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widely distributed stimulus artifact as a single output component, and remove it from the
reconstructed signal . These results demonstrate that ICA could parsimoniously decompose
esophageal EP signals into temporally independent, spatially fixed, and physiologically
plausible components.

ICA opens a new window to study the esophageal EP signal and provides new
information that we were not able to obtain from other signal-processing techniques.

Electrical stimulation (ES) of the esophagus can also be used to study the afferent
and efferent pathways of human subjects. In a study of 7 patients with gastroesophageal
reflux disease, 9 patients with noncardiac chest pain and 12 controls we found clinically
useful information during electrical stimulation of the esophagus. Patients with NCCP had
low amplitude cortical EP with increased vagal response during ES when compared to
controls. Patients with GERD had high resting sympathetic tone and normal EPs but lower

vagal response to ES when compared to normal subjects.
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Chapter 1

Introduction

1.1 Background

Evoked Potentials (EP) represent the bioelectrical response of the brain elicited by
an external sensory stimulation to either an organ or a receptor. They are also referred to
as event-related potentials (ERP), because they are time-locked to a set of identical
stimuli (event). Cortical evoked potential to electrical stimulation of the esophagus is a
relatively novel modality and is the focus of this thesis. This new modality of stimulation
is delivered to the esophagus through a minimally invasive probe and is a useful tool to
study diseases that may involve visceral sensory processing. Pathological conditions that
may involve visceral sensory inputs include noncardiac chest pain (NCCP),
gastroesophageal reflux disease (GERD), diffuse esophageal spasms and nutcracker’s
esophagus among others [ 31].

The esophageal EP signal as recorded on the scalp contains three or four peaks

and demonstrate a reproducible pattern within and between individuals. Functional












In summary, ICA is a useful tool for solving traditional blind source unmix
problems. Esophageal EP research is a novel but relatively unexplored area. In this
context ICA may help us understand the sources that contribute to cortically recorded

EPs to esophageal stimulation.



Chapter 2
The Electroencephalogram and Evoked Potentials

to Esophageal Stimulation

In this chapter, some background knowledge of EEG will be reviewed. Following
a brief introduction, we will examine the physiological basis of EEG and how it is
recorded and processed. Details of the signal acquisition and characteristics of evoked

potential signals will be presented with particular emphasis on the esophageal EPs.

2.1 Human electroencephalogram (EEG)

The electroencephalogram (EEG) represents the bioelectric activity of the brain as
recorded on the scalp. It is obtained by applying an array of surface electrodes to the
scalp and amplifying the surface potentials through a set of high gain, high CMRR
(common mode rejection ratio, >90db) amplifiers. Dr. Hans Berger first recorded EEG
on the scalp in 1929. The EEG quickly became an important clinical tool following
discovery of electroencephalographic patterns characteristic of epilepsy [24]. Nowadays,

the applications of EEG include an assessment of neurological state in diseases such as





















Since different fibers have different conduction velocities. One can identify that ’C’

fibers are involved [33].
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Figure 2.3 Cortical evoked potential to electrical stimulation of the esophagus

It has also been shown that the amplitude of the principal peaks (IN1-P1, N2-P2)
demonstrate a dose response pattern for intensities varying from 5-25 mA in healthy
controls. Similarly the stimulus frequency has an important effect on these peaks [32].
Hollerbach et al. have demonstrated that when stimulated at frequencies varying from
0.1-1 Hz, the principal peaks of the esophageal of EPs reach a maximum at 17.2+1.7 pV.
So by analyzing the waveform of esophageal EPs, we can gain useful information
regarding the physiology of the transmission pathways. It is believed that such
knowledge will eventually provide a better understanding of the origin of the signal for
the clinical diagnosis.

In summary, this chapter has presented a review of EEG signal generation and EP

signal in response to esophageal electrical stimulation.

13



Chapter 3

Independent component Analysis

In this chapter mathematical formulation of Independent Component Analysis
(ICA) will be presented and will be followed by an algorithm for performing ICA. We
will present reasons why ICA is a good analytical tool for an analysis of Evoked Potential

(EP) signals.

