cubic splines produces similar

estimates but performs better than two-variable GAM across all three metrics REML
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Terms Estimate EDF Significance

β0 −3.787 - < 0.001
f(distancei, durationi, brakesi) - 23.79 < 0.001

REML score 11195
AIC 22383.77
BIC 22629.85

Table 4.12: Three-variable GAM using tensor product base results

score, AIC, and BIC. The partial effects plot (Figure A.5) of variable brakes on claim

frequency further confirms previous observation that an increasing relationship is

present between the two variables.

Similarly, we can add variable brakes into the GAM with tensor product base along

with annual distance driven and policy duration. The model structure would then be

log(yi) = β0 + f(distancei, durationi, brakesi) + εi

where f(distancei, durationi, brakesi) is fitted using tensor product base and basis

dimensions are set to 7, 3, 3 for annual distance driven, policy duration, and number

of sudden brakes respectively.

Table 4.12 gives us the results after fitting three-variable GAM with tensor product

base. Again, just like the original GAM with tensor product base, this model is fitted

using Poisson distribution with log link and REML. Looking at Table 4.12, we can

observe that the three-variable GAM with tensor product base produces very similar

estimates with original two-variable GAM (Table 4.4). Moreover, our three-variable

GAM outperforms two-variable GAM in terms of a lower REML score, AIC, and BIC.

Even though we are seeing an improvement in performance across REML score, AIC,

and BIC which are all model based evaluation methods, we are more interested in the
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predictive performance of our models in practice. That is, how good are our models

in predicting the unseen data through non model based evaluation metrics. One way

to tell is by looking at MAR across all models where MAR has the formula

MAR =

∑n
i=1 |yi − ŷi|

n

where yi are the actual claim count and ŷi are the predicted claim count. MAR is a

metric that is very similar to RMSE (Root Mean Squared Error) for the reasons that

they are both of data based methods and they are giving us an idea of how close our

predictions are compared to true values on average.

Two-variable Models GAM(ind.) GAM(tensor) GLM*

MAR 0.08409 0.08410 0.08428

Three-variable Models GAM(ind.) GAM(tensor) GLM*

MAR 0.08249 0.08208 0.08392

Table 4.13: MAR results across GAM with independent splines, tensor product base
and GLM with factor variables for two-variable and three-variable models. *

indicates that the model is fitted with factor variables using cut rules correspond to
respective basis dimensions in GAM.

We can now observe from Table 4.13 that our three-variable models outperform all

two-variable models with same model structures. Particularly, three-variable GAM

with tensor product base is the best model overall in terms of having the lowest MAR.

As one may notice, the three-variable GLM model is also reported in the table and

we can see that it has improved over the two-variable GLM model.

In conclusion, with the help of machine learning methods, the addition of another

telematics variable brakes makes our models better across the board. With the added
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brakes variable, our GAM models improve significantly from their two-variable pre-

decessors and the GLM model improves as well. However, just like we have touched

above where Figure 4.8 shows similarity in distributions between GLM and GAMs

but existence of extreme extrapolations in GAMs brings concerns. In the next sec-

tion, we will try to solve this challenge by incorporating robust GAM models where

influences of outliers may be weakened.

4.3.2 A Robust GAM Approach

In this section, we will apply robust extension of GAM using function gamlss()

developed by Aeberhard et al. (2021) in package GJRM in R (Marra and Radice,

2023).

Similar to previous sections, firstly we fit the two-variable robust GAM with Poisson

distribution where claim count is modeled with distance driven and policy duration.

The modeling structure is the same as 4.2.1 for an independent cubic spline model. As

we can observe from Table 4.14, the two-variable robust model shares similar intercept

estimate with non-robust counterpart in Table 4.3 but has a lower effective degrees

of freedom. This tells us that as expected the robust GAM automatically detect

outlying points and reduce their influence to model fit as a result the smoothed terms

are less flexible comparing to non-robust GAM.

