
A Lightweight Framework Approach to Building
Programming Language Editor Support

Alexandre Lachance1,2, Sébastien Mosser PhD1,2

Introduction
 Programming languages used by smaller
communities, such as very specialized
programming languages, often don't have
the same level of editor support (i.e.
auto-completion, syntax highlighting) as
more popular languages do.

 Current "solutions" all require the entire
language to be built with them to get editor
support as an artifact. They also have no
way to interact with existing tools.

 The modern approach to editor support is
the usage of the Language Server
Protocol (LSP). Language servers allow
for editor-agnostic language support. They
provide features like auto-complete, go to
definition, or renaming [1]. The problem
being the need for a high-level of
programming language expertise for their
development.

Current "Solutions"

Objectives
 Provide a lightweight framework to
enable language creators to focus on their
language without the burden of developing
a complete IDE.

 Provide a way for the new editor tooling to
interact with existing language tools (i.e.
a compiler or a static analyzer).

 Language servers usually use two main data structures as a basis for most of their
services: an Abstract Syntax Tree (AST) and a Symbol Table. Our approach consists of
reusing these data structures and for the language server to solely rely on them.

 To generate these structures the framework relies on 2 main inputs: an existing grammar
and a set of rules.

 The rules are written using an off-the-shelf configuration language. They act as an
annotation over the Concrete Syntax Tree (CST) parsed with the grammar. They provide
the missing language specific information necessary to build an AST and a symbol table
for each source code file.

 We also provide a plugin interface. Plugins act as adapters from existing language tools
to language server compatible data structures (e.g. getting compiler errors in your IDE).

Key facts
 Purpose: Provide a simple way to build powerful editor
support for the target programming language.

 Features: Out of the box support for Auto-completion, Syntax
Highlighting, Go To Definition, Renaming, and much more.

 Compatibility: Integrates with existing tooling via a custom
plugin system.

 Configuration: Rules are written in an off-the-shelf JSON-like
configuration language, avoiding the need for a new
proprietary language.

Conclusion
• By abstracting away the common and
complex parts of language servers, we built
a lightweight framework for building
programming language editor support.

• This approach has been validated with the
successful implementation of the framework
targeting 3 different programming
languages.

• Next steps:
o Improve coverage of Language Server
Protocol (LSP) features.

o Use generative programming to
improve language server performance.

References
[1] https://microsoft.github.io/language-server-protocol
[2] https://p4.org/
[3] https://protobuf.dev/
[4] https://youtu.be/JzCYxz4G_Cc

Alexandre LachanceMcMaster University, Computing & SoftwareEmail: lachaa2@mcmaster.ca

1Computing and Software, McMaster University, Hamilton, Canada. 2Centre for Software Certification, McMaster University, Hamilton, Canada.

P4
(Linux Foundation)

protobuf
(Google)

jPipe
(McSCert)

Rule(node_name: "ConstantDeclaration",symbol: Init(type: "Constant", name_node: "Name", type_node: "Type"),children: [(query: Field("type"), rule: Rule("Type")),(query: Field("name"), rule: Direct("Name")),(query: Field("value"), rule: Rule("Expression")),])

Results
 The framework has been validated on 3 different languages:

o P4: "Programming Protocol-independent Packet
Processors (P4) is a domain-specific language for network
devices, specifying how data plane devices (switches,
NICs, routers, filters, etc.) process packets." [2]

o JPipe: A in-house research language focusing on the
justification of pipelines. Compiles to diagrams.

o Protobuf: "Protocol Buffers are language-neutral,
platform-neutral extensible mechanisms for serializing
structured data." [3]

 Dissemination:
o MDENet presentation [4]
o P4.org Open Source Developer Days presentation
o Used at Kaloom™ Networks (a Montreal startup)
o Presentation at the 2023 P4 Workshop

const bit<16> TYPE_IPV4 = 0x800;

Validation

Design of the framework

https://microsoft.github.io/language-server-protocol
https://p4.org/
https://protobuf.dev/
https://youtu.be/JzCYxz4G_Cc?si=3-bMkBHbT7-XrscY

