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Lay Abstract

This research aims to create a unified model that combines fluid flow and solidification

processes to better simulate metal additive manufacturing, where molten metal flows

and solidifies layer by layer to build parts. Our work provides a roadmap along with

developed models for how to correctly combine these two physics, identifying the

solidification and fluid flow models (whether turbulent or laminar) that best capture

the dynamics of the process. To make the complex simulations feasible, we introduce

simplifying assumptions and design examples to test and refine the model in stages.

Through a structured approach, we develop and troubleshoot this combined model,

ultimately creating a reliable tool to predict the quality and structure of manufactured

metal parts.
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Abstract

This research focuses on understanding additive manufacturing (AM) microstructure to

enhance properties. Focusing on microstructure evolution during solidification, we aim

to provide deeper insights into material formation by exploring the often-neglected or

partially integrated aspect of fluid flow within the melt pool. This fluid flow is crucial

as it influences concentration and temperature distribution, impacting microstructure

development and therefore material behaviour. To bridge this gap, our project is

developing a phase-field modelling microstructural model for solidification, coupled

with the Navier-Stokes equation for fluid dynamics. Using the Finite Element Method

(FEM) based library, FEniCS, we present our current development of the multiphysics

approach needed. In this talk, we describe the model contributions of each physics

contribution and our benchmark results against known literature. We discuss the need

for the direct coupling of these into a singular, fully coupled solver, enhancing our

understanding and control of AM processes.
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Chapter 1

Introduction

1.1 Additive Manufacturing

Metal additive manufacturing (AM), often referred to as metal 3D printing, is a

groundbreaking innovation in manufacturing. Unlike conventional subtractive methods

that remove material from a solid block, AM constructs parts layer by layer from

digital models. This approach enables unprecedented design flexibility, making it

possible to produce intricate geometries that would be challenging or unfeasible with

traditional techniques [1, 2].

The origins of additive manufacturing date back to the 1980s, primarily focused

on polymer-based systems [3, 4]. However, the development of metal AM technologies

lagged behind due to the complexities associated with melting and fusing metals. It

wasn’t until the early 2000s that significant advancements were made, enabling the

transition from prototyping to producing fully functional metal components. Today,

metal additive manufacturing is an integral part of industries such as aerospace,

automotive, healthcare and energy, driving innovation and efficiency [5] .

1
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1.2 Features of Metal Additive Manufacturing

Additive manufacturing boasts several distinctive features that set it apart from

traditional manufacturing methods. These are:

1. Layer-by-Layer Deposition – Metal AM builds parts by adding material layer-by-

layer, using high-energy sources like lasers or electron beams to fuse the material.

This approach allows for the precise construction of complex geometries with

minimal waste [6].

2. Cyclic Phase Transformation – The process involves cyclic heating and cooling,

causing phase transformations that affect the microstructure and mechanical

properties of the material. Controlling these transformations is essential to

achieve the desired part characteristics [7].

3. High-Temperature Gradients – Metal AM processes experience extreme tem-

perature gradients, often as high as 105 – 106,◦C/m [8, 9]. These gradients can

lead to unique microstructures and residual stresses, which must be managed to

ensure the quality of the part.

4. Rapid solidification – During metal AM, parts solidify rapidly, leading to the

formation of fine microstructures that enhance mechanical properties, such as

strength and toughness. However, the rapid cooling associated with this process

can also introduce challenges, such as the formation of meta-stable microstruc-

tures and non-equilibrium phases, which can affect the uniformity of behaviour

and materials across the entire part. Furthermore, rapid solidification can ex-

acerbate issues such as porosity due to incomplete melting or gas entrapment

during the construction process [10].

5. Reduction of Intermediate Steps and Tooling – Metal AM reduces or eliminates

the need for intermediate steps and tooling, such as molds and dies. This
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streamlines production, reduces costs, and allows greater flexibility and design

customization [11].

The aforementioned features lead to interesting benefits and consequences for the

build part, which are discussed next.

Benefits

Additive manufacturing offers several significant advantages over traditional manufac-

turing methods [12]:

• Complex Geometries: It allows for the creation of intricate and complex

geometries that would be challenging or impossible to achieve using conventional

manufacturing techniques.

• Material Efficiency: The layer-by-layer deposition process minimizes waste,

making it a cost-effective solution.

• Customization: It enables the production of customized parts tailored to

specific needs, such as patient-specific implants [13].

• Reduced Lead Times: Reduces the overall time from design to production.For

example, in the production of quenching tools for the automotive industry, using

AM reduced lead times from 220 hours (27.5 working days) to 116 hours (14.5

working days), nearly halving the time required [14].

• Tooling Reduction: Eliminates or significantly reduces the need for intermedi-

ate tooling and molds.

Current Limitations

Despite its many advantages, metal additive manufacturing also faces several chal-

lenges:
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• Porosity and Defects: Parts can exhibit porosity and defects, which may

compromise their mechanical properties [15].

• Residual Stresses: Rapid heating and cooling cycles can introduce residual

stresses [16].

• Surface Finish and Accuracy: The surface finish of parts can be rough and

may require post-processing.

• Material Limitations: The range of materials suitable for additive manufac-

turing remains limited, as each process is compatible with only specific material

types, such as metals, polymers, ceramics, or resins. High costs, processing chal-

lenges (e.g., ceramics’ high melting points), and application-specific requirements

further restrict the options available for AM applications [17].

• Cost and Scalability: Although additive manufacturing minimizes material

waste, the high costs of equipment and specialized materials, such as metal

powders, present significant barriers [18].

The challenges associated with defects and residual stresses can be illuminated

using high-resolution imaging studies and other detailed examinations of AM parts.

1.3 Physics of Additive Manufacturing

The benefits and challenges discussed previously arise as a direct consequence of the

underlying physical phenomena governing the AM process. This section explores these

phenomena in greater detail, referencing Fig. 1.1, which schematically illustrates the

various physical processes involved in laser powder bed fusion (LPBF) manufacturing.
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Figure 1.1: Schematic illustration of the physical phenomena occurring during LPBF
AM. The image is reproduced from the MeltPoolDG repository [19].

Indeed, AM involves several complex physical phenomena that interact during the

fabrication process. Understanding these interactions is crucial for optimizing the

process and achieving high-quality output. These phenomena can be categorized into

four main thematic areas: (i) laser-material interaction, (ii) thermal dynamics, (iii)

fluid dynamics, and (iv) solidification dynamics.

1.3.1 Laser-Material Interaction

Laser-material interaction governs the transfer of energy from the laser to the material,

driving processes such as melting, evaporation, and solidification. These interactions

determine the quality of the melt pool, the microstructure of the resulting part, and

potential defects.

Laser Irradiation: The process starts with a high-energy laser beam focused on

the metal powder bed. The laser’s energy is absorbed by the powder particles, leading
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to rapid heating and melting. [20].

Radiation, Convection, and Evaporation: Upon absorbing laser energy, the

powder heats up. Heat dissipates through radiation and convection, while some

material evaporates, leading to material loss and impacting the quality of the part [20].

Recoil Pressure: Evaporation of material generates recoil pressure within the

melt pool, affecting its shape and stability. This can cause spattering, where droplets

of molten material are ejected from the melt pool [20].

1.3.2 Thermal Dynamics

Heat Conduction: Heat is transferred from the melt pool to the surrounding powder

bed and the previously solidified layers. Proper heat conduction is essential for

regulating the cooling rates and ensuring the solidification process is controlled.

Denudation Zone: This region experiences displacement of powder particles due

to interaction with the laser beam and the vapor plume from evaporation, affecting

the uniformity and consistency of the powder layer [10].

1.3.3 Fluid Dynamics

Marangoni Convection: Surface tension gradients within the melt pool, driven

by temperature differences, induce Marangoni convection. This fluid flow within the

molten metal helps distribute heat and material, influencing the microstructure and

properties of the final part (Section 2.3.2, Surface Tension, Ref. [20]).

Buoyancy and Gravity: Buoyant forces due to density differences in the melt

pool and gravity influence the flow, which influences the solidification kinetics of the

molten metal.
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1.3.4 Material Dynamics

Melting and Solidification: The laser energy melts the metal powder, which then

solidifies as the laser moves away. Rapid cooling rates lead to fine microstructures

but can also introduce residual stresses and porosity [21]. After the deposition of

additional layers, the part undergoes a remelting and subsequent solidification process

as the cycle continues.

Spattering: Small droplets of molten material can be ejected from the melt pool

due to recoil pressure and other dynamic forces, potentially leading to defects in the

final part [22].

Gas Flow: Gas flow, whether part of the process environment or arising from

vaporized material, influences thermal dynamics through heat transfer and material

dynamics by driving material redistribution, surface morphology changes, and chemical

reactions within the process.

A fundamental understanding of the interplay of these physical phenomena (see

Fig. 1.2) is essential for optimizing AM processes. Fine control over laser parameters,

heat management, and material handling can significantly influence the quality,

mechanical properties, and reliability of the manufactured parts [23]. Experimental

studies and in situ part fabrication provide valuable insights into these phenomena;

however, disentangling their complex behaviors and isolating the parameters that

govern them remains a significant challenge [24]. To address this, theoretical and

numerical modeling serve as indispensable tools for uncovering the fundamental

mechanisms underlying these behaviors [25]. The following sections explore these

approaches in detail.
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Figure 1.2: Melt pool dynamics and associated physical phenomena, as illustrated
in the image, adapted from the article Multiscale Modeling of Powder Bed–Based
Additive Manufacturing by Markl and Körner [26].

1.4 Modeling Trends in Additive Manufacturing

Additive manufacturing has seen significant advancements in modeling techniques,

which are essential for understanding and optimizing the complex physical phenomena

involved. These modeling trends help in predicting process outcomes, improving part

quality, and reducing trial-and-error experimentation. The models can be classified

as follows: (i) multiphysics modeling [20, 27], (ii) data-driven and machine learning

modeling [28, 29], and (iii) computational fluid dynamics (CFD) modeling [30, 31].

1.4.1 Multiphysics Modeling

Multiphysics modeling combines thermal, fluid, and mechanical phenomena to simu-

late key aspects of the AM process, such as melt pool dynamics, solidification, and

residual stresses. Advanced techniques like phase-field models are used to predict

microstructural evolution and material properties [25].

Coupled Thermal-Fluid-Mechanical Models: These models integrate thermal,
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fluid, and mechanical phenomena to simulate the entire AM process. By coupling

heat transfer, fluid flow, and mechanical stress analysis, these models provide a

comprehensive understanding of melt pool dynamics, solidification, and residual stress

states [20].

Phase-Field Models: These models simulate the microstructure evolution during

solidification. Phase-field models are especially valuable for predicting grain structure,

orientation, and segregation patterns, which are crucial for assessing the mechanical

properties of the final part [25].

1.4.2 Data-Driven and Machine Learning Models

Machine learning techniques analyze large datasets to optimize process parameters,

predict defects, and improve part quality. Integrated with real-time monitoring

systems, these models enable adaptive control of the AM process for consistent and

efficient production [32, 28].

Machine Learning for Process Optimization: Machine learning algorithms

are increasingly used to analyze large datasets generated during AM processes. These

models can predict optimal process parameters, identify defects, and improve part

quality by “learning” from historical data [32].

In-Situ Monitoring and Real-Time Control: Advanced sensors and data

acquisition systems are integrated with machine learning models to enable real-

time monitoring and control of the AM process. These systems can adjust process

parameters on-the-fly to mitigate defects and ensure consistent quality [28].

1.4.3 Computational Fluid Dynamics (CFD) Models

Computational fluid dynamics models play a central role in simulating melt pool

dynamics, gas flow, and powder behavior in additive manufacturing. These simulations

provide insights into key phenomena such as convection, Marangoni flow, and keyhole-
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induced porosity, helping to optimize process parameters and reduce defects [30, 31].

By leveraging advanced techniques, CFD enhances the understanding of complex

interactions in laser powder bed fusion processes, ensuring better structural integrity

and material performance.

High-Fidelity CFD: CFD models are used to simulate the flow of molten metal

within the melt pool. These simulations help in understanding the effects of process

parameters on melt pool behavior, such as convection currents, Marangoni flow, and

solidification patterns [30].

Gas Flow and Powder Dynamics: The role of CFD extends to simulating

the behavior of gas flow and powder dynamics within the powder bed fusion envi-

ronment. This aids in our understand of how gas dynamics interact with molten

metal, particularly in the formation and evolution of keyhole defects. As you can

see in Fig. 1.3 simulation take into account the trapping of gases within keyhole

cavities which is a pivotal factor in the development of keyhole-induced porosity. This

aids in achieving uniform powder distribution and reducing defects such as porosity

and lack of fusion, ensuring the structural integrity and performance of the final

product. The incorporation of advanced techniques such as ray-tracing and Fresnel

absorption within these models provides a deeper insight into the complex interplay of

laser energy absorption, melt pool fluid flow, and the thermal dynamics that lead to

porosity formation, particularly under high-energy input conditions typical of LPBF

processes [31].
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Figure 1.3: Simulation of melt pool dynamics and keyhole formation in LPBF processes
modeled in FLOW-3D AM from Refs. [33, 31].

The current state-of-the-art of modelling in AM focuses on integrating multiphysics

simulations [34], leveraging data-driven approaches, and employing advanced com-

putational techniques. These models enhance our understanding of the AM process,

improve part quality, and accelerates the development of new materials and designs. As

these modelling techniques continue to evolve, they will play an increasingly essential

role in advancing AM technologies.

1.5 Role of Fluid Flow in Additive Manufacturing

Among the physical phenomena previously discussed, two are fundamentally critical

to part development during additive manufacturing (AM); fluid flow and solidification.

Specifically, the coupling of fluid flow and solidification processes is essential for gaining

a basic and fundamental understanding of AM [35, 36, 37, 38]. This section first

examines the impacts of fluid flow on solidification, followed by an exploration of the
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various approaches that have been employed to couple these mechanisms.

1.5.1 Impact of Fluid Flow in AM

Convection-driven fluid flow influences concentration, alters temperature and under-

cooling in the melt pool, and affects the resulting microstructure. Refer to Fig. 1.4,

which compares dendrite growth patterns with and without the influence of a fluid

flow field.

Figure 1.4: Comparison of Nb distribution in the middle of the simulation domain
under a temperature gradient of 5× 105 K/m and a solidification velocity of 0.02 m/s.
Comparing the left-hand side (LHS) and right-hand side (RHS) images reveals the
impact of fluid flow—present in the RHS but absent in the LHS—on the concentration
ahead of the dendrite growth direction in the melt pool, which affects the growth
pattern and undercooling . The regions in gray represent dendrites, highlighting the
influence of fluid dynamics on dendrite formation and microsegregation in additive
manufacturing from Ref. [36].

The work by Yu et al. [36] utilizes a two-way coupling approach (coded in C++)

between the dendrite growth model and the computational fluid dynamics (CFD)

model, allowing for dynamic interaction and mutual influence between the dendrite

growth and fluid flow within the simulation environment. While this method effectively

captures the complex interactions between fluid flow and dendritic structures, it
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employs a cellular automaton algorithm, which lacks the precision and detailed

microstructural evolution captured by phase field models [39]. Consequently, while the

cellular automaton provides a computationally efficient approach, it may not resolve

the finer details of phase transformations as accurately as phase field models.

Additionally, Yu and co-workers also report several key findings regarding the

impact of fluid flow on dendrite growth and grain formation in additive manufacturing:

1. Dendrite Morphology: The study illustrates that fluid flow significantly

influences the morphology of dendrites by altering solute distributions and

concentrations in the melt pool, which in turn affects dendritic structures and

growth kinetics.

2. Microstructure Development: Variations in fluid flow lead to changes in

temperature gradients and solidification velocities, impacting the microstructural

development and resulting in varied microsegregation patterns and dendritic

arm spacings.

3. New Grain Formation: Fluid dynamics, especially varying flow velocities and

temperature conditions, enhance the nucleation of new grains at the dendritic

growth front, potentially leading to a more equiaxed grain structure.

4. Modeling Approach: The article utilizes a two-way coupled computational

model between dendrite growth and fluid dynamics, providing a realistic simula-

tion of the interactions that affect solidification processes in additive manufac-

turing.

5. Model Comparison: Although the cellular automaton algorithm used offers

computational efficiency, it lacks the precision of phase field models, which are

better suited for detailed phase transformations and microstructural evolution.

In summary, Yu et al. [36] found that fluid flow redistributes solutes like Nb,
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enhancing undercooling near dendrites aligned with the temperature gradient (A-

TGD), accelerating their growth, while reducing undercooling for misaligned dendrites

(D-TGD), slowing their growth. This leads to uneven dendrite tip heights, increased

primary dendrite arm spacing (PDAS), and reduced dendrite density. Moreover,

fluid-driven solute accumulation promotes new grain nucleation, disrupting continuous

dendrite growth.

Tang and Du [35] utilized OpenFOAM [40] to simulate the 3D melt pool dy-

namics and temperature evolution during laser AM of Ni-based alloy. They linearly

interpolated the data from the flow simulation to a solidification model using a 2D

phase-field method. After extracting the temperature from the fluid flow model, they

set the phase-field variable ϕ = −1 (indicating liquid) based on the liquidus point

temperature and updated the dimensionless supersaturation variable U accordingly.

However, the phase-field model did not incorporate or update the velocity

field, focusing solely on microstructural evolution driven by temperature

and solute concentration. They general results are;

1. Model Validation: The model accurately predicted the melt pool profile,

dendrite size, morphology, and texture, showing good agreement with the

experimental data.

