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Lay Abstract

Have you ever wondered how to deploy a high-quality application on a K8s cluster?

While K8s has become popular for managing containerized workloads, its complexity

can make it challenging to configure robust, secure, and efficient systems at both the

application and cluster levels. This research explores how justification diagrams can

guide best practices across multiple domains to create more secure and durable K8s

deployments. By providing a systematic and flexible approach, these diagrams enable

engineers to maintain recommended practices in different environments, ultimately

improving the reliability and resilience of K8s-based applications and services.
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Abstract

Kubernetes, also known as K8s, has become the de facto foundation for modern com-

puting infrastructures, playing an essential role whether deployed in the cloud or

on-premises, and it consistently serves as the core of business operations. However,

configuring a robust K8s environment often requires experienced DevOps or platform

engineers, and human errors can significantly undermine overall quality. Although

numerous resources discuss best practices for K8s, few tools offer tangible mechanisms

to help engineers detect and remediate misconfigurations. In this study, we employ

the concept of the justification diagram to investigate K8s best practices across mul-

tiple domains, including high availability, performance, security, and maintainability.

We also propose a novel, keyword-driven operational framework that extends the

traditional justification diagram with executable functionality in combination with

practical strategies. We then apply the integrated approach to ten specific best prac-

tices in the context of GitHub Actions pipelines to show how these verify and improve

K8s configurations. The results confirm the feasibility and effectiveness of this ap-

proach, improving the quality and reliability in industrial contexts where deployment

can be an issue and being systematic and extensible to ensure best practices in diverse

environments.
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Chapter 1

Introduction

Kubernetes, often abbreviated as K8s, was first developed and launched by Google in

2014, building on its experience with application-oriented APIs for managing durable

and reliable containerized distributed systems inherited from its predecessor, Borg [4].

It was then donated to the Cloud Native Computing Foundation (CNCF)1 two years

later. After graduating from the CNCF in 2018, it has rapidly become one of the top

open-source projects in the world with over 74k contributors [6], as well as the lead-

ing industry standard for container orchestration. According to a recent report [41],

more than 75% of developers or organizations have experience with Kubernetes or

are running Kubernetes clusters in a variety of use cases, including hybrid cloud,

cloud-native applications, and modernization of existing services. However, despite

K8s’ high availability, scalability, and other features, many users, including experi-

enced developers, still find that configuring and managing a high-quality Kubernetes

deployment is resource-intensive and time-consuming.

Although there are a number of books, articles, and technical blogs [3, 5, 18, 43]

1https://www.cncf.io/
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discussing how to configure K8s effectively, few have translated these best practices

into systematic methods for verifying and validating a given configuration. As a

result, K8s misconfigurations are still common and can potentially lead to service

vulnerabilities, disruptions, or even failures [33]. While there are some static analysis

tools, such as kube-score and kube-linter, which check YAML configurations to ensure

certain best practices or rules are applied, they are still in the early stages of develop-

ment and only work on Kubernetes configuration files. In addition, these tools lack

the ability to verify cluster-wide settings and cannot “justify” these checks—i.e., they

do not provide systematic reasoning behind each practice or track future updates.

Other open-source K8s management tools, such as Helm2, do make it easier to deploy

K8s applications in different environments and reduce repetitive tasks, but they were

not designed to validate Kubernetes configurations.

Therefore, it is valuable to design and implement an approach that can demon-

strate whether a set of K8s best practices has been properly followed during configu-

ration and maintenance. This approach should meet the following requirements:

1. At the theoretical level, it should be able to extract the core components of K8s

best practices and justify the rationale behind them.

2. At the practical level, it should be able to automate these best practices and

integrate seamlessly into existing industrial workflows.

To address the above needs, we propose using the Justification Diagram (JD) for

these best practices, transforming each best practice into a comprehensive and well-

justified validation workflow. Furthermore, we propose an optimized and innovative

2https://helm.sh/

2
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operational justification framework called jPipe Runner, which not only justifies the

rationale of each practice but also validates the justification process using program-

ming functions or scripts in a logically structured order. By combining these methods,

our approach can be easily extended to any of Kubernetes best practices and run sep-

arately via the jPipe Runner operational justification framework or integrated into

the pipeline for Continuous Integration and Continuous Delivery (CI/CD), ultimately

enhancing the overall quality of Kubernetes systems.

In this report, we focus primarily on answering the following three questions:

1. How can a practice be extracted and transformed into a Justification Diagram?

2. How does the operational justification framework make JD files executable?

3. How can Justification Diagrams be used with these best practices to enhance

the quality of a K8s system?

These questions are addressed in the following chapters, providing more insight

and detail into our work. Chapter 2 offers a preliminary introduction to the techni-

cal background, including K8s, CI/CD pipelines, and Justification Diagram. Next,

Chapter 3 discusses the best practices collected from multiple domains, including high

availability, performance, security, and maintainability, and explains how they are

transformed into Justification Diagrams. Then, Chapter 4 introduces the motivation,

design and implementation of the jPipe Runner operational justification framework,

and Chapter 5 examines a real-world scenario to demonstrate how these best prac-

tices can be represented and tracked using Justification Diagrams in CI/CD pipelines

to enhance K8s system quality. Finally, Chapter 6 summarizes the conclusion of this

project and discusses potential future work.

3



Chapter 2

Background

This chapter provides a preliminary background introduction to help readers better

understand the technical concepts and knowledge mentioned in this report, including

Kubernetes, CI/CD pipelines, and Justification Diagrams.

2.1 Introduction to Kubernetes

Kubernetes, an open-source platform for container orchestration, was initially con-

ceived and developed by Brendan Burns, Joe Beda, and Craig McLuckie at Google [4].

It automatically deploys, scales, and manages containerized applications, significantly

simplifies complex workflows, and increases system reliability, quickly becoming the

most popular and widely used tool for cloud container orchestration. Some K8s clus-

ters with high Service Level Agreements (SLAs) may feature multiple control planes

to increase the availability of API controllers and servers, and to reduce potential

downtime and service disruptions. However, as shown in Figure 2.1, a typical K8s

cluster usually consists of a single control plane and a group of worker machines

4
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running containerized applications [14]. A control plane typically has several key

components—API server, etcd, scheduler, and controller manager—which together

detect, control, and respond to various cluster events. There are three core concepts

in K8s: pod, node, and cluster. In a K8s environment, a pod is usually the minimum

unit of deployment, and a node generally refers to a physical or virtual machine that

provides necessary resources such as CPU and memory to run containerized pods.

A cluster is a group of nodes in a K8s environment that orchestrates containerized

applications and services [38]. All control plane and master/worker nodes work col-

laboratively, forming a complex, state-of-the-art Kubernetes cluster.

Figure 2.1: Kubernetes cluster components [37]

2.1.1 Configuration Challenges

With a growing number of Kubernetes users and organizations, misconfigurations

have become more apparent, leading to many potential risks and issues. Due to the

5
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inherent complexity of K8s itself, as well as cloud infrastructure considerations and

other requirements for scalability, security, and reliability, configuring a high-quality

application in a K8s cluster can be challenging. A 2022 study [36] shows that despite

K8s providing many benefits, such as easy cloud-based interfacing, Service Level Ob-

jective (SLO)-based scalability, and auto-recovery applications, there are still numer-

ous challenges when dealing with K8s. For example, the study specifically mentions

that a lack of security practices and tools has led to increased security vulnerabilities

in K8s installations and deployments, and these security issues have caused signifi-

cant delays in K8s-based software deployment. Moreover, the study indicates that

maintenance-related challenges associated with K8s resource management demand

significant time and effort from developers, while system, network, and performance

configurations further increase the overall burden. A report from Red Hat [32] reveals

that nearly 60% of survey respondents have experienced a misconfiguration incident

in their environment that could lead to data breaches and hacks. In addition, almost

47% of respondents expressed concerns about their environments being exposed due

to misconfigurations. Therefore, we need not only a guide to K8s best practices but

also a mechanism for checking and justifying them. Chapter 3 provides more best

practices across different K8s domains to address these misconfiguration challenges.

2.1.2 Kubernetes Distributions

Similar to Linux distributions, Kubernetes also has various distributions to tackle dif-

ferent usage requirements. In addition to the official K8s, which is a general-purpose

container orchestrator, there are several well-known lightweight distributions, such

6
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as MicroK8s, K0s, K3s, and minikube [11], that serve different purposes across vari-

ous scenarios. For example, K0s and K3s are both CNCF-certified K8s distributions

that offer easy-to-configure cluster solutions [21], especially for resource-constrained

edge devices. A 2024 paper [1] presents a comparative study of the security and

performance aspects of these three distributions (K0s, K3s, and K8s) and concludes

that K0s and K8s deliver better performance and have fewer security vulnerabilities.

