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Chapter 1

INTRODUCTION

1.1-General remarks

A porous solid consists of an interconnected network of solid particles or, in
other words, an assembly of particles with solid edges or faces, packed together so
that they fill space. Examples of such material that are common in nature include

wood, cork, coral, cancellous bone, etc.

Man has made use of natural porous materials for centuries. The pyramids of
Egypt have yielded wooden artifacts at least 5000 years old and cork was used for
bungs in wine bottles as far back as Roman times (Gibson,1988). At the simplest
level, there are honeycomb-like materials which consist of parallel prismatic cells that
ére used for lightweight structural components. More common, however, are
polymeric foams used in products that range from disposable coffee cups to the crash
padding of an aircraft cockpit. The newer foams are increasingly used for insulation
and in systems for absorbing the kinetic energy from impact. Their uses exploit the
unique combination of properties which are ultimately derived from their cellular

structure.
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status in the solid. Generally, these type of materials, which have different behaviour

in dry and wet condition, are called biphasic materials.

Despite the similarities between porous solids , they exhibit different behavior
which depends on many factors including: the type of solid particles, the geometry
of void space, etc. The following sections provide a brief review of three typical, yet
similar, porous solids ( wood- natural; concrete- man-made material and cancellous
bone- living organism) in order to demonstrate the different problems involved in the

analysis and application of each of these materials.

1.2-wood

Inwood, asin other porous solids, properties depend primarily on the porosity
and the shape of the cells. If a sample of wood is cut at a sufficient distance from the
center of the tree, such that the curvature of the growth ring can be neglected, its
p.roperties are orthotropic. It will, subsequently, have three orthogonal planes of
symmetry: the radial, the tangential and the axial. The stiffness aﬁd strength are
greatest in the axial direction,; that is, parallel to the trunk of the tree. In the radial and
tangential direction they are reduced by a factor of 1/2 t01/20, depending on the

species( Gibson, 1988). Fig (1.2) shows three orthogonal sections of cedar.






The strength of wood is affected by age and moisture content, as well as the
temperature and strain rate at which testing is carried out. The general observations
from a typical uniaxial compression test, are as follows (Gibson, 1988) . At small strain
(less than 0.02) the behavior is linear-elastic in all three directions. Young’s modulus
in the axial direction is much larger than in tangential and radial direction, which are
roughly equal. Beyond the linear-elastic regime, the stress-strain curves for loading
in all three directions show a stress plateau extending to strain between 0.2 and 0.8
depending on the density of the wood. At the end of the plateau the stress rises
steeply. The mechanism of wood fracture, either in static or impact bending, is

complicated. Many mechanical models have been developed and suggested for

different types of wood and cell structures.

1.3-Concrete

The pore microstructure of concrete has received a great deal of attention in
recent years. According to studies (Dullien,1979) the structure of concrete consists
of clinker grains that are separated from each other by a hydrated mass of calcium
hydrosilicates; in the central portion of which there are thin veins of capillaries which
form an interconnected network, as shown schematically in Fig (1.3). The porosities
in fine concrete rangé from 6% to 10%. The pore walls are made up of dense rays of
needles which intermesh when calcium chloride has been added to the paste. The
hardening time and conditions, composition of cement, water-cement ratio, chemical

additives and the type of compacting all play a role in the pore structures of concrete.
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1.5-scope of this project

The main purpose of this project is to analyze the mechanical behavior of
porous solids using a modern approach based on continuum mechanics. The
formulation of the problem, applications and results are discussed in different
chapters.

In chapter 2, the mathematical formulation for describing the mechanics of
porous solids is reviewed. Beginning with a short overview of the notion of fabric
tensors, this chapter provides a comprehensive discussion on specification of failure
criteria for porous solids. Finally, the anisotropic elastic properties of porous solids

are investigated.

In chapter 3, the problem of fracture of a femur due to the lateral fall is
defined. This particular problem has been selected to demonstrate the applicability
of the formulation outlined in chapter 2. First, a short review of the anatomy of the
femur is provided followed by an investigation of fracture in the proximal part of the

femur. Previous studies are examined and a brief outline of the current research is

given.

The results of numerical simulations are given in chapter 4. First, the CT
method used to define the geometry and physical properties of femur is reviewed.
Then, the details of static analysis are given followed by the presentation of
numerical results. The dynamic analysis is investigated next. First, a short review of

finite element theories in analysis of propagation problems is given, then the details



of the results of dynamic analysis are presented.