2. Solidification Process: Initial solidification features planar growth transi-

tioning to cellular and dendritic patterns. Competitive grain growth favours

well-oriented grains over misoriented ones during both the planar-to-cellular

transition and the later stages of solidification as evident in Fig. 1.5.

3. Solute Trapping: Significant solute trapping occurred at high solidification

velocities, indicating deviations from local equilibrium.

4. Multi-Physics Framework: The integrated CFD and PF models effectively

simulated dendritic solidification, providing insights into cellular microstructure
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Figure 1.5: Temporal evolution of dendritic microstructure during solidification at
different time steps: (a) 230 µs, (b) 260 µs, (c) 290 µs, (d) 330 µs, (e) 410 µs, and
(f) 550 µs. The figure illustrates the progression from planar growth to cellular and
dendritic structures, highlighting the planar-to-cellular transition and the formation
of secondary side branches [35].

formation, competitive grain growth, and solute segregation.

Figure 1.5 depicts the temporal evolution of the dendritic microstructure during

solidification at various time steps. The solidification process starts with planar growth

at 230 µs, transitions to cellular growth by 290 µs, and develops into well-defined

dendritic structures by 550 µs. The transition from planar to cellular growth and the

formation of secondary side branches are clearly visible, illustrating the competitive

growth dynamics between well-oriented and misoriented grains [35].
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1.5.2 Types of Coupling for Fluid Flow

Coupling in fluid flow allows the interaction between physical phenomena. The

variations and mthods of coupling include:

• Thermal Coupling: Interaction between temperature gradients and fluid flow,

affecting heat transfer and solidification rates [37, 38].

• Solutal Coupling: Solute concentration gradients drive fluid flow, influencing

microstructure and segregation [36].

• Two-Way Coupling: Feedback between fluid flow and solid growth, where

flow alters dendrite morphology, and dendrites affect flow [35] as illustrated in

the schematic shown in Figure 1.6.

• Convective Coupling: Heat and solute transport via convection, critical for

uniformity and defect prevention [37].

• Diffusive-Convective Coupling: Combined diffusion and convection, shaping

thermal and solutal fields in AM [38].

These couplings provide critical insights into microstructure.

Figure 1.6: Streamlines of fluid flow demonstrating two-way coupling [36].
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1.5.3 Coupled Fluid Flow and Solidification

The development of coupled fluid flow and solidification models in AM typically begins

with a fundamental understanding of the individual physical phenomena. Initial models

often use simplified assumptions and gradually incorporate more complexity as the

understanding of the interactions between fluid flow, heat transfer, and solidification

improves.

To begin the development, one should start by implementing a microstructural

model. To date, the most comprehensive is the phase field dendritic models like

those in [41] and [42]. Implementing these models ensures the consistency of the fluid

flow and microstructure model. The computational resources and simulation domain

required for these examples are significantly less demanding than those needed for the

full AM domain, enabling quicker and more efficient testing.

After verifying these initial models, one can proceed to benchmark the result

formulation against those already found in literature, e.g. Ref [27]. Benchmarking

these models against established results is a indeed an essential step. Following

successful benchmarking, more complex models may be attempted such as those

presented in [42] and [36].

It is important to note that the fluid flow models in the vast majority of existing

literature assume laminar flow. However, in fully coupled models, where the solid

geometry may be complex, the interaction resulting fluid flow can lead to turbulence.

Therefore, it is advisable to test thoroughly under various flow conditions to establish

the range of validity of one’s coupled model formulation.

1.6 Thesis Outline

After discussing the challenges in additive manufacturing (AM) and the importance of

effectively coupling fluid flow and solidification, the subsequent chapters are briefly and
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generally outlined. These chapters aim to address the development of a comprehensive

model for simulating solidification and fluid flow in AM. The chapters are organized to

provide a structured, step-by-step approach, with each phase of development focusing

on a key aspect of the physical processes involved. The steps and their corresponding

chapters in the thesis are highlighted below.

Solidification Microstructure Model Development: In the standard approach

for this field, the development of a Phase-Field (PF) model will begin with simulations

of solidification in binary alloys, as illustrated in Fig. 1.7. This model incorporates

both thermal and solutal effects, allowing for detailed simulations of microstructural

evolution during solidification. The accuracy of the model will be validated by

benchmarking against established results and other theoretical formulations. This is

discussed in Chapters 2.

Figure 1.7: The image on the left, taken from [43], depicts the solidification process of
an additively manufactured IN718 alloy within the melt pool. It specifically shows
nucleation and dendrite growth during the early stages of solidification, where nuclei
form in the liquid phase and grow into columnar and equiaxed dendrites. The field on
the left represents the solute concentration of Nb, highlighting variations in solute
distribution, while the field on the right represents the order parameter, capturing the
transition from liquid to solid during the solidification process. The right image is an
equiaxed from a simulation done in testing phase-field for this work.

Fluid Flow Model Development: After the successful development of the solidifi-

cation model, attention will shift to the development of a fluid flow model based on the
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Navier-Stokes equations. Key phenomena, such as Marangoni convection, buoyancy,

and flow within the melt pool, will be integrated to accurately simulate the dynamics

of fluid flow in additive manufacturing (AM) processes, as shown in Fig. 1.8. These

phenomena are crucial for controlling temperature and concentration gradients during

the build process. This topic is explored in detail in Chapter 3.

Figure 1.8: Fluid flow simulation taken from Ref. [44]. The image shows the effect of a
temperature gradient between the left and right walls, which induces a Marangoni force
on the top boundary due to the temperature-dependent surface traction coefficient.
Both isotherm lines and velocity vectors, visualized using COMSOL, demonstrate the
resulting fluid flow dynamics.

Optimizing Formulations: After developing the model, further optimization was

required. A coordinate-based adaptive meshing scheme was implemented in FEniCS

to reduce computational costs (see Figure 1.9).
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Figure 1.9: Adaptive meshing scheme. The adaptive meshing scheme depicted here
refines the mesh specifically around the interface between the liquid and solid phases
during solidification. The interface is identified by computing the gradient of the
order parameter, and a defined threshold is used to selectively refine mesh elements in
regions where the gradient surpasses this value. This approach enhances resolution in
critical regions near the interface, allowing for accurate capture of interface dynamics,
while maintaining a coarser mesh in less critical areas of the simulation domain to
optimize computational efficiency and reduce unnecessary computational expense

Coupling PF and Fluid Flow Models: The final stage involved coupling the

solidification and fluid flow models into a unified framework. This topic is discussed

in Chapter 4. The fully coupled model enables the simultaneous simulation of phase

changes and fluid dynamics during AM. Figure 1.10 illustrates an overview of this

section. By capturing the interactions between fluid flow and dendritic growth, the

model provides a more accurate prediction of microstructure evolution and material

properties in the completed part.
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Figure 1.10: Coupled fluid flow and solidification models. The top-left image is taken
from [36], while the top-middle, bottom-left, and bottom-middle images are taken
from [27]. The bottom-right image is from [45]. The top-right image shows the
simulation performed in Chapter 4 of this study, Implemented to benchmark the
coupled model of solidification and fluid flow.

After establishing the coupled model formulations, the focus shifts to the application

of the model. Before proceeding, the developed PF model is used to provide a reference

microstructure without fluid, as detailed in Chapter 5, following established work in

the literature that defines a set of temperature gradient and velocity parameters for

AM. Subsequently, in Chapter 6, the model is applied to obtain preliminary results

on the effects of fluid flow on length scale determination in AM.

Finally, Chapter 7 offers a summary, including concluding remarks, a discussion

of the remaining challenges, and an outlook on the future directions of the work

presented in this thesis.



Chapter 2

Phase Field Theory

The Phase Field Method (PFM) has become a powerful and versatile computational

technique for modelling and simulating various phase transitions and microstructural

evolutions in materials. Unlike traditional sharp interface models [46], the phase field

method utilizes a diffuse interface approach. In Fig. 2.2, the order parameter ϕ shows

a smooth and continuous transition from the solid to the liquid region, effectively

capturing the dynamics of the interface. This chapter explores the principles and

applications of the phase field method.

Figure 2.1: Order parameter provides a continuous representation of interfaces with
greater computational simplicity and flexibility [47].

22
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2.1 Principles of the Phase Field Method

The methodology typically begins with the phenomenological construction of a free

energy functional, F [47, 48]. In the case of pure material solidification, this functional

is expressed in terms of the temperature and polynomial terms of the order parameter

ϕ employed to model the phase transition. The scalar order parameter (or phase-field)

represents the two equilibrium phases, withϕ = 1 in the solid phase and ϕ = −1 in the

liquid phase. The field of the order parameter smoothly transitions between these two

equilibrium values across a diffuse interface of thickness W , where −1 < ϕ < 1. The

evolution of this order parameter is governed by a set of partial differential equations

derived from thermodynamic principles and kinetic considerations as consequence of

the postulated function F . The primary components of PFM can be reduced to; (i)

order parameter field that represents the state of the system, with values indicating

different phases or orientations, (ii) free energy functional (F) which describes the

thermodynamic potential of the system, incorporating bulk free energy and gradient

energy contributions and (iii) evolution equations described by a set of PDEs that

describe the temporal evolution of the order parameter field driven by the minimization

of the free energy.

2.2 Overview of Phase-Field Modeling Principles

Building upon the Ginzburg-Landau [49] and Cahn-Hilliard [50] theories, the phase-

field method employs an order parameter ϕ (Fig. 2.2) to smoothly represent phase

transitions and microstructural evolution.The method begins with a free energy

functional (F), which governs system behavior. For a pure material, it is expressed

as [51]:

F [ϕ, U ] =

∫
dr

(
1

2
W (n)|∇ϕ|2 + f(ϕ) + λU(T )g(ϕ)

)
, (2.1)
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For binary alloys, the functional includes a chemical free energy term, fc(ϕ, T, c),

that accounts for solute concentration, c:

F [ϕ, c] =

∫
dr

(
1

2
W (n)|∇ϕ|2 + f(ϕ) + fc(ϕ, T, c)

)
. (2.2)

The parameters are in the Tab. 2.1. Now, what are the evolution equations for the

phase field and concentration? The phase field, ϕ, evolves according to:

τ(n)
∂ϕ

∂t
= −δF [ϕ, c]

δϕ
, (2.3)

where τ(n) is a relaxation time that controls interface kinetics.

The concentration field, c, id the following dynamics:

∂c

∂t
= ∇ ·

(
M(ϕ, c)∇δF [ϕ, c]

δc

)
, (2.4)

whereM(ϕ, c) sets the mobility of solute atoms, proportional to the diffusion coefficient.

This equation can be rewritten in the form:

∂c

∂t
+∇ · J = 0, (2.5)

with the flux, J, expressed as:

J = −M(ϕ, c)∇µ, (2.6)

where µ ≡ δF [ϕ,c]
δc

is the chemical potential.



25

Table 2.1: Summary of Parameters in the Phase-Field Model [51, 47].

Parameter Symbol Description
Interfacial energy W (n) Controls interfacial energy and introduces

anisotropy via the interface normal n. Anisotropy
is modeled as:

a(n) = (1− 3ϵ4)

(
1 +

4ϵ4
1− 3ϵ4

(nx + ny + nz)

)

Bulk free energy f(ϕ) Models the double-well potential, stabilizing ϕ =
±1 for solid and liquid phases:

f(ϕ) = −ϕ2

2
+

ϕ4

4

Coupling constant λ Couples the capillary length d0 and interface width
W . It scales as:

d0 = a1
W0

λ

where a1 = 0.8839 and a2 = 0.6267 are constants
based on asymptotic analysis.

Dimensionless temperature U(T ) Normalized temperature, defined as:

U(T ) =
T − Tm

L/cp

where T is temperature, Tm is melting temperature,
L is latent heat, and cp is specific heat.

Interpolation function g(ϕ) Smoothly interpolates phase transitions, satisfying
g(±1) = 1 and g′(±1) = 0. A common form is:

g(ϕ) =
15

8

(
ϕ5

5
+ 2

ϕ3

3
− ϕ

)

Chemical free energy fc(ϕ, T, c) Models solute concentration effects and corrects
spurious kinetics. For dilute alloys:

fc(ϕ, T, c) = fA (Tm)−∆Ts(ϕ)
+RTm

vo
(c ln c− c) + ϵ(ϕ)c

with fA(Tm) being the free energy of component
A at melting, s(ϕ) is the interpolated entropy, R
is the gas constant, vo is molar volume (of the
solvent), and ϵ(ϕ) is interpolated internal energy.
Corrections include anti-trapping fluxes and modi-
fied interpolation functions to eliminate spurious
effects.
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Figure 2.2: The double-well potential (Eq. 2.1) illustrating the energy density, f(ϕ) +
λUg(ϕ), as a function of the order parameter (ϕ) for different temperatures (U). The
curves show how the energy landscape evolves with temperature, with the liquid phase
(ϕ = −1) being favoured at high temperatures and the solid phase (ϕ = 1) favoured
at low temperatures [51].

The PFM provides a thermodynamically consistent framework for simulating mi-

crostructural evolution during phase transformations by defining phase transitions and

interface dynamics through a free energy functional that incorporates interfacial energy,

bulk energy, and coupling terms. Key parameters, such as the capillary length (d0), are

derived from microscopic properties using asymptotic analysis, ensuring quantitative

agreement with sharp-interface models via thin-interface limits. Constants a1 and

a2 are calibrated through asymptotic expansions to capture interface kinetics and

curvature effects accurately. The resulting equations couple phase and concentration

fields, enforcing mass conservation and energy minimization, while additional cor-

rections—such as anti-trapping currents and anisotropic interface kinetics—enhance

numerical stability and physical accuracy.
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2.3 Solidification Modeling

Phase-field equations are particularly effective in describing the process of solidification,

where a liquid transforms into a solid. In such scenarios, the phase field method cap-

tures the complex dynamics of interface movement, undercooling, and microstructure

formation. The evolution of the solid-liquid interface during solidification is influenced

by: (i) undercooling - the degree of undercooling (the temperature below the melting

point) drives the nucleation and growth of solid phases. Higher undercooling rates can

lead to finer microstructures. This is the driving force for the transformation and can

also be described by the supersaturation. (ii) interface kinetics - The rate at which the

solid-liquid interface moves is governed by kinetic coefficients and the local thermody-

namic driving forces, and (iii) anisotropy - the direction dependence of surface energy

and interface mobility can lead to the development of dendritic structures, which are

commonly observed in solidified metals. In Fig. 2.3, a representative phase-field model

simulation illustrates the solidification process of a pure liquid material, capturing the

evolution of the solid-liquid interface and the formation of the microstructures
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Figure 2.3: Snapshot capturing the evolution of a thermal dendrite for a pure material,
showing a four-fold crystal growing into an undercooled liquid. The four frames, viewed
clockwise from the top right, display: (1) temperature distribution (red indicates the
highest temperature, blue the lowest), (2) interface position (where ϕ = 0), (3) phase
field (solid in red, liquid in blue), and (4) dynamically adapted mesh resolving the
temperature and phase field [48].

There are numerous PF models and methodologies available; however, this work

introduces and focuses on two well-known models. The first is forisothermal alloy

solidification, while the second is for thermosolutal alloy solidification, which combines

the physics of both mass and heat transfer.

Isothermal Alloy Solidification Model

The isothermal alloy solidification model is employed to describe the solidification

process in alloys under fixed thermal conditions, where only mass transport is con-

sidered. In a special case of this formulation, adopted here, the model assumes a

”frozen temperature” approximation, where the temperature gradient applied remains

constant throughout the solidification process. The governing equations for this model,
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derived for dilute alloys, are detailed in Ref. [52]. The equations read;

τ0

[
1− (1− k)

z − Vpt

lT

]
∂ϕ

∂t
= W 2∇2ϕ+ ϕ− ϕ3 − λg′(ϕ)

(
U +

z − Vpt

lT

)
(2.7)

(
1 + k

2
−1− k

2
h(ϕ)

)
∂U

∂t

= ∇⃗ ·
(
Dq(ϕ)∇⃗U + a(ϕ)W [1 + (1− k)U ]

×∂ϕ

∂t

∇⃗ϕ

|∇⃗ϕ|

)
+ [1 + (1− k)U ]

1

2

∂h(ϕ)

∂t
,

(2.8)

where Eq. 2.7 is the kinetic equation for the order parameter, while Eq. 2.8 drive the

mass transport process through the description of a dimensionless chemical potential,

U .The variables and parameters used in these equations are detailed in Tab. 2.2,

respectively. The variables used in this study are defined as follows. The dimensionless

temperature is given by θ = T−Tm−mc∞
L/cp

, while the dimensionless concentration is

expressed as U = exp(u)−1
1−k

. The dimensionless chemical potential is represented

by u = ln
(

2c
c∞

1+k−(1−k)ϕ
1+k−(1−k)ϕ

)
. The unit vector normal to the interface is defined as

n = ∇⃗ϕ

|∇⃗ϕ|
. The scaled magnitude of the liquidus slope is described by M = −m(1−k)

L/cp
.

