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ABSTRACT

The main objective of this project is to study the mechanical behaviour of 

anisotropic porous solids. The mechanical response of this class of materials depends 

on porosity, which is a primary factor affecting the mechanical characteristics. The 

other parameters that are commonly used to describe the orientation of material’s 

microstructure are known as fabric tensors. Fabric tensors characterize the 

arrangement of the microstructural components in a porous material. The concept of 

fabric tensors is employed to define the constitutive equations and the corresponding 

failure criteria of porous solids. The presence of liquid in a porous solid can influence 

the mechanical properties. When the material is in compression the deformation 

process is constrained and the mechanical behaviour is different from that observed 

in the dry material. This effect has also been investigated.

To illustrate the performance of the formulation, a numerical analysis of the 

fracture in proximal femur due to a sideways fall was performed. The analysis 

incorporated a finite element model developed in the work of Pietruszczak et 

al.(1999a), in which the geometry of femur was extracted from CT scans. The 

numerical study in this project extends the previous work in two major areas. First, 

a static analysis was performed, taking into the account the biphasic nature of the 

bone material. The second contribution concerns the extension of the analysis to 

dynamic range, which simulates more closely the condition of a sideways fall.

iii



Acknowledgements

The author wishes to express his sincerest gratitude and deepest appreciation 

to his supervisor, Dr. S. Pietruszczak, for his constant advice, criticism, and 

encouragement throughout the research and preparation of this thesis.

The author wishes to extend his appreciation to numerous colleagues and 

friends for their constant encouragement and sharing information.

The financial support from the Department of Civil Engineering, McMaster 

University is gratefully acknowledged.

Finally, this thesis is dedicated to my parents in appreciation of their support 

and encouragement throughout the duration of this study.

iv



TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGMENTS iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

CHAPTER 1 INTRODUCTION

1.1 General remarks 1

1.2 Wood 4

1.3 Concrete 6

1.4 Cancellous bone 8

1.5 Scope of the project 11

CHAPTER 2 MATHEMATICAL FORMULATION OF MECHANICAL

BEHAVIOR OF POROUS SOLIDS

2.1 Introduction 13

2.2 Fabric tensor 14

2.3 Failure criteria 23

2.4 Failure criteria in biphasic materials 29

2.5 Anisotropic elasticity of porous solids 33

v



CHAPTER 3 STUDIES OF THE FRACTURE OF THE PROXIMAL

FEMUR, A REVIEW

3.1 Introduction 35

3.2 Femur anatomy 36

3.3 Basic theories in bone mechanics 39

3.4 A review of studies on fracture of proximal femur 44

3.4.1 General remarks 44

3.4.2 Experimental results of a sideways fall 45

3.4.3 Modeling of a fall 50

3.4.4 Numerical approach 53

3.5 Present study 57

CHAPTER 4 NUMERICAL SIMULATION OF FRACTURE OF

PROXIMAL FEMUR

4.1 Introduction 59

4.2 Geometry and physical properties of femur 60

4.3 Static analysis of femur fracture 62

4.3.1 Material properties and loadings 62

4.3.2 Results of static analysis 64

4.4 Dynamic analysis of fracture 81

4.4.1 Finite element method in Dynamic analysis 81

4.4.2 Finite element model 84

4.4.3 Results of dynamic analysis 90

vi



CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary and conclusions 97

5.1.1 Static analysis 98

5.1.2 Dynamic analysis 99

5.2 Recommendations 101

BIBLIOGRAPHY 103

vii



LIST OF FIGURES

CHAPTER 1

Fig.(l.l) Microstructures of balsa and cancellous bone (Gibson,1988) 2

Fig. (1.2) Three orthogonal section of cedar (Gibson, 1988) 5

Fig.(1.3) Schematic picture of a concrete structure ( Dullien, 1979) 7

Fig.(1.4) Cross-section view of a) the head of femur b) the tibia and c) a lumbar 
vertebra (Gibson, 1988) 9

Fig.(1.5) Cross sections view of femur ( Gibson,1988) 10

CHAPTER 2

Fig.(2.1) principles of determining architectural anisotropy, Mean Intercept Length 
method( Odgaard, 1997) 16

Fig.(2.2) principles of determining architectural anisotropy, Volume orientation 
method( Odgaard, 1997) 18

Fig.(2.3) principles of determining architectural anisotropy, Star volume distribution 
method( Odgaard, 1997) 20

Fig. (2.4) Unit sphere enclosing a representative volume of material, principles of 
Directional Porosity (Pietruszczak, 1995) 21

Fig.(2.5) Failure surface in principal stress surface 28

CHAPTER 3

Fig.(3.1) Anterior aspect of right femur (Gray, 1995) 36

Fig.(3.2) The proximal part of left femur (Gray, 1995) 38

Fig.(3.3) Longitudinal section of the femur illustrating cancellous and cortical bone 
type ( Cowin, 1981) 40

Fig.(3.4) Culmann’s crane and Von Meyers sketch of the trabecular architecture in 
a section through the proximal end of human femur(Cowin, 1986a) 41

Fig.(3.5) Loads applied to the femoral speciments( Lotz et al., 1990) 46

viii



Fig.(4.9) Damage factor distribution in normal and osteoporosis orthotropic wet 
bone 74

Fig.(4.10) Damage factor distribution in dry and wet isotropic normal bone 75
Fig.(4.11) Damage factor distribution in dry and wet isotropic normal bone 76

Fig.(4.12) Damage factor β distribution in a) dry and b)wet isotropic osteoporotic 
bone 77

Fig.(4.13) Damage factor distribution in dry and wet isotropic osteoporotic bone 78

Fig.(4.14) Excess pore pressure and mean stress of orthotropic wet normal bone 79

Fig.(4.15) Excess pore pressure and mean stress of isotropic wet osteoporotic bone 80

Fig.(4.16) Dynamic finite element model 84

Fig.(4.17) Stiffness and damping coefficients of soft tissues ( Robinovitch et al., 1991) 87

Fig.(4.18) Configuration for defining gap distance 88

Fig(4.19) Estimation of number of nodes in contact 89

Fig.(4.20) Time-displacement curve of a node in contact area 92

Fig.(4.21) Damage factor distribution in isotropic normal bone 93

Fig.(4.22) Damage factor distribution and mean stress in isotropic normal bone 94

Fig.(4.23) Damage factor distribution in isotropic osteoporotic bone 95

Fig.(4.24) Damage factor distribution and mean stress in isotropic osteoporotic bone 96

x



Chapter 1

INTRODUCTION

1.1- General remarks

A porous solid consists of an interconnected network of solid particles or, in 

other words, an assembly of particles with solid edges or faces, packed together so 

that they fill space. Examples of such material that are common in nature include 

wood, cork, coral, cancellous bone, etc.

Man has made use of natural porous materials for centuries. The pyramids of 

Egypt have yielded wooden artifacts at least 5000 years old and cork was used for 

bungs in wine bottles as far back as Roman times (Gibson, 1988). At the simplest 

level, there are honeycomb-like materials which consist of parallel prismatic cells that 

are used for lightweight structural components. More common, however, are 

polymeric foams used in products that range from disposable coffee cups to the crash 

padding of an aircraft cockpit. The newer foams are increasingly used for insulation 

and in systems for absorbing the kinetic energy from impact. Their uses exploit the 

unique combination of properties which are ultimately derived from their cellular

structure.
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Many porous materials support static and cyclic loads for a long period of time. 

The structural use of these materials is very old . Wood, for example, is still the 

world’s most widely used component in engineering construction. Our understanding 

of the way in which its properties depend on the density and on the direction of 

loading can lead to improved design. Interest in the mechanics of cancellous bone 

stems from the need to understand bone fracture mechanisms and bone diseases as 

well as from an attempt to create material which can replace damaged bone. In 

addition, many different uses of concrete in structures around the world require a 

deep understanding of it’s mechanical properties and behavior in varying conditions.

The microstructure of porous solids ranges from the near perfect order of the 

bee’s honeycomb to the disordered, three dimensional networks of sponges and foams 

as can be seen the Fig(l.l).

Fig(1.1)

a) balsa and b) cancellous bone (From: Gibson, 1988)
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At first sight, one might suppose that the cell size should be an important 

parameter, and sometimes it is. However, most mechanical and thermal properties 

depend only partially on cell size, with cell shape being a more important variable. For 

example, when the cells are equiaxed the properties are isotropic, whereas when cells 

are even slightly elongated or flattened the properties are orientation dependent, often 

strongly, and are orthotropic.

Another important structural characteristic of a porous solid is porosity, 

which can be defined as the ratio of the volume of voids to the volume of solids. 

Porosity has significant effect in defining mechanical properties. Density and stiffness 

as well as stress field and failure criteria are all dependent on porosity. It is important 

to distinguish between two kinds of void space: one which forms a continuous phase 

within the porous material, called interconnected or “effective” pore space, and the 

other which consists of non-interconnected or “isolated” voids.

In interconnected void space, when the voids are entirely (or partially) filled 

with water or other fluids, the loading rate should be considered an important factor. 

When loading rate is low, there is transient flow of the fluid out of the system, and 

stresses are transferred only in solid structure and not in the fluid. Such conditions are 

commonly referred to as drained. In the same manner, when loading rate is high 

(which is a typical problem involving bone fractures) there is insufficient time for the 

dissipation of the excess pore pressure generated in the fluid. In this case, called 

undrained, fluid will react against compression forces and will change the stress
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status in the solid. Generally, these type of materials, which have different behaviour 

in dry and wet condition, are called biphasic materials.

Despite the similarities between porous solids, they exhibit different behavior 

which depends on many factors including: the type of solid particles, the geometry 

of void space, etc. The following sections provide a brief review of three typical, yet 

similar, porous solids ( wood- natural; concrete- man-made material and cancellous 

bone- living organism) in order to demonstrate the different problems involved in the 

analysis and application of each of these materials.

1.2- wood

In wood, as in other porous solids, properties depend primarily on the porosity 

and the shape of the cells. If a sample of wood is cut at a sufficient distance from the 

center of the tree, such that the curvature of the growth ring can be neglected, its 

properties are orthotropic. It will, subsequently, have three orthogonal planes of 

symmetry: the radial, the tangential and the axial. The stiffness and strength are 

greatest in the axial direction; that is, parallel to the trunk of the tree. In the radial and 

tangential direction they are reduced by a factor of 1/2 to 1/20, depending on the 

species( Gibson, 1988). Fig (1.2) shows three orthogonal sections of cedar.
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Fig(1.2)

Three orthogonal section of cedar ( from: Gibson, 1988)

On a finer scale, that of microns, wood is a fibre-reinforced composite. The 

lay-up of the cellulose fibers in the wall is complicated but important because it 

accounts for part of anisotropy of wood; i.e. the difference in properties along and 

across the grain. It is helpful, though a simplification, to think of the cell walls as a 

helically shaped wound, with the fiber direction nearer the cell axis rather than across 

it. This gives the cell wall a modulus and a strength, which are large parallel to the 

axis of the cell, and smaller, by a factor of about 3, across it. But this accounts for 

only a portion of the anisotropy of wood. The rest is related to cell shape: elongated 

cells are stiffer and stronger when loaded along the long axis of the cell than when

loaded across it.
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The strength of wood is affected by age and moisture content, as well as the 

temperature and strain rate at which testing is carried out. The general observations 

from atypical uniaxial compression test, are as follows (Gibson, 1988) . At small strain 

(less than 0.02) the behavior is linear-elastic in all three directions. Young’s modulus 

in the axial direction is much larger than in tangential and radial direction, which are 

roughly equal. Beyond the linear-elastic regime, the stress-strain curves for loading 

in all three directions show a stress plateau extending to strain between 0.2 and 0.8 

depending on the density of the wood. At the end of the plateau the stress rises 

steeply. The mechanism of wood fracture, either in static or impact bending, is 

complicated. Many mechanical models have been developed and suggested for 

different types of wood and cell structures.