Minikube [26], on the other hand, is not intended for production-grade workloads but

is designed for even lighter use in testing and experimentation. Since it is compatible

with all the essential features of K8s, such as scalability and multi-node support1,

and because performance is not our primary concern, minikube becomes an ideal tool

for running and validating K8s practices in this project.

2.1.3 Kube-Linter

Kube-linter is a configuration analysis tool for Kubernetes written in Golang [40]. It

performs static analysis and best practice compliance checks on Kubernetes YAML

files and Helm charts to identify potential issues and improve configuration quality.

While it is still in its early development stage and lacks systematic practice reasoning,

it provides nearly 60 lint checks that significantly simplify our work by reducing the

time needed to implement specific checking rules from scratch, such as minimum-

replicas and latest-tag checks. Therefore, Kube-linter is widely used in this project

as the underlying implementation for certain practice checks. A sample output from

kube-linter is shown in Figure 2.2, including various lint errors and remediation tips.

However, tools like kube-linter are sometimes insufficient for solely assisting in K8s

1Minikube introduced multi-node support in v1.9.0 (CHANGELOG)

7
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configuration, as they do not provide detailed rationales behind each best practice,

lack explanations of the potential consequences of not following a practice, and, most

importantly, cannot systematically track evolutionary updates to a configuration.

Figure 2.2: Kube-linter sample output

2.1.4 Helm-based Configuration

Among all the K8s management tools available in the market, Helm is the most popu-

lar and widely used for modern projects or services that require parameterized deploy-

ment. Before Helm-based configuration was introduced, deploying a K8s application

across multiple environments was challenging and tedious at times. For example, as

shown on the left side of Figure 2.3, even for minor modifications, developers had to

maintain multiple copies of the same K8s configuration or manage separate branches

for different environments, resulting in significant maintenance burdens and potential

inconsistencies between configurations.

Helm effectively solves this problem by separating K8s configuration into multiple

8
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Figure 2.3: K8s deployment with vs. without Helm [35]

parts and rendering them into a final configuration as needed using the Go templat-

ing engine2. Helm introduces the concept of a Chart, a package that contains all

the required resources—such as deployments, services, and secrets—for deploying an

application in a K8s environment [35]. Furthermore, a Helm chart is also designed to

be used as a dependency for other charts since all charts are mandatorily versioned

and can be easily downloaded from a Helm repository, similar to a Docker registry.

A Helm chart typically consists of three key components: a Chart.yaml file, which

contains metadata such as the Helm version and chart dependencies; a templates/

folder, which stores all deployable resource information; and one or more YAML files

that define values for resource configuration. The right side of Figure 2.3 shows the

2https://pkg.go.dev/text/template

9
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deployment workflow when using a Helm chart, in which a set of values.yaml files

is used to configure different environments, and the chart is finally rendered by Helm

before deployment, significantly simplifying the Kubernetes management process.

As one of the best practices for facilitating maintainability, parameterized man-

agement using Helm is essential for industrial K8s application deployment. Further

details on Helm’s role in maintainability practices are provided in Chapter 3.

2.2 DevOps and CI/CD

DevOps is an essential concept in software development today. It is a methodology

that combines ‘Dev’ from software development and ‘Ops’ from information technol-

ogy operations [2]. It also serves as a cultural approach that bridges the development

and operations teams. On the other hand, CI/CD, often seen as Continuous In-

tegration and Continuous Deployment/Delivery, are core practices in the DevOps

workflow. The classical CI/CD process is based on three principles: continuous in-

tegration, continuous testing, and continuous deployment. Figure 2.4 illustrates the

process where software is built, integrated, and tested in a development environment

and released, deployed, and monitored in an operational context. These steps allow

developers to locate and fix problems in the whole software development cycle. With

DevOps integrated into CI/CD, developers can accelerate software delivery, increase

collaboration, and decrease deployment failures [7].

There are many CI/CD implementations available on the market, such as Travis

CI, Jenkins, and GitHub Actions3, targeting various usage scenarios and purposes.

For instance, Jenkins is a self-hosted automation server widely used for CI/CD in

3https://github.com/features/actions

10
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Figure 2.4: DevOps workflow [44]

many enterprises. It uses a Jenkinsfile to enable declarative or scripted workflow

configuration. However, Jenkins requires substantial customization and dedicated

server maintenance, making it inconvenient and burdensome for small or experimental

environments. Therefore, since our project code is hosted on the GitHub Repository

and GitHub Actions is highly integrated with GitHub toolchains, we chose GitHub

Actions as our CI/CD platform to run and verify our best practices. GitHub Actions

uses GitHub Workflows, an automated process associated with Actions that can be

configured using YAML files. Workflows are able to be triggered either manually or by

different events, such as Git pushes or Git pull requests. In this project, each practice

quality check is delivered as a CI/CD pipeline within GitHub Workflows, which can

be reproduced or tested via manual workflow dispatch or pull request events.

2.3 Justification Diagram

The concept of the Justification Diagram (JD) was first introduced in a 2016 paper [29]

by Thomas Polacsek, aimed at providing confidence in verification and validation

11
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requirements. It is based on the Toulmin argument model [30], an argumentation

pattern that visualizes the key components of a product and establishes trust in

the outcome. This approach transforms abstract or poorly organized documentation

into a transparent representation that justifies why a particular outcome or decision

is acceptable, thereby improving quality assurance in complex systems. The jPipe

language [22], a specific JD language implemented by the jPipe compiler, defines

several key elements, including evidence, strategy, sub-conclusion, and conclusion,

and these elements establish distinct dependency relations and constraints.

presentation

Presentation is ready

All conditions are met

Professional standards are met

Check Grammar/Typos

Slides are available

Check contents w.r.t. NDA

Content is approved by legal

NDA is signed

Figure 2.5: Justification Diagram for presentation readiness [23]

As shown in Figure 2.5, this Justification Diagram is used to justify readiness

for presentations. The two light blue rectangular nodes, “Slides are available” and

“NDA is signed”, are evidence elements that support the two strategy elements in pale

green parallelogram nodes. The arrows represent the support relationships between

elements. A strategy relies on one or more evidence elements and can lead to either

12
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a sub-conclusion or a conclusion, while a single evidence element can support mul-

tiple strategies. However, each strategy can infer only one conclusion. For example,

the “NDA is signed” evidence supports the “Check contents w.r.t. NDA” strategy,

and the “Slides are available” evidence supports both “Check Grammar/Typos” and

“Slides are available”. A conclusion is represented by light grey rectangular nodes,

while a sub-conclusion is represented by dodger blue outlined rectangular nodes. For

instance, the “Check contents w.r.t. NDA” strategy leads to the “Content is ap-

proved by legal” sub-conclusion, while the “Check Grammar/Typos” strategy leads

to the “Professional standards are met” sub-conclusion. These sub-conclusions fur-

ther support the “All conditions are met” strategy, which functions as a logical AND

operation, eventually leading to the conclusion “Presentation is ready”.

Therefore, the entire justification process is straightforward and can be effectively

used for validating and tracking changes with concrete evidence in Justification Di-

agrams. For more detailed explanations and examples of jPipe and JD language,

please refer to the jPipe tutorial repository [23]. Similar to previous studies [31, 42]

that have demonstrated the feasibility of using JD to justify various system qualities,

this project exploits and extends a similar approach to justify the K8s system quality.

13



Chapter 3

Kubernetes Best Practices and

Justification

As mentioned in Chapter 2, misconfigurations in K8s have been causing risks and

issues due to its increasing popularity and complexity. Although numerous studies

have proposed best practices for K8s configuration, the lack of effective and system-

atic tools that allow developers to consistently apply these practices remains an issue.

Consequently, there is a strong need to address this gap by justifying these best prac-

tices and transforming them into reasonable, executable configuration quality checks.

This need has led us to adopt the Justification Diagram, an ideal and valuable tool

that enables us to justify the rationale behind these best practices and convert them

into actionable quality checks. Moreover, the best practices in this report are collected

and designed to address different aspects of various K8s domains; therefore, they are

independent and, theoretically, can be applied either individually or in combination

to the K8s environment.

