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CHAPTER 1

INTRODUCTION

The finite element method has been used to solve 

many varied and complex engineering problems. By this method 

a continuous body is Idealized by a number of discrete elements, 

continous forces are discretized and the problem is then solved 

by the methods of structural analysis.

The method is especially useful for stress analysis 

problems which cannot be solved by classical theory. One such 

problem which is of special interest in this report, concerns 

the planar stress analysis of a diamond impregnated segmented 

(or slotted) circular saw blade which is used for the cutting 

of stone. A detailed description of the saw blade and other 

factors concerned with stone cutting are provided in Appendix J.

The problem encountered with slotted circular saw 

blades is that the blades fall due to fatigue cracking at the 

bases of the slots after prolonged usage. The slot shapes 

commonly used consist of parallel sides with a semi-circular 

base. This shape is responsible for high stress concentration.

The alms of this report are two-fold:

(i) To develop a finite element program for plane 

stress/strain which vrould have the capacity to solve problems 

containing large numbers of finite elements, and to adapt the 

program for use in solving the above problem.

1
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(11) To perform a qualitative study of the effect of

varying slot shapes on the fatigue characteristics of a slotted 

saw blade, by means of the finite element method. A slot shape 

that' would improve the fatigue life of a saw blade is to be

determined.



CHAPTER 2

GENERAL DISCUSSION ON STRESS ANALYSES WITH SPECIAL REFERENCE 

TO THE FINITE ELEMENT METHOD

2.1. Classical Theory:

It is generally known that classical elastic theory for 

the solution of displacement and stress field problems is limited 

only to very simple structures. These are available in close 

form solutions to the governing differential equations. 

Unfortunately, the majority of practical design problems do not 

fall into the categories of these simplified problems because 

of irregular boundaries and canplex boundary conditions.

The traditional approach is then to establish a 

simplified and idealized model of the real structure, for which 

a closed solution is available, and apply the solution with 

proper interpretation. It is obvious that the traditional 

methods are highly inaccurate, and where safety and efficiency 

are important a more accurate method has to be found.

Apparently, the design of slotted circular saw blades 

follow this traditional approach, which relies on the experience 

of the designer. A greater accuracy is, however, required 

because of the need to establish the fatique strength levels of 

the saw. Therefore, it is necessary to use a method of stress 

analysis capable of predicting the stress concentrations 

accurately so that fatique failures may be countermanded.

3
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Methods that meet the above requirements are the matrix 

methods.

2.2. Matrix Methods:

These are numerical methods and can be divided into two 

types: (1) numerical solutions of differential equations for 

displacements or stresses, and (ii) matrix methods based on 

discrete-element idealization.

The Finite Difference Methods fall into the first 

category and the Finite Element Methods into the second category.

In both types of methods, the field to be analysed is 

sub-divided by a mesh into finite sized elements and a simple law 

of variation of the values of characteristic parameters from node 

to node is assumed. In both cases, again, the results are obtained 

by solving a large set of linear equations by matrix methods 5^

The basic equations are, in the case of Solid Mechanics, 

the equations of equilibrium, compatibility and stress-strain 

(or force-deformation).

In Finite Difference Methods the basic equations are 

applied to an infinitesimal element yielding a system of partial 

differential equations which hold for the whole field. These are 

subsequently replaced by finite difference approximations relating 

to the mesh. Thus, the approximations are essentially of a 

mathematical nature and arise from the truncation of a series.
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In the Finite Element Method the basic equations are applied 

directly to each element and the approximations have a simple 

physical interpretation. This results in two advantages:

a. The engineer can keep close contact with the physical 

aspects of the problem and has greater control over 

the degree of accuracy required of the solution.

b. Each element can, theoretically, have different 

properties. The Finite Element Method can handle 

with relative ease non-hcmogeneous or mixed regime 

(e.g., elastic-plastic) fields. In the Finite 

Difference Methods discontinuities across boundaries 

of different regions would normally raise difficult 

computational problems.

Experience has shown that the Finite Element Method 

converges more rapidly than the Finite Difference Methods, l.e. 

the Finite Element Method can yield fairly accurate results when 

the mesh is still quite coarse. This is an important economic 

consideration.

2.3« The Finite Element Methods:

There are two Finite Element Methods:

(1) the displacement method (or stiffness method) where 

displacements are chosen as the basic unknowns, and 

(11) the force method (or flexibility method) where 

forces are the basic unknowns.



In reference [6], Argyris has developed the general 

theory with both forces and displacements as unknowns. The 

striking feature which emerges is that the two methods are 

canpletely analogous. Knowing the equations in either of the two 

procedures, one can write down, by a translation process, the 

equations of the other procedure. There does exist, however, 

significant differences in the detailed application of the 

methods.

Much of the early work on aircraft structures [5] was 

devoted to the first method, probably as a result of the extensive 

work of Argyris [6,10]. Taig and Kerr [7] have shown that 

displacement techniques are particularly well suited to the 

analysis of multicell box structures. In their application to 

plate and shell problems, research workers, in general, choose 

to exploit the displacement method. It has been shown by 

Hassel [8], however, that linear static plate and shell problems 

can be analysed successfully by the force method which is the 

technique adopted by Denke [9] in his analysis of non-linear 

static problems. The displacement method is used in this 

dissertation, and any reference to the Finite Element Method implies 

the displacement method.

A body, such as a plate, may be thought of as an 

internally statically indeterminate structure with infinite 

degrees of freedom. The first step in the Finite Element Method 

is to idealize the actual continuous body to a discrete-element
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mathematical model, which consequently has a finite number of 

degrees of freed an.

The model is obtained by replacing the body by a 

number of triangular (or otherwise) shaped elements. This model 

closely resembles the original body. The elements are separated 

by fictitious boundaries and adjacent elements are connected at 

common points at the vertices, which are called ’’nodal points” 

or ’’nodes”. The elements do not interact along the fictitious 

boundaries and behave like members of a truss. In the case of 

plane stress/strain a node has two degrees of freedom, namely, 

the two orthogonal displacements.

The idealized model is then analysed in a manner which 

is in principle identical to the well-known displacement method 

(or slope deflection method) of frame analysis.

The Finite Element Method requires the solution of 

the following two main prob lams:

a. the element analysis, and

b. the system analysis.

The element analysis involves: •

(1) The selection of functions which uniquely describe 

the displacements within the elements in terms of the nodal point 

displacements.

The displacement function thus defines uniquely the 

state of strain within an element in terms of the nodal displacements.
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(ii) Knowing the elastic properties of the material the 

state of stress throughout an element can be found.

(iii) The derivation of fictitious nodal point forces 

which equilibrate the distributed boundary stresses and/or 

distributed loads.

The element analysis provides a relation between 

nodal point forces and nodal point displacements, expressed in 

terms of an element stiffness matrix. This matrix defines the 

properties of the element.

For elements to be conforming the displacement 

function must be chosen such that compatibility is maintained 

along the entire length of the common boundary between adjacent 

elements.

In order to find the properties of the whole structure, 

the properties of the individual elements are assembled such that 

overall equilibrium of the structure is satisfied. The assembled 

matrix is known as the ’overall stiffness matrix’. By the 

reciprocal theorem, this matrix should be symmetric. The nodal 

forces are related to the nodal displacements by the overall 

stiffness matrix.

'Ihe conditions of equilibrium of the nodes may be 

shewn to yield a displacement field corresponding to minimum 

potential energy for the selected displacement pattern. As in

Elements which do not give rise to discontinuities between 
displacements of adjacent elements. Conforming elements give a 
lower bound to the strain energy.
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the Ritz method the solution will generally be approximate. The 

analysis tends to yield a structure which is stiffer than the 

real one, due to the restraints which are introduced when selecting 

the displacement pattersn inside the elements. (This is true only 

for conforming elements).

2.4. Structural Idealization:

It is apparent at this stage that the closer the finite 

element idealization fits the real structure, the closer the 

solution will be to the real solution.

In areas where high stress gradients occur, it is 

necessary to use a much finer mesh because a series of piecewise 

displacement functions would approximate a steep gradient better 

than just one. Usually these high stress gradients occur due 

to stress concentrations and would anyway necessitate a finer 

mesh to fit the physical boundary.

2.5. Boundary Conditions:

It is possible to load the structure at the nodal 

points by concentrated loads. Equivalent nodal forces are 

calculated to equilibrate any distributed boundary loads or 

body forces (such as centrifugal forces) using the virtual work 

theorem. More details are given in Chapters 4 and 5.

It is also possible to apply prescribed displacements. 

As a matter of fact, it is necessary to have enough prescribed
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displacements to prevent rigid body rotation and translation. 

The basic overall stiffness matrix is singular and a number of 

rows and columns have to be eliminated for the system of 

equations to be solved.

2.6. Element Types for Plane Stress:

The element that has hitherto been in vogue is the 

three nodal plane stress triangle, comnonly known as the TRIM3 

element.

This element has the following properties:

(i) linear displacement distribution within element 

(ii) constant stress within element

(ill) a total of six degrees of freedom, i.e., two 

displacements at each node.>

For this type of element there is displacement 

continuity from element to element, but there is a discontinuity 

of stress frcm element to element, with the result that the 

actual stress field is approximated by a series of steps, like 

a histogram. It is evident that in cases of steep stress gradients 

this element is only useful If the region is covered by a very 

fine mesh of elements.

In such cases, it may be better to resort to inproved 

elements. Holand [2] describes a number of improved plane stress 

elements Which are obtained either by increasing the number of 

degrees of freedom per node , or by increasing the number of 

nodes per element.
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The element of interest is the 6-nodal plane stress 

triangular element, commonly known as the TRIMS element. This 

element has a node on each side in addition to the nodes at the 

vertices. The additional nodes are stationed mid-way between 

vertices so that they may be generated by computer. This element 

has a total of twelve degrees of freedom and the displacement 

distribution within an element is a second degree polynomial. 

This polynomial satisfies compatibility across the element 

boundaries.

This element is superior to the TRM3 element in that 

the stress distribution within an element is now linear, meaning 

that the stress field is now approximated by a series of linear 

functions. However, stresses are still discontinuous at the 

element boundaries, but the discontinuity is less severe than 

the TRIM3 element.



CHAPTER 3

MATHEMATICAL BACKGROUND

3.1. General: .

The mathematics of both the TRIM3 and TRIM6 elements are 

developed in this chapter. The IRIM3 element is explained in 

previous references [2,3,4,11] and for completeness the theory 

will be developed in section 3-3. with particular reference to 

the problem at hand and to the subsequent canputer programs. The 

TRIM6 element was introduced by Argyris [12] and is discussed by 

Zienkiewicz [3] and Holand [2]. However, not much attention is 

devoted to the mathematics in these references. The mathematics 

of this elenent is developed in section 3.4. In the next 

section, a general formula for the element stiffness matrix is 

derived in matrix notation, and is applicable to any plane stress 

or plane strain element.

Sections 3-3- and 3-^- constitute the element analysis. 

The system analysis, in which the element stiffness mttrices are 

assembled, is done in section 3-5- A rectangular cartesian 

co-ordinate systsn is used throughout.

3.2. General Formulation for Element Stiffness:

Let the displacements at a point within an element e 

be defined as a column vector {f}, and fc] be a column vector 

representing ncdal displacements. The displacements of the 

Internal point can be interpolated frcm the ncdal displacements

12
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of the element as follows:

{f}=[N]{«}e (3.1)

where matrix N is known as the interpolation matrix and superscript 

e denotes displacanents of element e. Fer plane stress,

(r>=[;j (3.2)

where u and v are the displacement conponents in the x and y 

directions, respectively. Matrix N is dependent only on the nodal 

co-ordinates of element e.

For a TRIM3 element,

uie = [ijjjiy* - tyjyjlv,1 C3-3’

In order to save space, a column vector is written as a row 
matrix with square brackets.

where 6^ is the displacanent of node i. 

For a TRIMS element,

<6}e = ^iloj^ls |5 |6 1 (3.4)

The subscripts denote the nodes of the element.

Strains at the internal point referred to in equation 

(3.1) can be obtained from the linear strain-displacement relations.

By differentiating equation (3.1) as required by equation (3>5),

*
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the following can be written,

{e} = [B] {5}e (3.6)

where B is called the strain-displacement matrix. .

Knowing the material properties, stresses at the 

interior point can now be related to the strains. The 

stress-strain relation is

{a} = [D] {e} (3.7)

where {a} = [a |a It ] and D is the elasticity matrix, obtained

frcm the basic stress-strain relations of elasticity.

1 v 0

[D] = v 1 0 (3-8)
1 - V 0 0 (l-v)/2

E is Young’s modulus and v is Poisson’s ratio. Equation (3.8)

holds for an isotropic material in plane stress.

Let column vector F represent equivalent forces on

the nodes of element e. These forces are fictitious forces set

up to equilibrate internal stresses and/or body forces distributed 

over the element. This ’discretization’ of the distributed 

loading is a necessary feature of the finite element method, and 

it is here that the infinite degrees of freedom of a continuous 

system is reduced to a finite number of degrees of freedom. It 

may be visualized that as the number of finite elements approach 

infinity the continuity of the system is restored.
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For the TRIM3 element the force vector is.

{F}e=[F|F|Fl (3.9a)

and for the TRIM6 element the vector is.

«' - [FilFjlFjFjFj.ly (3.9b)

Here {Fp
I Force in x-direction at 

I Force in y-direction at

node

node
(3.9c)

Let {p} be the body forces per unit volume of material

acting on the system. These may be either centrifugal forces 

or gravity forces or both.

The equivalent nodal forces may be found by isolating 

an element (e) as a free body as in Fig. 3.1 and satisfying 

the equations of equilibrium. It is well known that the theorem

of virtual work is an indirect statement of equilibrium and is 

easy to apply to the equilibrium of an element.

If a virtual displacement is applied at the element

nodes, then by the virtual work theorem:

Work done by nodal forces + work done by distributed loads = work 

done by internal stresses

For the TRD43 element, the virtual displacements are 

written vectorially as,

{6V}e = [6Y|6T|6V]



FIG. 3«1 Displacements of a TRIM3 Element Due to Virtual Dispalcements 

and Internal Stresses.

FIG. 3.2 TRIM3 Plane Stress/Strain Element and Allowed Deformation Pattern.,
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The virtual displacements, nodal forces and stresses at sane 

internal point are shorn in Fig. 3.1.

The work done by the nodal forces due to the virtual 

displacements is,
T

= {6V}e • {F}e (3-10)

The work done per unit volume by the distributed 

loading is,
T 

dWD = {fv} • {p}

T '
= (SVle [N]T {pl from equation (3.1) (3.11)

The total work done by the distributed loading is,

by integration,

WD = I ^^ ^ {P}ld(Vol) 

/vol

= {6V}eT] [N]T {p} t dxdy (3.12)

^vol

for a 2-dimensional system, where t is the element thickness, 

and (t dx dy) is the element volume. Since 5V is not a function 

of x and y it is factored out.

The work done per unit volume by the internal stresses

Is,

dWj = {eV}T {g}

T= {aV}e [B]T {a} from equation (3-6) (3.13)
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and, therefore, total work done by internal stresses is.

Wj = {aV}e f ^[B]T {a} t dx dy (3.14)

By the theorem of virtual work

WE + WD = WI 

v e T 
The common factor {6 } may be eliminated from equations

(3. 10), (3-12) and (3.14) and the above relation becomes,
{F}e + j [N]T {p} t dx dy 

= J" [B]1 {a} t dx dy (3.16) 

(from equations (3.7) and (3-6))

Thus equation (3.16) reads as,
{F}e = ( J MT[D][B] t dx dy) {6}e 

- J[N]T {p} t dx dy

or,

{F}e = [k]e {6}e + {F}® (3-17)

where the element stiffness matrix is defined as
[k]e = J[B]T[D][B] t dx dy (3.18)

The equivalent nodal forces due to the distributed 

loading are,
{P}P = ' /[N]T {p} (3.19)
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Notes:

(1) Equation (3.19) is a consistent method of discretizing 

distributed loads.

(ii) Virtual displacements applied at the nodes are 

different frcm nodal displacements, because nodal 

displacements are as a result of the interaction of 

all the elements which in turn react to the applied 

loading. In equation (3>15) nodal displacements are 

used because the element e (Fig. 3.1) is isolated with 

an already—existent stress which is related to the 

nodal displacanents by this equation.

(ill) Equation (3-17) satisfies equilibrium of an element. 

To satisfy overall equilibrium of the system, the 

fictitious forces defined by this equation are to be 

sunmed over all elements and equated to the external 

loading at the nodes. The overall stiffness matrix 

is obtained in this way, and the procedure is known 

as the system analysis.
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3.3. Element Analysis of the TRIM3 Element:

3.3.1. Displacement Function

Having two degrees of freedom per node, the TRIM3 

element has a total of 6 degrees of freedom. If the displacements 

in the two directions are denoted by u and v respectively, then 

two polyncmials having three constants each may be assumed for 

u and v respectively, namely,

u = a^ + a^ + a^y (3-20)

' v = a^ + a^x + a^y (3-21)

These are linear functions of x and y and it means 

that the straight edges of the triangle remain straight after 

deformation. The deformation pattern implied is shown in 

Fig. 3.2.

The interpolation matrix of equation (3-1) is obtained 

by substituting the nodal displacements and co-ordinates of the 

three nodes in the above equations and solving for the a’s in 

terms of the nodal displacements. Zienkiewicz [3] does a 

manual manipulation of the equations and obtains the following 

relation for N in submatrix notation,

[N] = [^IIN^INJ (3.22)
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where I is a (2 x 2) identity matrix and

Ni = (ai + bix + ciy^2A

N* = (a, + b.x + c.y)/2A (3-23)
J J J V

V <am + V + V)/2i

al " 7n - Vj ; aJ = Wi - xlym 5 ^ = xlyJ - xJyi

; cm = xj " xi (3-24)

area of triangle (3.25)

If the local co-ordinate system is located at the

element centroid, then

X1 + XJ + xm ’ 0

yl + yJ + ym ' 0 <3-26’

=1= y = 24/3

For the displacement functions assumed canpatibility 

between adjacent elements is always satisfied because the 

displacements vary linearly along any side of a triangle and,
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with identical displacements imposed, at the nodes, the same 

displacement will clearly exist all along an interface.

3.3.2. Strain-displacement Matrix

Equations (3.5) and (3-6) define the strain-displacement

matrix B. By differentiating equation (3.22) as required by

equation (3.5) the matrix B is found to be

f»4

In submatrix notation.

LB] = [bJbJbJ

(3.27)

(3.28)

The submatrices may be inferred from equation (3.27).

All the terms in the strain-displacement matrix are 

constant, meaning that the strains within an element are constant.

The stress matrix is defined by equation (3.15) and 

since D is constant, stresses with an element are constant. 

Since stresses differ from element to element in general, the 

stress field is approximated by a series of jumps.

3.3.3. Element Stiffness Matrix for TRIM3 Element

Basically,

[k]e = I [B]T[D]rB] t dx dy
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Since D and B are constant matrices they may be factored from

the integral sign. Then,

Me = [B]T[D][B] t I dxdy = [B]T[D][B] t A (3.29)

where is the area of the element found by equation (3.25).

In submatrix notation, the element stiffness matrix

is written as.

kii klJ k.urn
[k]e = kJJ jm

kmi kmJ k mm

(3.30)

The subscripts i,j,m are the nodal numbers of the triangle.

(see Fig. 3.2). Each of the k terms is a (2 x 2) submatrix.

Hence, the element stiffness matrix is a (6 x 6) matrix.

An individual (2x2) submatrix may be obtained

from the following formula.

T
hn' B1 D Bn

1 - l,J,m (3.31)

n = k,j,m

A description of the finite element program using 

TRIM3 elements is given in Chapter 6 and a program listing is 

given in Appendix E.
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3.4. Element Analysis of the TRIMS Element:

3.4.1. Displacement Function

The TRIMS triangular element has three nodes stationed 

on each side in addition to the three nodes at the vertices of 

the triangle. The former may be anywhere along the sides, but 

are assumed to be midside for this analysis. This assumption 

facilitates input data to the canputer program as only the 

co-ordinates of the vertices are necessary. For this reason, 

too, the nodes are numbered as shown in Fig. 3.3, i.e. in the 

form of a counter-clockwise spiral starting at the vertices.

The displacements of a point within an element are 

written in terms of the displacements of six nodes. This 

allows the choice of a higher order polynomial in x and y 

to approximate the displacement field.

In total there are twelve degrees of freedom per 

element. The u and v displacements can each be written in 

terms of six constants, hence a full quadratic expansion in 

x and y can be used. The displacement functions are:

2 2u = ^ + a2x + a^y + a^x + a^xy + a^y (3-32)

2 2v = a7 + agx + ^y + a10x + a^xy + a12y (3-33)

Fig. 3-3 shows the original and deformed shape of the element;

it can be seen that the additional degrees of freedom allow 

the element to deform in a more realistic manner. Along a side
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such as ilk in Fig. 3-3 y is a function of x. Say, 

y = ax + b (3.34)

Thus, the variation of u along ilk is found by the 

substitution of equation (3-34) in equation (3.32),

u = (a^ + a^b + 2ag8b + agb )

2 2 + (ttj + a^a + a^b)x + (a^ + a^a + a^a )x

By lumping the constants, the above equation reads as

u = c + dx + ex (3.35)

Equation (3-35) shows that displacements vary parabolically 

along a side. The constants c,d and e in equation (3-35) nay 

be found by substitution of the x-co-ordinates of the three 

nodes on the side ilk. Since the nodes of the adjacent elements 

are coincident on this side, the same parabola is defined by 

both the adjacent elements. Ccmpatibility is thus always 

satisfied, and adjacent elements never separate during deformation 

according to the assumed displacement function.

Since the variation of stress within an element is 

one degree less than the degree of the displacement function, 

stress varies linearly within an element.
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In matrix notation, equations (3-32) and (3*33)

are:

xyx xyy OOOO

2
000 0 0 1 x y x

{f}e = [R] {a}e (3.37)

A relation between the coefficients, a, and the

element nodal displacements is obtained by substituting 

the nodal displacements and co-ordinates in equations (3.32) 

and (3«33). This yields, in matrix notation:
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By naming the (12 x 12) matrix C^, the above equation is condensed 

to:

(6}e = [CT] {a}e (3-39)

With the aid of equations (3-37) and (3.39) it is 

now possible to find the interpolation matrix N.

The coefficients, a, are determined by inversion,

{ale = [C^-1 {6}e (3.40)

Substituting this into equation (3-37) yields, 

{f} = [R][Ct]-1 {«}e (3.41)

and by conparison with equation (3.1) N is seen to be equal to 

the pre-multiple of 6, i.e.

[n] - [Bity1 o.^)

Matrix is a (12 x 12) matrix, but in order to save 

ccmputational effort of inverting the full matrix, it may be 

modified so that the Inversion of only a (6 x 6) matrix is 

necessary. Because of the similarity of the sets of equations 

for u and v (see equation 3.38), the equations for u and v 

are separated as follows,

{u} = [c] {au} (3.43)
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where

[C] =

1

1

x2 y2 

etc.

1 xi ^i xlyl “1

etc. a2 

and {au} = ’ (3.43a)

t

“6

It is seen that the same matrix C applies to the

u-displacements, viz.

{v} = [C]{av) where {av> = Ca^,ag,... .a^J

By proper.manipulation of the terms in the

inverse of C, the inverse of C^ is found. The correspondence

is as follows:
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The matrix may be sectioned into submatrices so that.

c i °11 0 C-1C12 0 c"1
13

0 0 c"1C15 0 c"1C16 0

c’1C21 0 ^22 0 c’1
23 0 c"1

14 0 C"1
25 0 c"^

16 0

C"151 0 C32 0 C33 0 C34 0 C"1C35 0 C36 0

C"1
11 0 0 C43 0 14 0 0 C"1 c46 0

C51 0 c"1
52 0 C53 0 C54 0 55 0 C"1C56 0

C"1
11 0 C-1C62 0 C63 0 0 ci

o5 0 C66 0

[cT]-1 = 0

0

0

0

0

0

^11

C21

C31

C’1 
11

C’1C51

C61

(analogou

—-------

s to above terms)

1

(3.44)

[CT] 1 = [crc2,c3,cvc5,c6]

where Cr is a (12 x 2) submatrix. The negative one superscript 

in equation (3-44) signifies the terms of C inverse.

3.4.2. Strain-displacement Matrix

Strains are functions of the partial derivatives of 

the displacement functions as defined by equation (3-5). The
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implied differentiations yield.

1 0 2x y 0 0

0 0 0 0 0 0

0 10 x 2y 0

Condensing,

{e} = [Q] {a}

and by substitution of a from equation (3-^0)

(3.46)

the required

strain-displacement relation is found:

M = [Q] [CT-1] {6}e (3.47)

and by comparison with equation (3-6), the strain-displacement 

matrix is,

[B] = [Q][Ct-1] (3.48)

Note:

While C^ is a constant matrix, Q contains linear 

functions of x and y. Fran equation (3.47) it can be concluded 

that strains within an element are linearly proportional to the 

nodal displacements of the element. Also, for an elastic medium.

stresses are linear within an element.
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3.^.3. Element Stiffness Matrix for TRIM6 Element

In general, the stiffness matrix of an element is 

defined as,
[k] = J[B]T [D][B] t dx dy (3.18)

Matrix B is a linear function of x and y and may not be removed 

fran the integral sign, as was the case with the TRIM3 element. 

Manual multiplication of the matrices and subsequent explicit 

integration is thus necessary.

Substitution for B in equation(3.18) frcm 

equation (3.48) gives,

[k] = J [C^lCQjWQX^ t dx dy (3.49)

Ely factoring the coefficient matrices, k is written 

as,

[k] = [CT"1][P][CT-1] (3.50)

where
CP] = J[Q]T[D][Q] t dx dy (3.51)

Manual miltiplication of the triple product under the 

integral sign yields a (12 x 12) symnetric matrix, the lower 

triangle of which is written below,

[P] = integral over element volume of
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0 D31 D33

2
0 2D1jX 2D13X te^x

2D23xy ZD^2

0 Dlly+ 
D31x

D13y+

D33x
2Dllxy, 
+20^

2 - 2
Dlly +D33x 
+2D31xy

(SYMMETRIC)

0 2D31y 2^ HD^xy ^Sl" + ^33y2

0 0 0 0 0 0 0

0 D31 D33 D31y+

D33x
2D33y 0 D33

0 D21 D23 2D21x D21y+

D23x
2D23y 0 D23 D22

0 2D31x 2D33x
0 

^31x 2D31^+ 

2D33x

to33xy 0 2D33x 2D32X

0 D21x+ .
M

. D23x+ 
D33y

2D21X 
+2D31xy

D23X2+
D31y +

2D23xy+
D33y2

0 C23x+
D33y

D22x+
D32y

2D23x+ 
2D33xy

D x^+ 
u22 
D33y2+ 
2D23xy

0 2D21y 2D23y ®21xy 2D2? + V 0 2D23y 2D22y ^xy 2D22xy+ ®2/

(3.53)
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An explicit integration over the element area has 

to be performed on all the terms of the above matrix. (Area 

integration is implied as the thickness is assumed constant for 

an element). If the local system of co-ordinates is chosen at

the centroid of the element then the following area integral

fomulae may be used, as cited from reference [3].

fxdxdy = Jy dx dy = 0

dy = A = area of triangle

dx dy = A(xJ + xj + xp/12 (3.54)

dx dy = Aty^ + y? + y^)/12

dx dy = »(¥1 + + xA)/12

where sutscipts i,j and k refer to the numbers of nodes 

stationed at the element vertices. Under the centroidal system, 

all terms with the first power of x or y disappear. In submatrix 

notation, the element stiffness matrix of a TRIMS element is.

Once the stiffness matrix is obtained with reference to the 
local co-ordinate system it is not necessary to transform to the 
global system, as translation of the co-ordinate areas does not 
alter the stiffness matrix.

Subscript k not to be confused with stiffness matrix k.
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ku kik kil k.in kin

kJi kJJ kJk kJl kjm kjn

[k]e =
^ki ''kJ kkk ^1 kkm ^kn

(3.55)

^i klk ^1 Im ^n

^ini hnj kmk kml kmm k mn

kni knj knk knl knm k nn

As in the TRM3 element, each of the terms inkis a (2x 2) 

submatrix. The submatrices of k may be obtained individually 

by following through the relevant equations in submatrix notation.

Briefly,

CB] = tBpB2’-" (3.56)

1 = ccrc2, ■ ■ -cr. ..c6] (3.57)

tv = ray (r =1,6) (3.58)

ty = [cJWc 1 (r = 1,6
r S s = 1,6)

(3-59)

A description of the finite element program using 

TRIM6 elements is provided in Chapter 6 and a program listing in 

Appendix E. The method of partitioning as applied to the TRIM6 

element is described in Chapter 7, together with a computer 

program listing.
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3.4.4. Stresses

By definition,

{0} = [D][B]{6}e

= [DXQX^rW (3.60)

As mentioned previously, this results in a linear-stress 

distribution within an element. Matrices D and C^, are constant. 

Matrix Q contains linear functions of x and y. This means that 

stresses at all points within an element differ in general, and 

it is necessary to define the co-ordinates of the point at which 

the stress is required. Usually, the stress is required at the 

element nodes. Because stress continuity at the element boundaries 

is not achieved, an average nodal stress is obtained by considering 

all the elements connected at the node examined.

Fig. 3.4 shows three elements extracted from a test 

case in which the stress at node a is required. The stresses 

as found by the three elements are discontinuous at point a, but 

the discontinuity is not very serious. The average stress at 

point a in this case would be 150.4 psi.

3.5. System Analysis:

The system analysis involves the assembly of 

individual stiffness matrix which describes the deformation 

behaviour of the system or body under load.
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FIG. 3.4 Stress Discontinuity at TRIMS Element Boundary.
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As can be recalled, the equilibrium of an element is 

satisfied by replacing the effect of internal stresses and/or 

body forces by a set of equivalent nodal forces. The assembly 

is done by satisfying overall equilibirum of the entire system 

of nodes. Considering one node, this means that the sum of the 

equivalent nodal forces due to all elements attached to the node 

must equal the external force at the node. If R is a column 

vector containing the external (reactive) forces at all the 

nodes in the system then the above statement may be generalized 

as follows:

{R^J = EF^ i - 1,number of nodes.

After assembly of element stiffness matrices, an overall 

system of linear equations of the following form is obtained.

{F} = EKH6} + {F J (3.61)

where F now stands for the column of external reactive forces

(change of notation is for convenience of computing). Matrix

K is the overall stiffness matrix and F
- P

is a column of body

forces.

Note that equation (3.61) holds for both the TRIM3

and TRIM6 elements. Once the element stiffness matrices are

obtained for either of the element types, the assembly is similar.

The steps leading to equation (3.61) are best

explained by a simple example.
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Fig. 3.5(a) shows a finite element idealization of 

3-nodal elements for a plate under uniform tension. Node 2 

is fixed while nodes 1 and 3 are placed on rollers so that they 

are free to move in the y-direction. The uniform loading is 

discretized to concentrated nodal forces. The origin of the 

global system is assumed to be at node 3. There are no body 

forces.

Since there are 9 nodes, the overall stiffness 

relation in submatrix notation is of the following form.

rFl) K11 K12 0 0 0

P2 ^1 K22 K23 K24 K25 0 0 62

P3 0 K32 ^3 0 K35 *36 0 0 *3

P4 K41 K42 0 K44 K45 0 K47 0 0 64

F.
5

0 K52 K53 K54 K55 *56 ^7 K58 0 < s >(3-62)

p6 0 0 K63 0 K65 *66 0 K68 K69 56

P7 0 0 0 ^5 ^5 0 ^7 K78 0 67

p8 0 0 0 0 K85 K86 K87 K88 K89 58

J) 0 0 0 0 K96 0 ^8 ^9- <59>

Submatrix notation of equation (3.62) is helpful, 

conceptually, but in the actual computer program it is necessary 

to revert to complete matrices. The entire stiffness matrix is thus 

(18 x 18).

In practice K is obtained by considering one element 

at a time. Assume elements 5 and 6 are to be assembled..



Yi 40

X

FIG. 3-3 TRIM6 Plane Stress/Strain Element and Allowed Deformation Pattern.

FIG. 3*5 (a) Plate Divided into 8 TRIM3 Elements, (b) Free Body Diagrams 

of Elements 1, 2, 5 and 6.
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The stiffness relations for the two elements are:

^5
F4 k44 k45 k46

* \

64

P5 k54 k55 56
1

S5 (3.63)

L 7 J
k 5

75 < S7 >

K k 
k55 k58 57 55

' P8 k85 k88 k87 6 8 (3.64)

F^
17 .

k 6
L 75 k78 ^7 - ?7

The superscripts in the above two equations reference

the element number. Fig. 3•5(b) show the elements isolated as free 

bodies in order to demonstrate the interaction of the nodal forces.

Considering the equilibrium of node 7, the

contributions by elements 5 and 6 are (from equations 3-63 and 3.64),

^ - ^4 64 "*■ ^5 65 + ^y $y (3.65)

^7 = ^75 $5 + k78 $8 * ^77 $7 (3.66)

For equilibrium to be satisfied at node 75 the stm of the above 

two forces must equal the external forces at node 7. The 

external force at node 7 is F? (without superscript) and is 

equal to 500#. Thus, 
5 5 6 5 6

^Y = ^4 $4 + (^75 + k75^5 ^ ^^77 ^7^7

6
+ K78 68 (3.67)
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Equation (3.67) is seen to be row 7 in equation (3-62). By 

comparison.

^4 “ ^4

s= M+ ^f

^7 = ^7 + ^7

^8 “ k78

The other terms in row 7 are zeros as node 7 is not

connected to nodes 1,2,3,6 and 9- The subscripts of the terms in 

the element stiffness matrices are imaginary and are obtained 

fran the element nodal numbers. This numbering system facilitates 

immediate storage of the k’s into the over stiffhess matrix.

In the actual program these local subscripts are transformed 

to global subscripts. In the complete stiffness matrix odd 

number’ rows refer to the x-direction and even numbered rows 

to the y-dlrection.

The discretization and superposition of centrifugal

forces is dealt with in Chapter 5.

3.6. Boundary Condit ions:

Either the reactive force or the displacement of 

all the nodes of the system must be known. Unless concentrated

loads are applied, internal nodes are presumed to have zero 

reactive force. However, if body forces exist, they are added
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to the force column. The finite element method presupposes 

that forces are concentrated, and distributed boundary loads 

have to be lumped on the nodes in seme way. In Chapter 4 

a consistent way of doing this is described.

As mentioned previously, enough displacements must 

be prescribed in order to prevent rigid body tranlations and 

rotation. By prescribing a displacement, it means that one of 

the unknown displacements may be written in terms of the other 

unknowns.

In order to prevent the added work of reorganizing 

the stiffness matrix to account for prescribed displacements, an 

artifice is used whereby the diagonal term of the row to be 

eliminated is multiplied by a large number which makes the off- 

diagonal terms insignificant. The corresponding term in the 

force column is replaced by the product of the new diagonal term 

and the prescribed displacement. In the example of Fig. 3*5, 

node 3 has a prescribed displacement of d(equal to zero) in 

the x-direction. Ihe row in the complete stiffness matrix to 

be eliminated is row 5. After modification this now reads,

1015K,-c-d = LI + +....+ 1015Kc,Uc +...X (3.68)
51 1 52 2 55 5 5jlo

or lO15^^,. = lO^K-r-d
55 5 55

U = d 
5

Equation (3.68) is thus an Indirect statement that U^ is a



prescribed displacement equal to d. Matrix U is a column 

vector of displacements, odd terms being x-displacements, etc.

3.7. SOLUTION OF LINEAR SYSTEM OF EQUATIONS:

If the column vector containing the body forces 

in equation (3-61) are summed into the force column vector F, 

then the following system of linear equations remain to be 

solved,

{P}= [K]{6} (3.69)

Presumably, equation (3.69) has been modified to include 

boundary conditions.

One way of solving for the unknown displacements is 

by inversion. However, the fact that the stiffness matrix is 

symmetric and banded is used in order to save computer storage 

and execution time. The largest matrix that can be stored in 

the CDC 6^00 computer is approximately of the size of 30,000 

words, or (180 x 180). If the entire matrix is stored, the 

largest number of nodes one can have is 90.

Fran the example in the previous section it can be 

seen that the stiffness matrix in equation (3.62) is banded, i.e. 

the non-zero terms are close to the main diagonal.. Also, the 

stiffness matrix is symmetric. It is thus only necessary to 

store the upper band of the matrix, which has been shaded in 

equation (3.62). In the basic TRIM3 and TRIMS programs of
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Chapter 7, the upper band is stored row-wise. The stiffness 

matrix of equation (3-62) is hence stored as follows:

MAIN DIAGONAL K11 K22 K33 K44 K55 k66 ^7 K88 ^9

1st SUPER DIAG. K12 ^23 0 K45 Se 0 *78 K89

2nd SUPER DIAG. 0 K24 K35 0 "57 K68 0 “^banded

3rd SUPER DIAG. -K14 K25 K36 K47 *58 "69 (3-70)

The saving in computer storage is substantial. If 

the bandwidth is 30 then a total of 500 nodes are possible. It 

is apparent that in this method of storage, the bandwidth is a 

critical parameter. It is defined as the total number of 

diagonals in the upper band of the stiffness matrix, and is 

dependent on the maximum amount by which the nodal numbers of 

an element differ. Mathematically,

bandwidth = n(n + 1) (3.71)

where n = maximum difference between element nodal numbers.

In Fig. 3.5, n = 4 - 1 = 3

bandwidth = 2(3 + 1) = 8 (see equation 3.70)

It is evident, therefore, to keep the nodal numbers of an 

element as close to each other as possible.

In the computer programs of Chapter 6, the Cholesky 

Method is used for the solution of the total system of equilibrium 

equations as it was assumed that this method would give good 

accuracy for the type of preplans considered.
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In the Choleski method the stiffness matrix of the 

system, K, is expressed as the product of a lower triangular 

matrix and an upper triangular matrix, i.e.

[K] = [R^Eiy (3.72)

The lower triangular form is obtainable from the upper 

triangular form as the stiffness matrix is real symmetric and 

positive definite, viz,

[K] = [Ru]T[Bu] (3.73)

The matrix [Ru] has a band structure similar to the 

stiffness matrix and the bandwidth is equal to that of the upper 

band of the stiffhess matrix.

If 

[K]{U) = {F} it follows that 

^u^V1^ = {F} C3-7^)

This equation may be written as two matrix equations by introducing 

an auxiliary vector Z such that

[Ru]T{Z) = {F} (3.75)

31X1 [RU]{U) = {Z} (3-76)

It is thus necessary to solve first the lower triangular form 

for Z, and then the upper triangular for U. This is similar to 

the Gaussian elimination technique where solution is achieved 

by backward substitution.



CHAPTER 4

CONSISTENT APPROACH TO DISTRIBUTED BOUNDARY LOADS

4.1. General Formula for Discretization:

Often reasonable answers are obtained by lumping 

the distributed loads on neighbouring nodes simply by physical 

intuition. This, however, does not always work, especially 

with the TRTM6 element. A formula for consistent nodal forces 

is set up in this section by using the principle of virtual 

work. The theory is developed with the IRM6 element as example, 

but is applicable to a general planar element.