1.3- Concrete

The pore microstructure of concrete has received a great deal of attention in 

recent years. According to studies (Dullien, 1979) the structure of concrete consists 

of clinker grains that are separated from each other by a hydrated mass of calcium 

hydrosilicates; in the central portion of which there are thin veins of capillaries which 

form an interconnected network, as shown schematically in Fig (1.3). The porosities 

in fine concrete range from 6% to 10%. The pore walls are made up of dense rays of 

needles which intermesh when calcium chloride has been added to the paste. The 

hardening time and conditions, composition of cement, water-cement ratio, chemical 

additives and the type of compacting all play a role in the pore structures of concrete.
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Fig.(1.3)

Schematic picture of a concrete structure: 1) impermeable 2) permeable components 

(From: Dullien, 1979)

According to Jung (1973), the formation of pore systems by hydration in 

concrete follows a specific law which makes it possible to calculate the porosity of 

hydrated cement and concrete. Other studies (e.g. Romer, 1973) have proposed a 

microscopic method to differentiate all pore and void spaces in concrete from solids 

by saturating the sample with liquid polymer, which contains a fluorescent tracer. The 

samples are then viewed in ultraviolet light.

Most of the theoretical studies on fracture mechanism are based on continuum 

mechanics theory and refer to homogeneous material while ignoring the presence of 

the heterogeneous microstructure of the solid. Concrete materials, however, are 

extremely heterogeneous and include not only flaws but various kinds of structural 

defects. Up until now only isolated attempts have been made to consider such effects.
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1.4- Cancellous bone

Although structural bones appears fairly solid, they actually resemble an 

elaborate sandwich, made up of an outer shell of dense compact bone enclosing a core 

of porous cancellous bone. Examples shown in the Fig.(l .4) include cross section of 

a femur, a tibia, and a vertebra.

In some instances, for example at joints between vertebrae or at the ends of 

the long bones, this configuration minimizes the weight of the bone while providing 

a large bearing area, a design which reduces the bearing stresses at joints. In others, 

as the vault of the skull, it forms a low weight sandwich shell. In either case, the 

presence of cancellous bone reduces the weight while still meeting its primary 

mechanical function.

An understanding of the mechanical behavior of cancellous bone has 

relevance to several biomedical applications. In elderly patients with osteoporosis the 

mass of bone in the body decreases over time to such an extent that fractures can 

occur under loads that, in healthy people, would have no effect. Such fractures are 

common in the vertebrae, hip and wrist and are due, in part, to a reduction in the 

amount of cancellous bone in these areas.The degree of bone loss in a patient can be 

measured using non-invasive techniques. An understanding of the relationship 

between bone porosity and strength helps predict when the risk of fracture is high. 

It also helps in the design of artificial hips. Since most of the bone replaced by an 

artificial hip is cancellous, an improved understanding of the structure
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(c)

Fig.(1.4)

Cross-section view of a) the head of femur b) the tibia and c) a lumbar vertebra 

(From: Gibson, 1988)

property relationships for cancellous bone allows for the design of artificial hips with 

properties that more closely match those of the bone they replace. The mismatch 

of properties between current artificial hips and the surrounding bone is a possible 

explanation for the fact that the fit becomes increasingly loose with time.
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The distribution of forces acting across a joint is directly related to the 

mechanical properties of underlying cancellous bone, so that changes in its structure 

may affect the distribution of forces and cause damage. The cellular structure of 

cancellous bone is shown in Fig (1.5). It consists of an interconnected network of rods 

or plates. A network of rods produces low-density, open cells, while one of the plates 

gives higher-density,virtually closed cells. In practice, the relative density of 

cancellous bone varies from 0.05 to 0.7 (technically, any bone with a relative density 

less than 0.7 is classified as “cancellous”). More details about bone properties will be 

provided in following chapters.

Fig(1.5)

Specimens taken from a) the femoral head, showing a low density b) femoral 
head, showing a higher density c) the femoral condyle, of intermediate density

(From: Gibson, 1988)
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1.5- scope of this project

The main purpose of this project is to analyze the mechanical behavior of 

porous solids using a modem approach based on continuum mechanics. The 

formulation of the problem, applications and results are discussed in different 

chapters.

In chapter 2, the mathematical formulation for describing the mechanics of 

porous solids is reviewed. Beginning with a short overview of the notion of fabric 

tensors, this chapter provides a comprehensive discussion on specification of failure 

criteria for porous solids. Finally, the anisotropic elastic properties of porous solids 

are investigated.

In chapter 3, the problem of fracture of a femur due to the lateral fall is 

defined. This particular problem has been selected to demonstrate the applicability 

of the formulation outlined in chapter 2. First, a short review of the anatomy of the 

femur is provided followed by an investigation of fracture in the proximal part of the 

femur. Previous studies are examined and a brief outline of the current research is 

given.

The results of numerical simulations are given in chapter 4. First, the CT 

method used to define the geometry and physical properties of femur is reviewed. 

Then, the details of static analysis are given followed by the presentation of 

numerical results. The dynamic analysis is investigated next. First, a short review of 

finite element theories in analysis of propagation problems is given, then the details



of the results of dynamic analysis are presented.

In chapter 5, a summary of the project is given, followed by the main 

conclusions obtained from the results of analyses. Later, some suggestion and 

recommendation for future research are made.
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CHAPTER 2

MATHEMATICAL FORMULATION OF MECHANICAL 

BEHAVIOR OF POROUS SOLIDS

2.1- INTRODUCTION

The mechanical properties of porous solids depend on porosity, which is a 

primary factor affecting the material characteristics. At the same time, other 

parameters, known as fabric tensors, have been used by several researchers (e.g. 

Cowin, 1978). Fabric tensors are commonly employed to describe the orientation of 

material’s microstructure and, further, to define constitutive equation and the 

corresponding failure criteria.

This chapter provides a brief review of the notion of fabric tensors including a 

definition and a history of its implementation in the study of different types of porous 

materials. First, various methods used to calculate fabric tensor are investigated. 

Following that, the concept of directional porosity is outlined and conditions at failure 

are discussed. Subsequently the effect of liquid on the mechanical behavior of biphasic 

materials is investigated and the corresponding constitutive equations are developed. 

Finally, a brief review of a model, used to define the anisotropic elastic properties of 

porous solids, is given.
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2.2- FABRIC TENSOR

It is commonly recognized that porosity or solid volume fraction affects the 

mechanical properties in porous materials. At the same time, the properties also depend 

on the orientation of the principal directions of microstructure in relation to those of 

the stress state .There appears to be a general agreement that a second rank tensor can 

be used to describe the orientation of material’s microstructure, Cowin (1978). 

Following the work of Oda (1976), these second rank tensors are generally called 

fabric tensors.

The precise definition of a fabric tensor varies with the type of material and, 

sometimes for the same material, with the investigator. In general, the fabric tensor is 

a symmetric second rank tensor which characterizes the arrangement of the 

microstructural components in a multiphase or porous material. The concept of a 

fabric tensor applies to any phase of a distributed, multiphase mixture.

In the literature on granular materials and soil mechanics, fabric tensors are 

considered by Satake (1985,1982), Oda (1976), Oda et al.(1982), Oda et al. (1985), 

Kanatani (1983) and others. In the literature on rock mechanics, the fabric tensor is 

employed by Oda (1984), Oda et al. (1984) and others. In the literature on cancellous 

or spongy bone mechanics, the concept of fabric tensor was introduced by Harrigan 

and Mann (1984) and employed by Cowin (1986).

The general problem of the quantification of structural anisotropy in materials
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with distinctive microstructures, such as geological and biological materials, was 

examined in a series of papers by Kanatani (1984a, 1984b, 1985a, 1985b). The 

problem of the determination of structural anisotropy by methods of quantitative 

stereology was first considered by Hillard(1967). Kanatani expanded the distribution 

density function in spherical harmonics and obtained an infinite series of even rank 

tensors. The definition of fabric tensors given by Kanatani is relatively universal and 

specific. The actual definition to be used in any particular situation is clearly material 

dependent. The following is a brief review of some of the theories related to the 

notion of fabric tensors.

A) The Mean Intercept Length Method;

Whitehouse (1974) and Raux et al.(1975) provided the first detailed 

description of cancellous bone architectural anisotropy using an intersection counting 

technique. Raux et al. expressed the results as roses of orientation (1970), whereas. 

Whitehouse took results one step further and expressed the results by the mean 

intercept length (MIL) measure. The principle of the MIL method is to count the 

number of intersections between a linear grid and the bone marrow interface as a 

function of the grid’s orientation, ω ; see Fig.(2.1).
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Fig.(2.1)

(From: Odgaard,1997)

The mean intercept length (the mean length between two intersections) is 

simply the total line length divided by the number of intersections:

MIL(ω) = L/I(ω) (2.1)

Whitehouse (1974) defined the mean intercept length in bone ( MILb) and marrow 

(MILm) as

MILp = 2VvMIL(ω)  (2.2)

where p is the phase of interest (bone or marrow) and Vv is the volume fraction. The 

reason for factor 2 is that 2MIL is the mean length of a bone + marrow intercept. 

Multiplying MIL by a constant, as in equation (2.2), does not change the anisotropy
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information. The equation (2.2) has been used by some investigators, such as Synder 

et al.(1989), Kuhn et al.(1990) and Goulet et al.(1994). Their argument for doing so 

is that the absolute size of intercept length (or pore size) may have significance in 

architecture-mechanics relations. There are, however, empirical and theoretical 

arguments for disregarding pore size. Many investigators, including Wang (1984) 

, Turner et al. (1987) and Gibson et al.(1988) believe that the benefits of using the 

equation (2.2) have yet to be proven.

Whitehouse observed that 2-D MIL results, when plotted in a polar diagram, 

generate an ellipse, and the parameter of this ellipse would thus provide a convenient 

way of describing anisotropy. These 2-D observations may be generalized to 3-D 

space, where a polar plot of quantifying MIL data is assumed to approximate an 

ellipsoid, and an ellipsoid may be expressed by the quadratic form of a second rank 

tensor known as the MIL fabric tensor.

When 3-D reconstructions are available, it is possible to determine the MIL 

data directly in 3-D space. Methods for determining the MIL fabric tensor from 

perpendicular 2-D sections have been described by Harrigan et al.(1984) and 

Kanatani(1985). Hodgskinson and Currey (1990) determined MIL ellipses on the four 

faces parallel to the loading orientation on the cancellous bone cubes and defined a 

combined expression for MIL fabric tensor. A similar approach was taken by Harrigan 

et al.(1981).
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B)The Volume -Based Methods

Because MIL is unable to detect some forms of architectural anisotropy, 

volume-based measures were introduced, including the volume orientation (VO) 

method proposed by Odgaard et al.(1990). The results incorporating volume-based 

measures may also be expressed in terms of positive definite, second rank tensors. In 

general the volume-based methods shift the interest of architectural anisotropy from 

interface to volume.