In this chapter, we examine K8s best practices across four distinct domains and
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focus on addressing how each practice can be extracted and transformed into

a Justification Diagram. Each domain includes two to three practices, for a total

of ten best practices. The four domains are High Availability (Section 3.1), Main-

tainability (Section 3.2), Performance (Section 3.3), and Security (Section 3.4). All

resources presented in this chapter are available in the “k8s-best-practices” reposi-

tory [25], providing guidance for readers to understand each best practice as well as

the implementation of each configuration quality check.

3.1 High Availability

High Availability (HA) is one of the most crucial features provided by K8s and is

essential for achieving high SLAs in many enterprises. A properly configured K8s

application should be able to avoid service disruptions and remain available even

when encountering sudden pod crashes or node failures. In this section, three best

practices are presented to achieve HA: anti-affinity rules, deployment replicas, and

pod disruption budget.

3.1.1 Anti-affinity Rules

When a K8s application is deployed with replicas, multiple copies of the application

are created and run in different pods. However, if all these pods are running on the

same node, a single node failure will cause the application to stop serving, regardless

of the number of replicas allocated. To achieve HA, one best practice is to ensure

that replicated pods are deployed on different available nodes. Several books and

articles [5, 8, 27] suggest applying anti-affinity rules that control pod placement based
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on specific requirements to ensure that pods are separated across nodes, thereby

avoiding a single point of failure and enhancing high availability.

anti_affinity

K8s application pods run on different nodes

Verify usage of podAntiAffinity

K8s config file exists

Figure 3.1: Justification Diagram for anti-affinity rules

Figure 3.1 shows the Justification Diagram for the anti-affinity rules. Ensuring

proper use of the podAntiAffinity specification allows pods to be distributed on

the desired nodes during deployment replication; therefore, the practice conclusion

is “K8s application pods run on different nodes”. The evidence for this practice, on

which the conclusion is based, is “K8s config file exists”, considering that our defini-

tion of ready requires verifying the specific settings in the YAML configuration file

from a testing perspective. This evidence is also shared across most of the remaining

diagrams of best practices. The strategy here is “verify usage of podAntiAffinity”,

which connects the evidence and the conclusion and establishes the reasoning between

them. Finally, once the configuration file is ready, we can build the quality check by

first verifying its existence and then confirming that the configuration has proper

anti-affinity rules set.

16



M.Eng. Report—Z. Lyu McMaster University—Software Engineering

3.1.2 Deployment Replicas

Replication is a common technique widely used in computer-based systems to achieve

high availability by ensuring a specified number of replicas are always running [20].

Therefore, we extract another best practice from the book [5]: using replicas of

Deployment-kind objects for applications. The Justification Diagram is represented

in Figure 3.2. It has three strategies: “verify deployment has replicas”, “verify Repli-

caSet is not used”, and “all replica requirements are met”.

deployment_replicas

K8s application is correctly replicated

All replica requirements are met

Deployment is replicated with minimal requirements

Verify deployment has multiple replicas

K8s config file exists

Verify ReplicaSet is not used

Application can be auto updated and replicated at high-level

Figure 3.2: Justification Diagram for deployment replicas

The first strategy is to ensure that, in the K8s configuration, Deployment-kind

objects have the replicas field properly configured. The number of replicas usually

depends on the real-world application requirements, but a minimum of three replicas

is recommended. This strategy leads to the sub-conclusion “Deployment is repli-

cated with minimal requirements”. The second strategy is to prevent direct use of the

ReplicaSet feature because, while a ReplicaSet can manage pod replication, it lacks

the high-level management features of Deployments, such as rolling updates and roll-

back capabilities, and may cause other updating or backup issues. Consequently, the
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sub-conclusion of the second strategy is “Application can be automatically updated

and replicated at a high level”. The third strategy is a special method that behaves

like an AND logical operator in the JD language, connecting the previous two sub-

conclusions and leading to the “K8s application is correctly replicated” conclusion

when both sub-conclusions are reached.

3.1.3 Pod Disruption Budget

In Kubernetes, pods may be evicted from a host at some point, either voluntarily

or involuntarily. Involuntary evictions are usually caused by various failures, such as

hardware issues, network loss, or kernel panics, which can typically be prevented by

multi-node replicas, as mentioned in the previous section. Voluntary disruptions, on

the other hand, can be caused by cluster maintenance or pod template updates. In

this case, two articles [5, 19] recommend setting a PodDisruptionBudget (PDB) to

minimize the impact on our K8s applications.

A PodDisruptionBudget can be applied to a set of deployments by specifying a

label selector, which allows users to set a policy on the minimum number of replicas

that must remain available or the maximum number of replicas that can be unavailable

during voluntary disruptions. For example, one can specify that a maximum of 50%

of the pods for a targeted application can be evicted and updated at a given time,

ensuring the required uptime of the application. As illustrated in Figure 3.3, once

we verify that a PDB is enabled in the configuration, we can conclude that “K8s

application is available during voluntary disruptions”. Although this practice does not

directly contribute to runtime high availability, it is a powerful approach to enhance

availability from a precautionary perspective.
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poddisruptionbudget

K8s application is available during voluntary disruptions

Verify config has enabled PDB

K8s config file exists

Figure 3.3: Justification Diagram for pod disruption budget

3.2 Maintainability

Maintaining a high-quality K8s application can be a challenging task even for a group

of experienced DevOps engineers, given the complexity of today’s K8s environment.

Although numerous best practices exist to facilitate the K8s maintenance process,

due to the limited scope of this report, in this section we primarily focus on two

practices: versioned image tagging and parameterized management.

3.2.1 Versioned Image Tagging

As a container orchestration platform, K8s applications rely heavily on pulling con-

tainer images from container registries such as Docker Container Registry and Ama-

zon Elastic Container Registry. When pulling images from a container registry, many

users are inclined to use the “latest” tag to acquire the newest dependent images for

simplicity or convenience. A 2024 blog from Docker [34] states that using the “latest”

tag is not advisable because it is not a mandatory standard and, therefore, does not

always point to the highest version, which may result in running applications with

outdated images. The book [5] also suggests that we should avoid using “latest” as
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an image tag, as such a tag is not a valid version and could lead to difficulty in identi-

fying which code change corresponds to the rolled-out image, thereby increasing the

difficulty of troubleshooting and maintenance.

versionedimagetagging

K8s application has version-controlled images

Verify images have versioned tags

K8s config file exists

Figure 3.4: Justification Diagram for versioned image tagging

Alternatively, the book proposes multiple tagging strategies, such as using Buil-

dID, Git Hash, or a combination of BuildID and Git Hash as a unique tag, to easily

locate the code changes corresponding to a specific release version or Git commit.

However, due to the variety of tagging strategies available, it is unrealistic to imple-

ment a feasible test to check all possible tag names. Therefore, in this practice, we

only impose the strategy “verify images have versioned tags” by applying a block-

list that prevents the direct use of images with “latest” tags or untagged images.

The diagram can be viewed in Figure 3.4, and for a more detailed implementation

of this blocklist, please refer to the repository [25]. Eventually, the conclusion “K8s

application has version control of images” can be reached after the strategy is verified.

Thus, the overall workflow of this configuration quality test is to first check the

existence of the K8s configuration file and then ensure that the image tags do not

violate the above blocklist.
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3.2.2 Parameterized Management

As discussed in the background chapter, real-world K8s application deployments typ-

ically involve multiple steps, including internal alpha testing, external beta testing,

and production release. Each of these steps requires a dedicated K8s environment due

to security, isolation, and debugging concerns. For example, developers may want to

specify different numbers of replicas in different environments, such as using a small

number in the test environment and more in production. One initial option is simply

to copy configuration files from one place to another, which is impractical and can

result in significant maintenance overhead. Therefore, two studies [5, 45] endorse

using Helm for this type of parametrization as the best practice.

helm_charts

K8s application can be maintained with Helm

Helm chart is valid

Chart has no lint warnings or errors

Verify chart passes helm lint

Helm Chart folder exists

Verify chart can be templated

Chart supports templating with parameters

Figure 3.5: Justification Diagram for parameterized management

In this practice, ensuring the proper use of Helm charts facilitates parameter-

ized management, easing the Kubernetes configuration and maintenance burden. As

shown in Figure 3.5, similar to previous practice evidence, the evidence here is “Helm

21



M.Eng. Report—Z. Lyu McMaster University—Software Engineering

Chart folder exists” since each Helm chart is a structured folder. To consider a Helm

chart valid, two conditions should be met:

1. The Helm chart has no lint warnings or errors, which eliminates potential issues.

2. The Helm chart can generate parameterized and templated K8s configurations.

Two strategies verify these conditions and lead to the corresponding sub-conclusions.