The characteristic time scale is expressed as τ(n) = A(n)2
[

1
Le

+Mc∞[1 + (1− k)U ]
]
,

where the anisotropy function A(n) = ϵ(1 + cos 4θ) depends on θ, the angle between

the normal to the interface and a crystalline fixed axis (e.g., Z-axis). The Lewis

number, Le = α
D
, represents the ratio of thermal diffusivity (α) to mass diffusivity

(D). The interface width is defined as W0 =
d0λ
a1

, involving the coupling constant λ,

the capillary length d0, and a constant a1. Finally, the characteristic time scale is

given by τ0 =
(

a21
D

)
a2

λ3

a22
.
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Table 2.2: Summary of Parameters Used in the thermosolutatal model

Parameter Symbol Description
Characteristic time scale τ0 Determines the timescale for the evolution of

the phase field
Partition coefficient k Ratio of solute concentration in the solid

phase to that in the liquid phase at equi-
librium

Spatial coordinate z Spatial position along the temperature gradi-
ent

Pulling velocity Vp Velocity at which the temperature gradient
moves through the material

Thermal length lT Characteristic length scale over which tem-
perature varies

Phase field ϕ Order parameter distinguishing solid (ϕ = 1)
and liquid (ϕ = −1) phases

Interface width W Thickness of the diffuse interface between
solid and liquid phases

Coupling constant λ Controls the coupling strength between capil-
lary length d0 and interface width W

Dimensionless concentration U Non-dimensional concentration field
Solute diffusivity D Solute diffusion coefficient in the liquid phase
Gradient energy q(ϕ) Modifies diffusivity based on phase field
Interpolation function a(ϕ) Influences the mobility of the interface
Dimensionless temperature θ Temperature normalized relative to the melt-

ing point
Anisotropy function A(n) Direction dependence of surface energy
Lewis number Le Ratio of thermal diffusivity (α) to mass diffu-

sivity (D)
Thermal diffusivity α Describes the rate of heat diffusion
Latent heat L Heat released during the phase transition
Specific heat cp Heat capacity of the material
Initial solute concentration c∞ Far-field concentration of solute

Thermosolutal Alloy Solidification Model

The thermosolutal alloy model describes the solidification process in binary alloys,

incorporating the effects of both heat and solute diffusion. This model is essential for

understanding the microstructural evolution during the solidification of alloys, where

the temperature and solute concentration fields are coupled. The governing equations
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for the thermosolutal alloy model are presented in Ref [53]. These equations read,

τ
∂ϕ

∂t
= W 2∇2ϕ+ ϕ− ϕ3 − λg′(ϕ) (θ +Mc∞U) , (2.9)

1 + k

2

∂U

∂t
= ∇⃗ ·

(
D
1− ϕ

2
∇⃗U +

W

2
√
2
[1 + (1− k)U ]

∂ϕ

∂t

∇⃗ϕ

|∇⃗ϕ|

)

+
1

2

∂

∂t
{ϕ[1 + (1− k)U ]},

(2.10)

∂θ

∂t
= α∇2θ +

1

2

∂ϕ

∂t
, (2.11)

By design, the two sets of models are practically identical. It is important to

highlight the introduction of the third kinetic equation, Eq. 2.11, which governs heat

transport. The parameters in these equations are defined in Tab. 2.2.

2.4 Development of the Thermosolutal Model Al-

gorithm

As part of this thesis and work, the author has developed algorithms that solve these

model equations, specifically, Eqs. 2.9–2.11. The codes can be found in Appendix A.

For Fig. 2.4, this study used 10 processors (CPUs) on one node with minimum 10 GB

memory and 7 days running time using 2 x Intel Gold 6148 Skylake @ 2.4 GHz CPUs

on the Béluga cluster [54]. This was for typical numerical parameters, and the timing

is expected to change if numerical parameters change.
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Figure 2.4: (a) Comparison between the simulation done by reference [53] (b) and
this study’s simulation. (c) Developed dendrite picture .

The conditions used to generate Fig. 2.4 are summarized in Tab. 2.3. The initial

condition for the dimensionless concentration U is set to 0, while the initial condition

for ϕ is defined using a hyperbolic tangent function. Since boundary conditions are

not explicitly specified, the Finite Element Method (FEM) assumes natural Neumann

boundary conditions by default.
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Table 2.3: Summary of Parameters and Initial Conditions

Parameter Description (Value)

dt Time step size (0.0048)

dy Grid spacing (0.4)

Nx number of grid points in the x-direction (500)

Ny number of grid points in the y-direction (500)

max level Maximum coarsening level (5)

w0
Interface thickness, used as the characteristic length scale
(set to 1)

τ0
Characteristic time scale used as the reference time unit
(set to 1)

at anti-trapping constant, at =
1

2
√
2

ϵ4 Fourth-order anisotropy strength (0.02)

keq Equilibrium partition coefficient (0.15)

λ Coupling strength (12.7653)

∆ Set initial condition of θ (0.55)

mc∞ constant (0.5325)

a1 Scaling constant (0.8839)

a2 Scaling constant (0.6267)

d Capillary length, d = a2 · λ

α Thermal diffusivity, α = d · le

d0 capillary length

Initial Circle radius Initial circle radius (65 · d0)
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2.5 Adaptive Mesh Refinement

Using an adaptive mesh provides the advantage of reducing the number of elements

in the simulation domain while maintaining the required resolution in critical regions.

As shown in Tab. 2.4, increasing the domain size from 80 to 160 (dimensionless by

W0) quadrupled the number of elements, from 80,000 to 320,000. Without adaptive

meshing, computation time increased significantly, from 20 minutes to 1 hour and

30 minutes (4.5x). In contrast, with adaptive meshing, the increase was minimal,

from 3 minutes to 3 minutes and 26 seconds, highlighting its efficiency in optimizing

computational resources. This approach ensures that computational resources are

focused on areas of interest, such as the interface or regions with steep gradients, while

allowing coarser elements in less significant parts of the domain, thereby optimizing

computational efficiency. As shown in Fig. 2.5, the mesh effectively “tracks” the

interface, ensuring high resolution where it is needed, while avoiding unnecessary

refinement in other regions of the domain.

Figure 2.5: The adaptive mesh refinement process: (a) refinement around the seed,
(b) tracking the interface between solid and liquid regions, and (c) expansion of the
interface as the solid grows.

Using existing libraries and built-in functions in FEniCS, along with the imple-

mentation of additional functions to manage the determination of location of the

diffuse interface region and parallel running communication, this study developed an

adaptive meshing scheme. By incorporating ideas from [55], the adaptive meshing
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scheme developed using the FEniCS library effectively tracks the interface and refines

the mesh around it. See Fig. 2.5 which illustrates the mesh re-refinement at different

stages.

Unlike the hierarchical mesh refinement schemes used by Freddi and Mingazzi [55],

which rely on tracking parent-child relationships, this approach directly marks mesh

elements based on spatial coordinates.

The method begins with a single coarse mesh and the simulation mesh. After

a specified fixed number of iterations (e.g., 20), the interface coordinates (x, y) are

identified based on the gradient of the order parameter ϕ. Using the coarse mesh, only

the elements containing these interface region coordinates are refined. The refinement

process is restricted to a specified number of refinement levels (e.g., four levels), where

elements in the coarse mesh are iteratively marked and refined using FEniCS’s built-in

refine() function.

Although this approach works seamlessly in serial execution, challenges arise in

a parallel environment, where the mesh is distributed across multiple processors.

Since FEniCS redistributes mesh elements after each refinement, interface coordinates

may correspond to elements that reside on different processors, causing potential

synchronization errors.

To address this, all interface coordinates are gathered on a designated root processor

(e.g., root=0) and broadcasted to all processors. Each processor then loops through all

interface coordinates, refining only the elements it owns and ignoring points outside its

assigned mesh partition. This approach ensures that all interface points are considered,

making the refinement process robust and compatible with parallel execution.
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Table 2.4: Comparison of Adaptive and Non-Adaptive Meshing for Isothermal Phase
Field Modeling. All simulations were conducted at 104 time steps and utilized 8 MPI
processes on an M3 Apple Silicon chip with 32 GB of RAM. The relative L2 norm
measures the normalized difference between the adaptive and non-adaptive solutions,
using the non-adaptive solution as the reference.

Domain
Size

Adaptive
Meshing

Wall Clock
Time (h:m:s)

Relative L2 Norm
for ϕ Field

Number of
Cells

80× 80 Yes 03:03 0.0001572 6,378-17,402
80× 80 No 20:15 - 80,802
160× 160 Yes 03:26 0.0009806 6,582-17,898
160× 160 No 1:33:22 - 321,602

2.6 Thermosolutal Benchmark

To validate and verify the algorithm, this study extracted data from the original

reference article that introduced thermosolutal equations. Data extraction was per-

formed using specialized software to obtain it from images/figures in the articles. The

extracted data are represented by red dots in Fig. 2.6. The correspondence between

this extracted data and the blue graph, which represents the data from this study,

was then investigated. Some errors are related to the data extraction process from the

article images.
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(a) Tip velocity in x-direction vs time.
(b) U or dimensionless concentration vs
x-coordinate.

(c) Tip velocity in x-direction vs time.
(d) U or dimensionless concentration vs
x-coordinate.

Figure 2.6: The blue line represents data from this study, while the red dots were
extracted from the reference article [53] images using specialized software [56]. The
different λ values used in the reference article demonstrate that the coupling parameter
λ has no effect on the model’s convergence.

The article [53] presents two sets of graphs: one showing the tip velocity along the

x-axis versus time, and the other depicting the dimensionless concentration U with

respect to the x-coordinate. The λ values used in the reference article demonstrate

that the coupling parameter λ has no effect on the model’s convergence.

The parameter λ couples the interface width W with the capillary length d0, where

the capillary length represents the physically significant factor, while the interface

width W is an arbitrarily chosen numerical parameter. This distinction explains why

the article uses two different λ values to validate the same convergence behavior,
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confirming that the computed results remain consistent regardless of the choice of W .

A summary of the simulation parameters can be found in Tab. 2.3, which are used

in the simulation shown in Fig. 2.4 and benchmarked in Fig. 2.6.



Chapter 3

Fluid Flow

3.1 Navier–Stokes Equation

The Navier–Stokes equations, developed in the 19th century by Claude-Louis Navier

and George Gabriel Stokes, transformed the field of fluid mechanics. These equations

capture the intricate interplay of inertia, viscosity, pressure, and external forces to

describe fluid motion. Serving as the cornerstone of modern fluid dynamics, they enable

the modeling of phenomena ranging from blood flow in veins to turbulent airflows

around aircraft [57]. Despite their apparent simplicity, the Navier–Stokes equations

are notoriously challenging to solve due to their nonlinear nature and the complex

coupling between velocity and pressure fields. This inherent difficulty has driven

extensive research, ranging from analytical solutions for simplified cases to advanced

computational methods that tackle their complexity in real-world applications.

At the heart of fluid dynamics lies the Navier–Stokes equations, describing the

conservation of momentum(Eq. 3.1) for a fluid. These equations are derived from

Newton’s second law and augmented with constitutive relations for fluid stresses.

Mathematically, they are expressed as:

39
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ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · [µ(∇u)] + ρg + f⃗ (3.1)

Accompanying the momentum equation is the continuity equation, which ensures

the conservation of mass:

dρ

dt
+ ρ∇ · u = 0 (3.2)

Fluid motion rarely exists in isolation; it interacts with other physical phenomena

in fascinating ways. One such interaction is the Marangoni effect, where surface tension

variations due to temperature gradients induce fluid motion. This effect, coupled

with buoyancy forces arising from density variations, plays a critical role in processes

such as welding, crystal growth, and additive manufacturing. Mathematically, the

contribution of surface tension to fluid motion is expressed as:

s⃗surface tension =
∂σ

∂T
γ∇tT, where γ =

∣∣∣∣ dσdT
∣∣∣∣ , (3.3)

where σ represents the surface tension, T denotes the temperature, and ∇tT cor-

responds to the tangential temperature gradient. The coefficient γ characterizes

the sensitivity of surface tension to temperature variations, emphasizing the role of

thermocapillary forces in influencing fluid dynamics.

To simulate fluid flow governed by these physical principles, an appropriate numeri-

cal method must be selected. Common approaches include the finite difference method,

the finite volume method, and the FEM. In this work, FEM is employed due to its

flexibility and accuracy in handling complex geometries and boundary conditions.

In FEM, equations such as (3.1) and (3.2) are initially presented in their strong

form, which directly represents the governing partial differential equations (PDEs).

However, FEM requires these equations to be reformulated into the weak form to

enable their discretization and numerical solution.
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The weak form is derived by multiplying the strong form of the equations by test

functions and integrating over the domain, thereby redistributing the differentiability

requirements across the solution space. This method is essential for solving PDEs

using the FEM and forms the basis for the numerical simulations in this study.

For detailed methods on deriving and solving the weak form of the Navier–Stokes

equations, readers can refer to Peterson et al. (2018) [58], which employs a monolithic

approach, or Dokken et al. (2023) [59], which uses a splitting method. Both approaches

offer valuable insights into addressing the challenges of fluid flow simulations using

FEM.

3.2 Fluid flow coupled with Marangoni and Buoy-

ancy

To develop the fluid flow model, the author began by implementing a FEM code

using the FEniCS library. Before coupling the fluid flow model with other complex

physics, such as solidification, it was crucial to verify the correctness of the imple-

mentation. This step ensures that the partial differential equations (PDEs) and their

corresponding forms are accurately defined and solved. Verification is an essential

process because, in coupled simulations, errors can arise from multiple sources, making

it challenging to identify the root cause of convergence issues. By thoroughly testing

and isolating the fluid flow model, the author ensures confidence in its accuracy. This

foundation allows any subsequent errors to be attributed to the newly introduced

physics, rather than the fluid flow model, streamlining debugging and validation efforts.

The benchmarked results are essential to validate the accuracy and reliability of

the developed fluid flow model. These benchmarks, including the Marangoni effect and

buoyancy-driven convection, are critical for understanding fluid behavior in additive
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manufacturing processes. The examples were chosen because they represent key

physical phenomena (see Fig 3.1) that dominate in such scenarios, providing a robust

basis for comparing the FEniCS implementation with the established COMSOL Mul-

tiphysics results. By demonstrating agreement between these models, the benchmarks

confirm the fidelity of the simulation framework and its capability to handle coupled

fluid flow phenomena.

To develop this model, an initial step involves reproducing and benchmarking

a simulation of fluid flow using COMSOL Multiphysics [60]. COMSOL was chosen

for this purpose because it employs finite element discretization for solving physical

phenomena, making it highly relevant to the problem at hand. Additionally, as a

widely recognized and commercially available code, COMSOL is trusted in industry

and academia, making it a reliable reference for validating and verifying the model.

The example in Ref. [60] showcases a simulation (see Fig. 3.2) of the Marangoni

effect using COMSOL Multiphysics. This effect, occurring due to changes in surface

tension caused by temperature differences across a fluid interface, is demonstrated in

a 2D model of a vessel filled with silicone oil. The setup for the simulation involves

applying a temperature gradient across the oil, which adjusts the surface tension and

induces fluid flow. The primary aim is to analyze the resulting temperature field and

flow pattern within the vessel. To achieve this, the model employs the Boussinesq

approximation [61] for considering the density variations due to temperature changes,

which influence the fluid dynamics. The summary of the simulation parameters is in

Tab. 3.1.



43

Table 3.1: Physical constants and temperature parameters used in the simulation of
the Marangoni effect [60].

Parameter Value Description
Physical Constants

Gravitational
acceleration (g)

−10m/s2
Acceleration
due to gravity.

Density
(ρ)

760 kg/m3 Fluid
density.

Dynamic
viscosity (µ)

4.94× 10−4 Pa · s Dynamic viscosity
of the fluid.

Thermal
conductivity (k)

0.1W/(m ·K)
Thermal conductivity

of the fluid.
Heat

capacity (Cp)
2090 J/(kg ·K)

Specific heat
capacity.

Thermal expansion
coefficient (α)

1.3× 10−3 1/K
Coefficient of thermal

expansion.
Surface tension

temperature derivative (γT )
−8× 10−5N/(m ·K)

Change in surface tension
with temperature.

Temperature Constants
Reference

temperature (Tref)
273.15K

Reference
temperature.

Right boundary
temperature (Tright)

273.15K
Temperature on the
right boundary.

Temperature
difference (∆T )

2K
Temperature difference
across the domain.

Left boundary
temperature (Tleft)

Tright +∆T
= 275.15 K

Temperature on the
left boundary.

Figure 3.1: Key physical phenomena chosen for inclusion in fluid flow are highlighted
here. The image is reproduced from the MeltPoolDG repository [19].
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Figure 3.2: The temperature gradient between the left and right walls induces a force
on the top boundary due to the temperature-dependent surface traction coefficient,
representing the Marangoni force, which drives the fluid flow. In (a) (top), velocity
vectors are illustrated using ParaView, while the corresponding isotherm lines are
shown at the bottom. In (b), both isotherm lines and velocity vectors are plotted
using COMSOL, enabling a comparative visualization of the models developed in
FEniCS [62] and COMSOL [44].
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Figure 3.3: Quantitative comparison of the fluid flow models: FEniCS (top) and
COMSOL (bottom) [44].

Figure 3.3 presents a quantitative comparison between the developed FEniCS

model and the COMSOL example. The blue curve represents the combined effects

of Marangoni convection and buoyancy, while the green and red curves depict the

Marangoni and buoyancy effects individually. The results indicate that the Marangoni

effect dominates over buoyancy at high temperature gradients, as shown by the greater

surface velocities in the green curve compared to the red.



Chapter 4

Mutliphysics: Coupling Phase field

with Fluid Flow

4.1 Alterations in Mathematical Formulations Due

to Coupling

When a laser strikes the powder in additive manufacturing, it melts the material

to create a molten pool. Within this melt pool, fluid flow occurs due to physical

phenomena such as surface tension gradients and buoyancy forces. As the laser moves

away and the temperature cools, solidification begins at the bottom of the melt pool.