Bl-Volume orientation

A local volume orientation is defined for any point within a trabecula as the 

orientation of the longest intercept through the point ( See Figure 2.2).

Fig.(2.2) 
(From: Odgaard, 1997)
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The local volume orientation, ω , has a semicircular orientation in 2-D space, 

a hemispherical orientation in 3-D space, and it is assumed that ω is uniquely defined 

for any point within the bone. The result for volume orientation (VO) measurements 

may be expressed by a VO fabric tensor, which describes the typical distribution of 

trabecular bone volume around a common point within a trabecula. This is in contrast 

to the MIL fabric tensor, which describes the orientation of interfaces between bone 

and marrow.

In the original description of the VO method, a technique for inferring a 

concentration parameter, K from the individual 2-D section was developed. There are 

three prerequisites for using this technique. First, a parametric distribution function 

must be assumed; second, a geometric model for the trabecular architecture must be 

assumed; and third, the main orientation of the volume orientation distribution must 

be known. All these assumptions are critical and require substantial documentation, 

with true 3-D measurements being preferred.

Basic properties of the VO method have been examined by Odgard et 

al.(1997). For rectangular particles, the VO method results in blurring around diagonal 

orientations. However, it should be kept in mind that the VO method was not 

developed for particle systems.

B2-star volume and star length distribution

The star volume distribution (SVD), like the volume orientation method,



20

describes the distribution of trabecular bone around a typical point in a trabecula (see 

Figure 2.3). The star volume distribution is closely related to star volume measure. The 

star length distribution provides a minor modification of the SVD measure. The results 

of SVD (or SDL) measurement may also be expressed by a normalised fabric tensor 

,the SVD fabric tensor. Fig.(2.3).

Fig(2.3)

(From: odgaard,1997)

C)Directional Porosity Method;

In this section the concept of directional porosity, presented by Pietruszczak 

et al.(1995) is briefly reviewed. Directional porosity is used as an implicit measure of
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the internal structure of materials and could be recognized as the generalized 

,direction-dependent counterpart of “porosity”(i.e. the scalar valued quantity defining 

void space fraction). The directional porosity is constructed as an average, continuous 

and non-singular measure in the form of an integral over a representative volume. It 

is also mathematically expressed in the form of generalized Fourier series 

(Pietruszczak et al, 1988). Its values can be estimated directly from experiment by 

means of quantitative microscopy and, in particular, by the lineal analysis.

In order to construct a directional measure of voids distribution, consider a

sphere (S) of a unit radius R=l, which encloses a representative volume of the

material. See Figure(2.4).

Fig.(2.4)

Unit sphere enclosing a representative volume of material 
( From: Pietruszczak, 1995)
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Next, consider a test line of length L = 2R with the orientation vi with

respect to the fixed Cartesian coordinate system. The fraction L occupied by voids can 

be defined as

L(vi) = l(vi)/L; l(vi)=Σlk(vi) (2.3)

where l(vi) represents the total length of interceptions of this line with the void space. 

The mean value of the quantity L(vi), averaged over the domain S, is

Lav=1/4π L(vi)f(vi)dS ; 1/4π f(vi)dS=1 (2.4)

where f(vi) is a scalar valued function describing the spatial distribution of test lines.

It can be shown that, for uniformly distributed test lines, the first integral in the above 

equation is the measure of average porosity of the material, n , whereas the lineal 

fraction occupied by pores is an unbiased estimator of the volume fraction of voids in 

the direction vi, i.e.

n= Lav ; n(vi) = L(vi) (2.5)

The scalar valued function n (vi), defined over the unit sphere S can be

represented by the generalized double Fourier series. The desired best fit
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approximation can be established by the ‘least square’ method. This leads to a 

representation in terms of symmetric traceless tensors Ωij ,Ωijkl ....(cf.Kanatani,

1984).

n(vi) = n(1+Ωijvivj + Ωijklvivjvkvl+.....) (2.6)

The higher rank of tensors Ωijkl, .... relate to the higher order fluctuations in void

space distribution. Thus, in order to describe a smooth orthogonal anisotropy, it is 

sufficient to employ an approximation based on the first two terms of the expansion 

(2.6) . Consequently, the function may be defined as:

n(vi) = 3nAijvivj ; Aij = 1/3 (δij + Ωij) → Aii = 1 (2.7)

where Aij is referred to as the fabric tensor.

2.3- FAILURE CRITERIA

In recent studies by Pietruszczak et al.(1999a), a new criterion for fracture of 

anisotropic porous materials has been proposed. The general method in the
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formulation of failure criteria for anisotropic materials, which includes proper tensor 

generators and invariants, is mathematically complex and requires extensive 

experimental data for identification of material parameters. To solve this problem, a 

simpler approach is used. In the proposed fracture criterion, a scalar-valued function 

defining the ‘directional porosity’ is employed, which is perceived as a measure of 

material fabric. This measure, as previously explained, describes the spatial distribution 

of void fraction in the neighbourhood of the material point and it is identifiable from 

3D micro-computed tomography. This approach is general enough to allow for the 

implementation of different orientation-dependent parameters describing the material 

architecture.

The basic idea underlying the fracture criterion is that there exists a function 

F of the stress state σij and the fabric Aij such that if the ultimate state of the material 

is reached, the value of this function is constant.(i.e zero)

F(σij, Aij, n) = 0 (2.8)

Since the anisotropy of fabric is fully described by Aij, F must be an isotropic 

function of both σij and Aij

F(σij, Aij, n) = F(TipTjqσpq, TipTjqApq,n) (2.9)

where Tij represents the transformation tensor. A general form of F may be obtained
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by expanding this function in a polynomial in the components of σij. Cowin (1986) has 

developed a simple quadratic approximation

F = Gijσij+Bijklσijσkl = const. (2.10)

where

Gij = g1δij + g2Aij + g3AimAmj

Bijkl = f1δijδkl + f2(Aijδkl + δijAkl) +f3(δijAkqAql) + f4AijAkl + 
f5 (AijAkqAql + AisAsjAkl) + f6AisAsjAkqAql + f7(δkiδlj + δliδkj) + f8(Aik 

Ailδkj + Aljδki) + f9(AirArkδlj+ AkrArjδli + AirArlδkj + AlrArjδik)

and g’s and f's are scalar valued functions of the basic invariants of Aij and the average 

porosity.

There are some difficulties associated with the above approximation. First, it 

requires an extensive experimental program to identify the twelve functions of the 

material fabric. Second, it is obvious that the behaviour of porous material depends 

on the third stress invariant( Desai et al. 1987). Hence, this approximation as well as 

other commonly used criteria (e.g., Tsai and Wu, 1971), can not completely describe 

the conditions at failure.

In order to overcome this problem, an alternative to representation (2.8) is

employed, following a general approach proposed by Pietruszczak (1999b). In
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particular, it is postulated that the functional form of the fracture criterion incorporates

directly n(vi), so that

F = F(σij, n(li)) = 0 (211)

Here, the function n is evaluated in the ‘loading direction’ li, which can be defined 

here as the direction of the average stress vector Ti, at a point, i.e.

Ti = σij(ej(1) + ej(2) + ej(3)) = √3 σijmj

li = Ti/Ti = σijmj

(σklσkpmlmp)1/2

(2.12)

(2.13)

where ei's are the base vectors associated with the principal material axes and 

mi={l,l,l}/√3 is a unit vector along the space diagonal. Since (2.11) must be an 

isotropic function of stress,

F(σij, n(li)) = F (TipTjqσpq, n(Tiplp)) = F(I1,I2,I3, n (li)) = 0 (2.14) 

where I's are the basic invariants of σij. Alternatively, F may incorporate any 

convenient measures which are derived from the basic invariants. A general form of

representation (2.14), pursued further, is

F = F(I, σ, ϴ, κn(li)) = 0 (2.15)

where I=-σii , σ =(1/2 SijSij)1/2 ,ϴ = 1/3 sin-1 {(√3 SijSjkSki)/2σ3} and sij represents the



27

stress deviator. In Eq.(2.15), κn (n=l,2,...,N) represents a set of material parameters 

embedded in a typical formulation describing an isotropic response whereas the 

invariants (I, σ, ϴ) are chosen to provide a simple geometric interpretation of the 

fracture criterion.

It seems rational to adopt a functional form typically employed for brittle

plastic materials. One particular formulation, describing an isotropic material, is that 

proposed by Pietruszczak et al. (1988), viz.,

Or equivalently,

F = σ -g(ϴ) σc = 0;

where the parameters a1 , a2 , a3 are dimensionless material constants and fc represents 

the uniaxial compressive strength. Moreover, the function g(0) is selected in the form:

a = const. (2.18)

which satisfies g(π/6)=l and g(-π/6)=K and for a=0.999 guarantees convexity for 

K>0.565. It should be noted that according to Eq.(2.17), K is a material parameter 

which represents the ratio of the maximum deviatoric stress intensity σ in compression 

(ϴ=π/6) and extension (ϴ=-π/6) domains for a fixed value of I=const.

(2.16)

(2.17)
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In general, the material parameters a1, a2, a3 can be identified from standard 

material tests (i.e. uniaxial compression/tension and biaxial compression). The details 

on the identification procedure are provided by Pietruszczak et al. (1988). Typically, 

the strengths in uniaxial tension and biaxial compression are proportional to fc, so that 

fc may be considered as the only independent parameter.

The simplest extension of Eqs.(2.16) and (2.17) to anisotropic conditions, 

consistent with representation (2.15), is that in which a’s are assumed to remain 

constant and fc= fc(li),

(2.19)

Here, p is the density of the bone material (considered as orientation-dependent) and 

γ is a constant, typically within the range 1<γ<2 (Keller, 1994). In the principal stress 

space, Eqs. (2.16) and (2.17) represent an irregular cone with smooth curved meridians 

and a non-circular convex cross-section in the deviatoric (κ) plane (Fig.2.5). The 

shape of the π-plane section is defined through the function g(ϴ) , Eq.(2.18).

Fig.(2.5)

Failure surface in principal stress space (for fc = const.) 

( From : Pietruszczak, 1995)
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In general, Eqs.(2.16) and (2.17) together with Eq.(2.19) define the fracture 

criterion for cortical as well as trabecular bone. In a phenomenological sense, both 

these tissues are considered here to be the same material with different porosity 

characteristics, Eq.(2.8), which affect the strength viz. Eq.(2.19).