3.1 Whatis ICA?

3.1.1 General description

Independent Component Analysis is a novel signal-processing method developed
to solve unmix problems. Briefly, ICA is a linear transform of the multivariate input data,
which is designed to make the output vectors as statistically independent as possible.
Initial ideas for ICA came from blind source separation (BSS) and information theory.
The goal of blind source separation is to extract independent sources from a signal given
by a series of sensor observations, which are linear mixtures of independent sources. The
term “blind source” indicates that both source signals and the way they are mixed is not

known apriori. ICA is a convenient method to solve BSS. Stated another way, ICA is a
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This is proved as follows:

E{gi(y1),8 (y2)} = H g1(y1) g2 (y2) p(ys, y2) dy1 dyz
= &) ) g 02) pO2) dys dyz

=[ g1 pa) dyi [ B02) p0v2) dya
=E{gi(y1) } E{g: (2)} (3.2.1.5)
A weaker form of Independence is uncorrelatedness [40]. For example, we can
say two random variables y; and y; are uncorrelated, when their covariance is zero,
which is ;
E{y1,y2}- E{y:1} E{y2} =0 (3.2.1.6)
This equation is valid when we choose g1 (y1) =y: and g2 (y2) = y2 for equation

(3.2.1.4).

However, Independence is much stricter condition than uncorrelatedness, which is
imperative when we compare the equation (3.2.1.6) with (3.2.1.4). The special case
where these two conditions are equivalent is when the y; and y, have a joint Gaussian
distribution [4]. And because of this special case, ICA is not interesting for Gaussian

variables [37].

3.2.2 Information theory basis for ICA

3.2.2.1 Entropy and Negentropy

Entropy is one of the basic concepts we will use often while discussing ICA. Its

definition is as follows:

17



Denote Y as a discrete random variable, and a; are the possible values of Y, Then the

Entropy H(Y) is given as:

H(Y) = -Z P(Y= a;)log P(Y=a;) (3.2.2.1)

When generalized for the case of continuous valued random variable y, it is called

differential entropy:

H(y)=-[ p(y)log p(y)dy (3222)

It is because a Gaussian variable has the largest entropy among all random
variables of equal variance, entropy can be used to assess nongaussianity {47,48]. For this
purpose, there is a slightly modified version of the differential entropy, called negentropy
J, which is zero for a Gaussian variable and is always nonnegative.

J(y) = H(ygauss)- H(y) (3.2.23)
Here ‘ygauss’ denotes the Gaussian random variable with the same covariance matrix as
y. Since negentropy is an optimal estimator of nongaussianity, maximizing it can be an
approach for solving the ICA problem. Computing negentropy is rather difficult, because

it requires an estimation of the p.d.f. of the random variable.

3.2.2.2 Mutual Information
The mutual information can be used as a measure of independence. Based on the
entropy concepts, we can define the mutual information I, between n random variables y;

as follows, where i=1..n

n

I(yi ..ya)=> Hy) -Hy) (3.2.2.4)

18



This definition is equivalent to the Kullback-Leibler (KL) divergence [37], which
describes the mutual information with their joint density p(y) and the product of the
marginal densities
I (y ) = I P (y )log an)dy (3.2.2.5)

D; (y i )
i=1
I(y) is always nonnegative and it has a useful property that is important for ICA: It is

zero if the variables are independent. This is because, when y; are statistically

independent, p(y) can be factorized according to equation (3.2.1.4)

p(y)=1ij[pi()’i)

When we substitute the equation above into equation (3.2.2.5), mutual information
becomes zero.

An important property of KL divergence we can consider is: It is invariant under
an invertible transformation. This is one of the key ideas that helped develop the infomax
solution of ICA.

The mutual information takes into account the whole dependency structure of the
variables [37] , and gives a very direct criteria for ICA development. However, it cannot

be directly implemented because equation (3.2.2.5) is very difficult to minimize.