In chapter S, a summary of the project is given, followed by the main
conclusions obtained from the results of analyses. Later, some suggestion and

recommendation for future research are made.
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CHAPTER 2

MATHEMATICAL FORMULATION OF MECHANICAL

BEHAVIOR OF POROUS SOLIDS

2.1-INTRODUCTION

The mechanical properties of porous solids depend on porosity, which is a
primary factor affecting the material characteristics. At the same time, other
parameters, known as fabric tensors, have been used by several researchers (e.g.
Cowin,1978). Fabric tensors are commonly employed to describe the orientation of
material’s microstructure and, further, to define constitutive equation and the

corresponding failure criteria.

This chapter provides a brief review of the notion of fabric tensors including a
definition and a history of its implementation in the study of different types of porous
rr.laterials. First, various methods used to calculate fabric tensor are investigated.
Following that , the concept of directional porosity is outlined and conditions at failure
are discussed. Subsequently the effect of liquid on the mechanical behavior of biphasic
materials is investigated and the corresponding constitutive equations are developed.
Finally, a brief review of a model, used to define the anisotropic elastic properties of

porous solids, is given.
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the internal structure of materials and could be recognized as the generalized
,direction-dependent counterpart of “porosity”(i.e. the scalar valued quantity defining
void space fraction). The directional porosity is constructed as an average, continuous
and non-singular measure in the form of an integral over a representative volume. It
is also mathematically expressed in the form of generalized Fourier series
(Pietruszczak et al,1988). Its values can be estimated directly from experiment by

means of quantitative microscopy and, in particular, by the lineal analysis.

In order to construct a directional measure of voids distribution, consider a

sphere (S) of a unit radius R=1, which encloses a representative volume of the

material. See Figure(2.4).

Fig.(2.4)

Unit sphere enclosing a representative volume of material
( From: Pietruszczak, 1995)
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Next, consider a test line of length L = 2R with the orientationy; with

respect to the fixed Cartesian coordinate system. The fraction L occupied by voids can

be defined as
L(v))=l(vj)! L, I(v,)=, L,(v,) (2.3)
k

where [ (v, ) represents the total length of interceptions of this line with the void space.

The mean value of the quantity L(v, ), averaged over the domain S, is

L, = i[L(vi) fw)ds i[ f(v)ds =1 @2.4)

S

where f (v, ) isa scalar valued function describing the spatial distribution of test lines.

It can be shown that, for uniformly distributed test lines, the first integral in the above
equation is the measure of average porosity of the material, n , whereas the lineal

fraction occupied by pores is an unbiased estimator of the volume fraction of voids in

the direction v, i.e.

n=L, ; n@)=L) 2.5)

The scalar valued function n (v,), defined over the unit sphere S can be

represented by the generalized double Fourier series. The desired best fit
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approximation can be established by the ‘least square’ method. This leads to a

representation in terms of symmetric traceless tensors ) . Q ikt »---(cE Kanatani,

ij k]
1984).

n(v,)=n(l+Q MATER VP A A% SN ) (2.6)

The higher rank of tensors Q ,,, .... relate to the higher order fluctuations in void

space distribution. Thus, in order to describe a smooth orthogonal anisotropy, it is
sufficient to employ an approximation based on the first two terms of the expansion

(2.6) . Consequently, the function may be defined as:

- 1
n(v,)~3ndvy, ; 4= -5(5,.] +Q,)=> 4,=1 @7

where A,j is referred to as the fabric tensor.

2.3-FAILURE CRITERIA

In recent studies by Pietruszczak et al.(1999a), a new criterion for fracture of

anisotropic porous materials has been proposed. The general method in the
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by expanding this function in a polynomial in the components of g Cowin (1986) has

developed a simple quadratic approximation

F = G,o, + By, 0,0, = const. (2.10)

where

Gy = 80;+84,;+8 4,4

im“"my

B,ﬂd =f15,j5k, +fz(A:j5k1 + 6¢r‘4k1) +_f;(5aAkqul + 5HA‘.quI.) +_/‘;A,].Akl +
JSs(4,4,,4,+ A A A + A AALA S, ( 51/ * 6u61q) +fe(Ay
Aydy + 4,0,) +fo(4, A0y + A A0, + 4, 4,5, +4,4,.5,)

and g’s and f’s are scalar valued functions of the basic invariants of 4; and the average
porosity.

There are some difficulties associated with the above approximation. First, it
requires an extensive experimental program to identify the twelve functions of the
rﬂaterial fabric. Secord, it is obvious that the behaviour of porous material depends
on the third stress invariant( Desai et al.1987). Hence, this approximation as well as
other commonly used criteria (e.g., Tsai and Wu, 1971), can not completely describe
the conditions at failure.