Consider a boundary element e which is loaded by 

distributed laod g, as in Fig. 4.1. For any point within the 

TRIM6 element the displacements are defined by equation (3*36) 

or 
{f} = [R]{a}

However, on the boundary side of element e, y is a linear 

function of x, namely

x = b-jy + b2 (4.1)

By substitution of equation (4.1) into (3-36), the displacements 

of a point such as m along the boundary side of element e is 

obtained in terms of a new set of coefficients.

47
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or

{f}
y

o

y2 

0

0 0

i y

(4.3)

(3.2)

{f} = tRr]{ar}

where subscript r simply denotes ’reduced*.

The ’a’ coefficients are found in terms of the

displacements of the three boundary nodes of the element as

follows

yl 0

0 1

0

0 1

yk 0

0 1

or {«p}e = [Cr]{ar} (4.5)

and {a*,} = [Cr ^{i/ (4.6)



49

Substituting in equation (4.3)

{f} = [Rr][Cr-1] {6r}e (4.7)

or {f} = [Nr]{6r}e (4.8)

where [Np] = [R^tC^] is the reduced interpolation matrix. (4.9)

Let the nodal forces on the boundary nodes of element 

e be expressed as a column F,

{F}e = (4.10)

and assume a virtual displacement 6V is applied at the boundary

nodes.

(4.11)

Ihe work done by the nodal forces due to the applied

virtual displacement is.

Wn = {6V}T {F}S (4.12)
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The displacement of a point along the boundary side 

due to the virtual displacement is, by equation (4.8),

{f} = [Nr]{6v}e (4.13)

The total work done by the distributed load g 

is,
wd = J{f}T ,{gl ds (4.14)

or
Wd = {sV}T J[Nr] {g} ds (4115)

By the virtual work theorem Wn equals W^. The pre-multiples 

in equations (4.12) and (4.15) cancel and the result is

{P)e = J [n/ {g} ds (4.16)

Hence, for an element such as e, equation (4.16) discretizes 

the distributed load to concentrated nodal forces. For a 

node such as 1 in Fig. 4.1 there is a contribution due to both 

elements d and e, and have to be sunmed to find the net forces 

on the node.

4.2. Special Cases:

4.2.1. Case 1: TRIM3 element, uniform load in x-direction 

See Fig. 4.2(a). By analogy to Sec. 4.1, the 

governing equations are:

1 y 0 0 (4.17)

0 0 i y
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FIG. 4.1 Distributed Load g lbs per Unit Length on a TRM6 Boundary
Element e.

Boundary Elements.



52

rep- "1 yi 0 0 (4.18)

0 0 1 yi

1 yJ 0 0

0 0 1 yJ-

(per unit length in y-direction) (4.19)

By equation (4.16)

y 0

0 1

o y

dy

<yJ - yl’ ' 

(yj - ?j)/2 

0

(4.20)

0

Having yi = 2.0, y^ = 3.0, gx = 1000 Ib/in,

equation (4.20) yields
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These results are coincident with the static method

of lumping half the total load on the triangular element equally

on the two nodes. Hence, either approach is acceptable for the

TRIMS element under uniform load.

4.2.2. Case 2: TRIMS element with uniform load in x-direction

See Fig. 4.2(b). The governing equations for the

TRIM6 element have been derived in section 4.1. Matrix C r
is defined by equation (4.4) and matrix R is defined by

equation (4.2). The distributed loading is

{g} Bx I Ib/in

0 I

After manually performing the T product [R ] {g}

the force equation yields

(4.21)
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Having y± = 2.0, y^ = 2.5, yR = 3.0, gx = 1000 Ib/in,

equation (4.21) gives the following results.

fix r 166.67

F 
iy

0.0

F.JX 666.67

F
Jy

< 0.0 2

F, kx 166.67

ky< J
0.0

Frcm these results it can be concluded that for a

uniform load, l/6th of the total load on an element is concentrated

on each of the outer nodes while 2/3 of the total load is

concentrated on the midside node. Obviously, this differs from

the static approach.

4.2.3. Case 3- Circumferential loading on TRIM3 element

See Fig. 4.2(c). Assume the loading is a function

of the angle measured from the vertical, as,

load per unit angle (4.22)

If the radius is held constant equal to the radius

of the outer boundary, the governing equations in polar co-ordinates*

x
See Note at end of section.
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(4.23)

(4.24)

where 0^ is the angle at node 1 measured from the vertical. 

Nodal forces are subsequently.

In Chapter 11 it is shown that a feasible loading 

distribution as a result of cutting forces on a diamond circular 

saw blade is

(4.26)

For this distribution equation (4.24) gives
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By integration.

f^-&2 1
(e? - 0?)/3

VQi “ ®r/2 

c/e^ - eJ)/3

(4.27)

Forces in the cartesian system are obtained by a 

simple transformation. A listing of the program used for this 

case is Included in Appendix F. Results pertaining to the actual 

finite element idealization of the saw blade (Chapter 12) are 

shown in Table 4.1, in which the cartesian components of forces 

are cited. A canparison is made with the static method, and 

good agreement is observed.

TABLE 4.1. Results of example for case 3-

NODE CONSISTENT APPROACH STATIC APPROACH

F lb.X F lb. 
y

F lb.X ■ F lb.

4 -0.078 0.390 -0.062 0.292

14 -1.572 6.161 -1.439 5.641

23 -7.944 19.766 -7.945 19.767

35 -10.711 18.943 -10.994 19.442

50 -6.972 11.073 -6.944 11.164

102 -3.911 6.002 -3.878 5.950

101 -19.902 27.917 -19.570 27.450

80 -20.088 21.486 -20.521 21.948
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Note:

By using the polar co-ordinate system, it is assumed that

the boundary side is an arc of a circle. In reality, the sides 

are straight and this introduces some error. However, the error 

is acceptable.

4.2.3. Case 4: Circumferential loading on TRIM6 element

See Fig. 4.2(d). Making the same assumptions as for

Case 3> the governing equations are, 
r 2 11 e 0^ 0 0 0 

^ = 2
r 0 0 0 1 6 6^

to *

1 e. 0 0 0 

00 0 1 e.
" 2.1 0, 0^ 0 0 0

2 00 0 1 0, 0,

1 0. 0 0 0
2Lo 0 0 1 0. 0^ J

Assume the loading is.

(4.28)

(4.29)

{g> (4.30)
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Then

{F} = Cc -1 
r

0k
v
k^2

2 
k2e2 

k2e3

de (MD

By integration

F

F ri6

{F}
F.
Jr

J6

F,

pke

[C'Y

kl^0K

kl(0K

kl(0K

k2(0K

^’k
k2(0K

- 0^/2

- e^)/3

- eJ)/4

- e2)/2

- 9i)3

Again, the forces in the rectangular cartesian system

are obtained by a simple transformation. In Appendix F a computer

program is listed for this case as used in Chapter 12 to calculate

boundary forces on TRIM6 element meshes.



CHAPTER 5

CENTRIFUGAL FORCES

5.1. General Formula to Find Equivalent Nodal Forces:

Centrifugal forces exist in all rotating bodies. 

For instance, in a rotating disk, centrifugal forces vary in 

proportion to the radius. In the Finite Element Method, this 

type of problem is basically treated as a static problem and 

the effect of the centrifugal forces is accounted for by 

applying equivalent forces to all the nodes of the system 

(D’Alembert’s Principle). One approach is to treat each 

individual element as a mass concentrated at the element centroid, 

rotating independently of the other elements. The centrifugal 

force obtained by this idealization is then distributed equally 

to the nodes of the element. Although simple in its application, 

this method is inconsistent in that no consideration is given to 

the shape of the element.

In Chapter 3 a formula (equation 3-19) was derived 

with which body forces can be discretlsed. This formula is 

applicable to centrifugal forces. Reiterating equation (3.19),

j [N]T{p) t dx dy (5.1)

Here matrix [N], the interpolation matrix, is a function of the 

element nodal co-ordinates and gives some ’weighting’ to the 

actual position of the nodes. If matrix N was absent from 

equation (5.1), or if it was constant and could be factored
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out, then what remains is simply a sunmat ion of the forces acting 

over the element, and that is what the inconsistent method does 

in essence. It is thus concluded that equation (5.1) is a 

consistent discretization method.

The problem now is to define the centrifugal forces 

in terms of a vector {p}. Figs. 5.1(a) and (b) illustrate a 

rotating body from which a triangular finite element is isolated. 

From basic mechanics it is recalled that the radial force per 

unit volume acting at a point distance r from the centre of 

rotation is defined as,

F = m rw = r / (force per unit volume)

where w = weight density Ibs/cubic in, and 

a = angular velocity rads/sec

Fran Fig. 5-l(b), the infinitesimal force acting 

on an infinitesimal element (shaded in the figure), is given by 

d F = — w^ r t dx dy in the radial direction, 
r g

Talcing rectangular components

d F = — oT r cosQ t dx dy (5.2)x g

d F = — r sin6 t dx dy 
y g

(dx = dX)
°r {d F } = [ x > = w2 t |dx dy (5.3)

k k >



(b) An Enlarged View of Element e shewing Infinitesimal Centrifugal Force Acting on an 

Infinitesimal Element.
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Integration of equation (5.3) would give the net 

force acting over the element. However, if equation (5-3) were 

pre-multiplied by N before Integration, the effect would be as 

required by equation (5.1). Thus by analogy between (5-3) and 

(5.1),

centrifugal force per (5.4) 
unit volume

w 2 
g

Because of the simplification of the area integrals 

if a local co-ordinate system is chosen at element centroids, 

equations (5.4) and (5.1) are modified for this system, 

„ o f ORX + x '
<5.5) 

g ORY + y y

where (ORX, ORY) are co-ordinates of the centroid of the element 

with respect to the global system.

(X,Y) are co-ordinates of a general point with respect 

(x,y) are co-ordinates of the general point with 

respect to the local system.
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Equation (5-1) is modified as.

{F} ^ “ tP g

tw 2 
g

Jdx dy

J[N]T dx dy

or

{P}® = {F,} + {F„} 
Pl 2

(5.6)

5.2. Centrifugal Forces for TRIM3 Element:

The interpolation matrix for a TRIM3 element is 

defined by equation (3.22). Matrix F^ in equation (5.6) becomes,

{F1} =

F li
F, .

F flk

I is a (2 x 2) identity matrix

equation (3.23). By using the

IN.
1

w 2 — di

and Np

t IN

LIN,k-*

dx dy (local co-ordinate 
system)

N., N are defined

integration formulae given

equation (3.5^)> the above equation reduces to

9 a 10RXiv' <v = <v-|“ 4 ort' (5.7)

The forces above are, of course, submatrices having

an x and a y component.
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Matrix F^ of equation (5.6) becomes.

(5.8)

from which.

<pa> " -
- u2 t/24 ( P^1*

8 J [^
+ c^y

2
+ Ciy J

dx dy (5.9)

Taros Fp. and F?. are obtained from equation (5.9) by a 

counter-clockwise permutation of the subscripts. Coefficients 

b and c are defined in equation (3*24).

Note:

By splitting the force vector into two vectors, the 

argument concerning lumping of the forces beccmes clearer. 

Term F^ effectively allocates 1/3 of the total force equally to 

the nodes while terro Fp is the actual ’weighting' term.

5»3. Centrifugal Forces for TRIM6 Element:

The interpolation matrix N for the TRIM6 element is 

defined by equation (3-42). The transpose of N is,

[N]T = Cc/Ycr^ (5.10)

(In the computer program of Chapter 6 the inverse of matrix C^ 

is calculated when finding the stiffness matrix of each element 

and is stored on mass storage ar-ea for use in calculating the
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centrifugal forces).

The local co-ordinate system is again assumed at the

element centroid. Matrix F^ of equation (5*6) becomes.

1 0

x 0

(ORX)
dx dy (5.11) 

(ORY)

0 x

o y

0 x2

0 xy

under the integral signAfter performing; the product

and integrating formally, the following is obtained for F.
c ORX*AFt •11 0

0

<
plk

P11
^= - - a2 t[c "1]T 

g r

ORX«Ix

ORX*Ixy 
ORX*Iy

(5.12)

Plm ORY«A
K 0

0
ORYsIx

ORY*Ixy
ORY*Iy
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where lx, ly and Ixy are the three mcments of area.

Term F^ of equation (5.6) yields.

X 
x2

xy
x3

{P2} = ' g “ 1 ^T ^ 1
x2y

2 dx dy (5.13) Ay

y
xy
y2
x2y

xy2
_ y3 .

or
0

X2

XY

X3
X2Y

{F2} = - t [C ~1]T
XY2

0 (5.1^)

XY

Y2

X2Y
XY2

Y3
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In equation (5.14) X2, Y2 and XY are respectively 

equal to lx, ly and Ixy, the area moments. The area integrals 

of the higher order terms, named X3, X2Y, etc., are more 

complicated.

One way of finding these integrals is by a numerical 

method described in Appendix A which divides the element into a 

number of sub-elements and sums the contribution of the sub-elements. 

A program listing of the method is also given in the appendix 

and the accuracies with which the integrals are obtained are 

demonstrated. Though not exact, this method has the advantage 

that integration of any powers of x and y may be performed, 

including negative powers.

Another method of obtaining these integrals is by 

manual integration which unfortunately becomes cumbersome for 

orders higher than 3. In Appendix B integrals for the 3rd 

degree obtained in this way are provided (in part). The formulae 

are not completely followed through as they are easily calculated 

by computer after the stages canpleted.

Calculation of centrifugal forces is incorporated in 

the finite element programs which follow.



CHAPTER 6

DESCRIPTION OF BASIC COMPUTER PROGRAMS FOR 

IRIM3 AND TRIM6 ELEMENTS

In this chapter the finite element programs using 

the two types of elements is described. In Chapter 7 the method 

of partitions as applied to the same two element types is 

described. They are grouped in this way as the procedures within 

each group are similar. In Table 6.1 a list of the important 

variables as used in the programs are listed together with their 

meanings. This table includes variables contained in all of the 

four programs, and an indication is given in brackets to show in 

which program the variable is used. For example, ’TRM3 Sub’ means 

the program using the method of substructures (or partitions) and 

the IRIM3 element.

The finite element procedure is divided into a number 

of sections each of which is diverted to a subroutine. The 

main differences between the two programs described here occur in 

the calculation of the element stiffness matrices and the calculation 

of centrifugal nodal forces.

Other differences are due to the difference in nodal 

numbering. Fig. 6.1 shows the basic flow of the programs and 

the subroutines to which the flow is diverted.
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RUN

INPUT AND PRINTING 
OF DATA

INPUT MESH------------------------- SUBROUTINE
COORD

CALCULATION AND ASSEMBLY OF 
ELEMENT STIFFNESS MATRICES

SUBROUTINE
FEM

INTRODUCTION OF
PRESCRIBED DISPLACEMENTS

SUPERPOSITION OF-------------------------SUBROUTINE
CENTRIFUGAL FORCES CENT

SOLUTION OF LINEAR 
SYSTEM OF EQUATIONS

SUBROUTINE.--------SUBROUTINE
BMA.TS SOWS.

CALCULATION OF EIEMENT 
AND NODAL STRESSES

SUBROUTINE 
STRESS

STOP

Fig. 6.1 Flow diagram of TRIM3 and TRIM6 finite 
element programs.
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TABLE 6.1 Dictionary of Fortran Variables

Fortran
Variables

Equivalent Significance
Symbol

NPOIN Total number of nodal points in system
NELEM Total number of finite elements 

in system
NON Total number of nodes having 

concentrated nodal forces
NBOUN Total number of nodes having 

prescribed displacements
IWATE Number of elements connected at 

a node below which Wilson’s method 

is used to find weighted nodal 
stresses (TRIM3, TRIM3 Sub)

NCENT Centrifugal force option

= 0 no centrifugal forces present

* 1 centrifugal forces present
NCOLN Number of force columns (TRIM3, 

TRIM3 Sub, TRIM6 Sub)
NTHICK Number of variations in elements 

thicknesses in system
E E Young's modulus (psi)
P v Poisson's ratio
DENS w Weight density of material

(Ib/cubic inch)
RPM N Speed of rotation in (revs/nin)
T(I) t^ Thickness for Ith thickness

variation (inches)
IT(I) Flag on Ith element defining 

thickness from T(I) to be used 

for element (TRIM3, TRIM6)
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NOD(I,J) i,j,m • Nodal numbers for TRIM3 element
i„J,k,l,m,n Nodal numbers for TRIM6 element

Z(I,J) x^y^ J = 1, x co-ordinate of 1th node
J = 2, y co-ordinate of ith node

F(I) F^ Net force on ith node (include

body forces)(TRIM3, TRIM6)

SK(I,J) [K] Banded overall stiffness matrix

(TRIM3, TOM6)
IBAN Bandwidth of upper band of 

stiffness matrix
NF(I) • Array containing nodal numbers 

of nodes having prescribed 

displacements

NB(I,J) Flag denoting direction of Ith 
prescribed displacement

NB(I,1) — 0 Disp. in x-dlrection 
prescribed

NB(I,2) = 0 Disp. in y-direction 

prescribed

NB(I,1) = 1 Disp. in x-direction 
not prescribed

NB(I,2) = 1 Disp. in y-direction 

not prescribed

BV(I,J) BV(I,1) = value of Ith prescribed 

displacement in x-direction 

BV(I,2) = value in y-direction

(ORX,ORY)

D(I,J)
DELTA

Centroidal co-ordinates of element 

(3x3) elasticity matrix
A Element area

U(I) u^v\ Column vector of displacements.
Odd terms are x-displacements, 

even terms are y-discplacement
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TAPE1,TAPE2 Mass storage area

TAPE3,TAPE4
GRAVITY g Gravitational acceleration

B(I,J) [B]

32.2*12 in/sec2

(3x6) strain-displacement

CK(I,J) [k]

matrix (TRIM3)
Element stiffness matrix

DB(I,J) [DB] (3x6) stress matrix (TRIM3)

S(I,J) o ,a

(3 x 12) stress matrix (TRIM6)

Element stresses/Nodal stresses

J = ^ \y (IRIM3, TRIM6)

S1,S2 0^,02 Principle stresses

THETA 6 Principle angle

SR,ST,SRT ^r’^t’^rt Stresses in polar system

XI,YI Nodal co-ordinates with respect

NODE

to local system
Nodal numbers for one element

c [cT] (6x6) coefficient matrix

in part (TRIM6, TRIM6 Sub)

P (12 x 12) matrix subsidiary to

NCOORD

element stiffness matrix (TRIM6, 

TRIM6 Sub)
Number of nodes stationed at

NPUNCH

element vertices (TRIMo, TRIM6 Sub) 
Punch option.Punch output of

Q

displacements nodal stresses and 
polar stresses provided if NPUNCH 

greater than zero
(3 x 12) matrix subsidiary to

stress matrix (TRIM6, TRIM6 Sub)
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NPART Number of partitions (TRIM3 Sub

TRIM6 Sub)
NCONC Number of nodes having concentrated 

forces
THICK t Element thickness
NSTART(I) 
NEND(I) 
NFIRST(I) 

NLAST(I) 

U

First element of ith partition 
Last element of ith partition 

First node of ith partition 

Last node of ith partition

Force column /displacement column 

(TRIM3 Sub, TRIM6 Sub)
ST/AM [K] Submatrix of overall stiffness

matrix (TRIM3 Sub, TRIM6 Sub)
BM [C] Connectivity matrix (TRIM3, TRIM6

Sub)



74

6.1. Description of TRIM3 Finite Element Program:

MAIN PROGRAM

Function: Reads input data and co-ordinates subprograms.
Flow: MAIN calls COORD, FEM, CENT and STRESS.

Discussion: Input data includes NPOIN, NETEM, etc. which

is easily deduced from the listing. The input mesh is diverted 

to subroutine COORD so that the mesh may be generated in some 

special cases. Elements may have different thicknesses and the 

various thicknesses are stored in matrix T. While reading the 

element nodal numbers, a ’tag’ is placed on each element in the 

form of an integer which indicates in which class of thickness 

each element falls into. The matrix in which these ’tags’ are 

stored is IT. The ’tags' start from zero in steps of unity. 

If the structure has just one thickness, the space is left blank 

on the data cards, and is hence read as zero.

The elasticity matrix D is calculated for an Isotropic 

material in plane stress. The program can be used for plane 

strain simply by changing the D matrix for that of plane strain. 

Only the upper band of the stiffness matrix is stored in 

accordance with the discussion presented in Sec. 3.7. Prescribed 

displacements are handled by the method described in Sec. 3-6. 

Centrifugal forces, if desired, are calculated element by element 

and are superposed on the reactive force column F.

The system of linear equations are solved by the 

Choleski method which is described in Sec. 3-7 and subroutine
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BMATS and SOLBS are called in that order to achieve this.

Subroutine STRESS, among other things, calculates 

nodal forces by a weighted averaging method.

The program may be used to solve a problem with a 

number of sets of applied forces simply by specifying in NCOLN 

the number of sets, and supplying these as additional data.

An added facility of this program is that all nodes 

that are rigidly fixed may be numbered zero(O). The zero 

numbered nodes are overlooked during assembly. This artifice 

saves storage space.

A search technique to used in the initial stages of 

the program to find the bandwidth, (see Sec. 3.7). The 

program included occupies 2/3 of the available storage space 

and can have 200 nodes and a bandwidth of 30.

SUBROUTINE FEM

Function: (1) FEM finds an element stiffness matrix, and

(2) assembles the overall stiffness matrix.

Flow: FEM is called by MAIN. Calls BMAT to find the

strain-displacement matrix.

Discussion: The (6x6) element stiffness matrix is called OK 

and is calculated according to equation (3-29). The product DB, 

which is the stress matrix, is calculated and stored on TAPE1 

for later use in calculating stresses.

The assembly of the element stiffness matrix into the 

’banded’ overall matrix is done by finding the global storage 

locations as if the entire overall matrix were to be formed.
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These global locations are then transformed to the new locations 

in the banded structure by the use of a simple formula obtained 

below.

Assuming a (2 x 2) submatrix k.. of an element 

stiffness matrix has to be assembled. The global storage locations 

of the submatrix are:
(2j - 1) (2j)

(2i - 1)PK,, ! K 2 
[k..] stored as -----> --------- 1—--- ,

(2i) IC, i K

where the K’s are the elements of the submatrix.

Term K21 is supposedly to be stored in row m = 2i 

and column n = 2j - 1.

In the banded matrix K^ is stored as follows.

row = n - m + 1 

column = m

(The diagonals are stored row-wise),

SUBROUTINE STRESS

Function: Calculates element and nodal stresses.

Flow: STRESS is called by MAIN, and calls PRINCE to

find principal stresses.

Discussion: TAPE1, on which stress matrices DB for each

element has been written in subroutine FEM, is rewound. The 

stress matrix of each element is read in turn and the stress 

calculated as by equation (3.15). This, however, yields a
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single constant value for the entire element.

Appendix C describes a method developed by

Wilson [12] which finds nodal stresses by ’weighting’ the stresses 

of all elements connected to the node. A search is performed 

for each node to find the elements connected to it, and stresses 

found using the formulae of Appendix C. At internal nodes 

stresses by these formulae almost equal the normal average of 

the element stresses, but differ greatly at the boundaries.

Principal stresses and angle are found at each node 

by subroutine PRINCE. The principal angle returned is the angle 

between SI and the y-axis measured counter-clockwise positive.

The nodal point stresses are then transformed to the 

polar system by the formulae given in Appendix D.

SUBROUTINE BHATS

Function: To decompose a banded symmetric matrix into a

product of lower triangular and upper triangular matrices. 

Flow: BHATS is called by the MAIN program.

Discussion: Only the upper triangular banded coefficients

of the stiffhess matrix SK are input to BHATS through array BAND. 

BHATS decomposes, remaining within the bandwidth, and returns 

only the upper triangular form in array BAND.- Subroutine SOLBS 

uses this upper triangular form to solve for the unknown quantities.
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SUBROUTINE SOLBS

Function: To solve the equation (^Ry)x = B for X,

given Ry and B, and A = ^ is symmetric.

Flow: SOLBS is called from the MAIN program after

BMATS had been called.

Discussion: Input to SOLBS is the upper triangular

decanposition Ry of A and the constant column B. If Z = RyX, 

then RyZ = B is solved for Z by first determining R^ fran Ry 

(since A is symmetric) then using direct substitution.

RyX = Z is then solved for X by backward substitution. R^ is 

input to SOLBS in banded form.

6.2. Description of TRIM6 Finite Element Program

The theory concerning the TRIM6 element is developed 

in Chapter 3- The sequence of operations in this program is as 

shown in the flow diagram of Fig. 6.1. It has already been 

mentioned that the main program differs slightly from the TRIM3 

main program but the subprograms change completely. The method 

of assembly is the same as in the previous program though 

the element stiffness matrix size is doubled. Also, the basic 

character of the overall stiffness matrix is the same and 

the system of linear equations are solved by the same method.

The subroutines that change are: FEM, CENT and

STRESS. These are described as follows.
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■ SUBROUTINE FEM

Function: (1) To find element stiffness matrix

(2) To assemble element stiffness matrix in 

overall stiffness matrix.

Flow: FEM is called by MAIN for each element. Uses

library subroutine INVMAT to invert matrix C. Uses a function 

subprogram CR.

Discussion: A local co-ordinate system located at the element

centroid is used. The co-ordinates of the midside nodes are 

generated from the vertex nodes, and the six co-ordinates are 

transformed to the local system.

The (6x6) coefficient matirx C is found as 

defined by equation (3.^), and Inverted by subroutine INUMAT. 

The inverted matrix C is stored on TAPE2 for later use in 

finding centrifugal forces and in stress calculations.

The elements of the lower triangle of matrix P 

(equation 3-53) are calculated and stored row by row in a column 

vector, each row ending at the diagonal element. All the first 

order terms in this matrix vanish (upon integration) because 

of the choice of co-ordinate system.

The submatrix formulation of equation (3-59) is used 

to find the (2x2) submatrices of the element stiffness matrix. 

Only the submatrices that are located in the upper triangle of 

the overall matrix are calculated and directly superposed.

Because storage location is only a function of the nodal numbers.
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this portion is identical to the TRIM3 case, except that the loop 

is done 6 times instead of 3.

C and C are (12 x 12) submatrices of CL-! (see 

equations 3.57 and 3.44) and FUNCTION CR returns the elements 

of these submatrices by proper correlation of the elements of 

C"1 and C^1.

SUBROUTINE STRESS

Function: Calculation of centroidal, nodal, polar and

principal stresses.

Flow: STRESS is called from MAIN. STRESS calls

subroutines SIGMA and PRINCE.

Discussion: Equation (3-60) is used by subroutine SIGMA

which returns three stresses at a point given the co-ordinates of 

the point with respect to the local system and the constant 

matrix C of the element which contains the point.

Centroidal stresses are first calculated for each 

element. Mass storage TAPE2 is recalled to obtain C-^ and the 

nodal quantities which had previously been calculated in 

subroutine FEM. Principle stresses at the centroids are 

calculated by subroutine PRINCE.

As mentioned in Chapter 3, there is a discontinuity 
j- -----------------------------------------

The term "elements", depending on the context in which it is used, 
may either mean finite elements or terms in a matrix.
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in stress between adjacent element. In order to find nodal 

stress, the trick used in this program is to conduct a search 

to find all elements connected to the node in question, and to 

take an average of the stresses which each respective element 

yields. Again, principal stresses and principal angles at the 

nodes are calculated by subroutine PRINCE.

Finally, radial and tangenital stresses with respect 

to the polar system are calculated at the nodes by the 

transformations given in Appendix D.

SUBROUTINE SICT4A

Function: SIGMA finds stresses at a point, given the

co-ordinates of the point with respect to the local co-ordinate 

system at the centroid of the element which contains the point, 

and the constant matrix CC-^] of the element.

Flav: SIGMA is called by STRESS which is called by

MAIN. SIGMA calls QMAT and QCMAT.

Discussion: The formula used is (3-60). Matrix Q,

defined in equation (3.^5), is first found by subroutine QMAT. 

Q is a function of the co-ordinate of the point at which the 

stresses are wanted. The product of Q and C^-'1' is then formed 

by subroutine QCMAT, which uses FUNCTION CR to correlate C-J_ 

to CT~1.

The three stresses are yielded by premultiplying

CO by the elasticity matrix D.
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SUBROUTINES BMAT and SPIES

These are the same as in the TRIM3 program.



CHAPTER 7

METHOD OF SUBSTRUCTURES OR PARTITIONS

7.1» General Formulation of Method:

In this method the basic overall stiffness matrix 

of a systen is partitioned into a number of submatrices in such 

a way that these form a tridiagonal system of submatrices. This 

does not alter the character of the stiffness matrix but allows 

the solution of the systen of equations to be done part by part. 

Storage space of only one partition has to be maintained, with 

the result that it is possible to have as many partitions as 

desired depending on computer time allowed. The method is 

explained by means of an example.

Fig, 7-1 shows a finite element idealization (using 

TRIM3 elements) of a plate in uniform tension. Fig. 7*2 shows 

a skeleton of the overall stiffness matrix for the problem. 

The hatched portion signifies the bandwidth beyond which the 

terms are all zero. The matrix is arbitrarily partitioned into 

submatrices as indicated by the solid-lined rectangles. These 

are named Kp Cp Kp, Cp etc. It is seen that the K’s are 
T synmetric. Also C can be obtained from C and does not have to 

be stored.

The physical meaning of partitioning the stiffness 

matrix into these submatrices is seen by referring to Fig. 7.1. 

Since submatrix K^ is of size (^ x W), it includes the first 

22 nodes sectioned off by partition line I. Submatrix Kp includes

83
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FIG. 7>2 Overall Stiffness Matrix for the Problem Shown in Fig. 7.1,

Partitioned Into Submatrices.
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nodes 23 to 44, i.e. the section of the structure between lines I 

and II. The partitioning lines effectively divide the structure 

into ’substructures'. The connection between the substructures 

is achieved mathematically by the 'connectivity' matrices C.

For example, the last term in K^ is stiffness K^ ^ (stiffness 

of node 22); node 25 falls into the second substructure and the 

relative stiffness between nodes 24 and 25 (K^ ^y is contained 

in Cj.

In this example, the submatrices were -formed first, 

then the partitioning lines. In practice, one sections off the 

structure first.

7.2. Solution of Equations:

The displacement and force columns are partitioned into 

submatrices in the same manner in which the stiffness matrix is

partitioned. The sizes of these submatrices are determined by

the number of nodes in the respective partitions, for example.

the displacements of nodes 1 to 22 are included in submatrix 6^

in the example of sec. 7-1.

For this example, the stiffness relation in

'tridiagonalized' partitions is.

CI

KII

0

0 cin

(7.1)
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The first two matrix equations can be written out in full as,

[Kj] {6Z} + [CT] {6nJ = {Fj}

[Cj]1 {sp + [KIZ] {6ZI} + CCZZ] {6IIZ} = {FIZ}

Solving for dj in the first equation,

{«j} = [Kj]'1 Fz - [KjrtCj] {6IZ} (7.2)

Substituting this in the second equation, 

([Kzz] - [C^L^rkylHay + [CIZ] {6IIZ)

= {FII} " ^/[Kj]’^!) (7.3)

Or, by defining new symbols

[y = ([KIZ] - [c/EK^^Cj]) (7.3a)

[PII] = {PII} " [c/ty^Fjl (7.3b)

equation (7.3) may be written as, 

ty^n^ + ty{6ni} = {pn} (7.^)

Fran equation (7.4) $zz can be solved for and substituted 

in the next row equation to give modified Kzzz and F^j. Such a 

process of substitution and elimination is continued to the last 

row equation, which yields

IV1^1 * {?iv> <7-5>
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whence a direct inversion yields 6^. In general^ for N

submatrix rows, the last equation reads,

[^<9 - tV (7-6)

The other displacement submatrices are obtained 

by backward substitution.

Notes:

With reference to Fig. 7.2, it is noticed that 

KI* ^ii e^c> ^ symmetric and it is thus necessary only to store 

the symmetric parts of the matrices.

Also, with regard to the connectivity matrices C, it 

is necessary only to store the elements blocked off by dotted lines.

These observations are used to effect in the computer 

programs using the method of partitions, This involves an 

additional amount of book-keeping because it is necessary to keep 

track of the new storage locations in relation to what they should 

be in reality. However, this pays off in substantial storage 

saved.

7.3- Description of Program for Method of Partitions Using the 

TRIM3 Element.

The calculations of the element stiffness matrices, 

the centrifugal forces and the nodal stresses are done in the

ssnic way as the basic TRM3 program as the basic formulae are

the same.
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The step by step method, however, necessitates a 

different sequence in the Main Program, and also a different 

method of solution. Appendix E has a listing of the entire 

program, but only the Main Program and Subroutine Solve are 

described in this section.

The significance of the Fortran variables are 

described in Table 6.1. Fig. 7.3 shows a flow diagram of 

operations for the Main Program.

MAIN PROGRAM

Function: Reads input data and co-ordinates subroutines.

Flow: MAIN calls COORD, CENT, FEM, SOLVE and STRESS.

Discussion: The input of data is best described by means

of sample output on the next page. This output pertains to 

the example in Sec. 7.1.

Elements through which a sectioning line pass are 

included twice, once at the end of one partition and again at 

the beginning of the next partition. The reason for this will 

be clear if the first two partitions in Fig. 7.2 are considered. 

The first time round the elements through which section line I 

passes are required to calculate elements in Cp and the secord 

time round to calculate elements in KTp The two nested DO 

loops shown in Fig. 7.3 perform the crux of the main program. By 

means of a search the size of connectivity matrix BM is found, 

(see note in Sec. 7.2).
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Fig. 7*3* Flow diagram for finite element program using method 

on partitions

RUN

READ AND PRINT 
INPUT DATA

INPUT
MESH

SUBROUTINE
COORD

SUPERPOSITION OF SUBROUTINE
CENTRIFUGAL FORCES CENT

OUTER LOOP INCREASES 
PARTITION NUMBER

SEARCH FOR FINDING
SIZE OF CONNECTIVITY MATRIX

INNER LOOP INCREASES 
ELEMENT NUMBER

FORMATION OF ELEMENT’ 
STIFFNESS MATRIX

SUBROUTINE
FEM

ASSEMBLY OF OVERALL STIFFNESS
MATRIX AND CONNECTIVITY MATRIX

INTRODUCTION OF
PRESCRIBED DISPLACEMENTS

SOLUTION OF SYSTEM---------- SUBROUTINE
OF EQUATIONS SOLVE

CALCULATION OF STRESSES----- SUBROUTINE
STRESS

STOP
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For each partition, the stiffness submatrix, connectivity 

matrix and force submatrix are stored on TAPE4 and later used in 

SOLVE for the solution of the tridiagonal system of submatrix 

equations.

Subroutine STRESS finds element stresses, average 

nodal stresses and polar stresses.

SUBROUTINE SOLVE:

Function: Solves tridiagonal system of matrix equations

by elimination and backward substitution.

Flow: Called by MAIN which transfers stiffness and

connectivity submatrices of all partitions on TAPE4.

Discussion : Basically, this subroutine consists of two DO 

loops. The first loop does the elimination and the second loop 

the backward substitution.

For each partition, 'modified’ stiffness and force 

submatrices are calculated using the following formulae.

[^ = [^ - [^1 (7.7)

where

^^1-] = ^CK-P ^1^ ^-P (7.8)

fV ' {PN> - <7’5>

where

wH> ' [W C!W <W <7-10’



92

N is the partition number. Matrices YM and TF are initialized 

(when N = 1) to zero. Also,

K = AM

C = BM

As mentioned earlier, only parts of K and C are stored. The 

parts stored are clarified in Fig. 7.^ which is the first row 

of the system of matrix equations. Fig. 7.^ also indicates 

the meanings of the relevant variables.

The inversion of the K matrices (equation 7.8) is 

done by library subroutine INUSYM which inverts symmetric 

matrices.

Given row and column numbers, FUNCTION BMAT 

returns the correct elements of C by extracting the proper 

element from the portion stored. BMAT is a 'bookkeeping' 

subprogram.

The triple product in equation (7.8) is performed 

as shown in Fig. 7.5. The program is organized so that YM 

uses the storage area of PYM. Matrices K"1 and C-1 are 

written on TAPE2 for use in the backward substitution.



FIG. 7*^ First Submatrix Row of Stiffness Matrixy Only the Shaded 
Parts are Stored.

FIG. 7.5 Matrix Triple Product of Equation (7.8). The Shaded Areas 

Shew the Computer Storage Areas Maintained.
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INPUT DATA

TOTAL NUMBER OF PARTITIONS-NPART= 4
TOTAL NUMBER OF NODAL POINTS-NPOIN= 72
TOTAL NUMBER OF ELEMENTS-NELEM= . 110
TOTAL NUMBER OF NODAL POINTS WITH

PRESCRIBED DISPLACEMENTS-NBOUN= 11
TOTAL NUMBER OF WAD VECOTRS-NCOLN= 1
NUMBER OF POINTS WITH CONCENTRATED

LQADS= 11
PLANE THICKNESS-THICK= 1.0000000E+00

PARTITION 1ST ELEMENT LAST ELEMENT 1ST NODE LAST NODE

1 1 40 1 22
2 21 80 23 44
3 61 110 45 61
4 91 110 62 72

PRESCRIBED DISPLACEMENTS
NODE X-DISPLACEMENT Y-DISPLACEMENT

1 -0.
2 -0.
3 -0.
4 -0.
5 -0.
6 -0. -0.
7 -0.
8. -0.
9 -0.

10 -0.
11 -0.

PRESCRIBED FORCES______________________

NODE X-FORCE Y-FORCE
62 1.0000000E+03 -0.
63 2.0000000E+03 -0.
64 2.0000000E+03 -0.
65 2.0000000E+03 -0.
66 2.0000000E+03 -0.
67 2.0000000E+03 -0.
68 2.0000000E+03 -0.
69 2.0000000E+03 -0.
70 2.0000000E+03 -0.
71 2.0000000E+03 -0.
72 1.0000000E+03 -0.
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7.4. Description of Program for Method of Partitions Using the 

TRIM6 Element:

The theory for the method of partitions developed in 

sections 7.1 and 7.2 applies to a general finite element, and hence 

also to the TRIM6 element. The general procedure of this program 

is similar to the TPJM3 program and the flow diagram of Fig. 7.3 

also applies here. Solution of equations is again achieved in 

Subroutine SOLVE. However, the element stiffness matrix and 

stress matrix is adapted for the TRIM6 element from the basic 

program. Assembly of the overall stiffness matrix differs in the 

respect that stiffness with respect to 6 nodes is catered for. 

Centrifugal forces are calculated by the same subroutine as in the 

basic TRM6 program.

With this program large structural problems can be 

solved and has the added advantage of an improved element. 

Again, there is the proviso that the structure must be simply 

connected.



CHAPTER 8

TEST CASES FOR FINITE ELEMENT PROGRAMS

Many test cases were run in order to check the programs 

and to get familiar with the method. The finite element program 

returns large sets of numbers which describe variations at 

scattered points, called nodes, and experience with the method 

is necessary in order to correctly interpret the results. The 

two aims mentioned above are achieved by solving certain problems 

to which exact solutions are available using the theory of 

elasticity. Seme of them are discussed below.