Next, the three-variable robust GAM is fitted and Table 4.14 shows a similar pattern

with above two-variable robust model where it exhibits a similar coefficient estimate

but shows a lower effective degrees of freedom comparing to Table 4.11. Two-variable

and three-variable tensor product base is also fitted with robust GAM where they

share similar results with their non-robust counterparts in Table B.3 in Appendix.
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Two variables model

Terms Estimate EDF Significance

β0 −3.680 - < 0.001
f1(distancei) - 2.270 < 0.001
f2(durationi) - 0.503 < 0.001

Three variables model

β0 −3.941 - < 0.001
f1(distancei) - 2.478 < 0.001
f2(durationi) - 0.495 < 0.001
f3(brakesi) - 1.554 < 0.001

Table 4.14: Robust GAM using independent cubic splines results

Looking at Table 4.15, we observe a similar pattern as the one in Table 4.13 where

in the two-variable scenario robust GAM with tensor product base performs slightly

worse than robust GAM with independent spline basis. However, the three-variable

robust GAM improves significantly from the two-variable models and all of them show

improvements over their non-robust counterparts by having lower MAR’s. This result

validates our hypothesis earlier that the robustness property of the robust GAM can

be taken advantage of for better model prediction. The 3-D perspective plots of both

models can be found in Appendix A.7.

Two-variable Models robust GAM(ind.) robust GAM(tensor)

MAR 0.08370 0.08380

Three-variable Models robust GAM(ind.) robust GAM(tensor)

MAR 0.08203 0.08186

Table 4.15: MAR results for robust GAM with both two variables and three
variables scenarios. All are fit with Poisson distribution with log link and extended

Fellner-Schall method for smoothing parameter selection.
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MAR MAR

Outliers(%) GAM Indp. rGAM Indp. ∆% GAM Ten. rGAM Ten. ∆%
0% 0.0841 0.0837 −0.5 0.0841 0.0838 −0.36
1% 0.1784 0.1334 −25 0.1783 0.1335 −25
2% 0.2701 0.1829 −32 0.2700 0.1828 −32
3% 0.3604 0.2328 −35 0.3603 0.2329 −35

Table 4.16: Comparison of MAR produced by two-variable GAM and robust GAM
as outliers increase from 0% to 3%.

However, since the maximum claim count is 3 in our data, we decide to manually gen-

erate outliers to further compare model performances between robust and non-robust

GAM’s. The outliers are firstly drawn randomly via stratified cross validation where

a preset percentage of outliers are chosen randomly from each training data and vali-

dation data. This ensures that the proportions of outliers from both the training and

validation data match the predefined threshold. For generality we simulate outliers

of 0% to 3% with a step size of 1% where 0% represent the original unadjusted data.

The chosen data points are then enlarged in response level by adding 5 if the true

value is 0 and enlarged by 6 times if the true value is larger than 0. Therefore, we

would have outliers of claim count values of 5, 6, 12, 18 comparing to original values

of 0, 1, 2, 3. For verification, package DHARMa is used for bootstrapping and testing if

the data has more outliers than expected under the assumed Poisson model (Hartig,

2022). The results are perfectly in agreement with our intention for which it shows

that the test is insignificant under original data meaning the original data has normal

amount of outliers and does not deviate from model assumptions. However, as we

increase the amount of outliers from 1% to 3% the tests are significant and correctly

output the matching outliers proportions of 1% to 3% in Table B.4.

Looking at Table 4.16, we observe that although robust GAM with tensor product
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Lift Lift

Outliers(%) GAM Indp. rGAM Indp. GAM Ten. rGAM Ten.
0% 42.03 31.54 44.10 29.23
1% 3.85 30.29 3.75 29.22
2% 2.43 28.71 2.49 28.82
3% 1.85 26.91 1.95 20.90

Table 4.17: Comparison of Lift produced by two-variable GAM and robust GAM as
outliers increase from 0% to 3%.

basis performs similarly to robust GAM with independent cubic splines, they both

improve significantly from non-robust GAM as outliers introduced increase from 0%

to 3%. The increasing ∆% improvements indicate that as we increase amount of

outliers in the data the non-robust models become distorted leading to a poor fit

whereas the robust models are able to control the effects of outliers with a bounded

influence function thus would produce a more robust fit.

