
REVERSE ENGINEERING MICROSERVICES

REVERSE ENGINEERING MICROSERVICES USING SINGLE

SOURCE OF TRUTH FOR ENHANCED INSIGHTS

BY

MUHAMMAD WAQAR UL HASSAN AWAN, BSc

a Report

submitted to the Computing and Software

and the School of Graduate Studies

of McMaster University

in partial fulfilment of the requirements

for the degree of

Master of Engineering

© Copyright by Muhammad Waqar Ul Hassan Awan, March 2025

All Rights Reserved

Master of Engineering (2025) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Reverse Engineering Microservices using Single Source of

Truth for Enhanced Insights

AUTHOR: Muhammad Waqar Ul Hassan Awan

M.Eng. Computing and Software,

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Sébastien Mosser

NUMBER OF PAGES: xii, 74

ii

Lay Abstract

Software maintenance, such as debugging and issue resolution, is a key part of the

software development process. However, maintaining an extensive software system

with multiple interconnected components is easier said than done. One approach to

improving software maintenance is reverse engineering the system for more straight-

forward analysis and insights. This report presents a comprehensive framework that

reverse engineers the static source code into a visualized format by centralizing key

information artifacts from the software in one place. The study demonstrates this

approach using an actual software application and real-world use cases. This method

aids the maintenance process by providing valuable insights and facilitating analysis.

iii

Abstract

Modern software systems have become significantly complex with the growing demand

for features, and the need for them to be efficient and reliable has also increased. To

manage this complexity, software developers have adopted advanced architectures.

However, over the years, as new features are added, software systems tend to become

less reliable, requiring regular maintenance. Maintaining such large systems is not

a simple task, and a significant amount of resources is needed just to understand

and debug even small issues. Among the various solutions to address this problem,

reverse engineering appears to be one of the most feasible options, as it helps analyze

the problem at hand. Surprisingly, the tools available for reverse engineering large

distributed systems are limited, and those that do exist are not very flexible in terms

of supporting different technologies or focusing on specific parts of an application.

This report presents a framework capable of reverse engineering the static source

code of any distributed system using the Unified Data Source (UDS) approach. We

will consider real-world scenarios that commonly arise during software maintenance

and use a microservices-based application to demonstrate the framework’s effective-

ness. By reverse engineering specific parts of the application, we aim to validate the

practicality and credibility of our approach in real-world applications.

iv

Acknowledgements

I want to express my sincere gratitude to my supervisor, Dr. Sébastien Mosser, for

his support, guidance, and patience throughout my master’s studies. His knowledge

and mentorship have been invaluable, and I truly appreciate the time and effort he

has put into helping me complete this report. His advice and encouragement made

it easier for me to complete this project.

A big thank you to my family, especially my mom and dad, for always supporting

me in every way possible. Your encouragement, love, and financial support have made

this journey easier, and I can’t thank you enough for always believing in me.

I also want to thank McMaster University for giving me the opportunity to study

in such a great environment. A special thanks to all my professors for their guidance,

teaching, and support throughout my master’s degree.

v

Contents

Lay Abstract iii

Abstract iv

Acknowledgements v

Abbreviations xii

1 Introduction 1

2 Background 4

2.1 Software Development and Lifecycle 4

2.2 Software Maintenance for Large-Scale Systems 6

2.3 Software Architectures . 8

2.3.1 Monolithic Architecture . 9

2.3.2 Microservice Architecture . 9

2.3.3 Spring Petclinic . 10

2.4 Maintenance and Reverse Engineering(RE) 11

2.4.1 RE Approaches . 11

2.4.2 Reverse Engineering: Challenges and Insights 12

vi

2.4.3 RE for Distributed Systems Maintenance 13

3 Approach: UDS-Driven Reverse Engineering Strategy 14

3.1 Vision . 14

3.1.1 Designing the Framework . 15

3.1.2 System Context and Approach 16

3.1.3 Validation Roadmap: Key Scenarios 16

3.2 Structural Elements of the Framework 19

3.2.1 Probes: Extractors . 21

3.2.2 Unified Data Source (UDS) 21

3.2.3 Integration and Output . 22

3.2.4 Data Management . 22

3.2.5 Visualizer . 23

3.3 Technical Validation Strategy . 25

3.3.1 Effective Methods to Identify Contributors, Top Contributors,

and Recent Contributors . 25

3.3.2 Microservices Endpoints . 27

3.3.3 Beans And Dependencies . 28

3.3.4 SST and Visualizer Integration 29

4 Implementation 30

4.1 Inside the SST Tool: Registration, Data Integration, and Storage . . 30

4.1.1 Running the SST Tool . 31

4.1.2 Probe Registration . 32

4.1.3 Probe Integration . 34

vii

4.2 Implementing Probes for Data Collection and Analysis 35

4.2.1 Authors and Version Control 36

4.2.2 Microservices REST API endpoints 37

4.2.3 Java Beans Extraction . 37

4.2.4 Java Dependencies Extraction 38

4.2.5 Runner script and How it works 39

4.3 Data Visualization and Insights . 40

4.3.1 Neo4j Desktop . 41

4.3.2 Tableau . 41

4.3.3 Tool Selection and Justification 42

5 Scenario Validations 43

5.1 Evaluating the Framework in Practical Applications 44

5.2 Validation Results . 45

5.2.1 Most Recent Contributor . 45

5.2.2 List of Contributors . 46

5.2.3 Top Contributor . 47

5.2.4 File Contributors . 47

5.2.5 Author Relation . 48

5.2.6 REST API Endpoints . 50

5.2.7 Java Beans . 51

5.2.8 Dependencies List . 51

5.3 Challenges and Limitations . 52

6 Conclusion and future work 54

viii

6.1 Summary . 54

6.2 Future work . 55

A Scripts and Outputs 57

A.1 Probes List . 57

A.2 Runner Script . 58

A.3 Author Method Contribution . 59

A.4 Microservices Endpoints . 61

A.5 Bean Classes and Methods . 62

A.6 Dependencies . 64

B Neo4j Browser Visualization Images 65

ix

List of Figures

2.1 Software Development Life cycle . 5

2.2 ISO and IEEE maintenance categories 8

2.3 Different between Monolithic & Microservices Architecture 9

2.4 Architecture diagram of the Spring Petclinic Microservices 10

2.5 Uber Microservices Architecture - mid-2018 12

2.6 Reverse engineering and re-engineering 13

3.1 Working of Probes, UDS and Visualizer 20

3.2 Dashboard of Azure monitor . 24

3.3 Parsing Git Files . 27

5.1 Neo4j Browser showing the relation between nodes 46

5.2 Tableau tool showing authors’ relation strength 49

5.3 Neo4j Browser showing the relation between class and REST API end-

points . 51

x

Snippets

4.1 JSON for Probe Registration . 32

4.2 JSON for Author Relation Probe . 34

5.1 Most recent contributor cypher query 45

5.2 PetResource class endpoints cypher query 50

xi

Abbreviations

Abbreviations

SST Single source of truth

UDS Unified data source

RE Reverse engineering

SRE Software reverse engineering

DSL Domain-specific language

CI Continuous Integration

CD Continuous Deployment

VCS Version Control system

JSON JavaScript Object Notation

xii

Chapter 1

Introduction

Developing a large software system is a complex and crucial process that requires

careful planning and execution. When a stable product is built using a monolithic

architecture, where a single codebase handles all business logic, years of develop-

ment—adding new features and data—can make it highly prone to errors and less

resilient. To address this issue, the industry adopted the “Divide and Conquer” prin-

ciple and migrated their products to microservices architecture, where each service

represents a separate business logic. However, a major drawback of microservices is

the difficulty of maintaining them due to multiple interconnected parts. For example,

Monzo, a UK-based digital bank, has implemented a system comprising approxi-

mately 2,800 microservices and counting (Monzo Engineering Team, 2024).

Some companies, including Amazon’s Prime Video team, have reverted from mi-

croservices to monolithic architectures due to challenges in maintaining microservices.

As a result, they reduced infrastructure costs by 90% and improved scalability (An-

derson, 2023). Maintaining such large systems is just as crucial as building them.

One effective approach to understand the internal structure of a system to make it

1

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

easier to maintain is reverse engineering. Reverse engineering helps analyze com-

plex and legacy systems by leveraging automatic visualization techniques to manage

large systems effectively. It also aids maintainers in analyzing source code at different

levels of abstraction (Koschke, 2003).

There are no one-size-fits-all tools available in the market that adopt the reverse

engineering approach for software maintenance. For example, Rigi1 is a tool for

software reverse engineering that visualizes legacy systems. However, Rigi has limited

language support, as its built-in parsers primarily support C and COBOL. Users have

also reported performance issues when analyzing large systems, particularly with

graphs exceeding 500 nodes (Koschke, 2002). Active development of Rigi ceased in

1999, with the last official release in 2003.

We can present a framework that can reverse engineer large distributed systems

by performing static analysis on the source code and extracting useful artifacts. This

process can be integrated into the CI/CD pipeline to extract real-time information

with each release.

The primary objective of this report is to demonstrate such a framework that

extracts artifacts from source code and uses the unified data source (UDS) approach

to maintain up-to-date and credible data. The extracted information is stored as

nodes and edges in a graphical database, which is then connected to a visualizer for

further analysis and insights based on specific requirements.

This report will answer the following questions:

1. Which key components must be integrated to effectively reverse engineer any

microservice architecture based system?

1https://rigi.uvic.ca/Pages/download.html

2

https://rigi.uvic.ca/Pages/download.html

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

2. How can data collected by probes be centralized into a unified, consistent, and

real-time source to enhance accuracy and reliability?

3. How can stored data from the source code be transformed into visually intuitive

and insightful graphical representations?

Chapter 2 provides background information and key points essential for under-

standing the overall concept of this project. Chapter 3 discusses the envisioning of

the framework and its three key components, which address Question 1. Chapter

4 covers the implementation of probes and their integration with the unified data

source, answering Question 2. Chapter 5 validates the scenarios discussed in Chapter

3 by generating graphical information and insights using the data stored in the UDS,

addressing Question 3. Lastly, Chapter 6 concludes this report and explores future

work that could enhance the framework’s usability and practical applications.

The full source code of the probe component implementation is available in the

project’s GitHub repository2. For anyone interested in seeing the entire process, a

video demonstrating the framework is available on YouTube3.

2https://github.com/WaqarAwan376/MEng-Project/releases/tag/v1.0.3
3https://www.youtube.com/watch?v=jkvvtTBqES8&ab_channel=ACEResearch

3

https://github.com/WaqarAwan376/MEng-Project/releases/tag/v1.0.3
https://www.youtube.com/watch?v=jkvvtTBqES8&ab_channel=ACEResearch

Chapter 2

Background

This chapter provides the necessary background information to understand this project.

It begins with a discussion on the software development and its lifecycle, followed by

an overview of the software maintenance process after the main development phase.