19



3.2.3 Statistical basis of ICA

Independence involves higher-order statistical information, which is often
described by cumulants and moments. Among them, the 4™ order cumulants, which is
also called kurtosis, is a key parameter for some ICA estimation [2].

Moments are discrete parameters that can be used to describe the p.df of a

random variable. If we denote x as the random variable, the n"-order moment u x(n) is as

follow:
4 x(n) = E{x") = j“ : x* p(x)dx (3.2.3.1)

According to (3.2.3.1), the first-order moment is the mean value of x. Normally, we use
central moments because it describes the manner in which the distributions is spread
about its mean value. Let us denote the mean for x as my, then we can calculate the n®-
order central moments my(n) from the equation( 3.2.3.2)
my,(n) = E{(x- m,)"} (3.23.2)
For example, the second-order central moment is the variance, which is
Variance = E{(x- m,)?}

Cumulants characterize the random variables as function of mean and moments.
They can be computed from the central moments. Our discussion will only involve up to
the 4™ order. They are defined as:
¢ (1) =my (1)
cx (2) =my (2)
¢ (3) =my (3)

¢x (4) = my (4)- 3m, % (2) (3.2.3.3)
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to extract subgaussian independent components {54]. This conjecture leads to the
generally successful of extended ICA algorithms, which switch the component priors
between supergaussian and subgaussian functions [9]. In practices, as the robustness
principle suggests, this switching may be all the estimation needed to obtain a correct
solution [54]. Bell and Sejnowski had performed a comparison between typical functions
of g and their research demonstrates that logistic sigmoid y=(1+e™)” or the hyperbolic

tangent y= tanh (u) is flexible enough to sufficiently approximate the EEG source

density [51].

3.3.2 Stochastic gradient learning rule

In order to process infomax, we need a nonlinear transfer function g(u). Now we
can write equation (3.1.2 .1) as the follows:

y = g(u) = g(Wx) ’ (3.3.2.1)

The relation between the output and input probability distributions in equation
(3.3.2.1) is described by the following equation [12]:

p(y) = p(x)/{J| (3.3.22)

where J is the determinant of the Jacobian matrix J=det([ Oy;/ 0x; ] i), and |J] denotes

its absolute value.

Substituting equation (3.3.2.2) in the entropy definition equation (3.2.2.2)
H(y) =-E [logp(y)] = -] p(y)log p(y)dy

We can get

H(y) = E [log |J]] +H(x) (3.3.23)

26



Since the input entropy H(x) is not affected by the change of W, the H(x) can be ignored
when we consider the learning rule for W [1].

We now can derive the learning rule for W with entropy

O0H(y) / OW =E[d(log |J])/0W] (3.3.2.5)

where log |J] is given by

N
log |J] = log detW + Zi::llog lyi’] (3.3.2.6)

Combining equation (3.3.2.5) and (3.3.2.6), the learning rule for W can be presented:
AW o< d(log |J])/dW =WT+ ® (u)x T (33.2.7)

Where [] T denotes the inverse transpose. @ (u) is a vector function, which includes the
following elements

¢(u;i)=0yi/3y:i =0 (log|yi'l)/ O w (3.3.2.8)
¢( u;i ) depends on the nonlinear function g in equation (3.3.2.2). As discussed in section
3.3.1, the g is a nonlineartiy which is required not only to be invertible and monotonic but

also be able to approximate the source density [2].

The equation (3.3.2.7) is the stochastic gradient learning rule for Infomax ICA
algorithm [13]. A pictorial representation of the infomax ICA algorithm is given in

Figure 3.3.

3.3.3 Natural gradient rule
In 1996, Amari et al. proposed a procedure to simplify the stochastic-gradient

learning rule to the natural gradient rule [14]. The entropy gradient in equation (3.3.2.7)

27



was multiplied by WT w. By doing this, we can avoid performing inversion of W at

every learning step. The learning rule then becomes

AW o< (3(log |J))/OW) WT W =W (I + ® (u)u ) (3.3.3.1)
Although equation (3.3.3.1) is not exactly same as equation (3.3.2.7), it has been

shown that they yield similar results [15]. Since it is easier to implement equation

(3.3.3.1) and has been shown that can speed up the convergence , it is generally used in

practice.