In order to overcome this problem, an alternative to representation (2.8) is

employed, following a general approach proposed by Pietruszczak (1999b). In
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particular, it is postulated that the functional form of the fracture criterion incorporates

directly n(v,), so that

F = Flo;, n(1)) =0 (2.11)

Here, the function 7 is evaluated in the ‘loading direction’ /,, which can be defined

here as the direction of the average stress vector T, at a point, i.e.

= o, , @ GH
T, = o,(e” +e? +e) = 3o,m, (2.12)

. T, _ o,m,
I7A (04O m m,)"? (2.13)

where e,’s are the base vectors associated with the principal material axes and

m={1,1,1}/V3 is a unit vector along the space diagonal. Since (2.11) must be an

isotropic function of stress,

F(O'/’ h—(ll)) = F(Tlpz}qopq’ ;’—(Tiplp)) = F(Il’12’13’ ﬁ(ll)) =0 2149
~where I's are the basic invariants of o, Alternatively, F may incorporate any

convenient measures which are derived from the basic invariants. A general form of

representation (2.14), pursued further, is

F=F(1,5,8, x,()) = 0 (2.15)

where I=-0, , 0=(% s;54)"* , 0=1/3 sin" {(V3 5,5,5,)/20°} and 5, represents the



S J(a} +4ay(a, +111))

¢ 2a2

1

g6) - . W@ -JT-D)K |
kJ(T+a)-/(1-a)+(1 -K) (1 -asin306)
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structure, the average macroscopic stress can be defined as ( Pietruszczak and

Pande, 1995):
1
o, = ;(Ia,, dv, +pr5a’V) (2.20)
so that
= (1-n)o; +np,d, (2.21)

In the above formula & ,;" is the average stress in the solid matrix , p . is the

average excess of the fluid pressure while # represents the average porosity of the

material. Eq.( 2.24) may also be expressed as:

G, =0;+np 0, ; ai'j =(1- n)a,;” (2.22)

In equation (2.22) o represents average stress in the solid matrix referred to

the unit area of the sample. In the case when the material is elastic and there is no fluid
in the system, the mechanical response is defined as:

oy,=0;=Dyéy i Dy =Dy(4,,n) (2.23)

where D s TEPresent the drained elastic properties.
In a biphasic system, a change in pore pressure would trigger a change in the

average stress in the solid matrix of a magnitude equal tog,, = (1- n)p 10y - Thus,
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in order to maintain consistency with the characteristics for dry materials, equation

(2.23) must be revised to
(o;- (- n)p;0;) = Dyéy (2.24)
The above equation can now be combined with the constitutive relation for the pore

fluid. Neglecting the viscous effects and assuming that the fluid is linearly

compressible:

pr=Kel el=¢,/n (2.25)

where K 7 Tepresents the bulk modulus of the fluid. Generally, the volume change of

material is caused by the change in the volume of voids. When voids are connected and
filled with a fluid, the total deformation must be consistent with that of the fluid itself.

Hence, the combination of equation (2.24) and (2.25) would result in:

K
s/
0'/} = (Dykl +(1- n)cuu)gu ; Cijlcl = 75:;5/:1 (2.26)
or, in view of equation (2.22)
. 05 =(Dyy + Cyydey (2.27)

The above equation represents the constitutive relation for a porous solid considered

as an elastic biphasic system. For these type of materials, the failure criterion can be

expressed as;
F=F(o,,n()=0 (2.28)

where o is the average stress in the solid skeleton.
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Unfortunately, falls have proven remarkably resistant to prevention and the use
of trochanteric padding to reduce the injury of a fall is still in the early phases of
development. With respect to the mechanics of a fall, extensive research has been
conducted on fall initiation. Besides the instability phase that results in loss of balance,
a fall consist of three additional phases: 1) a descent phase; 2) an impact phase; 3) a
post impact phase during which the subject comes to rest. However, little is known

about the kinematics and dynamics of these three phases.

Since falling to the side and impacting on the hip raises the risk of hip fracture
significantly, a fundamental variable which determines fracture risk is the force applied
to the greater trochanter in a sideways fall. Many researchers have attempted to
estimate the direction and the magnitude of this force and consequently use these data

in the analysis of fracture.
3.4.2- Experimental results of a sideways fall

In the study by Backman (1957) many loading configurations were investigated
éxperimentally to model a sideways fall. The picture shown in Fig.(3.5) has been
chosen by many researchers because it produces fractures in vitro similar to those
observed clinically. This configuration was meant to simulate the situation in which the
patient falls to the side, with the soft tissue overlying the posterolateral aspect of the
greater trochanter when coming in contact with the ground. The direction of the loads
are such that the axes of the diaphysis and femoral neck formed an angle of 30 degrees,

with the plane perpendicular to the applied loads.
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300071