2.4- FaiIure criteria in biphasic materials

Introduction

The presence of liquid in a porous solid can influence the mechanical properties 

in two different ways. Firstly, it may affect them by chemical alteration. Secondly, 

when the material is in compression the deformation process is constrained and the 

behaviour is different from that observed in the dry material. Terzaghi’s effective stress 

principle, which is typically employed in soil mechanics, has also been extensively used 

for saturated porous solids. In addition, it has been used in rock mechanics, by Stagg 

et al.(1968), Goodman(1980) and Brady et al.(1985), as well as for problems involving 

concrete structures by Zienkiewicz et al.(1989) and Zienkiewicz(1991). According to 

this principle, total stress is decomposed into two parts. The first part deals with the 

solid phase and is called effective stress while the other part represents the excess of 

pore water pressure. It is assumed that the deformation process and failure criteria are 

governed by the state of effective stress only. In general, the applicability of Terzaghi’s
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principle in porous solids is questionable. Porous solids are defined as having a 

continuous matrix of solid phase, which is in contrasts to soils that consist of discrete 

particles. Furthermore, in soils, the compressibility of water is negligible as compared 

to that of the skeleton, which is not the case for other porous solids, where the two are 

of the same order of magnitude.

An accurate description of the mechanical properties of saturated porous solids 

is considerably important in engineering analysis and design. There are many kinds of 

engineering structures composed of natural porous solids, which are either partly or 

completely filled with fluids. Hence, the viability and safety aspect should be taken 

into account when assessing the two-phase nature of the material. In a study by 

Pietruszczak and Pande(1995), the authors proposed a constitutive relation governing 

the undrained behaviour of a porous solid treated as a brittle-plastic material. The 

formulation is based on a revised stress decomposition, which incorporates an average 

stress measure in constituents ( i.e. solid matrix and liquid). In what followes this 

formulation is briefly reviewed and later applied in the context of biological materials.

Mathematical Formulation

In saturated porous materials, when the loading rate is sufficiently high, there 

is not enough time for the dissipation of excess pore pressure generated in the fluid. 

This case is commonly referred to as undrained, implying that there is no transient flow 

of the fluid out of the system. To describe the mechanical properties in a biphasic



31

structure, the average macroscopic stress can be defined as ( Pietruszczak and

Pande, 1995):

so that

σij = (1-n)σijm + npfδij (2.21)

In the above formula σijm is the average stress in the solid matrix, pf is the

average excess of the fluid pressure while n represents the average porosity of the

material. Eq.( 2.24) may also be expressed as:

σij = σij' + npfδij ; σij' = (1-n)σijm (2.22)

In equation (2.22) σij' represents average stress in the solid matrix referred to

the unit area of the sample. In the case when the material is elastic and there is no fluid 

in the system, the mechanical response is defined as:

σij = σij' = Dijklε ; Dijkl = Dijkl (Apq, n) (2.23)

where Dijkl represent the drained elastic properties.

In a biphasic system, a change in pore pressure would trigger a change in the 

average stress in the solid matrix of a magnitude equal to σij = (1-n)pfδij.Thus,

(2.20)
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in order to maintain consistency with the characteristics for dry materials, equation 

(2.23) must be revised to

(σij' - (1 - n) pfδij ) = Dijklεkl (2.24) 

The above equation can now be combined with the constitutive relation for the pore 

fluid. Neglecting the viscous effects and assuming that the fluid is linearly 

compressible:

Pf = Kfεfii  ; εiif = εii/n (2.25) 

where Kf represents the bulk modulus of the fluid. Generally, the volume change of 

material is caused by the change in the volume of voids. When voids are connected and 

filled with a fluid, the total deformation must be consistent with that of the fluid itself. 

Hence, the combination of equation (2.24) and (2.25) would result in:

σij' = (Dijkl + (1-n) Cijklεkl (2.26) 

or, in view of equation (2.22)

σij = (Dijkl + Cijkl)εkl (2.27) 

The above equation represents the constitutive relation for a porous solid considered 

as an elastic biphasic system. For these type of materials, the failure criterion can be 

expressed as;

F = F(σij', n(li)) = 0 (2.28)

where σij' is the average stress in the solid skeleton.
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2.5- Anisotropic elasticity of porous solids

In porous solids, such as bone, mechanical properties are closely related to the 

microstructure . As previously discussed, the microstructural properties associated 

with pore distribution can be described using a set of fabric tensors which can be 

identified by means stereological methods (Kanatani,1984). Integral geometry or 

stereology is a body of mathematical methods for estimating 3D morphological 

parameters from 2D or ID projections (WeibeI,1980).

An elementary microstructural description is contained in a single scalar 

property such as relative density, while material anisotropy requires a fabric tensor of 

a higher rank. However, in many applications, microstructure anisotropy seems to be 

sufficiently well described by a scalar and symmetric, traceless second rank fabric 

tensor, which restricts material symmetry to orthotropy.

In solid materials, linear elastic properties are characterized by one fourth rank 

tensor (Curnier et al., 1995). One of the attempts to relate a fabric tensor to a fourth 

rank elasticity tensor can be found in Cowin(1985). He suggested a model based on 

a normalized second rank tensor and reported expression for the elastic constants in 

terms of the invariants of fabric tensors.

Another attempt can be found in the study by Zysset et al. (1996), where a 

general approach for relating the material microstructure to the fourth rank elasticity 

tensor has been proposed. In this approach, an approximation based on the Fourier 

series decomposition has been employed. Following this concept, the orthotropic
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elastic moduli are defined as:

Ei = Eo [pz (1 - n)]2 Ai-2 (i,j=l,2,3 and i<j) (2.29)

Gij = Go[ρz(1-n)]2Ai-1Aj-1 (2.30)

μij = μo Ai/Aj  (2.31)

subject to the constraint μo = Eo / (2Go)- 1 . In the above equations, E’s are

Young’s moduli, G’s are shear moduli, p represents Poisson ratios. A’s are the

eigenvalues of the fabric tensor, ps is density ρs, n is average porosity and Eo,Go,

μo are material constants. The compliance tensor in the principle orientation of the

fabric tensor exhibits the form:

RC = Qc + 2Go[ρz(l-n)]2

(2.32)

Where,
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CHAPTER 3

STUDIES OF THE FRACTURE OF THE 

PROXIMAL FEMUR, A REVIEW

3.1-Introduction

Fractures of the proximal part of the femur are a significant public-health 

problem as well as a major source of mortality and morbidity among the elderly. In the 

USA over 260,000 hip fractures occur each year in patients 65 yr of age or older 

(Graves, 1992). Studies by Bauer (1960), Lewinnek et al.(1980) and Melton et 

al. (1987) indicate that the incidence of fractures of the hip increases exponentially with 

age; beginning at about forty years of age for women and forty five years of age for 

men, and rising at eighty years to an aggregate rate of between 20 and 30 per cent for 

women and between 10 and 15 per cent for men. Consequently, nearly one out of 

every three women and one out of every six men could sustain a fracture of the hip 

by the age of ninety years. This problem is expected to worsen with the projected 

increase in the average age of the world’s population.

In this chapter the femur anatomy along with some of the basic theories of bone 

mechanics are reviewed. Subsequently, The previous studies on the fracture of
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proximal femur are examined. Finally, a brief outline of the current research which is 

an extension of the work of Pietruszczak et al, (1999a), is given.

3.2- Femur anatomy

In this section a brief review of the anatomy of femur is provided. Based on

Gray(1995), femur is the longest and strongest bone in human body, see Fig(3.1 ).
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Its length is associated with a striding gait, its strength with weight and muscular 

forces. Its shaft, almost cylindrical in most of its length and bowed forward, has a 

proximal round, articular head projecting mainly medially on its short neck. In a 

standing position, the femora are oblique, their heads separated by the pelvic width, 

their shafts converging downwards and medially to where the knees almost touch. 

Since the tibia and fibula descend vertically from the knees, the femoral obliquity 

approximates the feet, bringing them under the line of body weight in standing or 

walking. The narrowness of this base detracts from stability but facilitates forward 

movement. Femoral obliquity varies, though it is greater in women due to the relatively 

greater pelvic breadth and shorter femora. Proximally the femur comprises a head, 

neck and greater and lesser trochanters.

Proximal end

Slightly more than half a sphere, it faces to articulate with the acetabulum. More 

precisely, the head is not part of true sphere but rather it is sphenoidale and part of the 

surface of an ovoid. It’s smoothness is interrupted to its center by a small, rough fovea. 

See Fig(3.2).

Femoral neck

About 5 cm long, the femoral neck connects the head to the shaft at an angle 

of about 125 degrees (angle of inclination). This facilitates movement at the hip joints,
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enabling the limb to swing clear of the pelvis. The neck is also laterally rotated with 

respect to the shaft (angle of anteversion) some 10-15 degrees. There also appears to 

be some racial variation in anteversion. Narrowest in its midpart and widest laterally, 

the contours of the neck are rounded; the upper almost horizontal and

Fig(3.2)

The proximal part of left femur (from: Gray, 1995)
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slightly concave above, the lower straight but oblique and backwards to the shaft near 

the lesser trochanter. The neck’s anterior surface is flat and marked at the junction with 

the shaft by a rough intertrochanteri line. The posterior surface, facing back and up, 

is transversel convex and concave in its long axis and it’s junction with the shaft is 

marked by the rounded intertrochanteric crest.

3.3- Basic Theories in Bone Mechanics

In biological terms, bone is considered to be a connective tissue. A tissue is an 

aggregation of similarly specialized cells united in the performance of a particular 

function. Connective tissue is the tissue which bends together and supports the various 

structures of the body.

In mechanical terms bone is a composite material with several distinct solid and 

fluid phases. Bone is unique among the connective tissues because it is hard due to its 

major organic component being impregnated with a mineral phase, principally hydroxy 

apatite or very similar crystals. At the macroscopic level there are two major forms of 

bone tissue: called compact or cortical bone and cancellous or trabecular bone. The 

location of these bone types in a femur is shown in Fig. (3.3 ). Cortical or compact 

bone is a dense material with a specific gravity of about two. The external surface of 

bone,which is smooth, is called the periosteal surface. The interior surface is called 

the endosteal surface. Cancellous bone is also called trabecular bone because it is 

composed of short struts of bone material called trabeculae. The connected trabeculae
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Fig.(3.3)

Longitudinal section of the femur illustrating cancellous and cortical bone type 

(From: Cowin, 1981)

give cancellous bone a spongy appearance which is why it is often called spongy bone. 

Though there are no blood vessels within the trabeculae, there are vessels immediately 

adjacent to the tissue that weave in and out of the large spaces between the individual 

trabeculae.

Historically the first attempt to explain the structure of cancellous bone on an 

elastomechanical basis was made by G.H. Meyer in 1867, who published a paper in 

which he presented a plate with line drawing of cancellous structures he had found in 

various bones. Culmann in 1867 pointed out that “the line in these drawings very much 

resembled those curves called the curves of maximum pressure and maximum tension 

in graphic statics.” Meyer (1867) reported that, Culmann asked a student of his to 

construct the principle stress trajectories in a crane-like curved bar loaded in a fashion
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similar to the human femur(Fig.3.4). This construction was to become the famous

Culmann crane and is referred to by many in the publications that followed. The

similarity between the idealized structure of cancellous bone in the proximal end of the 

femur and the trajectories in the Culmann crane, led Meyer(l 867) to conclude that the

structure of cancellous bone was generally determined by the direction of the principle

stresses.