3.3.4 Extended Infomax
The original infomax derived by Bell and Sejnowski is suitable for supergaussian
sources but doesn’t work well for the subgaussian sources [9]. In 1998, Lee et al derived

the extended infomax algorithm to handle both subgaussian and supergaussian sources

[2].

The supergaussian signal has positive kurtosis, while the subgaussian signal has
negative kurtosis. So to estimate the kurtosis of p; (u ;), we can switch the term ¢; (u ;) in

equation (3.3.3.1) depending upon the type of the signal.

Based on the Girolami’s scheme, we can chose different ® (u) for subgaussian

and subgaussian sources

[ ® (u)=u-tanh(u) (subgaussian)
| ® (u)=u+tanh(u) (supergaussian) (3.34.1)
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Y1 ¥Y2...¥YN

Uy

Maximize H(y)

Figure 3.3. The mixing and unmixing model. Independent signal sources s become mixed
by matrix A. The observed signals are x. The goal is to learn W that inverts the mixing
matrix A and u are the estimates of the recovered sources. The infomax approach is one

way to find the unmixing system W. It requires a nonlinear transfer function g(u) [2]
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Substitute equation set (3.3.41) into the natural learning rule, we can obtain the learning
rule for subgaussian sources [16]:

AW < W (I+tanh(u).uT -uuT) (3.3.4.2)
And for supergaussian sources learning rule is

AW ¢ W (I-tanh(u).u” -uu™) (3.3.4.3)
Combining equation (3.3.4.2) and equation (3.3.4.3) the extended infomax learning rule
as follows:

AW o W (I-K tanh(u).u” -uu’) (3.3.449)

ForK, [ ki=1 (supergaussian)
| k=1 (subgaussian)

In equation (3.3.4.4), k; is the sign of kurtosis , it can be estimated by the follow
equation: [2]
k;=sign(E{sech 2 (u;)} E{ (u;>)}-E{ tanh(w;). u; }) (3.3.4.5)
The extended infomax provides a practical method to handle both supergaussian
and subgaussian sources.
ICA has been successfully used in many signal-processing areas, such as image
processing, speech enhancement, telecommunications, and medical signal processing.
After Makeig et al [18]. first applied ICA to analyze the EEG data in 1996, ICA is fast

becoming an important tool for biomedical signal processing.
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within the brain these activations arise. Makeig et al. have shown that ICA can be used to

separate the problem of EEG source identification from the problem of localization [52].

3.4.2 Artifact removal

Since it has been shown that ICA is an efficient tool for separating different signal
sources, it has been successfully used in EEG artifact removal [21]. The EEG signal
often contains different types of noise which can not be easily removed by other
techniques [17]. Since sources of such noise may be different from normal EEG signal
generators, ICA can separate such noise by diverting them into separate components. One
can then retrieve the uncorrupted EEG by reconstructing the signal without those noisy
components. Jung et al. have demonstrated EEG artificial removal using extended

infomax ICA in 1997 [2]. The artifacts, such as the blinks, muscle noise, cardiac noise,

can be successfully separated.

3.4.3 Validity of ICA Assumptions for EP signal Processing
Following assumptions have to be made when applying ICA analysis to EEG.
1. The sources are statistically independent.

2. The propagation delays of the ‘mixing medium’ are negligible.

Statistical distributions of the component activation values are not Gaussian.

(V8

4. The number of independent signal sources is the same as the number of sensors

[18].
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component is relatively poor, while it is quite accurate in identifying the large

components [23].