Each test case was run for both TRIM3 and TRIM6 

element types. Although not discussed below, the same test cases 

were run on the programs using the methqd of partitions. The 

results were found to be Identical in each class (of element 

type).

8.1. Case 1: Square Plate in Plane Stress. TRIM3 Element 

Description:^. 8.1(a) and (b) show 8 elements idealizations of 

the plate under two types of loading conditions. The uniform 

loads shown in dotted lines v/ere discretized to concentrated 

forces on the nodes. The displacement boundary conditions were 

chosen to prevent rigid body motion and to allow uniform 

displacements (node 1 and 3 on rollers in y-direction).
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FIG. 8,1(a) Uniform Tension and (b) Hydrostatic Tension of Square Plate.

FIG. 8.2 TRIM6 Idealization of a Plate in Uniform Tension.
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Discussion:

The displacements obtained show that the sides of 

the plate remain traight after deformation. Also, the 

displacements are symmetric about the center-line of the plate. 

Fer case 1(a) Poisson’s ratio effect checks out as defined by 

the formula:

Net lateral shrinkage______ _  4.0 E - 5 -no 
Net longitudinal elongation ~ 1.33 E - 4 ~

This ratio is the Poisson's ratio assumed for steel.

From the element and nodal stresses it can be seen 

that constant stress conditions are achieved throughout the 

plate. The reactive forces are equal to, and opposite to, the 

applied forces, showing that numerical errors in ccmputation 

are minimal. The stresses of case 1(b) checks the fact that 

hydrostatic tension produces zero shear.

8.2 Case 2: Square Plate in Plane Stress. TRD^6 Element: 

Description: Fig. 8.2 shows an 8 element idealization of the 

same plate as in Case 1, using TRIMS elements. The uniform 

load was discretized to nodal force by the consistent method 

described in Chapter 4. One node on the left side was fixed and 

the others were placed on rollers to allow freedern of motion in 

the y-direction.
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Discussion:

Again a constant stress condition exists 

throughout the plate. According to the displacement, sides 

remain straight after deformation. The net displacement of 

the plate in the x-direction is 1.33 E - 4, -which is exactly 

the same value obtained by the formula u = PL/AE.

8.3. Case 3: Uniform Tension of a Plate with a Control Hole 

TPJM3 Element

Description: See Fig. 10.1(a). Because of geometric and

loading symmetry about both axes, it was necessary only to 

analyse a quarter of the plate. This section measured 

5 in x 5 in x 1 in, with a hole radius of 1/4 in. A uniform 

load of 1000 psi was applied in the x-direction. The sides 

on the axes were placed on rollers as shown in the diagram. 

Discussion:

Rigid fixing of nodes is not necessary as the 

displacement boundary conditions prevent rigid body motion.

The concentrated loads applied were again found by 

the consistent method. The bi’eak-up consists of 89 TRTM3 

elements.

Stresses at the nodes were obtained by Wilson’s 

weighted averaging method discussed in Appendix C. Fig. 8.3 

shows a canparison of the normal stress in the x-direction with
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FIG 8.3 Comparison of TRD43 Finite Element Solution with 'Theory for 
the Case of a Plate with a Central Hole Under Uniform Tension.
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the theoretical stress (ref. [131) along the y-axis in the 

vicinity of the hole. The circled points are nodal stresses 

obtained by the finite element method. A ’histogram’ of 

elememt stresses is inscribed in Fig. 8.3 with dotted lines. 

Each step extends over one interval of element sub-division, 

and the stress pertaining to each step was found by taking an 

average of two elements which form a quadrilateral on that 

interval. A fair picture of the stress distribution would be 

obtained if a line was passed, through the center of each step. 

However, a histogram of this type cannot be drawn to use in the 

interior of the structure.

It is obseverd, from the nodal point stresses, that 

the TRIM3 element is not very effective in the region of the 

steep stress gradient. The maximum error (at the hole edge) 

is 29.3 percent.

8.4. Case 4: Uniform Tension of a Plate with Central Hole 

TRIM6 element

Description: Fig. 8.4 shows the TRIM6 element idealization

of 1/4 of a square plate having a 1/2 in central hole. The 

other dimensions were the same as in Case 3. The loading was 

again 1000 psi.

Discussion:

The plate was divided into 70 TRM6 elements. The 

nodes on the axes were placed on rollers as shorn in Fig. 8.4
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FIG. 8.4 Seventy TRIM6 Element Idealizations of 1/4 of a Square Plate 

with a Central 1/2 in Dia. Hole. (165 Nodes).

I
I
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and concentrated nodal forces were calculated by the consistent 

method. Fig. 8.5 shows a comparison of the theoretical 

(ref. [13]) and finite element solutions of the normal stress 

along the y-axis in the region of the hole.

As can be seen, the TRIM6 element behaves very 

favourably in the region of the high, stress gradient. A 

maximum error of 9*3 percent occurs at the hole edge.

8.5. Cases 5 and 6: Rotating Hollow Disk. TRTM3 and TRIM6 

Description: This problem was solved using both element

types. Case 5 using the TRIM3 element and Case 6 using the TRIMS 

element. The dimension of the disk were as follows:

inner radius 1/2 in

outer radius 3 in

disk thickness 1/2 in

The rotational speed of the disk was 1000 rpm.

Discussion:

These two cases were run in order to check the

theory of Chapter 5 in which equivalent nodal forces to replace 

centrifugal forces is discussed.

No forces other than centrifugal forces act on the 

disk. Because the geometric shape and the centrifugal force 

distribution is symmetric about both axes, only a quarter of 

the disk was analysed.
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FIG. 8.5 Comparison of TRIM6 Finite Element Solution with Theoretical
Solution for Stresses Along Center-line of a Holed-Plate 
in Uniform Tension.
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The disk was basically treated as a static problem 

and centrifugal forces calculated by SUBROUTINE CENT were 

superposed on each of the nodes.

The finite element idealizations of the 1/4 disk 

are shown in Figs. 8.6 and 8.7 for the respective element types. 

The mesh sizes are as follows:

TRM3 idealization, 168 elements, 104 nodes 

TRIM idealization, 45 elements, 110 nodes.

Because of the symmetry discussed above, radial 

lines lying along the x and y axes will not distort. Therefore, 

nodes lying on these radial lines were placed on rollers to 

allow freedom of motion in the respective directions, as shown 

in Figs. 8.6 and 8.7.

An exact solution to this problem exists in many 

texts on the theory of elasticity and is shown in Fig. 8.8 

together with the finite element solutions. The points indicated 

are average stresses at the nodal points. The agreement of the 

finite element solutions with the exact so ution is seen to be 

very good. Because the stress gradients are not great, the 

solution by the TRIM.3 element does not differ by much from the 

exact, except the number of nodes had been made approximately 

equal in the two finite element solutions. The number of 

elements, however, are much less in the TRIM case. This points 

to the one disadvantage of the TRIM6 element, which is the error
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FIG. 8.6 TRIM3 Element Idealization of Ouarter Section of a Hollow Disk I

Loaded by Centrifugal Forces Only. ’ |
I 
it
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FIG. 8.7 TRIM6 Element Idealization of a Quarter Section of a Hollow 

Disk Under Centrifugal Forces.
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FIG, 8.8 Radial and Tangential Stresses Found by the Finite Element 
Method TRW3 and TB.M Idealizations Compared with Theoretical 

Stresses.
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due to the physical approximation of the boundary. For the 

same number of boundary nodes, the TRIM3 elements fit the 

boundary better than the TRIMS elements. Nevertheless, this 

drawback of the TRIM6 element is more than sufficiently compensated 

for by the improved stress distribution within the elements.

8.6. Cases 7 and 8: Cantilever Beam in Bending. TRIM3 and TRIM6 

Element

Description: A square section cantilever of length 10 in

and depth 1 in was solved using the two element types in order 

to compare displacements. The inset on Fig. 8.9 shows the mesh 

-break-up of the beam for the two cases. A shear load of 5 lb 

was applied at the free end.

Discussion:

The nodes were kept approximately the same for the 

two cases. The nodes at the built-in end of the cantilever were 

rigidly fixed.

Fig. 8.9 also shows the deflection of the beam along 

its length for the two cases as compared with beam theory. 

Although the mesh using the TRIM3 elements is much finer, the 

approximation is very poor. Theoretically, displacements vary 

with the cube of the length, whereas the TRIM3 element interpolates 

with linear functions. Ihe higher order displacement function for 

the TRIMS element is indeed superior for this case.
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FIG. 8.9 Displacement Solutions by TRIM3 ana TRJM Finite Element Idealizations Compared with 
Beam Theory for a Cantilever Loaded by a Shear Load of 5 lb.
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8.7. General Discussion of Test Cases:

(i) One of the criteria for convergence is that 'if nodal

displacements are compatible with a constant strain condition 

such constant strain will in fact be obtained'. Cases 1 and 2 

are typical of cases that check if this criterion is satisfied. 

Fran these test cases and the above criteria, it can be concluded 

that the finer the mesh size the closer the solution will approach 

the real solution. This conclusion applied to all the finite 

element programs discussed in Chapters 6 and 7.

(11) A mesh having long thin elements as shown Fig. 8.10 

are usually bad for idealizing a body. The most desirable 

mesh is one having triangles close to isosceles, as show 

alongside. Fig. 8.11 also shows the regions covered by the two 

element shapes. For the TRU43 element, the long thin element 

has a constant stress over a larger region. Having a long 

thin TRIMS element, however, is not as bad because stress within 

the element is linearly distributed.

(Hi) Fer a given number of nodes, the TRIMo element 

generally gives a better representation of true stress and 

displacement than would be obtained with the same number of 

nodes using a much finer sub-division with the TRIM3 elements, 

(iv) Boundary values that are required in the displacement 

finite element method are displacements and forces only, and 

stress boundary conditions cannot be predetermined. The stresses 

obtained on the boundary by the method may be checked to see if
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TABLE 8.1

NODE x in y in F lb pylb

1 0. 0. -0.1971 -0.0392

2 2.0000 0. 0.1103 -0.0392

3 1.8478 0.7654 0.0870 0.0784

4 0.9239 0.3827 1.1670 0.3137

5 1.0000 0. 1.1980 0.1568

6 1.9239 0.3827 1.5770 0.3137

F

RESULTANT

3.9422

4.0194

0.7842

Fig. 8.H
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the stress boundary conditions are actually achieved. For 

example, in the case of the rotating disk (Cases 5 and 6) 

radial stresses on the boundary are zero. Fig. 8.9 shows that 

this boundary condition is closely satisfied.

(v) The theory related to discretization of centrifugal 

forces (Chapter 5) is justified by Test Cases 5 and 6. Table 8.1 

shows the forces on the 6 nodes of a representative TRIMS element 

by using this theory. As can be seen frcm this table, the 

midside nodes are given more weighting. A vectorial summation 

of these forces yields a net force of 4.02 lb (see table).

An identical value is obtained by lumping the mass of the element 

at its centroid and calculating the centrifugal force due to 

rotation of this mass, by the formula,

2 F = m r a r

It is also observed that lumping of a sixth of 

the net force on each of the nodes would be incorrect, 

(vl) The errors in the results obtained using a finite 

element approximation may be separated into two types, the 

discretization error and the rounding error. The rounding 

error is the error associated with the accuracy with which the 

numbers are manipulated in the computations. The discretization 

error, which occurs' irrespective of the accuracy of numerical 

calculations, is a consequence of approximating a continuum, 

which rias an Infinite number of degrees of freedom, with a model
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having a finite number of degrees of freedom

Ramstad [13] does a detailed analysis of the two types 

of errors and derives formulae for the range of these errors.

He divides the finite element method into various stages and 

finds the numerical errors in each stage.

(vii) Although computer storage saving techniques were 

used there still is a limitation to the size of probIon that 

can be solved by the basic finite element programs. By the 

method of partitions, however, one can solve a very large 

problem if it is simply connected, because the method uses a 

step-wise sequence. This method is not feasible for a 

nultiply connected system.



CHAPTER 9

SUBREGIONS: ISOLATION OF AREAS OF HIGH STRESS GRADIENTS

Often, in bodies in which stress concentrations 

exist, it is necessary to perform a critical study of the stress 

distribution in regions of high stress gradients. In this 

chapter a technique is discussed in which the finite element 

method of stress analysis is used in a step-wise manner in order 

to ’home-in' on the regions of interest. An example is given to 

justify the method.

It is known that regions of high stress gradients 

necessitate a finer finite element mesh than the other regions of 

the body. This gives rise to the following two major difficulties:

(i) there will be a great variation in element size 

resulting in great variations in the terms of 

the stiffness matrix.. This causes computational 

errors such as rounding errors.

(11) because of limitations on computer memory size, 

the mesh cannot be made as fine as desired.

An answer to these difficulties is a sequential 

analysis. Using the finite element method, a first approximation 

is made by performing a course analysis of the structure without 

particular attention to the geometrical, shape of the region of 

high concentration. A fair sized region around the concentration 

is then isolated, from the main structure and a refined mesh
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applied to the isolated region, which is termed a ’subregion’. 

The subregion is now treated as a separate problem and the 

boundary displacements applied to it are those obtained frcm the 

previous solution. The refined analysis gives a more detailed 

picture of the stress distribution in the area under special 

consideration. If the solution by the first subregion is not 

as detailed as desired, a second subregion can be Isolated from 

the first subregion. A number of subregions may be isolated 

successively in this manner until convergence occurs Or until 

a desired accuracy is attained.

The series of steps in Fig. 9.1 shows how the 

approximation to the stress at a point in the region of high 

concentration converges to the exact solution with each successive 

subregion analysed.

Whether the subregion isolated is large enough can 

only be determined by trial, the criterion being that the stresses 

near the boundary in one subregion should not differ significantly 

from the stresses in the previous subregion.

Although this method of Isolating subregions is 

intuitively justified, the method is an application of St. Venant’s 

Principle, which states that changes in a small area of a body 

will cause considerable changes in the local stress distribution, 

but the effect on the stresses at distances large compared with 

the area under consideration will be negligible. It has been



FIG. 9-1 Convergence to Exact Solution by Sequential Isolation of 

Subregions.

FIG. 9.2(a) TRIM3 Finite Element Idialization of 1/4 of a Plate with a
Central Hole Under a Uniform Load of 1000 psi.
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shown [231 that, for a case such as a circular notched bar in 

tension, the stress distribution is unaffected at a distance of 

between one and two diameters from the edges of the 

discontinuity.

To prove that convergence occurs with this method 

a test case was run on a 10 in x 10 in x 1/2 in plate having a 

1/2 in diameter central hole, and acted upon by a uniformly ' 

distributed tensile load. The finite element mesh of the first 

approximation is shown in Fig. 9.2(a). Because of synxnetr’y 

about both axes only 1A of the plate was analysed. The region 

of high concentration is near the hole and two successive subregions 

were taken here. The finite element meshes corresponding to 

these two subregions are shown in Figs. 9.2(b) and (c). The 

displacement boundary values for each subregion were obtained 

from the previous analysis.

Figs. 9-3 and 9.^ show how the stresses and 

displacements approach the theoretical solutions [13] with each 

successive approximation. These figures show that convergence 

occurred after three approximations. It can be seen that if 

the mesh of Fig. 9.2(c) were applied to the entire plate, the 

problem would be beyond the scope of the computer memory size.

It is apparent that this method is useful for the 

analysis of the circular saw blade in which an improved slot 

shape is sought. According to the hypothesis a region
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FIG. 9.3 Convergence of ov Stresses Along y-axis Solved by Ihree Successive Finite Element

Approximations to Exact Stresses.
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FIG. 9-^ Convergence of x-displacements to Exact Solution by Three 
Successive Finite Element Approximations (TVra Subregions).
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surrounding the slot may be isolated and the shape of the slot may

be altered without affecting the stresses in the main body of the

blade. The sectioning-off of the subregions is described later

(Chapter 12).



CHAPTER 10

PLOTTING OF DATA

10.1. Stress Plott ing:

10.1.1. General

Stress analysis by the finite element method has the 

drawback that stresses are obtained at a great many discrete 

points which makes the task of reading results very difficult. 

In order to study the stresses in a two-dimensional stress system, 

a number of graphical methods may be used to give a visual 

interpretation of the various aspects of the canputed data.

Sane of these methods are:

(i) Isoclinic lines, or lines of constant principal 

angle.

(ii) Stress trajectories, which are the loci of the 

directions of constant principal stresses.

(ill) Isostress lines or stress contours which are the loci 

of algebraically equal principal stresses, regardless of their 

sense.

(iv) A principal stress plot, in which the two principal 

stresses are represented as vectors at chosen points.

(v) Iscmetric stress plot, in which a stress ’surface' 

is plotted in isometric view.

When regions of high stress gradients are of interest, 

then the countour plot is the most informative. On a stress 

surface plot, where stress is plotted as a function of x and y.
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these regions appear as peaks, the stress contours are essentially 

projections of 'slices' of’ the surface projected onto the xy-plane. 

Regions of high stress gradients are easily recognizable as 

contour lines that bunch together.

In whatever method of stress presentation chosen, 

manual plotting of the data is still arduous and error prone. 

Fortunately, stress plotting can be done by computer on an 

automatic device known as the 'plotter'. The computer converts 

numeric data to signals which are written on magnetic tapes 

which, when mounted on the plotter, are translated to digital 

motion of a pen point. However, all the user is required to do 

is correctly program the computer by means of a number of 

user-oriented Fortran subroutines.

In this chapter, a contour plotting program for 

use on data computed by the finite element method is discussed 

and a program listing is given in Appendix G. The program uses 

only the basic plotting subroutine called PLOT to draw the 

contours. The program had been successfully used on the 

Benson-Lehner and the Calccmp plotters. For labelling purposes 

a subroutine called LETTER is used, the equivalent of which is 

available on most plotters.

10.1.2. Basic Concept Used to Draw Contours

The basic idea used in the contour plotting program 

is best explained by means of an example. Fig. 10.1 shows



FIG. 10.1 Simple Mesh to Illustrate Basic Concept Used in Contour 

Plotting Program.

FIG. 10.2 (a) Multi-valued Contour in x and y Drawn Parametrically 

against Variable T in (b) and (c). (Not to scale).



126

stresses at nodal points for a simple finite mesh of TRIM3 elements. 

Assuming a 100 psi contour was required, then an element by 

element search is performed by computer to establish whether the 

contour passes through the element. If a contour does pass 

through an element it has to intersect two of the sides. The 

two intersection points on the sides are found by linear 

interpolation, as done for one side on element 3- The simplest 

way of drawing the contour would then be to Join the two points 

by a straight line, and continue the search on the next element. 

If this procedure is adopted then the contour will take the shape 

of a series of piecewise continuous straight lines, as shown in 

Fig. 10.1.

In the computer program, a sophisticated method is 

used to smooth the contour. Since elements are numbered 

randomly, the line increments mentioned above are ordered so 

that they follow each other. The center-points of these lines 

are then used as data points in a cubic spline curve fitting 

program discussed in the next section.

10.1.3. Cubic Spline Fit

The x and y co-ordinates of the points defining the 

contour are stored in two arrays. In theory, the smoothing is 

done by Joining each consecutive pair of points by a cubic in 

such a manner that the resulting composite curve has continuous 

first and second derivatives.
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The relevant theory for the method is included in 

Appendix H. The method is known as the cubic spline method of 

interpolation and smoothing. The method ensures that, although 

the contour is composed of piecewise cubics, there are no kinks 

in the contour.

In the program the intervals in x values between 

points defining the contour are subdivided into smaller intervals 

and the y values are interpolated using the spline method. These 

subintervals are then connected by straight lines, and because 

they are so close they give the appearance of a smooth curve. 

A difficulty arises when the contour is a multi-valued function 

in x (Fig. 10.2(a), because cubics cannot be fitted to such a 

curve. This difficulty is overcome in the program by fitting 

both x and y parametrically against cumulative chord length T. 

The meaning of an increment in the parameter is indicated in 

Fig. 10.2(a). This artifice results in two curves shown in 

Fig. 10.2(b) and (c), both single-valued in the parameter. The 

spline fit is done on two curves now and, when plotting, 

subintervals in T are taken Instead of x and values of x and y 

are interpolated from the cubic splines. This method is also 

useful when nearly sharp corners appear in the contour. 

Notes: _

The search technique employed in the program ensures 

that all contours having the same value are plotted. Since
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plots of contours of both principal stresses are usually required 

for one finite element mesh, a sample main program is also 

included in Appendix G to show how the contour plotting subroutine 

CONPIOT may be used for this purpose.

Fig. 10.3 shows the plot drawn when using subrouting 

OONPLOT on the example of Fig. 8.4. The subroutine was used for 

more involved contour plots in Chapter 12.

Subroutine CONPLOT can be used with either TRIM3 or 

TRIM6 elements because linear interpolation is done by using 

Only the stresses of nodes on the vertices of the triangular 

elements. Ignoring the midside nodes in the TRIM6 elements is 

allowable as stresses along the sides of the elements are in 

fact linear by hypothesis.

10.2. Input Mesh Plotting:

From experience it was found that the greatest number 

Of eri*ors conmitted in a finite element analysis are due to errors 

in the data of the input mesh. Subroutine MESH2 was written for 

use on the plotter in order to obtain a quick visual check of the 

input mesh. A program listing of the subroutine is given in 

Appendix G.

This subroutine can be used to plot meshes having 

either TRIM3 or TRIM6 elements. A number of options are allowed 

and are explained in the comments. For TRIM6 elements only the 

co-ordinates of the vertices need to be defined, the midside nodal 

co-oi’dinates are generated by computer.
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FIG. 10.3 Stress Contour Plot of ax Stresses for a Quarter-Section 

of a Plate with a Central Hole. Contours Labelled

by Number.
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This program's usefulness is evidenced in many 

diagrams of this thesis.



CHAPTER 11

APPROXIMATE FORCE DISTRIBUTION ON DIAMOND CIRCULAR

SAW BLADE

11.1. General:

The economics of stone-cutting with diamond circular 

saws is well represented in the literature [31-35]. However, 

almost no studies of the cutting forces set up during cutting 

have been reported. In the field of grinding, theories have 

been developed by some authors [24-29] who relate the grinding 

forces to the 'undeformed’ chip thickness. An analogy, can be 

drawn between the cutting mechanism of a grinding wheel and 

diamond circular saw if one considers that both the tools remove 

material by an abrasive action. The analogy is used in this 

chapter in order to find an approximate cutting force distribution 

over the cutting region of a saw blade.

The following assumptions are made for the sawing 

process:

(1) If T and R are the tangential and radial forces 

respectively as measured by a force dynamometer, then the general 

shapes of the curves of T and R versus depth of cut will be the 

same as in grinding.

(ii) The undeformed chip shape will be the same as in 

grinding.

(iii) Because the cutting is achieved by incremental

131
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circular movements, the slots in the periphery of the saw affect 

neither the cutting process nor the chip shape (if the slots are 

not too wide).

Curves of normal and tangential cutting farces with 

respect to wheel depth of cut for the surface grinding of 

steel have been obtained by Marshall and Shaw [2] by means of 

a force dynamometer. Representative curves are reproduced 

in Fig. 11.1 to obtain an idea of their shapes.

11.2. The 'Undeformed1 Chip: •

The formation and shape of a mean chip is outlined 

in Figs. 11.2(a) and (b). Although actual chips vary along 

their lengths rather than having a constant width,b, a 

statistically mean chip with constant width is assumed.

An ’up-cutting’ process is assumed as opposed to the 

’down-cutting’ process. In up-cutting a wedge-shaped chip is 

produced ideally starting at the thin end of the wedge and 

incr asing in thickness up to a maximum, when it rapidly di

minishes in thickness up to the breaking out point. In down-cutting 

the chip starts at its big end and proceeds towards its thin end.

The undeformed chip thickness is defined as the 

thickness perpendicular to the chip length 1. The maximum chip 

thickness is the length EG in Fig. 11.2(a) and is designated as t.
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R-RADIAL FORCE
T- TANGENTIAL FORCE

FIG. 11.1 Grinding Force Curves for Steel.

(a)
FIG. 11.2 (a) Formation of Chip During Cutting, 

(b) Mean Undeformed Chip Shape.
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11.3. Formula for Maximum Chip Thickness:

The chip length extends from A to C (Fig. 11.2a) but 

can be approximated by length BC since,

AB - 2
BC ~ V

where v = feed rate, V = wheel speed and v << V. Hence, 

AB « BC.

Chip length 1 = Re (11.1a)

from geometry cose = (R ~ d)/R = 1 - d/R 

= 1 - e2/2

6 = 2/1/D (11.lb)

Substituting in equation (11.1)

1 =/"dD (11.2)

Maximum chip thickness

t = CE sine = CE(CF/R) (11.3)

From geometry

CF2 = (D/2)2 - (OF)2 

= (D/2)2 - (D/2 - d)

CF =/ d(D - d)

Substituting in equation (11.3) 

t = 2 CE/D/ d(D - d)

If K is the mean number of grits on a complete circumferential 

line on the saw surface, then CE is the distance the table
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advances during the time it takes the wheel to make 1/K revolution.

where N = wheel speed in rpn, and

= feedrate in in/min

. 2^v / d(D - d)
Z d2

or approximately.

KN / D (11.4)

11.4. Cutting Force Distribution:

At this stage it is necessary to differentiate between 

DYNAMOMETER MEAN FORCE and ACTUAL MEAN FORCE. If the cutting 

wheel had just one cutting edge, a force-time recording such 

as in Fig. 11.3 would be obtained. A dynometer records time 

average cutting forces over 2n radians, while the actual mean 

force is the average value during the period of contact, i.e. 

over 6 radians.

Hence, the actual mean tangential force per cutting

edge is
_ 2n
Fm = — T (having one cutting edge)

(11.5)

The above mean force is an average of the instantaneous
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R

C
E

2777 N

FIG. 11.3 Cutting Force Cycle for a Saw Having One Cutting Edge.

FIG. 11.^1 (a) and (b) Correlation of Maximum Chip Thickness with 
Thickness Along Chip Length.
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value which varies fran zero to a maximum where the chip has its

greatest thickness, or^

(11.6)

where F^, is the instantaneous force and t is the maximum

chip thickness .

Multiplying both sides of equation (11.6) by t and 

differentiating with respect to t, the following is obtained.

(11.7)

Fran equation (11.5)

2R® _ 2n m d9
K6 dt „Q2 1 dt (11.8)

Substituting equations (11.8) and (11.5) in (11.7)>

p _ 2nt dT 2H Tt de. 2n m 
T ~ K6 dt " K c2 dt 6K

Since 6 and t are linearly dependent d6/dt = e/t. Therefore,

2Ht
K6

dT 
dt (11.10)

By the chain rule

dT 
dt

d(d)
d(d) dt

See note at end of the Chapter.
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where d = depth of cut.

The differential on the right-hand side is obtained 

from equation (11.4) and the above equation becanes, 

dT 2 N2^ t dT
dt 2i|2 v2 d(d) (11.11)

Fran equations (11.1b) and (11.4)

. - 12 v 6 (11.12)
~ KN

After substitution of the above two equations into 

equation (11.10), the result is

pt = r ® • <“•«>

Alden [27] hypothesized that grinding forces are linearly 

proportional to t (or e, since t is linearly proportional to 6 ). 

Therefore, it seans reasonable to assume that dT/d(d) in equation 

(11.13) is constant, or that the dynamometer tangential force 

(T) versus depth of cut (d) curve is linear. Letting the 

differential equal C,

pt = nr- 6 (11J1|)

This equation gives the variation of instantaneous 

tangential cutting force with angle. A similar equation may be 

written for radial force distribution F„.

Marshall and Shaw [25] observed that, for a series 

of tests, the ratio of tangential force T to the radial force R
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was very nearly constant. This ratio, designated C^ = T/R, is 

somewhat like the ordinary coefficient of friction and they term 

it the ’grinding coefficient’. Hence,

PT = Cf Fr (11.15)

The mean diameter,a, of a grit having a 45 mesh 

concentration is approximately 0.02 in, and if the grits are 

assumed to be packed alongside each other on a circumferential 

line, then

K = nD/a

In equation (11.14)

FT = a C e

PR - ¥f 

or

FR = a C’e

(11.16) 
FT = Cf PR

where C’ is the slope of the R vs. d curve. Equation (11.16) 

represents cutting force distribution per cutting edge.

11.5. Cutting Force Data:

Some experimental curves of cutting forces versus 

feedrate for various depths of cut were obtained from the Boart 

Metal Industries of South Africa. Since a curve of cutting force
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versus depth of cut was required, this had to be graphically 

deduced from the available curves. Hot;ever, the curves obtained 

did not seem reliable since there were not sufficient data points. 

The most reasonable curve obtained is shown in Fig. 11.5 which is 

dynamometer radial force versus depth of cut at 300 mm/sec 

feedrate. Within a depth of cut of 25 mm (1 in) it seems 

reasonable to assume that the curve is linear. Thus, in 

equation (11.16) for the feedrate and speed shown in Fig. 11.5,

Fc = a * 117.0 * e (e in radians)

force/cutting edge

If W is the width of the diamond tip, then the number of cutting 

edges along width is W/a

total force on line of grits along the width

is (if W = 0.125)

FR = S’ ”186'° ^ 0 = $'26O (6 in degrees)

(11.17)

FT = Cf FR

From the ratio of sane data values of T and R, 

0^ was found to be approximately 0.2

Note:

Chip BE^C^ is shown in Fig. 11.4(a) having a maximum 

thickness t^. t is any thickness along the length of the chip. 

As can be seen fran Fig, 11.4(b), t is in effect a maximum
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FIG. 11.5 Radial Cutting Force Versus Depth of Cut Curve at Fixed 

Feed and Speed for the Cutting of Stone with a Diamond

Tipped Circular Saw.
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thickness corresponding to seme depth of cut d. For example.

t2 is a thickness t along the length of chip BE^C^, but is 

also the maximum chip thickness of chip BE2C2 corresponding to d2« 

Hence, the quantity t (chip thickness along chip

length) and maximum chip thickness are synonymous, and is used

as a variable in equation (11.6).



CHAPTER 12

STRESS ANALYSIS OF A SEGMENTED CIRCULAR SAW BLADE 

BY THE FINITE ELEMENT METHOD

12.1. Preliminary Analysis:

12.1.1. Origin of the problem of fatigue cracking.

A general description of the diamond circular saw and 

other topics related to it is presented in Appendix J.- ■ 

Some insight is thrown on the cutting mechanism of the saw blade 

in Chapter 11 and an analogy is drawn between this and the 

cutting mechanism of a grinding wheel.

In this analysis it is assumed that the saw blade is 

mounted on an orthogonal stone-cutting machine, i.e. on a 

rigid frame, with the work moving towards the blade. Also, an 

’up-cutting' motion of the saw is assumed, hence the feed 

velocity is opposite to the blade velocity at the cutting 

position. The relative motion between saw and machine bed is 

indicated in Fig. 12.1.

Like a grinding wheel, a diamond circular’ saw is 

loaded externally by the cutting forces only. The region in 

which the cutting forces act is known as the 'cutting region’. 

The cutting forces consist of two components, one due to shearing 

action tangential to the blade surface and one normal to the blade 

surface. The two components equilibrate both the feed force and
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FIG. 12.1 Fictitious Force Distribution on Saw Blade to Represent

Cutting Forces.

FIG. 12.2(b) Stress Spectrum.
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the force required to abrade the work. It is assumed that side 

forces due to lateral contact of the blade with the work do not 

add significantly to the forces.

Because circular saw blades rotate at high speeds, the 

body of the blade is subjected to internal forces due to 

centrifugal action. These centrifugal forces are distributed 

over the entire blade body and stress the body beyond the normal 

static condition.

The normal and tangential cutting forces distribute 

themselves over the cutting region in seme way, depending on the 

cutting conditions. Fig. 12.1 shows a representative distribution. 

A more detailed study of these forces is presented in Chapter 11. 

Fig. 12.1 represents an ’instantaneous’ force distribution, and 

conditions are assumed to be the same frem instant to instant. 

The number of slots included in the cutting region is usually more 

than one and depends on the depth of cut.

The combined effect of the cutting and centrifugal 

forces cause stress concentrations at the slot bases that are 

located in the vicinity of the cutting region.

If a slot moves from position 1 to position 6(Fig. 12.1) 

it passes through a cycle of stress. In position 1 and 2, the 

slot base is not very much affected by the cutting forces. In 

positions 3, 4 and 5 the slot base is most highly stressed., and 

finally the effect of the cutting forces diminishes on the slot
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in position 6. A cycle of stress that a slot base passes through 

is expected to be of the form shown in Fig. 12.2(b). Such a 

cycle of stress variation with time, known as a 'stress spectrum’ 

is conducive to fatigue failure at the slot bases. Because 

cutting forces are assumed to be constant with tine each slot 

base passes through the same cycle of stress.

If the saw blade is thin, then a state of plane stress 

may be assumed. Also, the fatigue problem is considered purely 

2-dlmensional because it is assumed that the flanges fitted on 

either side of the saw blade on assembly (see Fig. 12.3) prevent 

lateral motion of the saw blade. Ideal vibration-free conditions 

are assumed in order not to canplicate the problem, even though 

vibration of the blade may add to the fatigue problem.

To throw seme light on the vibration aspect, a segment 

or ’tooth’ may be represented as a cantilever beam under the 

action of the cutting loads and also vibrating at frequencies 

w. and w . as shown in Fig. 12.2(a) where w. and w , are the in out ° in out

frequencies of in plane and out of plane vibration, respectively. 

A representative principal stress spectrum at a point such as m 

due to alternating cutting forces is shown in Fig. 12.2(b). In 

plane vibrations of frequency w^n cause slight viriations in 

stress and are shown as harmonics on the basic spectrum. If the 

slot base radius is small relative to the segment width, the 

effect of the in plane vibrations is negligible. The out of plane 

vibrations of frequency id . are not considered in the analysis.OUu
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FIG. 12.3 Plan and Cross-sectional Views of a Diamond Tipped 

Circular Saw.

DIAMOND TIP

HUB or BODY

FLANGE CLEARANCE 
FLANGE

SPINDLE

STATIC PLATE ROTATING PLATE

FIG. 12.^ Resolution of Saw Blade Problem to Two Static

Problems.
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However, coupled with the basic stress spectrum, the out of plane 

vibration may have a substantial effect, and its consideration 

in the analysis is suggested as a point of future research. The 

vibration analysis may also be done by the finite element method. 

An invaluable reference regarding the vibration fatigue aspect 

is Lazan [151.

12.1 ♦2. Fatigue considerations

It is well known that fatigue cracks are initiated 

in regions where the localized stress is highest. Usually 

these regions are around holes, notches and grooves, and are 

termed * stress concentrations'.

There exists material [16,17] on artificial factors 

called ’stress concentration factors' which are used in predicting 

the strength reduction of bodies having stress concentrations. 

Factors for static as well as fatigue conditions have been found 

mostly by experimentation. The most well known of these are: 

(1) The theoretical stress concentration factor for 

static conditions, K , defined as:

s r _ max Kt S 
nan

where S^^ is the maximum elastic stress caused by the stress 

concentration and S _ is the ncmlnal stress at the same point nom
if there were no stress concentration.

(11) The fatigue stress concentration factor, K^, defined
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as:

K = fatigue strength of unnotched specimen 
i fatigue strength of notched specimen

Kt and Kf are related by the ’notch-sensitivity' of the 

material.

(iii) The notch-sensitivity, q, defined as:

Kf - 1 
q = K. - 1

Generally, K^ is less than K^ when q < 1. Notch-sensitivity was 

introduced by Peterson [18] who found it to be a material property.

In short, one designs as if no stress concentration 

exists and then reduces the strength of the material by a factor 

K^. or Kf, depending on the conditions existing. Conversely, the 

stress is magnified by the value of the concentration factor and 

is hoped to approximate the actual stress. Unfortunately, these 

stress concentration factors are useful only for simple members 

such as notched shafts, tension specimens and simple bending and 

torsion specimens.

In more complicated structures it is necessary to trace 

carefully the path which the stresses take within the structure 

to locate the regions of high alternating stress. It is 

apparent that the finite element method is most useful for this 

aspect of the problem.

The stress at the critical region is usually not a

c
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simple stress, but sane conbination of alternating normal stress 

and alternating shear stress superimposed upon static stresses. 

However, the state of stress at a point within a body can be 

described completely by the principal stresses and their directions 

no matter how canplicated the system is.

Waisman [19] ard Miner [12] show how an actual stress 

spectrum may be replaced by an equivalent one of constant 

amplitude. If the principal stress is a simple sinusoidal one, 

it can be split into an alternating stress superimposed upon a 

static stress. The alternating component can be described by'its 

amplitude.

A seemingly plausible theory concerning behaviour of 

metals under complex alternating stresses has been developed by 

G. Sines [21] and is discussed in the next section.

12.1.3. Fatigue Criterion

The assumptions are made that in the case of an 

isotropic material, the directions of the principal stresses are 

unimportant and only the magnitudes are significant. Also each 

principal stress varies at the same frequency.

From the examination of data on the effect of 

different combinations of purely alternating stress it appears 

that the alternation of shear stress causes the fatigue damage, 

and this fact lends support to the octahedral-shear stress theory.
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Peterson [22], however, states that although fatigue failure 

may start on shear planes, most fatigue fractures follow the 

normal stress direction.

Tests on the effect of mean axial stress on the 

permissible amplitude of alternating axial stress show the 

following:

The amplitude of allowable alternating stress is decreases by 

tensile mean stress and is increased by compressive mean stress.

Based upon diverse experimental data available. Sines 

[21] has developed a criterion of fatigue failure which includes 

the effect of different combinations of alternating stress with 

static stresses. It is the simple statement that the permissible 

alternation of the octahedral-shear stress is a linear function 

of the sum of the orthogonal normal static stresses. Or 

mathematically:

| {(P1 - P2)2 + (P2 - P3)2 + (P1 - p3)2}1/2 <

A - a^ + S2 + S3 + R^ + R2’ + R3’) (12.1)

where Pp P2 and P^ are the amplitudes of the alternating principal 

stresses and Sp S2, and S3 are the orthogonal static (or mean) 

stresses. The orthogonal axes 1’, 2', 3’ for the residual stresses 

Rp, etc., need not be in the same directions as those for the 

static normal stresses. The A is a constant for the material, 

proportional to the reversed fatigue strength, and the a gives the
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variation of the permissible range of stress with static stress. 

Both A and a are given for the desired cyclic lifetime. The 

expression on the left must not exceed the right-hand side or 

failure will occur before the desired lifetime.

It can be seen that inducing compressive residual 

stresses (which are negative in sign) will permit greater 

alternation of stress for the same cyclic life. Conversely, 

tensile residual stresses are to be avoided.

For a biaxial state of stress and in the absence of 

residual stresses equation (12.1) reduces to:

| {(P^ + P22) - P^}172

+ a{S^ + S2) < A (12.2)

Fran the above equation it can be seen that compressive 

(negative) mean stresses are beneficial. An increase in 

’biaxiality’ is also beneficial, i.e. when P^ and P2 approach 

each other in value. If P2 = P^/2, then P2 = P^ /4 and 
2

P^2 = ^ /2. Thus a larger quantity is substracted than the 

quantity added to the term under the square-root.