25007

20007

15007

Load (N°)

10007

S00T

0 5 10 15 20
Displacement (mm)

Fig.(3.6)
Load-deflection curve of a femur specimen

(From: Lotz et al., 1991)

In another experimental study, Keyak et al.(1997) investigated the magnitude
of force in two different configurations for standing and falling. For standing load,
force was applied to the femoral head and directed within the coronal plane at 20
degrees to the shaft axis. The contralateral femur was examined in a configuration
simulating impact from a standing height similar to the loading investigated previously
by Backman (195 7).Fig.(3 .7).The specimens were obtained from ten females and eight
males between the ages of 52 and 92 . The results for fracture loads varied from 3 to

14 kN for standing configuration and 0.6- 4 kN for fall configuration.
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pendulum head, which consisted of two components: 1) the force delivered through
the surrogate pelvis to the rear support wall; and 2) the inertial force associated with
acceleration of the mass of the impact plate. The measured force-time record for the

first contact period after the pendulum strikes the surrogate pelvis with a constant

velocity of 2.22 my/s is shown in Fig.(3.9).

5
~ 4}
g 4
Q
5 2
[_(’LD‘ L
1L
0 . . LN ,
0 20 40 60 80 100
Time (ms)
Fig.(3.9)

Experimental force-time record for a contact velocity u=2.22m/s
(from: Hayes et al., 1997)

3.4.3- Modeling of a fall

There is a number of studies which are focused on developing an equivalent
dynamic model to predict the mechanical behavior of a femur. In a study by Van den
Kroonenberg et al.(1995) a simple model is proposed to estimate the maximum force

applied to the greater trochanter in the fall. The model is a single-degree-of-freedom

system, which is shown in Fig.(3.10).
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Fig.(3.10)
Single degree of freedom impact model
(from: Kroonenberg et al.,1995)

The mass M represents the mass of that part of the body that contributes to the impact
force on the hip. According to this model, mass M is moving in the vertical direction
with the velocity of V prior to impact. The spring, with the linear constant K,
represents the soft tissue overlying the hip as well as the flexural stiffness of the body.

Damping, however, is not considered in this model. To calculate M and V, three

different schemes are proposed. See Fig.(3.11).

. h
rh b=by=3
..l.lcr\n _ m, = %
BIN. o 1
o L= 3oyt
{V =l‘im2h2

Fig.(3.11)
Rigid uniform slender bar and two link model
( from: Kroonenberg et al.,1995)
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toward the development of various non-invasive screening procedures to measure bone
geometry and the distribution of properties.

Lotz et al.(1991) used computed tomography to produce a finite element model
to predict fracture of proxirﬁal femur. In their study, finite element models of intact
proximal femurs were created using geometry and density data derived noninvasively
from quantitative computed tomography images. Using this imaging modality, both the
bone geometry and density were determined and finite element models were generated.
These models were subsequently used to investigate the structural behavior of the

proximal femur subject to loading conditions approximating a one-legged stance and

sideway falling, Fig.(3.14).

12 14 15
10

8

6

S.

4
3

i 2
A

o) b)
Fig.(3.14)

Loads applied to femur simulating a) one-legged stance and b)fall
(From: Lotz et al.,1991)
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A distributed compressive load was applied to the superior aspect of the femoral head
to approximate a one-legged stance. For the sideway falling configuration, a
posterolaterally directed load was applied to the femoral head with an equal and
opposite load applied to the lateral greater trochanter. To predict local bone failure,
a von Mises yield criterion was used in the region representing cortical bone, and both

von Mises and Hoffman yield criteria were applied for elements representing trabecular

bone. The obtained load-displacement characteristics are shown in Fig.(3.15).

4000

3000
2
~ 20007 I\
L4
o
-l

1000

00 2 4 - 6 8

Fig.(3 1 5) Displacement (eam]
Load-displacement curve for a femur. The arrow
indicates the approximate onset of yielding
( From: Lotz et al.,1991)
A similar approach was followed by Keyak et al. (1997). For finite element
model generation, the CT scan data were transferred to a computer, and a 3-D finite
element model, using heterogeneous linear isotropic mechanical properties, was

automatically generated . Linear eight-nodded cube-shaped elements were used so that

the elements matched the thickness of the CT scan images; See Fig.(3.16).The results
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scans ( 512 x 512 pixels, pixel size: 0.219 mm, slice thickness: 1mm). The 204
consecutive images were scanned transversely to the long axis of the bone at 1mm
intervals in the proximal femur and then at 7mm intervals along the diaphysis. The
model consists of 9115 nodes and 40681 four-nodded tetrahedral elements.