3.4.4 ICA Training and decomposition

To illustrate ICA training and signal decomposition we present below Figure 3.3 ,
which servers as a simple pictorial representation of the procedure applied to EP signal in
the present research. Upper panel consists ICA training and the lower panel illustrates the
signal decomposition

In Figure 3.4 upper panel, the observed signal x, which is the EP epoch recorded
from the scalp in response to the stimuli, is fed into to the ICA algorithm. It is used to
train the unmixing matrix W, by maximizing the entropy of the nonlinearly transformed
output, g(Wx).

During the decomposition (Figure 3.4 , lower panel), the EP signal recorded by N
electrodes is decomposed into N independent components. The data is reconstructed with
the W estimated during training. The row vectors of W can be viewed as a fixed linear
spatial filter: When we pass the EP signal x through these filters, we have the output u
according to equation (3.1.2 .1). Output u is also termed as “activations” of various
components, because it represents the time course of each component.

Activations= Wx (3.44.1)
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We can choose different combination of component activations to reconstruct the input
signal. Such reconstruction is also known as projection of the components. This is
because the reconstruction (projection) represents contribution of ICA components to the
original scalp signal. It is produced by first zeroing out all but the chosen component in
the activation matrix, then multiplying by the inverse weight matrix

Projection=" W™ Activations (3.44.2)
In equation( 3.4.4.2), the W™ represents the strength of the components in the
reconstructed data. For this reason W™ is plotted as a topographic map to show the fixed
pattern of strengths at each scalp electrode. Although this map is not a location map for
the EP component (since it doesn’t show the location of the component) we can use it to
characterize various components of the EP signal.

When we study the output components, we mainly study their activation and

topographic map.

3.5 Conclusions

ICA is a very efficient and innovative tool for EEG and evoked potential
analysis. It has the potential of solving several interesting problems associated with
identifying the number of sources, source separation and therefore, provides different

information that was not available before.
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Chapter 4

Acquisition of human Evoked Potential Signals
and Implementation of Independent Component
Analysis

In this research, we demonstrated how ICA is applied to experimentally recorded
human evoked potential signals. We present the details of laboratory set up, experimental

protocol and how the EP signals are recorded under controlled conditions in this chapter.

We will also explain how the ICA algorithm is implemented.

4.1 Evoked Potential signal acquisition

4.1.1 Apparatus for Electrical Stimulation

4.1.1.1 Stimulation electrodes

The stimulating electrode consists of 0.2mm (diameter) stainless-steel wire
attached to the tip of a polyvinyl catheter and fixed with surgical silkk. ~ The catheter is
85 cm long and 5 mm in diameter. The catheter is inserted into the esophagus through a

nostril. The stimulating electrode is placed about 33 cm from nostril [30, 42]. The
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zero-phase decorrelator is non-orthogonal, and gives much better starting points than the
PCA [50]. Theoretically, the sphering is not necessary for the natural gradient, but it is

implement because the convergence is more stable on sphered data.

4.2.2 Initializing and updating

Before ICA training, W is initialized to the identity matrix I, as recommended by
Bell at al [36].

According to extended infomax ICA, the update equation for W is different for
super-gaussian and sub-gaussian signal source. As derived from equations (3.3.4.4) and
(3.3.4.5), the update rule for W is
AW =g (1-K tanh(u). u ¥ -uuT) W (4.2.2.3)

For K, [ ki =+1 for super-Gaussian source
| ki=-1 for sub-Gaussian source

This switching is performed in the sign estimation block in figure 4.2, where the k; is
estimated with equation (3.3.4.5), and is given by:
ki=sign(E{sech 2 (u;)} E{ (u;®)}-E{ tanh(w;). u; })

The learning rate g is normally set to <0.01, in our experiment. It is chosen
empirically:
£ =0.015/1og(Number of channel) 4.224)
The ¢ is equal to 0.0115 in our study, for N=20 signal channels.

The computed update is based on small batches of randomly selected data vectors
drawn from input data set x. The batch size is chosen according to the equation:

batch size =floor(sqrt(timepoint/3)) (4.22)5)
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This is suggested by Bell and Sejnowski [51]. Based on equation (4.2.2.5), since our
signal has 600 samples for each channel, the batch size is set to 14.