The graphical presentation of equation (12.2) 

appears as a series of "concentric" ellipses, the size of the 

ellipse depending on the sum of the static normal stresses.
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12.1.4. Determination of Constants for Criterion

The values A and a which describe the fatigue properties 

of a material can be determined from two fatique curves in which 

the static stresses are appreciably different. Two curves which 

are convenient for their determination are the reversed axial 

test and the zero-tension fluctuating stress.

In the reversed axial test the criterion of equation 

(12.2) reduces to

P = A 
3 1

Thus A = (/2/3)f^ where f^ is the amplitude of the reversed axial 

stress which would cause failure at the desired cyclic lifetime.

For the zero-tension fluctuating stress cycle 

the criterion reduces to

| P1’ = A - aP^

in which S^' = Pp. Solving the above equation,

a = Pp ~l =/| n
where fp is the amplitude of the fluctuating stress which would 

cause failure at the same lifetime as the reversed stress f^.

12.1.5 Qualitative Nature of Problem

It will be deduced from Appendix J that 

there are a great many interdependent factors that determine the
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choice of blade for a particular stone-cutting operation. The 

factors directly or indirectly affecting the stresses in the 

saw blade are:

£1) Varying properties of stone, each within its class 

varying by geographic origin.

(2) Economics and production.

(3) Machine types, e.g. hand operated gantry or orthogonal 

machine, manual feed or automatic feed.

(4) Mode of cutting, up-cutting or down-cutting.

(5) Cutting parameters: speed of rotation, feedrate, depth 

of cut.

(6) Internal vibrations. Older machines obviate the 

use of thin blades.

(7) Method of cooling and flowrate of coolant.

(8) Material properties of blade body.

(9) Blade thickness.

(10) Blade diameter.

(11) Flange size and thickness.

(12) Segment tip properties: material of tip type of 

bond, grit size and concentration, width and thickness of 

segment.

(13) Number of slots.

(14) Slot shape.

Since the aim is to study the effect of slot shape on
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the blade stresses it seems reasonable to keep all but the last 

of the above factors constant and vary only the slot shape. A 

ccmparative study can then be made by studying the changes in 

stress due to changes in slot shapes.

All but the last of the above factors affect the 

cutting forces. After a choice of blade for an operation is made 

then cutting forces are dependent on the cutting variables, if all 

other external factors are Ignored. By choosing the cutting 

variables, the cutting forces are fixed and, since cutting 

forces give rise to the stresses, the problan is reduced to one 

of a rotating irregularly shaped plate under the action of a 

systan of cutting forces.

The fatigue criterion of equation (12.2) may be used 

as a basis for canparison of the effects of different slot shapes.

In the next section the blade chosen for the analysis 

is described.

12.1.6. Model Saw Blade

A used diamond tipped segnented circular saw blade which 

failed due to fatigue cracking was made available by the courtesy 

of the Boart Metal Industries of South Africa. This blade, 

which was of the conventional type, i.e. having a simple parallel 

sided^slot with semi-circular root, was used as a model. The blade 

dimensions were as follows: -

Diameter, 30 cm. ( = 12 in)

Central Hole Diameter, 1 in
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Number of Slots, 17

Blade Thickness, 0.0625 in

Slot Width, 0.125 in

Slot Depth, 1 in to center of slot base circle 

Slot Base Circle Radius, 0.0625 in.

The above nomenclature is clarified in Fig. 12.3. In 

order to calculate the cutting force distribution in Chapter 11, 

the following cutting parameters were used:

Blade speed, 1000 rpm

Feed rate, 300 mm/sec

Depth of cut,' 0.9 in.

The depth of cut was chosen for convenience to cover 

1 1/2 segments. The hub or body material was made of a tool steel 

hardened to around 42-44 Rockwell C. The diamond impregnated 

tips were made of tungsten carbide.

12.2. Secondary Analysis:

12.2.1. Formulation for Stress Analysis

When considered as a free body, the problem of the 

saw blade is essentially one of a rotating irregularly shaped 

plate under the action of cutting forces over part of the 

periphery. Rotation of the blade causes internal stresses of the 

blade body by the centrifugal forces which act over the entire 

blade body. Although the diamond tips do the actual cutting, 

they do not significantly change the blade stiffness and were
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ignored.

As the blade was assumed to be elastic, it was possible 

to resolve the problem as the sum of two static problems : 

(i) The problem of stresses due to cutting forces,

(ii) The problem of stress due to free rotation, or

centrifugal forces.

These two problems are shown diagrammatically in 

Fig. 12.4.

12.2.2. Subregions

The greatest concentration of stress exists at the 

slots in the immediate vicinity of the cutting forces and hence 

it was necessary to critically analyse this region.

Because the loading by the cutting forces is 

unsynmetric, it was not possible to section off and analyse a 

portion of the blade. This meant that the entire blade had to 

be analysed, and because the blade represented a multiply-connected 

system, the method of partitioning could not be used. It was 

decided that the best method of solving the problem would be by 

the method of subregions described in Chapter 9. Four successive 

approximations were made using this method, the initial 

approximation followed by three subregions. An outline of the 

relative portions of the blade isolated are shown in dotted lines 

in Fig. 12.5. The mesh of the first and second approximations 

Since it was a simple matter of adding force column vectors, 
these two problems were solved in one computer program.
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FIG. 12.5 Outlines of the Subregions Isolated for the Sequential 
Stress Analysis of Saw Blade.
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were drawn up without much consideration to the slot shape. The 

third and fourth subregions were accurately drawn up in order 

to vary the shape of the slot. The subregions are discussed in 

the sections which follow.

12.3. First Approximation:

12.3.1. Mesh

It was decided to use the TRIM3 element for the first 

approximation because the physical approximation by this element 

would be better than by the TRIM6 element if restricted by 

number of nodes. The mesh drawn for this case is shown in 

Fig. 12.6, and consists of 410 elements and 279 nodes. The 

semi-circular slot bases were modestly approximated by two 

straight lines. The basic TRIM3 finite element program was used 

for the first approximation. The boundary conditions applied 

are discussed below.

12.3.2, Force Boundary Conditions

In Chapter 11 approximate cutting force distributions 

for radial and tangential forces were found to be linear with 

the angle measured from the vertical. These were:

F = 0.26 0 r
Ft = 0.2 Fr

In Chapter 4 these distributed boundary forces were 

discussed in an example and were discretized to concentrated
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nodal forces by two methods, the results of which are given in 

Table 4.1. These results are shown graphically in Fig. 12.7 

where the mesh of Fig. 12.6 is laid out on a horizontal axis. 

Because of the absence of cutting edges at a slot, the net 

force over this region was lumped on the node on the left edge 

of the slot. Ihis has the effect of changing the force distribution 

in the manner shown in dotted lines in Fig. 12.7.

12.3.3- Displacement Boundary Conditions

The assembly components of the saw blade consist 

of: (i) inner flange (ii) saw blade, (ill) outer flange and, 

(iv) nut fastener. These components are shown in Fig. 12.3.

Converting the problem to a static one made it 

possible to fix the inner boundary of the saw blade because the 

blade is in equilibrium when acted upon by the cutting forces. 

A simple calculation performed by treating the flanges as simply 

supported circular plates showed that no slippage would occur 

between saw blade and flanges. By this deduction the flanges 

could be taken as integral parts of the blade. Physically, this 

meant increasing the thickness of the blade over the area of the 

flanges by two flange thicknesses.

However, by increasing the thickness of the blade over 

the area of the flanges, the stiffness of the portion of the blade 

is increased a great deal, and it was of the opinion that the 

stresses at the slots would not be affected if the blade were



162

FIG. 12.7 Nodal Forces Applied Over Cutting Region on Mesh of 
1 Approximation (Polar System).

FIG. 12.10 Ncdal Forces Applied Over Cutting Region on Mesh of 

1 Subregion.
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rigidly fixed over the flange peripheries. To establish this, 

the problem was solved with the following two sets of boundary 

conditions:

(i) All nodes lying on the inner boundary of the blade 

were fixed in both the x and y directions, and the blade thickness 

was increased over the flange areas.

(ii) All nodes lying on the flange peripheries were fixed 

in the x and y directions.

These two cases are sketched in Figs.12.2(a) and-(b). By 

canparison of the stresses obtained in the two cases it was 

found that they differed by an Insignificant amount. Fig. 12.8(c) 

shows the distortion of some elements and a radial line lying 

on the y-axis as solved in the two cases. It is observed that 

the discrepancy between the displacements in the two cases is 

due to a rigid body rotation which does not affect the stresses. 

It was, thus, concluded that the blade could be fixed over the 

flange periphery, as was done in all subsequent cases.

12.3. ^. Results of First Approximation

Principal stress contours for the area surrounding the 

region loaded by cutting forces are shown in Figs. 12.33(a) and 

(b). This region is the lower part of the main mesh of Fig. 12.6. 

These contours represent stresses due to the combined effect of 

cutting forces and centrifugal forces.

Although a detailed study of the behaviour of the
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Different Circumferences Shown in (a) and (b).
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FIG. 12.33ia) Maximum Principal Stress Contours of First Approximation.
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CONTOUR 1 2 . 4 . ........ 5... 6... 7 A. 9 10

STRESS -2800 -2700 -2600 -2500 -2400 -2300 ,.-2200 -2100; -200 0 -190 0

CONTOUR 11 12 13 14 15 16 17 18 ,19 20

STRESS -1800 -1700 -1600 -150 0 -1400 -130 0 -1200 -1100 -1000 -900

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -800 -700 -6 00 -500 -400 -300 -20 0 -100 0 100

FIG, 1233(b) Minimum Principal Stress Contours of First Approximation.
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stresses cannot be made at this stage because of the coarseness 

of the mesh, the contour plots do establish the existence of 

the stress concentrations. The most highly stressed regions 

are seen to be those surrounding the second and third slots in 

Figs. 12.26. The first slot is not as highly stressed and, from 

the results of the entire mesh, the same can be said for slots 

beyond the third.

The region surrounding the second slot is in 

ccmpression while the region surrounding the third slot is in 

tension. Looking at the loading system applied, this state 

of stress is expected because the loads tend to close the 

second slot and widen the third.

Table 12.5 shows the effect of centrifugal forces on 

two of the most highly stressed elements. Centrifugal forces 

increase the stress in a tensile element and reduce the stress 

in a compressive element.

TABLE 12.5

Element Cutting Forces Only Combined Cutting and Centrifugal
S^ psi S2 psi S^ psi

Forces
S2 psi

78 797.7 70.0 926.2 73.0

54 -728.7 -2951.2 -715.8 -2840.5
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The stresses obtained by the first approximation help 

in giving a general picture but the actual magnitudes are not 

accurate. The main objective of the first approximation was to 

determine the subregion to isolate, and thereafter, to obtain 

boundary displacements for the subregion.

12.4. Second Approximation or First Subregion: 

12.4.1. Mesh for First Subregion

In Chapter 9 it was mentioned that the only way to 

determine the size and shape of a subregion is by' trial and error. 

Hence, as a trial the first subregion was isolated from the 

main body of the blade to include seven slots of the lower half, 

as indicated in Fig. 12.5. A computer plot of the mesh drawn up 

for the subregion is shown in Fig. 12.9.■ This mesh was finer than 

the mesh of the first approximation. The regions surrounding 

the slots, especially, were subdivided in more detail.

For this subregion it was only necessary to define 

the mesh for one sector . The rest of the mesh was generated 

simply by repeating the sector and adding a sector angle each 

time. The mesh consisted of 812 TRIM3 elememts and 478 nodes. 

12.4.2. Finite Element Program for First Subregion

The mesh of Fig. 12.9 was beyond the scope of the 

basic finite element program. However, the subregion was now

The region between two radial lines passing through successive 
slots. The sector angle is the angle defined as ♦ in Fig. 12.1.
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simply connected and therefore, it was possible to use the method 

of partitions. The mesh was divided into 1*1 partitions, each 

partition covering one-half of a sector.

12.4.3. Force Boundary Conditions

The same force distribution used in the first 

approximation was again applied but, because the number of 

boundary nodes increased, the distribution had to be discretized 

for the new system of elements. In Fig. 12.10 the resulting 

concentrated nodal forces are represented as vectors.

12,4.4. Displacement Boundary Conditions

Nodes located on the inner boundary were again fixed 

in both the x and y directions. The displacements applied on 

the nodes at the left and right boundaries were obtained from the 

displacements found from the first approximation. The relative 

positions of the boundary nodes of the new mesh did not coincide 

with those of the old mesh, hence a linear interpolation was 

performed to find the boundary nodal displacements.

12.4.5. Results of Second Approximation

In Figs. 12.12(a) and (b) ax stresses are plotted 

against the radius for both the left and right sides of the 

subregion in order to compare the results of the first and 

second approximations at the boundaries at which the sections 

were made. The closeness of the comparison shows that the
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1 -3500.000
2 -3400.000
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; 4 -320'0.000
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39 300.000
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41 530.000'

no

™J?^W Minimum Principal Stress Contours of 2^ Approximation (1st Subregion)
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(b)

FIG. 12.12 Comparison of Stress Variation Along (a) Left Side and (b) Right Side 

of 1 Subregion as Solved by Two Approximations.
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subregion size was large enough. The contour plots show that 

stresses are small in the area of the first three sectors and 

hence these sectors could have been omitted. Nevertheless, the 

extra sectors posed no problem as the method of partitions 

could solve many sectors with ease.

In Fig. 12.13 a comparison of x-displacements js 

made between the two approximations along a circle interior to 

the subregion. This figure shows that the magnitude of change 

in displacement is small a distance away from the slots. Because 

the subdivision was much finer at the slots in the new mesh, 

a canparison of displacements with the first approximation could 

not be made here.

The most highly stressed regions were those around slot 

positions 5 and 6 which are defined in Fig. 12.9. In Fig. 12.14 

(a) and (b) the two principal stresses along the circumference of 

the slots at these two positions are plotted. Since the radii of 

curvature of the slot bases were constant, the angle is plotted 

on the abscissa instead of circumferential length. These two 

figures emphasize what the contour plots already established, 

that is, in passing from position 5 to position 6 the point of 

highest stress concentration on the slot base moves fron point 

n to point m (see insets in Fig. 12.14). However, the stress 

at point m is tensile, while the stress at point n is highly 

compressive. Fatigue cracking can, therefore, be expected to



FIG, 12.13 Comparison of Displacement Results of 1st and 2^ Approximations Along an Arc. Angle | is

the Sector Angle.



FIG. 12.14 Variation of Principal Stresses Along the Circumference of Slot 

Bases at Two Positions. Stresses s^ and Cj ^ Maximum and 
Minimum Principal Stresses Respectively.
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start at either of these points. In section 12.5.6. the criterion 

of fatigue failure is used to establish that, of the two points, 

point n is the more critical.

12.4.6. Principal Stress Spectrum

In Fig. 12.15 the principal stresses a1 and a2 at the 

same angular position on the slot base circle as point n are . 

plotted for slots 1 to 7- Stresses for slots beyond the 7th 

tend toward zero.

If the problem is considered to be a purely static one, 

then Fig. 12.15 simply represents the variation of principal 

stress with angle. However, since the blade is rotating and 

the force is fixed with respect to'ground", this curve can be 

interpreted as the variation of principal stresses with time. 

In other words, if t minutes is the time taken for a slot to 

rotate from position 4 to position 5, then slot position 5 is 

considered the ’new’ position of 4 after t minutes. If T is the 

time period for one revolution of the saw, then T = 1/N minutes, 

where N is the blade speed in rpm. Having a total of n slots, 

then t = T/n. An interval on the abscissa axis of Fig. 12.15 

in time co-ordinates would then be of magnitude t as shown for 

interval 1-2. In this way, the problem is converted from a 

static problem to a dynamic one, and Fig. 12.15 represents the 

principal stress spectra for the point of critical stress. From 

this figure, it can be seen that the two principal stresses a^ 

and ©2 are in phase.
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FIG. '12,15 Variation of Principal Stresses with Angular Position of Slot. R^ and R^ are Stress Ranges of 
o^ and o2 Respectively, Set by 3rd Approximation.
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12.5- Third Approximation: Second and Third Subregions: 

12.5.1. Isolation of Second and Third Subregions

In the previous section it was pointed out that the 

regions surrounding slots (labelled as 5 and 6 in Fig. 12.9) are 

the most critically stressed. The stresses in these regions 

were found to be, respectively, compressive and tensile In nature 

and the peaks of the stress spectra were found to fall in these 

two regions. For this reason, the second and third subregions 

were isolated in the manner shown in Fig. 12.15, in order to find 

more accurately the levels of the peak stresses. The inner 

boundaries of these subregions were chosen to be arcs of a 

circle of radius 9-5 cm as displacements were found to change 

insignificantly over this arc from the first to the second 

approximation (see Fig. 12.13).

The two subregions are identical in shape except that 

they are off-set by a sector angle. Having defined the mesh for 

one subregion, the mesh for the other could thus be easily deduced.

To obtain the peak stress levels, these two subregions 

were solved as separate finite element problems, and together they 

constituted the third approximation.

12.5.2. Mesh for Generalized Slot Shape

Since it was intended to study slot shapes in the third 

approximation a computer program was written to generate a finite 

element mesh for various slot shapes. To do this a ’generalized
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slot shape' was defined as in Fig. 12.16 so that new shapes 

could be generated simply by changing the following so-called 

'slot variables’.

rH = radius of slot base circle

d = slot depth

y = slope of slot sides

$ ■ angle defining intersection point of slot 

side and slot base circle.

The computer program generated nodal co-ordinates 

and nodal numbers for a mesh of TRIM6 element. Referring to

Fig. 12.15, this program divided lengths 1^ and 1^ respectively

into n^ and ^ intervals of an arithmetic series. The right-angle

subtended between 12 and the centre-line was divided into n
3

equi-angular intervals. In short, the input quantities to this

problem were:

slot variables: d, r^, y, if,

mesh variables: n^, ng, n^

The cases run to study the effect of slot shape on 

stresses were divided into three sets:

(i) rH was varied and y and ip kept constant.

(11) y was varied and r^ and ip kept constant.

(ill) ip was varied and ro and y kept constant.



FIG
. 12.16 

G
eneralized Slot Shape.
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The slot variables for case studied are listed in 

Table 12.1 in which each case is given as Shape Number. This table 

also includes some improved shapes which are discussed in 

section 12.5.6. The mesh of at least one case from each set is 

included in Figs. 12.1” to 12.23.

12.5.3. Finite Element Program

It is shown in Chapter 8 that the TRIM3 element gives 

poor results at boundaries and that the TRIM6 element is generally 

superior to the latter element. Since stresses were required 

accurately near the slot boundary it was decided to use TRIM6 

elements for the third approximation. The finite element program 

chosen to solve the third approximation was the Method of 

Partitioning for TRIM6 elements.

12.5. ^. Force Boundary Conditions

The portion of the distributed loading that covered the 

second subregion was discretized by the consistent approach for 

TRIM6 elements (Chapter 4).

As an example, the forces on the mesh for Shape No. 1 

are drawn in on Fig. 12.17.

12.5.5. Displacement Boundary Conditions

Except for nodes lying on the blade periphery, the 

displacements of all boundary nodes were prescribed for both 

subregions. It was decided that to interpolate linearly from the 

displacements obtained from the second approximation would no
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longer suffice as it would mean constraining the sides of the 

TRIM6 boundary elements to straight lines. Hence, a spline 

interpolation was performed to obtain the boundary displacements 

more accruately.

As an example, the applied deformation of the boundaries 

of the second subregion for Shape No. 1 is shown in Fig. 12.17. 

12.5.6. Results of Third Approximation

In Fig. 12.23 principal stresses along the circumference 

of the slot base circle for some slot shapes are plotted in a 

similar manner to that described in section 12.11.5. for Fig. 12.14. 

Since Shape No. 11 has a negative angle ^ (see second inset), 

the curves corresponding to this shape start to the left of the 

origin. In Fig. 12.24(b) o^ is plotted for Shape No. 1 only as 

the curve did not change significantly with shape. For the 

same reason only one curve for c2 ^s plotted in Fig. 12.24(a). 

It can be seen that the slot shapes used showed significant 

reduction in the peak stresses compared to the basic shape, 

which is Shape No. 1. Also, the peak stresses remain at the 

same angular points defined as points m and n.

The fatigue criterion discussed at the beginning of the 

chapter was used to decide which of the two points was the more 

critical, as follows:

In 2-dimensions the criterion is

7| {P12 + P22 - P^)172 + a{S1 + S2) < A
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The expression on the left of the inequality is termed the 

’fatigue stress’ and is to be minimised to obtain an inproved 

slot. The P's are the principal stress amplitudes and the S’s 

are the static stresses. These are indicated in Fig. 12.15. 

The octahedral shear stress is defined as

_ —^^ rp ^ , p 2 p p T.3./2
aoct “ 3 {P1 + P2 " P1P2}

For the basic slot shape the octahedral shear stress 

and the static stresses are tabulated in Table 12.2 to compare 

points m and n. The octahedral shear stress at point n is more 

than double that of point m. However, it still cannot be concluded 

as to which point is more critical because point n has a highly 

compressive net static stress, and compressive static stresses are 

known to reduce the fatigue stress. Because of the absence of 

fatigue data for the material of the saw blade, an average value 

for parameter "a" of 0.1 was arrived at by scanning fatigue data 

for various types of steels. Hence, the fatigue stress for the 

two points become:

point n, fatigue stress = 1044 - 241 = 803 psi 

point m, fatigue stress = 455 - 3 = 452 psi.

Thus, point n is the more critical by a wide margin. The peak 

principal stresses for point n are filled-in in dotted lines on 

Fig. 12.15. From this figure it can be seen that the cycle 

can be approximated by a reversed stress cycle and the a^ cycle 

by a zero-conpression fluctuating cycle.
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12.5.7. Principal Stress Contours

In the tables in the previous section, the stresses 

of, at the most, two critical points were discussed. Some 

curves were provided to indicate the variation of stress along 

the slot base circle for a few chosen slot shapes. This, however, 

gives information in a limited region only.

In order to get a ’picture’ of the principal stress 

fields in the totally isolated regions, stress contour plots were 

drawn by computer using the subroutine discussed in Chapter 10. 

These controu plots are included in Figs. 12.26 to 12.32 which 

correspond to the slot shapes described in Figs. 12.17 to 12.23, 

respectively. A slot shape from each set in Table 12.1 is 

respresented.

Four contour plots labelled (a), (b), (c) and (d) 

in each figure describe the stress fields for each shape. 

These are;

(a) Maximum principal stress, a^, contours for the second 

subregion (slot number 5).

(b) Minimum principal stress, c^, contours for the above 

subregion.

(c) Maximum principal stress, o^, contours for the third 

subregion (slot number 6).

(d) Minimum principal stress, o2, contours for the above 

subregion.



193

Table 12.3 is a list of the critical principal stresses 

at the peaks of the principal stress spectra obtained respectively 

from the second and third subregions, for the various shapes 

studied. The corresponding fatigue stress calculations are 

tabulated in Table 12.4. The last column of this table contains 

the reduction in fatigue stresses as compared to the basic slot 

shape (No. 1). In Fig. 12.25 this reduction is used as a basis 

to compare the effect of changing one slot variable at a time. 

This figure represents the first three sets of Table 12.4. It can 

be seen that the greatest improvement is caused by increasing 'the 

slot base radius r^. Improvement caused by increasing angle y 

falls off atter 5° and improvement caused by increasing angle ip 

(in the negative direction) falls off after -48°. By making slot 

angle y negative a substantial decrease in fatigue stress results, 

as shown by the line below the abscissa.

It is inportant to note that by increasing either y or 

r^, while keeping the other variables constant, the slot is 

widened and the available cutting area of the saw is consequently 

reduced. Though the fatigue life may increase the cutting 

efficiency decreases. This fact was kept in mind when designing 

the hybrid shapes No. 12 and No. 13.

In order to speculate on an improved shape, two 

hybrid slot shapes were designed by a combination of variables 

rH and y. The vertical sectioning line drawn on Fig. 12.25 shows
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that the maximum decrease in stress was obtained by a large r^ 

and a negative y. This fact was used in Shape No. 12 of 

Fig. 12.22 in which the right hand slot side has y = 0°, the 

left hand slot side had y = -7 l/2^and the slot base circle ;

radius r^ = 1/8 in. This shape is seen to be a cross between 

shapes No. 3 and No. 8. By making angle y equal to zero for 

the right hand slot side it was possible to make the angle more 

negative for the left hand slot side and still maintain the same 

slot width as in the basic-shape* The other shape is Shape No. 13 ■ 

shown in Fig. 12.23 in which an attempt was made to take advantage 

of the improvement caused by making y positive and negative for 

the respective slot sides. The sesult was a parallel sided slot 

which was similar to the basic slot but skewed to the center-line 

by 7 1/2°. The two hybrid shapes discussed above have the 

appearance of a lathe cutting tool with a positive rake angle.

From the last set in Table 12.4 it can be seen that 

the two hybrid shapes give the largest reduction in fatigue 

stress, and thus greatest Improvement in fatigue life is expected 

from them. Comparing the results of Shapes 11 and 13 in Table 

12.4, it can be seen that P^ are almost equal for the two shapes 

but P^ is much larger for Shape No. 13. Yet, the percentage 

reduction for Shape No. 13 is three times larger. !his is the 

effect of increase in ’biaxiality', i.e. decrease in P^ but 

increase in P^.
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FIG. 12.2^ Variation of Principal Stresses o^ and o^ Along Circumference of Slo 

Base Circles for Two Highly Stressed Slot Positions. Figure (a) 
Corresponds to 3"a Subregion and Figure (b) to the 2 . Numbers 

Alongside Each Curve are Shape Numbers.
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•FIG. 12.25 Effect of Varying Slot Shape on Fatigue Stress.
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The contours are labelled by number and the corresponding stress 

values are given in the Key below each plot. For purposes of 

comparison the same sets of contours were plotted for the 

various shapes.

At a glance it can be seen that there are definite 

localised changes in stress fields from shape to shape, but 

differences disappear at distances of 5 to 6 slot radii away from 

the slots. Peaks in the stress field appear’ as closed-loop 

contours, and high stress gradients appear as bunched contours.

The stress contours of the following figures are of 

interest: '

(i) Fig. 12.26, are the contours for the basic slot shape, 

which are used to compare the other shapes.

(ii) Fig. 12.27. The bunching of the contours is definitely 

less near the slot, and many of the higher-valued contours disappear. 

Also, contours at the concentration are spread over a wider region, 

see Fig. 12.27(b).

(iii) . Fig. 12.28. Since there is no significant change in 

slot shape, there is no significant change in the stress field.

(iv) Fig. 12.30. Although it would be expected that the 

larger base circle of this ’keyhole’ shape would relieve the 

concentration to a large degree, this is not so. As can be seen, 

stress relief is hampered by the abrupt discontinuity in shape 

where the base circle meets the slot side.
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CONTOURS FOR MAXIMUM PRINCIPAL STRESSES

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -900 -850 -800 -750 -700 -650 -600 -550 -500 -450

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -400 -350 -300 -25 0 -20 0 -150 -10 0 -50 0 SO

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS 100 150 200 250 30 0 350 400 450 500 550

CONTOUR 31

STRESS too

Fig. 12.26 a
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CONTOURS FOR MINIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -4100 -4000 -3900 -380 0 -3650 -3500 -2750 -2550 -2350 -2050
CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -2000 -1900 -1800 -150 0 -1450 -1400 -1350 -1300 -1050 -1000

CONTOUR 21 22 23 24 25 26 27 28 29 30
STRESS -950 -900 -850 -80 0 -750 -700 -650 -550 -500 -450

CONTOUR 31 32 33 34 35

STRESS -400 -350 -300 -25 0 -200



SHAPE No. I 200

CONTOURS FOR MAXIMUM PRINCIPAL STRESSES

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

stress 70 90 110 130 150 170 230 25 0 270 290

CONTOUR 11 . 12 13 14 15 16 17 18 19 20

STRESS 310 350 390 430 470 510 550 590 650 . 710

CONTOUR 21 22 23 24 25 26 27 28

STRESS 770 830 890 950 1010 1070 1130 1190

Fig. 12.26 c



SHAPE No. I 201

CONTOURS FOR MINIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -700 -680 -660 -640 -620 -600 -580 -560 -540 -520

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -500 -480 -460 -44 0 -420 -400 -380 -360 -340 , -320

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -300 -280 -260 -240 -220 -200 -180 -160 -140 -120

CONTOUR 31 32 33 34 35 35 37 38 39 40

STRESS -100 -80 -60 -4 0 -20 0 20 40 60 80

CONTOUR 41 42 43 44 45 46 47 48 49 50

STRESS 100 120 140 160 180 200 220 240 260 280

El9d 2.26 d



SHAPE No-3 202

CONTOURS FOR MAXIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -900 -850 -800 -750 -700 -650 -600 -550 -500 -450

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -400 -350 -300 -250 -200 -150 -100 -50 0 50

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS 100 150 200 25 0 300 350 400 450 500 550

CONTOUR 31

STRESS .60 0
12.27 a >



SHAPE No. 3 203

CONTOURS FOR MINIMUM PRINCIPAL‘STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -4100 -4000 -3900 -3800 -3650 -3500 -2750 -2550 -2350 -2050

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -2000 -1900 -1800 -1500 -1450 -1400 -1350 -130 0 -1050 -1000

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -950 -900 -850 -80 0 -750 -7 0 0 -650 -550 -500 -450

CONTOUR 31 32 33 34 35

STRESS . -400 -350 -300 -250 -200

Fid. 12.27 b



SHAPE No. 3 204

CONTOURS FOR MAXIMUM PRINCIPAL STRESSES

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS 70 90 110 130 150 170 230 250 270 290

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS 310 350 390 43 0 470 510 550 590 650 710

CONTOUR 21 22 23 24 25 26 27 28

STRESS 770 830 890 950 1010 10 70 1.130 _ 1190

Fig. 12.27 c



SHAPE No.3

CONTOURS FOR MINIMUM PRINCIPAL STRESSES

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -700 -680 -660 -640 -620 -600 -580 -560 -540 -520

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -500 -480 -460 -440 -420 -400 -380 -360 -340 -320

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -300 -280 -260 -240 -220 -2 00 -180 -160 -140 -120

CONTOUR 31 32 33 34 35 36 37 38 39 40

STRESS -100 -80 -60 -40 -20 0 20 40 60 80

CONTOUR Al 42 43 44 45 46 47 48 49 50

STRESS . .10 0 120 140 16 0 18 0 200 220 240 _ 260 280

Fig. 12.27 d



SHAPE No. 7 206

' CONTOURS FOR MAXIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS

CONTOUR 31

CONTOUR 1 2 3 4 5 6 7 a 9 10

STRESS -900 -850 -800 -75 0 -700 -650 -600 -550 -500 -450

CONTOUR 11 12 13 14 15 16 17 18 19 20
STRESS -400 -350 -300 -250 -200 -150 -100 -50 0 50

CONTOUR 21 22 23 24 25 2 6 27 28 29 30

STRESS 100 150 200 250 300 350 400 450 500 550

STRESS 630

Fig. 12.28 a
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SHAPE No. 7

CONTOURS FOR MINIMUM PRINCIPAL STRESSES

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

stress -4100 -4000 -3900 -3800 -3650 -3500 -2750 -2550 -2350 -2050

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -2000 -1900 -1300 -1500 -1450 -1400 -1350 -1300 -1050 -1003

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -950 -900 -350 -800 -750 -700 -650 -550 -500 -450

CONTOUR 31 32 34 35

STRESS -MO -350 -300 -250 -200

E9l 12.28 b



SHAPE No. 7 208

CONTOURS*FOR MAXIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS 70 90 110 130 150 170 230 250 270 290

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS 310 350 390 430 470 510 550 590 650 710

CONTOUR 21 22 23 24 25 26 27 28

STRESS 770 830 890 35 0 1010. . 10 70 1130 1190

Fig. 12.28 c



SHAPE No. 7

209

CONTOURS FOR MINIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -700 -680 -660 -64 0 -620 -600 -580 -560 -540 -520

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -500 -480 -460 -440 -420 -4 0 0 -380 -360 -340 -320

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -300 -280 -260 -240 -220 -200 -180 -160 -140 -120

CONTOUR 31 32 33 34 35 36 37 38 39 40

STRESS -100 -80 -60 -40 -20 • 0 20 40 60 80

CONTOUR 41 42 43 44 45 46 47 48 49 50

STRESS 100 120 140 160 180 200 220 240 260 2 80

£1L12.28 _d



SHAPE No. 8 210

CONTOURS FOR MAXIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10
STRESS -900 -850 -800 -75 0 -700 -650 -600 -550 -500 -450
CONTOUR 11 12 13 14 15 16 17 18 19 29
STRESS -400 -350 -300 -250 -200 -150 -100 -50 0 50
CONTOUR 21 22 23 24 25 26 27 28 29 30
STRESS 100 150 200 ' 250 300 350 400 450 500 550
CONTOUR 31

stress 600

Fig. 12,29 a



SHAPE No. 8 211

CONTOURS FOR MINIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -4100 -4000 -3900 -3800 -3650 -3500 -2750 -2550 -2350 -2050

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -2000 -1900 -1800 -1500 -1450 -1400 -1350 -1300 -1050 -1000

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -950 -900 -850 -800 -750 -700 -650 -550 -500 -450

CONTOUR 31 32 33 34 35

STRESS -400 -350 -300 -250 -200

Fig. 12.29 b
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CONTOURS FOR MAXIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS 7 0 90 110 130 150 170 230 250 270 290

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS 310 350 390 43 0 470 510 550 590 650 710

CONTOUR 21 22 23 24 25 26 27 28

STRESS. 770 830 890 95 0 1010 10 70 1130 1190

Fig. 12.29 c
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CONTOURS FOR MINIMUM PRINCIPAL STRESSES

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 ' 9 10

STRESS -700 -680 -660 -64 0 -620 -600 -580 -560 -540 -520

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -500 -480 -460 -440 -420 -400 -380 -360 -340 -320

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -300 -280 -260 -240 -220 -200 -180 -160 -140 -120

CONTOUR 31 32 33 34 35 36 37 38 39 40

STRESS -100 -30 -60 -40 -20 0 20 40 60 80

CONTOUR 41 42 43 44 45 46 47 48 49 50

STRESS 100 120 140 160 180 200 220 240 260 280

Fig. 12.29 d



SHAPE No. 9 214

CONTOURS FOR MAXIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -900 -850 -800 -750 -700 -650 -600 -550 -500 -450

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -400 -350 -300 -250 -200 -150 -100 -50 0 50

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS 100 150 200 250 300 350 400 450 500 550

CONTOUR 31

STRESS 600

Fiq. 12,30 a



SHAPE No.9 215

CONTOURS FOR MINIMUM PRINCIPAL STRESSES

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -4100 -4000 -3900 -3800 -3650 -3500 -2750 -2550 -2350 -2050

CONTOUR 11 12 13 14 15 16 17. 18 19 20

STRESS -2000 -1900 -1800 -150 0 -1450 -1400 -1350 -1300 -1C50 -1000

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -950 -90 0 -850 -80 0 -750 -700 -650 -550 -500 -450

CONTOUR 31 32 33 34 35

STRESS -400 -350 -300 -250 -200

Fig. 12.30 b



SHAPE No. 9 216

CONTOURS FOR MAXIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10
STRESS 70 90 110 130 150 170 230 250 270 290
CONTOUR 11 12 13 14 15 16 17 18 19 20
STRESS 310 350 390 430 470 510 550 590 650 710
CONTOUR 21 22 23 2^ 25 26 2? 28
STRESS 770 830 890 95 0 1010 1070 1130 1190

Fig. 12.30 c



SHAPE No. 9 217

CONTOURS FOR MINIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -700 -680 -660 -640 -620 -600 -580 -560 -540 -520

CONTOUR 11 12 13 14 15 16 17 18 19 . 20

STRESS -500 -480 -460 -440 -420 -400 -380 -360 -340 -320

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -300 -280 -260 -240 -220 -2 0 0 -180 -160 -140 -120

CONTOUR 31 32 33 34 35 36 37 38 39 40

STRESS -100 -80 -60 -40 -20 0 20 40 60 80

CONTOUR 41 42 43 44 45 46 47 48 49 50
STRESS 100 120 140 160 180 200 220 240 260 .... 280

Fig. 12-30 d



SHAPE No. 12
218

CONTOUR 31

CONTOURS

KEY TO C(

CONTOUR

FOR MAXIMUM

JNTOURS-

PRINCIPAL STRESSES

5 6 7 8 9 101 2 3 4

STRESS -900 -850 -800 -75 0 -70 0 -650 -600 -550 -500 -450

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -*♦0 0 -350 -300 -250 -20 0 -150 -100 -50 0 50

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS 100 150 200 250 300 350 400 450 500 550

STRESS 600

Fig. 12.3! a



SHAPE No. 12 219

CONTOURS FCR MINIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -LIDO -4000 -3900 -3800 -3650 -3500 -2750 -2550 -2350 -2050

CONTOUR 11 ' 12 13 14 15 16 17 18 19 20

STRESS -2000 -1900 -1800 -1500 -1450 -1400 -1350 -1300 -1050 -1000

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -950 -900 -850 -800 -750 -70 0 -650 -550 -500 -450

'CONTOUR 31 32 33 34 35

STRESS -40 0 -350 -300 -250 -20 0

Fig, 12,31 b



SHAP£ No. 12
220

CONTOURS FOR MAXIMUM PRINCIPAL STRESSES

KEY TO CONTOURS'

CONTOUR i 2 3 4 5 6 7 8 9 10
STRESS 70 90 110 13 0 150 170 230 250 270 290
CONTOUR 11 12 13 14 15 16 17 18 19 20
STRESS 310 350 390 43 0 470 510 550 590 650 710

CONTOUR 21 22 23 24 25 26 27 28

STRESS 770 830 890 950 1010 1070 1130 1190

Fig- 12.31 c



SHAPE No. 12 221

CONTOURS FOR MINIMUM PRINCIPAL STRESSES

KEY TO CONTOURS-

CONTOUR 1 2 .3 4 5 6 7 8 9 10

STRESS -700 -680 -660 -640 -620 —60 0 -580 -560 -540 -520

CONTOUR 11 12 13 1A 15 16 17 18 19 20

STRESS -500 -ASO -A60 -AAC -420 -400 -380 -360 -340 ' -320

CONTOUR 21 22 23 2A 25 26 27 28 29 30

STRESS -300 -280 -260 -240 -220 -200 -180 -150 -140 -120

CONTOUR 31 32 33 3A 35 36 37 38 39 40

stress -10 0 -80 -60 -40 -20 ’ 0 20 40 6C 80

CONTOUR Al A2 A3 A4 45 46 47 48 49 50

STRESS 100 120 140 160
Ei9-_

180
12.31d

200 220 240 260 283



AHAHt NU- 13
222

CONTOURS FOR MAXIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 910

STRESS -900 -850 -800 -750 -700 -650 -600 -550 -500 -450

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -400 -350 -300 -250 -200 -150 -100 -50 0 50

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS 100 150 200 250 300 350 400 450 500 550

CONTOUR 31 4

STRESS 60S

Fig. 12.32 a



SHAPE No. 13
223

CONTOURS FOR MINIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -4100 -4000 -3900 -3800 -3650 -350 0 -2750 -2550 -2350 -2050

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -2000 -1900 -1800 -1500 -1450 -1400 -1350 -1300 -1050 -1000

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -950 -900 -850 -800 -750 -700 -650 -550 -500 -4 50

CONTOUR 31 32 33 34 35

STRESS -400 -350 -300. -250 .-200

Fig- 12.32 b



SHAPE No. 13 224

CONTOURS FOR MAXIMUM PRINCIPAL STRESSES

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS 70 90 110 130 150 170 230 25 0 270 290

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS 310 350 390 43 0 470 510 550 590 650 710

CONTOUR 21 22 23 24 25 26 27 28

STRESS 770 830 890 950 1010 1070 1130 1190



SHAPE No. 13 225

CONTOURS FOR MINIMUM PRINCIPAL STRESSES 

KEY TO CONTOURS-

CONTOUR 1 2 3 4 5 6 7 8 9 10

STRESS -7GG -680 -660 -640 -620 -600 -580 -560 -540 -520

CONTOUR 11 12 13 14 15 16 17 18 19 20

STRESS -500 -480 -460 -440 -420 -400 -380 -360 -340 -320

CONTOUR 21 22 23 24 25 26 27 28 29 30

STRESS -30 0 -280 -260 -240 -220 -200 -180 -160 -140 -120

CONTOUR 31 32 33 34 35 36 37 38 39 40

STRESS -ICO — 80 -63 -4 0 -20 0 20 40 60 80

CONTOUR 41 42 43 44 45 46 47 48 49 50

STRESS 100 120 140 160 180 200 220 240 260 280

Fiq- 12.32 d
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(v) Fig. 12.31. For this hybrid shape, the reduction in 

the bunching of the contours in both the compressive and tensile 

regions is very apparent. Many of the higher valued contours 

disappear.