This growing solid alters the geometry of the melt pool and blocks fluid flow, disrupting

existing flow patterns. The fluid flow within the melt pool also transports solute

concentration and redistributes heat, affecting the temperature profile ahead of the

solid-liquid interface. These changes, in turn, influence the growth dynamics of the

solid, creating a tightly coupled interaction between fluid dynamics and solidification

processes.

To simulate and model these governing physics, the PDEs describing fluid flow and

solidification must be coupled and modified. The solidification equations, as introduced

46
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in Eqs. (2.7) and (2.8), require the inclusion of convection terms to account for the

influence of fluid flow (refer to Eqs. 4.1 and 4.3). Note in this model, the temperature

field is not explicitly solved. Instead, temperature-driven effects such as buoyancy

and Marangoni forces are incorporated through predefined temperature gradients

or temperature-dependent coefficients. While directly solving the temperature field

would provide greater precision, this approach simplifies the model, allowing for a

step-by-step increase in complexity as the simulation framework evolves. Similarly, the

Navier–Stokes equations, which govern the fluid flow, must account for the presence

of the emerging solid. As the solid obstructs the flow, the equations need to adapt,

ensuring that fluid flows around the solid rather than through it (refer to Eq.4.4) [27].

This interplay is essential for accurately capturing the multiphysics behavior in the

melt pool.

τ(n)

[
∂ϕ

∂t
+ v · ∇ϕ

]
= (ϕ− ϕ3)− λ(θ +Mc∞U)(1− ϕ2)2

+∇ · [W (n)2∇ϕ] +
∂

∂y

(
|∇ϕ|2W (n)

∂W (n)

∂(∂yϕ)

)
+

∂

∂x

(
|∇ϕ|2W (n)

∂W (n)

∂(∂xϕ)

) (4.1)

Adding convection (v · ∇c) to the equation of concentration evolution [27]:

∂c

∂t
+ v · ∇c = ∇ ·

[
Dc

(1− ϕ)

2
∇u− jat

]
(4.2)

where c denotes the solute concentration, and jat = −2W (1− k)c0e
u ∂ϕ
∂t

∇ϕ
|∇ϕ| represents

the solute flux from solid to liquid along the interface normal, mitigating unphysical

effects associated with the finite interface thickness. The dimensionless variable u for

c is defined as

u = ln
(

2c
c0[1+k−(1−k)ϕ]

)
,

capturing the deviation of the chemical potential from equilibrium at tempera-
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ture T0 with liquidus concentration c0. To facilitate numerical computations, the

transformation

U = eu−1
1−k

(see Tab. ??) is introduced, enabling the reformulation of the solute conservation

equation in Equation (2) using the dimensionless variable U [27]. It is important

to note that this formulation assumes isothermal or frozen temperature conditions,

neglecting the effects of explicit convective flow in heat transport.

[1 + k − (1− k)ϕ]

2

∂U

∂t
+ v ·

{
[1 + k − (1− k)ϕ]

2
∇U − [1 + (1− k)U ]

2
∇ϕ

}
= ∇ ·

{
D
(1− ϕ)

2
∇U +

1

2
√
2
[1 + (1− k)U ]

∂ϕ

∂t

∇ϕ

|∇ϕ|

}
+
[1 + (1− k)U ]

2

∂ϕ

∂t

(4.3)

The effect on the Navier-Stokes equations is then related to ϕ, the phase indicator,

where the density and viscosity are approximated using an interpolation function. For

example, the viscosity is expressed as ν(ϕ) = νs(1+ϕ)
2

+ νl(1−ϕ)
2

.

∂v⃗

∂t
−∇ · [ν(ϕ)∇v⃗] + (v⃗ · ∇)v⃗ = −∇ p

ρl

+

(
1− ϕ

2

)
αc(c− c0)g⃗

+

(
1 + ϕ

2

)(
ρs
ρl

− 1

)
g⃗

(4.4)

This equation is a modified Navier-Stokes equation adapted for a phase-field model,

accounting for fluid dynamics in a two-phase solidification process. The equation

details the evolution of the velocity field v⃗ and includes:

• Viscous force represented by −∇· [ν(ϕ)∇v⃗], where ν(ϕ) adjusts viscosity between

solid and liquid phases.

• Inertial force as (v⃗ · ∇)v⃗.
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• Pressure gradient effect −∇ p
ρl

normalized by the liquid density ρl.

• Buoyancy force from solutal expansion
(
1−ϕ
2

)
αc(c− c0)g⃗, with αc as the solutal

expansion coefficient.

• Gravitational force difference between the phases
(
1+ϕ
2

) (
ρs
ρl
− 1
)
g⃗, depicting

the density contrast between solid (ρs) and liquid (ρl).

The presented mathematical framework enables the simulation of fluid behavior during

complex processes such as alloy solidification. In the solid region, viscosity is assumed

to be extremely high to enforce a near-zero velocity, allowing a unified equation to

model both solid and liquid phases simultaneously [27].

4.2 Algorithmic Considerations

To effectively couple fluid flow with the PFM, two distinct physics frameworks are

employed: one for the Navier–Stokes equations and another for the phase-field equa-

tions. Each framework operates on its own computational mesh, enabling tailored

discretizations suited to their respective physics.

The coupling process follows an iterative procedure. First, the Navier–Stokes

equations are solved to compute the fluid velocity field. These velocities are then

interpolated onto the phase-field mesh, where they are incorporated into the convection

terms of the phase-field equations. Once the phase-field equations are solved, the

resulting variables, such as the order parameter ϕ (indicating the solid or liquid fraction)

and the dimensionless concentration U , are transferred back to the Navier–Stokes

framework.

In the Navier–Stokes domain, ϕ is interpolated to the Navier–Stokes mesh to

update the effective viscosity and density fields, ensuring that the fluid dynamics

accurately reflect the evolving solid-liquid interface. This iterative loop continues until
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convergence is achieved, ensuring a consistent and stable solution across both physical

domains.

This is referred to as a partitioned (or segregated) approach, and can offer flexi-

bility in choosing specialized solvers or techniques suited to each physics component.

However, it can be challenging to achieve convergence, especially for strongly coupled

problems. Conversely, in a monolithic approach, all equations governing the different

physics involved are assembled into a single system of equations and solved simulta-

neously. This method generally provides better stability and convergence properties,

especially in tightly coupled multiphysics problems, as it handles all interactions within

a single solver framework. However, it can be computationally expensive leading to

impractical times for simulation completion.

Different solvers can be employed like using an opensource software package, Open-

Foam, to solve the fluid flow component, followed by the application of FEniCS for

the PFM. This method leverages the robust finite volume method (FVM) and the

well-established stabilization techniques available in OpenFoam, which are particularly

advantageous for handling turbulent flow models. Subsequently, the velocity field data

obtained from OpenFoam is transferred to FEniCS, where the FEM is employed to

address the solidification processes. This iterative loop continues until the solution

converges. The integration of OpenFoam and FEniCS has been successfully demon-

strated in previous studies by authors such as Rodenberg et al. [63], showcasing the

efficacy and potential of combining these tools for multiphysics simulations.

The author also developed phase-field model codes in OpenFOAM using the finite

volume method (FVM) and implemented finite element method (FEM) codes for

the Navier–Stokes and phase-field equations in MOOSE. The MOOSE framework’s

built-in MultiApps functionality was utilized to couple these physics in a segregated

manner. Furthermore, the MultiApps approach was employed to test the coupling
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of the FVM-based Navier–Stokes discretization with the heat equation, where fluid

convection solved in the FVM domain was transferred to the FEM domain in MOOSE

for further computations.

Furthermore, the models initially developed in FEniCS were also implemented in

MOOSE, providing alternative frameworks for simulation. For more information and

access to the codes, which may offer guidance or inspiration for implementation, refer

to Section 7.2.

4.3 Benchmark Assessment: Dendritic Growth Un-

der Convection

Beckermann et al. [45] present a simulation involving fluid inflow from the top while

solidification occurs under flow conditions. This example provides an excellent basis

for verifying the code, as it utilizes the same partial differential equations (PDEs) and

governing physics applied in additive manufacturing. To adapt this example for the

specific application introduced in Section 6, only the boundary conditions (BC) and

initial conditions (IC) require modification. This approach guides the development of

the model.

The governing equations for a pure material, based on the PF formulation presented

in [47], are extended below to include convection terms for coupling fluid flow with

phase evolution and temperature. These equations couple the evolution of the order

parameter (ϕ), dimensionless temperature (u), velocity field (v), viscosity (ν)—which

depends on the order parameter—and density (ρ):
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τ(n)

[
∂ϕ

∂t
+ v⃗ · ∇ϕ

]
= (ϕ− ϕ3)− λu(1− ϕ2)2

+∇ · [W (n)2∇ϕ] +
∂

∂y

(
|∇ϕ|2W (n)

∂W (n)

∂(∂yϕ)

)
+

∂

∂x

(
|∇ϕ|2W (n)

∂W (n)

∂(∂xϕ)

) (4.5)

∂u

∂t
+ v⃗ · ∇u = D∇2u+

1

2

∂ϕ

∂t
(4.6)

The Navier–Stokes equations are solved using a segregated approach with respect

to the phase-field equations. In this approach, the velocity and pressure fields are

computed separately from the phase-field and temperature equations in each iteration.

After solving the phase-field equations, the updated velocity and pressure fields are

passed to the phase-field module to account for multiphysics coupling. The governing

equations for the flow are:

∂v⃗

∂t
−∇ · [ν(ϕ)∇v⃗] + (v⃗ · ∇)v⃗ = −∇ p

ρl (4.7)

dρ

dt
+ ρ∇ · v⃗ = 0 (4.8)

By solving Eqs. (4.5)–(4.8) under the conditions outlined in [45] and summarized in

Tab. 4.1, the coupling implementation developed in this study was validated against

the implementation of the example presented in the referenced work.

The boundary conditions enforce a no-slip velocity (v = 0) on the left and right

walls, while the top boundary applies an inlet-flow velocity with specified components

(vx, vy). The bottom boundary sets the pressure to zero.

The initial condition for the Navier-Stokes equations assumes a zero velocity and

zero pressure field. For the phase-field equation, a Neumann boundary condition (zero

flux) is imposed for both the dimensionless temperature (u) and the order parameter
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(ϕ).

The initial condition for ϕ is set to ϕ = 1 in the solid and ϕ = −1 in the liquid, with

a smooth transition modeled using a tanh function. For the dimensionless temperature

(u), the initial value is set to −0.55.

Table 4.1: Simulation Parameters for Phase-Field and Navier-Stokes Coupling (All
Values in SI Units)

Parameter Value Description
Phase-Field Model Parameters

dy 0.4 Mesh resolution (base level)
max level 3 Maximum refinement level
Nx,Ny 250, 250 Domain resolution
dt 8× 10−3 Time step size
seed center [125, 125] Initial seed center
a1, a2 0.8839, 0.6637 Coefficients
w0 2.589× 10−7 Interface thickness
τ0 1.64× 10−6 Relaxation time
ep4 0.05 Anisotropy parameter
keq 0.14 Equilibrium partition coefficient
uinitial -0.55 Initial dimensionless concentration
initial seed radius 8.27 Initial seed radius

Navier-Stokes Parameters (Scaled to Phase-Field Dimensionalization)
gravity -10 Scaled gravitational acceleration
ρliquid, ρsolid 2.45, 2.7 Densities of liquid and solid phases
µfluid 1.4× 10−3 Dynamic viscosity (scaled)
µsolid µfluid × 106 Viscosities of solid and liquid phases
αc 9.2× 10−3 Solutal expansion coefficient
Inflow velocity (0.0, -1.0) Inflow velocity at top boundary condition

Figure 4.1 presents the simulation results obtained in this study, which are based

on the same boundary conditions, initial conditions, and physical setup as those shown

in Fig. 4.2 from Ref. [45]. While the two figures simulate the same physical scenario,

they employ different mathematical models and PDE formulations to describe the

physics. It is notable that the PDEs used by Beckermann et al. [45] do not explicitly

include convection terms, such as v⃗ · ∇ϕ. Additionally, they highlight that their

method does not require prescribing a variable viscosity across the diffuse interface

region that increases significantly in the rigid solid. While this approach may be

physically reasonable for certain materials, they argue that accurately defining the
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viscosity variation for a rigid solid would be both challenging and impractical.

Furthermore, by incorporating the equations introduced in Eq. (4.3), this study

captures the convection-driven growth of dendrite arms in a bent shape, aligned with

the direction of fluid flow.

Figure 4.2: Top panels show computed phase-field contours and velocity vectors, while
bottom panels display isotherms from the dendritic growth simulation with convection
at t = 15, 66, and 96 (in units of τ , from left to right) [45].
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(a) Time = 15, Velocity Field (b) Time = 15, Isotherms

(c) Time = 66, Velocity Field (d) Time = 66, Isotherms

(e) Time = 96, Velocity Field (f) Time = 96, Isotherms

Figure 4.1: Evolution of the velocity field and isotherms at different times (in units of
τ .
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(a) Dendritic growth simulation without convection from reference [45].

(b) Time = 16 (c) Time = 66 (d) Time = 96

Figure 4.3: Comparison of the reference image from [45] with the simulated states at
different time steps.

This chapter has demonstrated the coupling of phase-field and fluid flow models

to capture the complex interactions during solidification under convective flow condi-

tions. By incorporating convection terms into the phase-field and solute conservation

equations, and modifying the Navier-Stokes equations to account for solid obstruction,

the model accurately simulates the dynamics of dendritic growth. The benchmark

example of dendritic growth under convection, taken from [45], verified the coupling

implementation and highlighted its ability to replicate realistic physics. Furthermore,

since the same governing equations apply, the code developed can be adapted for addi-

tive manufacturing conditions with appropriate modifications to the initial conditions,

boundary conditions and driving forces.
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(a) Tip velocities from the simulation (Fig 4.1) : upward tip velocity shown as a blue
line, downward tip velocity as a green line, left tip velocity as a red line, and flow velocity
represented by a dashed grey line.

(b) Tips velocities of the reference [45].

Figure 4.4: Tip velocities of the dendritic interface were calculated by identifying
the interface location (ϕ = 0) at different time steps and fitting a polynomial to the
position data. The derivative of the fitted polynomial provided the velocity, which
was scaled using a conversion factor to match the physical units. The velocities are
shown for downward, upward, and axis-parallel directions along the dendrite arms,
illustrating the dynamics of interface motion in different orientations.



Chapter 5

Phase-Field Simulation of Laser

Deposited Ni–Nb Alloy

In this chapter, we implement the developed phase-field microstructural model to

study solidification under controlled thermal scenarios. These simulations serve as a

baseline to assess the influence of fluid flow on AM processes in our subsequent work.

The thermal scenarios are inspired by the work of Ghosh et al. [64] and involve

distinct cooling rates that mimic conditions observed in AM. A relatively slow cooling

rate is explored, representative of typical equilibrium solidification. Additionally, a

rapid cooling rate is simulated, capturing the non-equilibrium conditions characteristic

of AM.

The focus of this chapter is to characterize microstructural evolution under these

controlled thermal gradients without fluid flow. This includes evaluating how the

cooling rate impacts growth dynamics, and overall microstructural patterns. The

simulations provide a baseline for defining quantitative metrics, such as tip velocity

and microsegregation profiles, which will be used to assess the effects of fluid flow in

future work.

These results form a critical foundation for understanding how fluid flow modifies
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microstructural evolution in AM, ensuring that the interplay between thermal and

fluid effects can be isolated and quantified.

The governing equations for our simulations are presented in Eqs. (2.7) and (2.8),

that is in the absence of flow. The two scenarios we explore are as follows:

(a) Ṫ = 3× 105Ks−1, calculated using the product G× V , where G = 107K/m.

(b) Ṫ = 1× 106Ks−1, similarly determined using G = 107K/m.

These conditions ensure that our simulations closely reflect the physical parameters

commonly encountered in laser deposition processes, akin to those described by Ghosh

et al. [64]. The primary objective is to examine the effects of varying cooling rates on

solidification.

Table 5.1: Simulation Parameters for Phase-Field Simulation of Laser Deposited
Ni–Nb Alloy

Parameter Value Description
Physical Parameters

dt 0.13 Time step size
dy 0.8 Mesh resolution
Nx,Ny 500, 4000 Domain size
max level 5 Maximum refinement level
y solid 20 Initial height of Solid
w0 1× 10−8 m Interface thickness scaling factor
τ0 2.30808× 10−8 s Time scaling factor
G 1× 107 K/m Thermal gradient
V 3× 10−2 m/s Pulling velocity
ml 10.5 K/% Slope of liquidus line
c0 5 % Initial solute concentration
ep4 0.03 Anisotropy parameter
keq 0.48 Equilibrium partition coefficient
λ 1.377 Diffusion length parameter
a1, a2 0.8839, 0.6267 coefficients
dl 0.863 Diffusivity in liquid phase
ds 2.877× 10−4 Diffusivity in solid phase
d0 8× 10−9 m Capillarity length

Solver Parameters
abs tol, rel tol 1× 10−6, 1× 10−5 Absolute and relative solver tolerances
Nonlinear solver Newton Nonlinear solver for phase-field
Linear solver MUMPS Linear solver for phase-field
Preconditioner ILU Preconditioner for phase-field
Maximum iterations 50 Maximum iterations for phase-field solver

The job script for these simulations has been optimized to use 30 tasks per node,
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with a total memory allocation of 245 GB per node, and a runtime limit of 7 days,

ensuring efficient execution of the computational workload. The model was developed

in FEniCS, and the setup parameters are provided in Tab. 5.1.