After each pass through data points, an angle representing the difference in direction
between the update vectors in the current and previous passes is computed. Whenever

this angle is larger than 60 degree, the learning rate is reduced by 2 % [22].

4.2.3 Stopping rule and formatting output

The training stops when the learning rate decreases below 0.000001, which
implies the change of W has stabilized. Or if W blows up, which happens when the
elements of W become very large, i.e. 10%, the training will restart with a lower learning
rate.

The components are sorted by descending order of mean projected variance. The
projection is computed by ( 3.4.4.2) then for each output component i
Projection (i )= (SW)? (i)*Activations(i) (4.23.1)
Since the original data is multiplied by the decorrelating matrix S before, the S is used
when we compute the projection. And the mean variance is
Mean Variance = mean (Z(Projection(i).* Projection(i))/n ) (4.232)

Where n is the number of time point in each channel.

4.2.4 Summary

In this chapter we have outlined recording procedure to obtain reproducible

esophageal evoked potentials. An outline of the ICA computation is also presented.
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Chapter 5

Results

In this chapter, we will describe the results of subjecting esophageal evoked
potential signal to independent component analysis. We intend to study the
reproducibility, artifact removal and examine the common components present in the
averaged evoked potentials generated due to both periodic and random stimulation

applied to the human esophagus.

5. 1 Evoked Potential Signal Processing

In this research, all signal analysis is performed using Matlab 5.01 software on a Dell
Dimension XPS B866 PC with 866 MHz processor. Initially the extended ICA
decomposition is applied to each averaged EP signals as well as to the grand averaged
signal obtained from each subject. The initial learning rate started at ~0.0115 and
gradually reduced to 10 during 100-300 training iterations that required ~15 seconds of
computer time. The component map and activation matching are performed by

computing their correlation coefficients (CC). The correlation coefficient is a measure of
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through Figure 5.3.1, the normalized power ratio of the stimuli artifact in a typical subject
(Subject No.1). The normalized power ratio is computed as the power within a channel
but normalized to highest amplitude of the signal across all electrodes. In this subject, the
artifact power is distributed in all EP signal channels but predominantly in frontal
channels (F7, F8, Fpl and Fp2). Such artifact was concentrated in one component
following the extended ICA decomposition. This artifact component can be identified by
examining the activation of the component waveforms. Furthermore, computing the
power ratio of all the component projections between 0-15 ms can confirm this
observation. Results for subject No. 1 is shown in Figure 5.3.2, the first component has
the dominate power compared to all the other components, which implies that it is the
stimulus artifact.

Since channel Cz is one of the most commonly used channels to study esophageal EP
signals, we demonstrate the effect of removing the stimulus artifact component on the EP
signal for that electrode. Figure 5.3.3 is the projection of stimulus artifact component in
channel Cz. The waveform shows that this component contributes to the activation
between O to 15 ms. Figure 5.3.4 is a comparison between the original signal and the
signal reconstructed with all the other component but without the stimulus artifact.

The removal of stimulus artifact component is a clear evidence that ICA algorithm
provides functional separation of different components within the esophageal EP signal.
Since we know that the stimulus artifact is from sources independent of the EP signal
generators, Figure 5.4.4 demonstrated that such artifact can be extracted fully using
extended ICA decomposition. We believe this experimental evaluation of the algorithm

verifies its validity and separability of independent components..
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Figure 5.3.1 Normalized Power Ratio of the stimulus artifact in original esophageal EP

signal from subject no.1
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Figure 5.3.2 Normalized Power Ratio of the stimulus artifact in ICA components from

esophageal EP signal for subject no.1
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Also, we observe that components CP2 and CR1 are perhaps related to the P1 peak in the
standard averaged EP signal (Chapter 2 figure 2.3)by virtue of having a latency close to
the peak at 101.9 £ 15.5 ms [30]. The scalp distribution maps of CP2 and CRI
demonstrate that these two components both have a strong positive potential in the frontal
pole area and a small negative potential at T5, T6 and F4 electrode locations. However,
CP2 has a strong positive activation in the mid-central and mid-parietal area while the

CR1 is neutral in that area.