Thus, the conclusion is “K8s application can be maintained with Helm” given that

the conditions are verified by the logical strategy “Helm chart is valid”.

3.3 Performance

A high-quality K8s application should remain highly responsive while handling sud-

den request spikes or heavy workloads and reduce resource consumption during idle

periods. In this category, we introduce three best practices—load balancing, pod

autoscaling, and resource management—to demonstrate how to achieve high perfor-

mance in Kubernetes deployments.

3.3.1 Load Balancing

Load balancing is crucial in Kubernetes for maintaining the overall performance of

applications. A properly configured load balancing component ensures that traffic

is distributed evenly and efficiently across pods, preventing any single pod from be-

coming a bottleneck while ensuring that no pod is underutilized [12]. The book [5]

recommends using the Service-kind object, a built-in TCP load balancer in K8s, to

implement L4 load balancing for either internal or external traffic.
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load_balancing

K8s application is load balanced

Verify Service load balancing is enabled

K8s config file exists

Figure 3.6: Justification Diagram for load balancing

Figure 3.6 exhibits the flow of this practice configuration check. The strategy

“Verify Service load balancing is enabled” is supported by evidence similar to that

used in previous practices. It simply checks if Service-kind objects exist in the given

configuration file and have a proper service type set. There are typically four service

types with different effects, as shown in Table 3.1, and the actual load balancing is

performed by the kube-proxy1 as part of K8s networking. Finally, once the Service

objects are verified, the conclusion is reached that “K8s application is load balanced”.

Table 3.1: Service types for K8s load balancing

Type Description
ClusterIP Uses an internal IP so the service is only

accessible within the cluster.
NodePort Opens a fixed port on every node, allowing

external access to the service.
LoadBalancer Assigns an external IP to distribute traffic

to an external load balancer, e.g., Amazon
Elastic Load Balancing (ELB).

ExternalName Maps the service to a given DNS name
without creating a proxy.

1https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
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3.3.2 Pod Autoscaling

Autoscaling improves application performance by dynamically allocating resources,

handling workloads that are not fixed or experience sudden spikes, and reducing re-

sponse latency. Horizontal Pod Autoscaler (HPA) and Vertical Pod Autoscaler (VPA)

are two kinds of autoscaling pod schedulers. HPA scales by deploying more pods

in response to increasing loads, and VPA scales by assigning more resources, such

as memory or CPU, to the pods. While VPA can be beneficial in certain scenar-

ios, several sources [5, 39, 10] recommend not adopting this feature for production

deployments due to its slow response in adjusting resource requests and potential

disruptions to service consistency. Therefore, as suggested by the book [5], we only

apply HPA as the best practice for pod autoscaling.

pod_autoscaling

K8s application is capable of autoscaling

Verify config has enabled HPA

K8s config file exists

Figure 3.7: Justification Diagram for pod autoscaling

The diagram illustrates the check steps in Figure 3.7. It first checks the existence

of the given K8s configuration file and validates the evidence “K8s config file exists”.

Second, the strategy “Verify config has enabled HPA” verifies that the HPA objects

are correctly enabled with reasonable replica ranges. If the configuration conforms to

the quality check, it can be concluded that “K8s application is capable of autoscaling”.
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3.3.3 Resource Management

Resource management is a crucial approach to prevent containers from contending

for resources, ensure fair use of each resource, and improve overall system quality and

performance. There are typically two types of resources—CPU and memory—that

should be considered for each container. There are also two ways to define resource

allocation: requests and limits. The “requests” refers to the reservation, which is

the guaranteed minimum amount of a resource that can be allocated to a container,

while the “limits” refers to the maximum resource usage allowed for a container.

This practice needs to ensure that both of these resources are properly configured

with reasonable resource requests and limits.

resource_management

K8s application resource management is fair

All resource requirements are met

CPU resource allocation is fair

Verify CPU requirements are set

K8s config file exists

Verify memory requirements are set

Memory resource allocation is fair

Figure 3.8: Justification Diagram for resource management

As illustrated in Figure 3.8, we need a K8s configuration file to begin the check,

so the evidence is “K8s config file exists”. Then, we need to check that two types

of resources are set using two strategies: “Verify CPU requirements are set” and

“Verify memory requirements are set”. After validation, both strategies reach their

sub-conclusions, “CPU resource allocation is fair” and “Memory resource allocation is
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fair”. These sub-conclusions are combined and verified by the strategy “All resource

requirements are met” for a logical AND operation. Once the strategy is verified, we

can conclude that “K8s application resource management is fair”.

3.4 Security

Security is a key criterion when assessing K8s system quality. In this section, we focus

on two pod security best practices from different perspectives. The first, the security

context practice, is a pod-level approach intended to enhance the security of a single

pod, and the second, the pod security admission practice, focuses on improving pod

security at the cluster namespace level.

3.4.1 Security Context

In Kubernetes, there is a security mechanism, SecurityContext, that can be used to

apply and enforce certain operating system security settings for pods and containers.

The security context can be specified either as a pod-level specification that applies

to all containers within that pod or as a per-container specification that only affects

a certain container. The security context is considered a best practice to restrict

container access to filesystems or OS capabilities, isolating processes in a controlled

and limited environment, hence strengthening overall system security. There are

various settings supported by the security context, such as user group permissions,

filesystem access, and Linux capabilities. Please refer to the Kubernetes security

context documentation [15] for detailed specifications. In this practice, we adopt

three key security settings to improve pod security: non-root user, non-privileged
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permission, and read-only filesystems.

security_context

K8s application has
security context protection

All security context
requirements are met

Verify container is
running as a non-root user

Root-only operations are
restricted to limit malicious actions

Verify container is not
running in privileged mode

Access to sensitive host resources
and privilege escalation is restricted

Verify container root
filesystem is readonly

System file modifications are
prevented to reduce tampering risks

K8s config file exists

Figure 3.9: Justification Diagram for security context

Therefore, we can conclude that “K8s application has security context protection”

after verifying these three security settings. As clearly presented in Figure 3.9, three

strategies are supported by the evidence “K8s config file exists”: the strategy “Verify

container is running as a non-root user” ensures that a container is not run as root;

the strategy “Verify container is not running in privileged mode” ensures that no

privileged permissions are granted within the container; and the strategy “Verify

container root filesystem is readonly” restricts write permissions for a container to

prevent malicious overwriting of system files. These strategies further lead to their

sub-conclusions, and another logical strategy “All security context requirements are

met” joins these sub-conclusions and yields the final conclusion.
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3.4.2 Pod Security Admission

As mentioned at the beginning of this section, the security context is a pod-level

security practice that only applies to a single pod, but what if we want a higher-level

security approach that enforces security settings across all pods? The answer is Pod

Security Admission (PSA). It’s worth mentioning that the book [5] endorses using

the Pod Security Policy (PSP) feature to secure pods, but this feature was removed

in Kubernetes v1.25 [13] and replaced by the similar but easier-to-use PSA mecha-

nism. PSA works in conjunction with Pod Security Standards (PSS), which define

three security isolation levels—from loose to strict—namely, Privileged, Baseline, and

Restricted. PSA also has three modes that can be used individually or together to

enforce these levels: enforce, audit, and warn. For more detailed explanations and

specifications of these levels and modes, please refer to the corresponding documen-

tation [16, 17]. In this practice, we focus on adopting PSA for a namespace-level

security configuration.

pod_security

K8s application has PSA protection

Verify pod security is enabled

K8s namespace exists

Figure 3.10: Justification Diagram for pod security admission

The justification workflow is exhibited in Figure 3.10. Since PSA is not always

configured in K8s configuration files but is sometimes directly labeled in a namespace
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using kubectl2, in this case, the evidence is “K8s namespace exists”, which checks

for the existence of the namespace in a K8s cluster. Next, the strategy “Verify pod

security is enabled” is applied to ensure that PSA labels are enabled. There are many

combinations of PSA and PSS, so we can only check whether this feature is used at

the moment. Finally, if the strategy passes, the conclusion “K8s application has PSA

protection” is reached.