(a) Steady-state cellular growth fronts under two solidification conditions are shown as Nb
composition maps. The colour bar indicates the Nb mass fraction, with the growth direction
(y) oriented vertically. Key features include uniform cell spacing, composition variations
across cells, and Nb-enriched droplets at cell grooves. In (a), for Ṫ = 3 × 105 K s−1, the
primary dendrite arm spacing (PDAS) is 0.71µm, while in (b), for Ṫ = 106 K s−1, the PDAS
is 0.23µm. The coarser cells in (a) result from the lower cooling rate [64].

(b) Case a (c) Case b

Figure 5.1: Simulation results for Cases A and B are presented, with the top figure
reproduced from the reference article [64] and the bottom figure generated from this
study. It should be noted that the exact color bar from the reference article could not
be replicated, as it was unavailable.
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In this study, the primary dendrite arm spacing (PDAS) was measured. The

approximate distance between the centers of the dendrite arms was determined by

direct measurement. For Case A, the measured spacing was 92.8 units, while for Case

B, it was 40 units. Applying a scaling factor of W0 = 10−8 m, these values correspond

to 0.928 µm for Case A and 0.4 µm for Case B. The gap between primary dendrite

arms was measured using Python by first exporting the data from ParaView as a

CSV file. The CSV was then read into a Pandas DataFrame for processing. Using

interpolation and line profile extraction, the gaps were identified by detecting peaks

along a specific axis (see Fig. 5.2), allowing for precise calculation of dendrite arm

spacing.
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(a) phi field

(b) Detecting peaks along the red line in the top image.

Figure 5.2: In Case B, the dendrite intersects a line parallel to the y-axis, enabling
the measurement of the gap between the arms. The calculated average dendrite arm
spacing (PDAS) is approximately 40.67 units.



Chapter 6

Effect of Fluid Flow on Dendrite

Growth in Additive Manufacturing

In the previous chapter, a baseline for the microstructural behavior of Ni–Nb alloys

under varying cooling rates was established using the PFM. These simulations offered

insights into dendrite growth and microstructure evolution in the absence of fluid

dynamics. Building on these foundational results, this chapter introduces the influence

of fluid flow on dendrite growth under AM conditions.

By incorporating fluid flow into the system, the study explores how convective

forces impact the solidification process and alter the morphology of dendrite arms. The

chapter focuses on the interaction between fluid flow and dendritic growth, providing

a deeper understanding of microstructural evolution during AM processes.

The model presented in this chapter, along with the devised example and problem,

is implemented and simulated, as illustrated in Figure 6.1. However, the model is

not fully tuned and currently encounters convergence issues due to the complexity

of the system, which involves solving numerous PDEs. These challenges result in

slow and difficult-to-test simulations. The model was developed in FEniCS, and the

corresponding repository is provided in Appendix A.
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Figure 6.1: This figure illustrates the simulation domain and depicts the assumed
inflow and outflow conditions in the dendritic region, designed to observe the behavior
of fluid flow during solidification. Two of the figures, specifically those on the left-hand
side and bottom right, are taken from [36].

6.1 Key Results and Challenges

The PDEs governing this simulation are identical to those benchmarked in Section 4.3,

with the addition of a term to account for the thermal gradient. While reducing ∆t and

∆x sufficiently could, in theory, yield accurate results, this approach is computationally

impractical and prohibitively expensive.

This simulation involves solving five coupled PDEs: two for the phase field and

three for fluid flow (pressure and two velocity components). The coupling is inherently

challenging, further complicated by the addition of a penalty term to enforce solid-

phase behavior, as well as the nonlinear nature of the Navier-Stokes equations, which

significantly impede convergence.

Direct Numerical Simulation (DNS) requires very small ∆t and ∆x demanding sub-

stantial computational resources. These constraints will limit the ability to thoroughly

test, tune, and iterate on the model.
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Table 6.1: Simulation Parameters for Phase-Field and Navier-Stokes Equations. Note:

The scaled gravity is expressed as g
τ20
W0

to match the phase-field scaling with τ0 and
W0. Similarly, the kinematic viscosity is expressed as µ

ρ
τ0
W 2

0
.

Parameter Symbol/Value Description
Phase-Field Parameters

Grid size ∆y = 0.8 Grid spacing.
Maximum refinement level 2 Maximum AMR level.

Domain size (x, y) Nx = 100, Ny = 100
Time step ∆t = 13× 10−2 Time increment.

Solid region start ysolid = 2 Initial solid height in bottom.
coefficients a1 = 0.8839, a2 = 0.6637 Asymptotic parameters.

Interface width w0 = 10−8 Interface width scaling.
Time scale τ0 = 2.30808 ∗ 10−8 Time scale unit.

Capillary length d0 = 8× 10−9m Capillary length.
Thermal gradient G = 1× 107K/m Imposed thermal gradient.
Growth velocity V = 1× 10−1m/s Solidification velocity.
Liquidus slope ml = 10.5K%−1 Slope of liquidus line.

Epsilon (anisotropy strength) ϵ4 = 0.03 Anisotropy strength.
Equilibrium partition coefficient keq = 0.14 Equilibrium solute partitioning.

Initial concentration c0 = 5% Initial solute concentration.
Navier-Stokes Parameters

Gravitational acceleration g = −10 m
s2

gravity.
Liquid density ρliquid = 7810 kg/m3 Density of liquid phase.
Solid density ρsolid = 8900 kg/m3 Density of solid phase.

Dynamic viscosity µ = 4.88× 10−3 Pa·s
m

Fluid viscosity.
Inlet velocity on Left-BC u = (0.01, 0.0) m

s
Inlet velocity from left boundary.

Solver Parameters
Phase-field solver tolerance abs tol = 10−4, rel tol = 10−3 Solver tolerances for phase field.

Navier-Stokes solver tolerance abs tol = 10−4, rel tol = 10−3 Solver tolerances for Navier-Stokes.
Linear solver (NS) GMRES Iterative linear solver.

Nonlinear solver (NS) SNES Nonlinear solver type.
Preconditioner (NS) Hypre AMG Preconditioner for NS.
Max iterations (NS) 100 Maximum iterations allowed.
Linear solver (PF) GMRES Linear solver for phase field.

Nonlinear solver (PF) SNES Nonlinear solver for phase field.
Preconditioner (PF) Hypre AMG Preconditioner for PF.
Max iterations (PF) 100 Maximum iterations allowed.

A model was developed to simulate the scenario depicted in Figure 6.1, with the

implementation available in Appendix A. The parameters used in this simulation

(Figure 6.3) are summarized in Tab. 6.1. Initial conditions for pressure and velocity

were set to zero throughout the domain. For the phase field, a solid rectangular region

with a height of 2 was initialized at the bottom. A perturbation was applied to the

top of this solid region using random noise values ranging between −1 and 1. The

perturbation height followed a sinusoidal function with a wavelength of 2∆y and an
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amplitude of ∆y. Furthermore, U , the dimensionless concentration, was initialized to

−1 everywhere.

The boundary conditions for the Navier-Stokes equations included an inflow velocity

at the left boundary, zero pressure at the right boundary, and a no-slip condition at

the top boundary. For the phase field, Neumann boundary conditions were applied to

all boundaries. To prevent concentration build-up at the left boundary, a Dirichlet

boundary condition was applied for U .

The fully coupled model was employed for the simulation, with the assumption

that the inlet flow began at the projection of the tallest dendrite in the domain (Figure

6.2). This assumption was introduced to address convergence issues that otherwise

hindered the successful execution of the simulation.

Figure 6.2: Visualization of the ϕ field and simulation domain for studying fluid flow
impact on dendrite growth. The red dashed line marks the tallest dendrite projection,
assumed as the inlet flow start to address convergence issues. Blue arrows show the
inflow direction.
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As shown in Figure 6.3, the simulation of this example was conducted under

the conditions G = 1 × 107K/m and V = 3 × 10−2. We compare the results with

and without an inlet flow velocity of 1m/s at a time step of 40,000 (equivalent to

0.11076ms). The inlet flow velocity in this simulation is approximately 1m/s, which

is consistent with the typical maximum flow velocity observed in the melt pool during

additive manufacturing processes, as reported in [65, 66, 67].The fluid flow inside the

melt pool is primarily driven by temperature gradients, which induce thermocapillary

(Marangoni) forces and buoyancy effects. While a more precise approach would

involve solving the temperature field incorporating the thermal PDE—accounting for

thermal convection and diffusion—the current focus is on establishing a base model.

Incorporating a fully coupled temperature field with fluid flow should be addressed

in future work to capture thermal-fluid interactions more accurately. In Figure 6.3,

the directional growth of dendrites is illustrated, comparing morphologies with and

without an inlet flow velocity. The figure captures the differences in dendrite structures

at the same stage of growth, with the left panels showing results without flow and the

right panels showing results with flow. The presence of fluid flow noticeably alters

the dendrite morphology, reducing the spacing between primary dendrite arms and

promoting more uniform growth. This highlights the influence of convective transport

in refining the dendritic structure by redistributing solute more effectively near the

solid-liquid interface.These results underscore the significant impact of fluid flow on

the solidification process, emphasizing how convective forces interact with thermal and

solutal gradients to shape the microstructure. The observed changes in spacing and

morphology demonstrate the importance of considering fluid dynamics in simulations

of solidification.
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Figure 6.3: A comparison of dendrite arm morphologies with and without an inlet
flow velocity of 1 m/s is shown. Both images at the top were captured at the same
time step, 35,000steps. The left panels present the simulation results without flow,
while the right panels include the inlet flow. The primary dendrite arm spacing (PDA)
was measured along the red dashed line at y = 550. For the simulation with flow,
the measured PDAS was 69.14 (physical units), whereas for the simulation without
flow, it was 71.14 (W0 units). The simulation parameters are W0 = 1 × 10−8 m,
∆t = 1.3× 10−2, and τ0 = 2.30808× 10−8 s.

Figure 6.4 illustrates the evolution of primary dendrite arm spacing (PDAS) over

time for simulations conducted with and without fluid flow. The x-axis represents

the time steps (scaled for clarity), while the y-axis shows the PDAS in units of W0.

The blue curve corresponds to the case without fluid flow, while the orange curve

represents the case with fluid flow.

In the early stages of growth, the PDAS is significantly smaller in the presence of

fluid flow compared to the case without flow. This highlights the impact of convective
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solute transport in refining the dendritic structure by promoting more uniform solute

redistribution. Over time, the PDAS increases in both cases; however, the rate of

increase is notably slower in the presence of flow. This indicates that fluid flow helps

maintain tighter dendritic spacing by actively reducing solute concentration gradients

near the solid-liquid interface.

The convective forces generated by fluid flow enhance the transport of solute

away from the solid-liquid interface, preventing solute pile-up and promoting smaller

dendritic spacing. These findings are consistent with previous studies, such as [68],

where in that work, their Fig. 7 demonstrates the reduction in primary dendrite arm

spacing with increasing fluid flow intensity, and [69], where Fig. 11 in that publication

illustrates this.

Figure 6.4: Comparison of Primary Dendrite Arm Spacing (PDAS) evolution over
time with and without fluid flow. The blue curve represents the PDAS in the absence
of fluid flow, while the orange curve shows the PDAS with fluid flow.

This highlights the impact of the fluid flow field on dendrite growth. The presence

of fluid flow perturbs the initial conditions by convecting both the concentration and

the order parameter, resulting in noticeable changes in the dendrite growth pattern,

as shown in the Figure 6.4.



Chapter 7

Summary and Future Outlook

In this thesis, the Navier-Stokes module was implemented separately from the phase-

field solidification module. Both modules were benchmarked individually and verified

using a single dendrite convection example (refer to Section 4.3). Subsequently, the

coupled code for solidification and fluid flow was benchmarked. The solidification model

was further extended to simulate the laser deposition of a Ni-Nb alloy (Chapter 5).

The final objective was to simulate the laser deposition process while incorporating

fluid flow around the dendrite arms. However, significant challenges were encountered,

particularly in achieving convergence and stability.

Fully coupling the fluid flow and solidification models presents inherent difficul-

ties. As noted by [70], numerical instabilities—especially in convection-dominated

problems—often arise due to the challenges associated with stabilizing advection

terms. These issues make fully coupled approaches highly susceptible to instability

and necessitate the use of advanced stabilization techniques to achieve convergence.

7.1 Future Work

Future work should explore implementing the phase-field model within established

computational fluid dynamics (CFD) software like OpenFOAM, which uses the Finite
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Volume Method (FVM), or MOOSE, which supports both the Finite Element Method

(FEM) and the development of its own FVM-based turbulence models. Additionally,

leveraging the capability of MOOSE[71] to integrate with NekRS through the Car-

dinal[72] framework offers potential advantages in handling complex fluid dynamics.

Given the challenges associated with the CFD component of this coupling, utilizing

the strengths of different software platforms and numerical methods beyond FEM

could significantly enhance model stability and accuracy.

7.1.1 Flow Simulation Around Dendrite Geometry in Open-

FOAM

To analyze the fluid flow behavior in the melt pool and evaluate the corresponding

Reynolds number, an example simulation was devised based on the dendrite geometry

generated in Chapter 6. The steady-state geometry, corresponding to a specific stage

of dendritic growth, was extracted. Using Python, the contour data of this geometry

was processed to generate an STL file. This STL file was then used to create the

mesh for the simulation using OpenFOAM’s ‘snappyHexMeshDict‘, which handled

the refinement and smoothing to capture the detailed dendrite structure.

The resulting 3D finite volume mesh was employed within OpenFOAM’s turbulence

model, specifically the k-ω SST model. Key parameters for the simulation included the

flow velocity and kinematic viscosity, which was set to 1.5× 10−3
[
m2

s

]
in OpenFOAM

. This setup allowed for an analysis of the flow behavior around the dendrite geometry,

enabling an assessment of whether the flow was laminar or turbulent.
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Figure 7.1: Velocity field magnitude in
the simulated flow around the dendrite
geometry.

Figure 7.2: Mesh generation for
the dendrite geometry using snappy-
HexMesh in OpenFOAM.

Figure 7.3: Combined mesh and veloc-
ity magnitude field.

Figure 7.4: 3D representation of the
dendrite geometry and mesh.

Figure 7.5: Flow and mesh visualization around the dendrite geometry were performed
in OpenFOAM. The dendrite geometry data was exported from ParaView as a CSV
file and subsequently processed in Python to generate the mesh.

7.2 Segregated Approach and MultiApps Frame-

work in MOOSE

This thesis focuses on the development and coupling of multiphysics models using

FEniCS. While FEniCS provides flexibility for custom implementations, MOOSE

offers a modular framework for structured, coupled simulations through its MultiApps

structure.

MOOSE facilitates the execution of distinct physics models in a parent-sub-

application configuration, allowing each application to operate on separate meshes
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with specific physics applied to different regions. Features such as adaptive mesh

refinement and checkpointing significantly enhance computational efficiency within

MOOSE.

The research aimed to couple a finite element method (FEM)-based phase-field

model with a finite volume method (FVM)-based fluid flow model in MOOSE. Initial

efforts involved testing FEM-based heat transfer coupled with FVM-based fluid flow

using MOOSE’s Transfer system and auxiliary kernels. This foundational example

was instrumental in understanding the implementation process.

Subsequent work included recreating the ”Assessment of Dendritic Growth Under

Convection” example, with a focus on excluding solid regions from fluid flow simulations

using penalty methods or variable viscosity approaches. However, challenges with

MOOSE’s FVM module required debugging and modifications, which constrained

further testing.

Additionally, FEM-based Navier-Stokes equations were implemented, and phase-

field and fluid flow models were coupled using MOOSE’s MultiApps framework. The

codes developed in MOOSE for this research are available in Appendix A.



Appendix A

Codes and Repositories

Table A.1: FEniCS Repositories

Index Repository Name Repository Link Description
1 Isothermal Simula-

tion
GitHub Models isothermal phase-field

simulations Figure 2.5.
2 Thermosolutal Simu-

lation
GitHub Simulates thermosolutal alloy

solidification process Figure
2.4.

3 Benchmarked
Marangoni Simu-
lation

GitHub Marangoni convection simula-
tions Figure 3.2.

4 Coupled-Pure GitHub Coupled phase-field with fluid
flow Figure 4.1.

5 AM condition solidifi-
cation

GitHub Simulation code based on [64]
. see Figure 5.1

6 dendrite Inlet flow GitHub Inlet simulations for flow
around dendrites. see Figures
6.2 and 6.1.
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https://github.com/mahdipasaie/Isothermal
https://github.com/mahdipasaie/Thermosolutal.git
https://github.com/mahdipasaie/Benchmarked_Marangoni
https://github.com/mahdipasaie/coupled-pure
https://github.com/mahdipasaie/Ghosh2017_article
https://github.com/mahdipasaie/Ghosh_inlet.git
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Table A.2: MOOSE Repositories

Index Repository Name Repository Link Description
1 Coupled Heat-Fluid

Simulation
GitHub Simulates coupled heat trans-

fer using FEM and fluid flow
models using FVM. Segre-
gated approach.

2 Coupled Simulation GitHub Demonstrates fully cou-
pled physics simulations in
MOOSE.

3 AM condition solidifi-
cation

GitHub Implementsbased [64] model
for dendrite growth.

4 Fluid Component De-
velopment

GitHub Fluid modeling for Navier-
Stokes equations.

5 Coupled-Pure GitHub Coupled phase-field with fluid
flow (Figure 4.1) in MOOSE.

6 dendrite Inlet flow GitHub Inlet simulations for flow
around dendrites. see Figures
6.2 and 6.1.