The actual lfinematics of a fall is very complex. Different researchers have
reported quite diverse results regarding the estimation of maximum force due to the
fall. A number of researchers (i.e. Lotzetal. 1991, Keyak et al. 1997) did not consider
the effect of tissues and used a simple static approach. However, the main source of
inaccuracy comes from the fact that the force transferred during a fall is a dynamic
force caused by impact. Thus, it will depend on many factors, such as, effective mass,
velocity of impact, stiffness of the bone as well as the mechanical properties of tissue.

The work presented in this thesis is basically an extension of the work of
Pietruszczak et al.1999a.. The study has focused on two major areas. First, based on
the formulation givenin chapter 2, a static analysis was performed for bone considered
as a biphasic material. Second, the previous analysis was extended to the dynamic
.range, which describes more realistically, the conditions for a sideway fall.In next
chapter, the details of static and dynamic analysis are explained and the results of

numerical analyses are presented.

































N












BEE



|| &N






N | B









€ np
,:3

(EEEEN



gnn JERAN

..i
o B



81

4.4-Dynamic analysis of fracture

4.4.1-Finite element methods in dynamic analysis
The equations of motion for a linear dynamic system are:

[M] {U} +[C] (U} +[ MU} ={ 1 (&) (42)

where;

[M]-  mass matrix
[C]-  damping matrix
[X]- stiffness matrix

{ f( )} - time varying load vector

and {U } , {U } , { l:] } are the nodal displacements, velocities and accelerations,
respectively. Many different methods have been proposed to solve the set of above

equations, among them modal analysis is more commonly used. In this approach, the

system of equations of motion is decoupled into n single degree of freedom equations

in terms of the modal displacement vector {x} , such that

{U} = [0x} (43)
where [® ] is the matrix of the lowest 7 eigenvectors obtained from the solution of:

[KI{U} = o*[M){U} (44)
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gap distance for node 1
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Y4
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solid surface

Fig.(4.18)

A
d =t
d,=t+A,
d;=t+A,

tissue thickness

In this analysis gaps were defined for each of the springs, with the gap direction

coinciding with initial velocity. The gap distance for each node was calculated based

on a simple concept shown in Fig(4.18).

Contact area

Contact area is the area of that part of tissue which is in contact with the solid

surface at the moment of impact. Estimates of contact area basically depend on the

geometry of the tissue, which. was not accounted for in this study. Instead, a simple

approximation was used to define the number of nodes in contact, as shown in

Fig(4.19).

The springs shown in the picture simulate the tissue and are located at the
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surface of the femur. Assuming that all of these springs have equal stiffness and

knowing the total stiffness of the tissue and the maximum force of impact , it is

possible to calculate the number of nodes located in contact area.

loading direction
>
’
y
4
L
"
4
4
2

TS

{ solid surface

femur finite element mesh

after impact
before impact
force at spring 1: F, = K(L- X)
force at spring2: F = K(L+d; - X)
forceat spring 3: 5 = K(L+d; - X)
LK
rotal force of impact: 3, Fy = K(nL-nX +dy + Ayt ecrene +d) -
n— number of springs
K, - total stiffness of tissue ___‘_ - RS LI

Fig(4.19)
Estimation of number of nodes in contact .
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5.2- Recommendations

The dynamic analysis of fracture of proximal femur presented in this thesis,
simulates more closely the conditions of a sideway falls. However, further studies,
both theoretical and experimental, are required. In what follows some suggestion and

recommendation are made in this respect.

1- An extensive experimental program is required to identify the material
properties of the bone in relation to material fabric. No such studies have been
undertaken so far. The existing information is fragmentary and there is no correlation
of properties with any measure of fabric.

2- The effect of soft tissues between pelvis and femur has been ignored in this
thesis. It was primarily due to the lack of experimental data. For a more accurate
analysis, the presence of these tissues should be considered.

3- The effect of tissues surrounding femur has been modeled using simple linear
springs. A proper constitutive relation is required to describe the mechanical
characteristics, including non-linear behavior.

4- The calculation of contact area presented in this study is very simplified. A
proper contact algorithm needs to be employed for modeling the dynamic impact
problem. This requires the finite element mesh discretization of both femur and the

surrounding soft tissue.
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The above recommendations, together with several other points suggested

throughout this study, appear to be a logical continuation of present research. Upon
completion of these studies, the proposed dynamic simulation may provide an efficient

tool for estimation of fracture of proximal femur.
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