McMaster

University

A Lightwelght Framework Approach to Building

Programming Language Editor Support

-

ENGINEERING

Computing

& Software Alexandre Lachancel?, Sébastien Mosser PhD?'? |\/I C S C e rt

'Computing and Software, McMaster University, Hamilton, Canada. *Centre for Software Certification, McMaster University, Hamilton, Canada.

Introduction Design of the framework Key facts Conclusion
= Programming languages used by smaller = Purpose: Provide a simple way to build powerful editor « By abstracting away the common and
communities, such as very specialized </> o{g A support for the target programming language. complex parts of language servers, we built
programming languages, often don't have / = Features: Out of the box support for Auto-completion, Syntax a lightweight framework for building
the same level of editor support (i.e. kil AST Q / % Highlighting, Go To Definition, Renaming, and much more. programming language editor support.
auto-completion, syntax highlighting) as e builds——> e <—uses & = Compatibility: Integrates with existing tooling via a custom » This approach has been validated with the
more popular languages do. Language SQPN -~ plugin system. successful implementation of the framework
= Current "solutions" all require the entire @ E , = Configuration: Rules are written in an off-the-shelf JSON-like targeting 3 different programming
language to be built with them to get editor coe configuration language, avoiding the need for a new languages.
support as an artifact. They also have no Rules Symbol Toble proprietary language. * Next steps:
way to interact with existing tools. ’l: - - ; ------- N o Improve coverage of Language Server
= The modern approach to editor support is | —€5& ‘ \ Results Protocol (LSP) features.
the usage of the Language Server E < uces Q < ~_uses : What you write : 0 Use generative programming to
Protocol (LSP). Language servers allow : Existing : = The framework has been validated on 3 different languages: Improve language server performance.
for editor-agnostic language support. They Existing T°°h"‘fl Pl“‘i"‘s '\ Reused/Generated | o P4: "Programming Protocol-independent Packet
provide features like auto-complete, go to g ’ Processors (P4) is a domain-specific language for network Validation
definition, or renaming [1]. The problem = Language servers usually use two main data structures as a basis for most of their devices, specifying how data plane devices (switches,
being the need for a high-level of services: an Abstract Syntax Tree (AST) and a Symbol Table. Our approach consists of NICs, routers, filters, etc.) process packets.” [2]
programming language expertise for their reusing these data structures and for the language server to solely rely on them. o JPipe: A in-house research language focusing on the
development. = To generate these structures the framework relies on 2 main inputs: an existing grammar justification of pipelines. Compiles to diagrams.
Objectives and a set of rules. o Protobuf: "Protocol Buffers are language-neutral,
| | _ = The rules are written using an off-the-shelf configuration language. They act as an platform-neutral extensible mechanisms for serializing P4 jPipe protobuf
* Provide a lightweight framework to annotation over the Concrete Syntax Tree (CST) parsed with the grammar. They provide structured data.” [3] (Linux Foundation) (McSCert) (Google)
enable language creators to focus on their the missing language specific information necessary to build an AST and a symbol table * Dissemination:
language without the burden of developing for each source code file. o0 MDENet presentation [4]
a complete IDE. . i in i : iati o P4.org Open Source Developer Days presentation References
We also provide a plugin interface. Plugins act as adapters from existing language tools gop P ys p
= Provide a way for the new editor tooling to to language server compatible data structures (e.g. getting compiler errors in your IDE). 0 Used at Kaloom™ Networks (a Montreal startup) [1] https://microsoft.github.io/language-server-protocol
interact with existing language tools (i.e. 0 Presentation at the 2023 P4 Workshop [2] https://p4.org/
a compiler or a static analyzer). [3] https://protobuf.dev/

[4] https://youtu.be/JzCYxz4G_Cc

Rule(\

Langium node name: Constantbeclaration, const bit<16> TYPE_IPV4 = 0x800; W Alexandre Lachance

Current "Solutions"

o symbol: Init(type: "Constant”, name_node: "Name", type_node:), Al :
hildren: [A McM_aster University, Computing & Software
| l Metacase | ¢ "L T Email: lachaa2@mcmaster.ca
- (query: Field("type"), rule: Rule(),

(query: Field("name"), rule: Direct("Name")),
(query: Field("value"), rule: Rule("Expression")),

)| BRIGHTER WORLD

Xtes<t

https://microsoft.github.io/language-server-protocol
https://p4.org/
https://protobuf.dev/
https://youtu.be/JzCYxz4G_Cc?si=3-bMkBHbT7-XrscY

