
A FUNCTIONAL EVENT-DRIVEN

FRAMEWORK

A FUNCTIONAL EVENT-DRIVEN FRAMEWORK FOR

SIMPLIFIED CONCURRENT APPLICATIONS: TECHNICAL AND

PEDAGOGICAL CONSIDERATIONS

By CHRISTOPHER WILLIAM SCHANKULA, B.Eng.Society

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfillment of the Requirements for

the Degree Master of Science — Computer Science

McMaster University © Copyright by Christopher William Schankula,

December 2024

https://gs.mcmaster.ca/
http://www.mcmaster.ca/

McMaster University

MASTER OF SCIENCE — COMPUTER SCIENCE (2024)

Hamilton, Ontario, Canada (Computing and Software)

TITLE: A Functional Event-Driven Framework for Simplified

Concurrent Applications: Technical and Pedagogical

Considerations

AUTHOR: Christopher William Schankula

B.Eng.Society (Software Engineering & Society),

McMaster University, Hamilton, Canada

SUPERVISOR: Dr.Christopher Anand

Dr. Spencer Smith

NUMBER OF PAGES: xxii, 197

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Lay Abstract

Modern software products require graduates experienced with creating interactive

programs. To provide this experience, low-floor, high-ceiling activities are needed,

ensuring all students can succeed and stay engaged. This thesis investigates creat-

ing an Event-Driven Programming (EDP) framework, called TEASync, that allows

programmers to create multi-user applications. This thesis describes how the result-

ing TEASync framework was implemented, and details a study wherein first-year

computer science students were given the option of using the framework to create

multiplayer games as part of a semester-long design project. Surveys, focus groups,

and code compilation data showed that students were able to use the framework to

make complex multiplayer games. The data show that the multiplayer option pro-

vided experienced students a high-ceiling learning opportunity, while the single-player

EDP option maintained a low floor for less experienced students. Those who used

the framework reported a lower difficulty level than anticipated and had a measurable

increase in engagement in the course.

iii

Abstract

Modern software products require graduates experienced with creating interactive

programs. To properly learn how to build interactive programs, students need projects

that present a low barrier to entry (low floor) while retaining a high ceiling to ensure

high engagement of more experienced students. In this thesis, we turn to multiplayer

game programming using the Event-Driven Programming (EDP) paradigm to fulfill

this need. EDP is a type of programming where concurrency is based around the

processing of events, which are processed atomically in a central event loop. EDP

has been shown to produce more reliable software, precluding many of the common

mistakes programmers make with lower-level concurrent programming. We use Elm,

which implements EDP in a purely functional setting, processing events as immutable

data structure values called messages. This thesis describes the design of a multi-user

extension to Elm’s Model-View-Update (MVU) paradigm, called Local-Global Model-

View-Update (LG-MVU). We implemented the LG-MVU paradigm in Elm as the

TEASync framework. We show how the purely functional language helps to ensure

concurrency properties are maintained. We then describe and report on the use of

the framework in a first-year computer science course, where students were given the

option to use it to implement a video game in a semester-long group project. Surveys,

focus groups, and code compilation data were used to ascertain the difficulties and

iv

experiences students had using the framework. The data showed that students were

able to use the framework to make complex multiplayer games. Those who used

it tended to have more programming experience prior to university, confirming its

effectiveness as a high-ceiling activity, while retaining the low-floor option of tool-

supported single-player games. Students using TEASync reported a lower difficulty

level than initially anticipated, appreciated its simplicity, and had higher levels of

engagement in, and enjoyment of, the project and course.

v

I dedicate this thesis to my friends and family who have been by my side over the

years. I dedicate it especially to my family, who have been my constant inspiration

and support — particularly my mom Wendy who’s always there when I need her;

my sister Mary who calls me a nerd but secretly thinks I’m cool; my step-father

Dave who supports us fully and unwaveringly; my maternal grandmother Jo who

does everything for all of us, and late maternal grandfather Ray who supported my

love for technology from a young age and instilled in me the importance of giving

back to my community; and my paternal grandparents Renate and Frank, whose

immigrant eyes taught me to fully love and appreciate my country.

Most of all, I dedicate this to my late father Werner, a small engine mechanic who

instilled in me a love for tinkering and fixing things by, among a million other

things, letting me experiment with making circuits with a 12V car battery in our

garage on the shores of Lake Vernon — at the expense of at least one

short-circuited and subsequently melted jumper cable.

Love you all.

vi

Acknowledgements

There are too many people to acknowledge you all by name. I acknowledge all of those

who have supported me through the years. First and foremost, I would like to extend

my gratitude to my amazing supervisor Dr.Anand and co-supervisor Dr. Smith who

have constantly challenged me on my ongoing journey to become a better researcher

and educator.

I extend my special thanks to my committee member Dr.Geiskkovitch for her help

with the usability study.

I would also like to acknowledge the support, financial and otherwise, of McMas-

ter’s Computing & Software Department, and financial support from the government

of Ontario and the Natural Sciences and Engineering Council of Canada (NSERC),

who made this possible.

I acknowledge the support of all the students in the 1XD3 course who gave of

their time to make the usability study a success, filling out surveys and coming to

focus groups with a genuine passion to help us improve the tools.

Finally, I am thankful for all the passion of the thousands of K-12 students that

have inspired us through our outreach efforts to continue this work, and all the vol-

unteers who have taught lessons, developed tools and curricula, and contributed to

the program in so many other ways.

vii

Table of Contents

Lay Abstract iii

Abstract iv

Acknowledgements vii

Notation, Definitions, and Abbreviations xviii

Declaration of Academic Achievement xxiii

1 Introduction 1

1.1 Motivation . 2

1.2 Goal . 2

1.3 Contributions . 2

1.4 Research Questions . 3

1.5 Research Context . 3

1.6 Thesis Organization . 5

2 Related Work 6

2.1 Low Floor, High Ceiling in CS Education 6

viii

2.2 Model-Driven Development . 7

2.3 Requisite Technologies . 8

2.4 Event-Driven Programming . 9

2.5 Functional Programming in Education 12

2.6 Related Tools . 13

3 Functional Programming 20

3.1 Functional Programming . 21

3.2 Hindley-Milner Type Systems . 26

3.3 The Elm Language . 29

3.4 Haskell . 48

4 TEASync Framework Architecture 51

4.1 “Fundamental Theorem of TEASync” 52

4.2 Local-Global Model-View-Update (LG-MVU) Architecture 53

4.3 Concurrent System Design . 57

4.4 Alternative Synchronization Schemes 61

4.5 Desireable Properties of Global Models and Update Functions 73

5 TEASync Framework Implementation 80

5.1 Application Programming Interface 80

5.2 Encoder/Decoder (Codec) Generation 86

5.3 Module Hierarchy . 99

5.4 Development Mode . 102

5.5 Online Collaborative Integrated Development Environment 105

5.6 Implementation using Functional Programming 108

ix

6 Usability Study Methodology 111

6.1 Overview and Goals . 111

6.2 Proposition . 113

6.3 Survey Design . 113

6.4 Focus Group Design . 117

6.5 Compilation Statistics Design . 120

6.6 Threats to Validity . 122

7 Results 125

7.1 Survey Results . 125

7.2 Focus Group Results . 137

7.3 Code Compilation Statistics Results 140

7.4 Student TEASync Applications . 142

8 Conclusions 148

8.1 Summary . 148

8.2 Research Questions . 149

8.3 Future Work . 152

A Usability Study Instruments 155

A.1 Pre-Implementation Survey Questions 155

A.2 Post-Implementation Survey Questions 155

A.3 Focus Group Scripted Questions . 165

B Code Examples 170

x

List of Figures

2.1 STaBL.Rocks code compilation interface 16

2.2 STaBL.Rocks project system . 17

2.3 STaBL.Rocks module history screen 19

3.1 Model-view-update dataflow diagram 40

3.2 Elm architecture lifecycle . 41

3.3 Counting example interface . 46

4.1 Local-global model-view-update dataflow diagram 58

4.2 TEASync client sequence diagram . 59

4.3 Global model-based synchronization lifecycle sequence diagram 64

4.4 Global model-based race condition sequence diagram 65

4.5 Global model-diff-based race condition sequence diagram 67

4.6 Global message-based sequence diagram 68

4.7 Global message-based with distributed folding lifecycle sequence diagram 71

4.8 Example adventure game state diagram 76

5.1 TEASync client module hierarchy . 101

5.2 TEASync server module hierarchy . 103

5.3 TEASync development mode Pong example 104

5.4 Collaborative TEASync projects on STaBL.Rocks online IDE 107

xi

5.5 TEASync server instance overview interface 108

5.6 TEASync server instance dashboard 109

6.1 CS experience question examples . 115

6.2 Past game development pre-survey question 116

6.3 Pre-survey computer science experience question 116

6.4 Post-survey reasons for choosing SP/MP game question 118

6.5 Post-survey course and tool experience questions 119

7.1 Survey demographics results . 127

7.2 Prior game programming experience survey results 128

7.3 Reported experienced and perceived difficulty of game development

aspects . 129

7.4 Pre-Survey Likert scale question results 130

7.5 Choice of single player or multiplayer game results 131

7.6 Reported reasons for choosing single vs. multiplayer game 132

7.7 Reported experienced difficulty of game development aspects 134

7.8 Equal team contribution survey question results 134

7.9 State diagram tool Likert statement responses 135

7.10 TEASync framework Likert statement responses 136

7.11 Reported student happiness with choice of single player vs. multiplayer

project . 136

7.12 Reported project enjoyment . 137

7.13 Programming experience versus choice of single/multiplayer 137

7.14 Results for single player and use of TEASync framework 141

7.15 Screens in the Garlic Phone application. 144

xii

7.16 Screens in the Tap Scotch application. 146

7.17 Screens in the Brushstroke Journey application. 147

A.1 Section 1 of the pre-survey, gathering informed consent and demo-

graphic data. 156

A.2 Section 2 of the pre-survey, gathering data about past experience with

game development. 157

A.3 Section 2 of the pre-survey (continued), gathering data about past

experience with game development. 158

A.4 Section 3 of the pre-survey, gathering information about past experi-

ences with game development. (Single player: yes, Multiplayer: no) . 159

A.5 Section 3 of the pre-survey, gathering information about past experi-

ences with game development. (Single player: no, Multiplayer: yes) . 160

A.6 Section 3 of the pre-survey, gathering information about past experi-

ences with game development. (Single player: no, Multiplayer: yes) . 161

A.7 Section 3 of the pre-survey, gathering information about past experi-

ences with game development. (Single player: no, Multiplayer: no) . . 162

A.8 Section 4 of the pre-survey, gathering a baseline of preferences about

aspects of computer science. 163

A.9 Section 1 of the post-survey, gathering informed consent and demo-

graphic data, and asking whether they would like to answer the pre-

survey questions if they had not already done so. 164

xiii

A.10 Section 2 of the post-survey, asking which type of game the student

made. This will determine whether they are asked about their experi-

ence making a single player or multiplayer game (Figure A.11 or A.12,

respectively). 165

A.11 Section 2 of the post-survey, for students who chose a single-player game.166

A.12 Section 2 of the post-survey, for students who chose a multiplayer game.167

A.13 Section 3 of the post-survey, asking agreement with several statements

about the course and tools. 168

xiv

List of Tables

4.1 Increment/Decrement Example Sequence 62

4.2 Comparison of Synchronization Methods 62

4.3 Symmetry Example . 74

5.1 JSON Format for the TypeDecl Type 92

5.2 JSON Format for the BaseType Type 92

5.3 JSON Format for the Type Type . 93

5.4 JSON Format for Select Standard Library Types 93

5.5 Binary Format for the TypeDecl Type 94

5.6 Binary Format for the BaseType Type 95

5.7 Binary Format for the Type Type . 96

5.8 Binary Format for Select Standard Library Types 96

5.9 Example Datatype Encodings and Compression Ratios 98

7.1 Shortforms of factors affecting single player/multiplayer choices . . . 133

7.2 Data from STaBL.Rocks IDE [n = 36 users] 143

7.3 Selected App Statistics . 144

xv

List of Definitions

3.2.1 Top-Level Form of Hindley-Milner Languages 26

3.2.2 Types and Type Schemes in Hindley-Milner

Languages . 27

3.2.3 Well-Typedness for Hindley-Milner Programs 29

3.3.1 Elm Types . 35

3.3.2 Labels and Ordered Product Types 37

3.3.3 Syntax for Type Signatures . 37

3.3.4 Syntax for Type and Type Alias Definitions 38

3.3.5 The Elm Architecture (Simplified) . 43

3.3.6 The Elm Architecture (Advanced) . 47

3.4.1 STM TQueues . 49

4.2.1 Local-Global Model-View-Update (Simplified) 54

4.5.1 Symmetric Global Update . 74

4.5.2 Associative Global Update . 75

4.5.3 Idempotent Global Model . 75

5.1.1 TEASync Simple API . 81

5.1.2 TEASync Advanced API . 83

5.2.1 Tokens for Elm Types . 86

5.2.2 Parser for Elm Types . 88

5.2.3 Haskell Type for Elm Types . 89

5.2.4 Find Type Variables Function . 90

xvi

List of Examples

3.3.1 Example Recursive Definition . 37

3.3.2 Simple Counting Program . 43

4.1.1 Fundamental Theorem of TEASync 52

5.2.1 Example Datatypes . 97

B.0.1TEASync Counting Example Code 170

B.0.2Pong Code Example . 172

xvii

Notation, Definitions, and

Abbreviations

Notation

A ≤ B A is less than or equal to B

t ∈ S t is in the set S.

f : T f has type T — used for Elm types

f :: T f has type T — used for Haskell types

τ denotes a monomorphic type

σ denotes a polymorphic type

τ1 → τ2 denotes a function type

λx . e denotes an anonymous function with the input x and body e. That

is, f = λx . e defines the function f(x) = e

∀α . C denotes a polymorphic type with type variable α with a type C that

can contain α

xviii

{n : τ | p} denotes the set of items of type τ that satisfy the Boolean predicate

p (values for which p is true)

P1 . . . Pn

C
an inference rule with predicates P1 through Pn and conclusion C.

N denotes the set of natural numbers, starting from 0

N1 denotes the set of natural numbers excluding 0. That is, N1 = {n :

N | 1 ≤ n}

Nj
i denotes the set of natural numbers from i to j inclusively. That is,

Nj
i = {n : N | i ≤ n ≤ j}

V denotes the set of all symbols

f ◦ g denotes function composition

Gn denotes the global model created by processing n global messages

mi denotes the ith global message

Definitions

Below is a list of key terms used throughout the thesis:

Atomic operation

An operation which proceeds from start to finish without being inter-

rupted by another operation. This is a central part of event-driven

programming.

xix

Client A program running on a user’s device, either in a web browser or as

a standalone application, allowing them to connect to a server

Codec Short for Coder/Decoder [41]. Codec refers to a scheme used to

transmit structured data over a network or store it on a storage

device.

Decoder A function used to turn a structured format (that has been encoded

using an encoder) back into a data value in the programming lan-

guage.

Encoder A function used to turn a data value of a given type into a structured

format suitable for transmission or storage.

Event-Driven Programming (EDP)

A type of programming where concurrency is based around the pro-

cessing of events [13], often atomically.

Fold Applying a function repeatedly to an initial value of type b and a list

of values of type a to reduce the list down to a final value of type b.

Functional Programming (FP)

A declarative programming paradigm where a program consists en-

tirely of functions [29, 31].

Map Applying a function to a list of values of type a to transform the list

into another list of type b.

Server A program running centrally, to which all clients connect and through

which they can communicate.

xx

Abbreviations

AI Artificial Intelligence

API Application Programming Interface

BNF Backus-Naur Form [32]

CS Computer Science

CS1 Computer Science 1 (First-Year)

EBNF Extended Backus-Naur Form [32]

EDP Event-Driven Programming

FP Functional Programming

GUI Graphical User Interface

IDE Integrated Development Environment

IHP Integrated Haskell Platform framework

JSON JavaScript Object Notation

LFHC Low floor, high ceiling

MVU The Model-View-update Architecture, also known as The Elm Ar-

chitecture, or TEA

OOP Object-Oriented Programming

STM Software Transactional Memory

xxi

TEA The Elm Architecture

TEASync The Elm Architecture Synchronizer framework

xxii

Declaration of Academic Achievement

I, Christopher William Schankula, declare that the work contained herein is mine.

Wherever I have used sources that do not belong to me, I have cited those sources

accordingly.

xxiii

Chapter 1

Introduction

Equipping students with the skills needed to work in a 21st-century economy is a

growing challenge for educators, both at the K-12 and university levels. Many ju-

risdictions have taken a while to catch up, e.g. Ontario only formally introducing

coding to the mathematics curriculum in 2020 [21]. This contributes to there being a

wide range of student backgrounds, including programming abilities and motivations

in CS1, which we have anecdotally observed and which has been observed by other

researchers [43, 37]. The wide range of backgrounds have been shown to lead to high

failure and dropout rates for introductory programming classes [2].

According to Resnick [52], effective educational technology “should provide easy

ways for novices to get started (low floors) but also ways for them to work on in-

creasingly sophisticated projects over time (high ceilings)” as explained by Seymour

Papert [47]. This concept is called “Low Floor, High Ceiling” (LFHC) [5]. In our con-

text, with no high school computing pre-requisites for CS1, providing a high ceiling

also prevents experienced students from becoming bored and disengaged.

For related reasons, many educators have turned to interactive programs in CS1.

1

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

To accomplish this, we turn to Event-Driven Programming (EDP), which has be-

come a central concept in modern software development [38]. EDP is a paradigm

that focusses on discrete events that are processed atomically by an central loop.

Languages and frameworks like Elm [10] and React.js have adopted forms of EDP

as their primary paradigms. We believe a multi-tiered approach to EDP provides a

perfect LFHC classroom environment.

1.1 Motivation

The motivation for the thesis is to improve CS1 education, and explore ways to in-

crease student engagement with the material in a heterogeneous classroom containing

varied experiences and skill levels with programming and computing in general.

1.2 Goal

The goal of this thesis is to explore the use of Event-Driven Programming in a CS1

course and to provide a case study in using EDP to address the problem of a wide

range of skill levels in CS1 education. We wish to show that a multi-tiered approach

of single and multiplayer games, each using EDP in a purely-functional setting, can

provide a low-floor, high-ceiling environment that improves course engagement.

1.3 Contributions

This thesis provides three main contributions: 1) the theory and design of a framework

and course structure to use event-driven programming, 2) a concrete implementation

2

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

of the theory in the form of the TEASync framework, and 3) an evaluation of students’

experiences in a class of first-year computer science students. These students were

given the option to use TEASync as part of a semester-long design thinking project

and their experiences were evaluated using surveys, semi-structured focus groups, and

analysis of data from the online Integrated Development Environment (IDE) used by

students.

1.4 Research Questions

The following are research questions under study in this thesis. They will be refer-

enced throughout the thesis by referring to their RQ number.

RQ1. How can EDP in a functional context be extended to support multi-user

applications?

RQ2. What are the measurable differences in course engagement between the single

player and multiplayer groups?

RQ3. What evidence is there that this approach successfully provides a LFHC

environment for students?

1.5 Research Context

This section provides more context in which the research has taken place, including

information about McMaster University, as well as the McMaster Start Coding and

STaBL Foundation organizations.

3

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

1.5.1 McMaster Start Coding

McMaster Start Coding has been teaching K-12 and university students computer

science concepts for over 15 years. The mission of the club and accompanying research

group is to give new programmers the tools and confidence they need to pursue

STEM careers. Thanks to undergraduate and graduate student volunteers, in the

past 8 years, McMaster Start Coding has delivered free coding sessions to over 30,000

students. One area of focus is on underprivileged and underrepresented youth in the

Hamilton area. Since the COVID-19 pandemic, virtual instruction has allowed the

organization to reach beyond our geographical region into other parts of Canada and

around the world.

1.5.2 STaBL Foundation

Founded in 2022, the registered Canadian charity Fondation STaBL Foundation’s1

missionis to develop and provide scalable team-based learning tools to teach the

next billion programmers around the world. The Foundation works closely with

McMaster Start Coding to partner with community organizations in Ontario, such

as Lumenus Community Services2 and school boards to provide tailored programs to

their particular needs. STaBL is also partnering with organizations in countries like

India, Nigeria, St. Lucia, Guatemala, and Burundi to provide international outreach

to those in developing countries.
1http://stablfoundation.org
2Lumenus Community Services “offer[s] a broad range of high quality mental health, developmen-

tal, autism and early years intervention services to children, youth, families, and individuals across
Toronto.” (https://www.lumenus.ca/)

4

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
http://stablfoundation.org

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

1.6 Thesis Organization

This thesis is divided into a total of 8 chapters, including this introduction:

• Chapter 2 details motivational past work in the area of event-driven program-

ming and model-driven development.

• Chapter 3 provides an outline of functional programming practices, Hindley-

Milner type systems, the Elm language, model-driven design, as well as requisite

technologies and related tools. The information in this chapter is likely nothing

new for experienced functional programming practitioners, but is included for

those less experienced with FP.

• Chapter 4 describes the theory and architecture of the TEASync framework,

from a high-level mathematical and software architectural point of view.

• Chapter 5 delves into more details about the implementation of the framework.

• Chapter 6 describes the methodology used for the design and results analysis

of the usability study.

• Chapter 7 provides and analyzes the results of the usability study and shows

some example applications created by users of the framework.

• Chapter 8 provides conclusions, recommendations, and details of future work

in this area.

• The Appendix provides raw data and instruments such as survey questions.

5

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 2

Related Work

This chapter discusses prior work and research in the area. The purpose of this

chapter is to provide the necessary background to motivate the rest of the thesis,

including background research on Low Floor, High Ceiling (LFHC) teaching, Model-

Driven Development (MDD), requisite technologies used to create the framework

and their properties, the use of Event-Driven Programming (EDP) and Functional

Programming (FP) in education, and some related work developed in our lab.

2.1 Low Floor, High Ceiling in CS Education

The LFHC principle was first introduced in the 1970s by Seymore Papert [5, 47]. He

coined the term while describing his programming language Logo, which is considered

the first language meant to be accessible to children while being useful for adults [5,

47].

Maiorana [39] describes a low floor as being an activity (or, more generally, a

curriculum) that provides an entry point suitable to all learners. That is, the activity

6

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

or some subset of the activity should be accessible to all learners. However, at the

same time, the activity must provide a high ceiling: one which “support[s] the curiosity

of all learners” [39]. In other words, the fact that the activity is accessible to all

learners should not preclude those with the ability and interest to continue to explore

and expand upon their learning.

The LFHC design principle has been adopted by many educators and researchers,

including in the design of Scratch [66], ScratchJr [5, 57], a web-based Python IDE [4],

and as a guiding principle for CS curricula, including those aimed at K–2 [68], grade

4–6 (age 9–11) [26] and K–12 [36] students and teachers thereof.

This work will investigate the role of event-driven programming with a single

player and multiplayer option in creating a classroom environment that provides a

low floor and high ceiling for students.

2.2 Model-Driven Development

Model-driven development (MDD) is a software engineering methodology that applies

“models and model technologies to raise the level of abstraction at which

developers create and evolve software, with the goal of both simplify-

ing (making easier) and formalizing (standardizing, so that automation is

possible) the various activities and tasks that comprise the software life

cycle” [24].

Thus, MDD aims to capture the details of the software engineering process in a

single source of truth, and generate artifacts (code, documentation, etc) from this.

7

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

TEASync uses concepts from MDD in that the types created by the user are

used to generate the encoders and decoders needed for client-server communication.

This approach might best be described as “data-structure-driven” because the data

structures play the role of the model in MDD. The system parses the data structures

and generates server code and a shell that wraps around the user’s client code and

handles all communication and synchronization.

2.3 Requisite Technologies

This section lists some useful technologies that were used in the creation of the frame-

work, including their useful properties.

2.3.1 WebSockets

The WebSockets protocol allows for two-way communication between a client and a

server [20]. This was created to replace older methods such as long-polling which

abused HTTP, leaving a connection open until the server had data to send back, and

using separate connections for the client to send data to the server [20], which has

the downsides of high overhead and additional unnecessary open HTTP connections.

After an initial handshake, the client and server can send data to each other at

will using “frames”, which can be referred to as “messages”. Furthermore, WebSockets

are layered on TCP [20], which ensures the ordering of messages received by the clien-

t/server is the same order as they are received by the server/client, respectively. This

is a useful property for the TEASync framework, as will be explained in Chapter 4.