(vi) Fig. 12.32. In this case, reduction in fatigue stress 

was obtained not because of the relief of stress but because of 

the proper combination of the peaks of the two principal stresses. 

The general behaviour of the stress fields is almost identical 

with the basic slot shape.

Another useful aspect of these contours is that one can 

obtain the variation of stress along any line simply by noting 

the values of the contours which intersect with the line.

12.6. Conclusions

(i) Of the shapes tried it was found that the hybrid slot 

shapes shown in Figs. 12.22 and 12.23 would theoretically behave 

the best under fatigue conditions. Other than reducing the 

fatigue stress, these two slot shapes have the following 

advantages:

(a) They do not reduce the cutting area of the blade, 

which is inportant economically.

(b) Because of the positive ’rake angle*, they are 

expected to improve chip removal and coolant Inflow. In fact. 

Shape No. 12 has a greater capacity for chip removal because 

it is recessed.
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(11) Increasing the slot base circle radius r„ reduces the 

fatigue stress.

(ill) The small decrease in fatigue stress due to changing 

slot angle y in the positive direction did not warrant the large 

decrease in cutting surface. Making y negative on the other hand 

decreases fatigue stress and does not reduce the cutting surface, 

(iv) It was found that reducing d aggravated the fatigue

stress. The results of two trials are given below:

SLOT DEPTH FATIGUE STRESS REDUCTION IN
FATIGUE STRESS

d in psi %

3/4 932 -16.2

1/2 1041 -29.8

These results are consistent with those of the static case of a 

notched bar in bending [17], of which stress concentration curves 

are reproduced in Appendix I. In these curves the slot depth 

is (D - d)/2. Starting from the right of these curves it can 

be seen that, as the slot depth increases, the stress concentration 

Increases up to a maximum after which an increase in slot depth 

produces a decrease in stress concentration. In view of these 

curves, the slot depth had to be reduced to a bare minimum, i.e. 

to the right of the peak. This would defeat the purpose of having 

the slots in the first place.
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(v) An increase in the blaxlality of the principal stress 

amplitude was found to decrease the fatigue stress.

(vi) It was found that the critical principal stress 

spectra consists of,

(a) a reversed maximum principal stress cycle 

superposed upon,

(b) a zero-compression fluctuating minimum 

principal stress cycle.

(vil) The critical point on the slot base circle at which 

fatigue cracking was likely to cccur was found to be at 30° to 

the horizontal, and not at the slot root. Most of the cracks 

found on a used circular saw blade supported this fact.

(viil) In some stone cutting operations, diamond circular 

saw blades rotate at about 4000 cycles per minute. For an 

8-hour day, this would mean that the saw has to endure about 

2 million cycles of stress per day. Under these conditions, 

it can only be hoped to prolong the fatigue life of a saw and 

not to countermand fatigue failures completely.

(lx) The stresses in Table 12.3 can be seen to be generally 

low in magnitude. This Is due to the fact that a small depth 

of cut and a small rotational speed were used in the model. In 

use, the saw speed is about 4000 surface feet per minute and 

the largest possible depths of cut are taken. Under such 

conditions the cutting forces become very large and their
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distributions became non-linear. The model chosen was only for 

comparative purposes.

(x) Fran the fatigue criterion (equation 12.1) it can 

be seen that compressive residual stresses improve fatigue life. 

Metallurgical methods such as shot peening may be used to 

introduce compressive residual stresses.

(xi) The propagation of fatigue cracks can be inhibited 

by removing the surface of the slot base from time to time - this 

could be done by drilling. This is a practical way of prolonging 

the life of a saw.

12,7. Suggestions for Further Work

(i) The cutting force distribution on diamond circular 

saws needs to be investigated by experiment, and the theory in 

Chapter 11 could be verified.

(ii) A photoelastic study of the saw blade can be made.

(iii) The finite element method can be used to include 

vibration and thermal effects for both in plane and out of plane 

problems.

(iv) The four finite element programs could be compiled 

to form a user-oriented finite element package. Also, a 

program can be derived from these to combine both TRIM3 and TRIM6 

elements in one mesh.

(v) It was found that the most time consuming and error 

prone step when using the finite element method was the input 

of the mesh and the interpretation of the numerical results.
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A facility used at some research centres is an oscilloscope 

on which the mesh is defined simply by control of a light pen. 

The results could be projected on the screen of such an 

oscilloscope in the form of stress contours described in 

Chapter 10. In this way a quick feedback can be obtained so 

that on-the-spot design changes can be made if necessary.
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TABLE 12.1 List of Slot Shapes Tried.

SET SLOT
SHAPE NO.

D r„ y FIG.
IN " DEG DEG

IN

1 1 1.0 1/16 0.0 0.0 12.17
2 1.0 3/32 0.0 0.0

3
*4

1.0 1/8 0.0 0.0 12.18
1.0 3/32 0.0 -48.0

2 5
6

1.0 1/16 2.5 0.0
1.0 1/16 5.0 0.0

7
*8

1.0 1/16 7-5 0.0 12.19
1.0 1/8 -3.5 0.0 12.20

3 9 1.0 1/8 0.0 -60.0 12.21
10 1.0 1/8 0.0 -48.0

11 1.0 1/8 0.0 -24.0

4 +12 1.0 1/8 -7.0,0.0 0.0 12.22

+13 1.0 1/16 -7.517.5 0.0 12.23

* These shapes do not fall completely in the classification as 
two variables were changed simultaneously.

+ These were hybrid shapes that were not symmetric about the 
center-lines.



TABLE 12.2 Tabulation of Fatigue Stress Calculations for Two Points on Slot Shape No. 1.

POINT POSITION 6 POSITION 5 PRINCIPAL STRESS 
AMPLITUDES

STATIC
STRESSES

OCTAHEDRAL
SHEAR 
STRESSES

SUM OF 
STATIC 
STRESSES

°1
psi

a2 
psi

°1 
psi

a2 
psi

P1 
psi

P2 
psi

S1 
psi

S2 
psi

oct 
psi

Sl + S2 
psi

n 440 0 -460 -4810 450 2405 -10 -2405 1044 -2415

m 1730 166 -130 -1832 930 999 800 - 833 455 - 33

rv
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TABLE 12.3 Tabulation of Peak Principal Stresses for Various Slot

SLOT SHAPE 
NUMBER

POSITION 6 
(SUBREGION 3)

POSITION 5 
(SUBREGION 2)

°1
psi

a2 
psi

°1 
psi

°2 
psi

1 440 0 -460 -4810

2 380 0 -233 -4243

3 280 0 -147 -3880

4 264 0 -241 -4450

5 440 0 -400 -4570

6 440 0 -371 -4365

7 440 0 -363 -4352

8 270 0 -153 -4078

9 67 0 -200 -4367

10 102 0 -202 -4286

11 155 0 -151 -4025

12 270 0 -146 -3838

13 440 0 -367 -4036

Shapes.
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TABLE 12,4 Tabulation of Fatigue Stress Calculations and Improvements in Fatigue

SLOT 
SHAPE 
NUMBER

PRINCIPAL 
STRESS 
AMPLITUDES

STATIC
STRESSES

OCTAHEDRAL 
SHEAR 
STRESS

SUM OF 
STATIC 
STRESS

FATIGUE 
STRESS

REDUCTION

P1 
psi

P2 
psi

S1 
psi

S2 
psi

°oct 
psi

«,+S2=S 

psi
oct 
a S

%

1 450 2405 -10 -2405 1044 -2415 802 0.0

2 307 2122 73 -2122 936 -2049 731 8.3

3 213 1940 67 -1940 870 -1873 683 14.8

4 253 2225 11 -2225 994 -2214 773 3.6

5 420 2285 20 -2285 993 -2265 766 4.4

6 405 2182 35 -2182 948 -2147 734 8.5

7 400 2176 40 -2176 946 -2136 733 8.5

8 212 2039 58 -2039 915 -1981 717 10.6

9 134 2184 -66 -2184 1000 -2250 775 3.4

10 152 2143 -50 -2143 976 -2193 757 5.6

11 153 2013 0 -2103 959 -2013 758 5.5

12 208 1919 62 -1919 859 -1857 673 16.0

13 404 2018 36 -2018 871 -1982 673 16.0

Stress for Various Slot Shapes.
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APPENDIX A

AREA INTEGRALS BY NUMERICAL METHOD

This method is analogous to the finite element method. 

The integral is discretized as follows

„ f m n , .
E = I x y dx dy 

J Area

= ^(x^y^XAREAp (A.l)

i ~
where J = number of sub-elements.

x^, ^i ^ the centro^ co-ordinates of the ith sub-elements. 

AREA^ is the area of the ith sub-element.

The triangular element is divided into an ensemble of 

little triangular sub-elements and ’dx dy’ is approximated by 

the sub-element areas.

The degree of accuracy obtained by equation (A.l) is, 

of course, dependent on the fineness of sub-division. In the 

accompanying computer program an iterative approach is used in 

which the number of intervals on side 1-3 (Fig. A.1(a) is 

increased by one each cycle. Fig. A.1(a) represents the second 

cycle and Fig. A.1(b) the 12th cycle, which is a relatively fine 

sub-division. Convergence is assumed when the integral E at 

a certain cycle differs by less than a given percent from the 

integral of the previous cycle.

Table A.l represents a comparison of the numerical

A.l
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FIG. A.1(a) Course and (b)Fine Divisions for Numerical Area Integration
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A.2

method with formal integration as developed in Appendix B. 

Convergnece to within .075 percent was the accepted in the 

numerical method.

INTEGRAL NUMERICAL FORMAL

85.73602 85.79785

x2y 30.87772 30.89296

xy2 11.37257 11.38229

y3 4.28075 4.28750

TABLE A.l Canparison of Results of Area Integrals by TWo Methods. 
The Co-ordinates of the Triangle Used Were (2.00,2.00), 

(1.00,1.25), (2.50,0.75).

Fig. A.2 shows the rate of convergence of the numerical 

method. The execution time increases rapidly for fine 

sub-divisions, but in many cases convergence within .075 pc 

would be acceptable and the execution time for this accuracy is 

not excessive. For example, each of the integrals in Table A.l 

take .0195 sec on the CDC 6400 computer. An any co-ordinate 

system could be used, the question of transformation of co-ordinates 

does not arise.



15

2
13

5

6

SUBROUTINE INTEGRL(X•Y,M,N,NCYCLE,E)
DIMENSION'S) ,Y (3), AX (40 ) , AY (40 ) , BX (40 ) , BY (40) ,XE(3),YE(3)

INTER= 1
ITER= 0
E= 0 .0
IMER= INTER + 1
ECLD 
0X31 
DY31

DY 32 =
AX (1 ) =
AY (1 ) = 
IELE M = 
E= 0 .0 
L Z = □

E 
(X(3) 
(Y (3) 
(X(3)

X(3)
Y(3) 
-1

X <13)✓INTER 
Y < 1))✓INTER 
X(2))/INTER 
Y (2))/INTER

DC 1 11= 1,INTER 
IFCINT= II + 1
IELEM
BX (1 )

IELEM + 2
AX (1)

BY (1) = AY (1)
0X31 
DY31

BX(IPOINT)= AXdPOINT - 1)
BY(IPCINT)= AYdFOINT - 1)
IF (II .EQ. 1) GO TO 13
DELX= (BX(IPOINT)
DELY= (BY (IPOINT)
DC 2 JJ=2,II
BX (JJ)= BX (JJ-1) + DELX
BY(J J)= BY (JJ-1) + DELY
CONTINUE
IA= 0
IB= 0
DC 4 KK= 1.IELEM
IF( (-1)**KK) 5,5,6
CONTINUE
IB= IB 
XE (1) = 
XE(2) = 
XE (3) = 
YE (1 ) =
YE (2) = 
YE (3) =
GO TO 7

+ 1 
BX(IB) 
BX(IB+1) 
AX (IB) 
BY (IB) 
BY(IB+1) 
AY (IB)

CONTINUE
IA= IA+1
XE(1)= AX(IA) 
XE (2)= BX (IA + 1) 
XE(3) = AX(IA+1) 
YE (1)= AY (IA) 
YE (2 ) = BY(IA+1)

0X32 
0Y32

BX(i)MII 
BY(1))/II



7
YE<3)= AY(IA+i)
CONTINUE 
AA= XE(2)*YE(3)
88 
CC

XE(3)*YE(2)
XE(D*YE(3) - XE(3)»YE(1)
XE (1) *YE (2)

AREA = (AA-BB + CO/2
ORX

XE(2)»YE(1)

(XE(l)+XE(2)+XE(3))/3

8
9

10 
11
4

12 
1

ORY= (YE(l)+YE(2)+YE<3))/3
IF CM .EQ. 0) GC TO 8
XM = 0RX**M
GC TO 9
XM= 1.0
IF (N .EQ. 0) GO TO 10
YK = ORY**N
GC TO 11
YN= 1.0
E= E + XM*YN*AREA
CONTINUE
DC 12 LL=1,IPOINT
AX <L L) = BX(LL)
AY (LL) = BY (LL)
CONTINUE 
ITER= ITER + 1
IF ( 
IF ( 
IF ( 
DE =

ITER .EQ
ITER .EQ

NCYCLE ) GO TO 14

AES (EOLO-E) 
.0000001

1 ) GO TO 15 
GE. 1.0E-10 ) GO TO 21

21
22

14

C 
C 
150

GC TO 22
DE= ABS( (EOLD-E)/E )
OE= DE*100.
IF< OE.LE. ZERO) RETURN
GO TO 15
CONTINUE
WRITE(6,150) M,N
WRITE(6,151) ITER, INTER, E
WRITE(6,152) NCYCLE
WRITER,154) E
STCP

151
152
154
153

FORM AT{ // 10X,*NUMERICAL DOUBLE INTEGRATION... ORDER OF X=*,I2, 
1*...ORDER OF Y=*,I2/10X,*CYCLE NUMBER*,4X,*NO. OF INTERVALS*, 
24X,*INTEGRAL*/)

FORMAT (2(15X, 13),13X,E11.4)
FORM AT (5X,*FAILEC TO CONVERGE AFTER*,13,* CYCLES*)
FORMAT(5X,*INTEGRAL AT LAST CYCLE=*,El1.4)
FORMAT(5X,*CONVEFGED WITHIN*,F6.3,* PERCENT AFTER*,13,* CYCLES*) 
END



APPENDIX B

AREA INTEGRALS BY FORMAL INTEGRATION

The formal integration is performed by dividing the integration

into three parts as follows:

or

triangle 
area

dx dy = +

under

E " Eij + EJk + ^

+

area under
J - k

(B.l)

area under
k - i

Equation (B.l) is an algebraic sum and the 

contribution to the integral by the double-hatched area in

Fig. B.l vanishes.

B.l



B.2

3 2 2 3Area Integrals for x, x y, xy and y are given

below. The functions given pertain to one side such as i-j only.

and a summation has to be performed over all sides.

Also,

y1 "yi
m = ji--------- is the shape of the line

CU s yi ’ Mxi is the constant for line i-j.

(i)
3

Integral of x

E« " CMijxS/5 - c^A] ‘

(ii)
2

Integral of x y

E = [My^/lO + MyC^/S + Ci32x3/6]XJ

(iii) Integral of xy

Ew - ^j3*5'15 - ^^xS + ViA3/3 

+ CiAA3
(iv) Integral of yJ

Eu * ^^+ '-kAA+ ’ViA72
+ bijcu¥/2 +



APPENDIX C

NODAL POINT STRESSES

Practical application of the method indicates that the 

computed nodal point displacements are realistic but, unless very 

fine mesh is used, considerable dffficulty may be encountered in 

plotting and evaluating element stresses. Furthermore, it is 

often desirable to obtain nodal point stresses, since maximum 

stresses normally are developed on the boundaries of a structure. 

Therefore, the purpose of this section is to introduce a method 

of determining nodal point stresses.

It has been shown that nodal point stresses, obtained 

by averaging the element stresses of all elements connected to 

the nodal point,produce good results for interior nodal points; 

however, this approach breaks down when applied to boundary 

nodal points (11).

Experience has indicated that the three components of 

element stresses do not represent the state of stress at any one 

point within the element. For example, consider the element 

shown in the figure below. Since stresses must be consistent 

with the nodal point displacements, a approximate the horizontal 

stress of point A, a approximates the vertical stress at point 

B, and t approximates the shearing stress at some interior point 

C. Fea? this case, in determining stresses at nodal point 1. it is 

This is an excerpt from reference [121.

C.l



C.2

apparent that the horizontal stress at A must be weighted more

heavily than the vertical stress at B. Therefore, a ’weighted 

average* method, which reflects this behaviour, is used to

determine nodal point stresses.

The method involves the following calculations to

determine the three canponents of stress at point 1.

1 n(n) ( \

x' sz 2-
n

_ 1 V^ b(n)

^ ‘ sy L ^^ ”» ’

= 1
Txy N

n
where

a(n) = |X. (n) + X.(n) - 2X, |

(n) _ ।v (n) , „ (n) 
1V J - 2Y1|

The sunrnation is performed on all N elements connected at

nodal point 1.



C.3

In general, the procedure yields results which agree 

very closely with the direct averaging method for interior 

nodal points but differ considerably for boundary nodal points.



APPENDIX D

STRESSES IN POLAR CO-ORDINATE SYSTEM

By transformation from rectangular Cartesian 

co-ordinate system:

= (a + cr )/2 + “ av^2 cos26

+ t^ sin20

Og = (^ + Oy)/2 “ (°x ~ °y^2 COS20

- r sin20 
xy

Tre = Txy cos20 " (ax “ ay^2 sin2e

D.l
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PROGRAM TST(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT,TAPE1,TAPE2,PU 
1H,TAPE7=PUNCH,TAPE3)

DIMENSION XK3), Yl(3). NF(50), NB(50,2), BV(50,2), T(5)
DIMENSION A(30), ST(12000)
COMMON /BLK2/ NPCIN.NELEM
COMMON ZBLK3/ 0(3,3).DELTA,IAREA
COMMON /BLK4/ DB(3,6).NODE(3)
COMMON NOD(400,3),Z(200,2),F(400),U(400),SK(30,400),IT(400)
EGUI VALENCE (ST(1),SK(1))
EQUIVALENCE (ACL),0(1))

FINITE ELEMENT METHOD FOR PLANE STRESS/STRAIN
THREE NODAL (TRIM3) ELEMENTS USED
LIMITING PARAMETERS FOR THE DIMENSIONS GIVEN-
IEAN = 30
NPCIN-200
NELEM=400

DATA

READ 
READ 
READ

CALL

FIND

INPUT

(5,47) NP0IN,NELEM.N0N,N8CUN,IWATE,NCENT,NC0LN,NTHICK,NPUNCH
(5,46) E,P,DENS,RPM
(5,46) (T(I),I=1,NTHICK)

COORD

BANDWIDTH

IBAN=0
DO 2 I=1,NELEM
DC 1 J=l,3
N=NOD(I?J)
DC 1 K=i,3
M=NOD(I,K)
IOIF = IABS (M-N)
IF (IOIF.GT.IBAN) IBAN=IDIF
CONTINUE
CONTINUE
IEAN=2*(IBAN+1)
IF (IBAN.GT.30) GO TO 42
INITIALIZE MATRICES TO ZERO

NFORCE=0
NP=NPCIN*2 
DC 3 1=1,NP
U(I)=0.0
CONT INUE
DC 4 1=1,IBAN
DC 4 J=1,NP
SK(I,J)=0.0



4 
C 
c 
c

CONTINUE 

PRINT INPUT DATA

c

WRITE (6,59)
WRITE (6,49)

5
6

IF (NBOUN.EQ.O) GO TO 6
DO 5 I=1,NBOUN
READ (5,45) NF (I) ,NB (I, 1) , NB (I, 2) , B V (I , 1) , BV (I, 2)
CONTINUE
CONTINUE
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE

(6,53)
(6, 54) 
(6, 55) 
(6, 52)
(6,74) 
(6, 75) 
(6,78)
(6,79) 
(6,50) 
(6, 51) 
(6,76) 
(6, 77)

NPCIN 
NELEN 
NON 
NBOUN 
NCENT 
NTHICK 
NCCLN 
IBAN
E 
P 
DENS 
RPM

7

DO 7 I=1,NTHICK
WRITE (6,56) I,T(I)
CONTINUE
IF (NBOUN.EQ.O) GO TO 13

8
9

10

WRITE (6,71)
DC 12 I=1,NBOUN
IF (NB(I,i))
IF (NB(I,2)) 
WRITE (6,70)
GO TO 12

11,8,11
11,9,10 
NF(I),BV(I,1),BV(I,2)

11
12
13

WRITE (6,70)
GC TO 12
WRITE (6,72)
CONTINUE 
CONTINUE 
CALL SECOND

NF(I),BV(I,1)

NF(I) ,BV(I,2)

(Tl)

14

15
16

NFCRCE=NFORCE+1
DC 14 1=1,NP
F(I) =0.
CONTINUE
IF (NON.EO.0) GO TO 16
WRITE (6,69)
DC 15 1=1, NON
READ (5,48) K,F(2*K-1),F(2*K)
WRITE (6,70) K,F (2*K-1) ,F(2*K)
CONTINUE
CONTINUE

w 
KJ



17

18

19
C 
C 
C

IF (WORCE.GT.l) GO TO 25
WRITE (6,59)
WRITE (6,66)
00 17 I=1,NPOIN
WRITE (6,65) I,Z(I,1),Z(I,2)
CONTINUE
WRITE (6,59)
WRITE (6,67)
00 19 1=1,NELEN
ORX= 0.
ORY= 0.
00 18 J=l,3
JJ=NOD(I,J)
ORX=ORX+Z(JJ,1)/3.
ORY=ORY+Z(JJ,2)/3.
CONTINUE
WRITE (6,68) I,(NOD(I,J),J=1,3),ORX,ORY
CONTINUE

DEFINE ELASTICITY MATRIX D FOR PLANE STRESS- ISOTROPIC MATERIAL

E1=E/(1.-P**2)

C 
C 
C 
C

0(1,1)=E1 
D(1,2)=E1*P 
D(l,3)=0.0 
D(2,1)=D(1,2) 
0(2,2)=0(l,l) 
D(2,3)=0.0 
0(3,l)=0.0 
D(3,2)=0.0 
D(3,3)=E1*(1. 
WRITE (6,57) 
WRITE (6,5 8) 
WRITE (6,59) 
WRITE (6,61)(6,61)

-P)/2.

((D (I,J),J=1,3),1=1,3)

CALCULATION OF ELEMENT STIFFNESS MATRICES ANO ASSEMBLY OF 
OVERALL STIFFNESS MATRIX

AREA =0 »0iarea=o
W
Co

REWIND 1
REWIND 3
DC 23 L=1,NELEM
DC 20 1=1,3
II=NCD(L,I)
X1(I)=Z(II,1)

IF (II.GT.NPOIN)
CONTINUE

NODE(I)=0
20



21
22

23 
C

DC 21 K=1,NTHICK
IF (IT(L) .EQ.(K-D) GO TO 22
CONTINUE
THICK=T(K)
CALL FEM (XI,Y1,L,IBAN,THICK)
area=area+delta
CONTINUE

24

IF (IAREA.EQ.O) GO TO 24
WRITE (6,73) 
STOP
CONTINUE

C 
C 
C 
25

REWIND 2
WRITE (2) ((SK(KII),1=1,NP),K=1,IBAN)
WRITE (6,64) AREA

INTRODUCE PRESCRIBED DISPLACEMENTS

CONTINUE
IF (NBOUN.EQ.O) GO TO 29
DO 28 I=1,NBOUN
M=NF(I)-l

26

DC 27 J=l,2
IF (NB<I,JH 27,26,27
NPR=2*M+J

27
28
29 
C

SK(1 ,NPR)=SK(l,NPR)*1.0E + 15
F(NPR)=SK(1,NPR)*BV(I,J)
CONTINUE
CONTINUE
CONTINUE

C 
C

CALCULATION ANO SUPERPOSITION OF CENTRIFUGAL FORCES

IF (NCENT.EQ.O) GO TO 30

30
C 
C 
C

CALL CENT (DENS,RPM,NTHICK,T,NELEM) 
CONTINUE

SOLUTION OF DISPLACEMENTS

31

32

DO 31 1=1,IBAN 
A<I)=SK(I,2) 
CONTINUE 
K=IBAN
DC 34 J=2,NP
DC 3 2 1=1, IB AN
K=K* 1
ST (K)=A(I) 
CONTINUE
DC 33 1=1,IBAN 
A(I)=SK(I,J+1) 
CONTINUE33



34

C

35
C 
C 
C

CONTINUE
IA=I8AN-1
CALL 8MATS <IA,NF,ST)
CALL SOLBS (IA,NP,ST,F,U)
WRITE (6,59)

00 35 1=1,NP,2
11=1+1
J= (I+D/2
IF (NPUNCH.GT.0) WRITE (7.48) J,U(I),U(I1)
WRITE (6,60) J,U (I) , J,U (II)
CONTINUE 

REACTIVE FORCES

IF (NBOUN.EQ.O) GO TO 41
WRITE (6,62)
REWIND 2
READ (2) <(SK(K,I),I=1,NP),K=1,IBAN)
DC 40 N=1,NBOUN
M=NF (N)-l
DC 39 JJ=1,2
I=2*M+JJ
F(I)=0.

36

DO 3 8 J=1,NP 
IF (I.GT.J) GO 
K=J-I+1
IF (K.GT.IBAN) 
STIFF=SK(K,I) 
GC TO 37 
K=I-J+i 
IF (K.GT.IBAN)

TO

GO

GO

36

TO 38

TO 38

37
38
39

40
41
C

STIFF=SK(K,J)
F(I) =F(I)+STIFF*U(J)
CONTINUE
CONTINUE
WRITE (6,63) NF(N),F(I-1),F(I)
CONTINUE
CONTINUE
CALL STRESS (IWATE,NFORCE,NCOLN,NPOIN,NELEM,NPUNCH)
CALL SECOND (T2)
DT=T2-T1
WRITE (6,44) DT
IF (NFORCE.GE.NCCLN) GO TO 43
REWIND 2
READ (2) ((SK(K,I),I=1,NP),K=1,IBAN)
READ (5,47) NON
WRITE (6,59)
GC TO 13
WRITE (6,80) IBAN

w
UI

42



C 
C 
43 
C 
44 
45 
46 
47 
48 
49 
50 
51 
52

STOP

54
55
56
57

58
59
60
61
62

FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 

1 = *,//)
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT

(//10X,’TIME FOR RUN=*,E12.5)
(3I3.2E14.7)
(5E14.7)
<9I3)
(I3.2E14.7)
4/4OX,*INPUT DATA*,/40X,14(’-»),//)
<20X,’YOUNG S MODULUS
<20X,’POISSON S ----------
(20X,’NUMBER OF

RATIO
=*,E12.5)
*,E12.5)
*,I3)
’,13)
♦,I3)
’,13) 

uuA,TiniLMNtia T<’,I1,’) =’,E12.5)
(1H1,/,3OX,’ELASTICITY MATRIX’,/30X,17(’-*),///,25X,’D<1,J)

<20X,*NUMBER OF
(20X,’NUMBER OF
<20X,*NUMEER OF
(20X,’THICKNESS

PRESCRIBED DISPLACEMENTS
NODAL POINTS
ELEMENTS 
PRESCRIBED FORCES

<25X,3(E14.7, 2X) )
<1H1)
(10X,*U(*,I3,’)=’,E14.7,5X,’V(*,I3,*)=’,E14.7)
(5X.’ELEMENT*,5X,’AREA*/)
(IHi,10X,’REACTIVE FORCES-’/10X,16(’-*)//,10X,*NOOE*,12X,’X

63
64
65
66
67

1-FCRCE’,16X,’Y-FCRCE’)
FORMAT

68
69

FORMAT 
FORMAT 
FORMAT 
FORMAT 

IIO*/)
FORMAT 
FORMAT

70
71

72
73
74
75
76
77
78
79
80

<10X,I3,7X.F15.5,8X,F15.5)
(//5X,’TOTAL AREA=*,E15.8)
<21X,I3,4X,E12.5,3X,E12.5)
<20X,’NOOE*,4X,*X-COORDINATE’,3X,»Y-COORCINATE’/) 
(20X,’ELEMENT NOOE1 N0DE2 NODE3 X-CENTROID Y-CENTRC

<22X,I3,1X,3(4X,I3),3X,E12.5,2X,E12.5)
C//20X,’PRESCRIBED FORCES’,/20X,17(’-♦),/20X,’NODE’,12X,’X- 

1FORCE’,16X,’Y-FORCE’)
FORMAT (21X.I3,2(9X,E14.7))
FORMAT <//20X,’PRESCRIBED DISPLACEMENTS’,/20X,24(♦-*),/20X,’NODE’, 

19X,’X-DISPLACEMENT’,9X,’Y-DISPLACEMENT’)
FORMAT " ‘ - ---------------”
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
END

(21X,I3.32X.E14.7)
<///5X,’ERROR IN INPUT MESH. NEGATIVE AREAS’)
(20X,’CENTRIFUGAL FORCE OPTION
(20X,’NUMBER OF THICKNESS CHANGES
(20X,’DENSITY OF MATERIAL 
(20X,’SPEED REVS. PER MIN.
120X,’NUMBER OF FORCE COLUMNS
(20X,’BANDWIDTH =’il3)
(♦ JOB ABORTED. BANDWIDTH EXCEEDS MAX ALLOWED, EQUALS’,15)

♦,I3) 
’,13) 
’,E12.5) 
’,E12.5) 
’,13)

W
cn



c 
c 
c

1

2 
C

C 
3 
4

SUBROUTINE COORD
COMMON /BLK2Z NPCIN,NELEM
COMMON NOD(40Q,3),Z(200,2),F(400),U(400),SK(30,400),IT(4OO)

INPUT OF NODAL NUMBERS AND NODAL COORDINATES

DC 1 I=1,NELEM
READ (5,3) K,(NOD(K,J),J=l,3),IT(K)
CONTINUE
DO 2 I=i,NPOIN
READ (5,4) K,Z(K,i),Z(K,2)
CONTINUE

RETURN

FORMAT (513)
FORMAT (13,3X,2(2X,Ei4*7))
END

C 
C 
C 
c

SUBROUTINE PRINCE (SX,SY,SXY,PI,SI,S2,THETA)

TO FINO PRINCIPAL STRESSES AND PRINCIPLE ANGLE 
PRINCIPAL ANGLE IS THE ANGLE BETWEEN SI AND Y-AXIS

1

Q1=(SX+SY)/2.
Q2=(SX-SY)/2.
Q3=SXY
Q4=SQRT(Q2**2+C3**2)
Si =Q1 + Q4
S2=Q1-Q4
IF (ABS(SXY).GT.1.0E-10) GO TO 1
THET 6 = 90.
RETURN
THETA=ATAN((Si-SY)ZSXY)
THET A=THETA*180./PI
RETURN
END



C 
c 
c

SUBROUTINE CENT (0ENS,RPM,NTHICK,T,NELEN)
DIMENSION NODE43), X(3), Y(3), B(3), C(3), T(l) 
COMMON NOD(400,3),Z<200,2),F(400),U<400),SK(30,400) 
REAL IX,IY,IXY

SUPERPOSITION OF CENTRIFUGAL FORCES

ITC400)

1
2

3

4
5

REWIND 3
PI=2.*ASIN<1.)
0MEGA=2.*PI*RPM/60.
GRAVITY=32.2*12.
FACT=DENS*CMEGA**2/GRAVITY
DC 5 I=1,NELEM
DO 1 K=l,NTHICK
IF (IT(D,EQ.(K-1» GO TO 2
CONTINUE
THIC K = T <K 3
FACTCR=FACT*THICK
READ (3) CRX,ORY,DELTA,(NODE<J),J=1,3),(X(J),Y(J),J
DO 3 K=l,3
X(K) = X(K)-ORX 
Y (K)=Y(K)-CRY 
CONTINUE
IX=(X(1)**2+X(2)**2+X(3)*»2)/12.
IY=(Y(1)**2+Y(2)**2+Y(3)**2)/12.
IXY=(X(i)*Y(1)+X<2)*Y(2)+X<3)*Y<3))/12.
B(1)=Y(2)-Y<3)
B(2)=Y(3)-Y(1)
B(3) =Y (1) -Y<2)
C(1)=X(3)-X(2)
C<2)=X(1)-X<3)
C(3)=X(2)-X(1)
FXA=-FACTOR*ORX*CELTA/3.
FYA=-FACTCR»ORY*0ELTA/3.
DO 4 J = l,3
FXB=-FACT0R/2.*(B(J)*IX+C(J)*IXY)
FYE=-FACTCR/2.»(E(J)*IXY+C(J)*IY)
FX=FXA+FXB
FY=FYA+FYB
JJ=2*NODE <J)-1
F(JJ)=F(JJ)-FX
F (JJ + i)=F(JJ+1)-FY
CONTINUE
CONTINUE
RETURN 
ENO

1,3)

E.8
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SUBROUTINE BHAT (XI,Yi,B,DELTA) 
DIMENSION Xi(l), ¥1(1), A(3,2), 8(3,1)

TO FIND STRAIN-DISPLACEMENT MATRIX (E)

1

2

3

4

5
6

K=0
DO 6 ISU8=1,3
IF (ISUB-2) 1,2,3
11=2
12=3
GO TO 4
11 = 3
12 = 1
GO TO 4
11=1
12=2
CONTINUE
A(i,l)=(Yl(Il)-Yl(I2))/2./DELTA
A(l,2)=0.0
A(2,l)=0.0
A (2, 2) = (XKI2)-Xl(Il))/2,/0ELTA
A(3,1)=A(2,2)
A(3,2)=A(1,1)
DC 5 J=l,2
K = K+1
DO 5 1=1,3
B(I,K)=A(I,J)
CONTINUE
RETURN
END
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SUBROUTINE FEM (XI,Yl.LL,IBAN,THICK)
DIMENSION Xl(3), Yl(3)
DIMENSION CK(6,6), B(3,6)
COMMON ZBLK3/ D (3,3) •DELTA,IAREA
COMMON ZBLK4Z DE (3,6),NODE<3)
COMMON NOD(400,3),Z(200,2),F(400),U(400),SK<30,400),IT(400)

1) TO FIND ELEMENT STIFFNESS MATRIX
2) ASSEMBLY OF OVERALL STIFFNESS MATRIX

AREA OF TRIANGULAR ELEMENT

T=THICK
AA=(X1(2)*Y1(3)-X1(3)»Y1(2))Z2. 
8E = (X1(1) »Y1(3)-Xl(3)*Yl(l))Z2. 
CC=(X1(1)»YK2)-X1(2)»YK1))Z2. 
DELTA=AA-BB+CC
WRITE (6,10) LL.CELTA
IF (DELTA.LE.0.0) IAREA=IAREA+l
ORX= (Xl(l)+Xl(2) + Xl(3))/3.
ORY= (Y1(1)+Y1(2)+Y1(3))Z3.
WRITE (3) ORX,ORY,DELTA,(NODE<I),I=i,3),(Xl(I),Yl(I),I=l,3)

FINO MATRIX B

CALL BMAT (X1,Y1,B,DELTA)

FORM PRODUCT (D)’(B) = (DB)

DC 1
DC 1

IA=1,3
_ JA=1,6

De (I A,UA3 =0. 0
DC 1 KA=1,3
DE (IA,JA)=08(IA,JA) + D(IA,KA)*B(KA,JA) 
CONTINUE
WRITE (1) LL, (<OE(I,J),3=l,6),1=1,3),(NODECI),1=1,3)

FORM ELEMENT STIFFNESS MATRIX

DO 2 IA=i,6 
DC 2 JA=1,6 
CK(IA,JA)=0.0 
DC 2 KA=1,3
CK (I A, J A) =CK(IA,JA)+B(KA,IA)*DB(KA,JA) *T»DELTA 
CONTINUE

ASSEMBLY OF OVERALL STIFFNESS MATRIX (SK)
ONLY SUPER-OIAGCNALS OF BANDED STIFFNESS MATRIX ARE STORED

DC 8 1=1,3

E.10
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4

5

6
7
8

9

C 
10 
11

II=N OOE <I)
IF (II.EQ.0) GO TO 8
DC 7 J = l,3 
JJ=NODE(J) 
IF (JJ.EQ.O) GO 10 7 
IF (JJ.LT.II) GC TO 7 
IK=2*II-1 
IC = 2 *1-1 
DC 6 IA=1,2 
JK=2*JJ-1 
JC=2*J-1 
DC 5 JA=1,2 
IF (I.NE.J) GO TO 3 
IF (JA.LT.IA) GC TO 4 
JM=JK-IK+i 
IF (JM.GT.IBAN) GO TO 9 
SK(JH,IK)=SK(JM,IK)+CK(IC,JO 
JK=JK+1 
JC=JC+1 
CONTINUE 
IK=IK+1 
IC=IC+1 
CONTINUE 
CONTINUE 
CONTINUE 
RETURN 
WRITE (6,11) LL 
STOP

FORMAT (5X,I5,5X,E14.7)
FORMAT (1H1,1X,*JOB ABORTED. BANDWIDTH ERROR FOR ELEMENT NO,*,15) 
END

E.ll
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SUBROUTINE 8MATS 
DIMENSION BAND(l)

(NP,NR,BAND)

BAND MATRIX DECOMPOSITION FOR SYMMETRIC MATRICES
ONLY THE BAND ELEMENTS OF THE UPPER TRIANGULAR HALF OF THE 
MATRIX ARE STORED IN ARRAY BAND.
THE ELEMENTS ARE STORED ROW BY ROW SUCH THAT THE DIAGONAL 
ELEMENTS FORM A COLUMN
THE BAND MATRIX A IS DECOMPOSED INTO LU (LOWER AND
UPPER TRIANGULAR FORMS)
ONLY THE ELEMENTS OF THE DECOMPOSED FACTOR U ARE STORED
IN ARRAY BAND
SUBROUTINE SOLBS USES THE DECOMPOSED FACTOR TO SOLVE FOR X, 
GIVEN ANY COLUMN VECTOR B.