5.4.3.2 CP3 and CR2

The second pair of common components due to periodic and random stimulation are
shown in Figure 5.4.2.2. It can be observed that their latencies are at 127.20 ms (CR2)
and 129.38 ms (CP3). Their component maps show that there is negative potential all
over the scalp except in frontal pole area (i.e. Fpl and Fp2). However, the component due
to random stimulation (CR2) is neutral while CP3 appears as positive in the mid-central
areas. Also, CR2 seems to have a relatively higher positive activation than the CP3 in the

frontal pole area.

5.4.3.3 CP4 and CR3

The component pair CP4 (150.60 ms) and CR3 (143.00ms), which are shown in
Figure 5.4.2.3, appear to be activate near the N2 peak (141.1 9 + 19.4) of the standard EP
signal (Chapter 2 Figure 2.3) [30]. The activation pattern of the these two components is

negative in right frontal pole and posterior temporal areas (proximity of TS5 and T6
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electrode ). For CP4, the left frontal pole and the mid-central areas seem more active then

that for CR3.

5.4.3.4 CP6 and CRé6

The CP6 and CR6 component pair has almost the same activation area as CP4 and
CR3, except this pair has positive potential. Furthermore, the activation of CP6 in right
posterior temporal area is stronger than that of CR6. The latency of CP6is 282.00 ms
and for CR6 the latency is 265 ms. Their activation waveforms(Figure 5.4.2.4 ) suggests
that they may related to the late response N3 at 262.3+ 38 ms of the standard esophageal

EP signal (Chapter 2 Figure 2.3) [30].

5.4.3.5 Summary of comparison between periodic and random stimulation
There are common characteristics in these four pair components we studied above.
They are as follows:
1. The activation waveforms due to periodic stimulation show latencies later than
their related components due to the random stimulation.
2. The periodic stimulation generates components with higher activation in the
middle brain area (Cz and Pz electrode location) than the random stimulation.
3. Some of the selected ICA components seem related to the peaks of the standard
esophageal EP signal (Chapter 2 figure 2.3), which suggests that the components

due to ICA may contain functional information of interest to clinical medicine.
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5.5 Summary

In this chapter, we studied the output of the extended ICA as applied to the
esophageal EP signal. Analyses were performed on the reproducibility of various
components. We also identified differences between components in response to random
and periodic stimulation protocol. Based on our results, we believe ICA algorithm can

provide functional separation of the esophageal EP signal.
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6.2.3 Patient studies
In our study, we are limited by only a small number of patients and controls. If a
larger data pool is available, we can conduct a study to compare the ICA components

arising of stimulating the esophagus of patients and healthy controls

6.3 Conclusion

The results of the present research suggest that extended infomax ICA algorithm
is able to separate the esophageal EP signal into components, which may have
physiological origin. Present research has potential for further development. It can be

easily implemented for studying patients, and perhaps serve as clinical diagnosis tool.
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distributions and vary with the stimulus protocol to a large extent and with subject, and
response time. The neurophysiological implication of the scalp maps as well as activation
waveforms of the components, and how they related to the activity of the independent
neural structures needs to be further study from both theoretical and experimental .

In addition, ICA can isolate and extract widely distributed stimulus artifact as a
single output component, and remove it from the reconstructed signal.

Although the ICA technique is relatively new, and its effectiveness in separating
esophageal EPs into components that reflect underlying brain processes has not yet been
fully understood, the results reported here are encouraging. They demonstrate that ICA
could parsimoniously decompose esophageal EP signals into temporally independent,
spatially fixed, and physiologically plausible components [2]

We believe ICA may lead us to identify components of EP, which may be related to

neurophysiological generators within the nervous system.
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