8

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

2.3.2 JavaScript Object Notation

JavaScript Object Notation (JSON) is a data format that is made to mimic data types

in the JavaScript language [51]. The full specification of JSON syntax is omitted for

brevity and because only a subset of JSON is necessary for TEASync. It can be

viewed in Pezoa et al. [51].

Since Elm compiles down to a JavaScript file when compiled, it has inbuilt support

for JSON objects, and was therefore a natural choice for human-readable communi-

cation amongst clients. Since Elm is a strongly-typed language, it is necessary to

formally supply encoders and decoders for converting data types to JSON and vice

versa. This is different from what JavaScript programmers are used to, where JSON

objects can be serialized and deserialzed with general-purpose functions. Chapter 5

describes precisely how the TEASync framework generates encoders and decoders

from the programmer’s data types, as well as the JSON objects they produce.

2.4 Event-Driven Programming

EDP is a type of programming where concurrency is based around the processing of

events [13]. This is instead of the use of IO in threads with blocking. In the case

of threads, concurrency is achieved by blocking (waiting) in a thread and resuming

the processing of another thread. According to Dabek et al. [13], the main advantage

of threads it that it allows the overlapping of IO and computation while preserving

what appears (to the programmer) to be a serial programming model. However, this

strength is also its biggest weakness, as it introduces concurrent execution where it

is not needed [13]. The programmer must thus explicitly write the logic to achieve

9

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

thread safety, and must be careful to protect shared data using locks to avoid multiple

threads trying to access it at once [13]. Since it is left up to the programmers to get

this concurrent logic right, this leads to robustness issues in software [13].

Event-driven programs, on the other hand, work by processing events, which are,

for example, the arrival of a piece of information, the result of a user interacting

with the program by clicking a button or typing on their keyboard. They work by

registering a callback, or a function to be executed when an event finally happens.

Typically, event-driven programs are structured around a central loop that waits for

events and processes them atomically, also known as indivisibly: once an event begins

processing, it continues until it is fully processed. Several authors show that the EDP

paradigm leads to more reliable software [13, 15].

A 2021 survey of EDP for education was published by Lukkarinen et al. [38].

Despite its noted benefits, new programmers face challenges while learning EDP.

Much of the difficulty comes from reasoning about their program’s behaviour. Since

execution order depends significantly on the order of events, which Woodworth and

Dann [67] calls an inversion of control, EDP is significantly different from traditional

sequential programming.

Many studies have been published about teaching EDP to students over the

decades, with Woodworth and Dann themselves first teaching EDP by starting with

console-based programs and then moving onto GUI-based programs. A few years

later, Christensen and Caspersen [9] published a framework called the Presenter

framework as another approach to teaching EDP using Object-Oriented Program-

ming (OOP).

Since then, EDP has been used to teach several different topics in CS1, including

10

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

image manipulation [64], graphics [1, 23, 65], design patterns [50], and games [22, 17,

19].

Clearly, the effects of EDP on education and practice has been an active area

of research since the 1990s [38]. Despite this, Lukkarinen et al. [38] concluded that

research in this area remains underdeveloped:

While most studies focus on bachelor’s level education in universities,

there has been substantial work in K-12 level, as well. Few courses ad-

dress EDP as their main content—rather it is most often integrated with

CS1, CS2, or computer graphics courses [. . .] Moreover, very little of de-

liberate experimental scientific research has been carried out to explicitly

address teaching and learning EDP. Consequently, while so-called expe-

rience reports, tool papers, and anecdotal evidence have been published,

this theme offers a wide arena for empirical research in the future [38].

In fact, of the 105 papers that were analyzed in this study [38], only 52 of them

provided any quantitative results. The paper goes on to suggest several areas of future

research. The three predominant languages in their review were Java, App Inventor,

and Scratch. OOP was a common focus, with functional languages rarely discussed.

The word “functional” does not even appear in the titles of any of the papers in their

citation list.

Lukkarinen et al. goes on to pose several research questions for future focus. Two

questions of particular interest in the current work are:

• “Programming Languages. How does teaching and learning EDP

happen with different programming languages? What differences

11

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

there are when learning EDP with Java, Python, C++, or some

other languages? Obviously, block-based languages have a different

learning process. Can students transfer what they have learned, for

instance, in App Inventor or Scratch into implementing EDP using

text-based languages?” [38]

• “Functional Languages. How does learning EDP differ, if students

use a functional language for building interactive applications?” [38]

2.5 Functional Programming in Education

This section discusses the role of Functional Programming (FP) in education. The

principles of functional programming are introduced in Chapter 3.

Functional programming has been taught in first-year computer science since at

least 1993, when Joosten et al. [34] discussed its benefits in introducing algorith-

mic thinking without unnecessary and distracting syntactic overhead. Their results

in comparing to an imperative language found that students using functional pro-

gramming to solve the given problem introduced over 3x more functions and had a

greatly increased coverage of the design problem than the control group of imperative

programmers [34].

Other researchers have noted FP’s closer alignment to mathematical thinking,

minimal side effects, and fewer lines of code for many tasks as being advantageous,

especially for writing AI code [59]. Chakravarty and Keller [8] argue that purely func-

tional programming—that is, functional programming in languages with immutability

and pure functions, see Section 3.3.2—have advantages for teaching concepts to first-

year classes, but only if the class focuses on concepts rather than FP itself.

12

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

It is for related reasons we have used FP to successfully introduce algebraic think-

ing [14] to K-PhD students, and have observed that it increases social cohesion and

mathematics knowledge [69]. We have also found state diagrams to be a successful

abstraction when teaching interactive programming using FP [48] (see Section 2.6.2).

2.6 Related Tools

The following is a brief summary of other tools that have been developed and support

the TEASync framework in this study.

2.6.1 GraphicSVG

The GraphicSVG framework [69] is a vector graphics framework developed to support

teaching algebraic thinking. Algebraic thinking is characterized as the cognitive skills

needed to promote algebra [35], the ability to detect patterns and put different pieces

together in a constrained way. Algebra has been shown to be a major gateway to

high school success [55].

The framework allows students to make graphics and animations declaratively,

which, especially when embedded in a functional programming language like Elm,

matches students’ intuition from their math courses [69].

TEASync was designed to allow for multiple rendering frontends, but for purposes

of the course, students used their GraphicSVG knowledge learned in the previous

semester to create their games.

13

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

2.6.2 State Diagram Tool

The State Diagram tool [48] is an MDD tool developed to allow students to visualize

Elm Model-View-Update (MVU) applications. The tool allows students to describe

an application or game as a state diagram, which is then used to generate initial Elm

MVU code, including the init, Model, update and a basic view function which can

be subsequently expanded upon in code. The tool has been used to teach students

from grade 4 up to undergraduate and graduate students. We have shown [48] that

even young students were able to interpret and understand the state diagram model

of computation and create complex adventure games and other applications.

2.6.3 STaBL.Rocks Online Integrated Development Environ-

ment

The STaBL.Rocks online Integrated Development Environment (IDE) is a system de-

veloped using the Integrated Haskell Platform (IHP) [16]. On this system, developers

can create, share, get help with, and collaborate on Elm modules and projects. It

is used by thousands of elementary-to-PhD students each year. This subsection will

detail this system, as concepts like modules, activity types, and the project system

will be relevant later in our discussion of the TEASync framework.

Overview

The system is broadly broken up into several components:

• Elm Modules Screen

• Code Compilation Screen

14

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

• Project System

• Mentor System

• Admin System

Elm Modules Screen

The Elm Modules screen lists all the modules that the programmer has created. It

allows them to create modules from pre-made activity types. Activities are templates

that have defined starting code, hidden code, library imports, and associated docu-

mentation. Students have a list of activity types they are allowed to access, which

can be controlled by administrators. For instance, student developers in a certain

class may have special access to activity types which others do not have access to.

Coding Screen

The code compilation screen (see Figure 2.1) is where students can write and test

their modules. The left-hand side of the screen (Figure 2.1 (A)) allows students to

code using an online code editor, with the output on the right (Figure 2.1 (C)). Upon

clicking the blue compile button (Figure 2.1 (B)), the code is sent to the server to be

compiled and the resulting output is shown on the right. Figure 2.1 (D) shows the

mentor chat, where developers can get help with their code from volunteer mentors,

and a resource bar, Figure 2.1 (E), shows helpful links to resources like documentation

and online YouTube-based help videos to help developers.

15

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 2.1: The STaBL.Rocks code compilation interface. In (A), developers write
their code directly in the browser-based text editor. (B) provides actions like the
blue compilation button, the ability to publish and share their code/output, the

ability to access the module’s version history, and get help with keyboard shortcuts.
(C) is the output box where the compiled program is displayed. (D) provides a

mentor help chat for developers to get help with their code. Finally, (E) has links to
several helpful resources such as a the interactive Shape Creator, YouTube help

videos, and package documentation.

16

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 2.2: STaBL.Rocks allows developers to create projects which can be shared
with others. Modules without errors can be released along with a release message,

and doing so allows other modules to import those modules.

17

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Project System

The STaBL.Rocks project system (see Figure 2.2) allows module-level collaboration

with a simple version control system. Developers can add collaborators to their

project, and can create an arbitrary number of modules to their project.

Modules inside a project have the extra option to be “released”. Releasing a module

can only be done when the module compiles successfully. A release is accompanied by

a note from the developer about changes since the last release. The released version

of the module is the version that will be imported into other modules. This allows

developers to have a safe module system where changes made by one developer do

not affect other developers. While not as powerful as version control systems like

Git, this system is designed to be simple for new developers and prevent importing

an errored module into another. Figure 2.3 shows the version history screen, with

releases listed in the second-last column.

2.6.4 Petri App Land Framework

The Petri App Land (PAL) framework was a precursor to TEASync, and was suc-

cessfully used to build applications in a collaborative environment with grade 5-12

students, including a game for learning math concepts and an application for new-

comer Canadian youth [53]. PAL was based on the concept of Petri Nets, a model

for concurrency. PAL included tools for model-based client and server code gener-

ation, but required developers to write further code on both the server and client.

Ultimately, its complexity proved difficult for new developers and much mentor in-

tervention was required. TEASync’s approach of only editing code in the client was

inspired by PAL’s shortcomings.

18

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 2.3: The module version history screen for a module inside a project.
Multiple people can edit the module at different times, and a new column indicates
if a version is a released version of the module. The latest release of the module (in
this case, version #2) is used as the version to be imported into other modules,

providing a safe way of handling module hierarchy.

19

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 3

Functional Programming

This chapter provides background information necessary to understand the context

and concepts that are needed throughout the thesis. Practitioners of FP can likely

skim or skip this chapter outright as many of the concepts should be familiar. They

are included here for informational purposes.

Firstly, in Section 3.1, we introduce functional programming as well as the common

features and properties of functional languages, many of which support the creation

and desirable properties of the TEASync framework. This is followed in Section 3.2 by

an overview, notational description of, and formal description of Hindley-Milner (H-

M) type systems, concepts upon which the TEASync framework bases its data model

and codec generation. Next, we introduce the Elm language itself in Section 3.3,

including its history, desirable properties, its H-M type system, and Elm Architecture.

We then briefly introduce the history of the Haskell language and some useful libraries

and frameworks in Section 3.4.

20

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

3.1 Functional Programming

Most programming languages that are popular1 today are of the imperative style [60].

The model of computation in these languages is to have an implicit state, which

is modified by a series of side-effects brought on by commands [29]. For instance,

consider the problem of summing the numbers from 1 to 10. To do so in the imperative

Python language, we can use the following code:

result = 0

n = 10

while n > 0:

result = result + i

n = n - 1

In this example, we are using assignment statements to modify the state of the

variables. After we run this program, the value will be stored in the result variable.

The implicit state is the value of all the variables in the program.

On the other hand, declarative programming is a type of programming where there

is no implicit state [29]. The program contains expressions or terms to be evaluated,

rather than a sequence of commands to be executed.

Functional programming is a declarative programming paradigm where a program

consists entirely of functions [29, 31]. The main program (also known as the entry

point to the program), is usually written in a function called main which itself calls

other functions in the program. Functions in these languages are more like ordinary

mathematical functions than most procedural languages, in that they are often pure
1Of the top 10 in this Statista data from 2023, the only one that is considered declarative is SQL.

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

functions without side-effects [31].

Let’s revisit the example from before. In Elm, the code would be expressed as a

function:

sumN n =

if n == 1 then

1

else

n + sumN (n - 1)

Notice in this example that we keep the state of the program explicit; that is, the

parameter n carries around the state explicitly rather than implicitly [29]. Note as

well that the if construct is an expression and not a control flow command [29]. If one

wanted to compute the sum from 1 to 10, one would simply have to call the function

using 10 as the parameter, i.e. sumN 10. The value of the expression sumN 10 when

evaluated would be equal to 55.

3.1.1 Common Features and Properties of Functional Lan-

guages

In a 1989 paper “Why Functional Programming Matters” [31], Hughes describes func-

tional programming’s ability to “push back [...] the conceptual limits on the way

problems can be modularized” [31]. Functional programming’s ability to increase

modularization, Hughes says, is “glued together” by higher-order functions and lazy

evaluation.

22

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Higher-Order Functions

Higher-order functions are functions that take other functions as input. For example,

common higher-order functions in Elm are List.map and List.fold2:

map : (a -> b) -> List a -> List b

foldl : (a -> b -> b) -> b -> List a -> b

As any seasoned functional programmer knows, the map function takes a function

and applies it to a list of values, producing a new list of values, and the foldl←↩

function takes as input a “reduction” function, a starting value and a list of elements,

and applies the given function on every element of the list, “folding” or “reducing” the

list down to a given type of value b.

Hughes argues that this first-class support for functions, allowing them to be

passed in as arguments to other functions, is a powerful form of “glue” allowing for

increased modularity. For instance, he argues, it is simple to create a sum function to

sum up a list of numbers ns:

add x y = x + y

sum ns = List.foldl add 0 ns

Lazy vs. Strict Evaluation

The second form of glue Hughes argues for is known as lazy evaluation. While Elm

is not a lazily-evaluated language, languages like Haskell support lazy evaluation.

Hughes gives the example of function composition to discuss why this is an important

feature. For instance, consider the Haskell function composition operator3:
2https://package.elm-lang.org/packages/elm/core/latest/List
3https://hackage.haskell.org/package/base-4.19.1.0/docs/Prelude.html#v:.

23

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

(.) :: (b -> c) -> (a -> b) -> a -> c

This function takes two functions, e.g. f and g and composes them together, such

that (f . g)x = f (g x). In a lazily-evaluated language like Haskell, the result of

(g x) need not be stored explicitly and instead the computations of f and g can be

interwoven [31]. This means that computations that wouldn’t be otherwise possible

to fit into memory become possible, which was particularly necessary for the era in

which the paper was written.

Under strict evaluation, on the other hand, intermediate values are always eval-

uated down to their “most evaluated” form; there are no intermediate, unevaluated

results. Elm is one such language.

Referential Transparency

Referential transparency, which is related to purity [28], is another important charac-

teristic of functional programming. While in the Python example, the = symbol is a

destructive update of the variable on the left-hand side, assigning a new value to the

variable, in functional languages = means actual equality [28]. For instance, sumN 3 =

6 in the true sense of mathematical equality. This matches programmers’ intuitions

from their mathematics courses, and anecdotally we have observed that this is more

natural for beginner programmers.

3.1.2 Advantages

In a follow-up to his original 1989 paper, called “Why Functional Programming Mat-

tered”, Hu et al. (including Hughes himself) discusses how Hughes’ vision for func-

tional programming from the original paper has since gone on to become one of the

24

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

most highly-cited in the field and more accepted in general software development. In

particular, higher-order functions and lazy evaluation have been shown to add crucial

advantages in the software development process. The authors go on to cite evidence

including the fact that many languages like Python and Java have added lambda

functions and other functional features, and the prevalence of functional program-

ming conferences as evidence of functional programming’s rise in popularity.

3.1.3 Drawbacks

While functional programming has strong foundations and draws on a wealth of math-

ematical knowledge, there are some potential drawbacks to some of these properties,

both technically and pedagogically. One potential risk for functional languages’ higher

level of abstraction is the potential for students to “learn the patterns” rather than

learning the underlying concepts [61]. In our experience, we have found that students

who already know imperative-style languages like Python are more likely to be re-

sistant to learning functional programming. This is likewise observed by [30] in his

book The Haskell School of Expression, who states “There will be a tendency to rely

on old habits when writing new programs” but that those who can resist those ten-

dencies “find that many of the things that they learn about functional programming

can be applied to imperative and object-oriented languages. . . ”. This is an approach

we preach to our students, but from our experience, Elm seems to be more quickly

embraced by the grade 4 through 12 students we visit than by the first year students

we teach.

In practice, lazy evaluation is a mixed bag in terms of its benefits. Some stud-

ies have found that lazy versions of algorithms used increased computational power

25

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

the majority of the time, leading to higher energy usage from both the CPU pack-

age and DRAM [40]. Anecdotally, lazy evaluation is sometimes a hindrance to new

programmers, especially when it comes to odd memory management behaviour and

computations “blowing up” from a memory and CPU point of view due to unevalu-

ated thunks [6]. For this reason, Elm was designed early on as a strict language, one

where all values are evaluated right away [10]. Furthermore, lazy evaluation has been

shown to even be a security risk in certain circumstances [7].

3.2 Hindley-Milner Type Systems

Hindley-Milner (HM) type systems were first described by Hindley in a 1969 pa-

per [27], and later reiterated by Milner in 1978 [42]. Although the semantics for type

inference are beyond the scope of what is needed for this thesis, the basic structure is

important to understand the encoder/decoder generation in the TEASync framework.

This section will elaborate the general definition of HM systems, and Section 3.3.4

will give a definition specific to the Elm language. In his 2000 thesis [58], Sulzmann

describes the syntax and semantics of Hindley-Milner languages. Much of the rest of

this section draws upon that thesis.

Hindley-Milner languages contain the following top-level form [58] shown in Defi-

nition 3.2.1.
Definition 3.2.1: Top-Level Form of Hindley-Milner Languages

Values v ::= x | λx . e

Expressions e ::= v | e e | let x = e in e
(3.2.1)

The different types of values are variables (represented by x) and lambda-abstraction.

26

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

The different types of expressions are values themselves, function application (where

an input parameter is applied to a function to produce a value) and finally, let ex-

pressions which are used to bind variables.

Further, the types of these values and expressions (adapted from [58]) are defined

in Definition 3.2.2.
Definition 3.2.2: Types and Type Schemes in Hindley-Milner

Languages

Types τ ::= α | τ → τ

Type Schemes σ ::= τ | ∀α.C ⇒ σ

(3.2.2)

where α represents a type variable which may or may not appear in the type

scheme σ

Hindley-Milner types are divided into two categories: Types, or monomorphic

types, and Type Schemes or polymorphic types. Monomorphic types include types

like String, Int, and Bool. Polymorphic types are types with type variables, where

the type variables are monomorphic types [58]. By convention, we follow Sulzmann’s

convention of using τ to range over monomorphic types and σ to range over polymor-

phic types. Note that as a consequence of the definition, we cannot have polymorphic

types as the input or return type of a function. This is known as Higher-Rank poly-

morphism [18], which is supported by language extensions in Haskell, but not in Elm,

and so it is not considered here.

27

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

3.2.1 Well-Typed Program Inference Rules

A type system uses inference rules to define acceptable types in the language [49].

These inference rules are of the following form:

P1 . . . Pn Name
C

(3.2.3)

where P1 through Pn are the premises and C is its conclusion [49]. These rules can be

viewed as an implication with conjunction between the premises, i.e. P1 ∧ . . .∧Pn ⇒

C, but which also can be seen to have an implicit ∀ quantifier for the seemingly-

unbound variables in the rule. The ∀ is usually left implicit for the sake of conciseness.

Furthermore, each rule is accompanied by a Name on the right-hand side.

These can be understood in two ways [49]:

• “If all of P1 through Pn hold then C holds.”

• “To prove C we must prove P1 through Pn.”

Definition 3.2.3 shows the type judgment rules for Hindley-Milner programs, as

defined by Sulzmann [58]. A typing judgment is written as Γ ` e : σ, where Γ is

a set containing free variables and their types, e is an expression in the language,

and σ is a type scheme. A typing judgment is said to be valid if it is derivable from

the typing rules [58]. The symbol Γx means the type environment not containing

the variable x, i.e. {y : σ | y : σ ∈ Γ . y 6= x} [58]. And the syntax Γx . x : σ

means extension of a type environment, i.e. inserting x into the set [58]. We must

add x into the environment when introducing new variables whether through the Let

or Abs (function abstraction) rules. fv(Γ) is a function representing the set of free

variables in Γ. Finally, [τ/α] represents substituting the sequence of type variables α

28

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

with the sequence τ . This is used to eliminate type variables in a quantification by

substituting types in their place.
Definition 3.2.3: Well-Typedness for Hindley-Milner Programs

The following type judgments describe properly-typed Hindley-Milner pro-

grams, as described by Sulzmann [58]:

Γ ` x : σ (x : σ ∈ Γ) Var (3.2.4)

Γx . x : τ ` e : τ ′
Abs

Γx ` λx.e : τ → τ ′
(3.2.5)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1 App
Γ ` e1 e2 : τ2

(3.2.6)

Γx ` e : σ Γx.x : σ ` e′ : τ ′
Let

Γx ` let x = e in e′ : τ ′
(3.2.7)

Γ ` e : τ α /∈ fv(Γ)
∀ Intro

Γ ` e : ∀α.τ
(3.2.8)

Γ ` e : ∀α.τ ′ ∀ Elim
Γ ` e : [τ/α]τ ′

(3.2.9)

where the overbar x̄ indicates that x is a vector of variables

3.3 The Elm Language

For the last several years, we have used the Elm language to teach students right from

grade 1 through PhD, and have found success in using it to teach the critical skills of

algebraic thinking [14], which is critical for success in high school and post-secondary

education, as well as teamwork and social cohesion [69]. This section introduces Elm’s

29

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

history, its favourable properties for the current work, and its architecture, which will

be relevant in Chapter 4.

3.3.1 History

Elm is a functional programming language created by Harvard student Evan Czaplicki

in 2012 [10]. The original architecture for the language was called concurrent func-

tional reactive programming (FRP), which is a general framework for “programming

hybrid systems in a high-level, declarative manner” [62]. Programmers in Elm pro-

grammed using Signals, which were queues into which messages (events) could be

inserted by one part of the program and processed by another. FRP was later re-

placed by a simplified architecture known as The Elm Architecture (TEA) in 2016,

which can be seen as a single-signal (queue) FRP system. This change was brought

on by the fact that most Elm programmers at the time used a single FRP signal to

emulate what became the Elm Architecture anyway, and thus signals were removed

and fully replaced by the Elm Architecture [11]. Section 3.3.5 discusses TEA in much

more detail.

3.3.2 Purely Functional: Immutability and Pureness

Two key properties of Elm are its immutability and pureness. Together, these prop-

erties make what is known as a purely functional language, of which Elm is one [10].

Immutability means that all values in the language are said to be immutable:

they cannot be changed once they are instantiated. Pureness, on the other hand,

is a guarantee that a given function will always return the same output when given

a specific input [10]. According to Czaplicki [10], these two properties are rare for

30

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

modern languages despite their benefits for program reliability and maintainability.

The pureness property in particular is an important property for the current work,

as will be explored in Chapter 4. Anecdotally, we have found Elm’s pureness to be

a strength for new programmers who already have this intuition from their mathe-

matics classes. Furthermore, this allows us to support their existing mathematical

instruction well. We have found great success teaching grade 4 through 12 students

about functions using a visual approach, where inputs are colours and outputs are,

for instance, a flower with petals of that colour [14].

3.3.3 Totality

Another one of Elm’s important properties is its totality guarantee. Totality ensures

that all cases in an Elm program must be covered; that is, Elm programs are guar-

anteed not to generate common runtime exceptions or crashes as in other languages4

Consider the following code snippet in Python:

def specialNumber(n):

if n == 42:

return "The answer to life , the universe , and everything"

This function is obviously partial ; what if we give it 41, or -53 or 53.5 billion? The

function is undefined for those values; it will simply return nothing. In Python, this

value is called None. While this is an extreme example, this is a problem because it

makes it possible for this code to run in production for many months or even years
4Division by zero causing NaN values are still possible, which can cause undefined behaviour.

Furthermore, infinite recursion can cause an Elm program to appear to lock up. Elm’s compiler can
detect infinite recursion in some cases, such as “obvious” circular function calls (e.g. function a calls
function b, b calls c, and c calls a, all without any form of decisions like case or if expressions),
but detecting more subtle infinite recursions is not attempted.