3.5 Conclusion

In this chapter, we explore and analyze ten common best practices for Kubernetes

configuration from four distinct categories. Figure 3.11 presents the feature model

of these K8s best practices. We have successfully demonstrated the meaning and

rationale behind each practice, as well as the methodology for transforming them

into Justification Diagrams. This analysis also concludes that despite the size and

complexity of a model, the Justification Diagram is fully capable of modeling these

practices into coherent and standalone quality checks.

Figure 3.11: Feature model for K8s best practices

2https://kubernetes.io/docs/reference/kubectl/
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Chapter 4

jPipe Runner: A New Operational

Justification Framework

In the last chapter, we discussed ten best practices for K8s and transformed them

into Justification Diagrams. This chapter aims to answer the second question, “How

does the operational justification framework make JD files executable?”,

by introducing a novel keyword-driven justification framework called jPipe Runner

that renders Justification Diagrams operational and enables easy integration into

CI/CD pipelines. First, in Section 4.1, we discuss the problems with the existing

operational justification diagram and the motivation behind our new approach. Next,

in Section 4.2, we explain the design and architecture of the new framework, and in

Section 4.3, we describe its internal technical implementation. Usage is demonstrated

through a quick example in Section 4.4 to illustrate the workflow of this new tool.

Finally, we conclude with the outcomes of the framework in Section 4.5.

30



M.Eng. Report—Z. Lyu McMaster University—Software Engineering

4.1 Problem and Motivation

As discussed in the background chapter, the Justification Diagram provides a visual

and transparent representation of a product, offering the ability to trace changes and

enhancing confidence throughout the software development process. However, there

is a significant gap between the abstract pattern of the JD and its concrete imple-

mentation: while the primary focus of the JD is on describing what justification to

perform and the rationale linking justification and conclusion, it lacks the capacity to

execute the justification process in practice. Therefore, the concept of the Operational

Justification Diagram was introduced by Jean-Michel Bruel and later implemented

by Deesha Patal in an earlier version of the jPipe compiler [28]. However, the original

operational justification diagram has been deprecated and is no longer supported by

the latest jPipe compiler due to several key drawbacks:

1. It cannot automatically and explicitly bind the semantic JD components such

as evidence and strategy with the corresponding operation functions.

2. It extends the operational capability of the JD only conceptually, without man-

dating the execution of JD components through a truly executable mechanism.

3. It significantly overcomplicates the JD language syntax by introducing numer-

ous keywords such as ‘probe’, ‘operation’, and ‘expectation’, resulting in

maintenance burdens for the compiler itself.

To address the problems of the original operational justification diagram, we are

inspired by the Robot Framework1, an open-source automation framework for accep-

tance testing, and designed a new operational justification framework, jPipe Runner,

1https://robotframework.org/
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independent of the jPipe compiler. This framework has a keyword-driven approach

that maps each JD evidence or strategy to a Python function for execution, which

strictly follows the justification steps of a JD and aborts the justification process

if the result of any evidence or strategy is not satisfied. This approach transforms

the Justification Diagram from a purely visual reasoning tool into a fully automated

CI/CD-style justification framework.

4.2 Architecture

The jPipe Runner is designed to be a lightweight and out-of-the-box framework that

can be run as a command-line tool or easily integrated into a CI/CD pipeline. As

depicted in Figure 4.1, the overall architecture of jPipe Runner is plain and simple,

consisting of three core components: parser, runtime, and engine.

Figure 4.1: Architecture of jPipe Runner

The parser checks the grammar and syntax of a given JD file and parses it into

an abstract, machine-readable justification model that can be used within the frame-

work. The runtime, on the other hand, is responsible for linking functions from the

input Python library scripts and dynamically setting variables and executing func-

tions. Finally, the engine connects the parser and the runtime. It constructs a directed

justification graph based on the abstract justification model produced by the parser,
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orchestrates the justification order from evidence nodes to the conclusion node by

strictly following the justification logic, and calls the runtime to execute the corre-

sponding functions. The framework runner then prints the output, showing every

step of the justification process as well as the status of each step. A more detailed

example can be found in Section 4.4.

This architecture ensures maximal compatibility with the jPipe compiler and fa-

cilitates easy maintenance with minimal manpower.

4.3 Implementation

As we outlined the architecture in the last section, this section aims to demonstrate

how these core components are implemented. The jPipe Runner is implemented in

Python for flexibility, as by design it requires dynamic loading of external library

functions to execute, which makes it impractical to implement in other statically-

typed languages like Java or Rust. The framework is open-sourced under an MIT

license on the “jpipe-runner” repository [24]. For the specific code-related implemen-

tation, please refer to the repository. It is worth mentioning that this framework was

started as a prototype project and is still in its early development, so the following

subsections apply only to the code implementation as of the time of writing, which

is version 0.0.1. In Table 4.1, we summarize the source code structure of the “jpipe-

runner” project by dividing it into four categories. The implementation of each core

component is explained in the following subsections.
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Table 4.1: Source code structure of jPipe Runner

Type Name Description

Parser

jpipe.lark Defines the grammar of the JD language.

parser.py Parses JD source code into JD models.

transformer.py Transforms Lark AST into custom models.

Runtime runtime.py Provides the capability to set global variables and
execute external Python functions.

Engine

jpipe.py Implements core logical justification functionality.

enums.py Defines enumerated keywords for the JD models.

models.py Contains model definitions for the JD models.

Miscellaneous

exceptions.py Defines exception classes for error conditions.

runner.py Provides the command-line entry point.

utils.py Contains helper and utility functions.

4.3.1 Parser

To be maximally compatible with the current Justification Diagram language, the

parser needs to fully support all the syntax of JD in the jPipe compiler. Since the

language has a custom grammar, a grammar parser is required to parse the JD source

code and generate an Abstract Syntax Tree (AST) for further use. In the jPipe com-

piler, two grammar parsers are used for different purposes: ANTLR2 is originally

applied in the compiler and Langium3 is used to support the Language Server Pro-

tocol (LSP) for the jPipe VS Code extension. However, neither is applicable or

reusable for the jPipe Runner, as they are not supported in Python. Therefore, the

jPipe Runner utilizes another grammar parser, Lark4, to achieve the same function-

ality. It should be mentioned that using different grammar parsers across projects for

2https://www.antlr.org/
3https://langium.org/
4https://github.com/lark-parser/lark

34

https://www.antlr.org/
https://langium.org/
https://github.com/lark-parser/lark


M.Eng. Report—Z. Lyu McMaster University—Software Engineering

the same language grammar can lead to inconsistencies and increased maintenance

overhead across all jPipe projects; this problem and its possible solution are further

discussed in the conclusion and future work chapter.

start: model

model: load_stmt* class_def*

load_stmt: "load" STRING

class_def: CLASS_TYPE ID ("implements" ID)? (justification_pattern |

composition)↪→

justification_pattern: "{" (variable | instruction | support )+ "}"

variable: VARIABLE_TYPE ID instruction

instruction: "is" STRING

support: ID "supports" ID

VARIABLE_TYPE: "evidence"

| "strategy"

| "sub-conclusion"

| "conclusion"

| "@support"

CLASS_TYPE: "justification"

| "pattern"

| "composition"

Listing 4.1: Source code of JD Lark grammar

To implement a JD language parser in Python, the first step is to define the

grammar using Lark. Listing 4.1 shows part of the definition of the Justification

Diagram expression in Lark. The expression is derived from the Langium version of

the JD expression in the jPipe compiler, which treats each curly-bracket-closed block

as a class definition, supporting three class types: ‘justification’, ‘pattern’,
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and ‘composition’. Then, each line in the justification pattern class is treated as

one of two types. The first type is variable assignment, which binds an instruc-

tion to a variable by assigning it an ID. Five variable types are supported, including

‘evidence’, ‘strategy’, ‘sub-conclusion’, ‘conclusion’, and the abstract sup-

port ‘@support’. The second type is relationship definition, which defines the sup-

port relationship between two IDs. Other directives, such as the ‘load’ statement,

are also supported to ensure compatibility with the existing jPipe compiler.

jpipe_parser = Lark(grammar=JPIPE_GRAMMAR,

start='start',

parser='lalr')

def parse_jd(source: str) -> ModelDef:

try:

tree: ParseTree = jpipe_parser.parse(text=source)

model: ModelDef = JPipeTransformer().transform(tree)

return model

except (UnexpectedCharacters, UnexpectedToken) as e:

raise SyntaxException(

'parse error: invalid JD source code') from e

Listing 4.2: Source code of JD parser function

Once the JD grammar is defined in Lark, a transformer class is used to convert

the AST of the Justification Diagram source code, as parsed by the Lark parser, into

Python data types. For a detailed transformer implementation, please refer to the

JPipeTransformer class in the transformer.py code file. Finally, a parse function,

as shown in Listing 4.2, combines these two modules and returns the JD model that

is recognized internally as Python data classes.
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4.3.2 Runtime

The runtime is a crucial component that grants the jPipe Runner executability within

the framework. The current implementation of the runtime is a thin wrapper around

an abstract runtime interface that primarily defines three key methods:

1. load files: This method loads all the given external Python files into the run-

time instance. The core functionality is implemented in a private method,

import file, as shown in Listing 4.3. Each Python file is treated as a Python

module, imported via importlib, and stored in a private modules variable.