Next, it states a brief summary of the concepts of monolithic and microservices soft-

ware architectures, which are essential for understanding this report. Finally, it covers

the basics of reverse engineering in distributed systems before moving on to the tech-

nical strategy and implementation of the framework chapters.

2.1 Software Development and Lifecycle

A large scale software system involves many interconnected components, all of which

must adhere to essential software development principles. The goal is not just to

write code but to build a system that is reliable, maintainable, scalable, and effi-

cient. Ensuring the system is free of bugs and capable of adapting to future needs

is as important as the initial development itself. By following these key paradigms,

4

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

developers can create software that meets high standards of quality and performance.

Figure 2.1: Software Development Life cycle
(adapted from Sire (2024))

Figure 2.1 illustrates the software development life cycle. Each phase of the soft-

ware development lifecycle process adds an important contribution to the overall

project. For example, in the planning and engineering phase, the team works closely

with stakeholders to determine the functional and non-functional requirements of the

project. This collaboration ensures that everyone involved understands the project’s

goals and technical needs. In the documentation phase, all the information gathered

during planning and engineering is carefully recorded. This creates a detailed refer-

ence for the team, helping maintain consistency and clarity as the project progresses.

Following the Software Development Life Cycle (SDLC) provides several key ben-

efits. It helps in identifying clear goals, ensures all stakeholders are on the same page,

and allows for thorough testing at every stage. This structured approach produces

high-quality software systems and maintains a smooth and understandable develop-

ment flow. By sticking to the SDLC, teams can reduce risks, avoid confusion, and

5

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

create software that meets user expectations.

Once the major development work is complete, the focus shifts to software mainte-

nance. Maintaining a large project becomes a significant task in itself. Updates, bug

fixes, and adapting to new requirements or technologies are ongoing responsibilities.

Without proper maintenance, even the best-designed systems can become outdated

or difficult to use.

Another challenge that arises is understanding the system once it has been com-

pleted. Software development often requires years of effort and large amount of

resources. As a result, understanding the full complexity of a system after its de-

velopment can be difficult, especially for teams that were not part of the original

project. Proper documentation, clear workflows, and thorough knowledge transfer

are critical to addressing this issue. However, even with these measures, there are

instances where critical system insights are required to understand the system. This

is why reverse engineering is often applied to existing or legacy systems to gain a

clear understanding of their structure and functionality.

2.2 Software Maintenance for Large-Scale Systems

Since an already built large-scale software system is quite complex, understanding

this system for maintenance purposes requires certain strategies and tools. More-

over, resolving a problem in complex software architectures, such as microservices

or service-oriented architectures, often demands significant resources. These archi-

tectures consist of numerous interconnected components, and identifying the root

6

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

cause of an issue can be challenging. The process may involve extensive debug-

ging, analyzing logs, coordinating between multiple teams, and sometimes even re-

evaluating design decisions. This can result in considerable time, effort, and cost

being spent to restore functionality and ensure the system operates smoothly. The

post-development usability issues in software systems sometimes require significant

architectural changes (Folmer et al., 2005). In order to deal with such architectural

changes, an understanding of the whole system is required, and if the system is large

enough, major resources are spent fixing even minor issues.

Multiple surveys indicate that software maintenance consumes 60% to 80% of the

total life cycle costs. Also, the maintenance costs are largely due to enhancement (of-

ten 75-80%), rather than corrections (Canfora and Cimitile, 2001). To address these

challenges, there is a growing need for tools that can assist in resolving bugs and

reducing maintenance overhead. Such tools should be capable of reverse engineer-

ing software systems to provide a clear and comprehensive view of the architecture.

By highlighting the key components and their interactions, these tools make it eas-

ier for developers to understand the system, identify issues, and perform necessary

tasks efficiently. This not only simplifies debugging but also enhances the overall

maintainability of the software, ensuring smoother operation and reduced downtime.

7

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

Figure 2.2: ISO and IEEE maintenance categories
(adapted from Canfora and Cimitile (2001))

2.3 Software Architectures

Software architecture is the fundamental structure of a software system. Software

architectures “represents the design decisions related to overall system structure and

behavior. Architecture helps stakeholders understand and analyze how the system will

achieve essential qualities such as modifiability, availability, and security” (Software

Engineering Institute, Carnegie Mellon University, [n. d.]).

Each architecture has its pros and cons. There are different types of software

architectures adopted or sometimes introduced in order to solve certain issues. The

most important ones that are necessary to be understood for this report are monolithic

and microservices architectures.

8

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

2.3.1 Monolithic Architecture

Monolithic architecture is a traditional software development design paradigm where

an application is built as a single, unified unit. All the components of the system

are tightly coupled and dependent on each other. The monolithic architecture is

simple, easier to design, develop and test and usually have easier deployment process

as compared to some other architectures.

2.3.2 Microservice Architecture

Microservice architecture is a type of distributed system architecture and a software

design in which a system is built as a collection of small, independent, and loosely

coupled services. Each service is designed to keep in mind the Single-responsibility

principle and hence has a specific function, operates independently and communicates

with other services typically using HTTP or messaging queues. Distributed system

architectures are easier to scale, flexible, autonomous and more resilient than other

architectures, especially monolithic.

Figure 2.3: Different between Monolithic & Microservices Architecture
(adapted from Harris (2024))

9

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

2.3.3 Spring Petclinic

Spring petclinic1 is a Java Spring framework based application that demonstrates

best practices for building Java Spring applications. It was originally built using

the monolithic architecture2, and then later on, the application system was split

into independent services to demonstrate the best practices for Java Spring-based

microservices3, Spring Boot, and Spring Cloud. The microservices-based Petclinic

project is a good candidate for the case study since it is actively maintained and it’s

widely used in the developer community for learning microservices best practices.

Figure 2.4: Architecture diagram of the Spring Petclinic Microservices
(adapted from Spring Team (2025))

1https://spring-petclinic.github.io/
2https://github.com/spring-projects/spring-petclinic
3https://github.com/spring-petclinic/spring-petclinic-microservices

10

https://spring-petclinic.github.io/
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-petclinic/spring-petclinic-microservices

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

2.4 Maintenance and Reverse Engineering(RE)

Ever since software systems started becoming more and more complex, many of the

larger systems that were based on monolithic architectures started migrating their

systems to microservices-based architectures. Figure 2.5 illustrates the microservices

architecture of Uber in mid-2018. Because microservices and distributed systems are

so complex, so is their maintenance. Moreover, there are other maintenance-related

issues, like monitoring and collecting logs from independent microservices deployed in

containers, and since microservices interact asynchronously, debugging failures is more

complicated (Waseem et al., 2021). Maintenance of such systems requires thorough

understanding, and since understanding such an extensive system is a complex process

that cannot be accomplished in a single day, some other technique is needed to speed

up the process. That is where reverse engineering plays a vital role. “The goal of

reverse engineering is to reveal the logic, features, and functionalities embedded within

the software”(Digital.ai, 2023). Different techniques are employed to reverse engineer

the system and reveal its logic and functionalities.

2.4.1 RE Approaches

There are three essential approaches for carrying out software reverse engineer-

ing. Observation-based analysis which involves studying the exchange of information

within the software to infer its functionality and behaviour. Disassembly approach

uses a disassembler to interpret and analyze the program’s raw machine code. De-

compilation approach uses a decompiler to attempt a reconstruction of the program’s

source code in a high-level language, starting from machine code or bytecode (Oladipo

et al., 2012).

11

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

Figure 2.5: Uber’s microservice architecture circa mid-2018 from Jaeger
(adapted from Gluck (2020))

2.4.2 Reverse Engineering: Challenges and Insights

Reverse engineering comes with several challenges. Rene R. Klosch discusses some of

the challenges of reverse engineering (Klösch, 1996). The paper mentions that legacy

systems have source code that is poorly structured, which makes them challenging

to analyze and understand. Large and complex systems require significant effort and

expertise to be deconstructed. Moreover, maintenance engineers often lack sufficient

knowledge about the original application domain, which is crucial for reverse engi-

neering. The documentation, on the other hand, is often outdated or nonexistent,

resulting in a lack of explicit information about the system’s functionality and design.

12

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

2.4.3 RE for Distributed Systems Maintenance

Reverse engineering plays an essential role in maintaining and understanding large

distributed systems. The approach used in the process depends on the requirement

and overall specification of the project. In his thesis, Dan Calin Cosma discusses the

role of reverse engineering in distributed systems maintenance (Cosma, 2010). He

mentions that reverse engineering helps analyze the structure of distributed software

systems, which often have complex dependencies due to their distributed nature.

He also mentions that it can help identify functional units within the distributed

systems. Furthermore, the thesis emphasizes that reverse engineering is not just about

understanding the current system but also enabling its evolution by refactoring the

current system without disrupting existing flows.

Figure 2.6: Reverse engineering and re-engineering
(adapted from Canfora and Cimitile (2001))

13

Chapter 3

Approach: UDS-Driven Reverse

Engineering Strategy

In this chapter, we will explore the necessity of a framework for software analysis and

its role in addressing critical challenges in modern software systems. We will outline

the overall vision of the framework, highlighting its unique features and how it stands

apart from existing solutions. Finally, we will discuss the technical strategy employed

to guarantee the framework’s functionality, we will delve into the use cases of probes

designed for the framework validation, ensuring it can effectively address real-world

challenges.

3.1 Vision

Keeping in view the discussion in the previous chapter, there is a need for an approach

in which the software system could be analyzed, undergo processing, and produce

useful information that can be used to provide enhanced insights about the software

14

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

system. There are several tools available for software analysis, each with its strengths

and weaknesses.

3.1.1 Designing the Framework

The vision is to work on a framework that stands out due to key differences. The

most notable feature we are looking for is platform and technology independence. This

means that the tool should not be tied to a specific technology. This flexibility will

allow it to be written in any programming language, depending on the requirements,

enabling data extraction from various software systems. Moreover, the tool should

be able to run static code analysis on microservices and standalone services as well.

Another distinctive feature is the integration of the extracted data with the unified

data source. It should be capable of handling diverse types of data, generalizing it,

and storing it in a graph-based database. This approach will eliminate the immediate

need for a separate visualization tool. In cases where appropriate data representation

is already available in the database, users can perform analyses directly without

additional tools. Finally, our tool should not rely on a single visualizer for data

representation. Since the data should be generalized, any compatible visualizer can

be used with minimal adjustments to meet specific needs and requirements. This

flexibility will enhance usability and ensure that the tool can adapt to diverse scenarios

efficiently. In summary, the vision is that our tool should offer unmatched flexibility

in data extraction, storage, and visualization, setting it apart from existing solutions

in the field of software analysis.

15

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

In this report, we will discuss, implement, and validate a framework by extract-

ing static information from a project. In the future, this can be implemented/inte-

grated with the project deployment pipeline and provide dynamic information from

the projects.

3.1.2 System Context and Approach

The test project used in this report is a Java Spring framework-based project called

Petclinic, which is mentioned in subsection 2.3.3. It is important to note that all

the data we extract from the system is specific to this project setting. The artifacts

that extract the data from the projects are supposed to be written for the subject

systems depending on their requirements, settings and technology.