7 Isothermal Model GitHub Models isothermal processes in
MOOSE.

Table A.3: OpenFOAM Repositories

Index Repository Name Repository Link Description
1 Isothermal Simula-

tion
GitHub Simulates isothermal pro-

cesses using OpenFOAM
(FVM) see C.2.

2 Dendrite Geometry
Flow Visualization

GitHub Visualizes flow and mesh
around dendrite geometry us-
ing OpenFOAM and Turbu-
lent model. 7.4

https://github.com/mahdipasaie/moose_coupled_heat_fluid
https://github.com/mahdipasaie/coupled_moose
https://github.com/mahdipasaie/Ghosh_moose
https://github.com/mahdipasaie/moose_fluid_component
https://github.com/mahdipasaie/pure_coupled_moose
https://github.com/mahdipasaie/ghosh_coupled_moose
https://github.com/mahdipasaie/Moose_Isothermal
https://github.com/mahdipasaie/openfoam_Isothermal
https://github.com/mahdipasaie/denderite


Appendix B

Fully Coupled Code

Implementation

Introduction

In this section, we briefly describe the code implementation of this project.For more

information see this repository [pashaei2024master].

B.1 Phase-Field Problem Class

This class defines the phase-field problem using FEniCS, encapsulating methods for

model setup, initialization, and solving. The structure is as follows:

Inputs:

• Parameters dictionary for constants in the PDE.

• Mesh to define the domain of the problem.
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Outputs:

• Solved phase-field variables, including order parameters and concentration.

Class Methods:

1. init : Initializes the class, setting up the mesh, function space, and solution

fields.

2. define function space: Creates function spaces for solution vectors, using

mixed function spaces for order parameter and concentration fields.

3. define dependent variables: Defines the dependent variables and performs

intermediate calculations, such as computing gradients for anisotropic effects.

4. formulate weak form: Constructs the weak form of the PDEs, covering time

evolution, diffusion, and source terms.

5. define solver: Configures the nonlinear problem and solver, including solver

parameters like tolerances and preconditioners.

6. set initial conditions: Establishes the initial conditions for the problem,

using a custom expression for initializing order parameter and concentration

fields.

7. solve problem: Executes the solver to obtain the solution for the current time

step and updates the solution vectors.

1 import fenics as fe

2 import numpy as np

3

4 class ClassPF:

5
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6 def __init__(self , mesh , params , nsproblem= None , old_sv_=None ,

old_sv=None):

7

8 self.mesh = mesh

9 self.params = params

10 self.dt = params["dt"]

11 self.w0 = params[’w0’]

12 self.ep4 = params[’ep4’]

13 self.X = fe.SpatialCoordinate(self.mesh)

14 self.Y = self.X[1]

15 self.G = params[’G’]

16 self.V = params[’V’]

17 self.ml = params[’ml’]

18 self.c0 = params[’c0’]

19 self.keq = params[’keq’]

20 self.lamda = params[’lamda ’]

21 self.ds = params[’ds’]

22 self.dl = params[’dl’]

23 self.Wscale = params[’Wscale ’]

24 self.Tscale = params[’Tauscale ’]

25 self.T = params[’Time’]

26 reltol = params[’reltol ’]

27 abstol = params[’abstol ’]

28 linearsolverpf = params[’linearsolverpf ’]

29 nonlinearsolverpf = params[’nonlinearsolverpf ’]

30 preconditionerpf = params[’preconditionerpf ’]

31 maximumiterationspf = params[’maximumiterationspf ’]

32 self.solver_parameters = {’nonlinear_solver ’:

nonlinearsolverpf ,

33 ’snes_solver ’: {’linear_solver ’: linearsolverpf ,

34 ’report ’: False ,"preconditioner": preconditionerpf ,

35 ’error_on_nonconvergence ’: False ,’absolute_tolerance ’:

abstol ,
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36 ’relative_tolerance ’: reltol ,’maximum_iterations ’:

maximumiterationspf ,}}

37

38 self.dy = params[’dy’]

39 self.y_solid = params[’y_solid ’]

40 self.old_sv_ = old_sv_

41 self.old_sv = old_sv

42 self.nsproblem = nsproblem

43 if self.nsproblem is not None:

44 self.u_npf = nsproblem.sv_.split(deepcopy=True)[0]

45 self.func_space ()

46 self.inco()

47 self.depvar ()

48 self.form()

49 self.defsol ()

50

51 def func_space(self , degree =2):

52

53 P1 = fe.FiniteElement("Lagrange", self.mesh.ufl_cell (), 1)

54 P2 = fe.FiniteElement("Lagrange", self.mesh.ufl_cell (), 1)

55 self.Vs = fe.VectorFunctionSpace(self.mesh , ’P’, degree)

56 self.u_n = fe.Function(self.Vs)

57 element = fe.MixedElement ([P1 , P2])

58 self.fs = fe.FunctionSpace(self.mesh , element)

59 self.v_phi , self.v_c = fe.TestFunctions(self.fs)

60 self.sv = fe.Function(self.fs)

61 self.sv_ = fe.Function(self.fs)

62 self.phi , self.c = fe.split(self.sv)

63 self.phi_ , self.c_ = fe.split(self.sv_)

64 self.spacepf , _ = self.fs.sub (0).collapse(collapsed_dofs=

True)

65 self.spacec , _ = self.fs.sub (1).collapse(collapsed_dofs=True

)
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66 if self.nsproblem is not None:

67 fe.LagrangeInterpolator.interpolate(self.u_n , self.u_npf

)

68

69 def depvar(self):

70

71 self.tol= fe.sqrt(fe.DOLFIN_EPS)

72 grad_phi = fe.grad(self.phi_)

73 self.mgphi = fe.inner(grad_phi , grad_phi)

74 dpx = fe.Dx(self.phi_ , 0)

75 dpy = fe.Dx(self.phi_ , 1)

76 dpx = fe.variable(dpx)

77 dpy = fe.variable(dpy)

78 # Normalized derivatives

79 nmx = -dpx / fe.sqrt(self.mgphi)

80 nmy = -dpy / fe.sqrt(self.mgphi)

81 norm_phi_4 = nmx**4 + nmy**4

82 an = fe.conditional(

83 fe.lt(fe.sqrt(self.mgphi), self.tol),

84 fe.Constant (1-3* self.ep4),

85 1-3*self.ep4+ 4*self.ep4*norm_phi_4)

86 self.wn = self.w0 * an

87 self.dwnx = fe.conditional(fe.lt(fe.sqrt(self.mgphi), self.

tol), 0, fe.diff(self.wn , dpx))

88 self.dwny = fe.conditional(fe.lt(fe.sqrt(self.mgphi), self.

tol), 0, fe.diff(self.wn , dpy))

89

90 def form(self):

91

92 self.taun = (self.wn/self.w0)**2

93 opk , omk= 1+self.keq , 1-self.keq

94 if self.nsproblem is not None:

95 term1ad = - fe.inner((self.taun) * fe.dot(self.u_n , fe.
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grad(self.phi)), self.v_phi)

96 grad_phi = fe.grad(self.phi)

97 # Advection Term LHS goes to RHS(Negative): V {[(1+k-(1-

k) )/2] U -[(1+(1 -k)U)/2] }:

98 term10_1 = fe.dot(self.u_n ,(opk -omk*self.phi)/2*fe.grad(

self.c)) # V (1+k-(1-k) )/2] U

99 term10_2 = fe.dot(self.u_n ,-(1+omk*self.c)/2* grad_phi)

# - V [(1+(1 -k)U)/2]

100 term2ad = - fe.inner(term10_1+term10_2 , self.v_c)

101 else:

102 term1ad = fe.Constant (0)*self.v_phi

103 term2ad = fe.Constant (0)*self.v_c

104 # first equation

105 term0 = (self.G* self.Wscale)*(self.Y-self.V*(self.T*self.

Tscale/self.Wscale))/(self.ml* self.c0/self.keq*(1-self.keq))

106 term4in = self.mgphi*self.wn*self.dwnx

107 term5in = self.mgphi*self.wn*self.dwny

108 term4 = -fe.inner(term4in , self.v_phi.dx(0))

109 term5 = -fe.inner(term5in , self.v_phi.dx(1))

110 term3 = -(self.wn**2*fe.inner(fe.grad(self.phi),fe.grad(self

.v_phi)))

111 term2 = fe.inner ((self.phi - self.phi **3)-self.lamda *(self.c

+ term0)*(1-self.phi **2)**2, self.v_phi)

112 term1 = -fe.inner ((self.taun) * (self.phi -self.phi_) / self.

dt, self.v_phi)

113 self.eq1 = term1+term2+term3+term4+term5+term1ad

114 self.eq1 = self.eq1*fe.dx

115 # second equation

116 d = self.ds*(1+ self.phi)/2+ self.dl*(1-self.phi)/2

117 dphidt = (self.phi -self.phi_)/self.dt

118 term6 = -fe.inner (((opk) / 2 - (omk) * self.phi / 2) * (self

.c - self.c_) / self.dt, self.v_c)

119 term7 = -fe.inner(d * (1 - self.phi) / 2 * fe.grad(self.c),



82

fe.grad(self.v_c))

120 term9 = (1 + (omk) * self.c) * dphidt / 2 * self.v_c

121 self.eq2 = term6+term7+term9+term2ad

122 self.eq2 = self.eq2*fe.dx

123

124 def defsol(self):

125

126 L = self.eq1 + self.eq2

127 J = fe.derivative(L, self.sv)

128 problem = fe.NonlinearVariationalProblem(L, self.sv , J=J)

129 self.solverpf = fe.NonlinearVariationalSolver(problem)

130 self.solverpf.parameters.update(self.solver_parameters)

131

132 def solve(self):

133

134 self.solverpf.solve()

135 self.sv_.vector ()[:]= self.sv.vector ()

136

137 def inco(self):

138

139 class InitialConditions(fe.UserExpression):

140 def __init__(self , dy , y_solid , ** kwargs):

141 super ().__init__ (** kwargs)

142 self.dy = dy

143 self.y_solid = y_solid

144 def eval(self , values , x):

145 xp = x[0]

146 yp = x[1]

147 perturbation_amplitude = 1*self.dy

148 perturbation_wavelength = 4*self.dy

149 perturbation = perturbation_amplitude*np.sin(2 *np.

pi*xp/perturbation_wavelength)

150 if yp < self.y_solid - perturbation_amplitude :
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151 values [0] = 1

152 values [1] = -1

153 elif self.y_solid - perturbation_amplitude <= yp <=

self.y_solid + perturbation_amplitude:

154 values [0] = perturbation

155 values [1] = -1

156 else: # liquid

157 values [0] = -1

158 values [1] = -1

159 def value_shape(self):

160 return (2,)

161

162 if self.old_sv_ is not None:

163

164 fe.LagrangeInterpolator.interpolate(self.sv_ , self.

old_sv_)

165 fe.LagrangeInterpolator.interpolate(self.sv , self.old_sv

)

166

167 else:

168 self.sv_.interpolate(InitialConditions(self.dy , self.

y_solid , degree =2))

169 self.sv.interpolate(InitialConditions(self.dy , self.

y_solid , degree =2))

Listing B.1: Phase Field Class

B.2 Navier-Stokes Class

The Navier-Stokes (NS) class defines and solves the incompressible Navier-Stokes

equations for solid-liquid systems using FEniCS. It supports fluid flow coupled with

solidification by interacting with a phase-field (PF) problem.
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Key Methods

• Initialization: Sets up physical parameters, time step, mesh, and solver pa-

rameters.

• Function Spaces: Defines velocity-pressure function spaces with Lagrange

elements.

• Formulation: Constructs the weak form of the Navier-Stokes equations, adding

penalization to ensure zero velocity in solid regions.

• Boundary Conditions: Implements inflow, outflow, and wall boundary condi-

tions using velocity profiles.

• Solver: Nonlinear solver is set up for solving the system iteratively.

• Viscosity Handling: Computes viscosity as a weighted combination based on

solid or liquid phase.

This class enables efficient simulation of fluid dynamics within a system undergoing

phase transitions between solid and liquid states.

1 import fenics as fe

2 import numpy as np

3

4 class NS:

5

6 def __init__(self , mesh , parameters_dict , nsproblem=None ,

pfproblem=None):

7

8 self.mesh = mesh

9 self.nsproblem = nsproblem

10 self.pfproblem = pfproblem

11 self.parameters_dict = parameters_dict
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12 self.dt = fe.Constant(parameters_dict["dt"]) # Time step

13 self.rho = fe.Constant(parameters_dict["rho_solid"])

14 self.rho_solid = fe.Constant(parameters_dict["rho_solid"])

15 self.rho_liquid = fe.Constant(parameters_dict["rho_liquid"])

16 self.viscosity_solid = fe.Constant(parameters_dict["

viscosity_solid"])

17 self.viscosity_liquid = fe.Constant(parameters_dict["

viscosity_liquid"])

18 self.wscale = parameters_dict["Wscale"]

19 self.wscale = parameters_dict["Wscale"]

20 self.tscale = parameters_dict["Tauscale"]

21 self.kinsolid =(self.viscosity_solid/self.rho_solid)*(self.

tscale/self.wscale **2)

22 self.kinliq =(self.viscosity_liquid/self.rho_liquid)*(self.

tscale/self.wscale **2)

23 self.mu = self.kinliq

24 self.pfproblem = pfproblem

25 self.solver_parameters = {

26 ’nonlinear_solver ’: self.parameters_dict["

nonlinearsolverns"],

27 ’snes_solver ’: {

28 ’linear_solver ’: self.parameters_dict["

linearsolverns"],

29 ’report ’: False ,

30 "preconditioner": self.parameters_dict["

preconditionerns"],

31 ’error_on_nonconvergence ’: False ,

32 ’absolute_tolerance ’: self.parameters_dict["

abs_tol_ns"],

33 ’relative_tolerance ’: self.parameters_dict["

rel_tol_ns"],

34 ’maximum_iterations ’: self.parameters_dict["

maximumiterationsns"],
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35 }

36 }

37 if self.nsproblem is not None:

38 self.old_sv_ = self.nsproblem.sv_

39 self.old_sv = self.nsproblem.sv

40 if self.pfproblem is not None:

41 self.phi_ , self.c_ = self.pfproblem.sv_.split(deepcopy=

True) # use self.phi_interp

42 # Initialize

43 self.func_space ()

44 self.form()

45 self.BC()

46 self.InitialC ()

47 self.solver ()

48

49 def func_space(self , degree =2):

50

51 P1 = fe.VectorElement("Lagrange", self.mesh.ufl_cell (), 2)

52 P2 = fe.FiniteElement("Lagrange", self.mesh.ufl_cell (), 1)

53 EL = fe.MixedElement ([P1 , P2])

54 self.fs = fe.FunctionSpace(self.mesh , EL)

55 self.v, self.q = fe.TestFunctions(self.fs)

56 self.sv = fe.Function(self.fs)

57 self.sv_ = fe.Function(self.fs)

58 self.u, self.p = fe.split(self.sv)

59 self.u_, self.p_ = fe.split(self.sv_)

60 self.space_u , _ = self.fs.sub (0).collapse(collapsed_dofs=

True)

61 self.space_p , _ = self.fs.sub (1).collapse(collapsed_dofs=

True)

62 self.phi_interp = fe.Function(self.space_p)

63 if self.pfproblem is not None:

64 fe.LagrangeInterpolator.interpolate(self.phi_interp ,
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self.phi_)

65

66 def form(self):

67

68

69 beta = 1e6 # Adjust as needed

70 epsilon = 0.05

71 H = self.smooth_heaviside(self.phi_interp , epsilon)

72 penalization = beta * H * fe.inner(self.u, self.v) * fe.dx

73 Fp = fe.inner(fe.div(self.u)/self.dt , self.q)

74 Fu = (

75 fe.inner ((self.u - self.u_)/self.dt , self.v)

76 + fe.inner(fe.dot(self.u,fe.grad(self.u)),self.v)

77 + self.mu*fe.inner(self.sigma(self.u, self.p), self.

epsilon(self.v))

78 + fe.inner(penalization_term , self.v)

79 )

80 self.F = (Fp + Fu)*fe.dx

81

82 def epsilon(self ,u):

83 return 0.5*(fe.grad(u)+fe.grad(u).T)

84

85 def sigma(self ,u, p):

86 return 2*self.epsilon(u) - p*fe.Identity(len(u))

87

88 def BC(self):

89

90 Nx = self.parameters_dict.get("Nx")

91 Ny = self.parameters_dict.get("Ny")

92 max_y = self.parameters_dict.get("y_solid")

93 velx = self.parameters_dict.get("velx")# m/s

94 velx = velx*self.tscale/self.wscale

95 # # Parabolic inflow profile: velocity is zero below max_y ,



88

parabolic above max_y

96 # inflow_profile = fe.Expression ((’(x[1] >= max_y) ? velx *

(1 - pow((x[1] - max_y) / (Ny - max_y), 2)) : 0.0’, ’0.0’),

97 # velx=velx , Ny=Ny, max_y=max_y ,

degree =2)

98

99 inflow_profile = (fe.Expression ((

100 ’velx * (tanh((x[1] - max_y) / eps) + 1.0) / 2.0 * (1.0

- pow((x[1] - max_y) / (Ny - max_y), 2))’,

101 ’0.0’),

102 velx=velx , Ny=Ny , max_y=max_y , eps =0.05, degree =2))

103

104 inflow = ’near(x[0] ,0)’

105 outflow = f’near(x[0],{Nx})’

106 walls = f’near(x[1],0) || near(x[1],{Ny})’

107 bcu_inflow = fe.DirichletBC(self.fs.sub(0), inflow_profile ,

inflow)

108 bcp_outflow = fe.DirichletBC(self.fs.sub (1), fe.Constant (0),

outflow)

109 bc_walls = fe.DirichletBC(self.fs.sub (0), fe.Constant ((0.0,

0.0)), walls)

110 self.Bc = [bcu_inflow , bcp_outflow , bc_walls]

111

112 def solver(self):

113

114 J= fe.derivative(self.F, self.sv)

115 self.problem= fe.NonlinearVariationalProblem(self.F, self.sv

, self.Bc, J)

116 self.solver = fe.NonlinearVariationalSolver(self.problem)

117 self.solver.parameters.update(self.solver_parameters)

118

119 def InitialC(self):

120
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121 class InitialConditions_ns(fe.UserExpression):

122

123 def __init__(self , params , ** kwargs):

124 super ().__init__ (** kwargs)

125

126 def eval(self , values , x):

127 values [0] = 0.0

128 values [1] = 0.0

129 values [2] = 0.0

130

131 def value_shape(self):

132 return (3,)

133

134 if self.nsproblem is not None:

135 fe.LagrangeInterpolator.interpolate(self.sv_ , self.

old_sv_)

136 fe.LagrangeInterpolator.interpolate(self.sv , self.old_sv

)

137 else:

138 self.sv_.interpolate(InitialConditions_ns(self.

parameters_dict , degree =2))

139 self.sv.interpolate(InitialConditions_ns(self.

parameters_dict , degree =2))

140

141 def solve(self):

142

143 self.solver.solve()

144 self.sv_.vector ()[:]= self.sv.vector ()

145

146 def smooth_step(self , phi):

147

148 return 3 * phi **2 - 2 * phi **3

149
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150 def viscosity(self):

151

152 return (

153 (self.kinsolid) * self.smooth_step(self.phi_interp)

154 + (self.kinliq) * (1 - self.smooth_step(self.phi_interp)

))

Listing B.2: Navier-Stockes Class

B.3 Adaptive Mesh Refinement

The meshrefiner class performs adaptive mesh refinement (AMR) based on the

gradient of the phase field, ϕ. The refinement process identifies areas where the

gradient exceeds a defined threshold, indicating significant changes in ϕ, and refines

the mesh accordingly. This implementation is designed to handle parallel computations

effectively. The refinement steps are as follows:

1. value coor dof : This function gathers the gradient values of ϕ at the degrees

of freedom (DOFs) across all processors. It collects this information from each

process and then shares it with all processors to ensure consistent refinement

decisions in parallel execution.