However, loading executable files can pose security risks, so we will discuss

potential solutions in the Future Work section of Chapter 6.

2. set variable: This method sets the module-level variable using the built-in

setattr function for each module loaded from the load files method. It has

a variant method, set variable literal, which converts the variable’s value

into a Python literal structure via the ast.literal eval function, thereby

extending the variable data types.

3. call function: When the jPipe Runner engine starts a justification process and

needs to validate an evidence or strategy, it calls the runtime’s call function

method to execute the corresponding function for that evidence or strategy.

4.3.3 Engine

As a core component of the jPipe Runner framework, the engine is typically responsi-

ble for constructing justification graphs and executing justification processes. There
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def _import_file(self, file_path: str) -> None:

if not os.path.isfile(file_path):

raise FileNotFoundError(f"File not found: {file_path}")

module_name, _ = os.path.splitext(

os.path.basename(file_path))

spec = importlib.util. \

spec_from_file_location(module_name, file_path)

module = importlib.util. \

module_from_spec(spec)

spec.loader.exec_module(module)

self._modules.append(module)

Listing 4.3: Source code of runtime import method

are two essential classes in the engine’s implementation: the Justification class

and the JPipeEngine class.

The Justification class inherits from the DiGraph5 class of the NetworkX [9]

package, a Python package for building and operating complex graph networks. This

class has two key methods: validate and layered traverse. The validate method

checks the validity of a justification graph—a Justification instance represented

as a special directed graph—by strictly enforcing the following constraints:

1. The justification graph must be a Directed Acyclic Graph (DAG).

2. There must be only one conclusion node, and it should not have any child nodes.

3. Evidence nodes must have an in-degree of zero and point only to strategy nodes.

4. Strategy nodes must point to only one sub-conclusion or conclusion node.

5. Sub-conclusion nodes can only point to strategy nodes.

5https://networkx.org/documentation/stable/reference/classes/digraph.html
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The layered traverse method is used to iterate the justification graph nodes in

a layered order. For example, in a justification graph, traversal must start with all

evidence nodes regardless of their order, and a strategy node must be iterated only

after all of its incoming nodes (such as evidence or sub-conclusion nodes) have been

iterated, thereby ensuring the logical correctness of the justification process.

On the other hand, the JPipeEngine class combines all the components in the

framework into a cohesive whole. First, it calls the load jd file function from

the parser module and converts the JD models into one or more justification graphs.

Next, it checks the validity of the justification graphs by calling the validate method

provided in the Justification class. Finally, when running the justification pro-

cess, it acquires the justification order by calling the layered traverse method

and verifies each justification node in that order within a for-loop on a keyword-

driven basis. For example, for an evidence or strategy node, it extracts the keyword

from that node and converts it into a function name in snake case format, such as

snake cased (“Check contents w.r.t. NDA”) ⇒ “check contents wrt nda”. Then,

it calls the runtime’s call function method to execute this function by its name

and checks if the function returns a non-false result; otherwise, its successor nodes

will be skipped and the process will be aborted and marked as failed.

4.4 Example

In this section, we use a quick example to introduce how to use jPipe Runner in

CI/CD pipelines, demonstrating the capability and flexibility provided by this oper-

ational justification framework. Figure 4.2 presents a simple Justification Diagram

for justifying the professionalism of slides.
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slides

Professional standards are met

Check Grammar/Typos

Slides are available

Figure 4.2: Justification Diagram for slides professionalism

First, to justify the Justification Diagram in Figure 4.2, we need to implement

two functions—slides are available and check grammar typos—representing the

behavior for the evidence and the strategy, respectively. jPipe Runner converts the

keywords of all evidence and strategy nodes in that diagram into functions with snake

cased names, reflecting the keyword-driven principle of the operational framework.

Table 4.2 shows the corresponding keywords mapped to function names in snake case.

Table 4.2: Keywords to mapped functions

No. Type Keyword Mapped Function

1 Evidence Slides are available slides are available

2 Strategy Check Grammar/Typos check grammar typos

3 Conclusion Professional standards are met /

Second, a Python script named ‘slides.py’ needs to be created to implement

the specific functions within. As shown in Listing 4.4, all functions should accept

zero arguments and return a boolean-like value indicating the result status of the
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corresponding function. A global variable ‘available’ is declared at the top of the

example code; it is used to configure the required value for different cases and is set

by jPipe Runner dynamically when executing the justification process.

# This var will be set from CLI

available = None

def slides_are_available() -> bool:

return available is not None

def check_grammar_typos() -> bool:

# Do some real grammar/typo checks

return True

Listing 4.4: Example source code for slides check functions

Next, in order to use jPipe Runner in the GitHub Workflow pipeline, the YAML

workflow configuration shown in Listing 4.5 must be set with the correct options.

The ‘jd file’ option specifies which Justification Diagram file is to be used in

the justification step, and the ‘variable’ and ‘library’ options are responsible for

providing the targeted Python scripts with the required variables as input arguments.

- name: Justify Slides

uses: ace-design/jpipe-runner@main

with:

jd_file: "./slides.jd"

variable: |

available:ready

library: |

./slides.py

Listing 4.5: Example source code for slides check workflow
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Finally, a detailed table-based output is printed by jPipe Runner in the CLI or

a CI/CD pipeline, as shown in Figure 4.3. The justification process strictly follows

the logical justification order, starting from evidence and eventually reaching the

conclusion step by step. The ‘PASS’ status indicates the success of a justification

step; if any step fails with a ‘FAIL’ status, the remaining unreached steps will be

marked as ‘SKIP’, thereby yielding a complete record of the justification process.

Figure 4.3: Example output of jPipe Runner

4.5 Conclusion

The jPipe Runner framework demonstrates its capability to replace the existing oper-

ational justification diagram and serve as a novel approach for justifying workflows in

a programmable and keyword-driven manner. The simplicity and flexibility it offers

may significantly change the current usage of the Justification Diagram in CI/CD

pipelines and provide insights for future operational justification studies.
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Chapter 5

Case Study of K8s Best Practices

in Mastodon Helm Chart

As explored in Chapter 3, we examined ten best practices of K8s and demonstrated

how to transform them into Justification Diagrams. However, these best practices are

sometimes added or removed from a K8s configuration, making it difficult to track and

analyze these changes and their impact on specific K8s deployments. Therefore, this

chapter analyzes the evolution of real-world Kubernetes configurations and demon-

strates how Justification Diagrams can be used with these best practices to

enhance the quality of a K8s system through a comprehensive case study.

First, we discuss the objectives of this case study and its corresponding method-

ology in Section 5.1. Next, Sections 5.2 and 5.3 present observations and key findings

from the Mastodon Helm charts. Section 5.4 provides a detailed demonstration of

using Justification Diagrams to represent best practices in the Mastodon Helm chart

and how they integrate with jPipe Runner to track changes and enhance Kubernetes

configuration quality. Finally, we conclude this case study in Section 5.5.
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5.1 Objectives and Methodology

Adapting Helm to parameterize Kubernetes configurations and standardize package

management is a good practice for improving the overall quality of a K8s system from

a maintenance perspective. However, Helm charts can grow rapidly during project

development and regular maintenance. The templates for Helm charts also evolve

constantly to accommodate new best practices by updating resources and options in

the K8s application. Therefore, continuously tracking and validating these changes

in each Helm version through Git commits is a crucial task for maintaining the K8s

application in a stable and manageable state. The main objective of this case study

is to explore how Justification Diagrams can address this problem. By leveraging the

composition and decomposition ability of Justification Diagrams, we can justify each

version update in the Helm chart and integrate this process with jPipe Runner into

a CI/CD pipeline to automate the tracking and validation, ultimately enhancing the

quality of Kubernetes systems.