31

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

before the bug is encountered. In Elm, we have to make this partiality explicit in

the type system. We can convert this partial function into a total function using a

special type called Maybe:

specialNumber n =

if n == 42 then

Just "The answer to life , the universe , and everything"

else

Nothing

It is now encoded at the type level that this function might not return a value for

some inputs, i.e. it may return Nothing. We have thus converted our partial function

into a total one which will always return a value. In a practical sense, in a production

Elm application5 there are never any circumstances that would cause an exception or

a crash.

This is even more important in other types of case coverage, such as sum data types

(the simple ones of which may be known as enumerated types in other languages).

Consider the following data type representing the states of a traffic light:

type TrafficLight =

Red | Yellow | Green

From this we could try to write the following transition function to change the

states:

changeState light =

case light of

5Elm does have a function Debug.todo~:~String -> a which will crash a program when
reaching that value, but these are not allowed in optimized production applications or in published
Elm packages.

32

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Red -> Green

Green -> Yellow

Because of Elm’s totality guarantees, doing so would result in a compiler error

whereas in Haskell it would only result in a warning6:

-- MISSING PATTERNS ------------------------------- TrafficLight.elm

This ‘case‘ does not have branches for all possibilities:

11|> case light of

12|> Red -> Green

13|> Green -> Yellow

Missing possibilities include:

Yellow

This helps the programmer catch mistakes and even provides the helpful hint that

the Yellow possibility is missing. Errors like these can also be used for refactoring and

adding new functionality. Programmers start by encoding their change in the types,

and if they have designed sufficiently instructive and powerful types, the compiler

errors will provide a “treasure map” of required changes to make. This is similar to

the type-directed programming approach cited in literature [63]. This is especially

useful for projects which have a large number of modules or very large modules. With
6There is a Haskell compiler flag to enforce such warnings as errors; however, it is disabled by

default.

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

this powerful type system, Elm programs stay robust even after undergoing very large

refactoring efforts.

3.3.4 Elm’s Hindley-Milner Type System

Elm uses a Hindley-Milner type system, but is an extended version of Hindley-Milner

compared to the one discussed in Section 3.2. This section discusses Elm’s type

system’s syntax and sematics. The semantics of Elm’s type system, presented in this

chapter, are useful to underpin the automatic, model-driven encoder and decoder

generation presented in Section 5.2.

Definition 3.3.4 provides a mathematical definition of Elm types, adapted from [49].

Here are some important notational conventions:

• N denotes the set of natural numbers, starting from 0.7

• N1 = {n : N | 1 ≤ n} denotes the set of natural numbers excluding 0.

• Nj
i = {n : N | i ≤ n ≤ j} denotes the set of natural numbers from i to j

inclusively.

• V denotes the set of all symbols.

• ∀α . T ′ represents a polymorphic type with α as a type variable. In Elm,

type variables are identifiers starting with lowercase letters. As in many other

languages [44], we do not need to write the ∀α in Elm; we simply include the

type variable and the ∀ is implicit. For instance, we can write f : List a ->←↩

Maybe a without including the ∀. In Haskell, we have the option, but not the

7Payr [49] uses N to mean the natural numbers starting at 1, but we will include 0 for this thesis
and use N1 to exclude 0.

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

requirement, to include it. It is often included in the mathematical notation to

make the type rules more clear [44].

• µC is called a recursive quantifier. Using the symbol C, this is a way to write a

recursive structure in a non-recursive fashion [49]. Since it’s recursive, we need

to ensure that every algebraic type has at least one base case; that is, that at

least one of the constructors does not reference the type C itself. Thus, we

require the constraint ∃i ∈ N.∀j ∈ Nki
1 .Ti,j 6= C [49]. Example 3.3.1 shows an

example to illustrate this notation and property.

The following definition of Elm’s type system is adapted from Payr [49]8.

Definition 3.3.1: Elm Types

Let Elm types be represented by T = {T | is-elm-type T}, according to:

is-elm-type T = is-mono-type T ∨ is-poly-type T (3.3.1)

is-mono-type T = is-type-var T ∨ is-type-app T

∨ is-alg-type T ∨ is-prod-type T

∨ is-funct-type T

(3.3.2)

is-poly-type T = T has form ∀α.T ′

such that (is-mono-type T ′ ∨ is-poly-type T ′)

∧ α ∈ V

(3.3.3)

is-type-var T = T ∈ V (3.3.4)

8Payr uses a less formal definition, which has been formalized here.

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

is-type-app T = T has form C T1 . . . Tn

such that n ∈ N1 ∧ C ∈ V ∧ ∀i ∈ Nn
1 . is-mono-type Ti

(3.3.5)

is-alg-type T = T has form

µC.C1 T1,1 . . . T1,k1 | . . . | Cn Tn,k1 . . . Tn,kn

such that ∃i ∈ N1.∀j ∈ Nki
1 .Ti,j 6= C

where n ∈ N ∧ ∀i ∈ Nn
1 . ki ∈ N ∧ C ∈ V

∧ ∀i ∈ Nn
1 , j ∈ Nki

1 . is-mono-type Ti,kj ∨ Ti,kj = C

(3.3.6)

is-prod-type T = T has form {l1 : T1, . . . , ln : Tn}

where n ∈ N ∧ li ∈ V ∧ ∀i ∈ Nn
1 . is-mono-type Ti

(3.3.7)

is-func-type T = T has form T1 → T2

where is-mono-type T1 ∧ is-mono-type T2
(3.3.8)

Ordered Product Types (Tuples)

One thing missing from Definition 3.3.1 are ordered product types, known as tuples.

Their definition is shown in Definition 3.3.2, as adapted from Payr [49]. Tuples can

be considered as ordered product types where the elements are referred to by their

position [49]. Here we define them in general, but Elm restricts tuples to maximum

length 3.

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Definition 3.3.2: Labels and Ordered Product Types

Let n ∈ N1, Ti ∈ T ,∀i ∈ Nn
1 , li ∈ V .

We say that li is a label for the product type {l1 : T1, . . . , ln : Tn}.

We define:
T1 × . . .× Tn := {1 : T1, . . . , n : Tn} (3.3.9)

as the ordered product type with n components [49].

Example 3.3.1: Example Recursive Definition

The following Elm type, a polymorphic tree:

type Tree

= Leaf Int

| Branch Tree Int Tree

can be represented formally as:

µ Tree . Leaf Int | Branch Tree Int Tree

This definition is legal because there exists the Leaf constructor which does

not have Tree as one of its arguments.

Elm Type Syntax

Furthermore, the type syntax in Elm is very important for the framework, so it is

also included in Definition 3.3.4 as described by Payr [49].

Definition 3.3.3: Syntax for Type Signatures

Elm’s type signatures are defined using the following grammar from Payr [49],

adapted into EBNF [32] form. Note that <upper-var> and <lower-var> define

37

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

uppercase and lowercase variables, respectively.

<list-type-fields> ::= <lower-var> ":" <type>

{ "," <list-type-fields> }
(3.3.10)

<type> ::= "Bool"

| "Int"

| "List" <type>

| "(" <type> "," <type> ")"

| "(" <type> "," <type> "," <type> ")"

| "{" <list-type-fields> "}"

| <type> "->" <type>

| <upper-var> { <type> }

| <lower-var>

| "(" <type> ")"

| "()"

(3.3.11)

Definition 3.3.4: Syntax for Type and Type Alias Definitions

Elm’s types are defined by type and type alias statements. The following

definition is adapted from Payr [49]. Note that <upper-var> and <lower-var>

38

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

define uppercase and lowercase variables, respectively.

<list-type-constr> ::= <upper-var> { <type> }

["|" <list-type-constr>]
(3.3.12)

<type-statement> ::= "type" <upper-var> { <lower-var> } "="

<list-type-constr>

| "type alias" <upper-var> { <lower-var> }

"=" <type>

(3.3.13)

3.3.5 The Elm Architecture: Model-View-Update (MVU)

As discussed in Section 3.3.1, Elm uses a standard architecture for all programs,

known as The Elm Architecture, or TEA. TEA, also known as Model-View-Update

(or MVU) is an event-driven architecture, consisting of four main components: the

model, messages, view function, and update function9.

At a high level, The Elm Architecture is an event-driven paradigm where the

update and view functions are callback functions for updating the state and the ren-

dered output, respectively. They can be understood via the dataflow diagram in

Figure 3.1. Unlike traditional EDP, where the user has to manage the complexity of

registering events and callbacks (of which there could be an arbitrary number), it is

the Elm runtime’s responsibility to process events and call the appropriate functions
9Two other components, commands and subscriptions, are also available for advanced applica-

tions, which are discussed in the following section.

39

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

m1 : Model m2 : Model m3 : Model

msg1 :
Msgview

update

msg2 :
Msg

update

view view

Figure 3.1: Model-View-Update (The Elm Architecture) dataflow diagram. Models
are passed into the view function for rendering, and messages coming from the
user’s interactions are processed by the update function, producing a new model.

(see TEA’s lifecycle in Figure 3.2); the user’s only responsibility is to provide these

functions with a known interface.

Model

The Model is a data type defined by the user, which represents all the data that needs

to change throughout the lifetime of the Elm program. The model can be defined in

two ways: as a type declaration or as a type alias declaration. The former creates

an algebraic datatype, also known as a sum data type, e.g. the traffic light data type

in Section 3.3.3. The other way, creating it as a type alias declaration, allows the

model to be equated to another data type, including simple data types like strings or

integers, or, most commonly, a product type in the form of a record. It is common

to nest a sum type inside the product type.

The model as a product type has the advantage of allowing for easy expansion

as the program is modified. Unfortunately, product types have the drawback that it

becomes very easy for programmers to create data types with much larger cardinalities

40

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

(a) The user clicks a button, causing a
message to be sent.

(b) The Elm runtime passes the message and
the current model into the update function.

(c) The update function returns a new model
and commands to be processed.

(d) The runtime stores the model and sends
the command to the effects processor.

(e) The effects processor begins processing
the command.

(f) The new model is passed into the view
function.

(g) The view function passes back HTML to
be rendered.

(h) The Elm runtime updates the Document
Object Model (DOM).

Figure 3.2: The lifecycle of the Elm Architecture.

41

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

than is reasonable for the program they are modelling. This is especially true of

novice programmers and those who have little background in discrete mathematics

or database normalization.

Messages

Messages, which are represented by a type or type alias called Msg, are discrete actions

(events) which can be processed by the Elm runtime. Unlike for the model, messages

are most naturally represented as sum (algebraic) data types, with one constructor

for each action that could happen in the program. Messages can be sent in many

ways, including from the view function, as a result of a processed command, or as a

notification from a subscription (see Section 3.3.5). Messages are processed by the

update function to produce a new model.

View

The view function is a function which takes as input the current value of the model,

and produces as output a concrete representation of the program called the view.

This output can be in one of many forms, the most common being an HTML repre-

sentation, or in the case of the GraphicSVG library, an SVG representation. The Elm

runtime is responsible for performing the necessary manipulations to change what is

actually rendered in the browser window.

Update

The update function is a pure function which processes messages to produce a new

model. Thus, it takes as input the message and the current model and produces

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

a new model. It processes a single message at any given time. That is, messages

are atomic and are not processed concurrently. The Elm runtime is responsible for

storing the current model, calling the update function when a message is sent, and

then subsequently calling the view function with the new Model value.

Definition 3.3.5: The Elm Architecture (Simplified)

Elm programs are represented by the following values, provided here with their

corresponding types:

• type alias Model = . . .— A data type representing the data model; that

is, the values that can change as the program executes.

• type Msg = . . .— A data type representing the messages (actions) that

can occur while the program runs. These can come from user actions or

task completion (see 3.3.6).

• init : flags -> Model — The initial model of the program (flags can be

passed in from the program runner, i.e. JavaScript).

• view : Model -> Html Msg — A pure function turning the current model

into an HTML representation that can send messages of type Msg.

• update : Msg -> Model -> Model — A pure function that returns a new

model, advancing forward the state of the application.

Example 3.3.2: Simple Counting Program

The following example is a simple program that allows the user to increment

and decrement a counter:

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

type alias Model =

{ count : Int }

type Msg

= Increment

| Decrement

update : Msg -> Model -> Model

update msg model =

case msg of

Increment ->

{ model | count = model.count + 1 }

Decrement ->

{ model | count = model.count - 1 }

-- myShapes is an alias for view

myShapes : Model -> List (Shape Msg)

myShapes model =

[

text (String.fromInt model.count)

|> centered

|> filled black

|> move (0, -3)

, button green "+"

|> move (0, 30)

44

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

|> notifyTap Increment

, button red "-"

|> move (0, -30)

|> notifyTap Decrement

]

Notes

• The Model contains one field, a integer count.

• The Msg contains an increment and decrement message. The Tickmessage

(used for animation and keyboard input) is not used and is thus omitted.

• The update function returns a new model, which takes the current count

and increments or decrements it.

• The view function renders buttons and the count, shown in Figure 3.3.

It uses the notifyTap function to send a message when the user clicks on

the increment or decrement buttons.

Interacting with Impure Values

Since Elm is a pure language, it has special mechanisms to interact with impure values.

These include things like performing an HTTP request, generating random values,

and sending messages over a WebSocket connection. To achieve this, Elm provides

a mechanism called Commands, which are added onto the output type of the update

function in advanced applications. Commands are initiated by the user, processed

by Elm’s runtime asynchronously, and then results are sent back as messages to the

45

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 3.3: Counting example interface. The code for this example is given in
Example 3.3.2.

user’s update function. Commands can be batched to trigger more than one at a time.

Figure 3.2 shows the full lifecycle of the Elm Architecture, including how commands

are processed.

For actions which could be initiated without the user interacting with the pro-

gram, including timer events, browser window resize events, and received WebSocket

messages, Elm supports the notion of subscriptions. Subscriptions allow the update

function to receive messages when these events happen. Like commands, subscrip-

tions can be batched.

Definition 3.3.6 lists the new type signatures for these advanced applications. Note

the inclusion of Cmd Msg outputs (which means “Commands which send messages

of type Msg”), and the new subscriptions function, which returns a Sub Msg, or a

subscription producing messages of type Msg. The Model input to the subscriptions

46

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

function allows the programmer to turn subscriptions on or off based on the state of

the model.
Definition 3.3.6: The Elm Architecture (Advanced)

Elm programs are represented by the following values, provided here with their

corresponding types:

• type alias Model = . . . — A data type representing the data model; that

is, the values that can change as the program executes.

• type Msg = . . .— A data type representing the messages (actions) that

can occur while the program runs. These can come from user actions or

task completion (the result of commands or subscriptions).

• init~:~flags -> (Model, Cmd Msg) — The initial model of the program

(flags can be passed in from the program runner, i.e. JavaScript). This

function also supplies a command to be processed when the program

launches (which can be Cmd.none, meaning “do nothing”.)

• view : Model -> Html Msg — A pure function turning the current model

into an HTML representation that can send messages of type Msg.

• update : Msg -> Model -> (Model, Cmd Msg) — A pure function that

returns a new model, advancing forward the state of the application, and a

command to be processed (which can be Cmd.none, meaning “do nothing”.)

• subscriptions : Model -> Sub Msg — A function which returns zero or

more subscriptions, events to listen for which produce messages.

47

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

3.4 Haskell

Haskell is a purely functional, statically typed language with lazy evaluation [25]. It

uses a Hindley-Milner type inference system, similar to Elm, but with many additional

features, like user-defined type classes, higher-rank polymorphism, and support for

basic dependent types.

The Haskell language was used to create the server backend for TEASync, as well

as the online Integrated Development Environment (IDE) in which programmers can

collaboratively write, test, and deploy their applications. This section provides a

brief overview of Haskell as well as some key frameworks used in the development of

TEASync.

3.4.1 History

The Haskell language has its origins in 1987 at the FPCA conference in Portland,

Oregon, where a committee was formed to combine the features of several disparate

languages into one. In 1990, the first Haskell Report was published, motivation,

nature and process of the creation of Haskell. In 1992, the first tutorials for writing

Haskell, as well as the GHC compiler (the most widely-used Haskell compiler) were

created [46].

3.4.2 Integrated Haskell Platform (IHP)

The Integrated Haskell Platform (IHP) was created by digitally induced GmbH and

released publicly in 2020. It is a “batteries-included” web framework, combining

data modelling, server-side rendering, and database communication [16]. It follows

48

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

a model-view-controller architecture, which, like TEA, separates data from the ren-

dering and rules for updating the data. Unlike TEA, the controller is not pure and

handles side effects as IO operations. IHP was chosen for its ease of use, built-in

WebSocket support, type safety, and overall reliability.

3.4.3 Software Transactional Memory (STM)

Haskell is a concurrent language [25], and provides support for creating extremely

lightweight threads to perform tasks in parallel. Software transactional memory

(STM) is a flexible, non-blocking approach to synchronizing data across threads.

The word transactional implies operations that are atomic, running through to com-

pletion before another one can start. Empirical evidence shows that this approach

outperforms other lock-free translation methods [54]. The Haskell language provides

a library called Control.Concurrent.STM [45] which we use in the current work.

Of particular interest to the current work is STM’s handling of transactional

queues (called TQueue). TQueues are thread-safe first-in, first-out message queues,

which simplify the communication between threads, requiring no user-defined locks,

semaphores, etc. The important functions related to TQueues are shown in Defini-

tion 3.4.1.
Definition 3.4.1: STM TQueues

Below are some basic functions for the TQueue data type [45]:

• data TQueue a — A data type representing a transactional queue with

values of type a.

• data STM a — An data type representing an atomic action which returns

49

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

a value of type a.

• atomically :: STM a -> IO a — Perform an STM action (e.g. one of the

following functions) atomically, as part of an IO operation.

• newTQueue :: STM (TQueue a) — Create a blank transactional queue

which can handle values of type a.

• writeTQueue :: TQueue a -> a -> STM () — Write a value of type a into

a transactional queue. Writes happen instantly and do not block.

• readTQueue :: TQueue a -> STM a — Read the next value of type a from

a transactional queue. Blocks execution until a value arrives.

50

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 4

TEASync Framework Architecture

This chapter provides an overview of the design process of the TEASync framework’s

architecture. The discussion begins with the “fundamental theorem of TEASync”,

which describes how the idea for the framework came about, and how Elm’s MVU

pattern and its properties lends itself well to a multi-user framework. This is fol-

lowed by a detailed overview of the Local-Global Model-View-Update (LG-MVU)

model and its components. Then we discuss the concurrency design of the system,

including a discussion of optimistic vs. pessimistic model updates and how to bal-

ance correctness and responsiveness. Next, we provide an overview of alternative

synchronization schemes that were considered, and how each one maintains eventual

consistency amongst the clients. We also discuss the reasons for the default choice

of message-based synchronization with folding. Finally, we present mathematically

desirable properties for designing apps that further minimize ill effects of race condi-

tions.

51

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

4.1 “Fundamental Theorem of TEASync”

Theorem 4.1.1 is the idea on which the TEASync framework and the LG-MVU ar-

chitecture is built. We will return to this theorem throughout this chapter and the

remaining chapters as we explain 1) why this theorem is important to create a multi-

user application, 2) why Elm and its Elm Architecture is a natural fit to achieve

this, and 3) how TEASync provides the remaining necessary technology to allow the

ordering of messages sent by clients to remain intact and be broadcast to all other

clients.
Theorem 4.1.1: Fundamental Theorem of TEASync

Given n TEASync clients with identical update functions, Model types and

values for init, and an identical ordering of messages, the final value for the

model will be identical.

Fundamentally, this theorem states that if identical clients process the same mes-

sages in the same order, then they will remain synchronized, and thus the application

will be a multi-user application.

Elm and The Elm Architecture’s properties of pureness and atomicity make this

easy to achieve from the client-side perspective. An Elm application can be viewed as

a long-running fold over a sequence of messages, with init as the initial value, update

as the higher-order function, and the final model as the output. Elm’s pureness for

functions is a key part of why this theorem holds given Elm as the client language.

While the TEASync method would be realizable in any language, it would only be

able to do so if the update function were constrained by the language or manually

checked to be pure. Manually checking would need to verify that the function’s result

is only a consequence of the inputs to the function, that such inputs were pass by

52

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

value, and that the function does not modify any memory beyond its local scope.

Furthermore, Elm’s data-based event representation (messages) makes encoding

and decoding values for transport through a server a natural extension. All that

remains is the need for a server to ensure that all clients receive messages in the same

order, which we will explore later in this chapter.

4.2 Local-Global Model-View-Update (LG-MVU) Ar-

chitecture

We present a new extension to MVU, called Local-Global Model-View-Update (LG-

MVU), in which the model is split into a client-specific local portion, and a shared

global portion. This section will justify the need for LG-MVU then discuss the data

flow and components of LG-MVU.

4.2.1 Motivation

It would be possible to create a framework using the usual MVU, but with a server

backend to synchronize the model. We will refer to this as the shared MVU architec-

ture. This would indeed keep all clients in-sync and satisfy the constraints laid out

by the Theorem 4.1.1. However, it is not always advantageous to synchronize all the

state amongst all clients. Many applications beyond the most trivial ones have some

state that is local to the client in question. In shared MVU, the programmer would

need to use complicated workarounds like keeping client-specific state in a dictionary,

and even then it would be necessary to have a client ID specific to each client.

LG-MVU allows the programmer to have a clear separation of state needed for each

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

client and the state that needs to be shared. We hypothesize that this will not only

be easy for programmers to reason about, but that it will force newer programmers

to learn how to design applications with a clear separation of state. Determining if

this is true was one of the goals of the focus groups and surveys.

4.2.2 Components

LG-MVU contains several components, which are similar to MVU’s components but

with a split between local and global models and messages. Definition 4.2.1 lists all

the components of the simplified form of LG-MVU.

Definition 4.2.1: Local-Global Model-View-Update (Simplified)

LG-MVU programs are represented by the following values, provided here with

their corresponding types:

• type alias LocalModel = ... — A data type representing the local

data model; that is, values that can change locally on the client.

• type LocalMsg = ... — A data type representing the local messages

(actions) that can occur while the program runs. These can come from

user actions or task completion (see 3.3.6), and are not shared with the

other clients.

• initLocal : LocalModel — The initial local model of the program.

Flags are omitted from this simplified version.

• localUpdate : LocalMsg -> LocalModel -> GlobalModel ->

LocalModel — A pure function that returns a new local model, in

54

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

response to a local message. The global model is also passed in as an

argument for convenience. Thus, the new local model is a function of the

local message and the current local and global models.

• type alias GlobalModel = ... — A data type representing the global

data model; that is, values that can change and are synced with all clients.

• type GlobalMsg = ... — A data type representing the global messages

(actions) that can occur while the program runs. These can come from

user actions or task completion (see 3.3.6), and are shared with the other

clients, keeping all clients synchronized.

• initGlobal : GlobalModel — The initial global model of the program.

Flags are omitted from this simplified version.

• globalUpdate : GlobalMsg -> GlobalModel -> GlobalModel — A

pure function that returns a new global model, in response to a global

message. Note that a local model is not an argument, since this could

easily lead to inconsistencies amongst clients. Thus, the new global model

is a function of the global message and the current global models.

• view : LocalModel -> GlobalModel -> Html (TEASync.Msg

LocalMsg GlobalMsg GlobalModel) — A pure function turning

the current model into an Html representation that can send messages of

type TEASync.Msg (which has constructors for LocalMsg and Global).

Thus, this view function can send both local and global messages.

55

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Local Model and Messages

The local portion of LG-MVU is a model and messages that control actions specific

to the given client, i.e. not to be shared with other clients. This is often helpful for

UI actions specific to the client. One canonical example of this is buttons reacting

to the user’s mouseover. Not only is this (usually) unnecessary to share, but this is

an action that happens quite frequently and would cause extra load on the server if

shared unnecessarily. It is also an action where the user expects instant feedback,

so keeping this local to the client makes sense (see Section 4.3.1 for a discussion on

increasing the perceived responsiveness of global messages).

Global Model and Messages

The global portion of LG-MVU is a model and messages that control shared actions

and state. As evidenced by the name, the global model and messages are used for

actions and data that should indeed be shared amongst clients.

View

The view function takes in both the local and global models as input and has the

ability to produce both types of messages.

4.2.3 Data Flow

Similar to MVU, we can represent LG-MVU’s dataflow over the lifetime of a running

application using a dataflow diagram, as shown in Figure 4.1. The diagram shows

an example LG-MVU application with two clients. The global model represents the

shape displayed on the (tiny) screen, and the local state represents the colour. The

56

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

user can change the colour of their shape independently of the other users, but if

a user changes the shape, this is propagated to all clients. The view function is a

function of both the local and global models, and can send local and global messages.