VARIABLE DICTIONARY FOR ARGUMENT LIST
NF = NO. OF SUPERDIAGONALS IN BAND MATRIX
NR = NO. OF ROWS IN BAND MATRIX
BAND (I) = ARRAY CONTAINING THE BAND ELEMENTS OF THE UPPER
TRIANGULAR HALF CF THE MATRIX

NC=NP+i
10 = 1 
NEL=NC*NR 
CONTINUE 
IF (BAND(IO)) 3,2,3 
WRITE (6,8) ID 
GO TO 7 
CONTINUE
DC 5 1=1,NP
J=ID+I*NC-1
IF (J.GE.NEL) GO TO 6 
K=ID+I-i 
NT=NP-I+1 
DO 4 11=1,NT
J=J+1
K = K+1
BAND (J)=BANO <J)-EAND(ID+I)*BAND(K)/BAND(ID) 
CONTINUE 
CONTINUE 
CONTINUE 
IC=IO+NC 
IF (ID.LT.NED GO TO 1 
RETURN

FORMAT (21H DIAGONAL ELEMENT NC.,I4,21H IS ZERO. RUN ABORTED) 
END

E.12
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SUBROUTINE SOLBS (NP,NR,BAND,B,X) 
DIMENSION BAND(l), 8(1), X<1) 
DOUBLE PRECISION S,BD,DP

BAND MATRIX SOLUTION FOR SYMMETRIC MATRICES.
SOLVING THE DECOMPOSED BAND MATRIX, GIVEN A COLUMN VECTOR B 
THE DECOMPOSED FACTOR IS OBTAINED FROM SUBROUTINE BMATS 
AND STORED IN ARRAY BAND
THAT IS, SOLVE (LU)X = B FOR X, FOR A GIVEN B.

VARIABLE DICTIONARY FOR ARGUMENT LIST
NF = NO. OF SUPERDIAGONALS IN BAND MATRIX
NR = NO. OF ROWS IN BAND MATRIX
BAND(I) = ARRAY CONTAINING THE DECOMPOSED FACTOR.
BCD = COLUMN VECTOR IN MATRIX EQUATION (BAND) X = B
X(I) = SOLUTION VECTOR FOR ABOVE MENTIONED MATRIX EQUATION.

NC=NP+1 
NEL=NC*NR

SOLVING FOR 
BAND MATRIX 
THEREFORE 
CALL

NOTE-

X IN
A IS
(L *

AX = B
DECOMPOSED INTO LU
U) X = B

UX = Z, THEN LZ = B

DUE TO THE ANALYTICAL PROCEDURE, IT IS NOT NECESSARY TO MAINTAIN 
SEPARATE STORAGE LOCATIONS FOR ARRAYS X ANO Z. FOR EACH EQUATION
IN WHICH X HAS BEEN SUBSTITUTED FOR Z. A COMMENT CARD PRECEDES 
THE EQUATION AND CONTAINS THE ACTUAL ANALYTICAL EQUATION.

SOLVING LOWER TRIANGULAR FORM LZ = B FOR GIVEN B.

Z(l) = B(l)
X(1)=B(1)
IC=NC+1
DC 3 K=2,NR
S=0.ODO
DO 1 1=1,NP
IF ((K-I).LE.0) GO TO 2
L=ID-I*(NC-1)
BD=BANO(L)/BANO (L-I) 
DP = Z(K-I)
DF=X(K-I) 
S=S-BD*OP 
X(K)=S+B(K)
CONTINUE 
IC=IO+NC 
Z(K) = S + B(K) 
CONTINUE



c 
c 
c

SOLVING UPPER TRIANGULAR FORM UX = Z FOR THE ABOVE Z.

X(NR) = Z(NR) / EAND(NEL - 
X<NR)=XtNR)/BAND(NEL-NP 
KK=NR-

NP)

4

C

KR = KK
CONTINUE
ID=KR*NC-NP
S = Z(KR)
S=X(KR)

5
6

00 5 1=1,NF
IF ((KR+I).GT.NR) GO TO 6 
BO=BAND<ID+I) 
OP=X(KR+I) 
S=S-BD»DP 
CONTINUE 
BD=BAND<IO) 
X(KR)=S/BD
KR=KR-1
IF (KR.GE.l) GO TO 4
RETURN
ENO

hl
’s
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SUBROUTINE STRESS (IWATE,NFORCE,NCOLN,NPOIN,NELEM,NPUNCH)
DIMENSION S(300,3)
DIMENSION NST(IO)
COMMON /8LK4/ DB (3,6),NODE<3)
COMMON NOD (400,3) ,Z(2M,2> ,F (400) ,U (400) , SK( 30, AGO) , IT (40 0)
EQUIVALENCE <S(1),SK(1))

CALCULATION OF STRESSES

ELEMENT STRESSES S <L , MJ
L= ELEMENT NUMBER
M=l,2,3 FOR SX,SY,SXY RESP

DO 1 1=1,NELEM
DO 1 J=l,3
S(I,J)=0.0
PI=2.*ASIN(1.0)
REWIND 1
DC 5 L = l,NELEM
READ (1) LL,(<OB(I,J),J=1,6),1=1,3),(NODE(I),1=1,3)
K = 0

1 = 1,3DC 3 1=1,3
KK = 2*NODE(I)-1
DC 3 J=l,2
K = K+1
IF (NODE(I).EQ.O) GO TO 2
F(K) =U(KK)
KK=KK+1
GC TO 3
F(K) =0.
CONTINUE
DC 4 1=1,3
DO 4 J=l,6
S(L,I)=S(L,I)+OB(I,J)*F(J)
CONTINUE
WRITE (6,19)
DC 6 I=l?NELEM
CALL PRINCE (S(I,1),S(I,2),S(I,3),PI,S1,S2,THETA)
WRITE (6,20) I, (SCI, J) , J=l,3) ,SI,$2,THETA
IF (NPUNCH.GT.0) WRITE (7,24) I,(S(I,J),J=l,3),SI,S2,THETA 
CONTINUE

AVERAGE STRESSES AT NODAL POINTS

REWIND 3
WRITE (6,18)
WRITE (6,21)
WRITE (6,22)
DC 15 1=1,NPOIN
K = 0
DC 9 L=l,NELEM

W

UI
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PROGRAM TST(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE1,TAPE2,TA 
13,PUNCH.TAPE7=PUNCH)

DIMENSION XK6), ¥1(6). NODE(6), NF(40), NB(40,2), BV(40,2), T(5)
DIMENSION A(46), SK16100)
COMMON /BLK1/ NPCIN,NELEM
COMMON /BLK2/ D(3,3),DELTA,THICK
COMMON NOD(300,6),Z(175,2),F(350),U(350),SK(46,350),IT (300)
EQUIVALENCE (ST (1),SK(1))
EQUIVALENCE (A(1),U(D)

FINITE ELEMENT PROGRAM FOR PLANE STRESS OR PLANE
STRAIN PROBLEMS.
IDEALIZATION BY SIX NODAL (TRIM6) ELEMENTS

LIMITING PARAMETERS FOR THE DIMENSIONS GIVEN 
IBAN=46
NPCIN=175
NELEM=300

DATA

READ 
READ 
READ

INPUT

(5,40)
(5,39)
(5,39)

NP=NP0IN*2
CALL COORD

NPOIN,NELEM,NON,NBOUN,NCENT,NTHICK,NPUNCH 
E.P,DENS,RPM 
(T(I),I=1,NTHICK)

(NPOIN,NELEM)

FIND BANDWIDTH

IBAN=O
DO 2 1=1, NELEM
DO 1 J=l,6
N=N0D(I,J)
DC 1 K=l,6 
M=NOD(I,K) 
IDIF = IABS(M-N)
IF (IDIF.GT.IBAN) IBAN=IDIF 
CONTINUE
CONTINUE
IBAN = 2»(IBAN-H)

PRINT INPUT DATA

WRITE (6,52)
WRITE (6,42)

DO 3 I=1,NBOUN
READ (5,38) NF(I),NB(I,1),NB(I,2),BV(I,1),BV(I,2) 
CONTINUE
WRITE (6,46) NPOIN

E.18
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C 
C 
c

CONTINUE

DEFINE ELASTICITY MATRIX 0 FOR PLANE STRESS- ISOTROPIC MATERIAL

c 
c 
c 
c

E1=E/(1.-P**2)
D(1,1)=E1
D(1,2)=E1*P 
0(1,35=0.0 
D(2,1)=D(1,2) 
0 <2, 23 =D<1,11 
0(2,33-0.0 
D <3, 1) =0. 0 
0(3,23=0.0 
0(3, 3)=El»(l.-P)/2. 
WRITE (6,50)
WRITE (6,51) ((0(1,J),4=1,3),1=1,3)
WRITE (6,52)

CALCULATION OF ELEMENT STIFFNESS MATRICES ANO ASSEMBLY OF 
OVERALL STIFFNESS MATRIX

16

17

18
19

20

21 
C
C 
C

AREA=0.0
REWIND 1
REWIND 2
WRITE (6,54)
DO 21 L=l,NELEN
DO 16 1=1,3
K=NOO(L,I)
XI (I)=Z(K,1)
Y1 (I)=Z(K,2)
CONTINUE
DO 17 1=1,6
NODE (I)=NOO(L,I)
CONTINUE
DO 18 K=1,NTHICK
IF (IT(L) .EQ.(K-D) GO TO 19
CONTINUE
THICKET(K>
CALL FEM (XI,Yl,NODE,L,IBAN)
DO 20 1=4.6
K=NOD(L,I)
Z(K,1)=X1 (I)
Z(K,2)=Y1(I)
CONTINUE
AREA=AREA+OELTA
CONTINUE

CALCULATION OF CENTRIFUGAL FORCES

IF (NCENT.EQ.O) GO TO 22
CALL CENT (NODE,XI,Yl,DENS,RPM,NTHICK,T,NELEM)

E.20
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23

C 
C 
C

CONTINUE
WRITE (6,61)
DO 23 I=i,NPOIN
WRITE (6,62) I,Z(I,1) ,Z(I,2)
CONTINUE
WRITE (1) ((SK(K,I),1=1,NP),K=1,IBAN)

INTRODUCE PRESCRIBED DISPLACEMENTS

24

25 
26 
C
C 
c 
27

IF (NBOUN.EQ.O) GO TO 27
DO 26 I=1,NBOUN
M=NF(I)-l
DO 25 J=l,2
IF <NB(I,J)) 25,24,25
NPR=2*M+J
SK(1,NPR) =SK(l,NPR)*1.0E+15
F(NPR)=SK(1,NPR)»BV(I,J)
CONTINUE
CONTINUE

SOLUTION OF DISPLACEMENTS

28

29

30
31

C

CONTINUE
DO 28 1=1,IBAN 
A (I) =SK(I,2)
CONTINUE
K=IB AN
DO 31 J=2,NP
DC 29 1=1,IBAN
K=K+1
ST CK) =A <1)
CONTINUE
DO 30 1=1,IBAN 
A(I) = SK(I,J+1) 
CONTINUE
CONTINUE
IA=IBAN-1
CALL BMATS (IA,NP,ST)
CALL SOLBS (IA , N P , ST , F , U )

WRITE (6,52) 
DO 3 2 1=1,NP,2 
11=1+1
J=(I + l)/2

IV

IF (NPUNCH.GT.O) WRITE (7,71) J,U(D,U(I1)

32 
C
C 
C

ir i nruiNun ,u i • v j rkhc *',» 
WRITE (6,53) J,U(I),J,U(in 
CONTINUE

REACTIVE FORCES

WRITE (6,55)



33

34
35
36

37
C 
C 
c

C 
c

C 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50

51
52
53
54
55

56
57

REWIND 1
READ (1) (<SK(K,I),I=1,NP),K=1,IBAN)
DO 37 N=1,NBOUN
M=NF (NW
DO 36 JJ=1,2 
I=2*M+JJ

K=J-I+1
IF (K.GT.IBAN)
STIFF=SK(K,I) 
GO TO 34

TO 33

GO TO 35

K=I-J+1
IF (K.GT.IBAN) GO TO 35
STIFF=SK(K,J) 
FID =F(I) +STIFF*U(J)
CONTINUE
CONTINUE
WRITE (6,56) NF(N),F<I-1),F(I)
CONTINUE

CALCULATION OF ELEMENT AND NODAL STRESSES 

CALL STRESS <NPOIN,NP,NELEN,XI,YI,NPUNCH)

STOP

FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 

1=*,//)
FORMAT 
FORMAT 
FORMAT 
FORMAT

(3I3,2E14.7)
(5E14.7) 
(1513)
<I3,2E14.7)
(Z40X,’INPUT DATA’,Z40X,14(*-’),ZZ)
(20X,♦YOUNG S MODULUS
(20X,*P0ISS0N S RATIO(20X,*P0ISS0N S 
(20X,*NUMBER OF 
(20X,*NUMBER OF 
(20X,♦NUMBER OF 
(20X,’NUMBER OF

PRESCRIBED DISPLACEMENTS 
NODAL POINTS
ELEMENTS

=*,E12.5)
=*,E12.5)
*,I3)
♦,I3)

=♦,13) 
=♦,13)(20X,*NUMBER OF PRESCRIBED FORCES ,_.

(20X,’THICKNESS T(’,I1,*) =’,E12.5)
<1Hl,/,30X,*ELASTICITY MATRIX*,Z30X,17(’-’),ZZZ,25X,*D<1,J)

(25X,3(E14.7,2X) )

E.22

<10X,’U(’,I3,*)=*,E14.7,5X,*V(*,I3,*)=*,E14.7)<5X,*ELEMENT*,5X,*AREA*/)
(1H1,1OX,’REACTIVE FORCES-*/10X,16(’-♦)//,10X,’NODE’,12X,’XFORMAT uni,iuA,’Kt«ui 

l-F0RCE*,16X,*Y-F0RCE’) . . . ,
FORMAT (1OX,I3,7X,F15.5,8X.F15.5)
FORMAT (Z/20X,’PRESCRIBED FORCES*,Z20X,17(♦-♦),/20X,’NODE’,12X,*X-
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SUBROUTINE FEM <XI,Yi.NODE,LL,IBAN)
DIMENSION Xi(l), Yl(l), NODE(l)
DIMENSION P(78) , NK6), CK(2,2)
COMMON ZBLK2/ 0 (3,3) ,DELTA,T
COMMON ZBLK3Z C(6,6),PC(12,2) ,M
COMMON NOD(300,6),Z(175,2),F(350),U(350),SK(46,350),IT(300)

(1) CALCULATION CF ELEMENT STIFFNESS MATRICES FOR TRIM 6 
ELEMENTS
(2) ASSEMBLY OF OVERALL STIFFNESS MATRIX

TRANSFER ORIGIN TO CENTROID OF TRIANGLE

ORX=(Xi(l)+Xl(2)+Xl(3))/3.
ORY= (Y1(1)+Y1(2)+Y1(3))Z3.
DO 1 1=1,3
XI (I)=X1(I)-ORX
Yi(I)=Yi(I)-ORY
CONTINUE
XI (4) = (XI(1)+X1(3))/2.
X1(5) = (X1(1)+X1(2))Z2.
Xl(6)=(Xl(2)+Xl(3))/2.
YK4) = (Yl(i)+YK3)}/2.
Y1(5) = (Y1(1)+Y1(2))Z2.
Yl(6) = (Yl(2)+Yl(3))/2.
DELTA=1.5*(X1(2)*Y1(3)-X1(3)*Y1(2))
WRITE (6,16) LL,DELTA

DEFINE COEFFICIENT MATRIX C

DO 2 1 = 1,6 
C(I,1)=1. 
C(I,2)=X1 (I) 
C(I, 3)=Y1(I) 
C(I,4)=X1(I)**2 
C(I,5)=X1(I)*YKI) 
C(I,6)=Y1(I)**2 
CONTINUE
CALL INVMAT (C,6,6,l.OE-12,IERR,N1)
IF (IERR.NE.0) GO TO 14

DEFINE LOWER TRIANGLE OF SYMMETRIC MATRIX P 
P=INTEGRAL OF (Q)(TRANSPOSE)♦(D)♦(Q) OVER VOLUME OF ELEMENT

DC 3 1=1,78
P(I) =0.0
CONTINUE
X2=(X1(1)**2 + XK2)**2+Xl (3) **2)/12
Y2=(Y1(1)**2+Y1C2)**2+Y1(3)**2)/12

E.25



c

4 
C 
c 
c 
c

XY = (XK1)*Y1(1)+X1(2)*Y1(2)+X1(3)*YK3))/12.
WRITE (2) ORX,ORY,((C(I.J),J=l,6) , 1*1,6),<X1 (I),Yl(I),1=1,6),DELTA

l»X2tY2,XY,(NOuE(J/,Jsl,b)
P(3)=D(1,1)
P(5)=0(3,1)
P(6) =0(3,3)
P(10) = 4.*0 (1,1)*X2
P(14)=2.*D(l,l)*XY*2.*0(3,l)*X2
P(15)=0(l,l)*Y2 + 2.*D(l,3)*XY+0(3,3)»X2
P(19)=4.*0 (3,1)*XY
P(20)=2»*0(3,1)*Y2+2•*0(3,3)*XY
P(21)=4.*0(3,3)*Y2
P(30 )=0(3,l)
P(31)=D<3,3)
P(36)=D(3,3)
P(38)=0(2,l)
P(39)=0(2,3)
P(44)=0(2,3)
P(45)=0(2,2)
P(49)=4.*D(3,1)*X2
P(50)=2.*0(3,1)»XY+2.*0(3,3)*X2
P(51)=4.*D(3,3)*XY
P(55)=4.*0(3,3)*X2
P(59)=2.*0(2,1)*X2+2.*0(3,l)*XY
P(60 )=0(2,3)4X2+(0(3,3)4-0(2,l))*XY*0(3,l)*Y2
P(61)=2.*0(2,3)*XY+2.*0(3,3)*Y2
P(65)=2.*D(2,3)*X2+2.*D(3,3)*XY
P(66)=D(2,2)*X2+2.*D(2,3)*XY+0(3,3)*Y2
P(70)=4.*D(2,l)*XY
P(71)=2.*0(2,i)*Y2+2.*0(2,3)*XY
P(72)=4.*O(2,3)*Y2
P(76)=4.*0(2,3)*XY
P(77)=2.*0(2,2)*XY*2.*D(2,3)*Y2
P(78)=4.*0(2,2)*Y2

DO 4 1=1,78
P(I) =P(I) *OELTA*T
CONTINUE

FORM PRODUCT (P)*(CJ) WHERE CJ IS (12X 2) SUBMATRIX 
OF COMPLETE COEFFICIENT MATRIX (CT) M

C

DO 11 J=l,6 
JJ=NODE(J) 
IF (JJ.EQ.O) GO TO 11 
M=J 
CALL PCMAT (P)
DO 10 1=1,6 
II=NODE(I) 
IF (II.EQ.O) GO TO 10

MO>
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c 
c 
c

c 
c

SUBROUTINE CENT (NODE,Xi,YltDENS,RPM,NTHICK,T,NELEM)
DIMENSION NODECD, XKD, Yi(D, A(12,2), CTA(12,2), FFC12), TCD
COMMON /BLK3/ C(6,6).PC(12,2),M
COMMON NOD(300,6),Z(175,2),F(350),U(350J,SKC46,350),IT(30 0)

SUPERPOSITION OF CENTRIFUGAL FORCES

FNl(X)=SM*X**5/5.+B*X**4/4.
FN2 (X)=SM**2*X»*5/10 .+SM*B*X**4/4.i-B**2*X**3/6.
FN3(X)=SM**3*X»»5/i5.+SM**2*B*X»*4/4.+SM*B**2*X**3/3.+B**3*X*«2/6.
FN4(X)=SM**4*X**5/20.+SM**3*B*X**4/4.-»-SM**2*B**2*X**3/2.-»-B**4*X/4. 

l+SM*8**3*X**2/2.

REWIND 2
ZERO=1.0E-10
PI=2.*ASIN(1.)
0MEGA=2.*PI*RPM/60.
GRAVITY=32.2*12.
FACT=DENS*0MEGA**2/GRAVITY
DO 1 1=1,12
DO 1 J=l,2
A(I,J)=0.
DO 9 L=l,NELEN
READ (2) ORX.ORY, (<C(I2J),J=1,6),1=1,6),(XI(I),Yl(I),1=1,6),DELTA 

1X2,Y2,XY, (NODE(J) ,J=1,6)
X3=0 .
X2Y=0.
XY2= 0 .
Y3=0.
DC 2 1=1,3

2

3 
4

IF (I.EQ.3) J=1
DY=Y1(J)-Y1(I)
DX=X1(J)-X1(I)
IF (ABS(DX).LE.ZERO) GO TO 2
SM=DY/OX
8=Y1(I)-SM»X1(I)
X3=X3+FNKXl(ID-FNl(Xi(J))
X2Y=X2Y+FN2(Xi(I))-FN2(Xl(J)) 
XY2=XY2+FN3(X1(I))-FN3(X1(J))
Y3=Y3+FN4 (XKDJ-FN4 (XI (JD
CONTINUE
DO 3 K=1?NTHICK
IF ( IT (L) . EQ» (K-D ) GO TO 4
CONTINUE
THICK=T(K)
FACTOR=FACT*THICK
A(1,D=ORX
A(4, D=0RX*X2
A(5,D=0RX*XY
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SUBROUTINE STRESS (NPOIN,NP,NELEN,XI,Y1,NPUNCH)
DIMENSION SIG(300,6,3), UU(12)
DIMENSION XKl), Yl(l), NST(IO), NNO(iO), NODE(6)
COMMON /BLK3/ C (6,6) , PC (12,2) ,M
COMMON NOD(300,6),Z(175,2),F(350),U(350),SK(46,350),IT(300)
EQUIVALENCE (SIG(1),SK(i))

CENTROIDAL STRESSES

PI=2.*ASIN(1.)
REWIND 2
WRITE (6,17)
WRITE (6,11)
DO 2 L=1,NELEM
READ (2) ORX.ORY.(<C(I,J),J=l,6),1=1,6),(XI(I),YI(I),1=1,6),DELTA 

1X2,Y2,XY,(NODE(J),J=1,6)
J J=0
DO 1 1=1,6
KK=2*NODE(I)-1
DO 1 J=l,2
JJ=JJ+1
UU(JJ)=U(KK)
KK=KK+1
CONTINUE
CALL SIGMA (0.0,0.0,UU,SX,SY,SXY)
CALL PRINCE (SX,SY,SXY,PI,S1,S2,THETA)
WRITE (6,12) L,SX,SY,SXY,S1,S2,THETA
CONTINUE

3

NODAL STRESSES

WRITE (6,18)
WRITE (6,20)
REWIND 2
DO 4 L=l,NELEN
READ (2) ORX.ORY,((C(I, J),J=1,6),1=1,6),(XI(I),YI(I),1=1,6),DEL TA 

1X2,Y2,XY,(NOOE(J),J=1,6)
JJ=0
DO 3 1=1,6
KK=2*NODE (I)-i
DO 3 J=l,2
JJ=JJ+1
UU (JJ)=U(KK)
KK=KK+1
CONTINUE
DO 4 LI=1,6
II=NOD(L,LI)
CALL SIGMA (XI(LI),Y1(LI),UU,SX,SY,SXY)
WRITE (6,19) L,II,SX,SY,SXY
SIG(L,LI,1)=SX
SIG(L,LI,2)=SY
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SG=Q1-Q7-C8
SRQ=Q3*COS2Q-Q2’SIN2Q

9 
C

WRITE (2) I,SR,SQ,SRQ 
CONTINUE

WRITE (6,16)
REWIND 2

10 
C

00 10 1=1,NPOIN
READ (2) J,SR,SQ,SRQ
IF (NPUNCH.GT.0) WRITE (7,13) J,SR,SQ,SRQ
WRITE (6,12) J,SR,SQ,SRQ
CONTINUE

C 
11

RETURN

12
13
14
15

16
17
18
19
20

FORMAT (21X,*ELEMENT*,4X,*SX*,9X,*SY*,8X,*SXY*,9X,*S1*,9X,*S2’,6X, 
1*THETA*/)

FORMAT (2 3X,I3,5(2X,F9.2) ,2X,F7.3)
FORMAT (13,5(2X,F9.2).2X,r7.3)
FORMAT (lHl,4flX,’AVERAGE STRESSES AT NODAL POINTS’MIX,32(*-*)/)
FORMAT (21X,* NODE *,4X,*SX*,9X,*SY*,8X,*SXY*,9X,*S1*,9X,*S2*,6X, 

1’THETA*/)
FORMAT (1H1,2OX,* NODE *.4X,*SR*,9X,’ST*,8X.*SRT*)
FORMAT <1H1, MIX,’CENTROIDAL STRESSES*,MIX,19(’-*)/>
FORMAT (1H1,25X,’NODAL STRESSES*,/26X,14(*-*)/)
FORMAT (22X,I3,4X,I3,3(3X,Ei2.5)J
FORMAT (20X,’ELEMENT’,2X,’NODE*,9X,’SX*,14X,’SY*,13X,*SXY*)
ENO
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c 
c 
c

SUBROUTINE QMAT (X,Y,Q) 
DIMENSION 0(3,12)

DEFINE AUXILIARY MATRIX Q TO STRESS MATRIX

1

DO 1 1=1,3 
DO 1 J=l,12 
0(1, J)=0.0 
0(1, 2)=1.0 
Q <1,Q)=2.*X 
Q<1,5)=Y 
Q <2,9> =1.0 
0(2, 11)=X 
Q<2, 12)=2.*Y 
Q(3,3)=1.0 
0(3,5)=X 
0(3, 6)=2.*Y 
0(3, 8)=1.0 
Q(3,10)=2.»X 
Q(3,11)=Y 
RETURN 
ENO

C 
C 
C

1

SUBROUTINE QCMAT (0,00
DIMENSION 0(3,12), QC(3,12)
COMMON /BLK3/ C (6,6),PC(12,2),M

DEFINE AUXILIARY MATRIX QC TO STRESS MATRIX

DO 1 1=1,3
JJ=O
DC 1 M=l,6
00 1 J=l,2
JJ=JJ+1
QC(I,JJ) = 0.0
00 1 K=l,12
QC(I,JJ)=OC(I,JJ)+Q(I,K)*CR(K,J)
CONTINUE
RETURN
ENO
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C 
C 
c 
c 
c

SUBROUTINE SIGMA (X,Y,UU,SX,SY,SXY)
DIMENSION UU(1)
DIMENSION 0(3,12), QC(3,12), QCU(3)
COMMON /BLK2/ D(3,3),DELTA,T
COMMON /BLK3/ C (6,6) ,PC (12, 2) ,M

THIS SUBROUTINE CALCULATES THE STRESS AT A POINT WITHIN
A TRIM6 ELEMENT, GIVEN THE COORDINATES OF THE POINT AND THE 
NODAL DISPLACEMENTS OF THE ELEMENT NODES

1

2

CALL QMAT (X2Y,Q)
CALL QCMAT (Q,QC)
DO 1 1=1,3
QCU(I)=0.0
JJ=O
DC 1 K=l,6
DO 1 J=l,2
JJ=JJ+i
QCU(I)=QCU(I)+QC(I,JJ)*UU(JJ) 
CONTINUE
SX=0.
SY = O.
SXY=O.
DO 2 J=l,3
SX=SX+D(1,U) *QCU(J)
SY=SY+D(2, J) *QCU(J)
SXY=SXY+O(3,J)*OCU(J)
CONTINUE
RETURN
ENO

c 
c 
c 
c

SUBROUTINE PRINCE (SX,SY,SXY,PI,S1,S2,THETA)

TO FINO PRINCIPAL STRESSES ANO PRINCIPAL ANGLE 
PRINCIPAL ANGLE IS THE ANGLE BETWEEN SI ANO Y-AXIS

1

Ql=(SX+SY)/2.
Q2=(SX-SY)/2.
Q3=SXY
QU=SQRT(Q2**2+Q3**2)
S1=Q1+Q^
S2=Q1-Q4
IF (ABS(SXY).GT.1.0E-05) GO TO 1
THETA=90.
RETURN
THETA=ATAN((S1-SY)/SXY)
THET A=THETA»180./PI
RETURN
ENO
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PROGRAM TST(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT,TAPE1,TAPES,TA 
13,TAPE4,PUNCH,TAPE7=PUNCH)

DIMENSION X(500,2), N00(600,3)
DIMENSION XE(3,2), NF(60), NB(60,2), BV(60,2), NSTARK15), NEN0(15 

1), NFIRSK15), NLASK15), D(3,3)
COMMON C(6,6),DBA(3,6),DB(3,6),A(6,6),B(3,6)
COMMON ST(5050),U(700,2),BM(30,30)

FINITE ELEMENT PROGRAM USING THE METHOD OF PARTITIONS FOR 
PLANE STRESS OR PLANE STRAIN PROBLEMS 
IDEALIZATION BY THREE NODAL (TRIM3) TRIANGULAR ELEMENTS

LIMITING PARAMETERS FOR GIVEN DIMENSIONS
NP0IN= 500 (CAN BE INCREASED)
NELEM= 600 (CAN BE INCREASED)
NPART= 15 (CAN BE INCREASED)
MAXIMUM NUMBER OF NODES CONNECTING PARTITIONS = 15

1

2

READING AND PRINTING OF DATA
READ (5,44) NPART,NPOIN,NELEM,NBOUN,NCOLN,NCONC,NCENT,NPUNCH
READ (5,45) THICK,DENS,RPM,ANG
DO 1 1=1,NPART
RE AD (5,44) NSTARKI) ,NEND (I) ,NFIRST (I) ,NL AST (I)
CONTINUE
CALL COORD (NPOIN,NELEM,NOD,X)
00 2 1=1,NBOUN
READ (5,46) NF (I) ,NB (1,1) ,NB (I, 2) , BV (1,1) ,BV (I, 2) 
CONTINUE
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE

(6,45)
(6,50)
(6,51)
(6,52)
(6,53)
(6,54)
(6,55)
(6,56)
(6,63) 
(6, 65)

NPART 
NPOIN 
NELEM 
NBOUN 
NCOLN 
NCONC 
THICK

3

4
5

6

7
8

DC 3 1=1,NPART
WRITE (6,64) I, NSTART(I),NEND(I),NFIRST(I),NLAST(I) 
CONTINUE
WRITE (6,55)
DO 8 1=1,NBOUN
IF (NB(I,D) 7,4,7
IF (NB(I,2)) - - * 
--- ------ (6,58)WRITE 
GO TO 
WRITE 
GO TO 
WRITE

7,5,6

E.35

8 
(6,58)
8

NF(I),BV(I,1),BV<I,2)

NF(I),BV(I,1)

_ (6,60) 
CONTINUE

NF(I),BV(I,2)



9

10

11

12

13

14

15
C 
C
C

16 
C 
C 
c

C 
C 
c

17

c 
c 
c 
c

WRITE (6,57)
NP0IN2=NP0IN*2 
DC 9 I=1,NPOIN2 
U(I,1)=O.
CONTINUE
DC 14 J=l,NCOLN
IF (NCONC) 10,14,12
DC 11 1=1, NPOIN
READ (5.45) U(2*1-1,J),U(2*1,J) 
WRITE (6,45) U (2*1-1, J) , U(2*I, J) 
CONTINUE 
GO TO 14 
CONTINUE 
00 13 1=1,NCONC
READ (5,47) K,U(2*K-1,1),U(2»K,1) 
WRITE (6,58) K,U(2*K-i,l),U(2*K,i) 
CONTINUE
NCONC=-1
CONTINUE
WRITE (6,61)
DO 15 1=1,NPOIN
WRITE (6,62) I,X(I,1) ,X(I,2) 
CONTINUE

SUPERPOSITION OF CENTRIFUGAL FORCES

IF (NCENT.EQ.O) GO TO 16
CALL CENT (DENS,RPM,THICK,NELEN,NPOIN,NCOLN,X,NOD) 
CONTINUE

YOUNG S MODULUS AND POISSON S RATIO FOR STEEL

E=3.0E+07
P-0.3

ELASTICITY MATRIX (0) FOR PLAIN STRESS CASE- ISOTROPIC MATERIAL

DO 17 1=1,3 
00 17 J=1.3 
D(I,J)=0.0
E1=E/(1.-P*P)
D(1,1)=E1
D(1,2)=E1*P
D(2,1)=D(1,2)
D(2,2)=D(1,1)
D(3, 3)=E/2./(l.+P)

FORMATION OF OVERALL STIFFNESS MATRIX IN TRIDIAGONALIZEO 
PARTITIONS

B 
Co c\

NFREE=2



18

19

C 
C 
C

INTER=0 
REWIND 1 
REWIND 4 
WRITE (6,48) 
DC 42 II=1,NPART 
DC 18 1=1,5050 
ST(D=0. 
CONTINUE 
DO 19 1=1,30 
DC 19 J=l,30 
BMI,J)=0.O 
NSTRT=NSTART(II) 
NEN=NEND(II) 
K=NFIRST(II) 
L = NLAST(ID 
NK=2*(L-K+1) 
MINUS=K-1

SEARCH FOR SIZE OF MATRIX BN

20

23

I=NEN
MINOO=NOD(I,1)
MIN=MINOD
NCN=MINOO
IF (II.LT.NPART) GO TO 20
NCN=O
GC TO 23
KK=0
DO 22 J=l,3
IF (NOO(I,J).GT.NCN) NCN=NOD(I,J)
IF (NOD(I,J) .LE.L) GO TO 21

IF (NOO(I,J).LT.MIN) MIN=N0D(I,J) 
CONTINUE
IF (KK.EQ.O) GO TO 23
MINOD=MIN
1 = 1-1
GO TO 20
CONTINUE
NCNN=2*(MIN0D-K) 
NCN=NCN-L

E.37

NCN=2*NCN
IF (NCN.LE.O) NCN = 1 
NCK=NK-NCNN
IF (NON.GT.30) GC TO 24

24

25

IF (NCK.LE.30) GO TO 25
WRITE (6,43) NCK,NCN 
STOP
CONTINUE
DC 32 LK=NSTRT,NEN 
MM=L«-INTER



26
C 
C 
C

DO 26 1=1,3 
JJ=N0D(LK,I) 
XE(I,1)=X(JJ,1) 
XE(I,2)=X(JJ,2) 
CONTINUE

CALCULATION OF ELEMENT STIFFNESS AND STRESS MATRICES

27
28

29

30

31 
32 
C 
C 
C

CALL FEM (XE,D,ANG,THICK,MM) 
DO 32 LL=1,3 
OO 32 KK=1,3 
IF (NOD(LK,KK)-K) 32,27,27 
IF (N0D(LK,KK)-L) 28,28,32 
M=NFREE*(NOO(LK,KK)-K) 
N=NFREE*(NOO(LK,LL)-K) 
I=NFREE*(KK-1) 
J=NFREE’(LL-1) 
IF <N) 32,29,29 
DO 31 NJ=1,NFREE 
OO 31 MI=1,NFREE 
MMI=M+MI 
NNJ=N+NJ 
IMI=I+MI 
JNJ=J+NJ 
IF (NNJ.GT.NK) GO TO 30 
IF (MMI.LT.NNJ) GO TO 31 
IJ=MMI*(MMI-l)/2+NNU 
ST(IJ)=ST(W+C(IMI,UNU) 
GO TO 31 
NNJ=NNJ-NK 
MMI=MMI-NCNN
BM(MMI,NNJ)=BM(MMI,NNJ)+C(IMI,JNJ)
CONTINUE 
CONTINUE
INTRODUCTION OF PRESCRIBED DISPLACEMENTS

33 
3U

35

36

DO 38 1=1,NBOUN 
M = NF(I)-K 
MM=NF<I)-1 
IF (M) 38,33,33 
IF (NF<I)-L) 3A,3A,38 
DC 37 J=i,NFREE 
IF (NB(I,JB 37,35,37 
NMI=NFREE*M+J
IJ=NMI*(NMI-l)/2+NMI 
ST(IJ)=ST(IJ)*1.0E+15 
OO 36 JJ=1,NCOLN 
JNJ=NFREE*MM+J 
U(JNJ,JJ)=ST(IJ)*BV(I,J) 
CONTINUE

W 
Co 
oo



37
38

39

40 
41

42

CONTINUE 
CONTINUE 
INTER=NEN 
MI=NFREE*MINUS+1 
NJ=NFREE*L 
M=NJ-MI+1
IF (II-NPART) 39,40,39
NA=NFREE*<NLAST(II+l)-MINUS)
GO TO 41
NA=M+1
N=NA-M
MM=M+1
NST=M*<M+l)/2
NCK=M-NCNN

M,N.NST,NCN,NCNN,NCK, (ST(I),I=1,NST) , ((BN(I,J),Isl,NCK), 1J=1,NCN),((U(f,J),I=MI,NJ),J=l,NCOLN)
CONTINUE

c 
c 
c

REWIND 
REWIND 
REWIND 
REWIND

1 
2
3 
4

c 
c 
c

SOLUTION OF TRIOIAGONAL SYSTEM OF SUBMATRIX EQUATIONS

CALL SOLVE (NPART,NCOLN) 
REWIND 3

CALCULATION OF STRESSES

C 
c

^ALL STRESS (NPART,NFIRST,NLAST,NCOLN,NELEN,NOD,NFREE,NPOIN,NPUNCH

C 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53

STOP

co 
VO

FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT

<lHlj»SPACE FOR BM TOO SMALL , VARIABLES ARE*,215) 
(4E14.7)
(3I3,2E14.7)
(I3,2E14.7)
(INI)

54
55
56
57

</21X,’INPUT DATA*,/21X,10(*-*)//)
<10X,*T0TAL NUMBER OF PARTITIONS- NPART=*,8X,13)
(10X,*TOTAL NUMBER OF NODAL POINTS- NPOIN=*,6X,13)
(10X,*T0TAL NUMBER OF ELEMENTS- NELEH=*,10X,13)

FORMAT (10X,’TOTAL NUMBER OF NODAL POINTS WITH *,/I5X,’PRESCRIBED1DISPLACEMENTS- NBOUN=*,5X,13) ’ *
FORMAT (10X,’TOTAL NUMBER OF LOAD VECTORS- NCOLN=*,6X,13)
FORMAT (10X,*NUMBER OF POINTS WITH CONCENTRATED L0ADS=’,iX,I3)
FORMAT <10X,’PLANE THICKNESS- THICK=*,19X,E14.7)
FORMAT <//10X,’PRESCRIBED FORCES’,/10X,17(’-’),710X,’NODE’,12X,*X-