Fig.(3.4)

On the left is Culmann’s crane with the principal stress trajectories 
indicated. On the right is Von Meyers sketch of the trabecular architecture 
in a section through the proximal end of human femur. Both the femur and 
culmann’s crane are loaded transversely at their cantilevered ends as 
illustrated on the little insert at the lower far right ( from: Cowin, 1986a)
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The term “law of bone transformation” was mentioned by Wolff(1892) for the 

first time based on the assumption that a feedback loop can be described in which the 

input is a changing loading pattern while the output is an altered bone architecture. 

Wolff adopted this view in stating:

“Every change in the form and function of a bone or of their 

function alone is followed by certain definite changes in their 

internal architecture, and equally definite secondary alteration 

in their external conformation, in accordance with 

mathematical laws.”

Roux (1895) proposed a “trajectorial architecture” to describe the geometry 

of trabecular bone and to explain how it is organized to provide maximum strength 

with a minimum amount of material. According to Murray (1936), the fundamental 

idea in the trajectorial theory is that trabeculae follow the stress trajectories in the 

homogenous body of the same form. Pauwels (1948) conducted photoelastic 

experiments directed toward this theory while Kummer (1966) demonstrated, 

qualitatively, the similarity between a three-dimensional trajectorial model of the femur 

and the trabeculae architecture.

There has been a lively debate in the orthopaedic and anatomic literature on 

the mechanical factors controlling the architecture of trabecular bone 

(i.e.Tobin, 1968,Oxnard, 1972, Takechi, 1977). More recent stress analyses of the
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proximal femur, based largely on the finite element method, have tended to support the 

trajectorial theory.Clinical interest has also focused on change in the trabecular 

architecture of the proximal femur as an index of osteoporosis (i.e. Jowsey,1977).

Historically a number of papers have dealt primarily with cortical bone. Frost 

(1964) suggested that bone form may change in response to intermittent surface strain, 

supporting the theory that bone drifts toward the load-induced concavity, thereby 

neutralizing bending and putting the whole bone in compression. Lanyon (1974) also 

showed that in the sheep cancellous bone, the trabeculae are aligned approximately 

along principle strain directions. Later in 1976, Lanyon suggested that this alignment 

may be advantageous for reducing shear strain.

For trabecular bone, Radin (1972) and Pugh et al.(1974) proposed a damage 

accumulation hypothesis based on Wolffs law and suggested a central role for 

trabecular microstructures in various stages of healing in trabecular bone in both 

human and rabbits. It was also demonstrated that healing increases the mass and 

stiffness of trabeculae.

In recent years, there has been an increased research interest in trajectorial theory 

of bone architecture. This increased research interest is driven by two major factors. 

First, there is the clinical need to understand the mechanical behavior of bone tissue 

due to the use of implanted bone which has increased significantly. Second, scientific 

and experimental techniques developed in the field of physical and biological science
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as well as in the field of engineering now supply the technology that, in the past, 

blocked further development.

3.4- A review of studies on fracture of proximal femur

3.4.1- General remarks

As indicated before, hip fracture is a health problem of enormous proportions. 

In addition the continuous growth in the elderly population can be expected to 

dramatically increase both the number and associated cost of hip fractures.

There is also considerable controversy as to whether a fracture of the hip should 

be considered a disease (related to the excessive loss of bone that is associated with 

osteoporosis), an accident (related to increased frequency or severity of trauma among 

the elderly) or both. Melton et al.(1988) concluded that the combination of reduced 

skeletal resistance to trauma and increased propensity for falling is an important 

determinant of risk. As a result, it appears that both loss of bone and trauma are 

necessary, but not independently sufficient, to cause these age-related fractures.

To date, hip fracture prevention efforts have been directed primarily toward the 

improvement of bone loss. However, since 90 percent of all hip fractures are caused 

by falls, an alternative and complementary approach to the prevention of hip fractures 

should focus on fall prevention or on reducing the injury potential of those falls that

do occur.
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Unfortunately, falls have proven remarkably resistant to prevention and the use 

of trochanteric padding to reduce the injury of a fall is still in the early phases of 

development. With respect to the mechanics of a fall, extensive research has been 

conducted on fall initiation. Besides the instability phase that results in loss of balance, 

a fall consist of three additional phases: 1) a descent phase; 2) an impact phase; 3) a 

post impact phase during which the subject comes to rest. However, little is known 

about the kinematics and dynamics of these three phases.

Since falling to the side and impacting on the hip raises the risk of hip fracture 

significantly, a fundamental variable which determines fracture risk is the force applied 

to the greater trochanter in a sideways fall. Many researchers have attempted to 

estimate the direction and the magnitude of this force and consequently use these data 

in the analysis of fracture.

3.4.2- Experimental results of a sideways fall

In the study by Backman (1957) many loading configurations were investigated 

experimentally to model a sideways fall. The picture shown in Fig.(3.5) has been 

chosen by many researchers because it produces fractures in vitro similar to those 

observed clinically. This configuration was meant to simulate the situation in which the 

patient falls to the side, with the soft tissue overlying the posterolateral aspect of the 

greater trochanter when coming in contact with the ground. The direction of the loads 

are such that the axes of the diaphysis and femoral neck formed an angle of 30 degrees, 

with the plane perpendicular to the applied loads.
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Fig(35)

Loads applied to the femoral speciments 

( from: Lotz et al., 1990)

Using above configuration, Lotz et al. (1991) performed an experiment to 

measure fracture load. In their tests, a vertical load was applied to the femoral head at 

a displacement of 0.7 mm/sec until failure occurred. The magnitude of applied load 

was measured by the calibrated load cell of the test system, while deformation of the 

specimen was measured with the calibrated linear variable-differential transformer of 

the hydraulic actuator. The resultant force-displacement diagram is shown in Fig.(3.6).
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Fig.(3.6)

Load-deflection curve of a femur specimen 

(From: Lotz et al., 1991)

In another experimental study, Keyak et al.(1997) investigated the magnitude 

of force in two different configurations for standing and falling. For standing load, 

force was applied to the femoral head and directed within the coronal plane at 20 

degrees to the shaft axis. The contralateral femur was examined in a configuration 

simulating impact from a standing height similar to the loading investigated previously 

by Backman (1957).Fig.(3.7).The specimens were obtained from ten females and eight 

males between the ages of 52 and 92. The results for fracture loads varied from 3 to 

14 kN for standing configuration and 0.6- 4 kN for fall configuration.



Fig(3.7)

Experimental setups for testing the strength of the femur under 
different loading condition

( from: Keyak et. al, 1997)
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Hayes et al. (1997) designed an experiment to calculate the highest force applied 

to the proximal femur during a fall. The physical system used in this study consisted 

of an impact pendulum and surrogate human pelvis, Fig.(3.8).

load 
cell

Fig.(3.8)

Physical system, consisting of a surrogate human pelvis and impact pendulum 

( from: Hayes et al., 1997)

This system was used to simulate the dynamic response during impact to the lateral 

aspect of the hip resulting from a sideways fall. The compliance of the soft tissues 

(skin, fat, and muscle) overlying the femur and pelvis bone was simulated with 

polyethylene foam from rubber, while the stiffness and damping of pelvis was simulated 

using neoprene and bumper springs. The entire unit was rigidly mounted to a vertical 

wall. The pendulum was suspended from the ceiling by two low-friction ball bearings 

and consisted of an arm 1.74 m in length and ending on a rectangular weight cavity 

capable of holding up to 123 kg. A local cell mounted between the pendulum weight 

cavity and the impact plate provided a measure of the total force applied to the
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pendulum head, which consisted of two components: 1) the force delivered through 

the surrogate pelvis to the rear support wall; and 2) the inertial force associated with 

acceleration of the mass of the impact plate. The measured force-time record for the 

first contact period after the pendulum strikes the surrogate pelvis with a constant 

velocity of 2.22 m/s is shown in Fig.(3.9).

Fig.(3.9)
Experimental force-time record for a contact velocity u=2.22m/s 

(from: Hayes et al., 1997)

3.4.3- Modeling of a fall

There is a number of studies which are focused on developing an equivalent 

dynamic model to predict the mechanical behavior of a femur. In a study by Van den 

Kroonenberg et al.(1995) a simple model is proposed to estimate the maximum force 

applied to the greater trochanter in the fall. The model is a single-degree-of-freedom 

system, which is shown in Fig.(3.10).
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Fig.(3.10)
Single degree of freedom impact model 

( from: Kroonenberg et al., 1995)

The mass M represents the mass of that part of the body that contributes to the impact 

force on the hip. According to this model, mass M is moving in the vertical direction 

with the velocity of V prior to impact. The spring, with the linear constant K, 

represents the soft tissue overlying the hip as well as the flexural stiffness of the body. 

Damping, however, is not considered in this model. To calculate M and V, three 

different schemes are proposed. SeeFig.(3.11).

Fig.(3.11)
Rigid uniform slender bar and two link model 

(from: Kroonenberg et al., 1995)



52

Different results based on the above mentioned model have been reported. 

Values for M ranged from 15.9 to 45.3 kg , while velocity (V) is estimated to have 

ranged from 2.47 to 4.00 m/s. Using these data and considering the stiffness (K) of 71 

kN/m, the predicted values for peak impact force ranged from 2.90 to 7.5 kN.

In order to develop the previous method, a series of more complicated models 

have been proposed by Robinovitch et al.(1997). These models are shown in 

Fig.(3.12). The Voigt support model, (b), is used when damping is an important 

characteristic of the system. The Maxwell support model, (c), is not generally reliable, 

perhaps due to its prediction of a steady, non-zero rate of deformation under a steady 

load. In the standard linear solid support model, (d), techniques for quantifying the 

stiffness and damping constant are not as straightforward, and do not appear to have 

been documented previously. Consequently, a new formulation is proposed by authors. 

The predicted force-time records for these models are shown in Fig.(3.13) and are 

compared to the experimental results mentioned earlier.

(a) (b) (c) (d)

Fig.(3.12)
a) mass-spring model b) Voigt support model c) Maxwell support model and 
d) standard linear solid support model (From: Robinovitch et al., 1997)



Fig.(3.13)
Measured and predicted force-time records for a contact velocity u=2.22 m/s 

(From: Robinovitch et al., 1997)

3.4.4- Numerical approach

The application of the finite element method for both two and three dimensional 

analysis of the proximal femur is becoming a routine. Finite element method presents 

two main advantages over other techniques for the structural analysis of the proximal 

femur. The first advantage is that this method allows parametric representation of the 

complex geometric and material property distributions, which occur in vivo and which 

are normally difficult to represent with other analytical or experimental techniques. The 

second advantage, is that while an intact bone can be tested to failure once, a finite 

element model can be analyzed parametrically to investigate different loading 

conditions, geometries as well as material property distribution.

The studies by Elsasser et al. (1980), Revak (1998) and Genant et al. (1985) 

have demonstrated that quantitative computed tomography is an accurate technique 

for the assessment of intact bone status. Since then, much attention has been directed
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toward the development of various non-invasive screening procedures to measure bone 

geometry and the distribution of properties.

Lotz et al.(1991) used computed tomography to produce a finite element model 

to predict fracture of proximal femur. In their study, finite element models of intact 

proximal femurs were created using geometry and density data derived noninvasively 

from quantitative computed tomography images. Using this imaging modality, both the 

bone geometry and density were determined and finite element models were generated. 

These models were subsequently used to investigate the structural behavior of the 

proximal femur subject to loading conditions approximating a one-legged stance and 

sideway falling, Fig.(3.14 ).