4.3 Concurrent System Design

Care must be taken to ensure that TEASync, as a concurrent system, both scales

effectively and maintains correctness to satisfy the ordering property of Theorem 4.1.1.

This section will explain how this was achieved.

Figure 4.2 shows a sequence diagram of the lifecycle of a TEASync application

(using the default message-based synchronization scheme with folding). Since Elm

only processes one message at a time, the client can be viewed as its own thread pro-

cessing each message in the queue atomically. Each client has a corresponding send

and receive thread on the server, responsible for encoding/decoding and sending/re-

ceiving messages. The main thread is responsible for spawning the child threads,

but for all subsequent operations, the send and receive threads communicate directly.

This allows the system to scale and take advantage of multi-core hardware.

To ensure ordering guarantees, the server is the ground truth for message ordering.

Communication amongst threads is done using atomic queues, so all clients receive

messages in the same order. The server-imposed message order is shown as the global

message being annotated with a k variable only after being processed by the receiving

thread. The transport method between server and client must also maintain FIFO

ordering.

57

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 4.1: A two-client dataflow diagram of the Local-Global Model-View-Update
(LG-MVU) Architecture. Time proceeds from left to right, with arrows representing
the flow of data between components. Rectangles with solid outlines are instances of
the data. Each client has its own local model (top and bottom band), and all clients
share a global model (middle band). In this application, the global state represents

the shape displayed on the screen and the local state represents the colour.

58

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

<<
cr

ea
te

>>

<<
 m

n
>>

<<
 G

n
>>

<<
 m

?
>>

<<
 G

n-
1

>>

C
lie

nt
i

in
iti

al
iz

e

M
ai

nT
hr

ea
d

<<
 c

on
ne

ct
Su

cc
es

s
>>

Se
nd

Th
re

ad
i

R
ec

ei
ve

Th
re

ad
i

Se
rv

er

H
ea

dl
es

sC
lie

nt
(C

lie
nt

h)

<<
 p

ro
du

ce
 a

nd
st

or
e

G
n

>>

<<
 c

on
ne

ct
 >

>

<<
 m

n
>>

(to
 a

ll
i,

at
om

ic
al

ly
)

Se
nd

Th
re

ad
h

R
ec

ei
ve

Th
re

ad
h

<<
 m

n
>>

<<
 s

to
re

 G
n-

1
>>

<<
 p

ro
ce

ss
 m

n,
 d

el
et

e
un

co
m

m
itt

ed
>>

<<
 s

to
re

 u
nc

om
m

itt
ed

m

?
>>

<<
 d

is
co

nn
ec

t >
>

<<
 d

es
tro

y
>>

<<
 s

to
re

 G
n

>>

Figure 4.2: Sequence diagram showing the lifecycle of a TEASync client connecting,
sending a global message, and disconnecting, using the default message-based

synchronization scheme with folding.
59

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

4.3.1 Optimistic vs. Pessimistic Model Updates

Local messages can be processed right away since their ordering (and, indeed, content)

has no effect on the state of other clients. However, for global messages there is a

tension between responsiveness and accuracy, often referred to as optimistic versus

pessimistic rendering. In optimistic rendering, the message is processed right away

on the client before receiving the message back from the server, whereas pessimistic

rendering would wait to get the message back from the server before updating the

screen. The latter obviously incurs a responsiveness penalty as client requires a round

trip to and from the server prior to updating the screen. However, the former would

be in violation of the ordering property of Theorem 4.1.1.

TEASync uses an hybrid strategy that combines optimistic and pessimistic ren-

dering. Upon sending a new global message, the client in question tags the message

with its client ID, which is sent back from the server alongside each message. The

sending client stores the message in a queue of uncommitted messages. This list of

uncommitted messages is applied to the stored version of the model prior to passing it

into the view function. This has the effect of immediately showing the user the result

of the action, even before the round trip is complete. Once the message is received by

the client, it is identified via the identifier, removed from the uncommitted list and is

used to update the client’s copy of the global model as usual.

This strategy means that the sending client’s view is said to be eventually consis-

tent with the other clients. This can lead to temporary inconsistencies in the view,

particularly if the global update function and messages do not adhere to specific

properties, such as idempotency and associativity (see Section 4.5).

60

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

4.4 Alternative Synchronization Schemes

Five different synchronization schemes were considered: global model-based (MoB),

global model-diff-based (MoDB), message-based (MsB), message-based with folding

(MsBF), and message-based with distributed folding (MsBDF). This subsection will

explain, compare and contrast each of these schemes. In the end, message-based

synchronization with folding was chosen as the default scheme, due to its simplicity

and good concurrent properties, but message-based with distributed folding would

be appropriate for less mission-critical systems (such as in-development servers) and

when server resources such as memory and processing are limited compared to network

bandwidth.

The implementation and run-time complexity of these schemes depends on whether

immutable data structures are used, of the type supported by Elm (and often orig-

inally implemented in Haskell). With such data structures, modified dictionaries,

lists and records are stored as new tree types with references to all or large parts of

previous incarnations. As a result, it is cost-efficient to make small changes, keep a

list of past states and roll back when necessary. The cost for almost all operations

will be immediately low (because of the lack of copying), paid instead in the form of

garbage collection.

Throughout many of these schemes, the example message sequence in Table 4.1

will be used to analyze how the different schemes handle concurrency problems, like

race conditions.

For each case, we will give examples highlighting the strengths and weaknesses of

that method.

For the following sections, let ? be a function (used as an infix function) defined

61

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Table 4.1: Increment/Decrement Example Sequence

Time (s) Client 1 Client 2 Desired Model

0 Increment 1
0.5 Decrement 0
1 Decrement Decrement -2
1.5 Increment -1
2 Decrement -2

Table 4.2: Comparison of Synchronization Methods

Method Scalability Race Condition Implementation Communication
Chance Complexity Overhead

MoB Moderate High Low High
MoDB Low Moderate High Low
MsB Moderate Low Low Low
MsBF High Low Moderate Low
MsBDF Highest Low Moderate Moderate

Legend:
MoB = Global Model-Based

MoDB = Global Model-Diff-Based
MsB = Message-Based

MsBF = Message-Based with Folding
MsBDF = Message-Based with Distributed Folding

as the composition of two calls to a given globalUpdate function, one with each

inputted message:

? : GlobalMsg→ GlobalMsg→ GlobalModel→ GlobalModel

m ? n = globalUpdate m ◦ globalUpdate n

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Global Model-Based Synchronization (MoB)

The global model-based synchronization scheme involves sending the updated global

model to every other client upon each message being sent. This is perhaps the most

naive method of synchronizing the global model, but it has some obvious downsides.

The first is that the model usually contains a lot of data compared to the messages,

thus sending the model each time would be expensive. Figure 4.3 shows the sequence

of actions that happen with this type of synchronization.

The other obvious downside is that this makes the chance of race conditions very

high; that is, the chance of one client’s updates overwriting another’s is very high,

due to the random ordering of messages compounded by differences in round trip

message times between each client and the server. This is the factor that makes this

scheme ultimately extremely undesirable.

Figure 4.4 shows how this scheme handles the sequence of messages in Table 4.1,

illustrating the issue with this type of synchronization. At time t = 1s, there is a

race condition since both clients decrement at the same time, sending each other the

message that the model should be { count = -1 }. This effectively erases one of the

clients’ decrement actions.

Global Model-Diff-Based Synchronization (MoDB)

Like global model-based synchronization, this scheme shares data by updating the

model directly, but with diffing to only send updates of the parts of the model that

were updated by the update function. In this scheme, the client would compute the

difference between the new model and the old model (or alternatively, keep a ledger

of the changed parts), and determine which parts of the model to send updates for.

63

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

<<create>>

<< Gn >>

<< G? >>

<< Gn-1 >>

Clienti

initialize

MainThread

<< connectSuccess >>

SendThreadiReceiveThreadi

Server

<< connect >>

<< Gn >>
(to all i, atomically)

<< store Gn-1 >>

<< store Gn>>

<< destroy >>

<< store Gn
temporarily >>

<< disconnect >>

Figure 4.3: Sequence diagram showing the lifecycle of the global model-based
synchronization method. This method sends the global model each time a client
updates the global model, which has the downside of both network traffic and an

increased likelihood of race conditions.

64

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Client 1

{ count = 1}

{ count = 0 }

{ count = -1 }

{ count = 0 }

{ count = -1 }

Server Client 2

{ count = 1 }

{ count = 0 }

{ count = -1 }

{ count = 0 }

{ count = -1 }

<< { count = 1 } >>
<< { count = 1 } >>

<< { count = 0 } >>
<< { count = 0 } >>

<< { count = -1 } >> << { count = -1 } >>

<< { count = -1 } >><< { count = -1 } >>

<< { count = 0 } >>
<< { count = 0 } >>

<< { count = -1 } >>
<< { count = -1 } >>

Figure 4.4: Sequence diagram showing how the global model-based synchronization
scheme handles the sequence of messages in Table 4.1. At t = 1s there is a race
condition that causes the two clients’ decrements to cancel out (shown in red).

65

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Our simple counting example contains only one field, and thus in this simple example,

it is very similar from the Model-Based synchronization approach. For more complex

models, this would reduce communication overhead and the chance of race conditions

but at the expense of complexity. And the chance of race conditions is still higher

than other schemes, like the model-based scheme.

Figure 4.5 shows how this scheme handles the sequence of messages in Table 4.1.

Even though the clients only send updates about the parts of the model that were

modified, there is a still a race condition. This illustrates how this scheme only

improves upon the regular model-based one if messages operate on different parts of

the global model.

Message-Based Synchronization (MsB)

In pure message-based synchronization, global messages are sent by the client and

are stored in order on the server. Each time a client connects, the server sends all the

stored messages, and the client plays “catch-up” by applying all the messages to the

initial global model. This scheme is able to reduce race conditions and has a relatively

low implementation complexity but these come at the expense of network traffic and

client-side processing time. A long-running application may process thousands of

messages, or more! This would obviously cause a large startup cost for connecting

clients, that only gets worse the longer the application is running.

Message-Based Synchronization with Folding (MsBF)

In this scheme, to avoid the need for the client to process all m messages that have

been sent prior, the global model is sent to the client at the beginning, effectively

66

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Client 1

{ count = 1}

{ count = 0 }

{ count = -1 }

{ count = 0 }

{ count = -1 }

Server Client 2

{ count = 1 }

{ count = 0 }

{ count = -1 }

{ count = 0 }

{ count = -1 }

<< count = 1 >>
<< count = 1 >>

<< count = 0 >>
<< count = 0 >>

<< count = -1 >> << count = -1 >>

<< count = -1 >><< count = -1 >>

<< count = 0 >>
<< count = 0 >>

<< count = -1 >>
<< count = -1 >>

Figure 4.5: Sequence diagram showing how the global model-diff-based
synchronization scheme handles the sequence of messages in Table 4.1. At t = 1s
there is a race condition that causes the two clients’ decrements to cancel out

(shown in red). This is similar to the situation in Figure 4.4, since the two messages
operate on the same field of the model.

67

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Client 1

{ count = 1}

{ count = 0 }

{ count = -1 }

{ count = -2 }

{ count = 0}

{ count = -1 }

{ count = -2 }

Server Client 2

{ count = 1 }

{ count = 0 }

{ count = -1 }

{ count = -1 }

{ count = -2 }

{ count = 0 }

{ count = -2 }

<< Increment >>
<< Increment >>

<< Decrement >>
<< Decrement >>

<< Decrement >>

<< Decrement >>

<< Increment >>
<< Increment >>

<< Decrement >>
<< Decrement >>

<< Increment >>

<< Decrement >>

<< Decrement >>

<< Decrement >><< Decrement >>

<< Decrement >>

<< Decrement >>

<< Increment >>

Figure 4.6: Sequence diagram showing how the message-based synchronization
scheme handles the sequence of messages in Table 4.1. This scheme avoids the race
condition at t = 1s since the messages are both applied and neither is lost. This is

further aided by the fact that the global update function in this case has the
symmetry property with respect to the Increment and Decrement messages (see

Section 4.5) and they can thus be applied in any order.

68

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

folding (or “fast-forwarding”) the app’s folded state to the present value. This is

possible since, the global model is, as in MVU, a folded representation of the messages

sent before.

To specify this more formally, let G0 represent the initial model and Gi represent

the global model after processing i messages (which we’ll call m1, . . . ,mi), thus Gi =

(m1 ? m2 ? . . . ? mi) G0. At any point you could divide the folded state up into

a partially-folded form: a model and a list of messages succeeding it, for instance

Gn−3,mn−2,mn−1,mn, such that Gn = (mn−2 ? mn−1 ? mn) Gn−3.

In cases where the size of the model is much less than the size of the messages

times the number of past messages, this is advantageous from a network perspective,

and it is always advantageous from a client processing time perspective1. After that,

only the global messages are sent to the clients, and all clients are all responsible for

updating their own copy of the global model.

To ensure proper ordering even for the client that sent the global message, the

client must wait to receive its own message from the server before processing it.

Section 4.3.1 discussed how to improve responsiveness despite this challenge.

Message-Based Synchronization with Distributed Folding (MsBDF)

To eliminate the need for a headless version of the client, this scheme has the clients

send the global model back to the server when a new one is produced. Doing so would

incur the same network performance penalty as model-based synchronization, which

is undesirable. Figure 4.7 shows the lifecycle of a client using this scheme.

The amount of extra network traffic of a model of m bytes in a system with n

1In general, the model will be smaller than the messages that generated it; especially if most
messages represent modifications rather than insertions. Messages that delete data from the model
would swing the advantage even further in the favour of the model.

69

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

connected clients would be O(mn). The first way to reduce this burden would be

to spread out the model update amongst many clients. Indeed, there is no need for

every client to send back the model upon every message; the updated model (which

is equal across clients) only needs to be sent back once per message. For instance, the

client that sent the message could be responsible for sending back the model. Thus,

the added network traffic would scale only with the size of the model, i.e. O(m).

Recall that a model is a folded representation of the messages that came before.

Thus, to reduce the distribution burden further, we can introduce a “behindness

factor” b, representing how often to ask for a model update. When b = 1, the server

would request the model upon each message being sent (i.e. what was described at

the end of the previous paragraph). When b = 10, the server would request the new

model every 10 global messages. This amortizes the cost of serializing and uploading

the model across many messages.

If a client joins when the current queue contains, for instance, 8 messages (that

is, the current model is called Gn−8) then the client will be sent Gn−8 as well as

mn−7, . . . ,mn, and will be responsible for replaying the 8 messages on top of the

given global model. This means that this scheme is also robust to clients leaving. If

a client leaves before sending the global model as requested, this will not cause any

consistency problems, and another client can later update the server with the global

model.

b should be chosen to balance startup time with network traffic. One option is to

choose b to be the ratio of the average size of the model to the message. If that ratio

is 100, choosing b = 100 will, on an amortized basis, double the amount of network

traffic (every 100 messages, 100 messages’ worth of global model must be uploaded) if

70

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

<<create>>

<< mn >>

<< m? >>

<< Gn-1 >>

Clienti

initialize

MainThread

<< connectSuccess >>

SendThreadiReceiveThreadi

Server

<< connect >>

<< mn >>
(to all i, atomically)

<< store Gn-1 >>

<< process mn, delete
uncommitted>>

<< store uncommitted
global message >>

<< destroy >>

<< Gn >>

<< disconnect >>

<< store Gn >>

Figure 4.7: Sequence diagram showing the lifecycle of the message-based
synchronization scheme with distributed folding. This example has b = 1. Compared
with Figure 4.2, this scheme does not need a headless client running on the server,
but instead relies on the clients to send back the global model from time to time.

71

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

there was only one client. Adding more clients amortizes the cost across more clients,

but each one presumably adds more message burden. We estimate that a value of b

between 10 and 500 would be appropriate for most cases.

Choosing which client does the model upload is also a question. In the simple

case, the client that sends the message which fills the queue up to b will be asked for

the model. If all clients send the same number of messages on average, they will share

the model upload burden. A client sending more messages would naturally bear a

larger share of the burden. Another option would be a pure round-robin, where clients

always share the model upload burden equally. However, it may make sense to have

the clients who have sent the least messages recently update the model, which may

increase overall average system responsiveness (clients with lower outbound traffic

would be called upon to perform this task). Another option is to take the user’s

network conditions into account, and give the model upload task to those with the

best connection.

Security Implications

The security properties of this system are not a current topic of study, but would be

an interesting topic of research in the future. As with any distributed system with

untrusted clients, security is difficult to manage. In all cases, validating the content

of the messages being sent would be necessary. In the future, a data access model for

TEASync should be developed.

The model-based and distributed folding schemes would be more vulnerable to

security problems than other versions, since a malicious client could inject a fake

global model. Checksums or consensus-based strategies would help to reduce security

72

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

problems.

Final Word on Synchronization Schemes

As mentioned, global message-based synchronization with folding (MsBF) was chosen

as the implementation for its simplicity, low network overhead, and lower chance of

race conditions. All future discussion in the thesis will be about this scheme.

4.5 Desireable Properties of Global Models and Up-

date Functions

The chosen global message-based synchronization scheme reduces many issues re-

lated to concurrency. In fact, in our testing with first-year students, many of which

had little-to-no concurrency experience, there was no mention of concurrency issues

getting in the way.

Since the server orders the messages and guarantees that each client receives them

in the same order, consistency amongst clients is guaranteed. As described, message-

based synchronization eliminates the possibility of models overwriting each other.

However, due to differences in client ping times to the server it is impossible to fully

eliminate race conditions caused since messages may arrive at the server in a different

order than they were originally sent. However, designing the global update function

and messages with properties like associativity (which is automatic), symmetry and

idempotency can reduce or eliminate these issues.

73

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Table 4.3: Symmetry Example

Time (s) Client 1 Client 2 Global Model Value

0 Increment 1
0.5 Decrement 0
1 Decrement Increment 0
1.5 Increment 1
2 Decrement 0

4.5.1 Symmetry

A symmetric relation, also known as a commutative relation, is the property that the

ordering of inputs to a relation (in this case, the globalUpdate function), does not

matter.
Definition 4.5.1: Symmetric Global Update

A symmetric global update function is a function globalUpdate such that:

∀m, n . m ? n = n ? m

For instance, consider the ordering of messages in Table 4.3. At t = 1s, there is

a race condition wherein the server may process the two clients’ messages in either

order. Luckily, because Increment ? Decrement = Decrement ? Increment, eventual

consistency holds; that is, whether the counter is incremented or decremented first is

of no import. In either case, the final value of the global model is { count = 0 }, as

expected.

4.5.2 Associativity

Associativity is a property of a relation where the insertion of brackets into an oper-

ation does not change its output. It is related to the property of symmetry in that it

74

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

deals with the globalUpdate function being unperturbed by the order of messages.

It is defined mathematically in Definition 4.5.2.
Definition 4.5.2: Associative Global Update

A symmetric global update function is a function globalUpdate such that:

∀m, n, o . (m ? n) ? o = m ? (n ? o)

Since function composition is associative, this property holds automatically.

4.5.3 Idempotency

A idempotent relation is one where applying the relation multiple times does not

change the value of the model, as described in Definition 4.5.3.
Definition 4.5.3: Idempotent Global Model

An idempotent global update function is a function globalUpdate such that:

∀m . m ? m = globalUpdate m

Figure 4.8 shows an example adventure game as a state diagram, where states are

the locations a player can visit (stored in the global model) and transitions are the

pathways the players can take. Consider this TEASync application with two clients.

If the current state of the global model is Bazaar, and if both clients send a ToJungle

message at the same time (that is, the second client sends the message before the mes-

sage arrives), then both clients would receive the ToJungle message twice, once when

the global model was still Bazaar and again when the global model is already Jungle.

The former case is expected and is encoded in the state diagram, but the latter case is

75

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 4.8: Example adventure game shown as a state diagram. States are the
locations that players can visit (stored in the global model) and transitions are the

pathways a player can take (encoded as global messages).

unexpected and is undefined. However, if we design our globalUpdate function prop-

erly, the second ToJungle message should be “ignored” (i.e. should produce Jungle

as output). That is, ToJungle ? ToJungle = globalUpdate ToJungle.

4.5.4 Global Model Design Guidelines

This is both a property of the update function and also a design philosophy for the

model, which both go hand-in-hand. This can be broken up into three guidelines:

G1. Keep global messages as small as possible.

76

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

G2. Keep model updates in the globalUpdate as small as possible.

G3. Design the global model with orthogonality where appropriate.

The global model-based synchronization model was undesirable in part because

even small changes would lead to the entire model being sent to every client, with

a loss of semantic information about which parts of the model changed. This led to

an extremely high chance of race conditions wiping out other updates. The global

message-based approach helps with this, but this by itself does not guarantee desirable

properties. For instance, it would be very possible to design a global message type as

follows:

type GlobalMsg =

NewGlobalModel GlobalModel

This would effectively simulate global model-based synchronization using global

message-based synchronization. Guideline G1 deals with this. Global messages should

be designed to be as small as possible, containing all the necessary information for the

globalUpdate function to operate, but no more. This is usually “obvious” since doing

more would add work and complexity, but beginners and veteran programmers alike

often over-specify their models and messages, a problem akin to a non-normalized

database.

G2 states that functions should minimize the number of reads from and writes

to2 the global model. This helps to reduce the chance of race conditions by ensuring
2This is an abuse of language since values in Elm are immutable. So, conceptually we do not

actually overwrite anything in the model. For simplicity, we use “write” to mean a change in the
outputted model compared to the inputted one. But internally, Elm’s immutable data structures
are implemented in an efficient way, stored as tree types with references from modified data types
to their older incarnations. This means that while data structures are conceptually immutable they
do not incur the memory copying penalty of being handled that way internally.

77

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

the minimal amount of information is changed in an update. One advantage of this

architecture is that reads from the global model are cheap, since the data is always

cached on the client.

G3 deals in particular with designing models that make use of orthogonality with

respect to the different parts of the model. In combination with G2, this helps to

reduce or eliminate the possibility of race conditions by ensuring unrelated data is

unrelated mathematically. This is achieved by designing a model that makes use of

product types when necessary. A word of caution though is that this should not

supersede the general guideline to design models that reduce cardinality as much as

possible, as previously discussed in Section 3.3.5.

4.5.5 Final Word on Properties

While the properties are stated using universal quantification to match standard

mathematical notation, programs are often more complex than what can be easily

captured by formal mathematics. Often, having these properties hold fully is impos-

sible or undesirable.

For instance, we do not always want idempotency to hold for all messages. In-

deed, an adventure game with a coin counter (e.g. the game in Figure 4.8 with an

embedded version of the counting example) should not be idempotent in all cases;

picking up two coins in a row should increment the counter twice. These properties

are important guidelines to design programs that avoid strange behaviour, but they

must be balanced by the program designer. One should strive to make portions of the

program idempotent, symmetric, etc. where it is helpful to do so. In this example,

the coins and the current player location would be best encoded as a product data

78

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

type. This means that these two features are effectively orthogonal and thus a lack

of idempotency on the coin collection does not affect the player location. A more

accurate statement of the definitions in this section would therefore take into account

orthogonal parts of the model.

While the students were able to make applications without considering these prop-

erties, as their programs became more complex, they would be more likely to run into

race conditions and thus introducing these would become more and more important.

79

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 5

TEASync Framework Implementation

The purpose of this chapter is to deepen the architectural overview in Chapter 4 by

delving into more details about the implementation of TEASync. In particular, the

implementation of the Message-Based synchronization scheme with Folding (MsBF).

We begin by elaborating on the Application Programming Interface (API) that pro-

grammers can use to create their TEASync client in Elm, including the simplified

and advanced versions. Next, we discuss the implementation of the codec code gener-

ation, including the JSON and binary formats, and how testing was performed using

property-based testing techniques. Next, we present the development mode and our

online Integrated Development Environment (IDE) for collaborating on, testing, and

deploying TEASync applications.

5.1 Application Programming Interface

As is standard in the Elm language, TEASync applications are specified by populating

a record with pure functions and initial values for models. Defining those values

80

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

requires the specification of several associated types. Application developers will

often start by defining the types, but the process is usually iterative, with new features

requiring both additions to data types and modifications of functions.

5.1.1 Simplified API

The simplified API is one without the advanced TEA features subscriptions and

commands, and is suitable for beginner applications. The record type utilized is

shown in Definition 5.1.1.