Moreover, our approach will mainly focus on the unified data source (UDS) tech-

nique. “Unified Data refers to the integration and consolidation of data from vari-

ous sources into a single, cohesive framework. This approach allows organizations to

streamline their data management processes, ensuring that all data is accessible and

usable across different departments and applications. By unifying data, businesses can

eliminate silos, reduce redundancy, and enhance the overall quality of their data ana-

lytics efforts” (Statistics-Easily, 2025). This means that consistent, up-to-date, and

valid data will be available using the UDS technique.

3.1.3 Validation Roadmap: Key Scenarios

In order to demonstrate the working of the framework, we will propose eight real-

world scenarios and use cases. These use cases will be based on actual scenarios that

can be faced in the maintenance phase of the software development life cycle. All of

16

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

these scenarios will fall under the umbrella of software maintenance.

1. Most Recent Contributor: A bug is found in a method, the most recent author

who updated the method would have the context of the recent changes that they

have made and can help diagnose and resolve the issue faster. We have to find

the author who has made the most recent changes to the method.

Rationale: Promotes accountability among team members by making contribu-

tion history transparent. Increases team efficiency and issue resolving by involving

right people for the job.

2. List of Contributors: A class and its method are responsible for a feature

in the application. A list of people who worked on the method is required for

documentation purposes. Find the list of all the contributors of a particular

method.

Rationale: Facilitates and improves communication between team members by

identifying relevant stakeholders. Improves resource allocation, project planning

and decision making for development tasks.

3. Top Contributor: A bug is found in the method. The top contributor of the

method will most likely be the subject matter expert. Identify the top contributor

of the method.

Rationale: This will help the organization increase its efficiency and productivity.

4. File Contributors: The project manager needs to contact contributors of a file

for clarifications on specific changes or potential bugs. Identify the list of all the

developers who worked on a particular file.

Rationale: Assigning issues to contributors who are familiar with the relevant

17

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

files improves resolution speed. Knowing who contributed to a file ensures ac-

countability and encourages higher-quality contributions. Identifies files relying

on single contributor which can help in workload distribution.

5. Author Relation: Identify quantitative measure of collaboration between two

developers in a development team. Higher strength shows frequent joint contri-

butions.

Rationale: Improve team dynamics and encourage better interaction in areas

with weaker team collaboration. Developers with high collaboration strength are

likely to solve issues in shared files effectively. Management can use the data to

evaluate employees. Developers with higher collaboration strengths with multiple

individuals show employee value.

6. Endpoints: An API endpoint is a URL that acts as the point of contact between

an API client and an API server(The Postman Team, 2023). Extract all the REST

API endpoints information to generate accurate and up-to-date documentation

and perform analysis.

Rationale: Helps locating the faulty file and class, and helps developers quickly

identify the method handling the request and resolve the issue. Teams can use

extracted endpoint data, providing clients with API documentation. Facilitates

communication between backend and frontend teams by providing endpoint in-

sights.

7. Bean Data: A bean is an object that is instantiated, assembled, and managed

by a Spring IoC(inversion of control) container(Spring Framework Documentation,

2025). The project manager needs to get an overview of all registered beans and

18

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

their relationships from the java spring based application. Extract bean data

within the project to reveal the dependencies between components.

Rationale: Quickly locates missing or misconfigured beans, reducing the devel-

opment downtime. Detects potential security risks and stability issues.

8. Dependencies List: Some conflicting or outdated dependencies are causing is-

sues in the Maven-based project. Extract dependencies within each service to help

track the versions of libraries and frameworks used across microservices.

Rationale: Helps to identify, update or remove unused dependencies optimizing

the performance and efficiency of the services. Make it easy to identify those

dependencies that are impacting the security of the services. Help keep all the

dependencies up-to-date and easy to maintain.

The upcoming section will discuss the technical strategy for addressing the sce-

narios mentioned above.

3.2 Structural Elements of the Framework

This section provides a detailed discussion of the main components of the framework.

It also includes an analysis of the probes, their use cases, and their benefits. Af-

ter that, it discusses what UDS is and, finally, the visualizer. Figure 3.1 shows the

conceptual working of the framework’s three main components: Probes, UDS, and

Visualizer.

19

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

Figure 3.1: Working of Probes, UDS and Visualizer

20

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

3.2.1 Probes: Extractors

The first component of the framework consists of probes. Probes represent distinct

informational artifacts that are extracted from software systems to provide insights

and actionable data. In the context of this report, we have several use cases to extract

specific pieces of information, details of which are given in the sections below. These

probes will help demonstrate the usage of the framework and serve as the foundational

elements for gathering critical data points that enable analysis and decision-making.

Looking forward, this concept can be expanded to more complex and targeted

informational needs. By refining the scope and nature of the probes, we can tailor

them according to our needs and capture more refined data. This flexibility ensures

that as the systems grow or change, the framework remains relevant and capable of

producing deeper, more impactful information.

3.2.2 Unified Data Source (UDS)

When data is being extracted from diverse sources, there are high chances of it be-

coming inconsistent and stale. In section 3.1, the visualizer component is mentioned,

which runs the desired analysis on the data and provides visual updates. So, if anal-

ysis is to be done on the input data, it needs to be accessible, credible, reliable, and

consistent.

Maintaining data quality is crucial for accurate insights and decision-making. Uni-

fied sources ensure that the input data remains clean and updated, regardless of its

origin. Properly validated and processed data serves as the foundation for meaningful

analysis.

A scalable and extensible approach exists for software analysis and visualization

21

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

in which data from diverse sources is integrated into a unified source. A unified data

source provides a single access point for querying diverse data, eliminating the need

to manage multiple disconnected sources (Müller et al., 2018).

There are multiple UDS tools available, but the tool used in this framework is

the one developed by our colleague, Stepan Bryantsev, a member of the McMaster

University McSCert lab1. This tool called single source of truth (SST), consumes data

from the probes, creates relationship mappings, and stores it in graphical form using

the Neo4J database2. It is working as a data warehouse that takes all the information

from diverse sources and process it. A detailed discussion on the working of the single

source of truth can be found in chapter 4, and the validation of its output will be

discussed in chapter 5.

3.2.3 Integration and Output

The probes will extract the required data from the microservices and feed them to

the SST for further processing. The SST can be integrated with appropriate tool for

further analysis and visualization.

3.2.4 Data Management

The output of the SST will be stored in a separate database to maintain and preserve

historical records. It will help ensure that the data is structured, organized, and

easily retrievable from a centralized repository. By consolidating the data into a

single repository, it not only simplifies access but also certifies a consistent format.

1https://www.mcscert.ca/
2https://neo4j.com/

22

https://www.mcscert.ca/
https://neo4j.com/

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

Storing the data in a database enhances its integrity by eliminating inconsistencies

and reducing complexities, such as duplicate entries. This structure allows analysts

or analysis tools to focus on extracting meaningful insights without the additional

work of cleaning or reorganizing raw data.

Additionally, a dedicated database supports scalability, meaning it can accommo-

date larger datasets as the system evolves. It also offers improved data management

capabilities, such as access controls and backup solutions.

3.2.5 Visualizer

After software analysis is completed with the help of probes and SST, we can use some

visualizer tools in order to produce useful information gathered from the software

system. There is a diverse range of software visualization and analysis tools available

in the market, with each of them having their strengths and weaknesses. Sarita Bassil

and Rudolf K. Keller cover more than 40 tools for software visualization, with each

having their advantages (Bassil and Keller, 2001). For example, Rigi is used for

understanding legacy systems, GraphViz is popular for graph-based visualizations,

and daVinci offers dynamic graph layouts.

Following are some of the important tools offered by AWS and Azure for visual-

ization.

• Amazon QuickSight: A Business Intelligence (BI) service that enables users

to visualize data through dashboards, interactive graphs, and analytics. It

connects to various data sources, including software systems, databases, and

AWS services, and performs real-time data analysis. Read more about this

from (Amazon Web Services - QuickSight, 2025).

23

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

• Amazon X-Ray: A service for analyzing and debugging applications. It col-

lects data about requests to your applications, including errors and performance

bottlenecks. Visualizes the application architecture in a service map for easy

identification of issues. Read more about this from (Amazon Web Services -

X-Ray, 2025).

• Azure Monitor: Azure monitor collects, analyzes, and visualizes telemetry

data from Azure and on-premise environments to monitor application per-

formance and detect issues. Key features are logs and metrics collection for

in-depth analysis, provides alerts and insights to troubleshoot issues in real-

time (Microsoft, 2024).

Figure 3.2: Dashboard of Azure monitor
(adapted from Microsoft - Azure Monitor Best Practices (2024))

In our report, after integrating the probes and SST, the processed data from SST

will be used to visualize the output generated by the probes.

24

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

3.3 Technical Validation Strategy

In this section, we will discuss the technical strategy that we will adopt to tackle the

scenarios and use cases mentioned in subsection 3.1.3.

3.3.1 Effective Methods to Identify Contributors, Top Con-

tributors, and Recent Contributors

The scenarios starting from 1 to 5, related to the authors/contributors, are merged

in this section to avoid repetition since all of them require a similar approach. There

are several ways to find the contributors list, author relation, top contributors, and

most recent contributors:

• Reviewing communication records for recent discussions or code reviews about

the method. However, this process is slow and often leads to inconsistent results.

• Checking pull request histories on GitHub, where reviewers and contributors

are listed. For repositories with many pull requests, filtering relevant changes

can be overwhelming.

• Analyzing the repository’s commit history directly from platforms like GitHub

or Bitbucket. Commit messages often do not clearly indicate which methods

were changed, making this process extremely time-consuming.

• Using the GitHub API to programmatically extract and analyze contributors’

data related to specific files. However, API usage may be restricted by rate

limits, especially for large repositories.

25

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

• Using CI/CD tools like Jenkins to monitor and report code changes and asso-

ciate them with contributors. This can slow down CI/CD pipelines and requires

initial setup and ongoing maintenance.

• Checking project documentation and looking for change logs that might include

information about recent changes and contributions. However, change logs are

not always updated regularly, which can lead to inaccurate results.

One of the most effective ways to achieve this is by using a version control system.

In almost every project, some form of version control is used, as it allows tracking

the author of the most recent changes to specific lines of code. Each project typically

includes a version control file. In our test project, a .git directory is available, which

we can parse to retrieve the required information. To achieve this, we will develop a

few probes to perform static code analysis, parse the .git directory, and extract the

necessary data to feed it into the SST. The implementation of these probes will be

discussed in later chapters.

Figure 3.3 shows the process of extracting Git data. The Python script runs a

Git command that returns data for each line of code. It then parses this information

and extracts the required details.