The robust models also improve upon data segmentation. From Table 4.17, it can

be concluded that when there is no outliers the robust models perform similarly with

non-robust counterparts by having a similar Lift where Lift is a measure devised for

measurement of extremeness between data points and it can be calculated as

Lift =
Mean(Top 10% predicted)

Mean(Lower 10% predicted)
(4.3.1)

(Meng et al., 2022). Therefore, the higher the Lift the better the ability of the model

discriminating extreme points. As we increase added outliers, the robust model is able

to retain a similar level of separation among predicted values but non-robust counter-

parts quickly deteriorate producing a much lower Lift. When combined with results

from MAR, we found that the robust GAM’s are able to relax model assumptions
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due to its robustness nature and as a result more accurate predictions and data seg-

mentation are produced. A similar pattern can also be observed from three-variable

comparisons (see Table B.5 and B.6).

To conclude, in situations where small to intermediate outliers are present which is

usually the case in practice, actuaries can utilize the advantage of robustness of robust

GAM to produce a more accurate model prediction. The improvement in prediction

of robust GAM to non-robust models can also be seen from an improvement of data

segmentation where the model is better able to identify extreme points and thus risks

are better identified for each insured.
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Chapter 5

Conclusion

As modern technological developments flourish, actuaries in P&C now are able to get

hands on variety of driving behavior data for each policyholder through telematics.

This huge amount of data possesses potential for better risk classification but at the

same time introduces challenges of effective usage. To leverage this, GAM and GAM

with machine learning variable filtering can be employed for a more flexible fitting

and more accurate predictions can be produced comparing to standard GLM. GAM

offers flexible modeling while maintaining a level of interpretation which is seen as

essential to actuarial rate regulation.

Robust GAM improves further on model prediction and risk segmentation with the

help of its influence measurement of outlying points. Automatic detection of outliers

gives robust GAM the ability of down-weighing influential points. As a result of this,

it grants us a more accurate model and a robust alternative in the presence of extreme

outliers.

For future studies, more research can be focused on identifying potential outlying

insureds and combining claim count prediction with claim severity prediction where
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they are often observed to be correlated. This may be done by developing a GAM

with dependent structure between claim frequency and claim severity through either

incorporating dependence in a pure premium rating structure using for example cop-

ulas or by adding claim count as a covariate for modeling claim severity in a robust

GAM setting where the effects of often observed outliers in skewed distribution of

claim severity could be alleviated.

Another task is to simplify modeling process for both GAM and robust GAM in in-

surance pricing. Although GAM and robust GAM beat traditional GLM with higher

model accuracy, the fitting process is quite involved due to basis dimension and knots

location selection which often needs expert opinions. Other studies could be focused

on model selection in P&C ratemaking in general where it is seen as a fast growing

industry with emergence of A.I. in recent years. There have been discussions and

debates in the actuarial community regarding practicality of employing sophisticated

pricing models in practice because of long development time with such models. On

the one hand, we are seeing more and more companies moving towards an interac-

tive platform where software does model tuning and the heavy lifting part and hence

saving time and efforts for the actuaries. Whereas majority companies still face this

dilemma where the trade-off between sticking with the traditional pricing modeling

procedure such as GLM and investing more on interactive platforms seems unclear.

With developments such as driver assistance features and automated driving getting

popular, insurance pricing industry will face another challenge that could potentially

shift the focus of the ratemaking process.
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Appendix A

Figures

Figure A.1: Distribution of claim frequency with respect to insured’s age.
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Figure A.2: Distribution of claim frequency with respect to number of sudden
brakes 8mph/s per 1000 miles.

Figure A.3: 3-D perspective plot of GAM independent cubic spline with insured’s
age added as a factor variable visualizing the effects of annual distance driven and

policy duration.