In this case study, we primarily focus on best practice-related uses and changes

in K8s configurations maintained with Helm charts. By comparing various popular

open-source projects that use Helm to manage their K8s deployments, we eventually

choose the Mastodon Helm chart for this case study for the following reasons:

1. Mastodon is a popular open-source platform with a large community, having

over 900K monthly active users and more than 8K servers1 as of now.

2. It has over 200 Git commits in its Helm chart history, indicating active updates,

continuous development, and ongoing maintenance. Therefore, we can extract

1https://joinmastodon.org/about
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and analyze useful information from its Helm chart codebase.

3. The Helm chart of Mastodon has undergone several major refactorings. Such

significant changes can be a positive sign of an active community, responsive

development, and the adoption of state-of-the-art features in its configurations,

providing valuable information for our case study.

We conduct and structure this case study into the following essential steps to

ensure an accurate analysis and a smooth transition to Justification Diagrams.

• Step 1: Retrieve all relevant Helm charts of Mastodon and extract detailed

commit information.

• Step 2: Generate a set of complete K8s configurations for all commits using

their default values.yaml settings.

• Step 3: Iterate through each configuration to document and analyze the applied

best practices of Kubernetes.

• Step 4: Compare each configuration with its previous commit to identify best

practice-related updates and transform them into semantic explanations.

• Step 5: Use the Justification Diagram to represent the justification for each

change documented in the previous step.

In Steps 1 and 2, we used a Python script with the GitPython2 library to ex-

tract Git commit information from the cloned Git repositories on our local machine

and generated K8s configurations using the helm template command, respectively.

2https://gitpython.readthedocs.io
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It is worth mentioning that generating configurations is necessary to facilitate the

comparison of each commit or version, as it merges all Helm template resources and

configurations into a single final YAML configuration. This approach significantly

reduces the workload by eliminating the need to examine various template changes

across multiple locations within a single commit. In Steps 3 and 4, we first created a

script using Kube-Linter and a YAML parser to automate the best practice compli-

ance check for each configuration. Then, we manually performed a double-check and

conducted an in-depth analysis of each configuration and its corresponding commit,

documenting the results in CSV sheets available in the “k8s-best-practices” repository

under case-studies/mastodon directory [25]. Finally, in Step 5, we organized and

presented these details in Justification Diagrams.

5.2 Observations and Analysis

The Helm chart for Mastodon involves four GitHub repositories and over 200 commits

in total. Our primary focus is on best practice-related changes, such as adding a Pod

Disruption Budget (PDB) resource to the chart template or using a Load Balancer for

deployment. Therefore, instead of reviewing each commit individually and analyzing

the differences from its previous commits, we used automation tools to identify and

label the implementation of each practice in every commit and manually verified

their correctness afterward, which significantly reduced repetitive work. Next, we

only needed to examine the commits and their neighboring commits that showed

different practice applications, such as adding or removing a certain practice. This

approach allowed us to focus on extracting the meaning and reasoning behind these

commits and representing these changes in Justification Diagrams.
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We observed and analyzed four relevant repositories—Ladicle/mastodon-chart3,

johnschultz/helmadon4, mastodon/mastodon5, and mastodon/chart6—and their up-

dates from April 2017 to February 2025. The Helm chart underwent significant refac-

toring during this period and has now become stable and consistent, making it an

ideal study case for analyzing practice evolution.

5.3 Key Findings from Observations

After analyzing the Mastodon Helm chart, we have identified several key findings

throughout its evolution. In this section, we discuss these findings and the key events

in its evolution, along with their underlying meaning and rationale. These docu-

mented changes provide valuable insights for constructing Justification Diagrams in

the next section.

The evolution of the Mastodon Helm chart has three major stages, during which

it underwent significant refactoring and updates at each stage transition. The first

stage occurred before Mastodon officially supported deploying its services via a Kuber-

netes Helm chart. In April 2017, two repositories, Ladicle/mastodon-chart and john-

schultz/helmadon, individually added support for the Mastodon Helm chart. Their

development processes were primarily concentrated in that month and stopped devel-

opment afterward, resulting in their Helm chart versions remaining at v0.1.0 without

further updates.

The first repository initially implemented three best practices: versioned image

tagging, load balancing, and resource management. It later adopted deployment

3https://github.com/Ladicle/mastodon-chart
4https://github.com/johnschultz/helmadon
5https://github.com/mastodon/mastodon
6https://github.com/mastodon/chart
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replicas in commit 0fce8fc. The other repository, by contrast, initially adopted only

the resource management practice during its early development stage. A load balancer

was introduced after five commits for the Mastodon web service. Subsequently, the

author started using versioned Mastodon images in the values.yaml configuration,

improving the maintainability of the Helm chart.

In June 2020, the second stage began when an “Add Helm Chart” pull request7

was opened and merged into the Mastodon source repository, officially supporting the

Helm chart under the chart/ directory. This pull request was built on the two pre-

vious individual Mastodon Helm charts and implemented additional best practices,

including anti-affinity rules, Horizontal Pod Autoscaler (HPA), and pod security con-

text. Subsequently, the Helm chart entered a regular development and maintenance

process, upgrading from version v0.1.0 to v2.3.0. No best practice-related changes

were made during this period, and most modifications mainly focused on functional

improvements in the chart, such as database migrations and S3 storage support.

After two years of development and maintenance, the third stage started with

the upgrade of the Mastodon Helm chart from v2.3.0 to v3.0.0 in November 2022,

including a major refactor that optimized deployments and environment variables

through a pull request8. However, this version was soon deprecated, and the entire

Helm chart was relocated to a separate mastodon/chart repository, where commits

from v0.1.0 to v2.3.0 were cherry-picked into the new repository.

Notably, in the new Helm chart repository, v3.0.0 was completely removed, and

v4.0.0 directly followed v2.3.0 without a clear explanation. It appears that v3.0.0

7https://github.com/mastodon/mastodon/pull/14090
8https://github.com/mastodon/mastodon/pull/20733
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and v4.0.0 shared some common changes, as both versions removed the HPA prac-

tice. However, the HPA resource was not removed because it was considered an

inefficient practice but rather because it was broken and had been ineffective during

previous development, as indicated by the commit message9. Although the contribu-

tor mentioned reinstating the HPA practice in future versions, it remains unavailable

at the time of writing. After v4.0.0, the Mastodon Helm chart underwent a smooth

and regular development and maintenance process, with the PDB practice added for

the Mastodon web and streaming services in v5.1.1. The Helm chart evolved stably

afterward without major practice-related changes.

From the above analysis and findings, it is evident that maintaining and tracking

updates to K8s best practices can be challenging. Developer teams may sometimes

forget which practices they have changed in their Helm chart, resulting in issues

such as failing to reinstate the HPA after its removal. Therefore, we need to explore

how Justification Diagrams can be used to continuously track and reflect on changes

during configuration updates, ultimately enhancing the quality of the K8s system.

5.4 Justification for Mastodon K8s Configuration

Justification Diagrams can be used to represent K8s best practices applied in each

version of the Mastodon Helm chart. These diagrams illustrate which practices are

implemented in a specific Helm chart and the outcomes they produce. They can also

be composed or decomposed to reflect changes in applied practices throughout the

evolution of the Mastodon Helm chart by adding or removing specific nodes. The

analysis documented in the “case-studies/mastodon” sheets [25] lists key transitions

9https://github.com/mastodon/mastodon/commit/cddcafe
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in these charts and their intended purposes. In the following subsections, we demon-

strate the potential benefits of integrating Justification Diagrams and jPipe Runner

into the evolution of the Mastodon Helm chart.

5.4.1 Modular Practice Diagrams

When implementing a Helm chart for Mastodon applications, the best practices ap-

plied in the chart are often unclear and difficult to track. The primary benefit of using

the Justification Diagram is the ability to easily represent and modularize practice

diagrams, visualizing the rationale behind the overall K8s configuration.