26

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

Figure 3.3: Parsing Git Files

3.3.2 Microservices Endpoints

For the 6th scenario, we have to determine the endpoints. REST API endpoints for

microservices can be identified in several ways from the source code. Our goal is to

establish a general method for obtaining this information from your project, as real-

world microservice architectures do not always use frameworks like Java Spring, as

seen in the Petclinic test project referenced in this report. Below are some approaches

to discovering endpoints:

• Integrating Swagger3 or OpenAPI4 to auto-generate documentation can be ef-

fective but requires accurate configuration for all endpoints. Misconfiguration

3https://swagger.io/
4https://swagger.io/resources/articles/documenting-apis-with-swagger/

27

https://swagger.io/
https://swagger.io/resources/articles/documenting-apis-with-swagger/

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

can lead to incorrect results.

• Enabling logging of all incoming requests to capture and log accessed endpoints

at runtime can also work. However, this approach introduces performance over-

head and may miss endpoints that are rarely accessed or currently unused.

• Spring Boot Actuator provides an endpoint mapping system, but it only works

for services based on the Spring framework.

The approach we will use involves static code analysis. We will write a probe to

search for @RequestMapping, @GetMapping, @PostMapping, and similar annotations

in the source code to identify endpoints. This probe can be configured to match the

target service setup and extract REST API endpoints, which will then be stored in a

unified data source.

3.3.3 Beans And Dependencies

For the 7th and 8th scenarios, We have to extract beans and dependencies from

the source code. There are several ways to identify the beans and dependencies in

the Spring framework project under discussion, allowing us to visualize this data for

better documentation and understanding:

• Spring Boot Actuator provides a /actuator/beans endpoint that lists all beans

in the application context, along with their dependencies and initialization de-

tails. However, this can cause performance issues in large applications with

many beans.

• The Spring ApplicationContext can be accessed programmatically to retrieve

28

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

a list of all beans and their dependencies (Peterlić, 2024). However, this ap-

proach requires adding custom code for bean inspection, which can increase the

codebase size and potentially clutter production logs.

The approach we will use involves static code analysis. We will develop a probe to

search for annotations like @Bean, @Component, @Service, @Repository, and other

dependency-related annotations. Additionally, we will parse the POM.xml files of the

services to identify the dependencies associated with each service.

3.3.4 SST and Visualizer Integration

For the 9th and 10th scenarios, integration of probes with SST and SST with visualizer

is required. After extracting the necessary information, we need to demonstrate the

complete capabilities of our framework by applying it to the technical scenarios we

have designed. To achieve this, it is essential to integrate the extracted data with the

SST with the help of REST API endpoints provided by the SST tool. Once probes

and SST start exchanging data, our next task is to connect at least one visualizer tool

with the SST. For that, we will connect a visualizer tool with the SST’s database to

obtain real-time data and information directly from the database.

The following chapter will discuss details about how the probes are integrated

with SST and visualizer.

29

Chapter 4

Implementation

In the previous chapters, we discussed the vision and technical strategy we will employ

to demonstrate the framework’s complete working. This chapter will discuss the

critical implementation points, especially those related to probes and the single source

of truth. We will discuss what approach to use for extracting data through probes,

how probes are integrated with the SST, how the runner script will run all the probes

and send the data to the SST, how data is stored in the SST, and how we can use it

to integrate with a visualizer for further analysis.

4.1 Inside the SST Tool: Registration, Data Inte-

gration, and Storage

We have already discussed at length how data extracted from the probes can be

plugged into the SST tool, which works as a unified data source. In this section,

we will explore the SST tool, its purpose, and how it operates. We will begin by

30

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

discussing how to run this tool. After that, we will examine the types of data that

its endpoints accept, ensuring that we implement our probes correctly according to

the REST API structure.

Later subsections will focus on how data is collected from probes, sent to the SST

tool, and stored. This step-by-step breakdown will help us understand the complete

workflow, from data input to storage.

4.1.1 Running the SST Tool

The SST tool depends on two main services:

• SST Backend Service – This service sends and receives probe data.

• Neo4j Database - This database stores the collected data in a graph-based

format, making it easier to visualize and analyze relationships between data

points.

To set up SST, we first need to clone the source code from the GitHub reposi-

tory1. After cloning, we require a docker-compose file to initialize, which is available

on Docker Hub2. By using this setup, we ensure that all components of the SST

tool are properly configured and ready for use. Once both of the above steps are

completed, run the services using docker-compose up. We can check the backend

services running by sending a get request to /api/health-check/ endpoint.

1https://github.com/ace-design/uds
2https://hub.docker.com/r/acedesign/sst

31

https://github.com/ace-design/uds
https://hub.docker.com/r/acedesign/sst

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

4.1.2 Probe Registration

All probes must be registered first to ensure that the data remains consistent. The

registration process ensures that the SST system can correctly store, process, and re-

late the incoming data. To register a probe, the following three elements are required:

• Probe Name – The name of the probe that is being registered.

• Nodes – The data elements that will be provided to the SST system.

• Edges – The relationships between the nodes.

Each node represents an object that holds specific data. It is important that each

node is unique and contains a value that serves as its unique identifier. This identifier

is crucial because SST merges nodes based on this value. If a node with the same

identifier already exists in the system, the original one will be retained, preventing

duplication.

Edges define how nodes are connected, establishing relationships between them.

These relationships help structure the data in a meaningful way, allowing for efficient

querying and retrieval within the system.

Listing 4.1: Sample JSON for Probe Registration

1 {

2 "name": "Authors_Relation",

3 "types": [

4 {

5 "name": "Author",

6 "fields": [

7 {

8 "name": "email",

9 "type": "string",

10 "unique": true

11 }

32

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

12],

13 "mergeRules": [

14 {

15 "fieldName": "email"

16 }

17]

18 }

19],

20 "relations": [

21 {

22 "name": "Collaborated",

23 "from": {

24 "typeName": "Author"

25 },

26 "to": {

27 "typeName": "Author"

28 }

29 }

30]

31 }

The above sample JSON shows the data required to register a probe. types is

an array of JSON objects, where each object in this array represents a node type.

Each node has a name, an array of fields, and mergeRules. The fields represent

the object attributes for the node, while mergeRules define the value on the basis of

which two nodes will be merged.

relations is another array of JSON objects, where each object represents a re-

lationship between two nodes. Each relation has a name, a from field, and a to field.

The from and to fields define the node types between which the relationship should

be established. This structure ensures that data is correctly linked within the SST

system, allowing for efficient merging and retrieval of information.

This probe represents that all the nodes from this probe will be of type Author,

and each author node will have a relation between them of type Collaborated. Each

33

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

node will be connected on the basis of mergeRules key, which in this case is email.

Once the structure of the probe is defined, it must be registered using the following

REST API provided by the SST tool. Use post request and send the JSON data to

the SST. If the probe is registered, it will return a response status code of 201, and

a status of success will be shown in the response object.

4.1.3 Probe Integration

Once the probe has been registered, the next process is to extract the data from

the source code for integration with SST. Make sure the data should be in the same

structure as the structure that is used to register the probe.

Listing 4.2: JSON for Author Relation Probe. This represents the same scenario as

shown in snippet 4.1

1 {

2 "probeName": "Authors_Relation",

3 "nodes": [

4 {

5 "type": "Author",

6 "name": "James␣Rey",

7 "email": "james@gmail.com"

8 },

9 {

10 "type": "Author",

11 "name": "Allen",

12 "email": "allen@gmail.com"

13 }

14],

15 "edges": [

16 {

17 "relationName": "Collaborated",

18 "from": {

19 "nodeType": "Author",

20 "propertyName": "email",

21 "propertyValue": "james@gmail.com"

22 },

34

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

23 "to": {

24 "nodeType": "Author",

25 "propertyName": "email",

26 "propertyValue": "allen@gmail.com"

27 }

28 }

29]

30 }

4.2 Implementing Probes for Data Collection and

Analysis

In the previous section, we discussed how the single source of truth works and how

probes are registered and integrated with it. In this section, we will focus on the

implementation of probes to demonstrate the functionality of the framework and

validate the scenarios outlined in subsection 3.1.3.

We will cover only the key aspects of the implementation to provide a clear under-

standing of the process to the reader. For those interested in exploring the complete

implementation in detail, the full source code is available at the Project’s GitHub

Repository3.

We have implemented classes for each node and edge to keep the code consistent

and ensure that all objects follow the same structure. We have also created classes

to define relationships between nodes, ensuring that the data remains consistent for

similar objects.

3https://github.com/WaqarAwan376/MEng-Project/releases/tag/v1.0.3

35

https://github.com/WaqarAwan376/MEng-Project/releases/tag/v1.0.3

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

4.2.1 Authors and Version Control

As mentioned in section 3.3, we have merged the discussion and implementation of

probes related to authors/contributors. We have discussed that an effective way to

retrieve data related to authors and their contributions is by using a version control

system. Version control systems inherently track all changes made to a codebase

and store this information within the .git directory, which is typically hidden. This

directory contains the complete history of modifications, including details about con-

tributors, timestamps, and commit messages, making it a reliable source for extracting

author-related data.

We have several Python4 scripts to extract information from a git directory. These

scripts analyze data such as the relationship between two authors based on the number

of files they have collaborated on, identifying all authors who worked on a method,

determining the top contributor among them, and listing the authors of each file.

Each script relies on the .git directory and uses the Javalang library5 to parse

Java source code. This library helps navigate Java code structure using Abstract

Syntax Tree (AST), making it easier to extract relevant information. After parsing

the Java source code, we extract author details of each line of the source code using

the git blame command6.

Once the author’s information is extracted, it is stored in a JSON file and sent to

SST for further processing and analysis.

For the sake of demonstrating the probe structure, we can take method contri-

bution as an example to show the JSON structure for probes related to authors.

4https://www.python.org/
5https://pypi.org/project/javalang/
6https://git-scm.com/docs/git-blame

36

https://www.python.org/
https://pypi.org/project/javalang/
https://git-scm.com/docs/git-blame

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

Appendix A.3 provides a sample JSON representation for the author method contri-

bution probe. This example illustrates that the Owner.java file contains the Owner

class, which includes the getPetsInternal() method. Rest of the probes related to

authors can be explored in the project repository.

4.2.2 Microservices REST API endpoints

In section 3.3, we discussed a strategy to extract REST API endpoints from Java

Spring Framework source code. The approach involves searching for relevant anno-

tations and decorators in the source code and using them to identify endpoints. We

apply this logic to extract the required information.

In the implemented Python script, we first extract Java files from all services.

Then, we use regular expressions to check if they contain annotations such as

@RestController, @RequestMapping, @GetMapping, @PostMapping, and similar dec-

orators. If a file includes these annotations, we extract the full route information and

create class and endpoint nodes. This allows us to represent how a particular class

maps to an endpoint through relational edges.

Appendix A.4 shows a sample JSON for endpoint mapping. The JSON shows that

file VetResource.java contains VetResource class. This class maps /vets endpoint.

4.2.3 Java Beans Extraction

Using a similar approach to extracting REST API endpoints, we can also extract

Java beans from the source code. Java beans are created using specific annotations

placed at the top of a class. These annotations indicate that the class is a Java bean,

which will be managed by the Java Spring Framework.