58

6A
65

1FORCE*,16X,*Y-FORCE*)
FORMAT (11X*I3,2(9X,E14.7))
FORMAT (//1OX,*PRESCRIBED DISPLACEMENTS*,/1OX, 2M*-*) , X±O X ,* NODE *, 

19X,»X-DISPLACEMENT*,9X,*Y-DISPLACEMENT*)
FORMAT (11X,I3,32X,E1U.7)
FORMAT C1H1,10X,*NOOE*,8X,*X-COORDINATE»,9X,*Y-COORDINATE*/)FORMAT (11X113,2(7X,E14.7))
FORMAT <//10X,*PARTITION 1ST ELEMENT LAST ELEMENT 1ST NODE LAS 

IT NODE*)
FORMAT (12X,I3,12X,I3,11X,I3,7X,I3,8X,I3)
FORMAT (1OX,»------------------ - ------ --------------- ----------------------- -- ---------------- ----------

1------ ♦)
END

O
l|'3
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SUBROUTINE COORD (NPOIN,NELEM.NOD,X)
DIMENSION X(500,2), NOD(600,3)

INPUT OF NODAL NUMBERS AND NODAL COORDINATES 
FOR SYSTEM OF TRIM3 ELEMENTS

DO 1 1=1,NELEM
READ (5,3) K, (N0D(K,J),J=i,3) 
CONTINUE
DC 2 J=l.NPOIN
READ (5,4) X(J,i),XU,2)
CONTINUE

RETURN

FORMAT (4(2X,I3))
FORMAT (3X,2E1A.7) 
END

SUBROUTINE ♦ ♦ ♦ ♦ ♦ PRIN
♦ * *

<D,G,N)

1

SUBROUTINE FOR
PRINCIPAL ANGLE

CALCULATION OF PRINCIPAL STRESSES OF ELEMENTS
IS THE ANGLE BETWEEN Y AXIS AND STRESS-1»*♦»»*♦»♦♦»♦»

DIMENSION D(3,6), C(6,6)
DO 1 J=1,N
C(l, J) = (D(1, J) 4-0 (2, J) )*.5<-SQRT( (D(1, J)-D(2 ,J) ) **2/4.4D (3, J>**2)
C(2, J) = (D(l, J)4-0 (2.J))*.5-SQRTUD(1,J)-D(2,J))**2/4.4D(3, J)**2)
C(3,J)=57.3iATAN((C(l,J)-D(2,J))/0(3,J))
CONTINUE
RETURN 
END



c 
c 
c

SUBROUTINE CENT (DENS,RPM.THICK,NELEN,NPOIN,NCOLN,Z,NOO) 
DIMENSION N00E(3), X(3), Y(3), B(3), C(3), Z(NP0IN,2), NOD(NELEM,3

COMMON E<6,6)jDBA(3»6),OB(3,6), A (6,6) , G (3, 6)
COMMON ST(5050),U(700,2),BM(30,30)
REAL IX,IY,IXY

SUPERPOSITION OF CENTRIFUGAL FORCES

1

2

PI=2.*ASIN(1.)
OMEGA=2.*PI*RPM/60. 
GRAVITY=32.2*12.
FACTOR=DENS*THICK*OMEGA»»2/GRAVITY 
DO 4 I=1,NELEM 
DC 1 J=l,3 
K=NOO(I,J) 
NODE <J)=K 
X(J) =Z(K,1)
Y(J)=Z(K,2) 
CONTINUE
ORX= (X(l)+X(2l+X(3))/3, 
ORY= (Y(l)+Y(2)+Y(3))/3. 
DO 2 K=l,3 
X(K) =X(K)-ORX 
Y(K)=Y(K)-ORY 
CONTINUE
DELTA=1.5*(X(2)*Y(3)-X(3)*Y(2))
IX=(X(1)**2+X(2)*»2+X(3)**2)/12. 
IY=(Y(1)**2+Y(2)**2+Y(3)**2)/12.
IXY= (X(l) *Y(i)+X (2)*Y(2)+X(3)*Y(3))/12 
B(l) =Y(2)-Y(3) 
B(2) =Y(3)-Y(1)
B(3)=Y(1)-Y(2) 
C (1) =X (3)-X(2) 
C(2) =X(1)-X(3) 
C(3)=X(2)-X(i)
FXA
FYA

FACT0R*0RX*0ELTA/3 
FACTOR*ORY*DELTA/3

3 
it

DO 3 J=l,3
FXB--FACT0R/2.*(B(J)*IX+C(J)*IX¥) 
FYB=-FACTOR/2,*(B(J)*IXY+C(J)*IY) 
FX=FXA+FXB 
FY=FYA+FYB 
JJ=2»NODE (J)-i 
DO 3 K=l,NCOLN 
U(JJ,K)=U(JJ,K)-FX 
U(JJti,K)=U(JJ+l,K)-FY 
CONTINUE 
RETURN 
END

st
r’s
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STIFFNESS MATRIX C IS FORMED

RETURN
END

SUBROUTINE STRESS (NPART,NFIRST,NLAST,NCOLN,NELEM,NOD,NFREE,NPOIN,  
INPUNCH)

DIMENSION NOD(600,3), NFIRSTC15), NLASK15) 
COMMON C(6,6),08A(3,6),DB (3,6) , A (6,6),B(3,6) 
COMMON ST(5050),U(700,2),BM(30,30) 

SUBROUTINE FOR CALCULATION OF STRESSES

DO 1 11=1,NPART 
JJ=NPART+1-II 
M=NFREE*(NFIRST(JJ)-1)+1 
N=NFREE*NLAST(JJ)
READ (3) ( (U(I,J),I=M,N),J=1,NCOLN) 
CONTINUE 
WRITE (6,9) 
WRITE (6,11)
WRITE (6,10) <(I,U<2*I-1, J),U(2*I,J),1=1,NPOIN),J=1.NCOLN)
IF (NPUNCH.GT.O) WRITE (7,7) ((I,U(2*I-1,J),U(2H,J),1=1,NPOIN),J= 

11,NCOLN)
WRITE (6,9) , 
WRITE (6,12) 
DO 4 LL=1,NELEM 
READ (1) (<(DBA(I,J),1=1,3),J=l,6),ORX,ORY) 
DO 2 J=l,NCOLN 
DO 2 1=1,3 
JJ=NOD(LL,I)
C(2*I-1,J)=U(2*JJ-i,J) 
C (2*I,J)=U (2*JJ,J) 
DO 3 J=l,NCOLN 
DC 3 1=1,3 
DB(I,J)=0.
DC 3 K=l,6
DB(I, J)=DB(I, J)+DBA(I,K)»C(K,J)
CALL PRIN (OB,A,NCOLN)
WRITE (6,6) LL,((DB(I,J),I=l,3),(A(I,J),I=l,3),J=l,NC0LN)
IF (NPUNCH.GT.O) WRITE (7,8) LL, ((OB(I,J),1=1,3),(A(I,J),1=1,3),J= 

11,NCOLN)
IF (NCOL.GT.l) GO TO 4

E.45

RADIAL AND TANGENTIAL STRESSES

SX=DB(1,1)
SY=DB(2,i)
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SUBROUTINE SOLVE (NPART,NCOLN)
DIMENSION AM(505Q), YH(U5), TF(100,2), F(100,2), DIS(100,2)
DIMENSION PYM(100,30)
COMMON 0(6,6),DBA(3.6),DB(3,6),A(6,6),8(3,6)
COMMON ST(5050),U(700,2),BM(30,30)
EQUIVALENCE (AM(1),ST(1))
EQUIVALENCE (TF(1)?U(D)
EQUIVALENCE (OIS(1),U(201))
EQUIVALENCE <YM (1),U(401))
EQUIVALENCE (F(1),PYM (1) ) 

SUBROUTINE FOR SOLUTION OF EQUATIONS.

1

2

3 
4

5

6

7

OO 1 1=1,100
DO 1 J=1,NCOLN
TF(I, J)=0.
NYM=30*(30+l)/2
OO 2 1=1,NYM
YM(I)=O.
CONTINUE
OO 11 LL=1,NPART
READ (4) M,N,NST,NCN,NCNN,NCK,(AM(I),I=1,NST),((BM(I,J),1 = 1, NCK),J 

1=1,NCN).((F(I,J),I=1,M),J=1,NCOLN)
OO 4 1=1,M
DC 3 J=1,NCOLN
F(I,J)=F(I,J)-TF(I,J)
CONTINUE
CONTINUE
DO 5 1=1,NYM
AM(I)=AM(I)-YM(I)
CONTINUE
CALL INVSYM (AM.M.IERR)
IF (IERR.NE.0) STOP
WRITE (2) M,N,NST,NCN,NCNN,NCK.(AM(I),I=1,NST),( (BM(I,J),1=1,NCK), 

1J=1,NCN),((F(I. J) ,I=i,M),J=1,NCOLN)
IF (NPART-LL) 12,12,6
CALL MATM (AM,F.DIS,M,NC0LN)
CALL MATTM (BM,DIS,TF,N,M,NCOLN,NCN,NCNN)
DO 7 J=1,NCN
DO 7 1=1,M
PYM(I,J)=0.
DC 7 K=1,M
IF (K.LE.I) IK=I*(I-l)/2+K
IF (K.GT.I) IK=K*(K-l)/2+I
BMATT=BMAT(K,J,BM,NCN,M,NCNN)
PYM(I,J)=PYM(I,J)+AM(IK)*BMATT
DO 10 1=1.NCN
DC 9 J=1,NCN
IF (I.LT.J) GO TO 9
IJ=I»(I-l)/2+J
YM(I J)=0.

zt
rs



8
9
10

11
12

13

14

15

16
17

DC 8 K=1.M
BMATT=BMAT(K,I,BM,NCN,M,NCNN)
YM(IJ)=YM(IJ)+BMATT*PYM(K,J)
CONTINUE
CONTINUE
CONTINUE
NYM=NCN*(NCN+l)/2
CONTINUE
REWIND 4
CALL NATH (AM,F,CIS,M,NCOLN)
WRITE (3) ((DIS(I,J),1=1,M),J=1,NCOLN)
IF (NPART-1) 17,17,13
NA=NPART-i
DC 16 LL=1,NA
BACKSPACE 2
BACKSPACE 2
READ (2) M,N,NST,NCN,NCNN,NCK,(AM(I),I=1,NST),((BM(I,J),I 

1=1,NCN),( (F(I,J),I=1,M),J=1,NCCLN)
DC 14 J=i,NCOLN
DC 14 1=1,M
TF(I,J)=0.
DC 14 K=1,N
BMATT=BMAT(I,K,BM,NCN,M,NCNN)
TFCI, J)=TF(I2J) + BMATT*DIS(K, J)
DO 15 J=l,NCOLN
DC 15 1=1,M
F(I,J)=F(I,J)-TF(I,J)
CALL MATM (AM,F,DIS,M,NCOLN)
WRITE (3) ((DIS(I,J),I=1,M),J=1,NCOLN)
CONTINUE
CONTINUE
RETURN
END

1,NCK),J

E.48



1

1

FUNCTION BMAT (I,J,BM,NCN,M,NCNN) 
DIMENSION BM(30,30) 
BMAT=0.
IF (I.LE.NCNN) RETURN
IF (U.GT.NCN) RETURN 
II=I-NCNN
BMAT=BM(II,J) 
RETURN
END

SUBROUTINE MATH (D,B,DB,M,NCOLN) 
DIMENSION D(l), 8(100,2), 08(100,2) 
DC 1 J=l,NCOLN
DC 1 I=1.M
DB (I ,J)=0.
DO 1 K=1,M
IF (K.LE.I) lK=I*(I-l)/2+K
IF (K.GT.I) IK=K*(K-l)/2+I
DB(I ,J)=DB(I,J)+O(IK)*B(K,J)
RETURN
ENO

SUBROUTINE MATTM (BM,DIS,TF2N,M,NCOLN.NCN,NCNN)
DIMENSION BM(30,30), 013(100,2), TF(100,2)
DC 1 J=l,NCOLN
DO 1 1=1,N 
TF(I,J)=0.
DO 1 K=1.M
BMATT=BMAT(K,I,BM,NCN,M,NCNN)
TF(I,JJ=TF<I,J)+BMATT»OIS(K,J) 
RETURN
END

M
-Er 
KO
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3

4
5

6

7
8

g

10

11

12

13

1*4

WRITE (6,68)
WRITE (6,70)
DC 3 I=1,NPART
WRITE (6,69) I,NSTART(I),NEND(I),NFIRST(I),NLAST(I) 
CONTINUE
WRITE (6,64)
DC 8 I=1,NBOUN
IF (NB(I,D) 7,4,77 5 6IF (NB(I,2)) 7,5,6
WRITE (6,63) NF (I) ,BV(I,1) ,BV(I,2)
GC TO ~8
WRITE (6,63) 
GO TO “
WRITE

8
_ _ (6,65) 

CCNTINUE

NF(I),BV(I,1)

NF (I),BV(I,2)

WRITE (6,62)
NPCIN2=NPCIN*2 
DC 9 I=l,NP0IN2 
U(I,13=0. 
CONTINUE 
DO 14 J=l?NCOLN 
IF (NCONC) 10,14,12 
DC 11 1=1.NPOIN 
READ (5,50) U(2*1-1,J),U(2*1,J) 
WRITE (6,50) U(2*I-1, J) ,U (2*1,J) 
CONTINUE 
GC TO 14 
CCNTINUE 
DC 13 1=1,NCONC
READ (5,52) K.U(2*K-1,1),U(2*K,1) 
WRITE (6,63) K,U(2*K-1,1),U(2*K,1) 
CCNTINUE 
NCCNC=-i 
CCNTINUE
WRITE (6,73)
WRITE (6,74)
WRITE (6,75)
DC 16 L=l,NELEM

(6, 75)

15

16
C 
C
C

ORX=0.0
ORY=0.0
DC 15 1=1,3
II=NCD(L, I)
ORX=ORX+X(11,1)/3.
ORY=ORY+X(II,2)/3.
CONTINUE
WRITE (6,76) L, (NCD(L,J),J=1,6),ORX,CRY 
CONTINUE

ELASTICITY MATRIX (D) FOR PLAIN STRESS CASE- ISOTROPIC MATERIAL

DC 17 1=1,3
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23

24

25

26

27
C 
c 
c

CCNTINUE
NCNN=2»(MINOD-K)
NCN=NCN-L
NCN=2*NCN
IF (NCN.LE.O) NCN = 1
NCK=NK-NCNN
IF (NCN.GT.JBM) GC TO 24
IF (NCK.LE.IBM) GO TO 25
WRITE (6,48) NCK,NCN
STCP
CCNTINUE
DC 35 LK=NSTRT,NEN
MN=LK-INTER
DC 26 1=1,3
JJ=NC0 (LK,I)
NCOE (I)=JJ
XI (I)=X(JJ,1)
Y1 (I)=X(JJ,2)
CCNTINUE
DC 27 1=4,6
JJ=NOO(LK,I)
NCCE (I7=JJ
CCNTINUE

CALCULATION OF ELEMENT STIFFNESS ANO STRESS MATRICES

C 
C 
C

CALL FEM (XI,Yl,THICK,MM,NODE,C)

SUPERPOSITION CF CENTRIFUGAL FORCES

28

29

30
31

32

IF (MM.LE.O) GO TO 29
DC 28 1=4,6
J=NODE(I)
X(J,1)=X1 (I)
X(J,2)=Y1 (I)
CCNTINUE
IF (NCENT.EQ.O) GO TO 29
CALL CENT (DENS,RPM,THICK,NELEM,NPOIN,NCOLN,NODE,XI,Y1) 
CCNTINUE
DC 35 LL=1,6
DC 35 KK=1,6
IF (NCD(LK,KK)-K) 35,30,30
IF (NOD(LK,KK)-L) 31,31,35
M = NFREE*< NOD(LK,KKJ-K?
N=NFREE*(NOD(LK,LL)-K)
I=NFREE*(KK-1)
J=NFREE*(LL-i)
IF (N) 35,32,32
DC 34 NJ=1,NFREE
DC 34 MI=1,NFREE
MM=M + MI

ui 
UJ
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c 
c 
c

REMIND 
REMIND
REMIND
REMIND

1
2
3
4

SOLUTION OF TRICIAGONAL SYSTEM OF SLEMATRIX EQUATIONS

c 
c 
c

c 
c

CALL SOLVE (NPART,NCOLN,IBM,JBM)
REMIND 3
DC 47 11=1,NPART
JJ=NPART+1-II
M=NFREE*(NFIRST(JJ)-1)+1
N=NFREE’NLAST(JJ)
READ (3) ( <U (I,J) ,I=M,N),J=1,NCOLN)
CCNTINUE
WRITE (6,53)
WRITE (6,72)
WRITE (6,71) ( (I,U(2*I-1,J),U(2*1,J),1 = 1,NPOIN) ,J=1,NCOLN)

CALCULATION OF STRESSES

CALL STRESS (NPOIN,NELEM,XI,Yl,NODE,NCOLN,NOD,X)

C 
48 
49 
50 
5i 
52 
53 
54 
55 
56 
57 
58

STOP

FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
FORMAT

(1H1,’SPACE FOR BM TOO SMALL , VARIABLES ARE*,215) 
(913)
(4E14.7)
<313, 2E14.7)
(I3,2E14»7)
(INI)
(/21X,’INPUT DATA*,/21X,10(*-*)//)
(10X,’TOTAL NUMBER OF PARTITIONS- NPART=*,8X,13)
(10X,’TOTAL NUMBER OF NODAL POINTS- NPOIN=*,6X,13)

59
60
61
62

64

65
66
67
68

FORMAT iiuAj’iuiPt iNUHDt^ ur inuumu ruinio- Rruiw-T,DA,ioJ
FORMAT (10X,’TOTAL NUMBER OF ELEMENTS- NELEM=*,10X,13)
FORMAT (10X,*TOTAL NUMBER OF NODAL POINTS WITH *,/15X,’PRESCRIBED

DISPLACEMENTS- NE0UN=’,5X,13)
FORMAT (10X,’TOTAL NUMBER OF LOAD VECTORS- NCOLN=*,6X,13)
FORMAT (10X,’NUMBER OF POINTS WITH CONCENTRATED LOADS=’,1X,I3)
FORMAT (10X,’PLANE THICKNESS- THICK=*,19X,E14.7)
FORMAT <//10X,’PRESCRIBED FORCES’,/IOX,17(*-*),/10X,’NODE*,12X,’X- 

1FORCE*,16X,*Y-FORCE*)
FORMAT <11X,13,2(9X2E14.7))
FORMAT C/✓10 X,’PRESCRIBED DISPLACEMENTS*,/10X,24(♦-*),/10X,*NCOE*, 

19X,*X-0ISPLACEMENT*,9X,*Y-0ISPLACEMENT*)
FORMAT (11X,13,32X,E14.7)

E.55

FORMAT (1H1,10X2*NODE*,8X2*X-CCORDINATE*,9X,’Y-COORDINATE*/)
FORMAT (11X,I3,2(7X,E14.7))
FORMAT (//10X,’PARTITION 1ST ELEMENT LAST ELEMENT 1ST NODE LAS 

IT NODE*)
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SUBROUTINE FEM (X1,Y1,THICK,MM,NODE,CC) 
DIMENSION Xl(l), Y1<1), NOOE(l), CC<12,12) 
DIMENSION P(78), NICE), CK<2,2)
COMMON /8LK2/ D (3,3),DELTA
COMMON /8LK3/ 0 (E ,6) , PC (12,2) ,M

CALCULATION OF ELEMNT STIFFNESS MATRIX FOR TRIM6 ELEMENT

TRANSFER ORIGIN TO CENTROID OF TRIANGLE

ORX=(Xl(l)+Xl(2)+Xl(3))/3.
ORY= (Yl(l)+Yl(2)+Yl(3))/3.
DC 1 1=1,3
XKI)=X1(I)-ORX
Y1 (I)=Y1(I)-ORY
CCNTINUE
X1(A) = (X1 (D+Xl (3))/2.
XK5) = (Xl(l)+XK2))/2.
Xl(6) = (Xl(2)+XK3))/2.
Y1 (4)= (Y1 (l)+Yl(3))/2.
Y1 (5)= (Y1 (1) +Y1 (2))/2.
Y1 (6) = (Y1 (2) +Y1 (3))/2.
DELTA=1.5*(X1(2)*Y1(3)-X1(3)*Y1(2))

DEFINE COEFFICIENT MATRIX C

DC 2 1=1,6
C <1,1)=1.
C(I,2)=X1 (I)
C(I, 3)=Y1 (I)
C(I, A)=XKI) ”2
C(I,5)=X1(I)*Y1(I)
C(I,6)=Y1 (I) **2
CCNTINUE

CALL INVMAT <C,6,6,1.OE-12,IERR,N1)
IF (IERR.NE.0) GO TO 12

DEFINE LOWER TRIANGLE OF SYMMETRIC MATRIX P 
P=INTEGRAL OF (G) (TRANSPOSE)*(0)*(Q) OVER VOLUME OF ELEMENT

DC 3 1=1,78
P(I) =0.0
CCNTINUE
X2=(X1(1)**2 + Xl (2)**2 + XK3)**2)/12.
Y2=(Y1 (1)**2+Yl(2)**2+Yl(3)**2)/12.
XY=(X1 (1)*Y1(i)+Xl(2)*Yl(2)+Xl(3)*Yl(3))/12.
IF (MM.LE.O) GO TO A
WRITE (1) ORX, CRY. (<C (I. J) , J=l,6) ,1 = 1,6) , (XKI) ,Y1(I),1=1,6) , DEL TA 

1,X2,Y2,XY, (NODE<J),J = 1,6)
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c

6 
C 
c 
c

M=I
DC 6 IA=1,2
DC 6 JA=1,2
CK (I A, JA) =0.0
DC 6 KA=1,12
CK(I A,JA)= CK(IA,JA)+CR(KA,IA)*PC(KA

CR(KA,IA) IS A FUNCTION SUBPROGRAM

JA)

7

8 
C
9
10

IK=2*I-1
DC 8 IA=1,2
JK=2*J-1
DC 7 JA=1,2
CC (IK, JK) =CK (IA,JA)
JK=JK+1
CONTINUE
IK=IK+1
CCNT INUE

11

CONTINUE 
CONTINUE 
DC 11 1=4,6
XI (I)=XKI) + 0RX
Yl (I )=Y1( D + ORY 
CONTINUE 
RETURN

12

C 
13 
14

WRITE 
WRITE 
STOP

(6,13) LL
(6,14) IERR

FORMAT (2X,I5)
FORMAT (1H1,1OX,*IERR=»,I7)
ENO

E.6O
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SUBROUTINE CENT (DENS,RFM,THICK,NELEM,NPOIN,NCOLN,NOOE,X1,Y1) 
DIMENSION NODE(l), XKl), YKD. A(12,2), CTA(12,2), FF(12) 
COMMON ST(5050),PYM(100,60),U (700,2),BM(40,6 0)
COMMON /BLK3/ C (6,6) , PC <12,2) , M

SUPERPOSITION OF CENTRIFUGAL FORCES

c 
c

FN1(X)=SM*X**5/5.+B*X**4/4.
FN2(X)=SM*»2»X**5/10.+SM*B*X**4/4.+8**2*X**3/6.
FN3(X)=SM**3*X**5/15.+SM**2*8*X**4/4»+SM*B**2*X**3/3.+8**3*X**2/6•
FN4(X)=SM**4*X**5/20.+SM»*3*B*X**4/4.+SM»*2*B»*2*X**3/2.+B**4*X/4.  

l+SM»B**3*X**2/2.

BACKSPACE 1
NP=NPCIN*2
ZERO=1.0E-10
PI=2 .*ASIN<1.)
OMEGA=2.*PI*RPM/60.
GR AVITY=3 2.2*12.
FACT=DENS*CMEGA**2/GRAVITY
DC 1 1=1,12
DC 1 J = l,2
A(I,J)=0.
READ (1) ORX,ORY,((C<I,J),J=1,6),1=1,6) 

1X2,Y2,XY,(NOOE(J),J=1,6)
X3=0 .
X2Y=0.
XY2=0.

(XI(I),Y1(I),I=1,6),DELTA,

2

DC 2 1=1,3
J=I+1
IF (I.EQ.3) J=1
DY=Y1 (J)-YKI)
DX=Xi(J)-Xl(I)
IF ( AES(DX) .LE.ZERO) GC TO 2
SM=DY/DX
B=Y1 (I)-SM*X1(I)
X3=X3+FN1(XI(I))-FN1(XI(J))
X2Y=X2Y+FN2(X1(I))-FN2(Xl(J))
XY2=XY2+FN3(X1(I))-FN3(X1(J))
Y3=Y3 + FN4(XKI) ) -FNMX1 (J) ) 
CONTINUE
F ACT OR = FACT*THICK
A(1,1)=ORX
A(A,l)=0RX*X2
A(5,1)=ORX»XY
A (6,1) =ORX*Y 2
A(7,1)=ORY
A(10,1)=0RY*X2
A(11,1)=ORY*XY
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SUBROUTINE SOLVE (NPART.NCOLN,IBM,JBM)
DIMENSION YYM(IOO), YM(60i60)
DIMENSION AMT5050), TF(100.2), F(100,2), DIS(100,2)
COMMON STT5050),PYM(100.60),U(700,2),BM(40,60)
------------- -------- (AM(1),ST(1))

(TF(l).U (1) )
(OIS<1),U(20D)
(YM(1),PYM(1))
(F(l),U(401))
(YYM (l),U(601) )

EQUIVALENCE 
EQUIVALENCE 
EQUIVALENCE 
EQUIVALENCE 
EQUIVALENCE

SOLUTION OF TRIDIAGONAL SYSTEM OF SUBMATRIX EQUATIONS

CALL SECOND (TI)
DC 1 1=1,100
DC 1 J=l.NCOLN
TF(I,J)=0.
JE=JBM
DC 2 1=1,JBM
DC 2 J=1,JBM
YM(I,J)=0. 
CONTINUE

ELIMINATION

3
4

5
6

7

DO 13 LL=1,NPART
CALL SECOND (Tl)
READ (4) M,N,NST,NCN,NCNN,NCK.(AM(I),I=1,NST),((BM(I,J),1=1,NCK),J 

1=1,NON).(<F(I,J),1=1,M),J=1,NCOLN)
DC 4 1=1,M
DC 3 J=l,NCOLN
F(I,J)=F(I,J)-TF(I,J)
CONTINUE
CONTINUE
DC 6 1=1,JB
DC 5 J=1,JB
IF (I.LT.J) GO TC 5
IJ = I* (1-1)/2 + J
AM(IJ)=AM(IJ)-YM(I,J)
CONTINUE
CONTINUE
CALL INVSYM (AM.M.IERR)
IF (IERR.NE.C) STOP
WRITE (2) M,N,NST,NCN,NCNN,NCK,(AM(I),I=1,NST),((BM(I,J),1=1,NCK), 

1J=1,NON), ( (F(I, J),I=i,M),J=1,NCOLN)
IF (NPART-LL) 14,14,7
CALL MATH (AM,F,CIS,M,NCOLN)
CALL MATTM <BM,CIS,TF,N,M,NCOLN,NCN,NCNN)
DC 8 J=1,NCN
DC 8 1=1,M
PYM(I,J)=0.

W
ox 
co



8

9
10

11
12

13 
1A

15
C 
C 
C

DC 8 K=1,M
IF (K.LE.I) IK=I*(I-l)/2+K
IF (K.GT.I) IK=K* (K-l )/2 + I 
BMTT=BMAT(K,J,BR,NCN,M,NCNN) 
PYM I, J)=PYM (I, J)+AM (IK)*BMATT 
DC 12 J=1,NCN 
DC 10 1=1,NCN 
YYMI)=0. 
IY = I
DC 9 K=i,M
B«TT=BMAT (K ,I,EM,NCN,M,NCNN) 
YYN(IY)=YYM(IY)+EMATT*PYM(K, J) 
CONTINUE 
CONTINUE 
DC 11 1=1,NCN 
YM(I , J)=YYM(I) 
CONTINUE 
CONTINUE 
JE=NCN 
CALL SECOND <T2) 
DT=T2-T1 
WRITE (6,20) LL,CT 
CONTINUE 
REWIND A 
CALL MATH (AM,F,CIS,M,NCOLN)
WRITE (3) ((DIS(I,J),I=1,M),J=1,NCOLN) 
IF (NPART-1) 19,19,15
NA=NPART-1

BACKWARD SUBSTITUTION

16

17

18
19

DC 18 LL=1,NA
BACKSPACE 2
BACKSPACE 2
READ (2) M,N,NST,NCN,NCNN,NCK,(AM(I),1 = 1,NST),( (BM(I,J),I = 1,NCK),J 

1=1,NCN),((F(I,J),I=1,M),J=1,NCOLN)
DC 16 J=l, NCOLN
DC 16 1=1,M
TF(I ,J)=0.
DC 16 K=1,N
BHATT = 8MA1 (I ,K, EMNCN,M ,NCNN)
TF(I,J)=TF (I,J)+EMATT*DIS(K,J)
DC 17 J=l,NCOLN
DC 17 1=1,M
Fil,J)=F(I,J)-TF(I,J)
CALL MATM (AM,F,CIS,M,NCOLN)
WRITE (3) ((DIS(I,J),I=1,M),J=1,NCOLN)
CONTINUE
CONTINUE
CALL SECOND (TJ)
DT=TJ-TI

E.64



WRITE (6,21) DT 
RETURN

C
20 FORMAT (♦ TIME FOR
21 FORMAT (* TIME FOR

END

PARTITION »,I5,* =*,Em.7) 
SOLUTIONS, E14.7)

cn
vi
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FUNCTION EMAT (I,J,BM,NCN,M,NCNN) 
DIMENSION BM(«,60J

RETURNS PROPER ELEMENT OF CONNECTIVITY MATRIX BY EXTRACTION 
FRCM MATRIX BM

BMAT=O.
IF (I.LE.NCNN) RETURN
IF (J.GT.NCN) RETURN
II=I-NCNN
BMT = EM(II,J)
RETURN
END
SUBROUTINE MATM (D,B,DB,M,NCOLN)
DIMENSION 0(1), 8(100,25, 08(100,25

MATRIX MULTIPLICATION (D)*(B)

DC 1 J=l,NCOLN
DC 1 1=1,M 
DE(I,J)=O.
DC 1 K=1,M
IF (K.LE.I) IK=I*(I-l)/2+K
IF (K.GT.I) IK = K* (K-D/2 + I
DE (I, J) =0 8 (I, J) +0 (IK)*E (K, J) 
RETURN
END

SUBROUTINE MATTM (BM , DIS, TF^.M, NCOLN, NCN, NCNN)
DIMENSION 8M(U0,60), DIS(100,2), TF(100,2)

MATRIX MULTIPLICATION (0)(TRANSPOSE)*(B)

1

DC 1 J=l,NCOLN
DC 1 1=1,N
TF(I,J)=0.
DC 1 K=1,M
BMATT=BMAT(K,1,BM.NCN.M,NCNN)
TF (I,J)=TF(I,J)+EMATT*DIS(K,J)
RETURN
ENO
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DIMENSION X(500,2), NOD(3flO,6)
DIMENSION XI(1), ¥1(1). NST(IO), NNO(IO), N00E(6)
COMMON /BLK3/ C(6,6),PC(12,2),M
COMMON /BLK5/ NPUNCH
COMMON ST(5050),PYM(100.60),U(700,2),BM(40,60)
ECUI VALENCE (SIG (1),ST(1))

CENTROIDAL STRESSES

PI = 2.*ASIN(1.)
RE HI NO 1
WRITE (6,17)
WRITE (6,11)
DC 2 L = l,NELEM
iyPy^U CRX,OR¥,((C(I,J),J = 1,6),I = 1,6),(X1(I) , YI (I) , 1 = 1, 6) , DELTA
IXcpcjXY, (NO DE (1,6)

JJ — 0
DC 1 1=1,6
KK=2*N0DE (I)-l
DC 1 J=l,2
JJ=JJ+l
UL (JJ)=U(KK, 1)
KK=KK+1
CCNTINUE
CALL SIGMA (0.0,0.0,UU,SX,SY,SXY)
CALL PRINCE (SX,SY,SX¥,PI,SI,S2,THETA)
WRITE (6,12) L,SX,SY,SXY,S1,S2,THETA
CCNTINUE

3

NCCAL STRESSES

WRITE (6,18)
WRITE (6,20)
REWIND 1
DC 4 L = l,NELEM

^^9JU ,J=1,6),1=1,6),(X1(I) ,Y1(I),I=1,6),DELTA,
1X2 jYZ(NODE(J))J=1,6)

JJ = 0
DC 3 1=1,6
KK=2*N00E(I)-1
DC 3 J=l,2
JJ=JJ+l
UU (JJ)=U(KK, 1)
KK=KK+1
CCNTINUE
DC A LI=1,6
II=NCD(L,LI)
CALL SIGMA (XI(LI),Yi(LI),UU,SX,SY,SXY) 
WRITE (6,19) L,II,SX,SY,SXY

E.68



E.69

«

UJ 
X

CM 
in

in
► 

> 
x 
tn

« x 
l~«W 
UJI- * 
XUJX 
h-IW

CM r+H 
mcM tn
H/)« UJ 

rl HO CO 
Vlrlri (/)
»W * UJ

> 
x>x 
mtntn 
ii ii ii
rlWM
r •> *
HHHUJ
■J «J —J ^O

_l_J_IH

wueii. 
HHHCJ 
into coo

m z x
UJ t-i UI
O «r> O —I
•sr jrm cl uj

iC 
r.

in

U>

H 
I

IX rlrl Z ZU) *
UJ n . » ». »J
> cDO-rlrH riri'' —I "J UJUJ
« ** ii ii ii o ii ii □□

-JOO r>«ZZ
UJLUZ ZrtXXHH •

d>*
a

tn

X w-
r. W>H •a:
ro PH

> rX Jr-
HNZ V)X X
- *Z UJ

X r© 0
zzx z
r. »X w |m> «

r~O 1-
X XXO UI CM •
rr.^w*r i—i OrlX CJ
rmeow XZ rO z
11 tthh + w XMOZ «et
-J m-— (/) m > 3 X X > QC — o 

•□HO++xzxxxa. a.
•O WZXXWHX)► W UJZ d

» me
Nr. * CO
HO oo
txun xo
+ I H»
nui mo • •
* O * ZWN
* • «H\X 

o 0 rH rl ex X CM 1/3 or-, 
rd CM l-H »XX I * >> 

► •WWCUrl • • (/)(/) 
HH*'*JHHrlN+ I

d i-hho' no- + >*“1-1-oo ii cozzmm 111—coco n _it— " i-h 
O HH3 O XI— OZZ II II >■ II II II II XX II II >UH CJ 
O ttIXUJU II OOU- II U)ZUOX>X<JXZX>XQX>X«(LU. <1 
X 33aOXOOHXZZOOV)V)WOXZWinWOWWWOZH CL

— — I- rNNII II XXX 
xxtxx 11 11 oomcox
II II O—OO CM CM'— WW 
rKMI/l Z(/)WZ II II H 
1-10 II WHOOHrUMM Q

7=
Q

2*
C

0S
2G

4000 u> wr- as 000



02’3

mp^hh pr^h h-o oh
aiDOsNO> (JlfWh) H- o

mxxxmx «xxtix *-n 
ZOOOO O-4OOOO-4O 
OD^ranTmi^iDiiTii

3333Zm333Xm3

XI 
rn

003

orxioaz 
namomxi

ozm 
O

*

C

»w»X X»X« ‘Xaaaa'\ ***l ma"' it 1-40
roMRHP —no I-1-uno'' M (-4 -
ONITI MT GJ GJ
XXHHR. XH» X X mm z cn
* ^ M * ^ M < U|» '-'COTS **
♦ t-irv-fro ♦ J-aH * XIO
mwuioo orc c*4 rn C_M 1-4
O'* XXX zxx* r* M coz
mj> m » o < VI rn coo
ZX «« « o «-nA T X)M
m- zo HT& vOro m M CO
zuomz <• X Z COX)
-IGJOZO mro* OQ
** S-4O ♦ H^Tl * M

* Gjr-xim ■4 >. iO CO
M* o -co no* X XI
X GJ COM 
* X—40 *
*• X)» 
zmmrj' 
OK-CO X 
o rococo* 
m* rn—i * 
♦aiw^w

* — *m70 
a><-» co * 
X xw*

* ocox 
CO X ♦» 
X * * ♦
♦ MXCO 
* M>-4
1-4 aH ♦ 
^ HX* 
X I « Co
* «HX
* wtOx 

CO x« ♦
“< KW
44 1 XI

» -K-I
1-4 — * 
GJ X«
X "

M 
♦

CO 
X 

w

xmxno

♦ coni'* 
COM-JM 
XXI* X 
♦man* 
* w^n 
OCO X 
xm • 
* CO GJ

wn

♦ 
* z 
oo o 
XO

♦ r 
co 
XX) 
-co
♦H 

* z 
.0-4 
XCO 

w ♦
♦ X 

COX' 
MM
♦ X 

4 4 
OOJ 
XM

« *
CO t 
no * 
*x

O^w 
X

X

♦ 
co 
X
K 

* 
o 
X 
m
* 

CO

* 
Ml 
02 
X M
* 

CO 
X 
-c
*

<o 
X

Ml 
* 

co 
M
*

X 
M

co 
no
« 

M 
cn 
X

o

0X00CO COO 
C3 zO A i CO Xi Ou
ZH0 II II II

HrriQHHW

Cx*QQW

MOON 
i-4 no oo co o 
* o 
CO I 
xio 
» no 
co * 
oeo

COZ 
»ro 
oo



c 
c 
c 
c 
c

SUBROUTINE SIGMA (X, Y,UU,SX,SY,SXY)
DIMENSION UU(l)
DIMENSION G(3,12), QC(3,12), QCUC3)
COMMON /BLK2/ 0(3,3),DELTA
COMMON ZBLK3/ 0(6,6),PC<12,2),M

THIS SUBROUTINE CALCULATES THE STRESS AT A POINT WITHIN
A TRIM6 ELEMENT, GIVEN THE COORDINATES OF THE POINT AND THE 
NODAL DISPLACEMENTS OF THE ELEMENT NODES

CALL GMAT (X,Y,G)
CALL GCMAT (Q,QC)
DC 1 1=1,3
QCU(I)=0.0
JJ = O

1

DC 1 K = l,6
DC 1 J=l,2
JJ=JJ+l
QCU(I)=QCU(I)+QC(I,JJ)*UU(JJ) 
CONTINUE
SX = O .
SY=O .
SXY=O,

2

DC 2 J=l,3
SX=SX + D(1, J) *QCU (J)
SY = SY+0(2,J) *QCU(J)
SXY=SXY+D (3,J)*GCU(J) 
CONTINUE
RETURN 
END

C 
C 
C 
C

SUBROUTINE PRINCE (SX,SY,SXY,PI,Si,S2,THETA)