Figure 5.1: Justification Diagram for applied practices in johnschultz/helmadon

50



M.Eng. Report—Z. Lyu McMaster University—Software Engineering

For example, the goal of applying practices from different domains is to deploy

high-quality K8s applications. As shown in Figure 5.1, the initial Justification Dia-

gram of applied practices in the johnschultz/helmadon Helm chart represents a con-

figuration where only resource management was initially applied to the Mastodon

web application. In subsequent updates, load balancing was added as an additional

performance-related best practice, followed by versioned image tagging as the next

applied best practice to enhance maintainability. This change can be clearly repre-

sented in the Justification Diagram by merging the corresponding practice diagram

with the existing one. While we can only manually merge Justification Diagrams

for now, the upcoming version of the jPipe compiler will support justification merge

statements, as shown in Listing 5.1, to facilitate this process.

composition {

justification final_practices is merge(load_balancing, practices) {

// merge options...

}

}

Listing 5.1: Example code for Justification Diagram merging

With Justification Diagrams, we can easily represent which practices are applied

in the Mastodon Helm chart as well as the purpose and effectiveness of each practice.

This approach can significantly help developer teams track and document practice

changes in K8s configurations.

5.4.2 Pipeline-Automated Checks

Through our case study on the Mastodon Helm chart, we recognize that relying solely

on Justification Diagrams to document and track changes is somewhat insufficient.
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It is also important to ensure that each Git commit complies with the best practices

represented in the diagrams. Therefore, jPipe Runner is necessary to operationalize

the best practice diagrams and ensure that each practice is properly applied in the

Mastodon K8s configuration. Furthermore, we can integrate jPipe Runner into a

designated CI/CD pipeline to incorporate K8s best practice checks and automate the

justification process.

jobs:

check-mastodon-k8s-practices:

runs-on: ubuntu-latest

steps:

- name: Checkout code

uses: actions/checkout@v4

- name: Set up Python

uses: actions/setup-python@v5

with:

python-version: "3.13"

- name: Install Python dependencies

run: |

pip install -r requirements.txt

- name: Set up kube-linter

uses: ./.github/actions/setup-kube-linter

with:

kube-linter-version: latest

- name: Run jPipe Runner

uses: ace-design/jpipe-runner@main

with:

jd_file: ${{ github.event.inputs.jd_file || env.DEFAULT_JD_FILE }}

variable: |

k8s_config_path:${{ github.event.inputs.k8s_config_path ||

env.DEFAULT_K8S_CONFIG_PATH }}↪→

library: |

python-libraries/*.py

case-studies/mastodon/python-libraries/*.py

Listing 5.2: GitHub workflow for automated Mastodon K8s practice checks [25]

In Listing 5.2, we demonstrate the use case of jPipe Runner to automate best

practice checks for a targeted Justification Diagram in GitHub workflow pipelines.
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The workflow configuration is structured into two simplified parts: one part sets up

the necessary environments and tools, and the other runs the jPipe Runner action.

Figure 5.2: jPipe Runner output for Mastodon K8s configuration workflow

The implementation of each best practice check is open-sourced in the “k8s-best-

practices” repository [25] under the python-libraries directory. Similar to the mod-

ular Justification Diagrams used for K8s best practices, these Python-implemented

practice checks are also reusable and can be easily integrated into the pipeline with-

out additional modifications. Figure 5.2 shows the workflow output of jPipe Runner
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validating the Mastodon K8s configuration, indicating that these best practices have

been properly followed from commit 28bd9df to fcecc39.

(a) Before the removal of HPA

(b) After the removal of HPA

Figure 5.3: Comparison of jPipe Runner output before and after HPA removal

However, as mentioned in the previous section, HPA was removed during the third

stage of the Mastodon Helm chart’s evolution but was intended to be reinstated.

We present a comparison of the workflow output before and after the commits that

removed HPA in Figure 5.3, where we can clearly notice that HPA is no longer

enabled in the configuration and the corresponding strategy has failed. This allows

us to understand the impact of such removal, as the Mastodon application is no longer
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capable of autoscaling, which may affect the overall K8s application performance.

Therefore, if this approach is applied to the entire evolution of Mastodon’s K8s

Helm chart, it can significantly improve configuration development and maintenance.

This is achieved by not only helping developers track configuration and best practice

changes but also explaining why it should be adopted and what consequences may

arise if it is not adopted, through automated pipeline checks.

5.5 Conclusion

After examining over 200 commits across four Helm chart repositories, we studied the

evolution of practice usage in the Mastodon Helm chart and analyzed the reasoning

and meaning behind these changes. Based on this case study, we demonstrated that

the Justification Diagram is a valuable and practical tool for tracking practice-related

changes within the Helm chart and capturing the intentions behind each update. Fur-

thermore, by integrating jPipe Runner into the chart repository to operationalize Jus-

tification Diagrams, this approach can further automate the tracking and validation

of changes for Helm charts in CI/CD pipelines, and ultimately enhance the overall

quality of the Kubernetes system.
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Chapter 6

Conclusion and Future Work

In this chapter, we summarize the results of this project and discuss future work.

6.1 Summary

In conclusion, this report demonstrates the effectiveness of using the Justification

Diagram together with jPipe Runner to enhance the quality of Kubernetes configura-

tion within CI/CD pipelines. By incorporating various best practice quality checks,

this approach enables developers to effectively identify possible issues and threats

in K8s configurations. Moreover, it provides a holistic methodology for construct-

ing a unified, automated workflow—from specifying the justification to executing the

practice—with valuable observations in Kubernetes system quality research.

Our study began by addressing the growing need for identifying and reducing

potential K8s misconfigurations and for achieving robustness and reliability in K8s

applications. In Chapter 3, we examined ten K8s best practices from four distinct

domains, demonstrating the capability of the Justification Diagram to represent and
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visualize various K8s best practices. We also showed how to extract and transform

these best practices from semantic content into Justification Diagrams, providing the

foundation for the subsequent implementation of the K8s quality checks. In Chapter 4,

we introduced a new operational justification framework that replaced the existing

operational justification diagram and elevated the concept of justification operations

by enabling keyword-driven and programmable features in the jPipe Runner frame-

work, thereby filling the gap between plain Justification Diagrams and programmed,

functioning justification operations. Finally, we studied Mastodon’s open-source K8s

configurations by tracking the evolution of its best practice usage using Justifica-

tion Diagrams in Chapter 5. This demonstrates the practicality and alignment of

our work, highlighting its potential to provide a comprehensive justification for K8s

configurations and enhance the overall quality of Kubernetes systems.

6.2 Future Work

In this section, we discuss potential future work to enhance our approach from two

perspectives: K8s best practices and the jPipe Runner framework.

6.2.1 K8s Best Practices

The best practices selected for this project primarily focus on the breadth of K8s

configurations but lack depth in each area due to the limited scope and the inher-

ent complexity of Kubernetes. Therefore, more in-depth best practices should be

gathered and analyzed to enhance our approach. For example, in the context of
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high availability, further exploration of practices related to pod liveness and readi-

ness checks is recommended, as these mechanisms determine an application’s health

status, affect its restart policies and traffic management, and ultimately impact the

overall reliability of a Kubernetes deployment.

Additionally, while the selected best practices apply to general cases, some of them

may not be suitable for certain edge scenarios. For example, deployment replicas may

not always be advisable for stateful applications such as databases and message queues

because they could cause data consistency issues and access conflicts. Therefore,

further detailed studies and clear guidelines on selecting best practices for specific

use cases are needed to refine our approach and cover a broader range of scenarios.

6.2.2 jPipe Runner Framework

The jPipe Runner framework is a promising tool for implementing justification oper-

ations, but it is still a prototype experimental project at present. There are several

areas that need to be further improved. The current keyword-driven approach con-

verts the name of an element of a justification diagram into a snake-cased function

name. While this works in most cases, it can become a problem if the label contains

an extremely long description, resulting in an unwieldy function name that affects

both readability and conciseness. A more sophisticated keyword-to-function map-

ping mechanism should be supported in the framework, such as using a decorator to

explicitly bind a function to a specific justification element.

To address the security concerns raised by the load files method in the runtime

implementation section of Chapter 4, a sandbox mechanism or restrictions on the

permissions granted to the loaded code could be advisable and valuable solutions for
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isolating code execution from the main runner process and enhancing the security of

the jPipe Runner’s justification process.

Furthermore, as discussed in the parser implementation section of Chapter 4,

at least three different grammar parsers are used across the jPipe projects. This

inconsistency can lead to significant maintenance challenges between jPipe grammar

implementations. Standardizing the grammar parser into a single implementation is

necessary to mitigate these issues. For example, the jPipe compiler could export a

justification diagram in JSON format and pass it to the jPipe Runner, which may

provide a feasible solution to avoid redundant grammar definitions across projects.
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