37

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

In the Python script we have implemented, we search for @Component, @Service,

@Repository, @Controller, and @Configuration annotations in the source code to

identify beans.

Once the beans are found, we also extract their methods by searching for the

@Bean annotation. In this script, we use javalang to parse methods when identifying

bean methods and Python regular expressions to find classes in the source code. After

determining the beans and their methods, we create their nodes using Python classes

in our code. This allows us to establish relational edges between them.

Appendix A.5 shows a sample JSON for bean classes and methods mapping. The

AIBeanConfiguration.java file contains AIBeanConfiguration class. This class

has a bean method loadBalancedWebClientBuilder().

4.2.4 Java Dependencies Extraction

Java services have a Project Object Model (POM) file that contains information about

the Maven project7 and how it is built. It is an XML file that includes a list of all

project dependencies. We can use this file to extract dependencies and their versions.

In the Python script we have implemented, we use a lightweight Python XML

parser8 for this purpose. We parse the XML file, extract the dependencies from each

service, and create nodes and edges based on this information. When a dependency is

found in the POM file, a node is made using the dependency class in our code. These

nodes are then linked to each other using edges to represent relationships between

dependencies.

Appendix A.6 shows a sample JSON for dependencies graphs. The POM file

7https://maven.apache.org/
8https://docs.python.org/3/library/xml.etree.elementtree.html

38

https://maven.apache.org/
https://docs.python.org/3/library/xml.etree.elementtree.html

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

in spring-petclinic-genai-service contains spring-ai-bom dependency. The

properties key of their relation includes further information about the dependency,

showing its version, scope, and type.

4.2.5 Runner script and How it works

We have a Python runner script that is responsible for running each probe script.

To manage these probes, we use a probes list.py script file, which contains a list

of Python dictionaries. Each dictionary represents a probe and includes three key

elements: runner command, probe file, and arguments. The runner script iterates

through this list, executing each probe and sending a POST request to the SST server

to update it with the latest extracted data. The probes list.py script file can be

seen in appendix section A.1.

One of the key advantages of this approach is that probes do not have to be

written exclusively in Python. As long as a probe is placed in the probes folder and

its corresponding runner command and probe file are specified in probes list.py

file with correct arguments, it can be executed in the same way as other probes.

This flexibility allows for the integration of scripts written in different programming

languages.

The runner script ensures that the data sent to the SST server is always up-to-

date, consistent, and valid. It takes the source directory of the target source code as

a command-line argument, allowing users to specify the location of the project they

want to analyze. Below is an example of how to run the script:

39

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

python runner.py

−−SOURCE DIR "/Projects/spring-petclinic-microservices"

−−DIR NAME "spring-petclinic-microservices"

This method ensures an efficient and automated way to extract and update data

while maintaining consistency across different probes.

Appendix A.2 shows the implementation of the runner script. The script parses

the command-line argument passed to it and runs the probe from the probes list,

producing outputs. It is important to note that the runner.py script only sends the

probe’s nodes and edges data. The registration of the probes must be done manually

for now. The script uses the requests9 Python dependency to send requests to the

SST server.

4.3 Data Visualization and Insights

Now that the probe and SST tools are integrated and the required data has been

successfully extracted from the source, we can proceed to use various visualization

tools to analyze this data—completing the reverse engineering process by uncovering

statistical insights and valuable information aligned with our objectives. There are

numerous tools and services available for data visualization. We have already dis-

cussed some key visualization tools in subsection 3.2.5. In this section, we provide a

brief summary of the visualization tools used in this report.

9https://pypi.org/project/requests/

40

https://pypi.org/project/requests/

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

4.3.1 Neo4j Desktop

Neo4j provides its own application, Neo4j Desktop10, to visualize data stored in a

Neo4j database. Users can connect to both local and remote Neo4j servers. The

application includes several tools for visualizing different types of data.

One key tool is Neo4j Browser 11, a web-based query tool for running Cypher

queries. Another is Neo4j Bloom12, which allows users to explore graph data interac-

tively.

4.3.2 Tableau

Tableau is a leading data visualization tool used for data analysis and business intel-

ligence (Biswal, 2023). It is known for its ease of use, compatibility with diverse data

sources, and ability to create interactive dashboards that enhance data exploration

and decision-making13. One of the key reasons for choosing Tableau is its flexibility

in handling various types of data while offering intuitive visualizations.

Since our SST tool stores data in a Neo4j database, Tableau provides a way to

integrate with Neo4j, allowing real-time data capture and analysis. Additionally, it

supports visualizing relationships between data points, aligning with Neo4j’s graph-

based structure.

10https://neo4j.com/download
11https://neo4j.com/docs/browser-manual/current/
12https://neo4j.com/product/bloom/
13https://www.tableau.com/

41

https://neo4j.com/download
https://neo4j.com/docs/browser-manual/current/
https://neo4j.com/product/bloom/
https://www.tableau.com/

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

4.3.3 Tool Selection and Justification

In this report, we will use Tableau and Neo4j Desktop to demonstrate the function-

ality of the probes and SST framework and validate our scenarios. Neo4j Desktop

will be used for managing and visualizing graph-based data, while Tableau, which

provides a way to connect directly with the Neo4j database, will assist in creating in-

sightful visual representations. Using these tools, we aim to illustrate the framework’s

workings and ensure proper scenario validation.

42

Chapter 5

Scenario Validations

In this chapter, we examine the output generated by the probes that we implemented.

We will also go through each validation scenario as outlined in subsection 3.1.3. While

this chapter primarily focuses on scenario validations, demonstrating the framework’s

functionality in realistic scenarios, it also touches on aspects of verification. Specifi-

cally, we assess whether the framework as a whole behaves as expected when applied

to real-world software systems. Although there is no strict set of formal requirements

being verified, the successful execution of the defined scenarios serves as an implicit

check of the framework’s correctness and completeness. After reviewing the results,

we will discuss the limitations and challenges of the framework, highlighting areas

that could be improved.

43

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

5.1 Evaluating the Framework in Practical Appli-

cations

Since the framework we are developing is intended for real-world projects, this val-

idation aims to demonstrate its full functionality using real-world scenarios. The

objective is to show how the framework operates in realistic projects, making sure

relevant data is extracted by probes, ensuring its effectiveness in handling real soft-

ware systems. As discussed earlier, each scenario represents common use cases that

can arise during project maintenance. Since reverse engineering is mainly used to

break down complex software into smaller, manageable components, it becomes a

valuable tool in the maintenance and evolution of software projects. By dissecting

an existing system, it helps developers understand its structure, dependencies, and

functionality, making future modifications and improvements more manageable.

It is important to note that evaluating the framework does not solely rely on the

current probes’ output, as the overall results can vary depending on the probes used

for each project. Instead, this validation focuses on whether the framework as a whole

functions as expected, regardless of the specific probes implemented. To establish its

working, the real-world scenarios defined in this report must demonstrate that the

framework successfully processes and analyzes software systems as intended. In short,

the goal is to provide a structured and functional approach to reverse engineering,

ensuring that it can be effectively applied in practical scenarios.

44

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

5.2 Validation Results

In this section, we will go through each validation scenario discussed in subsec-

tion 3.1.3. We will review the output, but not all output figures are included here.

For a complete set of images, refer to Appendix B.

5.2.1 Most Recent Contributor

It shows the contributor who made the most recent changes to the method. To achieve

this, we extracted methods and authors as nodes.

The expected output for this probe is a method node containing detailed infor-

mation about the method. This node should be linked to author nodes, representing

all contributors who have modified the method. Among these connections, a relation

should indicate the most recent contributor, determined by the latest modification

date.

Instead of displaying all methods and their authors (which can be viewed in the

Appendix B), we will take one method as an example and present its results.

We can use Neo4j Cypher queries1 to filter and retrieve the required data.

Listing 5.1: Most recent contributor cypher query

1 MATCH (n)-[r]-(m)

2 WHERE n.signature = "org.springframework.samples.petclinic.customers.web.

OwnerResource.createOwner(org.springframework.samples.petclinic.

customers.web.OwnerRequest)"

3 RETURN n, r, m

This will extract information only about the method based on our probe settings

and the output JSON. We can further interact with the nodes and edges in the Neo4j

1https://neo4j.com/docs/cypher-manual/current/queries/

45

https://neo4j.com/docs/cypher-manual/current/queries/

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

browser to explore additional relationships.

Figure 5.1: Neo4j Browser showing the relation between nodes

Figure 5.1 illustrates the node relationships in the Neo4j Browser visualizer. We

have used the query mentioned above to extract the data and extend class and file

relations. Additional data and details can be included in each relationship edge. For

example, the Last modifier relationship displays the last modification date and time.

5.2.2 List of Contributors

It shows all the contributors of the methods. The expected output for this probe is

a set of author nodes and methods.

Figure 5.1 illustrates two authors who modified the createOwner method. The

author nodes contain information about the authors, such as their names and email

addresses, while the method nodes store details about the method, including a unique

identifier. In the current probes, we uniquely identify a method by combining the

46

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

package name of the Java file, the class name, and the method signature. Authors

are identified using their email addresses, as multiple contributors may have the same

name, but email addresses are always unique.

5.2.3 Top Contributor

It identifies the top contributor to the method. Instead of creating a separate node

for the top contributor, we establish a relationship edge from the method node to the

author node, labeled as Top contributor. This relationship includes properties that

indicate the total lines added by the top contributor, along with the specific code line

numbers of their contributions.

Figure 5.1 illustrates two authors who modified the method createOwner. Among

them, the author Shobha Kamath has a Top contributor relationship edge attached,

indicating that they are the top contributors to this method.

5.2.4 File Contributors

It displays the list of contributors for each file. To achieve this, we extracted files and

authors as nodes. Like the top contributor approach, we represent file authorship by

establishing a direct relationship between files and authors. An edge from a file node

to an author node, labeled as Authored by, indicates that that particular contributor

authored the file.

Figure 5.1 illustrates all the current authors of the file.

47

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

5.2.5 Author Relation

It represents the joint contributions between two authors, measured by the number of

file collaborations. The strength of the connection between the two authors indicates

the number of shared contributions.

We can show this by connecting the names of two authors to the Author Relation

node. This node contains data such as the strength of their collaboration and a list

of files they have worked on together.

Since this analysis is more statistical, we can visualize it using Tableau. Figure 5.1

illustrates the relationship strength between authors. The highlighted section shows

an example of a quantitative connection between two contributors. Further analysis

can be performed based on specific requirements, such as sorting by increasing contri-

bution strength or integrating the data into an organization’s dashboard to visualize

team collaboration.

48

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

Figure 5.2: Tableau tool showing authors’ relation strength

49

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

5.2.6 REST API Endpoints

It displays all the REST API endpoints in the project. Methods and endpoints were

extracted as nodes using a Cypher query.