2. coordinates of int: Identifies the mesh coordinates corresponding to regions

with high ϕ gradients or interface, which are marked as candidates for refinement.

3. mark mesh: This function identifies the cells in the mesh that require refinement

based on the coordinates where the gradient of ϕ exceeds the threshold. It uses

a mesh function to flag these cells for refinement.

4. refine to min: Applies the refinement process to the marked cells and generates

a new refined mesh.
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5. refine mesh: This function repeatedly refines the mesh, up to a specified

maximum refinement level. The mesh is adapted in areas of high gradient

until the required resolution is reached.The refinement process begins from

a predefined coarse mesh and iteratively refines the flagged regions until the

specified resolution or maximum refinement level is reached. This ensures that

the mesh adapts dynamically to capture fine details in areas of high ϕ gradient

while maintaining efficiency in regions with less variation.

6. initialize: This function coordinates the entire process by first gathering the

gradient values, identifying the areas to refine, and then executing the mesh

refinement process.

The class ensures efficient parallel computation by gathering and sharing the

necessary refinement data across all processors, allowing the mesh to be refined

consistently across different computational domains. This class, while not guaranteed

to offer maximum efficiency due to being developed by a less experienced author, is

designed to function effectively in adaptively refining the mesh. Although there may

be room for optimization, it fulfills the intended purpose of refining the mesh based

on the gradient of the field and will work as expected to capture important features

in the simulation.

1 import fenics as fe

2 import numpy as np

3

4

5 class meshrefiner:

6 def __init__(self , params , pfproblem , comm):

7 self.params= params

8 self.dy= params[’dy’]

9 self.max_level= params[’max_level ’]

10 self.interface_threshold_gradient= params["
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interface_threshold_gradient"]

11 self.comm = comm

12 self.pfproblem= pfproblem

13 self.spacepf= self.pfproblem.spacepf

14 self.sv_= self.pfproblem.sv_

15 self.mesh_coarse= params[’mesh_coarse ’]

16

17 def value_coor_dof(self):

18

19 (phi_ , u_) = fe.split(self.sv_)

20 coordinates_of_all = self.spacepf.tabulate_dof_coordinates ()

21 grad_phi = fe.project(fe.sqrt(fe.dot(fe.grad(phi_), fe.grad(

phi_))), self.spacepf)

22 phi_value_on_dof = grad_phi.vector ().get_local ()

23 all_Val_dof = self.comm.gather(phi_value_on_dof , root =0)

24 all_point = self.comm.gather(coordinates_of_all , root =0)

25 # Broadcast the data to all processors

26 all_point = self.comm.bcast(all_point , root =0)

27 all_Val_dof = self.comm.bcast(all_Val_dof , root =0)

28 # Combine the data from all processors

29 all_Val_dof_1 = [val for sublist in all_Val_dof for val in

sublist]

30 all_point_1 = [point for sublist in all_point for point in

sublist]

31 self.dofcoor = np.array(all_point_1)

32 self.valdof = np.array(all_Val_dof_1)

33

34 def coordinates_of_int(self):

35

36 high_gradient_indices = np.where(self.valdof > self.

interface_threshold_gradient)[0]

37 self.listcoorint = self.dofcoor[high_gradient_indices]

38
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39 def mark_mesh(self , coarse_mesh_it):

40

41 mf = fe.MeshFunction("bool", coarse_mesh_it , coarse_mesh_it.

topology ().dim(), False)

42 len_mf = len(mf)

43 Cell_Id_List = []

44 tree = coarse_mesh_it.bounding_box_tree ()

45 for Cr in self.listcoorint:

46 cell_id = tree.compute_first_entity_collision(fe.Point(

Cr))

47 if cell_id != 4294967295 and 0 <= cell_id < len_mf:

48 Cell_Id_List.append(cell_id)

49

50 Cell_Id_List = np.unique(np.array(Cell_Id_List , dtype=int))

51 mf.array()[Cell_Id_List] = True

52 return mf

53

54 def refine_to_min(self , coarse_mesh_it):

55

56 mf = self.mark_mesh(coarse_mesh_it)

57 rfmesh = fe.refine(coarse_mesh_it , mf , redistribute=True)

58 return rfmesh

59

60 def refine_mesh(self):

61

62 coarse_mesh_it = self.mesh_coarse

63 for res in range(self.max_level):

64 self.mesh_new = self.refine_to_min(coarse_mesh_it)

65 coarse_mesh_it = self.mesh_new

66

67 self.mesh_info = {

68 ’n_cells ’: fe.MPI.sum(self.comm , self.mesh_new.num_cells

()),
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69 ’hmin’: fe.MPI.min(self.comm , self.mesh_new.hmin()),

70 ’hmax’: fe.MPI.max(self.comm , self.mesh_new.hmax()),

71 ’dx_min ’: fe.MPI.min(self.comm , self.mesh_new.hmin()) /

fe.sqrt (2),

72 ’dx_max ’: fe.MPI.max(self.comm , self.mesh_new.hmax()) /

fe.sqrt (2) ,}

73

74 def initialize(self):

75

76 self.value_coor_dof ()

77 self.coordinates_of_int ()

78 self.refine_mesh ()

Listing B.3: AMR Class



Appendix C

Phase-Field Karma Model Code

Implementation

Introduction

This appendix contains the source code for the implementation of the Phase-Field

Karma model using OpenFOAM and MOOSE. The code provided here highlights

critical components of the solver setup, numerical schemes, and custom modifications

necessary for solving the equations detailed in the main body of this thesis.

The objective of implementing the Phase-Field Karma model in both OpenFOAM

and MOOSE was to leverage the built-in CFD capabilities of these powerful software

frameworks. By integrating the phase-field model with their existing computational

fluid dynamics tools, future work can directly utilize the extensive CFD functionality

for more advanced simulations involving fluid-structure interactions and solidification

processes.

95
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C.1 MOOSE Implementation

To solve equations 2.9 and 2.10, the following MOOSE code was developed by re-

fining and simplifying the existing Kobayashi kernels[moose˙kobayashi˙kernel] in

MOOSE, which were overly complex. This approach streamlines the implementation,

making it more efficient and easier to use. you can find the codes in this repository

[moose˙isothermal].

Listing C.1: MOOSE Input File for Isothermal Simulation

1 [Mesh]

2 type = GeneratedMesh

3 dim = 2

4 nx = 25

5 ny = 25

6 xmin = 0.0

7 xmax = 400.0

8 ymin = 0.0

9 ymax = 400.0

10 []

11

12

13 [Variables]

14 # Variables for the two equations

15 [./phi]

16 family = LAGRANGE

17 order = FIRST

18 [../]

19

20 [./u]

21 family = LAGRANGE

22 order = FIRST

23 [../]
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24 []

25

26 [Kernels]

27 #phi

28 [./ phi_time_derivative]

29 type = ADTimeop

30 variable = phi

31 [../]

32 [./ phi_terms1]

33 type = ADkarma1

34 variable = phi

35 [../]

36 [./ phi_src]

37 type = ADsrc

38 variable = phi

39 UH = u

40 [../]

41 # U

42 [./ U_time_derivative]

43 type = E1

44 variable = u

45 op = phi

46 [../]

47 [./ Div_term]

48 type = E2

49 variable = u

50 op = phi

51 [../]

52 [./ u_term_3]

53 type = E3

54 variable = u

55 op = phi

56
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57 [../]

58 []

59

60

61

62

63

64 [ICs]

65 [./ phiIC]

66 type = SmoothCircleIC

67 variable = phi

68 x1 = 0.0

69 y1 = 0.0

70 radius = 8

71 outvalue = -1 # liquid

72 invalue = 1 # solid

73 [../]

74 [./uIC]

75 type = SmoothCircleIC

76 variable = u

77 x1 = 0.0

78 y1 = 0.0

79 radius = 8

80 outvalue = -0.55 # liquid

81 invalue = -0.55 # solid

82 [../]

83 []

84

85

86

87 [Materials]

88 [./ Theta]

89 type = ADtheta
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90 op = phi

91 [../]

92 []

93

94 [Adaptivity]

95 initial_steps = 5

96 initial_marker = refine_region

97 max_h_level = 5

98 marker = err_phi

99 interval = 10

100

101 [./ Markers]

102 [./ err_phi]

103 type = ErrorFractionMarker

104 coarsen = 0.3

105 refine = 0.95

106 indicator = ind_phi

107 [../]

108 [./ refine_region]

109 type = BoxMarker

110 bottom_left = ’0 0 0’

111 top_right = ’21 21 0’

112 inside = refine

113 outside = do_nothing

114 [../]

115 [../]

116 [./ Indicators]

117 [./ ind_phi]

118 type = GradientJumpIndicator

119 variable = phi

120 [../]

121 [../]

122 []
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123

124 [Preconditioning]

125 [./ advanced_precond]

126 type = SMP

127 full = false

128 [../]

129 []

130

131 [Executioner]

132 type = Transient

133 solve_type = PJFNK

134 nl_abs_tol = 1e-6

135 nl_rel_tol = 1e-5

136 l_max_its = 100

137 nl_max_its = 50

138 petsc_options_iname = ’-ksp_type -pc_type -pc_hypre_type -

ksp_gmres_restart -pc_hypre_boomeramg_strong_threshold ’

139 petsc_options_value = ’gmres hypre boomeramg 30 0.7’

140 dt = 0.018

141 end_time = 75000

142

143 []

144

145

146 [Outputs]

147 [./ exodus]

148 type = Exodus

149 interval = 100

150 file_base = simulation

151 execute_on = ’initial timestep_end ’

152 [../]

153 [./ checkpoint]

154 type = Checkpoint
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155 time_step_interval = 100

156 num_files = 2

157 [../]

158 []

For the anisotropy component, we utilize the formulation A(θ) = 1 + ϵ cos(4θ) as

part of equation 2.9. The derivation of this expression can be found in the referenced

literature [64], and its implementation is straightforward.

The first term we need isA(θ) = 1+ϵ cos(4θ), where θ is defined as θ = arctan
(

∂yϕ

∂xϕ

)
.

To compute θ as a material property in MOOSE, the following file was created, using

the order parameter (‘op‘) and its gradient.

Listing C.2: MOOSE kernel for defining theta

1 #include "ADtheta.h"

2 #include "MooseMesh.h"

3 #include "MathUtils.h"

4

5 registerMooseObject("diffApp", ADtheta);

6

7 InputParameters

8 ADtheta :: validParams ()

9 {

10 InputParameters params = Material :: validParams ();

11 params.addClassDescription("2D interfacial anisotropy");

12 params.addParam <Real >(

13 "epsilon", 0.02, "Strength of the anisotropy");

14 params.addParam <Real >(

15 "w0", 1.0, "Interface width");

16 params.addRequiredCoupledVar("op", "Order parameter defining the

solid phase");

17

18 return params;
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19 }

20

21 ADtheta :: ADtheta(const InputParameters & parameters)

22 : Material(parameters),

23 _epsilon(getParam <Real >("epsilon")),

24 _w0(getParam <Real >("w0")),

25 _eps(declareADProperty <Real >("eps")),

26 _deps(declareADProperty <Real >("deps")),

27 _op(adCoupledValue("op")),

28 _grad_op(adCoupledGradient("op"))

29 {

30 // this currently only works in 2D simulations

31 if (_mesh.dimension () != 2)

32 mooseError("ADInterfaceOrientationMaterial requires a two -

dimensional mesh.");

33 }

34

35

36 void

37 ADtheta :: computeQpProperties ()

38 {

39 const ADReal grad_x_phi = _grad_op[_qp ](0); // x

40 const ADReal grad_y_phi = _grad_op[_qp ](1); // y

41

42 // Compute the magnitude of the gradient

43 const ADReal grad_norm = std::sqrt(grad_x_phi * grad_x_phi +

grad_y_phi * grad_y_phi);

44

45 // Initialize theta

46 ADReal theta = 0.0;

47

48 // Avoid undefined atan2 when gradient is zero

49 if (grad_norm > 1e-14) // Use a small tolerance to avoid
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division by zero

50 {

51 theta = std::atan2(grad_y_phi , grad_x_phi);

52 }

53

54 // Compute anisotropy functions

55 _eps[_qp] = _w0 * (1.0 + _epsilon * std::cos (4.0 * theta));

56 _deps[_qp] = _w0 * (- _epsilon * 4.0 * std::sin (4.0 * theta));

57 }

It is now possible to define the terms in equation 2.9. The ‘ADTimeOp.C‘ kernel

is responsible for implementing the term τ0A(θ)
2 ∂ϕ
∂t
.

Listing C.3: Kernel for Time Derivative of Order Parameter

1 #include "ADTimeop.h"

2

3 registerMooseObject("diffApp", ADTimeop);

4

5 InputParameters

6 ADTimeop :: validParams ()

7 {

8 InputParameters params = ADTimeKernelValue :: validParams ();

9 params.addClassDescription("Implements the time derivative term

with anisotropy a(theta)^2 and coefficient tau_0.");

10 params.addParam <Real >("tau0", 1.0, "Coefficient tau_0 for the

time derivative term.");

11 params.addParam <MaterialPropertyName >("eps_name", "eps", "The

anisotropic interface parameter");

12 return params;

13 }

14

15 ADTimeop :: ADTimeop(const InputParameters & parameters)

16 : ADTimeKernelValue(parameters),
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17 _tau0(getParam <Real >("tau0")),

18 _eps(getADMaterialProperty <Real >("eps_name"))

19 {

20 }

21

22 ADReal

23 ADTimeop :: precomputeQpResidual ()

24 {

25 // Compute the time derivative term: tau_0 * a(theta)^2 * d(phi)

/dt

26 return _tau0 * _eps[_qp]* _eps[_qp]* _u_dot[_qp];

27 }

The next terms to define are the weak forms of the following expressions:

W 2
0∇ ·

[
A(θ)2∇ϕ

]
− ∂

∂x

[
A(θ)A′(θ)

∂ϕ

∂y

]
+

∂

∂y

[
A(θ)A′(θ)

∂ϕ

∂x

]

Listing C.4: Kernel Anisotropic terms

1 #include "ADkarma1.h"

2

3 registerMooseObject("diffApp", ADkarma1);

4

5 InputParameters

6 ADkarma1 :: validParams ()

7 {

8 InputParameters params = ADKernelGrad :: validParams ();

9 params.addClassDescription("Anisotropic gradient Krama");

10 params.addParam <MaterialPropertyName >("eps_name", "eps", "The

anisotropic interface parameter");

11 params.addParam <MaterialPropertyName >(

12 "deps_name",

13 "deps",
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14 "The derivative of the anisotropic interface parameter with

respect to angle");

15 return params;

16 }

17

18 ADkarma1 :: ADkarma1(const InputParameters & parameters)

19 : ADKernelGrad(parameters),

20 _eps(getADMaterialProperty <Real >("eps_name")),

21 _deps(getADMaterialProperty <Real >("deps_name"))

22 {

23 }

24

25 ADRealGradient

26 ADkarma1 :: precomputeQpResidual ()

27 {

28 // Set modified gradient vector

29 const ADRealGradient v(-_grad_u[_qp ](1), _grad_u[_qp ](0), 0);

30

31 // Define anisotropic interface residual

32 return _eps[_qp] * _deps[_qp] * v + _eps[_qp] * _eps[_qp] *

_grad_u[_qp];

33 }

In the file ‘ADSrc.C‘, the following terms are implemented:

(
ϕ− ϕ3

)
− λU

(
1− ϕ2

)2
Listing C.5: Kernel for nonlinear source contributions to the model.