Definition 5.1.1: TEASync Simple API

The following record type defines a TEASync LG-MVU application. The type

is parameterized by the local and global model and message types, and the type

of rendering (viewType). The developer provides implementations for each of

these fields.

type alias TEASyncSimpleAppConfig localModel globalModel ←↩

localMsg globalMsg viewType =

{ initLocal : localModel

, initGlobal : globalModel

, localUpdate :

localMsg -> localModel -> globalModel

-> localModel

, globalUpdate :

globalMsg -> globalModel

-> globalModel

, view :

81

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

localModel -> globalModel

-> viewType

, codecGlobalModel : Codec globalModel

, codecGlobalMsg : Codec globalMsg

}

where

initLocal is the initial value of the local model;

initGlobal is the initial value of the global model;

localUpdate is the local update function, which is usually defined as

a named function and passed in as a first-class value;

globalUpdate is the global update function, which is usually defined as

a named function and passed in as a first-class value;

view is the view function, which is parametric in its output,

allowing any type of rendering (e.g. Html, Svg, etc.);

codecGlobalModel is the generated codec for the global model, allowing the

user to select JSON or binary encoding/decoding;

codecGlobalMsg is the generated codec for the global messages, allowing

the user to select JSON or binary encoding/decoding.

Example B.0.1 in Appendix B shows an example of the simplified API for a col-

laborative version of the counting example previously shown in Example 3.3.2. The

count now becomes part of the global state, with increment and decrement actions in

the global message type. The local state keeps track of whether the buttons are being

moused over to highlight them. The key part to note is that the entire codebase is

82

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

written in Elm on the client, and the server contains no application-specific code.

5.1.2 Advanced API

Definition 5.1.2 shows the advanced API for TEASync applications, which includes

subscriptions and commands. This can be used to create more advanced applications

that require these features. Local commands and subscriptions work similarly to

normal MVU programs; that is, they remain local to the client. Global commands

and subscriptions are evaluated locally on the client before the resulting message is

sent to the server to be shared as usual.

Due to the decentralized nature of TEASync applications, there is no way to have

a global subscription (e.g. a timer) emanating from a central client, which unfortu-

nately limits the usefulness of global subscriptions. This can be slightly overcome

by designating certain clients as “hosts”, and using the local update function to send

relevant global commands on queue.

Definition 5.1.2: TEASync Advanced API

The following record type defines a TEASync LG-MVU application. The type

is parameterized by the local and global models and messages, and the type

of rendering (viewType). The developer provides implementations for each of

these fields.

type alias TEASyncAppConfig localModel globalModel ←↩

localMsg globalMsg viewType =

{ initLocal : (LocalModel , Cmd LocalMsg)

, initGlobal : (LocalModel , Cmd LocalMsg)

83

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

, localUpdate :

localMsg -> localModel -> globalModel

-> (LocalModel , Cmd LocalMsg , Cmd GlobalMsg)

, globalUpdate :

globalMsg -> globalModel

-> (GlobalModel , Cmd GlobalMsg , Cmd LocalMsg)

, view :

localModel -> globalModel

-> { title: String , body : Collage (TEASync.Msg ←↩

LocalMsg GlobalMsg GlobalModel) }

, localSubscriptions : LocalModel -> GlobalModel -> ←↩

Sub LocalMsg

, globalSubscriptions : LocalModel -> GlobalModel -> ←↩

Sub GlobalMsg

, codecGlobalModel : Codec globalModel

, codecGlobalMsg : Codec globalMsg

}

where
initLocal is the initial value of the local model and an initial local

command to run;

initGlobal is the initial value of the global model and an initial

global command to run;

localUpdate is the local update function, which is usually defined as a

named function and passed in as a first-class value, which

can produce local and global commands;

84

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

globalUpdate is the global update function, which is usually defined

as a named function and passed in as a first-class value,

which can produce local and global commands;

view is the view function, which is parametric in its output,

allowing any type of rendering (e.g. Html, Svg, etc.);

localSubscriptions

is a function instructing the Elm runtime to send local

messages when certain events happen

globalSubscriptions

is a function instructing the Elm runtime to send global

messages when certain events happen

codecGlobalModel is the generated codec for the global model, allowing the

user to select JSON or binary encoding/decoding;

codecGlobalMsg is the generated codec for the global messages, allowing

the user to select JSON or binary encoding/decoding.

In regular Elm apps, restricting the use of commands makes sense for a long

time, until “advanced” features are needed. In TEASync, commands are often used

to communicate between the local and global update functions. Thus, the simplified

API was found to quickly become restrictive to groups. A better approach may be to

use a hybrid model where the local update function can send global messages directly,

and vice versa.

The Pong code in Example B.0.2 in Appendix B shows how commands can be used

to handle more complex cases like physics. The physics rendering is done on the client

(in the local messages/model), while the global messages are used to synchronize at

85

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

key points in the simulation; namely, when the ball hits a player’s paddle. Commands

are used to send messages from the local update to the global update in this case using

a function called newMsg. This illustrates a drawback of TEASync’s distributed design

as there is no centralized time tick to allow for global simulations. This approach has

the downside of being more complicated but has clear upsides in terms of network

traffic and the smoothness of the simulation.

5.2 Encoder/Decoder (Codec) Generation

This section discusses the implementation of the codec generation, including tokeniza-

tion, parsing, a representation of Elm’s Hindley-Milner type system in Haskell, and

then how JSON and binary codec generation works.

5.2.1 Tokenization

The tokenization scheme for Elm types is shown in 5.2.1.

Definition 5.2.1: Tokens for Elm Types

Below are the tokens for the subset of the Elm language that allows parsing

types with comments interspersed:

<type> ::= "type"

<alias> ::= "alias"

<unit> ::= "()"

<eq> ::= "="

<pipe> ::= "|"

86

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

<type> ::= "type"

<lbrack> ::= "{"

<rbrack> ::= "}"

<lparen> ::= "("

<rparen> ::= ")"

<comma> ::= ","

<period> ::= "."

<colon> ::= ":"

<arrow> ::= "->"

<newline> ::= "\n"

<comment> ::= <sl-comment> | <ml-comment>

<sl-comment> ::= "--" { <text> } <newline>

<ml-comment> ::= "{-" { <text> } "-}"

<block-end> ::= ^<non-space>a

<other-token> ::= *b
a We abuse the notation of EBNF here. This token is needed to know when a definition
ends and another begins. Elm, like Haskell, uses the very left-hand column to denote new
blocks. As long as a line starts with a space, the tokens are part of the same block (e.g.
the same type). If a line starts with a non-space character, we insert a <block-end> token
so the parser has that information. We use ˆ to represent the start of a line, as in regular
expressions, and <non-space> represents any non-space character.
b We skip the rest of the Elm grammar, as we are only interested in type definitions.

87

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

5.2.2 Parsing

Definition 5.2.2 shows the parser used for Elm types, assuming the stream has already

been converted from text into a sequence of tokens.

Definition 5.2.2: Parser for Elm Types

Below is the EBNF scheme for parsing Elm types. This uses non-terminals

from Definitions 5.2.1. The parser assumes that the raw text has already been

tokenized.

<type-decl> ::= (<union-type> | <type-alias>) <block-end>

<union-type> ::= <type> <upper-var> { <type-var> } <eq>

<constr> { <pipe> <constr> }

<type-var> ::= <lower-var>

<constr> ::= <upper-name> { <simple-type> }

<simple-type> ::= <base-type> | <type-var> | <record> | <unit>

| <tuple> | <type-name>

| <lparen> <type-app> <rparen>

<base-type> ::= <bool> | <int> | <string> | <float>

<record> ::= <lbrack> { [<rec-field> { <comma>

<rec-field> }] } <rbrack>

<tuple> ::= <lparen> <smpl-or-app> [<tuple-field>

[<tuple-field>]] <rparen>

<tuple-field> ::= <comma> <smpl-or-app>

88

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

<smpl-or-app> ::= <simple-type> | <type-app>

<rec-field> ::= <lower-var> <colon> <smpl-or-app>

<type-name> ::= <upper-name> { <period> <upper-name> }

<type-app> ::= <type-name> { <type-name> }

<type-alias> ::= <type> <alias> { <type-var> } <eq> <smpl-or-app>

5.2.3 Elm Hindley-Milner Type Representation

We represent Elm’s Hindley-Milner types using the type defined in Definition 5.2.3

Definition 5.2.3: Haskell Type for Elm Types

Below is the data type used to store Elm types in the TEASync Haskell code,

after being parsed from the user’s Elm types module. These are used to generate

the encoders and decoders needed to send and receive the user’s data (including

their global model and messages).

data TypeDecl

= TUnion Name [(Name , [Type])]

| TAlias Name Type

deriving (Eq, Show)

type Name = Text

data BaseType

89

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

= TBool

| TInt

| TString

| TFloat

deriving (Eq, Show)

data Type

= TUnit

| TVar Name

| TBaseType BaseType

| TLambda Type Type

| TTypeApp [Name] Name [Type]

| TRecord [(Name , Type)] (Maybe Name)

| TTuple Type Type (Maybe Type)

deriving (Eq, Show)

Definition 5.2.4: Find Type Variables Function

Below is the definition of the findTypeVars function, defined recursively by

pattern-matching. This function recursively finds all type variables in a given

type. For simplicity, we abuse the notation a bit by allowing the function to be

named the same name despite taking in two different types.

90

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

ty := typevars ty :=

TUnion _ constrs
⋃

(c, ts) ∈ constrs .
⋃
t′ ∈ ts . typevars t′

TAlias _ t typevars t

ty := typevars ty :=

TUnit {}

TVar n {n}

TBaseType bt {}

TLambda a b typevars a ∪ typevars b

TTypeApp _ _ ts
⋃
t ∈ ts . typevars t

TRecord fs _
⋃

(f, t) ∈ fs . typevars t

TTuple a b Nothing typevars a ∪ typevars b

TTuple a b (Just c) typevars a ∪ typevars b ∪ typevars c

5.2.4 JSON Codec Generation

Tables 5.1, 5.2 and 5.3 show the definition of the JSON format used to encode/de-

code the programmer’s data types. The JSON format is described by a conceptual

function jsont, wherein we slightly abuse the function notation by using the same

name despite having different input types. In this way, it forms a sort of class of

functions distinguished by the input type, which could be implemented in Haskell

using typeclasses. The subscript t is used to denote the “input” type.

In Table 5.1, we use lambda notation to show that in cases where we have type

91

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Table 5.1: JSON Format for the TypeDecl Type

ty := TUnion name [(c1, [t1,1,...,t1,n1]),. . .,(cm,[tm,1,...,tm,nm])]
json ty := λtypevars ty → {"tag":ci,"f1":json ti,1,. . .,"fn":json ti,n}

ty := TAlias name t
json ty := λtypevars t→ json t

Table 5.2: JSON Format for the BaseType Type

ty := json ty :=

TBool true/false
TInt 0, 1, 42, etc.

TString "Hello World"
TFloat 2.7182818

variables, these become inputs to the jsont function. In Table 5.3 these are passed in

as “arguments” in the TTypeApp case. Table 5.9 illustrates some examples of generated

encoders and decoders and example JSON code to make this a bit clearer.

JSON Format for TypeDecl

Table 5.1 shows the JSON format for union type declarations and type aliases, which

recursively use formats for other kinds of types.

JSON Format for BaseType

The JSON format of Elm base types is given in Table 5.2.

JSON Format for Type

The JSON format of Elm types is given in Table 5.3.

92

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Table 5.3: JSON Format for the Type Type

ty := json ty :=

TUnit <none>
TVar n json n

TBaseType bt json bt
TTypeApp "List" m [t] [json t, ..., json t]
TTypeApp _ m [t1 . . . tn] json m json t1 . . . json tn

TRecord [(f1, t1)...(fn, tn)] _ {"f1":json t1,...,"tn":json tn}
TTuple a b Nothing {"fst":json a,"snd":json b}
TTuple a b (Just c) {"fst":json a,"snd":json b,"thd":json c}

Table 5.4: JSON Format for Select Standard Library Types

ty := json ty :=

Maybe a json (TUnion "Maybe" [("Just",[TVar "a"]), ("Nothing",[])])
Set a json (TTypeApp "List" [TVar "a"])

Dict k v json (TTypeApp "List" [TTuple (TVar "k") (TVar "v") Nothing])

JSON Format for Select Standard Library Types

The JSON format of selected standard library types is given in Table 5.4. These

include the Maybe and Set types, and the Dict types. They are implemented as

helper functions that are built upon the json functions already specified (i.e. union

types, lists, and tuples).

5.2.5 Binary Codec Generation

TEASync also has a binary format for data types, which should allow for much smaller

encodings most of the time, at the cost of not being easily human-readable. This

subsection discusses the design of this format. The design of this was inspired by Elm

creator Evan Czaplicki’s blog post detailing a future binary format for Elm types [12],

but modified to be more compact. The purpose of the binary format developed by

93

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Table 5.5: Binary Format for the TypeDecl Type

ty := TUnion name [(c1, [t1,1,...,t1,n1]),. . .,(cm,[tm,1,...,tm,nm])]
bin ty := λtypevars ty → tag ci <> bin ti,1 <> . . . <> bin ti,ni

ty := TAlias name t
bin ty := λtypevars t → bin t

Czaplicki was to eventually use the format to replace the internal representation of

Elm’s data types. As such, it was important to have constant-time lookup of any

field in the data. Since we are currently limited to always decoding the values, which

is a linear process anyway, we have optimized away the need for certain information,

like lengths, in TEASync’s binary format design.

As before, the bint notation will be used to represent the binary format.

Binary Format for TypeDecl

Table 5.5 shows the binary format for union type declarations and type aliases, which

recursively uses formats for other kinds of types. For union types, the constructor is

identified first, followed by any data fields in that constructor. This is shown by the

tagci function, which assigns a unique number to each constructor. To save space,

we adjust the number of bits needed by taking the base-2 logarithm of the number

of constructors. For instance, data types with up to 256 constructors only need

an 8-bit (single-byte) unsigned integer to uniquely identify them. Most of the sum

types created by programmers in well-written programs should fall into this category,

but code-generated programs may contain types with many more constructors. The

maximum number of constructors supported is 232, which uses a 4-byte unsigned

integer to represent the constructor.

94

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Table 5.6: Binary Format for the BaseType Type

t := Value bint Size (Bytes)

TBool true/false 01/00 1
TInt 1, 42, etc. 00 00 00 01, 00 00 00 2A, etc. 4

TString "Hello" 00 00 00 05 48 65 6C 6C 6F 4 + len(str)
TFloat 2.7182818 40 2D F8 54 8

Binary Format for BaseType

The binary format of Elm base types is given in Table 5.6. Booleans use an entire byte

to represent them, which is obviously wasteful. This is due to Elm’s bytes package

being limited to full bytes. Implementing byte packing would help to solve this, but

the added complexity of the code generation was deemed not worth it. Strings are

tagged with a 32-bit unsigned integer representing their length, allowing strings of

up to length 232, which at 4gb is an extremely generous upper limit. Floating-point

numbers use 64-bit representations by default.

Binary Format for Type

The binary format of Elm types is given in Table 5.7. As with the JSON format,

most of these are their obvious recursive definitions. Instead of needing brackets and

commas to delimit values, the bytes are simply appended to one another and their

lengths are recursively inferred (when possible) or explicitly stated if needed (e.g.

strings, lists).

Binary Format for Select Standard Library Types

The binary format of selected standard library types is given in Table 5.8. These

include the Maybe and Set types, and the Dict types. They are implemented as

95

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Table 5.7: Binary Format for the Type Type

ty := bin ty Size (Bytes)

TUnit <none> 0
TVar n binn |binn|

TBaseType bt binbt See Table 5.6
TTypeApp "List" m [t] bin t <> ... <> bin t

∑n
i |bin ti|

TTypeApp _ m [t1 . . . tn] bin m bin t1 . . . bin tn |bin m bin t1 . . . bin tn|
TRecord [(f1, t1)...(fn, tn)] _ bin t1 <> ... <> bin tn

∑n
i |bin ti|

TTuple a b Nothing bin a <> bin b |bin a|+ |bin b|
TTuple a b (Just c) bin a <> bin b <> bin c |bin a|+ |bin b|+ |bin c|

Table 5.8: Binary Format for Select Standard Library Types

ty := bin ty

Maybe a json TUnion "Maybe" [("Just",[TVar "a"]), ("Nothing",[])]
Set a json TTypeApp "List" [TVar "a"]

Dict k v json TTypeApp "List" [TTuple (TVar "k") (TVar "v") Nothing]

helper functions that are built upon the json functions already specified (i.e. union

types, lists, and tuples).

5.2.6 Examples and Size Comparison

Table 5.9 shows some example datatypes, with their JSON and binary encodings

and the corresponding sizes in bytes (not including spaces). In most cases the binary

encoding is much more space-efficient, largely due to the lack of delimiting syntax and

field names. This is especially true of union types. While additional work could make

the JSON format more efficient, it is intended to be human-readable for debugging

purposes. Even so, the binary format would often end up more compact.

There are cases where the JSON format is actually more compact, especially for

small numbers that have fewer digits than their binary encoding’s number of bytes.

In the future, the TEASync library should provide Int8, UInt16, etc. data types for

96

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

programmers to use when numbers are known to be small. These would signal to the

code generator that it can use the more efficient encodings rather than the default

ones.
Example 5.2.1: Example Datatypes

The following are some example data types. Table 5.9 shows some example

JSON and binary encodings from these types, along with their resulting sizes

in bytes and their compression ratios. Compression ratios of less than 1 indicate

an increase in data size for that example.

type TrafficLight =

Red | Yellow | Green

type GlobalModel =

{ count : Int }

type IntList

= Empty

| Cons Int IntList

type Tree a

= Leaf a

| Branch (Tree a) a (Tree a)

97

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Table 5.9: Example Datatype Encodings and Compression Ratios

Elm Datatype Example Value JSON/Hex Encoding Size (Bytes)

Int 25565
25565 5

00 00 63 DD 4 (1.25x)

List Int [1, 2, 3, 4]
[1, 2, 3, 4] 9

04 00 00 00 01 00 00 00
02 00 00 00 03 00 00 00
04

17 (0.53x)

TrafficLight Yellow
{ "tag" : "Yellow" } 13

01 1 (13x)

IntList

Cons
1959
(Cons

1966
Empty

)

{ "tag" : "Cons"
, "f1" : 1959
, "f2" :

{ "tag" : "Cons"
, "f1" : 1966
, "f2" :

{ "tag": "Empty" }
}

}

75

01 00 00 07 A7 01 00 00
07 AE 00 11 (6.8x)

GlobalModel { count = 2002 }
{ "count" : 2002 } 14

00 00 07 D2 4 (3.5x)

Tree Int

Branch
(Leaf 1887)
1955
(Leaf 1967)

{ "tag": "Branch"
, "f1": { "tag": "Leaf"

, "f1": 1887 }
, "f2": 1955
, "f3": { "tag": "Leaf"

, "f1": 1967 }
}

86

01 00 00 00 07 5F 00 00
07 A3 00 00 00 07 AF 15 (5.7x)

98

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

5.2.7 Codec Generation Conclusions

By using Elm’s strong type system, the TEASync library parses the programmer’s

Types and then generates code to encode and decode values, including the global

model and messages, any custom types the user creates, and common built-in and

standard library types. This is a model-driven development approach, where the

model is in the form of the types in the programmer’s codebase. If they change, the

code can easily be regenerated to support the new/updated types. Encoding and

decoding functions are mechanical and do not offer much pedagogical benefit beyond

being a programming exercise the first few times. By taking care of this aspect, the

TEASync framework allows the programmer to focus more on the program design

itself.

TEASync supports both a human-readable JSON format and a more compact

binary format, which can be used in different circumstances (i.e. development vs. de-

ployment). The binary format often leads to a much more compact encoding, at the

cost of much lower human readability.

5.3 Module Hierarchy

This section shows the module hierarchy for the TEASync client and server. The

client contains many modules that are either static or generated, and users do not

have to change many of them. The server is static and does not change depending on

the application, thus allowing any number of different TEASync servers to be hosted

from a given server instance.

99

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Client

The module hierarchy of the client is shown in Figure 5.1. The programmer writes

their code in the Main and Types modules, which contain the application code and

the types, respectively. The Types module is the one which is scanned to generate

the encoders and decoders, which are stored in the modules in the Codec directory.

The Main module is where the programmer fills in their application code as shown

in 5.1.1. This includes their view function, init functions, and update functions.

They can choose to break out pieces of these into other modules if they would like.

The code inside the TEASync directory is the library code for the framework, which

can be thought of as the runtime for the TEASync framework. This includes helper

functions for encoding and decoding, as well as the headless client that runs on the

server in message-based synchronization with folding. This will be broken out into a

library in the future, but was kept inline for ease of testing and iteration thus far.

100

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M
.Sc.

T
hesis

–
C
.W

.Schankula;M
cM

aster
U
niversity

–
C
om

puting
and

Softw
are

Codec Main TEASync Types

Decoders EncodersBinary

Decoders Encoders

Headless

Codec Ports Types WebSocket
Helpers

Codec

Binary Decoders Encoders

Decoders Encoders

src/

Codec Config Headless Helpers Platform

Ports

Types

WebSocket
Helpers

Legend

Library
Module Directory Application

Module
Generated
Module<User

Modules>

Figure 5.1: The module hierarchy of the TEASync client, showing TEASync library modules, directories,
application modules written by programmers, and generated modules. Developers are free to add modules and

directories to split up their code into multiple modules. These will be imported by the Main module to be
included in their final application.

101

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Server

The module hierarchy of the server is shown in Figure 5.2. It contains modules for

lexing and parsing the Elm Types module (Lexer and Parser), generating code (the

Generate directory), and the data types to make the framework work. The Web

directory contains the model-view-controller IHP code which gives the programmers

a web interface to create and manage their servers.

5.4 Development Mode

The advantage of the LG-MVU model is that it does not require a server to run;

it can be equally simulated from within a single client. Thus, TEASync includes

a development or “offline” mode, allowing the programmer to spawn any number

of virtual clients which interact as if it were running on a server. This allows the

programmer to test their application without needing to compile and run an entire

server.

Figure 5.3 shows the interface with 3 clients running simultaneously, playing a

multiplayer game of pong. The TEASync application code contains the logic for

running a virtual server, orchestrating the virtual clients and sending/receiving local

messages (specific to each virtual client) and global messages (which are mapped over

all virtual clients to update their global state). The nature of the LG-MVU model

and Elm’s pureness guarantee makes this simulation both simple to implement and

safe, since state cannot escape the scope of the update and view functions.

102

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Codec

Types

Binary

src/

Generate LoadTypesLexerCompile

Encoders Decoders

Encoders Decoders

Codec Headless TypeDecls Utils

Main Parser Types

WSServer

Legend

Library
Module Directory

Web

View Controller

Servers

Compile

Edit

Index

Show

Layout Servers

WSServer
Controller

Figure 5.2: The module hierarchy of the TEASync server, showing TEASync library
modules and directories. Some modules (especially IHP-specific ones) are omitted

for clarity and brevity.

103

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 5.3: A pong game running in development mode. In development mode,
programmers can simulate their application by spawning any number of virtual

clients (in this case three), which interact like they would when running with a real
server. This mode is available to programmers with no additional coding on their

part.

104

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

5.5 Online Collaborative Integrated Development En-

vironment

To allow programmers to easily use the framework, it was important to give them

an integrated development and deployment environment that not only allows them

to collaboratively develop their application but also allows them to deploy and test

their applications easily online. Thus, we extended our STaBL.Rocks project system

(introduced in Section 5.5.1) with TEASync support. The two innovations that made

this possible were the collaborative project system and the TEASync deployment

system, which are described here.

5.5.1 Collaborative Project System

As introduced previously, the collaborative project system is an extension of STaBL.Rocks

that allows programmers or teams of programmers to work on projects containing

multiple modules.

Modules inside a given project can import each other, as one would expect from

a project with multiple modules. However, collaborating on the module level can

have drawbacks when multiple people are editing at once. We want something that

will help protect teams against bugs, but with much lower complexity than a system

like Git. To reduce the chance of bugs in one programmer’s code affecting other

modules, we use a release system (see Figure 5.4). Releases are accompanied by a

descriptive release message and can be thought of as per-module commit messages,

signalling that a change has been made to a module. A release can only be made

if the module compiles successfully. When importing Module A into Module B, the

105

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

version of Module A used as part of the compilation will be the last-released version

of Module A. While this does not eliminate the possibility of breaking API changes in

Module A compared to what Module B expects, it does eliminate Module B breaking

when Module A is in active development.