Listing 5.2: PetResource class endpoints cypher query

1 MATCH (a)-[r]-(b)

2 WHERE type(r)="Maps"

3 AND a.name="PetResource"

4 RETURN a, r, b

The expected output should include class and endpoint nodes. Each class should

be connected to its corresponding endpoint nodes using a Maps relationship, as a class

maps REST API endpoints.

Figure 5.3 illustrates a class node, PetResource, mapping four endpoints. The

file node shown in the figure was not extracted from the initial query. Instead, it

was obtained using the Neo4j Browser node relationship extractor after executing the

query.

50

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

Figure 5.3: Neo4j Browser showing the relation between class and REST API
endpoints

5.2.7 Java Beans

It identifies Java Spring bean classes and methods. To achieve this, we extract

files, classes, and methods. The expected output includes a file node that has a

has bean class relationship with a class identified as a candidate bean class. This

bean class, in turn, has a has bean method relationship with methods that are con-

sidered candidate bean methods.

5.2.8 Dependencies List

It displays all the Maven project dependencies in the project. To achieve this, we

locate the Project Object Model (POM) file and parse its dependencies.

The expected output consists of a POM file node and multiple dependency nodes.

Each dependency contains metadata such as version and scope. Dependencies are

51

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

identified using their artifact id and group id.

The POM file node is connected to the dependency nodes through a depends on

relationship.

5.3 Challenges and Limitations

Even though the presented framework indeed serves the purpose of reverse engineering

software systems and can be used in large codebases and distributed systems, it comes

with certain challenges and limitations. While these challenges can be addressed, they

require effort and improvements. Below are some of the key challenges and limitations

of this framework:

• Currently, the probes can only perform static code analysis. This means the

probes must be designed to extract data from static code, which can be chal-

lenging if the source code is not written in languages that follow strict coding

principles. For example, Java Spring Framework follows object-oriented pro-

gramming (OOP) and aspect-oriented programming (AOP) principles, whereas

Python does not enforce such strict structures.

• The probes require both domain and code knowledge to be written correctly.

If someone is not familiar with the programming language used in the source

code, they may struggle to write effective probes. While tools like SonarQube

can assist in performing static code analysis and extracting data, writing probes

manually can be complex without prior knowledge of the codebase.

52

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

• A visualizer plays a key role in the reverse engineering process, enabling the user

to view insightful information. However, it also comes with challenges. If an

external visualizer is not necessary, Neo4j can be used instead, but it requires

knowledge of Cypher queries to extract useful information. Additionally, most

high-quality visualizers are not free. Learning to use a visualizer becomes an

extra step when working with this framework.

53

Chapter 6

Conclusion and future work

In this chapter, we will present the conclusion of the project and provide an overall

summary of the report. Finally, we will outline future directions and the potential

roadmap for this project.

6.1 Summary

In conclusion, this report has presented a framework for effectively reverse engineer-

ing a software system. The approach involves collecting useful information artifacts

using probes, integrating the SST server with the collected data through the UDS ap-

proach, and using visualizers to view the extracted information. This process provides

valuable insights and analysis, helping in the maintenance of software systems.

Our report began by providing essential background information to help readers

understand the purpose and importance of the proposed framework, particularly in

the maintenance phase of the software development lifecycle. We highlighted why

such a framework is needed and how it can improve software system maintenance.

54

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

In Chapter 3, we discussed the overall goal of the framework, detailing its core

components and defining validation scenarios to assess its effectiveness. Chapter 4

focused on the implementation process. We started by cloning the Petclinic test

project from its official GitHub repository for analysis. Next, we developed probe

scripts to extract relevant information based on our predefined validation scenarios.

Following this, we integrated the SST tool as our Unified Data Source (UDS)

by setting up its server using Docker and following its documentation. We then

connected our probes to the SST tool, registering the structure of probe nodes and

edges. Finally, in Chapter 5, we used Neo4j Visualizer and Tableau to present the

extracted data, transforming static source code into a visual format for better insights

and analysis.

6.2 Future work

The framework demonstrated in this report is its first version, and further testing and

additional use cases are required, along with extensive validation. In this section, we

will discuss the future roadmap for this project and how it can be further tested

through practical applications to be considered “ready for use”.

Currently, in the project, the probes can only extract data from static source code.

This can be improved by adding probes that capture dynamic data from the software

system, such as analyzing communication between services through messaging queues

and collecting real-time information on REST API traffic. This could be achieved by

probes that continuously monitor logs and transfer data to the SST server for further

processing.

The probes currently in use extract data through scripts. Each probe script must

55

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

be written by developers with domain or project knowledge. Various methods can be

used to extract data from source code, including external tools that scan and analyze

it. These external tools can reduce the dependency on custom probes that require

domain expertise to be written. Since data extraction from external tools is already

well-tested, it might be more reliable, efficient, and applicable across a wider range

of use cases and programming languages. Similarly, machine learning processing can

be integrated to analyze the extracted data, and the results from this analysis could

be used to create separate probes.

The framework can be tested by integrating it into a Continuous Integration (CI)

process. This ensures that any code changes are immediately processed by the probes

and visualized using SST. This way, real-time analysis and insights can be produced,

which will help developers monitor and assess the impact of changes on the source

code.

Lastly, the framework can be tested on an enterprise-level application with a large

number of probes. This will help evaluate the data handling capabilities of the SST

tool and ensure that it does not face performance or reliability issues. Many reverse

engineering tools struggle with these aspects when dealing with large datasets, so this

testing will be crucial for validating the tool’s efficiency and stability.

56

Appendix A

Scripts and Outputs

A.1 Probes List

1 from utils.constants import OUTPUT_FOLDER

2

3 probes_scripts = [

4 {

5 "runner_command": "python3␣-m␣probes.author_method_contribution",

6 "probe_file": "author_method_contribution",

7 "arguments": [

8 "--PROBE_NAME", "Method_Contributor",

9 "--OUTPUT", f"{OUTPUT_FOLDER}{’author_tracking.json’}"

10]

11 },

12 {

13 "runner_command": "python3␣-m␣probes.authors_files_and_relations",

14 "probe_file": "authors_files_and_relations",

15 "arguments": [

16 "--PROBE_NAME_1", "Authors_Relation",

17 "--OUTPUT_FILE_1", f"{OUTPUT_FOLDER}{’author_relation.json’}",

18 "--PROBE_NAME_2", "File_Contributors",

19 "--OUTPUT_FILE_2", f"{OUTPUT_FOLDER}{’file_contributors.json’}",

20]

21 },

22 {

23 "runner_command": "python3␣-m␣probes.java_beans",

57

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

24 "probe_file": "java_beans",

25 "arguments": [

26 "--PROBE_NAME", "Beans",

27 "--OUTPUT", f"{OUTPUT_FOLDER}{’beans.json’}"

28]

29 },

30 {

31 "runner_command": "python3␣-m␣probes.services_dependencies",

32 "probe_file": "services_dependencies",

33 "arguments": [

34 "--PROBE_NAME", "Dependencies",

35 "--OUTPUT", f"{OUTPUT_FOLDER}{’dependencies.json’}"

36]

37 },

38 {

39 "runner_command": "python3␣-m␣probes.services_endpoints",

40 "probe_file": "services_endpoints",

41 "arguments": [

42 "--PROBE_NAME", "Endpoints",

43 "--OUTPUT", f"{OUTPUT_FOLDER}{’endpoints.json’}"

44]

45 },

46]

A.2 Runner Script

1 import subprocess

2 import os

3 from dotenv import load_dotenv

4 from probes_list import probes_scripts

5 from utils.constants import OUTPUT_FOLDER

6 from utils.helper import get_passed_arguments

7 import json

8 import requests

9

10 load_dotenv()

11 SST_API_URL = os.getenv("SST_API_URL")

12 project_root = os.path.dirname(os.path.abspath(__file__))

13

14 if __name__ == ’__main__’:

58

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

15 args = get_passed_arguments("--SOURCE_DIR")

16 original_directory = os.getcwd()

17 probes_directory = "./probes/"

18

19 for script in probes_scripts:

20 subprocess.run(

21 f"{script[’runner_command’]}␣--INPUT_DIR␣\"{args.SOURCE_DIR}\"␣

--OUTPUT␣\

22 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣{OUTPUT_FOLDER}{script[’output_file’]}", shell=True, cwd=

project_root)

23

24 for filename in os.listdir(OUTPUT_FOLDER):

25 if filename.endswith(".json"):

26 file_path = os.path.join(OUTPUT_FOLDER, filename)

27

28 try:

29 with open(file_path, "r", encoding="utf-8") as json_file:

30 json_data = json.load(json_file)

31

32 headers = {"Content-Type": "application/json"}

33 response = requests.post(

34 f"{SST_API_URL}/api/upload-graph", json=json_data,

headers=headers)

35

36 print(f"Sent␣{filename}:␣{response.status_code}")

37

38 except Exception as e:

39 print(f"Error␣processing␣{filename}:␣{e}")

A.3 Author Method Contribution

1 {

2 "probeName": "Methods_Contributions",

3 "nodes": [

4 {

5 "type": "Method",

6 "name": "getPetsInternal",

7 "signature": "org.springframework.samples.petclinic.customers.model.

Owner.getPetsInternal()"

8 },

59

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

9 {

10 "type": "File",

11 "path": "/spring-petclinic-customers-service/src/main/java/org/

springframework/samples/petclinic/customers/model/Owner.java"

12 },

13 {

14 "type": "Class",

15 "name": "Owner",

16 "full_name": "/spring-petclinic-customers-service/src/main/java/org/

springframework/samples/petclinic/customers/model/Owner.java:Owner

"

17 }

18],

19 "edges": [

20 {

21 "relationName": "Contains",

22 "from": {

23 "nodeType": "File",

24 "propertyName": "path",

25 "propertyValue": "/spring-petclinic-customers-service/src/main/java/

org/springframework/samples/petclinic/customers/model/Owner.java

"

26 },

27 "to": {

28 "nodeType": "Class",

29 "propertyName": "full_name",

30 "propertyValue": "/spring-petclinic-customers-service/src/main/java/

org/springframework/samples/petclinic/customers/model/Owner.java

:Owner"

31 }

32 },

33 {

34 "relationName": "Has",

35 "from": {

36 "nodeType": "Class",

37 "propertyName": "full_name",

38 "propertyValue": "/spring-petclinic-customers-service/src/main/java/

org/springframework/samples/petclinic/customers/model/Owner.java

:Owner"

39 },

40 "to": {

41 "nodeType": "Method",

42 "propertyName": "signature",

60

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

43 "propertyValue": "org.springframework.samples.petclinic.customers.

model.Owner.getPetsInternal()"

44 }

45 }

46]

47 }

A.4 Microservices Endpoints

1 {

2 "probeName": "Endpoints",

3 "nodes": [

4 {

5 "type": "File",

6 "path": "/spring-petclinic-vets-service/src/main/java/org/

springframework/samples/petclinic/vets/web/VetResource.java"

7 },

8 {

9 "type": "Class",

10 "name": "VetResource",

11 "full_name": "/spring-petclinic-vets-service/src/main/java/org/

springframework/samples/petclinic/vets/web/VetResource.java:

VetResource"

12 },

13 {

14 "type": "Endpoint",

15 "full_method_id": "GET␣-␣/vets",

16 "http_method": "GET",

17 "route": "/vets"

18 }

19],

20 "edges": [

21 {

22 "relationName": "Contains",

23 "from": {

24 "nodeType": "File",

25 "propertyName": "path",

26 "propertyValue": "/spring-petclinic-vets-service/src/main/java/org/

springframework/samples/petclinic/vets/web/VetResource.java"

27 },

61

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

28 "to": {

29 "nodeType": "Class",

30 "propertyName": "full_name",

31 "propertyValue": "/spring-petclinic-vets-service/src/main/java/org/

springframework/samples/petclinic/vets/web/VetResource.java:

VetResource"

32 }

33 },

34 {

35 "relationName": "Maps",

36 "from": {

37 "nodeType": "Class",

38 "propertyName": "full_name",

39 "propertyValue": "/spring-petclinic-vets-service/src/main/java/org/

springframework/samples/petclinic/vets/web/VetResource.java:

VetResource"

40 },

41 "to": {

42 "nodeType": "Endpoint",

43 "propertyName": "full_method_id",

44 "propertyValue": "GET␣-␣/vets"

45 }

46 }

47]

48 }

A.5 Bean Classes and Methods

1 {

2 "probeName": "Beans",

3 "nodes": [

4 {

5 "type": "File",

6 "path": "/spring-petclinic-genai-service/src/main/java/org/

springframework/samples/petclinic/genai/AIBeanConfiguration.java"

7 },

8 {

9 "type": "Class",

10 "name": "AIBeanConfiguration",

62

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

11 "full_name": "/spring-petclinic-genai-service/src/main/java/org/

springframework/samples/petclinic/genai/AIBeanConfiguration.java:

AIBeanConfiguration"

12 },

13 {

14 "type": "Method",

15 "name": "loadBalancedWebClientBuilder",

16 "signature": "org.springframework.samples.petclinic.api.

ApiGatewayApplication.loadBalancedWebClientBuilder()"

17 }

18],

19 "edges": [

20 {

21 "relationName": "Has_bean_class",

22 "from": {

23 "nodeType": "File",

24 "propertyName": "path",

25 "propertyValue": "/spring-petclinic-genai-service/src/main/java/org/

springframework/samples/petclinic/genai/AIBeanConfiguration.java

"

26 },

27 "to": {

28 "nodeType": "Class",

29 "propertyName": "full_name",

30 "propertyValue": "/spring-petclinic-genai-service/src/main/java/org/

springframework/samples/petclinic/genai/AIBeanConfiguration.java

:AIBeanConfiguration"

31 }

32 },

33 {

34 "relationName": "Has_bean_method",

35 "from": {

36 "nodeType": "Class",

37 "propertyName": "full_name",

38 "propertyValue": "/spring-petclinic-api-gateway/src/main/java/org/

springframework/samples/petclinic/api/ApiGatewayApplication.java

:ApiGatewayApplication"

39 },

40 "to": {

41 "nodeType": "Method",

42 "propertyName": "signature",

43 "propertyValue": "org.springframework.samples.petclinic.api.

ApiGatewayApplication.loadBalancedWebClientBuilder()"

63

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

44 }

45 }

46]

47 }

A.6 Dependencies

1 {

2 "probeName": "Dependencies",

3 "nodes": [

4 {

5 "type": "File",

6 "path": "/spring-petclinic-genai-service/pom.xml"

7 },

8 {

9 "type": "Dependency",

10 "group_id": "org.springframework.ai",

11 "artifact_id": "spring-ai-bom",

12 "combined_name": "org.springframework.ai:spring-ai-bom"

13 }

14],

15 "edges": [

16 {

17 "relationName": "Depends_on",

18 "from": {

19 "nodeType": "File",

20 "propertyName": "path",

21 "propertyValue": "/spring-petclinic-genai-service/pom.xml"

22 },

23 "to": {

24 "nodeType": "Dependency",

25 "propertyName": "combined_name",

26 "propertyValue": "org.springframework.ai:spring-ai-bom"

27 },

28 "properties": {

29 "version": "1.0.0-M4",

30 "scope": "import",

31 "type": "pom"

32 }

33 }

64

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

34]

35 }

65

Appendix B

Neo4j Browser Visualization

Images

The images related to scenario validations can be found on the project’s GitHub

Repository1. The following list includes the brief details of each image.

1. method modifiers.png2: Displaying the most recent and top contributors

among all contributors of the method. The Top contributor and Last modifier

relations contain additional data, such as the number of lines updated by the top

contributor and the date of the last modification, respectively.

1 MATCH (a)-[r]->(b)

2 WHERE type(r) IN ["Last_modifier", "Modified_by", "Top_contributor"]

3 AND a.signature="org.springframework.samples.petclinic.customers.web.

PetResource.processCreationForm(org.springframework.samples.

petclinic.customers.web.PetRequest,int)"

4 AND NOT a:Type AND NOT b:Type

5 RETURN a, r, b

1https://github.com/WaqarAwan376/MEng-Project/tree/master/Report/Visualization_

Images
2https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/method_modifiers.png

66

https://github.com/WaqarAwan376/MEng-Project/tree/master/Report/Visualization_Images
https://github.com/WaqarAwan376/MEng-Project/tree/master/Report/Visualization_Images
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/method_modifiers.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/method_modifiers.png

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

2. method authors.png3: Displays all methods along with their authors and mod-

ifiers. Each method also includes a relation indicating the last modifier and the

top contributor. In this example, type nodes are excluded for clarity. The total

number of methods, authors, and relations is also shown.

1 MATCH (a)-[r]->(b)

2 WHERE type(r) IN ["Last_modifier","Modified_by","Top_contributor"]

3 AND NOT a:Type AND NOT b:Type

4 RETURN a, r, b

3. files authors.png4: Displays the authors of each file. The relationship is repre-

sented by the Authored by edge. The total number of files, authors, and relations

is also shown. Clicking on any node or edge reveals its information.

1 MATCH (a)-[r]->(b)

2 WHERE type(r)="Authored_by"

3 AND NOT a:Type AND NOT b:Type

4 RETURN a, r, b

4. file contributors.png5: Displays the contributors of a specific file. In this ex-

ample, the file VisitRepository.java has three authors.

1 MATCH (a)-[r]->(b)

2 WHERE type(r)="Authored_by"

3 AND a.path="/spring-petclinic-visits-service/src/main/java/org/

springframework/samples/petclinic/visits/model/VisitRepository.java"

4 AND NOT a:Type AND NOT b:Type

5 RETURN a, r, b

3https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/method_authors.png
4https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/files_authors.png
5https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/file_contributors.png

67

https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/method_authors.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/method_authors.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/files_authors.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/files_authors.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/file_contributors.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/file_contributors.png

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

5. author relation.png6: Displays the joint collaboration between two authors.

The two author nodes are connected to an Author Relation node through a

collaborated relationship. The Author Relation node contains a summary of the

collaboration, including its strength and a list of files the two authors have worked

on together.

1 MATCH (a)-[r]->(b)

2 WHERE type(r)="Contributed"

3 AND b.combined_emails="antoine.rey@gmail.com:marcin@grzejszczak.pl"

4 AND NOT a:Type AND NOT b:Type

5 RETURN a, r, b

6. endpoints map.png7: Displays the classes that map REST API endpoints. The

green nodes represent endpoints, each containing additional information, such as

the request type.

1 MATCH (a)-[r]->(b)

2 WHERE type(r)="Maps"

3 AND NOT a:Type AND NOT b:Type

4 RETURN a, r, b

7. classes files ep.png8: Shows that files “contain” classes, and the classes “map”

REST API endpoints.

1 MATCH (a)-[r1:Contains]->(b)-[r2:Maps]->(c)

2 WHERE NOT a:Type AND NOT b:Type

3 RETURN a, r1, b, r2, c

6https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/author_relation.png
7https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/endpoints_map.png
8https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/classes_files_ep.png

68

https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/author_relation.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/author_relation.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/endpoints_map.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/endpoints_map.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/classes_files_ep.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/classes_files_ep.png

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

8. ownerResource endpoints.png9: Shows that the ownerResource.java file

“contains” the OwnerResource class, which “maps” four REST API endpoints.

1 MATCH (a)-[r1:Contains]->(b)-[r2:Maps]->(c)

2 WHERE NOT a:Type AND NOT b:Type

3 AND a.path="/spring-petclinic-customers-service/src/main/java/org/

springframework/samples/petclinic/customers/web/OwnerResource.java"

4 RETURN a, r1, b, r2, c

9. bean classes methods.png10: Displays the files that contain bean classes and

the bean classes that contain bean methods.

1 MATCH (a)-[r]->(b)

2 WHERE type(r) IN ["Has_bean_class","Has_bean_method"]

3 AND NOT a:Type AND NOT b:Type

4 RETURN a, r, b

10. metricConfig beans.png11: Displays the MetricConfig.java file, which con-

tains a class configured as a bean class. This class has two bean methods:

timedAspect and metricsCommonTags. Note: The “Contains” relation between

the file and class, and the “Has” relation between the class and methods, come

from another relation.

1 MATCH (a)-[r]->(b)

2 WHERE type(r) IN ["Has_bean_class", "Has_bean_method"]

3 AND NOT a:Type AND NOT b:Type

4 AND b.full_name="/spring-petclinic-customers-service/src/main/java/org/

springframework/samples/petclinic/customers/config/MetricConfig.java

:MetricConfig"

5 OPTIONAL MATCH (b)-[r2]-(c)

6 RETURN a, r, b, r2, c

9https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/ownerResource_endpoints.png
10https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/bean_classes_methods.png
11https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/metricConfig_beans.png

69

https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/ownerResource_endpoints.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/ownerResource_endpoints.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/bean_classes_methods.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/bean_classes_methods.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/metricConfig_beans.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/metricConfig_beans.png

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

11. pom dependencies.png12: Displays all dependencies related to POM files. De-

pendencies are uniquely identified using a combination of artifactId and groupId.

Each dependency node includes additional details, such as version and scope.

1 MATCH (a)-[r]->(b)

2 WHERE type(r)="Depends_on"

3 AND NOT a:Type AND NOT b:Type

4 RETURN a, r, b

12. dependency data.png13: Displays that four POM files depend on the depen-

dency org.hsqldb:hsqldb. On the right side, the relationship between the POM

file and the dependency also includes the scope as part of the metadata.

1 MATCH (a)-[r]->(b)

2 WHERE type(r)="Depends_on"

3 AND NOT a:Type AND NOT b:Type

4 AND b.combined_name="org.hsqldb:hsqldb"

5 RETURN a, r, b

12https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/pom_dependencies.png
13https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_

Images/dependency_data.png

70

https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/pom_dependencies.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/pom_dependencies.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/dependency_data.png
https://github.com/WaqarAwan376/MEng-Project/blob/master/Report/Visualization_Images/dependency_data.png

Bibliography

Amazon Web Services - QuickSight. 2025. Amazon QuickSight Documentation. http

s://docs.aws.amazon.com/quicksight/latest/user/welcome.html Accessed:

2025-01-16.