Fig.(3.14)
Loads applied to femur simulating a) one-legged stance and b)fall 

( From: Lotz et al.,1991)
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A distributed compressive load was applied to the superior aspect of the femoral head 

to approximate a one-legged stance. For the sideway falling configuration, a 

posterolaterally directed load was applied to the femoral head with an equal and 

opposite load applied to the lateral greater trochanter. To predict local bone failure, 

a von Mises yield criterion was used in the region representing cortical bone, and both 

von Mises and Hoffman yield criteria were applied for elements representing trabecular 

bone. The obtained load-displacement characteristics are shown inFig.(3.15).

Load-displacement curve for a femur. The arrow 
indicates the approximate onset of yielding 

( From: Lotz et al.,1991)

A similar approach was followed by Keyak et al. (1997). For finite element 

model generation, the CT scan data were transferred to a computer, and a 3-D finite 

element model, using heterogeneous linear isotropic mechanical properties, was 

automatically generated. Linear eight-nodded cube-shaped elements were used so that 

the elements matched the thickness of the CT scan images; See Fig.(3.16).The results
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of finite element analysis have been compared with the results of experiments;

Fig.(3.17). It has been demonstrated that this technique can achieve precision 

comparable to that of densitometry and can predict femoral fracture load with very

high accuracy.

Fig.(3.16)
The finite element model of femur containing 

14,534 nodes and 11,604 cube elements.
( from: Keyak et al., 1997)

Fig.(3.17)
Measured fracture load versus FE-predicted fracture load for 

the stance configuration (a) and fall configuration(b).
( from: Keyak et al., 1997)



57

3.5- Present study

The analysis of bone fracture is quite complex. This arises from the fact that 

bone, both cortical and trabecular, is a heterogeneous and strongly anisotropic 

material. Previous studies (i.e Reilly and Burstienl975, Burstien et al 1976, Carter and 

Spengler ,1978, Torzilli et al.1981, Stone et al.,1983 and Keaveny et al.,1994) have 

clearly demonstrated that the mechanical behavior is, generally, inelastic and bimodular 

(i.e. the strength in tension is considerably lower than in compression).

In recent years, many three-dimensional finite element analyses have been 

performed to simulate fracture in the human proximal femur (Lotz et al. 1991 a, 1991 b, 

McNamara et al. 1996, Mertz et al.,1996 and Taylor et al. 1996). Most of them have 

used simple fracture criteria which have been developed for a class of isotropic, porous 

cemented materials. In particular, some of these studies (Lotz et al. 1991a,1991b and 

Mewtz et al. 1996) have used Von Mises failure criteria, which was primarily 

developed for metals. In more recent studies (i.e Pietruszczak et al. 1999a), a new 

criterion for fracture of bone, both trabecular and cortical, has been proposed. This 

criterion was discussed in chapter 2 and will be employed later in this work to perform 

structural analysis of the proximal part of the femur.

The analysis performed in this study, incorporates a finite element model 

developed in the work of Pietruszczak et al.( 1999a). The model has been created using 

COSMOS/M (1996) finite element software and several interface programs. The 

geometry of the femur was derived from external surface contours extracted from CT
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scans ( 512 x 512 pixels, pixel size: 0.219 mm, slice thickness: 1mm). The 204 

consecutive images were scanned transversely to the long axis of the bone at 1mm 

intervals in the proximal femur and then at 7mm intervals along the diaphysis. The 

model consists of 9115 nodes and 40681 four-nodded tetrahedral elements.

The actual kinematics of a fall is very complex. Different researchers have 

reported quite diverse results regarding the estimation of maximum force due to the 

fall. A number of researchers (i.e. Lotz et al. 1991, Keyak et al. 1997) did not consider 

the effect of tissues and used a simple static approach. However, the main source of 

inaccuracy comes from the fact that the force transferred during a fall is a dynamic 

force caused by impact. Thus, it will depend on many factors, such as, effective mass, 

velocity of impact, stiffness of the bone as well as the mechanical properties of tissue.

The work presented in this thesis is basically an extension of the work of 

Pietruszczak et al. 1999a.. The study has focused on two major areas. First, based on 

the formulation given in chapter 2, a static analysis was performed for bone considered 

as a biphasic material. Second, the previous analysis was extended to the dynamic 

range, which describes more realistically, the conditions for a sideway fall.In next 

chapter, the details of static and dynamic analysis are explained and the results of 

numerical analyses are presented.



CHAPTER 4

Numerical simulation of fracture of proximal femur

4.1-Introduction

The numerical analysis presented in this chapter is basically a continuation of 

the previous study by Pietruszczak et al.(1999a). The analysis incorporates the finite 

element method and its objective is to model a fracture in proximal femur due to the 

sideways fall. The study presented in this thesis extends the previous analysis in two 

major areas. First, based on the formulation given in chapter 2, a static analysis was 

performed, taking into the account the biphasic nature of the material. The second 

contribution concerns the extension of the analysis to dynamic range, which simulates 

more closely the conditions of a sideways fall.

In this chapter, the method used for generating the finite element model, 

including geometry of femur and porosity distribution, is reviewed first. Subsequently, 

the details of the analyses and the results of both static and dynamic simulations are

presented.
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4.2- Geometry and physical properties of femur

In this section, the procedure used to generate the finite element model of the 

femur is outlined. The information is extracted from the work of Dean Inglis 

(Pietruszczak et. al, 1999a).

The geometry of the femur has been obtained using CT scans and several 

processing techniques. The bone, that had been previously dried, was placed in a 

perspex cylinder filled with vegetable oil in order to simulate a soft tissue background 

during CT scanning. Images were scanned perpendicular to the long axis of the bone 

at 1 mm intervals. By using a boundary extraction program, external surface contours 

were obtained from each image. Contour pixels were mapped to the Cartesian 

reference frame and a subset of control points were chosen by visual inspection and 

connected to form a smooth contour. Consecutive contours were joined together to 

create three and four-sided surface patches. The final polyhedra were meshed into 

four noded tetrahedral elements using COSMOS/M (1996) finite element software. 

Fig.(4.1)shows the model of the femur which consists of40681 tetrahedral elements 

and 9115 nodes.

The average density and porosity values were estimated from CT data by 

employing a simple algorithm which was used to calculate the values on an element 

by element basis. Fig.(4.2) shows the distribution of average porosity in the 

midcoronal plane.
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Fig. (4.1)
Finite element model of a femur 
(From: Pietruszczak et. al, 1999a)
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To estimate the distribution of principal material directions, a preliminary finite 

element simulation was conducted . A linear analysis of femur subjected to loading 

conditions corresponding the one legged stance phase of gait was performed . The 

problem was solved under the constraint that the matrix multiplication of the stress 

and fabric tensors is commutative. The latter is consistent with Wolff’s hypothesis, 

which states the principal stress axes coincide with the principal material directions 

at the remodeling equilibrium. The results for average porosity distribution and 

principal material directions were stored in input files which were subsequently used 

in the numerical analysis.

4.3- Static analysis of femur fracture

4.3.1- Material properties and loading

In order to maintain an orthotropic representation, a constant bias in the spatial 

distribution ofvoids was assumed by taking Ω1 = -0.15, Ω2 = 0.04, Ω3 = 0.11.

The elastic properties were estimated from eqs.( 2.29) and ( 2.31) by taking

ρb = 1.93g/cm3, Eo = 470 MPa cm6/g2, Go = 180 MPa cm6/g2,

so that for n = 0.05 there is: E1 = 19.76 GPa, E2 = 13.15 GPa, E3 = 11.15 GPa,
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, E3 = 11.15 GPa, G12 = 6.6 GPA, G13 = 5.72 GPA, G23 = 4.71 GPA,

μ12 = 0-25, μ12 = 0.25, μ12 = 0.25 The above estimates are quite consistent with

the data for human femoral cortical bone, as reported by Turner and Cowin (1998).

The loading configuration for static analysis was the same as that employed by 

Pietruszczak et al.(l999a). A load of magnitude 750 N was distributed among surface 

nodes of the lateral aspect of the grater trochanter. An equal and opposite load was 

applied to the femoral head in a similar manner.

For static analysis nodes at the distal end of femur were rigidly fixed. Such 

constraint was considered reasonable since the focus of loading activity was is in the 

proximal end of the femur. Previous studies (e.g. Vichnin et al. 1986) have shown this 

to be of little influence on the stress field in the proximal region. The loading 

configuration and kinematic constraints are shown in Fig.(4.3).

Fig.(4.3)
Loading configuration and kinematic constraints
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The stress analysis was performed for different conditions including dry and wet 

bone, isotropic and orthotropic characteristics as well as two different porosity 

distributions corresponding to normal and osteoporosis bone.To assess the risk of 

fracture, the concept of damage factor, suggested by Pietruszczak et al. (1999a), was 

used. The damage factor is defined as:

(4.1)

where σ , g(ϴ) and σc are all defined in equation (2.17) in chapter2. It 

should be noted that, according to equation 2.17, F< 0 requires 0 < β < 1. The 

case of β → 1 results in F → 0 which signifies the local failure of the bone 

material. Generally, the distribution of βshows the extent of structural damage and 

identifies the regions where the irreversible deformation are likely to occur.

4.3.2- Results of static analysis

In this section the results of static analysis, based on the formulation given in 

chapter 2, are presented. The analysis was performed for different cases, including 

isotropic/orthotropic material and dry/wet bone. In what follows the results of 

simulations are discussed in details.

Fig(4.4) shows the finite element mesh for the femur and the location of anterior 

cross section. Based on experimental evidence, the femur fracture usually initiates 

along this section.
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In Fig(4.5) the damage factor distribution in a dry healthy bone is shown for

two different cases a) orthotropic and b) isotropic material. The results for both cases 

indicate that the high stress concentrations occur in femoral neck which is in tension. 

The magnitude of damage factor is less than one, implying that no fracture is 

expected. The comparison of orthotropic and isotropic case shows that the extent of 

damage is slightly higher in orthotropic material. Overall, however, the distribution 

is very similar. This is true, provided the isotropic properties are taken as the 

orientation average corresponding to orthtropic case( i.e Ωij = 0 ).

Fig(4.6) shows the damage factor distribution in dry osteoporotic bone for 

a)orthotropic and b)isotropic case. The higher values of damage factor for orthotropic 

material are consistent with the results shown in Fig(4.5). It can be seen that in the 

area of femoral neck there is β > 1 , which indicates the onset of fracture. Thus the 

values of the damage factor for osteoporotic bone are significantly higher than those 

corresponding to a healthy bone. Note that in the analysis the bone material is 

considered to be linearly elastic, which is not a valid assumption for region 

experiencing β > 1. However, the elastic solution can be a useful factor to assess the 

plastic admissibility of the stress state, and thus, the risk of fracture.

The higher risk of fracture in osteoporotic bone is clearly evident in Fig(4.7). 

The figure shows the damage factor distribution corresponding to orthotropic 

biphasic (wet) material in a) healthy and b) osteoporotic bone. The damaged regions
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in both cases are located in femoral neck. The results are consistent with clinical data 

indicating higher rate of femur fracture in elderly and the onset of fracture in femoral 

neck.