59

http://www.mcmaster.ca/
https://www.math.mcmaster.ca


M.A.Sc. Thesis – S. Zeng; McMaster University – Mathematics and Statistics

Figure A.4: Partial dependence plots of effects of Brake.08miles on claim frequency.
The vertical axis represents predicted claim count. From left to right: Random

Forest, XGBoost, MARS.

Figure A.5: Partial effects plot of Brakes.08miles of three-variable GAM model. The
scale is on linear predictors and the limits on y-axis has been trimmed down to

(-10,10).
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Figure A.6: 3-D perspective plot of modified GAM with tensor product base
displaying the effects of annual distance driven and policy duration on claim

frequency. Knots are placed at every 500 miles for annual distance driven and every
0.05 years for policy duration.
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Figure A.7: 3-D perspective plot of robust GAM fitting claim count on distance
driven and policy duration. The left figure is independent cubic spline model and

the right figure is robust tensor product.
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Appendix B

Tables

(distance,duration) GAM(independent) GAM(tensor) GLM

(3500,0.35) 0.0028 0.0017 0.0092
(4500,0.5) 0.019 0.0200 0.0132
(9000,0.65) 0.0915 0.0564 0.0493
(15500,0.90) 0.156 0.102 0.097

(19000,1) 0.142 0.144 0.108

Table B.1: Tariff structure of predicted claim frequency for insureds aged 25-40.

(distance,duration) GAM(independent) GAM(tensor) GLM

(3500,0.35) 0.003 0.0019 0.01
(4500,0.5) 0.021 0.022 0.014
(9000,0.65) 0.102 0.063 0.053
(15500,0.90) 0.174 0.114 0.105

(19000,1) 0.159 0.161 0.117

Table B.2: Tariff structure of predicted claim frequency for insureds aged 40-103.
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Terms Estimate EDF Significance

Two variable model

β0 −3.665 - < 0.001
f(distancei, durationi) - 5.172 < 0.001

Three variable model

β0 −4.795 - < 0.001
f(distancei, durationi, brakesi) - 25.05 < 0.05

Table B.3: Robust GAM using tensor product base results

Outliers GAM Poi Ind. GAM Poi Tens.

0% 0.0013, 0.99 0.0013, 1
1% 0.01, <0.01 0.01, <0.01
2% 0.02, <0.01 0.02, <0.01
3% 0.03, <0.01 0.03, <0.01

Table B.4: Outlier frequency and p-value for outliers test. Models are Poisson GAM
with independent splines and Poisson GAM with tensor product base. The p-values
are based on test of outliers produced by testOutliers in R package DHARMa. The
hypothesis test is to use bootstrap to simulate fitted values from the specified model

and to test whether observed data has more values that is larger than expected
setting alternative="greater", margin="upper", type="bootstrap".

MAR MAR

Outliers(%) GAM Indp. rGAM Indp. ∆% GAM Ten. rGAM Ten. ∆%
0% 0.0825 0.0820 −0.6 0.0821 0.0818 −0.4
1% 0.1775 0.1318 −26 0.1765 0.1320 −25
2% 0.2693 0.1812 −33 0.2684 0.1811 −33
3% 0.3597 0.2311 −36 0.3588 0.2319 −35

Table B.5: Comparison of MAR produced by three-variable GAM and robust GAM
as outliers increase from 0% to 3%.
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Lift Lift

Outliers(%) GAM Indp. rGAM Indp. GAM Ten. rGAM Ten.
0% 63.87 71.02 56.91 121.06
1% 4.54 67.42 4.39 43.20
2% 2.74 63.04 2.75 103.45
3% 2.06 59.23 2.13 44.52

Table B.6: Comparison of Lift produced by three-variable GAM and robust GAM
as outliers increase from 0% to 3%.
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Zuleyka Dı́az Mart́ınez, José Fernández Menéndez, and Luis Javier Garćıa Vil-
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