1 #include "ADsrc.h"

2

3 registerMooseObject("diffApp", ADsrc);

4
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5 InputParameters

6 ADsrc:: validParams ()

7 {

8 InputParameters params = ADKernelValue :: validParams ();

9 params.addParam <Real >("lambda", 3.1913 , "Coefficient of the source

term");

10 params.addCoupledVar("UH", "Variable U from the second equation");

11 return params;

12 }

13

14 ADsrc:: ADsrc(const InputParameters & parameters)

15 : ADKernelValue(parameters),

16 _lambda(getParam <Real >("lambda")),

17 _UH(adCoupledValue("UH"))

18 {

19 }

20

21 ADReal

22 ADsrc:: precomputeQpResidual ()

23 {

24 const ADReal u_val = _u[_qp];

25 const ADReal U_val = _UH[_qp];

26 return -(u_val - _lambda * U_val * (1.0 - std::pow(u_val , 2))) *

(1.0 - std::pow(u_val , 2)); // negative sign becuse LHS

27 }

Now, let’s proceed to the implementation of the second PDE, equation 2.10.

The file ‘E1.C‘ implements the following term:

(
1 + k

2
− 1− k

2
h(ϕ)

)
∂U

∂t

Listing C.6: Kernel for time derivative of U.
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1 #include "E1.h"

2

3 registerMooseObject("diffApp", E1);

4

5 InputParameters

6 E1:: validParams ()

7 {

8 InputParameters params = ADTimeKernelValue :: validParams ();

9 params.addClassDescription("Time derivative.");

10 params.addParam <Real >("k", 0.15, "Coefficient tau_0 for the time

derivative term.");

11 params.addRequiredCoupledVar("op", "Order parameter defining the

solid phase");

12

13 return params;

14 }

15

16 E1::E1(const InputParameters & parameters)

17 : ADTimeKernelValue(parameters),

18 _k(getParam <Real >("k")),

19 _op(adCoupledValue("op"))

20 {

21 }

22

23 ADReal

24 E1:: precomputeQpResidual ()

25 {

26 const ADReal _scalar = ((1+_k) -(1-_k)*_op[_qp])/2;

27

28 return _scalar* _u_dot[_qp];

29 }
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On the right-hand side, the file ‘E2.C‘ implements the following term:

∇⃗ ·

(
D
1− ϕ

2
∇⃗U +

W

2
√
2
[1 + (1− k)U ]

∂ϕ

∂t

∇⃗ϕ

|∇⃗ϕ|

)

Listing C.7: Kernel for diffusion and antitraping term of U.

1 #include "E2.h"

2

3 registerMooseObject("diffApp", E2);

4

5 InputParameters

6 E2:: validParams ()

7 {

8 InputParameters params = ADKernelGrad :: validParams ();

9 params.addClassDescription("divergence term of EQ2.");

10 params.addRequiredCoupledVar("op", "Order parameter defining the

solid phase");

11 params.addParam <Real >("k", 0.15, "Coefficient tau_0 for the time

derivative term.");

12 params.addParam <Real >("D", 2, "Coefficient tau_0 for the time

derivative term.");

13

14 return params;

15 }

16

17 E2::E2(const InputParameters & parameters)

18 : ADKernelGrad(parameters),

19 _op(adCoupledValue("op")),

20 _grad_op(adCoupledGradient("op")),

21 _k(getParam <Real >("k")),

22 _D(getParam <Real >("D")),

23 _v_dot(adCoupledDot("op"))
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24

25 {

26 }

27

28 ADRealGradient

29 E2:: precomputeQpResidual ()

30 {

31

32 const Real tol = 1e-10;

33 ADReal q_phi = (1 - _op[_qp]) / 2;

34 ADRealGradient term1 = _D * q_phi * _grad_u[_qp];

35 ADReal norm_grad_phi = _grad_op[_qp].norm();

36 ADReal term2 = 0.0;

37

38 if (norm_grad_phi > tol)

39 {

40 term2 = 1/ norm_grad_phi ;

41 }

42

43 ADRealGradient term_anti = (term1*_grad_op[_qp])*_v_dot[_qp

]*(1+(1 -_k)*_u[_qp])/std::pow (8 ,0.5);

44

45 return term1;

46 }

The final term for U is the latent heat-like term, which is implemented in the

‘E3.C‘ file:

+
1

2

∂

∂t
{ϕ[1 + (1− k)U ]}

This term represents the coupling effect due to the evolving phase field and

concentration, similar to a latent heat contribution.
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Listing C.8: Kernel term of U.

1 #include "E3.h"

2

3 registerMooseObject("diffApp", E3);

4

5 InputParameters

6 E3:: validParams ()

7 {

8 auto params = ADKernelValue :: validParams ();

9 params.addClassDescription("Eq2 last term LHS sign negative . ")

;

10 params.addRequiredCoupledVar("op", "Coupled variable");

11 params.addParam <Real >("k", 0.15, "Coefficient tau_0 for the time

derivative term.");

12 return params;

13 }

14

15 E3::E3(const InputParameters & parameters)

16 : ADKernelValue(parameters),

17 _v_dot(adCoupledDot("op")),

18 _k(getParam <Real >("k"))

19 {

20 }

21

22 ADReal

23 E3:: precomputeQpResidual ()

24 {

25 ADReal _scale = (1+(1-_k)*_u[_qp])/2;

26

27 return -(_scale * _v_dot[_qp]);

28 }
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Figure C.1: MOOSE Implementation

C.2 OpenFOAM Implementation

The implementation in OpenFOAM was performed using version 9, as the author

found the adaptive meshing features in this version more straightforward to work

with, facilitating integration into the project. Please note that this implementation

is an initial attempt by the author, who has limited experience with OpenFOAM,

so use it at your own discretion. For more details, refer to the GitHub repository

[openfoam˙isothermal].

The file ‘theta.H‘ implements the function for calculating θ:

A(θ) = 1 + ϵ cos(4θ)
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This function captures the anisotropic effects by defining the dependence of A(θ)

on the angle θ.

Listing C.9: function for theta.

1

2 void calculateTheta(

3 const volScalarField& psi , // Input field for phi

4 volScalarField& theta // Reference to the result field

5 )

6 {

7 // Calculate the gradient of phi

8 volVectorField gradPhi = fvc::grad(psi);

9

10 // Calculate theta = atan2(gradPhi_y , gradPhi_x)

11 theta = Foam:: atan2(gradPhi.component (1), gradPhi.component (0));

12

13 }

The next file is the function for implementation of 2.9 in openfoam:

τ
∂ϕ

∂t
= W 2∇2ϕ+ ϕ− ϕ3 − λg′(ϕ)U

Listing C.10: Phase-field PDE.

1 #ifndef PHI_EQUATION_H

2 #define PHI_EQUATION_H

3 #include "fvCFD.H"

4 #include "volFields.H"

5 #include "dimensionedScalar.H"

6 // Function to solve the phi equation

7 void solvePhiEquation(

8 volScalarField& psi , // Field for phi

9 volScalarField& epsilon , // Field for epsilon(theta)
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10 volScalarField& epsilonDerivative , // Field for epsilon ’(theta)

11 volScalarField& u, // Field for u

12 dimensionedScalar& lambda ,

13 dimensionedScalar& tau0 , // Diffusion coefficient for u

14 dimensionedScalar& W0,

15 dimensionedScalar& Gr,

16 dimensionedScalar& Vspeed ,

17 dimensionedScalar& Tscale ,

18 dimensionedScalar& Wscale ,

19 scalar ml ,

20 scalar Conc0 ,

21 scalar k,

22 fvMesh& mesh ,

23 Time& runTime // Time object for simulation

time

24 )

25 {

26 scalar currentTime = runTime.value();

27 // Compute the gradient of phi

28 volVectorField gradPhi = fvc::grad(psi);

29 // Calculate the diffusion term: div(epsilon ^2 * grad(phi))

30 // volScalarField diffusionTerm = fvc::div(epsilon * epsilon *

gradPhi);

31 fvScalarMatrix diffusionTerm = fvm:: laplacian(epsilon * epsilon ,

psi);

32 // Calculate the cross terms:

33 volVectorField TermX = fvc::grad(epsilon * epsilonDerivative *

gradPhi.component(vector ::Y));

34 volVectorField TermY= fvc::grad(epsilon * epsilonDerivative *

gradPhi.component(vector ::X));

35 volScalarField TermX_X = TermX.component(vector ::X);

36 volScalarField TermY_Y = TermY.component(vector ::Y);

37 volScalarField yCoord = mesh.C().component(vector ::Y);
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38

39 volScalarField epsilonSquared = epsilon/W0 * epsilon/W0 ;

40 // Define the PDE using fvScalarMatrix

41 fvScalarMatrix phiEqn(

42 tau0 * epsilonSquared * fvm::ddt(psi)

// Time derivative

43 - diffusionTerm //

Diffusion term

44 + TermX_X //

Cross term in x-direction

45 - TermY_Y //

Cross term in y-direction

46 - ( psi - pow(psi ,3) )

47 + lambda *(u+ (Gr* Wscale)*( yCoord/W0 - Vspeed *( currentTime*

Tscale/Wscale) )/(ml*Conc0/k*(1-k)))* pow ((1 - psi* psi) ,2)//

LHS of the equation

48 );

49 // Relax and solve the equation

50 phiEqn.relax();

51 phiEqn.solve();

52 }

53

54 #endif

Second PDE implementation 2.10:

1 + k

2

∂U

∂t
= ∇⃗·

(
D
1− ϕ

2
∇⃗U +

W

2
√
2
[1 + (1− k)U ]

∂ϕ

∂t

∇⃗ϕ

|∇⃗ϕ|

)
+
1

2

∂

∂t
{ϕ[1 + (1− k)U ]}

Listing C.11: U PDE

1

2 #include "fvCFD.H"
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3 #include "volFields.H"

4 #include "dimensionedScalar.H"

5 // #include "laplacianScheme.H"

6 #include "fvSchemes.H"

7 void solveUEqn(volScalarField& u, volScalarField& psi ,

dimensionedScalar& D_u , scalar k,dimensionedScalar& W0 ,Time&

runTime)

8 {

9 Info << "Solving U equation at time = " << runTime.timeName () <<

endl;

10 // Calculate coefficients

11 volScalarField coeff = (1 + k - (1 - k) * psi) / 2;

12 volScalarField gradPhiMag = mag(fvc::grad(psi));

13 dimensionedScalar SMALL("SMALL", gradPhiMag.dimensions (), 1e-12)

;

14 volVectorField normalizedGradPhi = fvc::grad(psi) / (gradPhiMag

+ SMALL);

15

16 // Define the diffusion term

17 volScalarField diffTerm = D_u * (1 - psi) / 2;

18

19 volVectorField Term2 = W0 / (2.0 * pow(2, 0.5)) * (1 + (1 - k) *

u) *fvc::ddt(psi) * normalizedGradPhi;

20

21 // Define the equation

22 fvScalarMatrix UEqn

23 (

24 -fvm::ddt(coeff , u) // // LHS of the equation

25 );

26 // Add other terms

27 // surfaceVectorField diffTermInterpolated = fvc:: interpolate(

diffTerm);

28 UEqn += fvm:: laplacian(diffTerm , u);
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29 UEqn += fvc::div(Term2);

30 UEqn += (1 + (1 - k) * u) / 2 * fvc::ddt(psi);

31 // Apply under -relaxation to the equation (if needed)

32 UEqn.relax ();

33 // Solve the equation

34 UEqn.solve ();

35 Info << "Finished solving U equation" << endl;

36 }

next is the time loop in the openfoam which use the previous functions:

Listing C.12: Time loop

1 #include "fvCFD.H"

2 #include "solveUEqn.H"

3 #include "solvePsiEquation.H"

4 #include "epsilon.H"

5 #include "theta.H"

6 #include "InitialCond.H"

7 int main(int argc , char *argv [])

8 {

9 #include "setRootCase.H"

10 #include "createTime.H"

11 #include "createMesh.H"

12 #include "createFields.H"

13 initializeFields(psi , u, mesh , radius , delta , runTime);

14 // Manually write the fields to the disk

15 runTime.write(); // Write the initial conditions to the 0 time

step

16 while (runTime.loop())

17 {

18 Info << "Time = " << runTime.timeName () << nl << endl;

19 // ///////////////////////// Solve the Karma model

//////////////////////////////
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20 calculateTheta(psi , theta);

21 calculateEpsilon(theta , W0 , ep4 , anisotropy , epsilon);

22 calculateEpsilonDerivative(theta , W0, ep4 , anisotropy ,

epsilonDerivative);

23 // Solve the equation for psi

24 solvePhiEquation(psi , epsilon , epsilonDerivative , u, lambda ,

tau0 , W0 , Gr , Vspeed , Tscale , Wscale , ml , Conc0 , k, mesh ,

runTime);

25 // Solve the equation for u

26 solveUEqn(u, psi , D_u , k, W0, runTime);

27 // //////////////////////////////// END

/////////////////////////////////////

28 runTime.write(); // Write the results

29 Info << "ExecutionTime = " << runTime.elapsedCpuTime () << "

s" << nl

30 << "ClockTime = " << runTime.elapsedClockTime () << " s"

<< nl << endl;

31 }

32

33 Info << "End\n" << endl;

34 return 0;

35 }

and finally the parameters and fields is defined in a seperate file:

Listing C.13: Create fields

1 // Create scalar field for psi

2 volScalarField psi

3 (

4 IOobject

5 (

6 "psi",

7 runTime.timeName (),
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8 mesh ,

9 IOobject ::MUST_READ ,

10 IOobject :: AUTO_WRITE

11 ),

12 mesh

13 );

14 volScalarField u

15 (

16 IOobject

17 (

18 "u",

19 runTime.timeName (),

20 mesh ,

21 IOobject ::MUST_READ ,

22 IOobject :: AUTO_WRITE

23 ),

24 mesh

25 );

26 // Create scalar field for theta

27 volScalarField theta

28 (

29 IOobject

30 (

31 "theta",

32 runTime.timeName (),

33 mesh ,

34 IOobject ::NO_READ ,

35 IOobject :: NO_WRITE

36 ),

37 mesh ,

38 dimensionedScalar("zero", dimensionSet (0, 0, 0, 0, 0, 0, 0),

0.0) // Initialize to zero

39 );
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40 // Create scalar field for epsilonDerivative

41 volScalarField epsilonDerivative

42 (

43 IOobject

44 (

45 "epsilonDerivative",

46 runTime.timeName (),

47 mesh ,

48 IOobject ::NO_READ ,

49 IOobject :: NO_WRITE

50 ),

51 mesh ,

52 dimensionedScalar("zero", dimensionSet (0, 1, 0, 0, 0), 0.0) //

Initialize to zero

53 );

54 // Create scalar field for epsilon

55 volScalarField epsilon

56 (

57 IOobject

58 (

59 "epsilon",

60 runTime.timeName (),

61 mesh ,

62 IOobject ::NO_READ , // Set to NO_READ if calculated

internally , change to MUST_READ if initialized from a file

63 IOobject :: NO_WRITE

64 ),

65 mesh ,

66 dimensionedScalar("zero", dimensionSet (0, 1, 0, 0, 0), 0.0) //

Initialize to zero , will be calculated based on theta

67 );

68 dimensionedScalar D_u("D_u", dimensionSet (0, 2, -1, 0, 0), 2.0); //

Corrected dimensions for diffusivity [L^2 T^-1]
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69 dimensionedScalar tau0("tau0", dimensionSet (0, 0, 1, 0, 0), 1.0);

// Corrected dimensions for tau0 [T]

70 dimensionedScalar W0("W0", dimensionSet (0, 1, 0, 0, 0), 1.0);

71 dimensionedScalar ep4("ep4", dimensionSet (0, 0, 0, 0, 0), 0.02);

72 dimensionedScalar lambda("lambda", dimensionSet (0, 0, 0, 0, 0),

3.1913); // Lambda is dimensionless

73 dimensionedScalar anisotropy("anisotropy", dimensionSet (0, 0, 0, 0,

0), 4.0); // Mode number of anisotropy [dimensionless]

74 dimensionedScalar Wscale("Wscale", dimensionSet (0, 1, 0, 0, 0, 0, 0)

, 1e-8); // meters (m)

75 dimensionedScalar Tscale("Tscale", dimensionSet (0, 0, 1, 0, 0, 0, 0)

, 2.308e-8); // seconds (s)

76 dimensionedScalar Gr("Gr", dimensionSet (0, -1, 0, 0, 0, 0, 0), 1e7);

// inverse meters (m^-1)

77 dimensionedScalar Vspeed("Vspeed", dimensionSet (0, 1, -1, 0, 0, 0,

0), 1e-2); // meters per second (m/s)

78 scalar k = 0.15;

79 scalar radius = 20.0; // this is the radius of the solid circle

squared

80 scalar delta = 0.55; // this is the initial value of u in the

liquid region or omega

81 // scalar Wscale = 1e-8;

82 // scalar Tscale = 2.308e-8;

83 // scalar Gr = 1e7; // k/m

84 // scalar Vspeed = 1e-2; // m/s

85 scalar ml = 10.5; // liquidus slope

86 scalar Conc0 = 5; // % of initial concentration
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Figure C.2: Openfoam Implementation
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