Fig.(4.8) shows the distribution of damage in midcoronal section for a)healthy 

and b)osteoporosis orthotropic bone. The figure shows that in a healthy bone the 

extend of damage is limited so that no fracture is expected. Fig. (4.8 b) shows a 

significant increase in damaged area in osteoporotic bone. In this case, the damage 

extends to the trabecular bone in interior part. This is mainly due to the fact that 

porosity in trabecular region is very high, so that even a small increase in external load 

can cause a rapid propagation of fracture.The latter is further confirmed in Fig.(4.9) 

which shows the anterior section of a) normal and b) osteoporotic orthotropic wet 

bone. In Fig.(4.9 b) the extent of damage in both tension and compression regime is 

much more severe and is due to the increase in porosity of aged bone. As indicated 

before, increase in porosity leads to a significant decrease in the stiffness and the 

strength of the material.

Fig.(4.10) shows the damage factor distribution in a) dry and b) wet isotropic 

healthy bone. The results indicate that, the damaged area in femoral neck is almost 

identical for both these cases. The similarity of results in dry and wet conditions can 

be explained by reviewing the formulation for biphasic material, as discussed in 

chapter 2. The fluid affects the behavior when the material is under compression as 

it cannot, in general sustain the tension beyond the atmospheric level. Thus, in
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problems involving femur fracture, where damage occurs in tension, the significant 

changes in damage factor distribution are not expected. This is further confirmed in 

Fig.(4.11), which shows anterior view of the bones. The damage factor distribution 

is different in compression area (right side of picture), but almost identical in tension 

region.

Fig.(4.12) shows the damage factor distribution in a)dry and b) biphasic 

osteoporotic bone. Comparing this figure with Fig.(4.10), it is evident that under 

osteoporotic conditions, the damage factor is significantly higher than that 

corresponding to a healthy bone. However, the changes in damage factor between dry 

and biphasic materials are small and the difference, again, appeares in compression 

regime.

The anterior views of a)dry and b)biphasic osteoporotic bone are shown in 

Fig.(4.13). There again, the damaged area is almost the same for dry and biphasic 

conditions, and the difference occurs only in compression regime(right side of cross 

section). The results are consistent with those for a healthy bone, Fig.(4.10) and 

(4.11).

Fig.(4.14) presents the excess pore pressure and mean stress distribution in a 

wet healthy bone considered as orthotropic material. The units are MPa and the 

negative values indicate compression. In general, the distribution of excess pore 

pressure, Fig.(4.14 a), is consistent with the mean stress distribution, Fig.(4.14 b).

Since the excess pore pressure is generated only in compression area, the zero pore 

pressure line indicates the border between tension and compression regime. The
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location of this line is consistent with the contour zero mean stress, in Fig. (4.14 b).

Finally, Fig.(4.15) shows the distribution of a) excess pore pressure and b) mean 

stress for osteoporosis bone(isotropic case). Comparison of this figure with 

Fig.(4.14), indicates that mean stress distribution and pore pressures are almost the 

same for both normal and osteoporotic bone. The primary reason that osteoporosis 

case shows more damage is due to higher porosity of the material.
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Fig.(4.4)

A general view of finite element mesh and anterior cross section(a-a)
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(a) (b)

Fig.(4.5)

Damage factor (β) distribution in a) orthotropic and b)isotropic dry normal bone 
(static analysis: midcoronal plane)

ß 1.33330
1.00000 

0.66667 
0.33333 
0.00000
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(a) (b)

1.33330
1.00000
0.66667
0.33333 
0.00000

Fig.(4.6)

Damage factor (ß) distribution in a) orthotropic and b)isotropic dry osteoporosis bone 

(static analysis: midcoronal plane)
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Flg.(4.7)

1.33330
1.00000 

0.66667
0.33333
0.00000

Damage factor (ß) distribution in a) normal and b)osteoporosis orthotropic wet bone

(static analysis)
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(a) (b)

1.334500
1.001800 
0.669010 
0.336270 
0.003521

Fig.(4.8)

Damage factor (ß) distribution in a) normal and b)osteoporosis orthotropic wet bone 

(static analysis: midcoronal plane)
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(a)

(b)

Fig.(4.9)

1.338100 

1.007100 
0.676170 
0.345210 
0.014255

Damage factor (ß) distribution in a) normal and b)osteoporosis orthotropic wet bone
(static analysis: anterior view)
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(b)

1.33330 
1.00000 
0.66667 

0.33333 
0.00000

Fig.(4.10)

Damage factor (ß) distribution in a) dry and b)wet isotropic normal bone
(static analysis: midcoronal plane)
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(a)

(b)

Fig.(4.11)

1.33330
1.00000 
0.66667 

0.33333 
0.00000

Damage factor (ß) distribution in a) dry and b)wet isotropic normal bone
(static analysis: anterior view)
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(b)

1.33330
1.00000 

0.66667 
0.33333 
0.00000

Fig.(4.12)

Damage factor (ß) distribution in a) dry and b)wet isotropic osteoporosis bone 
(static analysis: midcoronal plane)
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(a)

(b)

Fig.(4.13)

1.33330 
1.00000 
0.66667 

0.33333 
0.00000

Damage factor (ß) distribution in a) dry and b)wet isotropic osteoporosis bone 

(static analysis: anterior plane)
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30 .00
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-30.0

Fig.(4.14)

a) excess pore pressure and b)mean stress of orthtropic wet normal bone
(static analysis: midcoronal plane)
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PORP MPa

(a)

MEANST MPa

Fig.(4.15)

a) excess pore pressure and b)mean stress of isotropic wet osteoporosis bone
(static analysis: midcoronal plane)
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4.4- Dynamic analysis of fracture

4.4.1- Finite element methods in dynamic analysis

The equations of motion for a linear dynamic system are:

[M] {U}+[C] {U}+[M]{Ü)-{f(t)} 

where;
(4.2)

[ M] - mass matrix 

[C] - damping matrix

[K] - stiffness matrix

{f(t)} - time varying load vector

and {U} , {U} , {U} are the nodal displacements, velocities and accelerations, 

respectively. Many different methods have been proposed to solve the set of above

equations, among them modal analysis is more commonly used. In this approach, the 

system of equations of motion is decoupled into n single degree of freedom equations 

in terms of the modal displacement vector {x}, such that

{U} = [Φ]{x} (4.3)

where [Φ] is the matrix of the lowest n eigenvectors obtained from the solution of:

[K]{U} = a2[M]{U} (4.4)
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Substituting equation (4,3) into equation (4.2) and multiplying it by [Φ]T results in

[Φ]T[M][Φ]{x}+[Φ]T[C][Φ]{x}+[Φ]T[K][Φ]{x} = [Φ]T{f(t)} (4.5)

The eigenvectors are M-orthonormal, i.e. they satisfy

ΦtMΦ=I , ΦTKΦ  = ωi2 and ΦTCΦ = 2ωiξiδij (4.6)

where I is the unit matrix, ξij is a modal damping parameter and δij is the Kronecker 

delta. With the mode shapes satisfying the orthogonality conditions, eq.(4.5)becomes:

{xi} +2ξiωi{xi}+ωi2{xi} = {Φ}iT{f(t)} (4.7)

The solution to the equation (4.7) can be obtained by employing standard procedures 

for the solution of differential equations with constant coefficients. In finite element 

analysis, there are several numerical techniques available. These techniques are 

developed based on two approximation. First, instead of satisfying time dependent 

equation(4.2) at any time t, it is satisfied only at discrete time intervals t. The 

second approximation is that a variation of displacements, velocities and accelerations 

within each time interval t is assumed.

There are several different integration algorithms, among which Houbolt method, 

Wilson 0 method and Newmark method are most commonly used. In what follows

the Newmark method, which is employed in this study, is briefly reviewed.
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The Newmark method- In this method, the following assumptions are used: (Bathe 

1982)

In above equations a and δ are the parameters that can be determined to obtain the 

desired integration accuracy and stability. For an unconditionally stable scheme , 

 1 1
Newmark originally proposed δ = 1/2 and α = 1/4 .

2 4

The equilibrium equation (4.2) at time t + t can be written as

(4.10)

(4.8)

(4.9)

[M]{Ut+Δt} + [C]{Ut+Δt} + [K]{Ut+Δt}={Rt+Δt}

Solving from equation (4.9) for {Ut+Δt} in terms of {Ut+Δt}, and then 

substituting {Ut+Δt} into equation (4.8), we obtain the expressions for {Ut+Δt} and 

{Ut+Δt} in terms of unknown displacements {Ut+Δt} only. These two relations for 

{Ut+Δt} and {Ut+Δt} are then substituted in equation (4.10) to solve for {Ut+Δt},  

after which {Ut+Δt} and {Ut+Δt} can be calculated from equations(4.8) and (4.9).
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4.4.2- Finite element model

The dynamic finite element model which has been used for numerical analysis 

of fracture of proximal femur, is shown in the Fig.(4.16 ).The model employs a set of 

simplifying assumptions. In what follows, theses assumptions are discussed in the 

context of previous studies.

Initial velocity

Solid surface

Fig.(4.16)
Dynamic finite element model
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Body configuration in falling

As mentioned in chapter 3,many different loading configurations corresponding 

to a fall, have been investigated experimentally. Among those, the configuration 

suggested by Backman (1957), Fig (3.5 ), has been used by many researchers, since 

it produces fractures similar to those observed clinically. This configuration was 

employed in the present study in terms of specifying the direction of the initial velocity 

as well as the kinematic constraints in contact area.

Effective mass

The effective mass is the mass of that part of the body that is moving prior to 

impact. Much of research effort has been devoted to estimate the effective mass. In 

a study by Kroonenberg et al., (1995), different mechanical models were used to 

calculate effective mass and other factors during the fall. Based on this study the 

values of effective mass were estimated to range between 17.1 and 26.2 kg, which 

corresponds to about 38% of the total body mass.

In the finite element simulations presented here, the effective mass was 

considered as a concentrated mass . The nodes corresponding to concentrated mass 

are located in the proximal end of femur, in the conjunction of hip and femur. Note 

that the effects of joint between hip and femur are not considered in this study.

Initial velocity of impact

The range of velocities associated with a sideway fall from a standing height 

was investigated by Van den Kroonenberg et al.(1996). The authors used a number
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of young healthy athletes to perform voluntary sideway fall on a thick foam mattress. 

The kinematic parameters were obtained by digitizing markers placed on anatomical 

points of interest. The mean value for vertical hip impact velocity reported for this 

experiment was 2.75 m/s.

In the finite element model, the velocity of impact was considered as the initial 

velocity of effective mass and was applied at the corresponding nodes.

The mechanical properties of the tissue

The soft tissues including skin, fat, and muscles overlying the femur and pelvic 

bone play an important role in dynamic analysis of impact. The mechanical 

characteristics of soft tissues can be expressed in term of stiffness and damping 

coefficients of these layers. The thickness of tissues is also important. It restricts the 

maximum displacement of the femur during the impact.