Although it is out of scope for this thesis, we are interested in developing a sim-

plified version control system for new programmers more powerful than the present

system, but still much easier to learn than professional systems. We are currently

investigating the problems people run into with current version control systems, to

better understand the problem. The goal is not to replace industry-standard version

control tools but rather determine if there are simpler abstractions that help new

programmers, even grade school students, learn the basics of version control and why

it is important. The release system is a first attempt at this goal and will be polished

and improved over time.

5.5.2 Deployment

The next feature of the STaBL.Rocks IDE is the ability to deploy servers live, allowing

programmers to quickly perform real-world tests of their applications beyond the

simulated development mode.

As shown in Figure 5.4a, TEASync projects have the option to manage servers.

Clicking this button brings up the instance list screen shown in Figure 5.5. This screen

allows the programmer to compile and deploy their TEASync application, providing

them a link that can be shared to connect to that instance of their server. Each

application can have any number of servers, each with a unique ID and value for

the global model. For instance, a two-player game may have many lobbies (unique

106

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

(a) A TEASync project in the STaBL.Rocks project system, showing
the modules and folder of the TEASync application.

(b) The user types a release message and submits the release.

(c) Now the release shows up in the module history screen, shown as a
rocket ship icon.

Figure 5.4: The collaborative project system in STaBL.Rocks is used to create
TEASync projects.

107

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 5.5: Each TEASync project can have many server instances, each with a
unique identifier and value for the global model. Developers can share a link to

access a certain instance.

instances of the game) running at once. Many new programmers will be familiar with

this use of the word “server” from experience creating their own Discord “server”.

If the programmer clicks on a certain instance, they can see the server dashboard

shown in Figure 5.6. This dashboard allows you to start or stop the server, open the

client link to use the application, view the current value of the global model in JSON

format, and reset the model back to default, which will restart the server instance in

a fresh state.

5.6 Implementation using Functional Programming

Elm made for a very natural implementation of the LG-MVUmodel and the TEASync

client framework. While it would have been possible to implement LG-MVU in any

language, Elm provides the advantages of type safety and function pureness. This

108

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 5.6: The dashboard for server instances allows the developer to start and
stop the instance, open the client link, view the current state of the global model in

JSON format, or reset the model back to the initial state.

109

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

ensures that no state is “leaking in” from outside the functions, making the framework

extremely predictable and reliable.

On the server side, Haskell’s lightweight threading system and strong typing were

also great assets. They allowed us to have a massively concurrent framework with

very little overhead. Software transactional memory also made inter-thread commu-

nication reliable and easy to reason about, as well as allowing us to ensure ordering

guarantees.

On the front end, it would be possible to use languages other than Elm, and still

connect it to the Haskell backend, but non-pure functions open the door to bugs

that do not manifest at their source, but somewhere else in the codebase. Given the

large number of support functions (including the generated codecs, communication

layer and speculative local application of messages) the possibilities for induced errors

difficult for beginners to debug would be significant. Furthermore, features like the

virtual-client development mode were much easier due to Elm’s pure functions and

TEA’s messages which are pure data values.

110

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 6

Usability Study Methodology

This chapter discusses the design of the usability study that was conducted to gather

feedback on the TEASync framework. Section 6.1 provides an overview of the study

design and describes the goals of the study. This is followed by the proposition of

the study in Section 6.2. Next, we describe the design of the surveys in Section 6.3

followed by that of the focus groups in Section 6.4 and the compilation statistics in

Section 6.5. Finally, we discuss the threats to validity of the study.

This chapter contains some representative questions as figures. The full surveys

and focus group questions can be found in Appendices A.1, A.2, and A.3.

The results of the study are presented in Chapter 7, and conclusions and analysis

of those results in Chapter 8.

6.1 Overview and Goals

The study was run in a class of 197 first-year computer science students. Most of

the students had learned Elm (including our GraphicSVG graphics framework) in a

111

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

course the semester prior, but had little experience creating interactive applications

using Elm.

Course evaluation consisted of three midterms, a design project, and a take-home

design exam. In Midterm 1, students were tasked with adding new features to the code

generated from a state diagram (i.e., the template code for a single-player adventure

game). Midterm 2 tested knowledge of recursion by asking students to reproduce

prescribed recursive pictures using Elm code. The third midterm tested knowledge

of TEASync.

Students had two-hour, bi-weekly labs in which they would learn content (such

as the state diagram tool, TEASync, etc) or be given time to work on their projects.

In the projects, students were tasked with using the Design Thinking (DT) process

described in Anand et al. [3]. Their problem brief was to use DT to create a game that

would be appealing to older adults, with the goal of detecting Parkinson’s Disease

symptoms. Actual measurement of symptoms was outside the scope of the project,

but it was necessary to have a story justifying the suitability of the game actions for

this purpose. Students were given the option of either creating a single-player game

or a multiplayer game using TEASync.

The study, approved by McMaster’s Research Ethics board under project #6868,

consisted of four parts:

1. A pre-implementation survey to get a baseline understanding of the students’

backgrounds in computer science and creating games, and their preferences in

creating games.

2. A focus group near the end of the course to gather feedback about the framework

and the course in general.

112

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

3. A post-implementation survey focussed on their experience in the course and

using the framework.

4. Reporting of statistics from the STaBL.Rocks platform.

The two surveys and full focus group questions are included in Appendices A.1, A.2,

and A.3. Students were invited to participate in any or all parts of the study; no parts

of the study required participating in other parts. With the exception of the focus

groups, where attendance was not taken, for each part of the study they participated

in, students were given an entry in a draw to win a $20 gift card of the winner’s

choice.

6.2 Proposition

We postulate that new programmers will able to use Event-Driven Programming to

create a multi-user application with the help of tool support. Furthermore, it is

expected that those who make a multiplayer games show a measurably increased

engagement in the course compared to students who make a single-player game. As

a heuristic to measure engagement, we will use the number of interactions with the

online Integrated Development Environment (IDE).

6.3 Survey Design

The study consisted of two surveys, one given near the beginning of the course and

one given in the last week of the course.

113

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

6.3.1 Pre-Implementation Survey

The Pre-Implementation survey questions were focussed on ascertaining students’

backgrounds in terms of their experience with computer science and programming.

Combined with their eventual decisions to use the framework or not, this will help us

to understand which kinds of students choose to use the framework and why.

The Pre-Implementation survey’s questions are shown in Appendix A.1. Fig-

ure A.1 shows the informed consent questions. Section 2 contains questions about

the their past experience with computer science and game development (examples

in Figure 6.1). The full Section 2 is shown in Figures A.2 and A.3. The goal of

including these questions is to try to ascertain a link between past experience and the

ultimate choice of project, to determine if TEASync is achieving its goal of allowing

inexperienced developers to create multi-user applications and games.

Based on the user’s input about which types of games they had experience devel-

oping, Section 3’s questions were automatically tailored to ask either their experience

or their perception of the experience (for instance, the actual vs. perceived difficulty).

Figure 6.2 shows an example of this question for those who said they had made sin-

gle player games and had not made multiplayer games before. The full questions

with the four cases of single player/multiplayer experience are shown in Figures A.4

(Y/N), A.5 (N/Y), A.6 (Y/Y), and A.7 (N/N).

Finally, the Section 4 of the pre-survey contains a Likert scale question to collect

students’ baseline opinions of computer science and the course (Figure 6.3). The full

section 4 is shown in Figure A.8.

114

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 6.1: Examples of computer science experience questions in the pre-survey.
The full pre-survey Section 2 is shown in Figures A.2 and A.3.

115

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 6.2: Example past game development question from Section 3 of the
pre-survey. This example asks students who had made a single player game before

about their experienced difficulties doing so. The full questions are in
Figures A.4, A.5, A.6, and A.7

Figure 6.3: Pre-survey Likert scale question to ascertain students’ baseline
experience with computer science. The full pre-survey Section 4 is shown in

Figure A.8.

116

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

6.3.2 Post-Implementation Survey

The Post-Implementation survey was focussed on understanding the students’ choice

of whether to create a single or multiplayer game, their reasons for doing so, as well

as their general opinion of tools like the TEASync framework, STaBL.Rocks, and the

state diagram tool.

The Post-Implementation Survey’s questions are shown in Appendix A.2. Fig-

ure A.9 again shows informed consent questions, including a question allowing respon-

dents to answer Pre-Survey questions if they did not previously answer the survey,

and still receive credit for it in terms of the gift card draw.

Section 2 was designed to ascertain students’ reasons for choosing to make a single

player or multiplayer game (see Figure 6.4), and their experienced difficulties during

the course, with the same options as Section 3 of the pre-survey. Similarly to the

pre-survey, the questions were tailored based on whether they answered that they

had made a single player or multiplayer game. The full Section 2 of the post-survey

is available in Figures A.10, A.11, and A.12.

Finally, Section 3 asked the students some Likert scale questions about their ex-

perience in the project and course, and their overall impression of the project (see

Figure 6.5). The full Section 3 is shown in Figure A.13.

6.4 Focus Group Design

The focus group was designed to get more in-depth information from the students

about their experience in the course and using the TEASync framework. Due to

ethical considerations, focus groups were not run by the instructor or TAs of the course

117

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 6.4: Post-survey Section 2 question asking reasons why the student decided
to choose single player or multiplayer for their project. The full post-survey Section

2 is shown in Figures A.10, A.11, and A.12.

118

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure 6.5: Post-survey Section 3 Likert scale-based question about course and tool
experiences and overall project experience question. The full post-survey is shown

in Figure A.13.

119

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

(including Dr.Anand and Christopher Schankula), but were run by collaborators.

The identities of those who participated were not recorded, and the transcript was

de-identified before being given to the author of the current work or Dr.Anand.

Here are some selected questions from the focus group:

• What parts of the project did you enjoy? Why?

• For those who chose to make a [single player/multiplayer] game, what reasons

did your group have for choosing to do so?

• Which aspects of the project were difficult for you?

The full list of focus group questions is included in Appendix A.3. Questions were

centred around the students’ experiences in the course and using the tools, with the

goal of enriching the data from the surveys. Some questions centred around the DT

process were out of the scope of the current work.

6.5 Compilation Statistics Design

Students were given the option to opt into the use of STaBL.Rocks compilation statis-

tics for the Fall 2023 and Winter 2024 school term. These statistics include the

following:

• Mean and median number of modules created per student

• Mean and median number of times each student compiled their code

• Mean and median number of lines of code per compile

• Mean time-fairness of compiles per student (see Section 6.5.1)

120

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

• What types of multiplayer features students implement using TEASync (full

multiplayer game, single player with shared features like leaderboards, or no

multiplayer features)

The goal of these statistics is to ascertain if there was a measurable difference in

the coding habits of those who chose to create multiplayer game versus single player.

Due to limitations of ethics, unless all students in a given group opted into use of

data, it was not possible to analyze the code of an entire group. Thus, the analysis

will be focused on students, despite it being a group-based project.

While single productivity metrics like lines of code or number of compiles on their

own have been shown to be problematic [33], we hope they will provide a general

comparison between the single player and multiplayer group.

6.5.1 Time Fairness Metric

One metric of engagement is how consistently students were engaging with the Inte-

grated Development Environment. We have developed a fairness metric [56] that can

be applied to a list of data to compute a score from 0 to 1, according to how spread

out that data is. It was originally developed to compare fairness amongst teammates’

work habits, but substituting teammates for time gives us a time-fairness metric. To

compute this, we start with an unfairness metric:

unfairness(C) =

∑
c,x∈C,c>x

(c− x)

(|C| − 1) ·
∑
c∈C

c

where C is a multi-set representing the number of compiles1 each day from September
1The fairness metric can take in any set of data as input, but we have chosen the number of

compiles per day to compute a measure of engagement

121

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

5th, 2023 to December 20th, 2023 (the date of the final exam) and from January 8th,

2024 to April 18th, 2024.

The metric is 0 (meaning completely unfair) if a student compiled an equal number

of times per day, and 1 if all the work was done on one day (n compiles done on one

day, and 0 on the other days). Values between 0 and 1 correspond to the proportion of

work done on a day when doing it on another day would be more fair. For instance,

if the student did work on three days and did 10, 5 and 5 compiles each day, the

unfairness metric would be 0.25, since they did 5 extra compiles on day 1 compared

to the other two days.

Then, we compute the fairness metric as fairness(C) = 1− unfairness(C). In our

example, the fairness value would be 0.75.

6.6 Threats to Validity

There are several potential threats to validity worth noting, including, but not limited

to:

• With regards to the surveys, focus group, and the compilation statistics there

is a self-selection bias, which may skew the results since students who decide to

participate may not form a representative sample.

• Focus groups responses may be skewed by peer pressure since they are speaking

in front of a group of their peers. The focus group format itself may preclude

some students from taking part in the first place.

• Since compilation statistics are only accessible per-person due to ethics and

informed consent limitations, it may be difficult to draw conclusions about an

122

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

entire group based on individual opt-ins.

• Compilation statistics may be flawed if students decided to do part of their

development on a different IDE where statistics are not able to be collected.

• The sample size for the surveys and focus groups may preclude having enough

information to draw certain fine-grained conclusions.

• Due to ethics limitations, there is no traceability between responses in the sur-

veys and what was said in the focus groups.

• Pre-survey questions were asked again during the post-survey in case someone

wished to respond despite not having done so before. These responses may

not be comparable to those who answered it earlier in the course, since their

experiences would be different than the students who did it near the beginning.

• The word “Very” was mistakenly replaced with the word “Extremely” in the

post-survey difficulty questions, which may have skewed the difficulty results in

the course versus the previously experienced and perceived difficulty ratings.

• Difficulty ratings, as with many other questions in the survey, may be perceived

by different respondents differently.

• Metrics like average lines of code, total compiles, and the number of modules

may not be a good measure of engagement as more compiles for instance may be

an indicator that students were struggling and had to do more trial-and-error.

• Metrics like average lines of code, total compiles, are an indication of engage-

ment but there is no way to know if the choice of game type caused the increase

in engagement or not.

123

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

• The time-fairness metric gives a relative idea of how spread out the work was,

but compiles may not be a perfect measurement of work done. It is also nor-

malized by the total amount of work done: someone may do more work than

someone else but have a lower time-fairness metric. We could not apply this

metric to teams since teams may not have all opted into data use.

• Some students may have used the multiplayer framework to make a game with

no real multiplayer features, or some may have used it to simply create a shared

feature like a leaderboard. Depending on their definition of single vs. multiplayer

game, they may have answered differently.

124

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 7

Results

This chapter contains results of the usability study described in Chapter 6 as well as

some example TEASync applications made by students in their project.

Section 7.1 describes results from the pre- and post-implementation surveys. This

is followed by focus group results in Section 7.2. Section 7.3 contains results of

the data from the STaBL.Rocks code compilation analysis. Finally, analysis and

screenshots of some example TEASync applications developed by students and used

with permission are shown in Section 7.4.

7.1 Survey Results

In total, there were 26 responses to the pre-survey and 22 to the post-survey, out of a

class of 198 students. Of the 22 who answered the post-survey, 12 answered that they

were new respondents and wished to answer the pre-survey questions as part of the

post-survey. Thus, only 10 were returning from the original pre-survey. This means

a total of 38 unique individuals answered our surveys, for a response rate of 19%. In

125

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

total, 18 students attended the two sessions of identical focus groups, a participation

rate of 9%.

7.1.1 Pre-Implementation Survey

This subsection details the results of the pre-implementation survey, for which ques-

tions are shown in Figure A.1.

Demographics Results

Figure 7.1 shows the demographic results from the pre-survey as well as the students

who did the pre-survey questions as part of the post-survey. In total, there were

38 students. Being a first-year computer science course, most of the students fell

into that year of study and program. The approximately 1/4 of female-identifying

students is higher than the demographics of the program as a whole. A wide array of

programming experience was recorded.

Perceived vs. Experienced Game Creation Difficulty

Figure 7.2a shows the results of the question “Have you ever programmed your own

game?”. Based on their answer to this question, they were asked for their experienced

or perceived difficult with several aspects of creating a game.

To justify the need for a framework to improve the accessibility of multiplayer

games, students were asked what their prior experienced or perceived difficulty with

each type of game was. Students who stated they had previously made that type

of game before where asked about their experienced difficulty, whereas students who

had not were asked about their perception of difficulty. Difficulty was rated on a scale

of very difficult, difficult, neither difficult nor easy, easy, and very easy, which were

126

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

37 1

Computer Science
Other

(a) Program of Study [n=38]

35
3

1st year
2nd year

(b) Year of Study [n=38]

9

27 11

Female
Male
Non-Binary
Prefer not to answer

(c) Gender Identity [n=38]

5
4

1

6

4
5

8

< 1 month
1-3 months
3-6 months
6-12 months
1 year
2 years
≥ 3 years

(d) Programming experience prior to
university [n=38]

1010

13 4
1

0
1
2
3
4 or more

(e) Computer science courses taken in high
school [n=38]

4
83

6

12
5

Never
≤ once per month
once per week
2-3 times per week
2-3 times per month
Every day

(f) “How often do you work on your own
programming projects (outside of school)?”

[n=38]

2
10

11 3
1

1-100
100-500
500-1000
1000+
None

(g) Biggest group programming project
completed (lines of code). “None” means the
student stated they have not completed a

group programming project [n=38]

Figure 7.1: Demographic results. All results are in counter-clockwise order of the
legend, with the first one starting on the positive x-axis.

127

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

16

13
7

2

No
Yes, single player
Yes, both kinds
Yes, multiplayer

(a) “Have you ever programmed your own game?” [n=38]

Figure 7.2: Results for questions about prior experience programming single player
and multiplayer games.

assigned integer values of -2 to 2. They were asked to rate the experienced or perceived

difficulty of five aspects: designing game mechanics, designing graphics, writing the

storyline/script, programming/coding the game, and learning the tools needed to

make the game. Figure 7.3 shows the results for single player and Figure 7.3b shows

the results for multiplayer.

The rated difficulty of most aspects was higher for multiplayer games, and the

perceived difficulty was almost universally higher than the experienced difficulty. Of

note is that the programming and learning tools were perceived as much higher for

multiplayer, which suggests a need for better tools to help new programmers feel

confident making multiplayer games.

Likert Scale Results

The results of the pre-survey Likert Scale questions are shown in Figure 7.4. Questions

were purposely mixed between “positive” and “negative” wording to avoid respondents

selecting the same answer for all questions in sequence. Of note to the Design Think-

ing nature of the project is that students responded in agreement to questions like

“It is important for software professionals to understand user needs” and “I prefer to

code when it has a bigger purpose”.

128

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

−2

−1

0

1

2

GM DG
WS

PG
LT

AvGM
DG

WS PG LT Av

AspectM
ea
n
E
xp

er
ie
nc

ed
D
iffi

cu
lty

Single player Multiplayer

(a) Reported prior experienced difficulty

−2

−1

0

1

2

GM
DG WS

PG LT Av
GM

DG
WS

PG LT
Av

Aspect

M
ea
n
P
er
ce
iv
ed

D
iffi

cu
lty Single player Multiplayer

(b) Reported perceived difficulty

Figure 7.3: Reported prior experienced and perceived difficulty of aspects of single
player vs multiplayer games. -2 = “Very difficult”, -1 = “Difficult”, 0 = “Neither

difficult nor easy”, 1 = “Easy”, 2 = “Very easy”. GM = “Designing game mechanics”,
DG = “Designing graphics”, WS = “Writing the storyline/script”, PG =

“Programming/coding the game”, LT = “Learning the tools needed to make the
game”, Av = “Mean”

129

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

1
311

9
2

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(a) “I don’t feel that I understand what
Design Thinking is” [n=26]

16

8
2

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(b) “It is important for software professionals
to understand user needs” [n=26]

67

7 4
2

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(c) “Computer science and coding are forces
that can be used for evil” [n=26]

58

9 4

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(d) “I prefer to code when it has a bigger
purpose” [n=26]

67

12
1

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(e) “It is difficult to know what my user’s
needs are” [n=26]

12

9
2
3

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(f) “I enjoy programming” [n=26]

1
7

11
5

1

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(g) “I enjoy programming in Elm” [n=25]

12

10 2
2

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(h) “I am excited about the computer
science program” [n=26]

1
18

16

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(i) “I wouldn’t like to pursue a career in
computing” [n=26]

Figure 7.4: Likert Scale (pre-survey) results. “Neither” is shorthand for “Neither
agree nor disagree”

130

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

11

4 7

SP with SD
SP without SD
MP with TEASync

Figure 7.5: “For your project, did you choose to create a single-player game or a
multiplayer game?” [n=22]. SP/MP = “Single player”/“Multiplayer”, “SD” = “State

Diagram Tool”

7.1.2 Post-Implementation Survey

This section shows the results for the post-implementation survey. In total, there were

22 responses to the post-implementation survey. Of those, 12 were new respondents

who didn’t previously complete the pre-survey but wished to do so at that point, and

10 were returning respondents.

Type of Game Chosen

Figure 7.5 shows the type of game respondents said they made with their team. This

question (shown in Figure A.10) asked if they made a single player game using the

State Diagram (SD) tool, a single player game without the state diagram tool, or

a multiplayer game using TEASync. Approximately 2/3rds of respondents made a

single player game, with almost 3:1 opting to use the SD tool.

Reasons for Choosing Single player vs. Multiplayer

Figure 7.6 shows respondents’ reported reasons for choosing to make a single player

vs. multiplayer game. Table 7.1 shows the acronyms used as shortforms in this figure.

These correspond to the statements shown in Figure A.11 and A.12.

131

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

BP DT ME MI SN EP MX BM
0

0.5

1

1.5

2

2.5

2

1.86

1.5

1.21

1.43

1.14
1.21

1.07

1.71

1.29

1.86

1.71

1.14

1.43

0.71 0.71

1.9

1.66
1.62

1.71

1.33

1.24

1.05

0.95R
ea
so
n
Sc
or
e

Single player Multiplayer Weighted Average

Figure 7.6: Reported reasons for choosing single vs. multiplayer games [n=21].
Table 7.1 expands the acronyms used here. Reported here are the mean values from

a Likert scale question of agreement with the statement.

132

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Table 7.1: Shortforms of factors affecting single player/multiplayer choices

Shortform Likert Scale Statement

BP We thought we could create a Better Project by making a [single
player/multiplayer] game

DT We thought a [single player/multiplayer] game would be more appli-
cable to the Design Thinking problem

ME We thought the resulting game would be More Engaging being [sin-
gle player/multiplayer]

MI We thought it would be More Interesting to create a [single play-
er/multiplayer] game

SN We wanted to try Something New
EP We Enjoy Playing [single player/multiplayer] games, so we wanted

to make one
MX We had More eXperience making single player games
BM We thought we could get a Better Mark by creating this kind of

game

Reported Difficulties of Making Games During the Course

Figure 7.7 shows the reported difficulty level for aspects of game making, shown

divided between students who reported making single player and multiplayer games.

As before, this was rated on a scale from -2 to 2, which corresponded to “Extremely

difficult” to “Extremely easy”.

Distribution of Work Amongst Teams

Figure 7.8 shows the results to the Likert scale rating of the statement “I feel everyone

in my team contributed equally to the project”, split into students who did single

player vs. multiplayer. Single player teams were more likely to report that work was

more evenly distributed, though in both cases the results suggest some unfairness.

133

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

−2

−1

0

1

2

GM DG

WS

PG LT
Av

GM DG WS

PG
LT

Av

AspectM
ea
n
E
xp

er
ie
nc

ed
D
iffi

cu
lty

Single player Multiplayer

Figure 7.7: Reported experienced difficulty of aspects of single player vs multiplayer
games in the course. -2 = “Extremely difficult”, -1 = “Difficult”, 0 = “Neither
difficult nor easy”, 1 = “Easy”, 2 = “Extremely easy”. GM = “Designing game

mechanics”, DG = “Designing graphics”, WS = “Writing the storyline/script”, PG =
“Programming/coding the game”, LT = “Learning the tools needed to make the

game”, Av = “Mean”

34

2
1

4

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(a) Single player [n=14]

4

1 2

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(b) Multiplayer [n=7]

Figure 7.8: Responses to statement “I feel everyone in my team contributed equally
to the project” for single player vs. multiplayer game creators.

134

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

29

9
1

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(a) “The State Diagram is a useful tool for
creating single player games” [n=21]

2
6

11 2

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(b) “The State Diagram tool was difficult to
learn” [n=21]

1
3

11

3
2

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(c) “The State Diagram tool was powerful
enough to do what we wanted to do” [n=20]

Figure 7.9: Responses to Likert scale statements about the State Diagram tool.