TC FIND PRINCIPAL STRESSES AND PRINCIPAL ANGLE
PRINCIPAL ANGLE IS THE ANGLE BETWEEN Si AND Y-AXIS

Ql=(SX+SY)/2.
Q2=(SX-SY)/2. 
Q3=SXY
Q4=SORT(Q2**2+Q3**2)
Sl=Qi+Q4
S2=Q1-Q4

E.71

THE!A = ATAN ((Sl-SY)/SXY)
THETA=THETA»180./PI
RETURN
ENO



APPENDIX F

C 
C 
C 
c 
c

SIGROUTINE FORCE(0,A,CCEFFT,FF)
DIMENSION 0(4,4),0(2),N1(4),FF(4),F(4)

DISCRETIZATION OF LINEAR FORCE DISTRIBUTION ON A
TRIM3 ELEMENT SITUATED ON THE CIRCUMFERANCE OF A 
CIRCULAR ECUNDARY BY CONSISTENT APPROACH

1

PI= 2.*ASIN(1.)
DC 1 1=1,4
DC 1 J=l,4
C(I,J)= 
C(1,1) = 
C (1, 2) = 
C(2,3) = 
C(2,4)= 
C (3,1) = 
C (3, 2) = 
C (4,3) = 
C (4,4) =

1.
Q (1) 
1 .
Q (1)
1.
Q<2) 
1 .
Q (2)

4
3

5 
C

CALL INVMAT(C24,4,1.OE-O 8, IERR, ND 
IF (IERR .NE. 0) STOP
FF(1)= (Q (2) **2-0 (1) *»2)/2.
FF(2)= (Q(2)**3-0(1)**3)/3.
FF (3)= COEFFT*FF (1)
FF(4) = C0EFFT*FF(2)
DC 3 1=1,4 
F(I)= 0. 
DC 4 J=l,4 
F(I)= F(I) + C(J,I)*FF(J) 
F(I)= A*F(I)
J= 0
DC 5 1=1,4,2 
J= J + l
OCJJ = Q(J)*PI/18O.
FF(I)= -(F (I+l)*COS(QQJJ) + F(I)*SIN(QQJJ)) 
FF (I + l)= - (F (I+D*SIN(GQJJ) - F(I)*CCS(QQJJD

RETURN 
ENC



oouoo

PROGRAM TST (INPUT.OUTPUT,1APE5=INPUT,TAPE6=0UTPUT,
1 PUNCH,TAPE7=PUNCH)

DIMENSION C(6,6),Y(3),N1(6),FF(6),FX(6)
DIMENSION UX(20) ,UY(20) ,NUM(20)
DIMENSION XC(500),YC(500)
REAL K1,K2
DATA (NUM(I),1=1,14)/425,424,423,422,421,420,419,1,2,3,4,5,6,7/

DISCRETIZATION CF LINEAR FORCE DISTRIBUTION ON 
TRIM6 ELEMENTS SITUATED ON THE CIRCUMFERANCE OF A 
CIRCULAR ECUNDARY BY CCNSISTENT APPROACH

NFRQ 0=1 
NCC0RD=119
Kl = 0.26
K2 = O.2*K1
R=15.72.54
PI=2.*ASIN(1.)
FI=2 .*PI/17.

c

12

15

NEL=7

1

DC 11 NP=i,NPROe
READ (5,105) TITLE
WRITE(6,208) TITLE
WRITE(7,208) TITLE
SLMX=0.
SLMY=O.
DC 12 1=1,20
UX (I)=0.
UY (I )=0.
KI = 0
DC 15 I=1,KCOORO
READ(5,100) K,XC(K),YC(K)
11 = 1
KK=NUM(II)
XX = X C ( KK)
YY=YC (KK)
DC 10 K=1,NEL
Y(1) = (ASI N(XX/R)+FI)*180./PI 
11=11+2
IF(K.EQ.4) 11=11-1
KK=NUM (II)
XX=XC(KK)
YY=YC (KK)
Y (2) = (ASIN (XX/R) + FI) *180./PI
Y(3) = (Y(1)+Y(2))/2.
DC 1 1 = 1,6
DC 1 J=l,6
C(I,J)=0.
C(1,1)=1.
C(1,2)=Y(1)

-F.2
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14

11
C

SUMY-SUMY+UY(I)
CCNTINUE
WRITE(6,212) SUMX,SUMY
WRITE (6,211)
CCNTINUE

ICO 
20 8 
105 
205 
206 
211 
212

STCP
FORMAT(2X,13,2(2X,E12.5))
FORMAK* FORCES FOR MESH N0.»,A5l
F0RMAKA5)
FORMAT(2X,13,2(2X,E14.7))
FORMAT(13,2E14.7)
FORMAT (1H1)
FORMAK* SUM X-FORCES* , E12.5,
ENO

SUM Y-F0RCES*,E14.5)

XT



Q

APPENDIX G

oo
no

C 
C

C

c

1

2

PROGRAM TST(INPUT,OUTPUT.TAPE5=INPUT,TAPE6=0UTPUT,TAPE10) 
DIMENSION FIK80), FI2(80), NUM(50)
DIMENSION NQD(300,6), X(500), Y(500), SIGK500), SIG2<500)

MAIN PROGRAM FOR CONTOUR PLOTTING OF MAXIMUM ANO 
MINIMUM PRINCIPAL STRESSES

DATA TIT1/4HMESH/
DATA (NUM (I) 

101,80,79,77,

CALL 
CALL
CALL

,1=1,31)/24,28,18,7,5,1,2,4,14,23,35,50,AS,47,65,102,1
76,98,100,99,73,59,43,29,19,8,24/

PLOT (0.0,0.0,3)
DATE (01)

CALL LETTER (8,0.3,270.0,1.0,10.0,8HM00SA
CALL LETTER (10,0.3,270.0,1.0,7.6,01)

(5,9) NPLCT
INUM = 31

)

READ

NFCIN=279 
NC00RD=279
NELE M = 90 
ALEN=7.0 
KGC=2 
LAE=1 
ISC= 1 
IT ER = 0

FI1(1)=-6DO
SM1= 500.
STEP=50.
1 = 1

Fill I)=FIi (I-D+STEP
NCCN1=I
IF (FIKI) .LT.SM1) GO TO 1
FI 2(1)=-2 8 00.
SM2=50.
STEP=100.
1 = 1
1 = 1+1
FI2(I)=FI2(I-1)+STEP
NCCN2=I
IF (FI2(I).LT.SM2) GO TO 2
DC 6 KN=1,NPLOT
READ (5,11) TIT2
WRITE (6,10) TIT2
CALL LETTER (4,0.2,90.0,1.0,0.2,TIT 1)
CALL LETTER (4,0.2,90.0,1.0,1.5,TIT2)
ITER=ITER+1
ISM=0



3

4

5

DC 3 1=1,NELEM
READ (5,7) K, (NCC(K,J),J = i,6) 
CCNTINUE
DO 4 I=1,NCOORO
READ (5,8) K,X(K),Y(K) 
CCNTINUE
DC 5 1=1,NPOIN
READ (5,9) K,SIGKK) ,SIG2(K)
CCNTINUE

6

C

CALL CONPLCT (Fil ,NCON1,NUM 
1ORC,ISC,LAB,KQQ,ISM,ITER)

ISM=ISM+1
IT ER = ITER + 1
CALL CONPLOT (F12,NC0N2,NUM 

10RC,ISC,LAB,KQQ,ISM,ITER)
CCNTINUE
CALL PLOT (5.,0.,999)

INUM,NELEM,NPOIN,NOO,X,Y,SIGI,ALEN,NCO

INUM,NELEM,NPOIN,NOD,X,Y,SIG2,ALEN,NCO

0
7
8
9
10
11

STCP

FC RM AT 
FORMAT 
FORMAT 
FORMAT 
FORMAT 
END

(713)
(2 X , 13,2 (2X,E14. 7) ) 
(13,33X,2(2X,F9.2)) 
(10X,12HMESH NUMBER 
(AM

AM

G
.2
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SUBROUTINE CONPLOT (PHI ,NCON ,nUm, INUK, NELEM,NPOIN,NOO, X,Y ,SIG, AL ^^ 
l.KCOORD.ISC,LAB,KQQ.ISM,ITER)

DIMENSION PHI(l), NUM(l), XX(7), YY(7), INIK99), NAC<99) 
DIMENSION XI (250), YK250), X2C250), Y2(250). XC(500), YC(500) 
DIMENSION N00(300,6). X(500), Y (500 ), SIG(500)
COMMON /BLK1/ A(3,5O0)
COMMON /BLK2/ XMI,XMA,YMI,YMA,NI

SUPPLY IN ARRAY NUM NOCAL NUMBERS ON BOUNDARY IN SEQUENCE 
CLOCKWISE OR COLMER-CLOCKWISE, ALSO REPEAT THE FIRST NODAL 
NUMBER AGAIN AT THE ENO OF ARRAY NUM IF BOUNDARY IS CLOSED 
LOOP. INUM SHOULD INCLUDE ALL ENTRIES IN NUM.

ALEN = LENGTH OF SQUARE .LE* 10 IN. IN WHICH PLOT DESIRED
PHI= ARRAY CONTAINING CONTOURS DESIRED 
NCCN= NUMBER OF CONTOURS
NELEM= NUMBER OF FINITE ELEMENTS 
NPCIN= NUMBER OF NODES
NCD= ARRAY OF NODAL NUMBERS
NCCORD= NUMBER OF NODES WHOSE COORDS ARE DEFINED
IF NPOIN.GT.NCOCRD, TRIM6 ELEMENT ASSUMED
IF NPOIN.EQ.NCOORC, TRIM3 ELEMENT ASSUMED 
SIG= STRESSES AT.NODES
ITER= PLOT NUMBER
ISM = OPTION TO USE SAME COORDINATES ANO NODAL NUMBERS OF
PREVIOUS PLOT IF ISM.GT.0
ISC= SCALING OPTION

=1 PLOT DONE IN AREA ALEN*ALEN
=2 Y-LENGTH .EC. 10 IN, PLOT DONE USING Y-SCALE 

LAB= LABELLING OPTION OF CONTOURS
=1 CONTOURS LABELLED BY NUMBER
=0 NO LABELLING
KCC=1 FOR SINGLE-VALUED CONTOURS

=2 FOR MULTI- VALUED CONTOURS

XC OU T = 0.0 10
ZERO=i.OE-OA

IF (ISM.GT.0) GO TO 10
IF (NPOIN.EQ.NCOCRD) GO TO 3

DEFINE MID-SIDE NODE COORDINATES FOR 6 NODAL ELEMENT

DC 2 1=1,NELEM 
DC 1 J=l,3
K=NOD (I,J) 
XX(J)=X(K)
YY(J)=Y(K)
CONTINUE
K=KOD (1,5)
X <K) = (XX(i)+XX(2))/2

1
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9

C

C 
10

X(I) = (X(I)-XMI)/SCALE 
Y(I)=(Y(I)-YMI)/SCALE 
CCNTINUE
XMI=0.
YMI=0.
XMA=XOIF/SCALE 
YMA=YDIF/SCALE
PLOT BOUNDARY

11

CCNTINUE
XSKIP=1.0+XJ
YSKIP=YJ+0.2
IF (ITER.GT.1) YSKIP=0.0
CALL PLOT (XSKlP,YSKIP,-3)
IN=INUM-1
DC 12 J=1,IN
I1=NLM (J)
IF (J.EQ.l) GO TC 11
IF (Il.EQ.NUM(l)) GO TO 12
I2=NUM (J+l)

12 
C 
c 
c

CALL PLOT 
CALL PLOT 
CCNTINUE

search FOR

(X (ID ,Y(ID ,3) 
(X (12) ,Y(I2) ,2)

CONTOURS

c

c

DC 56 NI=1,NCON 
CCN=PHI(ND

WRITE (6,59) NI,CON

13

ks s= a
KL = 0 
KNN=3 
DC 17
KK = 0
DC 15

L=l,NELEM

J=l,3 
Il=N OO(L, J) 
K = J+1
IF (J.EQ.3) K=1
I2=N0D(L, K)
IF (SIG(I1).GT.SIG(I2)) GO TO 13
S1 = SIG (12)
S2=SIG (II)
GC TC 14
S1=SIC-(I1)
S2=SIG(I2)
CCNTINUE
IF (CCN.GT.S1) GC TO 15
IF (CCN.LT.S2) GC TO 15

Q
Cn



15

16

17

ie 
c

KK=KK+1
KSS=KSS+i
DS1=SIG(I1)-SIG(12)
DS2=CON-S1G(I2)
IF (ABS(OSl) .LE.1.0E-5)
0X = X (I1)-X(I2)
DY=Y (Il)-Y (12)
XX(KK)=X(I2) +OS2/OS1*DX
YY (KK)=Y(I2)+DS2/DS1*DY 
CCNTINUE
IF (KK.LT.2) GO TO 17
KL=KL+i
IF (KL.LE.245) GC TO 16
WRITE (6,60)
GC TO 56
CCNTINUE
XI (KL)=XX (1)
Y1 (KL)=YY (1)
X2(KI_)=XX(2)
Y2 (KL)=YY (2)
CCNTINUE
IF (KL.GT.l) GO TO 18
WRITE (6,61)
GC TO 56
CCNTINUE

GO TO 56

FINO STARTING OR END POINTS OF CONTOURS

19

20

21

IN = 0
DC 21 J=1,KL
XA=X1(J)
YA=Y1(J)
KCUN T = 0
DC 20 1=1,KL
IF (I.EO.J) GO TO 19
IF (ABS(Xl(I)-XA).GT.ZERO) GO TO 19
IF (ABS(Y1 (I)-YA),LE.ZERO) KOUNT=KOUNT+1
IF (ABS(X2<1)-XA),GT.ZERO) GO TO 20
IF (AES £Y2(I)-YA) .LE.ZERO) KOUNT=KOUNT+1
CONTINUE
IF (KCUNT.NE.O) GO TO 21
IN=IN+1
INIT(IN)=J
CCNTINUE
IN1=IN
DC 24 J=1,KL
XA=X2(J)
YA=Y2(J)
KCUNT=0
DC 23 1=1,KL
IF (I.EG.J) GO TO 22
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30

31

DC 30 1=1,J
WRITE (6,57) I,XC(I) ,YC(I)
CCNTINUE
GC TO 56 
CCNTINUE 
KCUNT=O
DC 32 1=1,KL
IF (I.EG. II) GC TO 32

32 1=1,KL

32

33

34

IF 
IF 
IF

(ABS(XKI)-XA).GT.ZERO) GO TO 32
( ABS(YKI)-YA) .LE.ZERO) KOUNT=KOUNT+1
(KOUNT.EQ.i) GO TO 33

CCNTINUE

35

GC TG 36
CCNTINUE
IF (ABS(X2(I)-XC(J)).GT.XCOUT) GO TO
IF (ABS(Y2(I)-YC(J)).LE.XCOUT) GO TO
J = J+1
XC(J> = X2(I)
YC (J)=Y2(I)
CCNTINUE

34
35

36

37

38

39

40

11 = 0
XA=X2(I)
YA=Y2(I)
ILAST=I
IF (ABS(XA-XCd)) .GT.ZERO)
IF (AES(YA-YCd) ).LE.ZERO)
KN T= D

GO
GO

TO 
TO

36
42

42

DC 
IF 
IF 
IF 
IF

37 1=1,KL
(I.EQ.JJ) GO TO 37
(AES(X2(I)-XA).GT.ZERO)
(AES(Y2(I)-YA),LE.ZERO)
(KNT.EG.l) GO TO 38

GO TO 37
KNT=KNT+1

CCNTINUE 
GC TC 41 
CCNTINUE 
IF ( ABS(XKI)-XC(J)) .GT.XCOUT) GOTO 
IF (ABS(YKI)-YC (J)) .LE.XCOUT) GO TO 
J = J+1
XC(J)=X1(I)
YC(J)=Y1(I) 
CCNTINUE
II = I

ILAST=I
XA=X1(I)
YA=Y KI)
IF (ABS(XA-XC(1)).GT.ZERO) GO TO 41
IF <ABS(YA-YC(1)),LE.ZERO) GO TO 42
IF (KCUNT.NE.0.OR.KNT,NE.0) GO TO 29
CCNTINUE

39
40 G

.a

41



c

43

44

C 
0 
C 
45

IF (J.LE.3) GO IC 44
UM=J-2
XCM=XC(2)
YCM=YC(2)
DC 43 1=2,JM
XCP= XC(1+17
YCP=YC (1+1)
XC (I ) = (XCP+XCM) /2.
YC(I)=(YCP+YCM)/2.
YCX= YCP
XC M= X C P
CCNTINUE
J^JM + 1
XC (JK)=XC (J)
YC (JM) =YC(J)
J = JM
IF (J.GT.2) GO TC 45
ILAST=II
GC TO 46
ONE CONTOUR COMPLETELY DEFINED
SMCCTH ANO PLOT CONTOUR

C 
46

47

XP = XC(1)
YF=YC<1)
CALL PLOT (XP,YP,3)
CALL INTERP (XC,YC,J,XP,YP,KQQ,LAB)

CHECK FOR OTHER CONTOURS HAVING VALUE .EQ. CON

IF (ILAST.EQ.NAC (INAO) GO TO 47 
INAC=INAC+1
NAC(INAO =IL AST
CCNTINUE
IF (IMAC.GE.IN) GO TO 56
IF (IM.EQ.O) GC TO 51
DC 49 1 = 1,INI 
KNT=0

48

49

50

DC 48 K=1,INAC
IF (INIT(i).EQ.NAC(Kn 
CCNTINUE
IF (KNT.EQ.O) GO TO 50
CCNT I!\UE
GO TO 51

KNT=KNT+1

G
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II=INIT(I)
INAC=INAC+1
NAC(INAC)=11
JJ = II
GO TO 27
IM1 = IN1+1
DC 53 I=IN11,IN

51



KNT=0

52

53

54

55

56

C 
c 
c 
57 
58 
59 
60 
61 
62 
63

DC 52 K=1,INAC i
IF (INIT(I).EQ.NAC<K)) KNT = KNT+i
CCNTINUE
IF (KNT.EQ.O)
CCNTINUE
GC TC 56 
JJ=INIT(I)
INAC=INAC+1
NSC(INaC) = JJ
II=J J
XC(1)=X2(JJ)
YC (1)=Y2(JJ) 
XA=X1(JJ)

GO TO 54

YA = Y1(JJ)
J = 1
IF (ABS(XA-XC<J)).GT.XCOUT)
IF (A6S(YA-YC(J)).LE.XCOUT)
COM INUE
XC (2 ) =XA
YC<2>=YA

GC TO 29
CCNTINUE
CALL PLOT <ALEN,0.0,-3)
WRITE (6,58)
RETURN

FORMAT 
FORMAT
FORMAT
FORM AT
FORMAT
FORMAT
FORMAT
END

GO tO 55
GO TO 29

(2X|I3,2X,*XC YC*,2(2X,E12.5))

(5X,I5,3X,F10.3)
(45H DIMENSION SPACE FOR XI,YI AND X2,Y2 EXCEEDED)
(24H CONTOUR DOES NOT EXIST)
(30H CONTOUR IS CLOSED LOOP-------------- ,//)
(35H DIMENSION SPACE FOR XC,YC EXCEEDED)
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SUBROUTINE INTERP CXC•YC»N,XP,YP,KQQ♦LAB>
DIMENSION XC(1). YC(1) 
DIMENSION T(500), 0(500), E(500)
COMMON /BLK2Z XMI,XMA,YMI,YMA,NI

SMOOTHING OF CONTOURS BY SPLINE METHOD AND 
SUBSEQUENT PLOTTING

ZO=1.GE-03
XI=XMI-ZO
YI=YMI-ZO 
XA=XMA+ZO 
Y A = Y M A + ZO
NN=N-1
GO TO (1,^3, KQC

SINGLE-VALUED CONTOURS

CALL SPLIT (N,XC,YC,D)
DC 3 IM=1,NN
DXX= XC (IM + 1) -XC (IM)
IDXX=DXX
INTER=10*IABS(IOXX)
IF (INTER.EQ.0) INTER=5
DX=DXX/INTER
DC 2 1=1,INTER
XP=XP+DX
YP=SPLINE (XC,YC,XP,IM,O)
IF (XP.LT.XMI.OR.XP.GT.XMA)
IF <YP.LT.YMI.OR.YP.GT.YMA)
CALL PLOT (XP,YP,2)
CCNTINUE
CCNTINUE
RETURN

MULTI-VALUED CONTOURS

T (1)=0.
DC 5 1=2, 
DX=XC(I)-XC(I-l)

GO TO 9
GO TO 9

5
DY=YC(I)-YC(I-l)
DT=SGRT(DX*OX+DY*DY) 
T (I) = T (I-D + DT
CCNTINUE
CALL SPLIT (N,T,XC,D) 
CALL SPLIT (N,T,YC,E) 
DC 8 1=1,NN
IF (LAB.EQ.0) GO TO 6
IF (I.NE.A) GO TO 6
ENCODE (2,12,SE) NI
CALL LETTER (2,0.06,0.0,XXP,YYP,SE)

IV
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6

7 
8

9

10

C 
c 
11

12

CALL PLOT (XXP,YYP,3)
CCNTINUE
OTT=T(I+1)-T (I)
IDTT = 0 TT
IMER = 10*IA8S(IDTT)
IF (INTER.EQ.0) INTERNS
DT=DTT/INTER
TF = T (I)
DC 7 J=l,INTER
TF=TP+OT
XP=SPLINE(T,XC,TP,I,D)
YP=SPLINE(T,YC.TF.I.E)
IF (XF.LT.XI.OR.XP.GT.XA) GO TO 9
IF (YP.LT.YI.OR.YP.GT.YA) GO TO 9
XXF=XP
YYP=YP
CALL PLOT (XP,YP,2)
CCNTINUE
CCNTINUE
RETURN
CCNTINUE
WRITE (6,11) XP.YP.XC(l).YC(1)
CALL PLOT (XC(1),YC(1),3)
DC 10 1=2,N
CALL PLOT (XC(I),YC(I),2)
CCNTINUE
RETURN

FORMAT (30H OUT OF RANGE QUANTITIES XP,YP,2E14.A,19H FIRST COORDIN
1ATES ,2E14.W)

FORMAT (12)
END

O ♦
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c 
c

SUBROUTINE SPLIT (N,X,Y,0)
DIMENSION X(l), Y(l). 0(1)
CCMMON Z9LK1Z M3,500)
TO INITIALIZE. CALCULATES SECOND DERIVATIVES

1

DEL=0.5
A(1, 1)=0.
A (2, l)=2.0
A (3,1)=-2.*DEL
D(l)=0.
NN=N-1
DC 1 J=2,NN
Hl-X (J)-X(J-l)
H2-X (J+l)-X(J)
F2MY (J+D-Y (JH/H2
F1=(Y(J)-Y(J-1))/Hi
D( J) =6.*(F2-F1)/(H1+H2)
AL=H2Z (H1+H2)
AU=1.-AL
Ad, J)=AU
A <2, J)=2.
A(3,J)=AL
CCNTINUE
A d,N)=-2.*DEL
A(2,N)=2.0
A(3,N)=0.
D (N) = 0 .
CALL DIAG3 (A,D,K)
RETURN
END

FUNCTION SPLINE (X,Y,XP,J,O) 
DIMENSION X(l), Y(l), 0(1) 

C 
C CUBIC SPLINE INTERPOLATION 
C

H=X( J + D-X (J)
CCMY (J+D-Y !J))/H-H»(D(J + i)-D(J))/6.
DC=Y(J)-D(J)*H*F/6.
A=(X(J + l)-XP)**3/6.ZH
9 =(XP-X(J))**3/6./H
C=(XP-X(J))
SPLINE=D(J)*A+D(J+l)*B+CC*C+DD
RETURN 
END
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SUBROUTINE DIAG3(A,X,N)
DIMENSION A(3,1),X(1)

SOLUTION OF TRIOIAGONAL SYSTEM OF EQUATIONS

CC 10 J=2,N
Z=-A(1,J)/A(2,J-l)
A (1 ,J)=0.
IF(Z.EQ.O.) GO TO 10

10

A (2 , J)=A(2,J)+Z*A(3,J-l) 
X (J)=X(J)+Z*X(J-l)
CONTINUE
JJ=N+1

20

DC 20 J=1,N
J J= J J — 1
IF(JJ.EQ.N) GO TO 20
X (J J) =X( J J)-A (3, J J) *X(JJ<-1)
X (JJ)=X(JJ)/A(2,JJ)
RETURN
END

IlV
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o oooo PROGRAM MAIN(INPUT,OUTPUT.TAPE5=INPUT,TAPE6=0UTPUT,TAPE10) 
DIMENSION N0D(4D0,6), X(56o), YODO)

PLOTTING OF INPUT MESH
NPLOT= NUMBER OF MESHES TO BE PLOTTED
CALL PLOT (0. 0,0.0,3)
CALL DATE (DI)
CALL LETTER (8..3,270.0,1.0,10.0 *8HM00SA )
CALL LETTER (16,0.3,270.0,1.0,7.6,01)

READ (5,8) NPLOT
DO 3 NN=1,NPLOT
READ (5,6) TITLE
READ (5,9) NPOIN,NELEM,NCOORD,ISC,LAB,ISPOT,NEL,ALEN
WRITE (6,7) TITLE
CALL LETTER (10,0.2,90.0,1.0,0.1,TITLE)
DO 1 1=1,NELEM
READ (5,5) K,(NOO(K,J),J=l,6)
CONTINUE
00 2 1=1,NCOORD
READ (5,4) K,X(K),Y(K)
CONTINUE
CALL MESH2 (X,Y,NOD,NP0IN,NELEM,NCOORD,ISC,LAB,ISPOT,ALEN,NEL,NN)
CONTINUE
CALL PLOT (IL.,0.,999)

STOP

FORMAT (2X,I3,2(2X,E12.5))
FORMAT (7(2X,I3))
FORMAT (A10)
FORMAT (* PLOT FOR MESH *,A10)
FORMAT (13)
FORMAT (7I3,F10.0)
END

G
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c 
c 
c 
c 
c 
c

SUBROUTINE MESH2 (X,Y,NOD,NPOIN^NELEM,NCOORD,ISC,LAB,ISPOT,ALEN, 
DIMENSION NOD(AOO,6), X(500), Y(500)
DIMENSION XX(7), YY(7)

PLOT OF INPUT MESH FOR FINITE ELEMENT METHOD

ALEN= AREA .LE. 10 IN WHICH PLOT DESIRED 
ITER = PLOT NUMBER
OP TIONS-

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c

ISC=i
= 2 

LAB=1 
= 2

PLOT IN AREA ALEN BY ALEN 
Y-LENGTH 10 IN., X-LENGTH= YSCALE*XDIF

NODES NOT LABELLED
NODES LABELLED

ISPOT=1 NODES NOT SPOTTED 
=2 NODES SPOTTED

NEL=i ELEMENTS NOT LABELLED
=2 ELEMENTS LABELLED

NCOORD^ NUMBER OF COORDINATES DEFINED
IF NCOORD=NPOIN 3 NODAL ELEMENT IS ASSUMED
IF NCOORD.NE.NPOIN 6 NODAL ELEMENT IS ASSUMED

CALL PLOT (J.,9.,3) 
YSKIP=0.
IF (ITER.EQ.1) YSKIP=0.1
CALL PLOT (2.0,YSKIP,-3) 
N=NPOIN

c 
c 
c

IF (NPOIN.EQ.NCOORD) GO TO 3

DEFINE MID-SIDE NODE COORDINATES FOR 6 NODAL ELEMENT

DO 2 1=1,NELEM
DC 1 J=l,3 
K=NOO(I,J)
XX (J)=X(K)

1
YY(J)=Y(K) 
CONTINUE
K=N0D(I,5)
X(K) = (XX(i) + XX(2))/2
Y (K) = (YY ( D + YY (2) )/2
K=NOD(1,6)
X (K) = (XX ( 2) + XX (3) )/2
Y (K) = (YY(2) + YY(3))/2

2 
c 
c 
c 
3

K=NOD(I,A)
X(K) = (XX(3)+XX(i))/2
Y(K)=(YY(3)+YY(l))/2 
CONTINUE

SCALING

1 = 1



4

C

5

6

7

8 
C 
C 
c

9

10 
11 
c 
c
c

XHA=X(I)
XMI=X(I) 
YMA=Y (I)
YMI=Y(I)

' A 1=1,NPOIN 
(X(I).GT.XMA)

DO 
IF
IF
IF 
IF

(X(I).LT.XMI) 
(Y(I).GT.YMA) 
(Y(I).LT.YMI)

CONT INUE
XDIF = XMA-XMI
YD IF=YMA-YMI

XMA=X(I)
XMI = X <I)
YMA=Y(I)
YMI=Y(I)

GO TO (5,7), ISC
IF (YOIF.GT.XDIF) GO TO 6
YW=Y DIF*A LEN/XDIF 
xi=io.
Yl=10.
X2=X1-ALEN
Y2=Y1-YW
GO TO 8
XW=XOIF*ALEN/YDIF
xi=ia.
Yl=10.
X2=X1-XW
Y2=Y1-ALEN
GC TO 8
SC=YDIF/10.0
X1=XDIF/SC
Yl=10.U
X 2 = 0 . U
Y2=0 .C
CALL FACTOR (N,X,Y,XI,Y1,X2,Y2)

DRAW MESH

DC 11 1=1,NELEM
OO 9 J = l,3 
K = NOD (I,J) 
XX(J) = X(K) 
YY(J)=Y(K)
CONTINUE
XX (M=XX(1)
YY(4)=YY(1)
DC 10 J=l,3
CALL PLTLN (XX(J),YY(J),XX(J+i),YY(J+1)) 
CONTINUE
CONTINUE

NODE LABELLING AND SPOTTING

G
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IF (LAB.EQ.l.ANO.ISPOT. EQ. 1)
DO 18 1=1,NPOIN
CALL UNITTO (X (I) , Y ( I) , XP, YP)
GO TO (16,12), LAB
IF ( I.LT.10) GO TO 14

GO TO 19

13

14

15

IF (I.LT.100) GO TO 13
ENCODE (3,24,It) I
NN=3
GC TO 15
ENCODE (2,25,IE) I
NN=2
GO TO 15
ENCODE (1,26,IE) I
MN = 1

16 
17
18 
19 
C
C 
c

ZX = XP + (J.O3
ZY=YP-0.03
CALL LETTER (NN,0.06,0.0,ZX,ZY,IE)
GO TO (18,17), ISPOT
CALL GRAF (XP,YP,0.05,1)
CCNTINUE
CONTINUE

ELEMENT LABELLING

20 NEL

21

23

0RY= 0 .

OR X= ORX + X(K)/3
ORY=ORY+Y (K) /3.
CONTINUE
CALL UNITTO (ORX,ORY,XP,YP)
ENCODE (3,24,IE) I
NN = 3
ZX = XP-(J.O9
ZY=YP-U.O 3
CALL LETTER (NN,0.06,0.0,ZX,ZY,IE)
CONTINUE

CALL PLOT (lL.,0.,-3)
RETURN

G
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FORMAT (13)
FORMAT (12)
FORMAT (II)
END



APPENDIX H
The Cubic Spline

Given.a set of points Xq, xj, ..., xn on the interval (xq,xu)
and a set of prescribed ordinates fg, fl, ..., fn, it is possible to 

join each Consecutive pair (xj„p, fj-lb (xj> fj) by a cubic so chosen 

that the resulting composite curve has continuous first and secpnd 

derivative?. For small deflections from a straight configuration, 

it is welllknow that this curveis a close approximation to the con- 

figuration[of a thin beam simply supported at the junctions x<.

We befin by designating with Mq, M^, ..., Mn the second derivatives 

at the mesh locations x^ of the function y(x) represented by the com- 

posite curve. The second derivative y"(x) is linear between junctions 

and we hav$, for xj-i^x^xj,

i Xa-X X-Xx ■>
y'W = «j-if-+ »j> hj = xj-xj-1 tea)

Integrating twice we have

’Wr-Vi— ‘“j-^— + p te.z )

, ’ (zrx)^ (x-xniP z a
yW ' 6hj' * MJ T^-------+ 'J^'^-i’ + DJ (H-3 ’

Now y(xj_|) = fj.i, y(xj) = fj, so that we may determine cj and Dj from
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We obtain

DJ - fJ-l - MJ-1 i

The quantities Mg, Mq, ..., ^ are as yet unknown.. Our choice of

representation of y"(x) in i©>l ) has insured, the overall, continuity

of y”(x). The continuity of y(x) is similarly insured by the choice

of constants in (H.3 ). .-To make y'(x) continuous, we require at each

j(j = 1, 2, ..., n-1) that

y'(xj-) = y’(x«+)

From ( H.5 ) we have 

y'(xr = Ml _d + J-------------------------- h^
3 d 2 hi 6 ' J

Using ( H*4) for the (j+i)st interval and setting x=x- gives
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y’(xj+) = - M. +^jiili

J J 2 hj+l
Mj+Hj h

6 hj+l

= £11122 _ M Jiti _ M
hj+l J 3 J+1 6

Equation ( H.6) now gives (j = 1, 2, n-1)

ix , iiiiii M. + !te M . ?j«2i. iii 

6 J 3 J 6 J hj+l ^

hi+h^i , ^i+1
We divide by —^ .set < = ----- ------

6 J hrt*l
i«, and we obtain

/■^ + 2Mj + ^ Mj+i = 6 2^+1-------------^j_ ( H>9)

= 6 [fj-1; fp f,i+lj

We obtain in this way n-1 equations to be satisfied by the n+1

unknowns Mq, tq, ..., M^ Two more conditions, the end conditions, 

are to be specified. We remark that setting Mq = ^ = 0 is equivalent 

to putting simple supports at the ends. More generally

Mg - ©M± = 0, 1>0>O, (H.1Q)

is equivalent to placing a simple support at a location x_q = (xQ-©Xq)(l-©) 

and requiring that the entire curve over (x_q, xq) be the arc of a cubic 

passing through (xq, fg). A common choice of 0 is 1/2, in which case 

x0—x—1 = X|-xq. Choosing 0 = 1 gives a parabolic runout of the spline 

to the left of x = x^.

We may wish instead to specify the slope at the end of the curve.

From (h.8 ) and ( h.?),
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z ^l“”0 hl h^

hn 3 6

Thus, in general, we employ the end conditions

* V1 = d0’

AA-i + ^ = ^ ^

where condition ( H.10) is met by taking JQ = -25, 

by setting ^ = 1, d0 = ^ ( "^~ " f0') ^Here 

indicate y(xQ')).

(h.12)

dg = 0 and (H.ll) 

fQ’ is used to

The condition

Mn = %-l

is satisfied by taking ^^ = -2©, dn = 0 while ( H.ll) is satisfied 

.i j 6 . fn'^n-1 \with X4, = 1. 1. = ■— (f..-------------- ) .’ “ ■ i‘ u„ • t^

Once the conditions (H.12 ) have been chosen, we must solve the

simultaneous system of equations

Z2M1 + 2^2 + ^2m3 = dg

x^-lMn-a+SMn-1+ ^ n-1^

^-1+21^ n





APPENDIX J

CHARACTERISTICS OF DIAMOND CIRCULAR SAW BLADES

J.l. Description of Diamond Circular Saws:

The diameters of the saw blades vary from 250 mm to 

about 3 metres. The hub or body of the saw is usually made of a 

tool steel, hardened to around 42-44 Rockwell Hardness. Radial 

slots alre located on the periphery at equi-angular intervals. 

Diamond impregnated segments or tips are attached to the saw 

between the slots. The diamond segments are made from a variety 

of materials ranging from bronze to tungsten carbide. The 

thickneiss of the diamond segment is greater than the hub to 

maintain clearance in the cut. The relative length of segment 

to slot varies greatly. The saw is held firmly by large flanges 

or ’cheek plates * having diameters equal to 1/3 saw diameter to 

prevent lateral vibration of the saw.

There is no basic difference between the cutting 

actions of a slotted saw and a continuous periphery saw. The 

slots serve other Important purposes:

(i) The slots aid in the removal of chips during cutting. 

They prevent loading of the diamond cutting edges.

(ii) The slots provide a larger cooling area and are 

responsible for introducing lubricant into the cutting region.

J.l
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(ill) Having the slots facilitates manufacture of diamond 

tips. A continuous periphery saw has obvious difficulties.

(iv) The slots prevent the distortion of the hub during the 

brazing of the diamond tips on the hub.

At present, a narrow slot with parallel sides and a 

simple semi-circular base is preferred. Basically, slots should 

be as wide as possible, but a point is reached where rigidity is 

lost. Thus, where poor machines are encountered, narrow slots are 

preferred.

J.2. Cutting Parameters:

After choosing a blade for a stone cutting operation, 

the curring parameters are usually chosen according to manufacturers 

standards. Typical cutting speeds for some types of stone are 

given below.

Soft Alluvial, soft sandstone 10,000 ft/min

Medium limestone, marble 8,000 ft/min

Harder marbles, soft granite 7,000 ft/min

- Harder granites and sandstones 6,000 ft/min

Basalt, quartz 5,000 ft/min

It is seen that high rotational speeds are required for soft 

stones.

Maximum possible depths of cut are usually taken.

The limit is either flange diameter of block size except on hard

stones, where cutting forces could be so high that the depth of
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cut has to be restricted below 3 inches. Feed rate depends on 

bond wear rate and machine horsepower. The trend, however, is 

for high cutting rates and-some normally accepted figures are:

Quartz 10 sq in/min

Granite 20 sq in/min

Marble 100 sq in/min

Soft limestone 100 sq in/min

where the figures denote the product of feed rate and depth of 

cut.

J.3« Cutting Machine:

Circular diamond saws are used either singly or 

mounted in gangs. There are numerous machines on the market 

of all shapes and sizes, ranging from small hand operated 

machines (with loading through the spindle) to large multiple-blade 

orthogonal stone-cutting machines. Because of the high cost of 

diamond blades, these machines are of high quality.

J.4. Cutting Mechanism:

- At this time there is no clear answer to the cutting 

mechanism for stone. There is no doubt, however, that a single 

diamond grit operating on a known area must exert an indentation 

force on the individual grains of the stone, greater than the 

crushing strength of that grain, in order to abrade the stone. 

The detrities or chip is then pushed away be oncoming grains. 

In sedimentary rocks it is usually sufficient to exert a force
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equal to the cementing compound strength only, which is usually 

considerably less than the crushing strength of individual grains. 

A typical example is sandstone. Here the grains remain whole 

after being dislodged and are particularly strong; they then act 

as an abrasive on both the diamond and the bond.

The maximum crushing strength encountered in rocks 

2(quartz) is about 85,000 Ib/in . The average area presented by 

one particle of 35/^0 U.S. mesh diamond grit would be 0.032 nm 

and the specific force required by this particle would be 4 lb. 

There would be about 1200 particles per carat or about 700 per 

square inch, thus giving over 1 ton/in of segment contact. The 

crushing strength of diamond is about 1,250,000 Ib/in , so 

the diamond would normally only be damaged by a specific force 

of 60 lb.

Grit damage on weak edges occurs much earlier and 

controlled breakdown of the grit when matched to the cutting rate 

decides grit selection.

For abrasive materials which are otherwise soft, the 

high strength grit is unnecessary but thermal stability is 

essential, whereas for high strength materials high grit strength 

and good shaped crystals are required.

The cutting forces increase with the diamond grit 

breakdown and they are proportional to power consumption. Adverse 

vibrations quickly change the desired conditions and are a prime 

cause of diamond grit failure.