Amazon Web Services - X-Ray. 2025. AWS X-Ray Developer Guide. https://

docs.aws.amazon.com/xray/latest/devguide/aws-xray.html Accessed:

2025-01-16.

Anderson. 2023. Amazon internal case study raises eyebrows. https://devclass.c

om/2023/05/05/reduce-costs-by-90-by-moving-from-microservices-to-m

onolith-amazon-internal-case-study-raises-eyebrows

Bassil and Keller. 2001. Software visualization tools: survey and analysis. In Proceed-

ings 9th International Workshop on Program Comprehension. IWPC 2001. 7–17.

https://doi.org/10.1109/WPC.2001.921708

Biswal. 2023. Visualization Tools: A Summary. https://www.simplilearn.com.ca

ch3.com/tutorials/tableau-tutorial/what-is-tableau.html Last updated

on January 13, 2023.

Canfora and Cimitile. 2001. Software Maintenance. Handbook of Software Engineering

71

https://docs.aws.amazon.com/quicksight/latest/user/welcome.html
https://docs.aws.amazon.com/quicksight/latest/user/welcome.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://devclass.com/2023/05/05/reduce-costs-by-90-by-moving-from-microservices-to-monolith-amazon-internal-case-study-raises-eyebrows
https://devclass.com/2023/05/05/reduce-costs-by-90-by-moving-from-microservices-to-monolith-amazon-internal-case-study-raises-eyebrows
https://devclass.com/2023/05/05/reduce-costs-by-90-by-moving-from-microservices-to-monolith-amazon-internal-case-study-raises-eyebrows
https://doi.org/10.1109/WPC.2001.921708
https://www.simplilearn.com.cach3.com/tutorials/tableau-tutorial/what-is-tableau.html
https://www.simplilearn.com.cach3.com/tutorials/tableau-tutorial/what-is-tableau.html

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

and Knowledge Engineering 1 (01 2001). https://doi.org/10.1142/97898123

89718_0005

Cosma. 2010. Reverse engineering object-oriented distributed systems. 1 – 6. https:

//doi.org/10.1109/ICSM.2010.5609716

Digital.ai. 2023. Exploring Reverse Engineering: Benefits, Misuse, and the Role of

Application Hardening. https://digital.ai/catalyst-blog/exploring-r

everse-engineering-benefits-misuse-and-the-role-of-application-h

ardening/ Originally Published: June 16, 2023 — Updated on March 20, 2024.

Accessed: 2025-01-24.

Folmer, van Gurp, and Bosch. 2005. Engineering Human Computer Interaction and

Interactive Systems. In Engineering Human Computer Interaction and Interactive

Systems, Rémi Bastide, Philippe Palanque, and Jörg Roth (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 38–58.

Gluck. 2020. Introducing Domain-Oriented Microservice Architecture. https:

//www.uber.com/en-CA/blog/microservice-architecture/ Accessed: 2025-

02-27.

Harris. 2024. Microservices vs. Monolith. https://www.atlassian.com/microser

vices/microservices-architecture/microservices-vs-monolith Accessed:

2025-01-24.

Klösch. 1996. Reverse engineering: Why and how to reverse engineer software. In

Proceedings of the California Software Symposium (CSS’96). Citeseer, 92–99.

72

https://doi.org/10.1142/9789812389718_0005
https://doi.org/10.1142/9789812389718_0005
https://doi.org/10.1109/ICSM.2010.5609716
https://doi.org/10.1109/ICSM.2010.5609716
https://digital.ai/catalyst-blog/exploring-reverse-engineering-benefits-misuse-and-the-role-of-application-hardening/
https://digital.ai/catalyst-blog/exploring-reverse-engineering-benefits-misuse-and-the-role-of-application-hardening/
https://digital.ai/catalyst-blog/exploring-reverse-engineering-benefits-misuse-and-the-role-of-application-hardening/
https://www.uber.com/en-CA/blog/microservice-architecture/
https://www.uber.com/en-CA/blog/microservice-architecture/
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

Koschke. 2002. Software Visualization for Reverse Engineering. In Proceedings of

the International Workshop on Program Comprehension. Springer-Verlag, Berlin,

Heidelberg, 138–150. https://doi.org/10.1007/3-540-45875-1_11

Koschke. 2003. Software Visualization in Software Maintenance, Reverse Engineering,

and Reengineering: A Research Survey. Journal on Software Maintenance and

Evolution 15 (03 2003), 87–109. https://doi.org/10.1002/smr.270

Microsoft. 2024. Azure Monitor Documentation. https://learn.microsoft.com/

en-us/azure/azure-monitor/overview Accessed: 2025-01-16.

Microsoft - Azure Monitor Best Practices. 2024. Azure Monitor Best Practices -

Analysis and Visualization. https://learn.microsoft.com/en-us/azure/azur

e-monitor/best-practices-analysis Accessed: 2025-01-16.

Monzo Engineering Team. 2024. How We Run Migrations Across 2800 Microservices.

https://monzo.com/blog/how-we-run-migrations-across-2800-microserv

ices Accessed: 2025-02-18.

Müller, Mahler, Hunger, Nerche, and Harrer. 2018. Towards an Open Source Stack to

Create a Unified Data Source for Software Analysis and Visualization. In 2018 IEEE

Working Conference on Software Visualization (VISSOFT). 107–111. https:

//doi.org/10.1109/VISSOFT.2018.00019

Oladipo, Francisca, Odoh, Onyemaechi, Dr. Onyesolu, and Onyesolu. 2012. Exploring

the two faces of Software Reverse Engineering. International Journal of Advanced

Research in Computer Science and Software Engineering 2 (05 2012), 367–370.

73

https://doi.org/10.1007/3-540-45875-1_11
https://doi.org/10.1002/smr.270
https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://learn.microsoft.com/en-us/azure/azure-monitor/best-practices-analysis
https://learn.microsoft.com/en-us/azure/azure-monitor/best-practices-analysis
https://monzo.com/blog/how-we-run-migrations-across-2800-microservices
https://monzo.com/blog/how-we-run-migrations-across-2800-microservices
https://doi.org/10.1109/VISSOFT.2018.00019
https://doi.org/10.1109/VISSOFT.2018.00019

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

Peterlić. 2024. Spring: How to Get the Current ApplicationContext. https:

//www.baeldung.com/spring-get-current-applicationcontext Last updated:

May 11, 2024. Reviewed by: Saajan Nagendra. Accessed: 2025-01-27.

Sire. 2024. Software Development Life Cycle (SDLC): 7 Models and 8 Phases. https:

//www.pulsion.co.uk/blog/software-development-life-cycle-sdlc/

Accessed: 2025-01-24.

Software Engineering Institute, Carnegie Mellon University. [n. d.]. Software Archi-

tecture. https://www.sei.cmu.edu/our-work/software-architecture/

Accessed: 2025-01-24.

Spring Framework Documentation. 2025. Introduction to the Spring IoC Container

and Beans. https://docs.spring.io/spring-framework/reference/core/be

ans/introduction.html Accessed: 2025-03-02.

Spring Team. 2025. Spring PetClinic Microservices. https://github.com/sprin

g-petclinic/spring-petclinic-microservices Accessed: February 14, 2025.

Statistics-Easily. 2025. What is Unified Data? Understanding its Importance. https:

//statisticseasily.com/glossario/what-is-unified-data-understanding

-its-importance/ Accessed: 2025-01-11.

The Postman Team. 2023. What is an API Endpoint? https://blog.postman.c

om/what-is-an-api-endpoint/

Waseem, Liang, Shahin, Di Salle, and Márquez. 2021. Design, monitoring, and testing

of microservices systems: The practitioners’ perspective. Journal of Systems and

74

https://www.baeldung.com/spring-get-current-applicationcontext
https://www.baeldung.com/spring-get-current-applicationcontext
https://www.pulsion.co.uk/blog/software-development-life-cycle-sdlc/
https://www.pulsion.co.uk/blog/software-development-life-cycle-sdlc/
https://www.sei.cmu.edu/our-work/software-architecture/
https://docs.spring.io/spring-framework/reference/core/beans/introduction.html
https://docs.spring.io/spring-framework/reference/core/beans/introduction.html
https://github.com/spring-petclinic/spring-petclinic-microservices
https://github.com/spring-petclinic/spring-petclinic-microservices
https://statisticseasily.com/glossario/what-is-unified-data-understanding-its-importance/
https://statisticseasily.com/glossario/what-is-unified-data-understanding-its-importance/
https://statisticseasily.com/glossario/what-is-unified-data-understanding-its-importance/
https://blog.postman.com/what-is-an-api-endpoint/
https://blog.postman.com/what-is-an-api-endpoint/

M.Eng. Report—Waqar Awan McMaster University—Software Engineering

Software 182 (Dec. 2021), 111061. https://doi.org/10.1016/j.jss.2021.111

061

75

https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1016/j.jss.2021.111061

	Lay Abstract
	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Background
	Software Development and Lifecycle
	Software Maintenance for Large-Scale Systems
	Software Architectures
	Monolithic Architecture
	Microservice Architecture
	Spring Petclinic

	Maintenance and Reverse Engineering(RE)
	RE Approaches
	Reverse Engineering: Challenges and Insights
	RE for Distributed Systems Maintenance

	Approach: UDS-Driven Reverse Engineering Strategy
	Vision
	Designing the Framework
	System Context and Approach
	Validation Roadmap: Key Scenarios

	Structural Elements of the Framework
	Probes: Extractors
	Unified Data Source (UDS)
	Integration and Output
	Data Management
	Visualizer

	Technical Validation Strategy
	Effective Methods to Identify Contributors, Top Contributors, and Recent Contributors
	Microservices Endpoints
	Beans And Dependencies
	SST and Visualizer Integration

	Implementation
	Inside the SST Tool: Registration, Data Integration, and Storage
	Running the SST Tool
	Probe Registration
	Probe Integration

	Implementing Probes for Data Collection and Analysis
	Authors and Version Control
	Microservices REST API endpoints
	Java Beans Extraction
	Java Dependencies Extraction
	Runner script and How it works

	Data Visualization and Insights
	Neo4j Desktop
	Tableau
	Tool Selection and Justification

	Scenario Validations
	Evaluating the Framework in Practical Applications
	Validation Results
	Most Recent Contributor
	List of Contributors
	Top Contributor
	File Contributors
	Author Relation
	REST API Endpoints
	Java Beans
	Dependencies List

	Challenges and Limitations

	Conclusion and future work
	Summary
	Future work

	Scripts and Outputs
	Probes List
	Runner Script
	Author Method Contribution
	Microservices Endpoints
	Bean Classes and Methods
	Dependencies

	Neo4j Browser Visualization Images