Usefulness, Difficulty, and Power of State Diagram vs. TEASync

Figure 7.9 and 7.10 show Likert scale answers to statements about the State Diagram

tool and TEASync framework. The data is approximately equal in terms of usefulness,

but students were more likely to report that TEASync was more difficult to learn,

but also that it was powerful enough to achieve their goals.

Happiness with Decision to Create Single player vs. Multiplayer

Figure 7.11 shows the reported agreement with the statement “Our group is happy

with our decision to make the type of game we made”. TEASync teams were slightly

more likely to report being happy with their decision in the end.

135

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

6
8

6
2

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(a) “The TEASync framework is a useful
tool for creating multiplayer games” [n=22]

1
4

10

7

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(b) “The TEASync framework was difficult
to learn” [n=22]

2
7

11

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(c) “The TEASync framework was powerful
enough to do what we wanted to do” [n=20]

Figure 7.10: Responses to Likert scale statements about the TEASync framework.

27

3
2

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(a) Single player [n=14]

2
3

2

Strongly agree
Agree
Neither
Disagree
Strongly disagree

(b) Multiplayer [n=7]

Figure 7.11: Responses to statement “Our group is happy with our decision to make
the type of game we made”, for single player vs. multiplayer game creators.

136

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

4
7

3
1

2 - Enjoyed very much
1 - Enjoyed
0 - Indifferent
-1 - Did not enjoy
-2 - Did not enjoy at all

(a) Single player [n=15]

3

3 1

2 - Enjoyed very much
1 - Enjoyed
0 - Indifferent
-1 - Did not enjoy
-2 - Did not enjoy at all

(b) Multiplayer [n=7]

Figure 7.12: Responses to “Compared to other projects, how did did you enjoy the
1XD3 project?” for single player vs. multiplayer game creators.

41

2
1 2

1

(a) Single player [n=15]

5

1
1

3 years or more
2 years
1 year
6-12 months
3-6 months
1-3 months
Less than 1 month
None

(b) Multiplayer [n=7]

Figure 7.13: Programming experience versus choice of single/multiplayer

Overall Enjoyment of Project

Figure 7.12 summarizes the responses to the question “Compared to other projects,

how much did you enjoy the 1XD3 project?”. Students who chose to go multiplayer

were more likely to report a higher overall enjoyment of the project.

7.2 Focus Group Results

In total, 18 students participated in the focus groups, for a participation rate of 9%.

This section provides a summary of findings that help to give some context and depth

to some of the survey questions. Quotes have been edited to remove filler words such

as “like” and “umm” where it does not change the meaning.

137

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

7.2.1 Barriers to Choosing Multiplayer Games

Students were asked their reasons for choosing single player versus multiplayer games

for their project.

TEASync was introduced into the course about 4 weeks in, and this seems to have

prevented some students from choosing to use it. One big sentiment echoed was that

the timing of introducing TEASync affected their decision: “the main reason that

we wanted to do a single player game is because we had already designed the game

before we learned about the capabilities of TEASync.” Another student echoed this

sentiment: “I would like to do multiplayer [...] if it was introduced a bit earlier on”.

Another barrier was the perceived difficulty of the model, which hampered some

students, especially if they were newer to coding. One student stated they thought it

“favours students who have had a bigger background in computer science” which made

them feel they “didn’t even know what to tip my toes in it because of the the complex

nature it involved.” Another student said they were going to try to “make our game

to be multiplayer after the full system was introduced to us, but then we found out

it’s actually way more complex and will increase our workload.” This shows that the

LG-MVU model used for concurrency is still perceived as too difficult, stopping some

students from choosing to use the framework.

The logistics of handling debugging a multiplayer application was also stated as a

barrier: “Those things are more complex [...] the server we need to compile it several

times. We are not the one who are maintaining the server, but at that process of

compiling and going back through your debugging and everything.” While the student

acknowledged that the servers can be deployed automatically, this process was still

found to be too complicated.

138

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

A lack of documentation was cited as difficulty for the groups as well: “Would

have been really useful to have more documentation in some sense on the things that

are doable or possible with TEASync. And so I think the lack of documentation in

some sense restricts us from knowing what’s there and what’s kind of available to us”.

This sentiment was echoed for Elm itself: “when we are not with our instructor like

just very hard to find resources online to figure out how this stuff ourselves.”

Finally, students also shared that they chose to do single player based on their DT

interviews: “One of the reasons for that is we found in our interviews that multiplayer

aspects aren’t always very popular among, some people obviously enjoy them, but for

other people they prefer to find social interaction through their games as an optional

thing.”

7.2.2 Reasons for Choosing Multiplayer

On the other hand, some groups decided to pursue a multiplayer project based on

interviewee feedback: “We found that the interviewees really liked the social aspect,

and we thought it would be a good idea for older people, especially seeing [...] what

happened during COVID [...]”.

One student praised TEASync’s ability to spin up servers on the fly for testing: “I

thought it was super cool that they gave us servers, so I didn’t need to set anything

up. They just click and run. It was buggy at first, but then I just click the button

and it just works and then I could give them a link that. It’s super cool hey now it’s

on your computer and now we play. That’s kind of cool to see something you build

come to life and see people actually enjoy the products you make.”

A student stated that they enjoyed testing their multiplayer games, given their

139

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

interactive nature: “I quite enjoyed playing the games that we made [...] I ended

up testing with my family.” They jokingly added, “They gave me a lot of negative

feedback. My mom is my biggest hater, but yeah, it was really fun nonetheless.”

While some students found TEASync to be complex, others were pleasantly sur-

prised by its simplicity: “Yeah, I thought at the start learning TEASync would be

very difficult, like, it’d be very difficult to kind of get started with it. But I was

pleasantly surprised at how easy it was to actually get started with it,” adding that

“It just built off of what we were using before with the single player into using it

for multiplayer” and that “I enjoyed using the multiplayer in the global model in

this project.” One student found the LG-MVU model to be a good introduction to

multi-user applications: “I thought it was actually a pretty good introduction to the

idea of a local versus global models in multiplayer games and just like was a good

introductory understanding of how they worked.”

Finally, a student remarked that creating a multiplayer game was more satisfying

than a single-player game: “One thing I would note is that this concept of satisfaction

for having things work properly in the game. It definitely feels as though it is more

present in the multiplayer framework because generally in multiplayer games they are

a lot more concrete because you generally play them with other people, which means

that since it’s shared with others, it’s more relevant than single player applications

would be.”

7.3 Code Compilation Statistics Results

A total of 36 students opted into use of data. Of those 36 students, 20 also filled out

the the post-implementation survey and therefore specified which type of game their

140

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

22

5
2

7

SP
MP
LB
NoMP

Figure 7.14: Single player vs. use of TEASync framework [n=36] (SP=Single player
game, MP = TEASync game with multiplayer features, LB = Single player game

with TEASync leaderboard, NoMP = TEASync game without multiplayer features).

group made. The other 16 did not fill out the post-implementation survey so their

group’s choice was gleaned from the STaBL.Rocks data. The data was used to look

more specifically into uses of the multiplayer framework. For instance, some teams

used TEASync but did not include any multiplayer features in their application.

Anecdotally, students reported that they wanted to use TEASync so they would have

the option to add multiplayer features later. Others used TEASync to make a single

player game that had shared data like a leaderboard, which was an example given in

class.

Table 7.2 summarizes the compilation data for both types of students: students

who made a single player game (SP) and those who made a TEASync game (MP).

Statistics are split across semester 1 (S1) and semester 2 (S2). Most metrics are

higher for students who decided to make a multiplayer game for their project. One

notable exception is the median lines of code per compile, which is smaller despite

the fact that the mean is higher. The mean and median time fairness values were

remarkably consistent at around 0.13, indicating a high concentration of work, likely

around due dates and the twice-weekly lab days. There is a slight uptick in the

mean time fairness for the MP group in semester 2, indicating that some enthusiastic

141

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

students were highly engaged by the multiplayer framework, which is consistent with

other data that multiplayer students skewed towards higher levels of programming

experience.

7.4 Student TEASync Applications

This section includes some examples of TEASync applications developed by the stu-

dents in the class, as well as some statistics about them. Table 7.3 summarizes some

statistics for these three applications: Garlic Phone, Tap Scotch, and Brushstroke

Journey.

7.4.1 “Garlic Phone” Game

The Garlic Phone game (Figure 7.15) is a multiplayer game where players draw

images, have them divided in half, and then other players take turns completing

the drawing. The game has a complex local portion in comparison to its global part,

which was for sharing the drawings amongst players. In this way, this example used

TEASync to facilitate a shared experience. Sharing the vector graphics requires many

floating-point numbers and this app’s network efficiency therefore benefits greatly

from the binary encoding format.

7.4.2 “Tap Scotch” Game

Tap Scotch is a multiplayer game created by another team of first-year students.

Players compete to tap the randomly-generated tiles as fast as possible. Players

can see where their opponent is as an outlined tile if they are behind. The game is

142

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Table 7.2: Data from STaBL.Rocks IDE [n = 36 users]

Statistic Semester SP MP All

Mean Compiles
S1 3511 3494 3505
S2 3362 3645 3472

Both 6873 7140 6977

Median Compiles
S1 2739 2729 2739
S2 2696.5 2866 2785

Both 5709 6097.5 5782

Mean Modules Created
S1 51 53 52
S2 134 179 152

Both 185 233 204

Median Modules Created
S1 52.5 49.5 51.5
S2 120.5 153 127.5

Both 171.5 217 179.5

Mean LOC/Compile
S1 163 146 157
S2 278 360 310

Both 233 252 240

Median LOC/Compile
S1 140.5 128 134.5
S2 218 219.5 219

Both 166.5 155.5 162.5

Mean Time Fairness
S1 0.126 0.129 0.127
S2 0.133 0.139 0.135

Both 0.130 0.130 0.130

Median Time Fairness
S1 0.126 0.130 0.127
S2 0.131 0.129 0.130

Both 0.129 0.130 0.129

143

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

(a) The main menu allows players to play or
see the other players’ drawings.

(b) Users can draw an image, which will be
sent to all the other players.

(c) Once the image is split in half, other
players try to complete the image.

(d) Multiple players can play together,
sharing the images amongst themselves.

Figure 7.15: Screens in the Garlic Phone application.

Table 7.3: Selected App Statistics

Statistic GarP TapS BruJ Counting Example

Main Module LOC 1233 847 907 46
Types Module LOC 261 45 65 30
Total LOC 3848 892 972 76
Custom Types 27 5 2 1
Custom Modules 20 0 0 0
LocalMsg Constructors 30 10 28 1
LocalModel Fields 40 10 27 1
GlobalMsg Constructors 3 8 1 1
GlobalModel Fields 2 5 9 1

144

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

intended to measure reaction times of players. The game includes a lobby system

that allows multiple pairs of opponents to play on the same server instance at the

same time. Figure 7.16 shows some screens from the game.

7.4.3 “Brushstroke Journey” Game

Brushstroke Journey is another game created in the class, where players travel through

the game world and complete drawings to advance to the next part of the game.

The game is intended to measure the accuracy of the players’ mouse movements.

This game, while largely single player, utilizes TEASync to share leaderboard data.

Figure 7.17 shows some example screens from the game.

145

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

(a) The main menu allows players to access
a tutorial, settings and the game itself.

(b) The game has a lobby system which
allows any number of pairs of clients to

create games together. In this case, player 3
is waiting for player 4 to join, while player 1

and 2 play concurrently.

(c) Once the second pair joins, they can
play their own instance of the game

concurrently to the first pair.

Figure 7.16: Screens in the Tap Scotch application.

146

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

(a) The main menu allows players to play
the story mode, creative mode, or log out.

(b) The story mode takes players through a
story that is completed by filling out

incomplete drawings.

(c) Players paint the incomplete drawings
according to hints given in gray.

(d) Players can submit their scores to a
leaderboard using TEASync.

Figure 7.17: Screens in the Brushstroke Journey application.

147

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 8

Conclusions

This chapter presents some conclusions from the work, ways in which the data can be

interpreted to answer the research questions, and the next steps and future research

directions.

8.1 Summary

TEASync successfully implements a functional, event-driven framework for creating

multi-user applications and games. The framework leverages Elm as the client lan-

guage, which provided useful properties like a pureness guarantee, strong typing, and

its model-view-update architecture. Combined with Software Transactional Memory

(STM) in the backend Haskell language, this helped to ensure consistency amongst

the clients. We demonstrated that this framework can be used by first-year computer

science students to build non-trivial applications with multi-user functionality.

148

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

8.2 Research Questions

This section answers the research questions discussed in Section 1.4. Some of these

questions were answered earlier in the thesis, while some can be answered at least in

part from the data presented in Chapter 7.

8.2.1 RQ1. How can EDP in a functional context be extended

to support multi-user applications?

This work shows that the model-view-update paradigm can be extended to work

for multi-client applications, provided that the system can guarantee the ordering

of messages delivered to clients. Several different ways of doing so were compared

in Chapter 4. MVU can be implemented in a shared fashion directly, allowing all

the messages (and therefore the entire model) in an MVU application to be shared

amongst all clients. However, a useful abstraction is to separate out local and global

portions to allow some state to be local to each client, which led to the creation of

LG-MVU.

Section 4.4 discusses several different schemes for maintaining consistency, though

some are more likely to lead to race conditions manifesting as lost message updates.

Message-based synchronization with fast-forwarding was chosen as the scheme to be

implemented due to its low complexity, low network traffic requirements, and good

concurrent properties.

Elm’s pureness guarantees, strong typing and total functions were helpful in en-

suring several properties. Section 5.6 discusses how this pureness helps to ensure that

149

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

no bugs “leak in” from outside due to side-effects, which is helpful for new program-

mers and for testability in general. Furthermore, the pureness guarantee is essential

to ensuring consistency of clients’ global models. It is imperative that the global

update function is just that, a function, determined uniquely by its inputs.

8.2.2 RQ2. What are the measurable differences in course

engagement found between the single player and multi-

player games?

Students making multiplayer games for their projects were also more likely to report

that they were happy with their decision to do so compared to those who did single

player (Figure 7.11). Multiplayer game builders also reported a greater degree of

project enjoyment (Figure 7.12). This is consistent with data from the online IDE,

which showed a slightly higher mean and median number of compiles, a much larger

number of modules created, and a slightly higher number of lines of code per compile

for those who chose multiplayer games. Whereas the average number of compiles was

actually lower in the second semester for single player game creators, it went up in

the second semester for those who made multiplayer games.

The “time fairness” metric did not show any significant difference, especially in the

median. Anecdotally, some students really took to the multiplayer game framework,

spending a lot of time refining their games, making the mean slightly higher. This

metric overall does not tell a strong story other than that work (at least in terms

of compiles) is highly-concentrated (likely on lab and due dates) and that future

work should look at how to encourage students to spread out their work more. We

saw very similar time fairness metrics when analyzing the compile data of Capstone

150

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

students [56]. More work should be done to see if this fairness metric behaves well or

conveys much information with so many data points.

8.2.3 RQ3. What evidence is there that this approach suc-

cessfully provides a LFHC environment for students?

There was evidence that the multiplayer framework allowed for a higher ceiling, keep-

ing students more engaged with the course according to the metrics of code compi-

lations in the WebIDE. The results of the survey indicates that students who chose

to use TEASync had more prior programming experience than those who did not,

suggesting it was an outlet for those who wished to push into new territory.

While some students were able to create complex multiplayer games, it is clear

there are still some students who found the framework to be too complex or at least

intimidating. This was obvious from some of the comments in the focus group, where

one student even stated outright that it “favours students who have had a bigger

background in computer science.” Even students who chose to do it for their project

had the difficulty of a lack of documentation precluding them from using advanced

features. It was also clear from the survey results that students who chose to make

multiplayer games were more likely to report more experience in programming prior

to university (Figure 7.13), further adding to the evidence that the framework was

perceived as too difficult for beginner programmers.

The lower floor was provided by the single player option and especially the state

diagram tool, which allowed easy app design and code generation. A future work

item is to explore how to further lower the floor of TEASync.

151

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

8.3 Future Work

There are several areas of future work, both technically and pedagogically.

8.3.1 TEASync/LG-MVU Improvements

Feedback from students and anecdotal experiences in the classroom point to the need

of a more powerful model for certain use cases, especially games with simulations. A

global time tick would be useful for such cases, but would present its own performance

and network traffic challenges.

Additionally, the current split into the simplified and advanced APIs was not

a good split. Applications requiring communication between the local and global

updates motivate the need for an API in between these two, which does not need to

introduce the full complexity of Elm commands to achieve message brokering between

the local and global.

8.3.2 Formalized Algebra for LG-MVU

Future work in formalizing the various concurrency schemes and analyzing which

properties of the global update function and messages lead to race conditions would

be an interesting future study. Section 4.5 gave an overview of the desirable properties

of global models and messages, but these could be formalized using a system like Agda,

and then properties could be proven to hold.

While the students were able to make applications without considering the prop-

erties listed in Section 4.5, as their programs became more complex, they would be

more likely to run into race conditions. This points to TEASync as a teaching tool for

152

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

more than just concurrency but as a real-world example of where discrete mathemat-

ics concepts are important to ensure desirable properties. It would be advantageous to

explore the creation of an algebra of messages to create a formal model of TEASync,

drawing upon existing research in concurrency and event-driven programming. This

would create a framework for proving that a TEASync program cannot have race

conditions, and for removing them when found. Assignment/test questions in such a

course could centre around designing global message and update functions that meet

certain properties, and proving that they do.

8.3.3 Experiments for Concurrency Schemes

Another future work item would be to empirically experiment with the different con-

currency schemes, to determine their performance characteristics. In particular, it

would be worth experimenting with the parameters in the message-based synchro-

nization with distributed folding scheme to determine good parameters.

8.3.4 Visual Representation of Concurrency Model

Following the success of the state diagram tool, current and future work is aimed at

creating a visual tool to create TEASync applications. We believe this would make

concurrent applications even more appealing to new computer science students. One

idea is to use state charts to expand upon the current LG-MVU architecture, allowing

things like global timers to be included naturally where right now it does not fit into

the model. This would allow the programmer to abstract beyond the single local and

single global update to organize their programs in more sophisticated ways.

153

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

8.3.5 Study Security Implications

In the current work, the security of the TEASync framework is not a focus. How-

ever, given the distributed nature of the framework, security is likely to be an issue.

Exploring distributed data access schemes is a potential for future research.

8.3.6 Camps for K-12 Education

Given the success of other elements of our coding outreach program, we hope to create

activities for K-12 education including multiplayer elements. These could include

summer camps and in-class curricula. We believe student engagement would benefit

from multiplayer games in the K-12 space.

154

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Appendix A

Usability Study Instruments

This Appendix contains the raw usability study instruments, including the pre- and

post-implementation surveys (Appendices A.1 and A.2) and the questions in the focus

group script (Appendix A.3).

A.1 Pre-Implementation Survey Questions

The pre-survey questions are shown in Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7,

and A.8.

A.2 Post-Implementation Survey Questions

The post-survey questions are shown in Figures A.9, A.10, A.11, A.12, and A.13.

155

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.1: Section 1 of the pre-survey, gathering informed consent and
demographic data.

156

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.2: Section 2 of the pre-survey, gathering data about past experience with
game development.

157

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.3: Section 2 of the pre-survey (continued), gathering data about past
experience with game development.

158

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.4: Section 3 of the pre-survey, gathering information about past
experiences with game development. (Single player: yes, Multiplayer: no)

159

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.5: Section 3 of the pre-survey, gathering information about past
experiences with game development. (Single player: no, Multiplayer: yes)

160

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.6: Section 3 of the pre-survey, gathering information about past
experiences with game development. (Single player: no, Multiplayer: yes)

161

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.7: Section 3 of the pre-survey, gathering information about past
experiences with game development. (Single player: no, Multiplayer: no)

162

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.8: Section 4 of the pre-survey, gathering a baseline of preferences about
aspects of computer science.

163

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.9: Section 1 of the post-survey, gathering informed consent and
demographic data, and asking whether they would like to answer the pre-survey

questions if they had not already done so.

164

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.10: Section 2 of the post-survey, asking which type of game the student
made. This will determine whether they are asked about their experience making a

single player or multiplayer game (Figure A.11 or A.12, respectively).

A.3 Focus Group Scripted Questions

Below is the list of scripted questions for the focus group. These questions were the

original questions in the script, but the script allowed for follow-up questions to be

asked if needed.

• What parts of the project did you enjoy? Why?

• For those who chose to make a single player game, what reasons did your group

have for choosing to do so?

– Follow-up: were you happy with your decision to choose this? Why or why

not?

• For those who chose to make a multiplayer game, what reasons did your group

have for choosing to do so?

– Follow-up: were you happy with your decision to choose this? Why or why

not?

165

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.11: Section 2 of the post-survey, for students who chose a single-player
game.

166

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.12: Section 2 of the post-survey, for students who chose a multiplayer
game.

167

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Figure A.13: Section 3 of the post-survey, asking agreement with several statements
about the course and tools.

168

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

• Which aspects of the project were difficult for you?

– Follow up questions if they don’t mention it explicitly:

∗ Which parts of the design thinking process were difficult?

∗ Which parts of the technical aspects were difficult?

• Are you satisfied with the creativity and number of the ideas your group came

up with? Did it seem the questions belonged to the group or to the person who

came up with the idea?

• How did using the “Game Matrix” compare idea generation methods you used

in the past, including “Brainstorming”?

• How do you describe your overall experience with the Design Thinking work-

sheet? What worked well? What could be improved?

• Do you have suggestions to improve the project next year?

• Do you have suggestions to improve the tools we used in class (e.g., State Dia-

gram creator, STaBL.Rocks coding system, TEASync multiplayer framework)?

• How can you use what you learned in the project in your future career in the

computer science field or otherwise?

• Are there any other comments or questions anyone else would like to make

known?