Robinovitch et al., (1991) performed an experiment to estimate mechanical 

properties of soft tissues in impact. In their experiment, subjects lay with the lateral 

aspect of the greater trochanter contacting a high fidelity force platform. Upon release 

of the brake, the level of hip reaction oscillated about a final level determined by the 

preset extension of a steel bias spring. In all trials a computer was used to acquire hip 

reaction data. The ultrasound measurement of soft tissue thickness over the grater 

trochanter were also acquired in each subject. To specify the properties, a simple 

mathematical model (mass- spring-damper) was used and both the stiffness and 

damping coefficients were reported for different tissues thickness, Fig.(4.17).
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Soft tissue thickness (nun)

Fig.(4.17)
Stillness and damping coefficients of soft tissues 

(From: Robinovitch et al.,1991)

In the finite element model, linear springs and dampers were used to model the 

stiffness and damping characteristics of the tissues. The springs and dampers were 

located in contact area. The number of springs and dampers used in this analysis, is 

discussed in the section on contact area estimation,later in this chapter.

Gap

The maximum displacement of springs, simulating the tissues, cannot exceed 

the soft tissues thickness in contact area. For modeling this characteristic the concept 

of gap was employed. A gap is defined by two nodes and the line connecting these 

nodes shows the gap direction. The gap distance is defined as the maximum allowable 

relative displacement between the two nodes along the gap direction. A gap has no 

effect on the response of the system when the distance between corresponding nodes 

is less than gap distance. However when this distance is larger than gap distance, a 

contact takes place.



tissue thickness

d2 = t + Δt2

d3 = t + Δ3

In this analysis gaps were defined for each of the springs, with the gap direction 

coinciding with initial velocity. The gap distance for each node was calculated based 

on a simple concept shown in Fig(4.18).

Contact area

Contact area is the area of that part of tissue which is in contact with the solid 

surface at the moment of impact. Estimates of contact area basically depend on the 

geometry of the tissue, which was not accounted for in tins study. Instead, a simple 

approximation was used to define the number of nodes in contact, as shown in

Fig(4.19).

The springs shown in the picture simulate the tissue and are located at the
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surface of the femur. Assuming that all of these springs have equal stiffness and

knowing the total stiffness of the tissue and the maximum force of impact, it is

possible to calculate the number of nodes located in contact area.

before impact
after impact

force at spring 1: F1 = K(L- X)

force at spring 2: F2 = K(L + d2- X) 

force at spring 3: F3 = K(L + d3 - X)

total force of impact: ΣFi = K(nL-nX + d2 + d3+........ + dn)

n→ number of springs

Ko → total stiffness of tissue 

 Fig(4.19)
Estimation of number of nodes in contact
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4.4.3- Results of dynamic analysis

Dynamic analysis of fracture in proximal femur was performed for both healthy 

and osteoporotic bone. The results of analysis, including damage factor and mean 

stress distributions, are presented in figures appended at the end of this section. The 

details of the results are discussed below.

Fig.(4.20) is the key figure to explain the dynamics of femur fracture in a 

sideways fall. The figure shows time-displacement curve for one of the nodes in the 

contact area. The figure indicates that the node undergoes maximum displacement of 

39.74 mm and then returns to its initial position. Note that at the beginning of the 

motion the initial velocity of femur is 2.75 m/s and when the maximum displacement 

is reached, at t = 38 ms, the velocity reduces to zero. To assess the extend of 

damage within the femur, different time intervals were examined. The results revealed 

that the maximum damage occurs at maximum displacement, i.e. at t = 38ms.

The results in Fig.(4.20) can also be used to determine the maximum force of 

impact. Given the maximum displacement of soft tissue and knowing the stiffness and 

total number of springs the maximum force can be calculated as:

F = nKΔ → F = 125 x 250 x 0.03974 → F = 1242.N

The values of maximum displacement as well as the corresponding time of impact are 

close to the experimental results of Robinovitch et al.(1991) and Robinovitch et 

al.(1997). The estimate of maximum impact force is also very close to the results 

reported by Lotz et al.,(1990) and Robinovitch et al.(1991).
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Fig.(4.21) shows the damage factor distribution in healthy bone (isotropic case). 

The distribution corresponds to the time at which maximum displacement occurs. The 

results are very similar to those obtained for static analysis, Fig.(4.10) and (4.11). The 

initiation of damage takes place in femoral neck, which is under tension.

Fig.(4.22 a) shows the midcoronal view of damage factor distribution. The 

distribution is again similar to that corresponding to static analysis, Fig.(4.10). 

Fig.(4.22 b) shows the mean stress distribution. The border between tension and 

compression, as well as the range of stresses, are again close to those for static 

analysis, Fig.(4.15).

Fig.(4.23) shows the damage factor distribution in osteoporotic bone obtained 

from dynamic analysis. The figure indicates that significant damage occurs in femoral 

neck. There is also a number of elements in contact area which are damaged. Note 

that dynamic analysis was performed for a linearly elastic material and nonlinearity 

associated with fracture may affect the distribution. Nevertheless, the results of elastic 

analysis are still very useful is assessing the risk of fracture.

Finally Fig.(4.24 a) shows the damage factor distribution in midcoronal plane. 

The extent of damage in both femoral neck and contact area is quite significant. In 

Fig.(4.24 b) the mean stress distribution is shown. The magnitudes of mean stresses 

are close to those corresponding to healthy bone, Fig.(4.22), indicating that higher 

damage in osteoporotic bone is due to reduction in stiffness and the strength

parameters.
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Displacement 
(m)

Fig.(4.20) 
Time-displacement curve of a node in contact area 

(Dynamic analysis)
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a-a

Fig.(4.21)
Damage factor (ß) distribution in isotropie normal bone 

(dynamic analysis)
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Fig.(4.23)

Damage factor (ß) distribution in isotropic osteoporosis bone 
(dynamic analysis)
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1- Summary and Conclusions

The main objective of this project was to study the mechanical behavior of 

anisotropic porous solids. A porous solid consists of an interconnected network of 

solid particles and voids. The mechanical response depends on porosity, which is the 

primary factor affecting the material mechanical properties. The other parameters, 

that are commonly used to describe the orientation of material’s microstructure, are 

called fabric tensors. A study by Pietruszczak et al. (1999a), which employs the 

concepts of fabric tensors, has been used in this project to define the constitutive 

equation and corresponding failure criteria of porous solids. The effects of liquid on 

the mechanical behavior of biphasic materials has also been investigated. To 

demonstrate the capability of the formulation, a numerical analysis of the fracture of 

proximal femur due to a sideways fall, which is a significant public-health problem, 

was performed. The analysis incorporated a finite element model developed in the 

work of Pietruszczak et al. (1999a) in which the geometry of femur was extracted 

from CT scans. The numerical analysis in this project extends the previous study in
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two major areas. First, a static analysis was performed, taking into the account the 

biphasic nature of the bone material. The second contribution concerns the extension 

of the analysis to dynamic range, which simulates more closely the condition of a 

sideways fall.

The results of both static and dynamic analysis were presented in chapter 4 . In what 

follows the main conclusions obtained from these results are discussed.

5.1.1- Static analysis

Isotropy & Orthotropy of bone

The results of static analysis, shown in Fig.(4.5) and (4.6), indicate that the 

extend of the damage is slightly higher in orthotropic material. However, the 

distribution of damage factor is very similar. This is primarily due to the fact that 

isotropic properties are taken as the orientation average corresponding to orthotropic 

case.

Normal and Osteoporotic bone

The higher risk of fracture in osteoporotic bone was clearly demonstrated in 

Fig.(4.7) to (4.9). The significant damage in osteoporotic condition is confirmed by 

clinical evidence which indicates higher rate of femur fractures in elderly. This is 

mainly due to the fact that the increase of porosity reduces the stiffness and the 

strength parameters in osteoporotic bone.

Dry & Biphasic properties

The results of analysis, Fig.(4.10 ) to Fig.(4.15), indicate that change in 

distribution of damage factor in dry and wet bone is not significant. The similarity
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results can be explained by reviewing the formulation for biphasic material. The fluid 

affects the behavior only when the material is under compression, and it plays no role 

in tension. Thus, in problems involving femur fracture, where damage occurs in 

tension, the significant changes in damage factor distribution are not expected.

5.1.2- Dynamic analysis

As mentioned earlier , the main purpose of dynamic analysis was to simulate 

more closely the conditions of a sideways fall. In the following the main conclusions 

of dynamic analysis are reviewed. 

Maximum displacement and time of impact

Fig.(4.20 ) shows time-displacement curve for one of the nodes in contact 

area. During the impact all these nodes move towards the solid surface with an initial 

velocity of 2.75 m/s. Apparently, the maximum displacement can not be more than the 

corresponding thickness of tissues. The highest displacement obtained from time

displacement curve was 39.74 mm, which falls within the admissible range of 9-50 

mm soft tissue thickness, as reported by Robinovitch et al. (1991). The maximum 

displacement occurs at the time of impact of 38ms.This value is exactly the same as 

the experimental results reported by Robinovitch et al.,(1991) and Robinovitch et 

al.,(1997).
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Maximum force of impact

Maximum force of impact is the highest value of force transferred to the femur 

during the fall. Given the maximum displacement of soft tissue and knowing the 

stiffness and total number of springs, the maximum force can be estimated as 

F=1200N. This value is very close to that reported by Lotz et al., (1990) and 

Robinovitch et al. (1991).

Damaged area

The distribution of damage factor for healthy and osteoporotic bone, Fig(4.21) 

to (4.24), is very similar to that corresponding to static analysis. The region where the 

highest concentration of damage occurs is located in the femoral neck. The extend 

of damage for healthy bone is limited, so that no fracture is expected. In osteoporotic 

bone, the damaged areas are significantly larger. In this case, the damage extends to 

regions in both tension and compression. The contours of damage factor indicate that 

the fracture of femur is not limited to the femoral neck but it also occurs in the region 

close to the contact surface. Note that the results corresponding to static analysis, 

Fig.(4.6 b) and Fig.(4.13 a), show no damage in the compression area. This is mainly 

due to the fact that, the loading configuration for static analysis is not very realistic. 

Comparison of the mean stress distribution in healthy and osteoporotic bone reveals 

that the magnitude of mean stresses is similar for both cases. This indicates that higher 

damage in osteoporotic bone is due to reduction in stiffness and the strength

parameters.
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5.2- Recommendations

The dynamic analysis of fracture of proximal femur presented in this thesis, 

simulates more closely the conditions of a sideway falls. However, further studies, 

both theoretical and experimental, are required. In what follows some suggestion and 

recommendation are made in this respect.

1- An extensive experimental program is required to identify the material 

properties of the bone in relation to material fabric. No such studies have been 

undertaken so far. The existing information is fragmentary and there is no correlation 

of properties with any measure of fabric.

2- The effect of soft tissues between pelvis and femur has been ignored in this 

thesis. It was primarily due to the lack of experimental data. For a more accurate 

analysis, the presence of these tissues should be considered.

3 - The effect of tissues surrounding femur has been modeled using simple linear  

springs. A proper constitutive relation is required to describe the mechanical 

characteristics, including non-linear behavior.

4- The calculation of contact area presented in this study is very simplified. A 

proper contact algorithm needs to be employed for modeling the dynamic impact 

problem. This requires the finite element mesh discretization of both femur and the 

surrounding soft tissue.
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The above recommendations, together with several other points suggested 

throughout this study, appear to be a logical continuation of present research. Upon 

completion of these studies, the proposed dynamic simulation may provide an efficient 

tool for estimation of fracture of proximal femur.
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