169

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Appendix B

Code Examples

Example B.0.1: TEASync Counting Example Code

myShapes localModel globalModel =

[

text (String.fromInt globalModel.count)

|> centered

|> filled black

|> move (0, -3)

, button green "+" (localModel.mousingOver == Just ←↩

Increment)

|> move (0, 30)

|> notifyTap (GlobalMsg <| Crement Increment)

|> notifyEnter (LocalMsg <| MouseOver Increment)

|> notifyLeave (LocalMsg MouseOff)

, button red "-" (localModel.mousingOver == Just ←↩

Decrement)

170

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

|> move (0, -30)

|> notifyTap (GlobalMsg <| Crement Decrement)

|> notifyEnter (LocalMsg <| MouseOver Decrement)

|> notifyLeave (LocalMsg MouseOff)

]

button colour txt outlined =

group

[

circle 10

|> filled colour

|> (if outlined then addOutline (solid 1) black ←↩

else identity)

, text txt

|> centered

|> filled black

|> move (0, -3)

]

localUpdate : LocalMsg -> LocalModel -> GlobalModel -> ←↩

LocalModel

localUpdate msg localModel globalModel =

case msg of

Tick t _ -> { localModel | time = t }

171

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

MouseOver crement -> { localModel | mousingOver = ←↩

Just crement }

MouseOff -> { localModel | mousingOver = Nothing }

globalUpdate : GlobalMsg -> GlobalModel -> GlobalModel

globalUpdate msg globalModel =

case msg of

Crement Increment -> { globalModel | count = ←↩

globalModel.count + 1 }

Crement Decrement -> { globalModel | count = ←↩

globalModel.count - 1 }

initLocal : LocalModel

initLocal = { time = 0, mousingOver = Nothing }

initGlobal : GlobalModel

initGlobal = { count = 0 }

Example B.0.2: Pong Code Example

myShapes localModel globalModel =

[

case localModel.localState of

AtMainMenu ->

let

172

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

player = case globalModel.gameState of

PlayerOneJoined -> PlayerTwo

_ -> case localModel.localState of

PlayingGame _ p -> p

_ -> PlayerOne

in

group

[

text "Welcome!"

|> centered

|> fixedwidth

|> filled black

|> move(0, 20)

, group

[

roundedRect 50 20 5 |> filled black

, text "Play"

|> centered

|> fixedwidth

|> filled white

|> move (0, -4)

]

|> notifyTap (LocalMsg <| LocalPlayerJoin←↩

player)

]

173

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

InLobby player ->

group

[

text ("You are " ++ (if player == PlayerOne ←↩

then "Player 1" else "Player 2") ++ ".")

|> centered

|> fixedwidth

|> size 6

|> filled black

|> move (0, 20)

, text (if globalModel.gameState == ←↩

PlayerOneJoined then "Waiting for player 2."←↩

else "Both players joined.")

|> centered

|> fixedwidth

|> size 6

|> filled black

|> move (0, 10)

, group

[

roundedRect 50 20 5 |> filled (if ←↩

globalModel.gameState /= ←↩

PlayerTwoJoined then grey else black←↩

)

, text "Start"

174

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

|> centered

|> fixedwidth

|> filled white

|> move (0, -4)

]

|> move (0, -20)

|> (if globalModel.gameState == ←↩

PlayerTwoJoined then notifyTap (←↩

GlobalMsg StartGame) else identity)

]

PlayingGame localGameState player ->

let

(player1Pos , player2Pos) = globalModel.←↩

playerPos

(player1Score , player2Score) = globalModel.←↩

score

ballPos = localGameState.pos

in

group

[

rect 192 128

|> filled black

|> notifyMouseMoveAt (\(x,y) -> GlobalMsg ←↩

<| MovePlayer player y)

175

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

|> notifyTouchMoveAt (\(x,y) -> GlobalMsg ←↩

<| MovePlayer player y)

, line (0, 64) (0, -64)

|> outlined (dotted 2) white

, rect 2 20

|> filled white

|> move (-90, player1Pos)

, rect 2 20

|> filled white

|> move (90, player2Pos)

, square 3

|> filled white

|> move ballPos

, text (String.fromInt player1Score)

|> fixedwidth

|> centered

|> size 14

|> filled white

|> move (-80, 50)

, text (String.fromInt player2Score)

|> fixedwidth

|> centered

|> size 14

|> filled white

|> move (80, 50)

176

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

]

]

-- Your update function goes here

localUpdate : LocalMsg -> LocalModel -> GlobalModel -> (←↩

LocalModel , Cmd LocalMsg , Cmd GlobalMsg)

localUpdate msg localModel globalModel =

case msg of

Tick t _ ->

case localModel.localState of

PlayingGame localGameState player ->

let

(x,y) = localGameState.pos

(dx,dy) = localGameState.vel

(p1y , p2y) = globalModel.playerPos

(ndx , ndy , cmd) =

case player of

PlayerOne ->

if dx <= 0 && x <= -87 && x >= -90 &&←↩

p1y - 11.5 <= y && y <= p1y + ←↩

11.5 then

let

vel = sqrt (dx*dx + dy*dy) * 1.1

angle = (y- p1y) * 7

177

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

(newdX , newdY) = (vel * cos (←↩

degrees angle), vel * sin (←↩

degrees angle))

in

(newdX , newdY , newMsg <| HitBall ←↩

player (x,y) (newdX , newdY))

else

(dx, dy , Cmd.none)

PlayerTwo ->

if dx >= 0 && x >= 87 && x <= 90 && ←↩

p2y - 11.5 <= y && y <= p2y + 11.5←↩

then

let

vel = sqrt (dx*dx + dy*dy) * 1.1

angle = (p2y - y) * 7 + 180

(newdX , newdY) = (vel * cos (←↩

degrees angle), vel * sin (←↩

degrees angle))

in

(newdX , newdY , newMsg <| HitBall ←↩

player (x,y) (newdX , newdY))

else

(dx, dy , Cmd.none)

(fdx , fdy) = if y > 62.5 || y < -62.5 then ←↩

(ndx ,-ndy) else (ndx , ndy)

178

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

scored = if x >= 100 then Just PlayerOne

else if x <= -100 && player == ←↩

PlayerTwo then Just PlayerTwo

else Nothing

in

({localModel |

localState =

PlayingGame

{ localGameState |

pos = case scored of

Nothing -> (x+fdx , y+fdy←↩

)

Just PlayerOne -> (10, ←↩

0)

Just PlayerTwo -> (-10, ←↩

0)

, vel = case scored of

Nothing -> (fdx , fdy)

Just PlayerOne -> ←↩

(12/30 , 0)

Just PlayerTwo -> ←↩

(-12/30, 0)

}

player }

, Cmd.none

179

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

, Cmd.batch

[

cmd

, case scored of

Just p -> if player == p then

Cmd.batch

[

newMsg <| ←↩

PlayerScored p

, newMsg <| HitBall←↩

player

(case scored of

Nothing -> ←↩

(x+fdx , ←↩

y+fdy)

Just ←↩

PlayerOne←↩

-> (10,←↩

0)

Just ←↩

PlayerTwo←↩

-> ←↩

(-10, 0)←↩

)

(case scored of

180

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

Nothing -> ←↩

(fdx , ←↩

fdy)

Just ←↩

PlayerOne←↩

-> ←↩

(12/30 , ←↩

0)

Just ←↩

PlayerTwo←↩

-> ←↩

(-12/30,←↩

0))

]

else Cmd.none

Nothing -> Cmd.none

]

)

_ -> (localModel , Cmd.none , Cmd.none)

LocalPlayerJoin player ->

({ localModel | localState = InLobby player }

, Cmd.none

, newMsg <| PlayerJoin player

)

LocalStart ->

181

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

let

player =

case localModel.localState of

InLobby p -> p

PlayingGame _ p -> p

_ -> PlayerOne

in

({ localModel | localState =

case localModel.localState of

AtMainMenu -> localModel.localState

_ -> PlayingGame { pos = (0,0), vel = ←↩

(-12/30 ,0) } player }

, Cmd.none

, Cmd.none

)

UpdatePosition player (x, y) (dx, dy) ->

case localModel.localState of

PlayingGame localGameState p ->

if p /= player then

({localModel | localState = PlayingGame { ←↩

localGameState | pos = (x, y), vel = (dx←↩

, dy) } p }

, Cmd.none

, Cmd.none

)

182

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

else

(localModel , Cmd.none , Cmd.none)

_ -> (localModel , Cmd.none , Cmd.none)

globalUpdate : GlobalMsg -> GlobalModel -> (GlobalModel ,←↩

Cmd GlobalMsg , Cmd LocalMsg)

globalUpdate msg globalModel =

case msg of

MovePlayer player pos ->

({ globalModel |

playerPos =

if player == PlayerOne then

Tuple.mapFirst (_ -> pos) ←↩

globalModel.playerPos

else

Tuple.mapSecond (_ -> pos) ←↩

globalModel.playerPos

}

, Cmd.none

, Cmd.none

)

HitBall player pos vel ->

(globalModel

, Cmd.none

, newMsg <| UpdatePosition player pos vel

183

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

)

PlayerJoin player ->

({ globalModel |

gameState =

case player of

PlayerOne -> PlayerOneJoined

PlayerTwo -> PlayerTwoJoined

}, Cmd.none , Cmd.none)

StartGame ->

({ globalModel |

gameState = Playing

}, Cmd.none

, newMsg LocalStart

)

PlayerScored player ->

({ globalModel |

score =

if player == PlayerOne then

Tuple.mapFirst (\n -> n + 1) ←↩

globalModel.score

else

Tuple.mapSecond (\n -> n + 1) ←↩

globalModel.score

}

, Cmd.none

184

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

, Cmd.none

)

-- Your initial model goes here

initLocal : (LocalModel , Cmd LocalMsg)

initLocal = ({ time = 0, localState = AtMainMenu , ←↩

lastTime = 0 }, Cmd.none)

initGlobal : (GlobalModel , Cmd GlobalMsg)

initGlobal = ({ gameState = NoPlayersJoined , score = (0, ←↩

0), playerPos = (0, 0) }, Cmd.none)

-- Your local subscriptions go here

localSubscriptions : LocalModel -> GlobalModel -> Sub ←↩

LocalMsg

localSubscriptions localModel globalModel = Sub.none

-- Your global subscriptions go here

globalSubscriptions : LocalModel -> GlobalModel -> Sub ←↩

GlobalMsg

globalSubscriptions localModel globalModel = Sub.none

appConfig =

{ initLocal = _ -> initLocal

185

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

, initGlobal = _ -> initGlobal

, localUpdate = localUpdate

, globalUpdate = globalUpdate

, view = view

, localSubscriptions = localSubscriptions

, globalSubscriptions = globalSubscriptions

, codecGlobalModel = JSON Codec.Encoders.←↩

encodeGlobalModel Codec.Decoders.decodeGlobalModel

, codecGlobalMsg = JSON Codec.Encoders.←↩

encodeGlobalMsg Codec.Decoders.decodeGlobalMsg

}

-- Your main function goes here

main : TEASyncGSVGAppWithTick () LocalModel GlobalModel ←↩

LocalMsg GlobalMsg

main =

teaSyncAppWithTick Tick

appConfig

-- You view function goes here

view : LocalModel -> GlobalModel -> { title: String , body←↩

: Collage (TEASync.Msg LocalMsg GlobalMsg GlobalModel←↩

) }

view localModel globalModel =

{

186

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

title = "My App Title"

, body = collage 192 128 (myShapes localModel ←↩

globalModel)

}

187

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Bibliography

[1] C. Alphonce and P. Ventura. Using graphics to support the teaching of funda-

mental object-oriented principles in cs1. In Companion of the 18th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, pages 156–161, 2003.

[2] A. P. Ambrósio, F. M. Costa, L. Almeida, A. Franco, and J. Macedo. Identify-

ing cognitive abilities to improve cs1 outcome. In 2011 Frontiers in Education

Conference (FIE), pages F3G–1. IEEE, 2011.

[3] C. K. Anand, G. Dulai, L. Yao, M. Arief, O. D’Mello, S. S. Menon, and C. W.

Schankula. Creating with Code. McMaster University, 2023. ISBN 978-1-7388695-

0-3. URL https://macsphere.mcmaster.ca/handle/11375/28334.

[4] C. Bachmann, A. Maximova, T. Kohn, and D. Komm. Webtigerpython–a low-

floor high-ceiling python ide for the browser. arXiv preprint arXiv:2410.07001,

2024.

[5] J. C. Blake-West and M. U. Bers. Scratchjr design in practice: Low floor, high

ceiling. International Journal of Child-Computer Interaction, 37:100601, 2023.

188

https://macsphere.mcmaster.ca/handle/11375/28334

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

[6] A. Bloss, P. Hudak, and J. Young. Code optimizations for lazy evaluation. Lisp

and Symbolic Computation, 1(2):147–164, 1988.

[7] P. Buiras and A. Russo. Lazy programs leak secrets. In Nordic Conference on

Secure IT Systems, pages 116–122. Springer, 2013.

[8] M. M. Chakravarty and G. Keller. The risks and benefits of teaching purely

functional programming in first year. Journal of Functional Programming, 14

(1):113–123, 2004.

[9] H. B. Christensen and M. E. Caspersen. Frameworks in cs1: a different way of

introducing event-driven programming. In Proceedings of the 7th annual confer-

ence on Innovation and technology in computer science education, pages 75–79,

2002.

[10] E. Czaplicki. Elm: Concurrent frp for functional guis. Senior thesis, Harvard

University, 30, 2012.

[11] E. Czaplicki. A farewell to frp. https://elm-lang.org/news/

farewell-to-frp, 2016. Accessed: 2024-05-09.

[12] E. Czaplicki. Status update (3 nov 2021). https://discourse.elm-lang.org/

t/status-update-3-nov-2021/7870, 2021. Accessed: 2024-09-06.

[13] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazieres, and R. Morris. Event-driven

programming for robust software. In Proceedings of the 10th workshop on ACM

SIGOPS European workshop, pages 186–189, 2002.

189

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://elm-lang.org/news/farewell-to-frp
https://elm-lang.org/news/farewell-to-frp
https://discourse.elm-lang.org/t/status-update-3-nov-2021/7870
https://discourse.elm-lang.org/t/status-update-3-nov-2021/7870

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

[14] C. d’Alves, T. Bouman, C. Schankula, J. Hogg, L. Noronha, E. Horsman, R. Sid-

diqui, and C. K. Anand. Using elm to introduce algebraic thinking to k-8 stu-

dents. arXiv preprint arXiv:1805.05125, 2018.

[15] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey. P:

safe asynchronous event-driven programming. ACM SIGPLAN Notices, 48(6):

321–332, 2013.

[16] digitally induced GmbH. Ihp: Integrated haskell platform. https://ihp.

digitallyinduced.com/. Accessed: 2024-05-31.

[17] V. Dolgopolovas, T. Jevsikova, and V. Dagiene. From android games to coding in

c—an approach to motivate novice engineering students to learn programming:

A case study. Computer Applications in Engineering Education, 26(1):75–90,

2018.

[18] J. Dunfield and N. R. Krishnaswami. Complete and easy bidirectional type-

checking for higher-rank polymorphism. ACM SIGPLAN Notices, 48(9):429–442,

2013.

[19] M. S. El-Nasr and B. K. Smith. Learning through game modding. Computers

in Entertainment (CIE), 4(1):7–es, 2006.

[20] I. Fette and A. Melnikov. The WebSocket Protocol. Internet Engineering Task

Force, December 2011. URL https://www.rfc-editor.org/rfc/rfc6455.

html. RFC 6455.

[21] G. Gadanidis, S. Floyd, J. Hughes, I. Namukasa, and R. Scucuglia. Coding in

190

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://ihp.digitallyinduced.com/
https://ihp.digitallyinduced.com/
https://www.rfc-editor.org/rfc/rfc6455.html
https://www.rfc-editor.org/rfc/rfc6455.html

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

the ontario mathematics curriculum, 1–8: Might it be transformational. Journal

of Computers in Mathematics and Science Teaching, 40:357–373, 2021.

[22] P. Gestwicki and F.-S. Sun. Teaching design patterns through computer game

development. Journal on Educational Resources in Computing (JERIC), 8(1):

1–22, 2008.

[23] M. H. Goldwasser and D. Letscher. A graphics package for the first day and

beyond. ACM SIGCSE Bulletin, 41(1):206–210, 2009.

[24] B. Hailpern and P. Tarr. Model-driven development: The good, the bad, and

the ugly. IBM systems journal, 45(3):451–461, 2006.

[25] Haskell Language. Haskell language - an advanced, purely functional program-

ming language, 2024. URL https://www.haskell.org/. Accessed: 2024-05-31.

[26] C. Hill, H. A. Dwyer, T. Martinez, D. Harlow, and D. Franklin. Floors and

flexibility: Designing a programming environment for 4th-6th grade classrooms.

In Proceedings of the 46th ACM technical Symposium on computer science edu-

cation, pages 546–551, 2015.

[27] R. Hindley et al. The principal type-scheme of an object in combinatory logic.

Transactions of the american mathematical society, 146:29–60, 1969.

[28] Z. Hu, J. Hughes, and M. Wang. How functional programming mattered. Na-

tional Science Review, 2(3):349–370, 2015.

[29] P. Hudak. Conception, evolution, and application of functional programming

languages. ACM Computing Surveys (CSUR), 21(3):359–411, 1989.

191

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.haskell.org/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

[30] P. Hudak. The Haskell school of expression: learning functional programming

through multimedia. Cambridge University Press, 2000.

[31] J. Hughes. Why functional programming matters. The computer journal, 32(2):

98–107, 1989.

[32] International Organization for Standardization. Information technology – syntac-

tic metalanguage – extended bnf. Standard ISO/IEC 14977:1996, International

Organization for Standardization, Geneva, CH, 1996.

[33] C. Jaspan and C. Sadowski. No Single Metric Captures Productivity, pages

13–20. Apress, Berkeley, CA, 2019. ISBN 978-1-4842-4221-6. doi: 10.1007/

978-1-4842-4221-6_2. URL https://doi.org/10.1007/978-1-4842-4221-6_

2.

[34] S. Joosten, K. Van Den Berg, and G. Van Der Hoeven. Teaching functional

programming to first-year students. Journal of Functional Programming, 3(1):

49–65, 1993.

[35] C. Kieran. Algebraic thinking in the early grades: What is it. The mathematics

educator, 8(1):139–151, 2004.

[36] D. Leyzberg and C. Moretti. Teaching cs to cs teachers: Addressing the need for

advanced content in k-12 professional development. In Proceedings of the 2017

ACM SIGCSE technical symposium on Computer Science Education, pages 369–

374, 2017.

[37] D. Liben-Nowell and A. N. Rafferty. Student motivations and goals for cs1:

192

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://doi.org/10.1007/978-1-4842-4221-6_2
https://doi.org/10.1007/978-1-4842-4221-6_2

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

themes and variations. In Proceedings of the 53rd ACM Technical Symposium

on Computer Science Education-Volume 1, pages 237–243, 2022.

[38] A. Lukkarinen, L. Malmi, and L. Haaranen. Event-driven programming in pro-

gramming education: a mapping review. ACM Transactions on Computing Ed-

ucation (TOCE), 21(1):1–31, 2021.

[39] F. Maiorana. Interdisciplinary computing for ste (a) m: a low floor high ceiling

curriculum. Innovations, Technologies and Research in Education, 37, 2019.

[40] G. Melfe, A. Fonseca, and J. P. Fernandes. Evaluation of the impact on energy

consumption of lazy versus strict evaluation of haskell data-structures. In Pro-

ceedings of the XXII Brazilian Symposium on Programming Languages, pages

83–89, 2018.

[41] Merriam-Webster. Codec. https://www.merriam-webster.com/dictionary/

codec, 2024. Accessed: 2024-05-17.

[42] R. Milner. A theory of type polymorphism in programming. Journal of computer

and system sciences, 17(3):348–375, 1978.

[43] A. Mohamed. Designing a cs1 programming course for a mixed-ability class. In

Proceedings of the western Canadian conference on computing education, pages

1–6, 2019.

[44] J. G. Morris. Notes on hindley-milner polymorphism. https://jgbm.github.

io/eecs662f17/Notes-on-HM.html, 2017. Accessed: 2024-05-17.

[45] T. U. of Glasgow. Control.Concurrent.STM.TQueue.

193

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.merriam-webster.com/dictionary/codec
https://www.merriam-webster.com/dictionary/codec
https://jgbm.github.io/eecs662f17/Notes-on-HM.html
https://jgbm.github.io/eecs662f17/Notes-on-HM.html

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

https://hackage.haskell.org/package/stm-2.5.3.1/docs/

Control-Concurrent-STM-TQueue.html, 2010. Accessed: 2024-05-31.

[46] D. Oleynikov and G. Dreimanis. History of the haskell programming language.

https://serokell.io/blog/haskell-history, 2019. Accessed: 2024-05-31.

[47] S. A. Papert. Mindstorms: Children, computers, and powerful ideas. Basic books,

2020.

[48] P. Pasupathi, C. W. Schankula, N. DiVincenzo, S. Coker, and C. K. Anand.

Teaching interaction using state diagrams. arXiv preprint arXiv:2207.12701,

2022.

[49] L. Payr. Refinement types for Elm. PhD thesis, Universität Linz, 2021.

[50] R. Pecinovskỳ, J. Pavlíčková, and L. Pavliček. Let’s modify the objects-first

approach into design-patterns-first. In Proceedings of the 11th annual SIGCSE

conference on Innovation and technology in computer science education, pages

188–192, 2006.

[51] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč. Foundations of

json schema. In Proceedings of the 25th international conference on World Wide

Web, pages 263–273, 2016.

[52] M. Resnick. Lifelong kindergarten: Cultivating creativity through projects, pas-

sion, peers, and play. Mit Press, 2017.

[53] C. Schankula, E. Ham, J. Schultz, Y. Irfan, N. Thai, L. Dutton, P. Pasupathi,

C. Sheth, T. Khan, S. Tejani, et al. Newyouthhack: Using design thinking to

194

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://hackage.haskell.org/package/stm-2.5.3.1/docs/Control-Concurrent-STM-TQueue.html
https://hackage.haskell.org/package/stm-2.5.3.1/docs/Control-Concurrent-STM-TQueue.html
https://serokell.io/blog/haskell-history

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

reimagine settlement services for new canadians. In Innovations for Commu-

nity Services: 20th International Conference, I4CS 2020, Bhubaneswar, India,

January 12–14, 2020, Proceedings 20, pages 41–62. Springer, 2020.

[54] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of

the fourteenth annual ACM symposium on Principles of distributed computing,

pages 204–213, 1995.

[55] D. Silver, M. Saunders, and E. Zarate. What factors predict high school gradua-

tion in the Los Angeles Unified School District, volume 14. California Dropout

Research Project Santa Barbara, CA, 2008.

[56] S. Smith, C. W. Schankula, L. Dutton, and C. K. Anand. A software engineering

capstone course facilitated by github templates, 2024.

[57] A. Sullivan and M. U. Bers. Computer science education in early childhood: The

case of scratchjr. Journal of Information Technology Education. Innovations in

Practice, 18:113, 2019.

[58] M. F. Sulzmann. A general framework for Hindley/Milner type systems with

constraints. Yale University, 2000.

[59] K. Trivodaliev, B. R. Stojkoska, M. Mihova, M. Jovanov, and S. Kalajdziski.

Teaching computer programming: The macedonian case study of functional pro-

gramming. In 2017 IEEE Global Engineering Education Conference (EDUCON),

pages 1282–1289. IEEE, 2017.

[60] L. S. Vailshery. Most widely utilized programming languages among de-

velopers worldwide 2023. https://www.statista.com/statistics/793628/

195

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

worldwide-developer-survey-most-used-languages/, 2024. Accessed: 2024-

05-14.

[61] E. Wallingford. Functional programming patterns and their role in instruction.

In Proceedings of the international conference on functional programming, pages

151–163, 2002.

[62] Z. Wan and P. Hudak. Functional reactive programming from first principles. In

Proceedings of the ACM SIGPLAN 2000 conference on Programming language

design and implementation, pages 242–252, 2000.

[63] G. Washburn and S. Weirich. Good advice for type-directed programming aspect-

oriented programming and extensible generic functions. In Proceedings of the

2006 ACM SIGPLAN workshop on Generic programming, pages 33–44, 2006.

[64] R. Wicentowski and T. Newhall. Using image processing projects to teach cs1

topics. ACM SIGCSE Bulletin, 37(1):287–291, 2005.

[65] R. Wolfe. New possibilities in the introductory graphics course for computer

science majors. ACM SIGGRAPH Computer Graphics, 33(2):35–39, 1999.

[66] U. Wolz, H. H. Leitner, D. J. Malan, and J. Maloney. Starting with scratch in

cs 1. In Proceedings of the 40th ACM technical symposium on Computer science

education, pages 2–3, 2009.

[67] P. Woodworth and W. Dann. Integrating console and event-driven models in

cs1. ACM SIGCSE Bulletin, 31(1):132–135, 1999.

196

https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/

M.Sc. Thesis – C.W. Schankula; McMaster University – Computing and Software

[68] D. Yang, Z. Yang, and M. U. Bers. The efficacy of a computer science cur-

riculum for early childhood: evidence from a randomized controlled trial in k-2

classrooms. Computer Science Education, pages 1–21, 2023.

[69] J. Zhang, A. Verma, C. Sheth, C. W. Schankula, S. Koehl, A. Kelly, Y. Irfan,

and C. K. Anand. Graphics programming in elm develops math knowledge &

social cohesion. In CASCON, pages 157–167, 2018.

197

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

	Lay Abstract
	Abstract
	Acknowledgements
	Notation, Definitions, and Abbreviations
	Declaration of Academic Achievement
	Introduction
	Motivation
	Goal
	Contributions
	Research Questions
	Research Context
	Thesis Organization

	Related Work
	Low Floor, High Ceiling in CS Education
	Model-Driven Development
	Requisite Technologies
	Event-Driven Programming
	Functional Programming in Education
	Related Tools

	Functional Programming
	Functional Programming
	Hindley-Milner Type Systems
	The Elm Language
	Haskell

	TEASync Framework Architecture
	``Fundamental Theorem of TEASync''
	Local-Global Model-View-Update (LG-MVU) Architecture
	Concurrent System Design
	Alternative Synchronization Schemes
	Desireable Properties of Global Models and Update Functions

	TEASync Framework Implementation
	Application Programming Interface
	Encoder/Decoder (Codec) Generation
	Module Hierarchy
	Development Mode
	Online Collaborative Integrated Development Environment
	Implementation using Functional Programming

	Usability Study Methodology
	Overview and Goals
	Proposition
	Survey Design
	Focus Group Design
	Compilation Statistics Design
	Threats to Validity

	Results
	Survey Results
	Focus Group Results
	Code Compilation Statistics Results
	Student TEASync Applications

	Conclusions
	Summary
	Research Questions
	Future Work

	Usability Study Instruments
	Pre-Implementation Survey Questions
	Post-Implementation Survey Questions
	Focus Group Scripted Questions

	Code Examples

