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Abstract

Cortical evoked potential to electrical stimulation of the esophagus is a relatively 

novel modality and is a useful clinical tool. Evoked Potentials (EP) represents the 

bioelectrical response of the brain elicited by an external sensory stimulation to either an 

organ or a receptor. Since the physiological study suggests that there are several neuronal 

sources involved, the EP signal is a mixture of their responses. The traditional way of 

directly measuring the signal recorded by the electrodes is similar to trying to listen to a 

group of people speaking at the same time. A lot of information might be lost if we can not 

pickup the information from each individual. Independent Component Analysis (ICA) is a 

new technique that can extract the signals according the independence of the sources. It can 

separate the recorded EP signal into different components given sufficient number of input 

channels.

In this research we apply ICA to 41 sets of esophageal EP signals recorded from 

twenty channels in 8 human subjects. We test the reproducibility of the algorithm and 

compare the components arising from periodic and random stimulation protocol from these 

subjects. The results show that EPs and their independent components are reproducible. 

Four pairs of component pairs are found and their scalp distribution maps and activation 

waveform provide interesting information for further study. Also, ICA isolate and extract a
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widely distributed stimulus artifact as a single output component, and remove it from the 

reconstructed signal . These results demonstrate that ICA could parsimoniously decompose 

esophageal EP signals into temporally independent, spatially fixed, and physiologically 

plausible components.

ICA opens a new window to study the esophageal EP signal and provides new 

information that we were not able to obtain from other signal-processing techniques.

Electrical stimulation (ES) of the esophagus can also be used to study the afferent 

and efferent pathways of human subjects. In a study of 7 patients with gastroesophageal 

reflux disease, 9 patients with noncardiac chest pain and 12 controls we found clinically 

useful information during electrical stimulation of the esophagus. Patients with NCCP had 

low amplitude cortical EP with increased vagal response during ES when compared to 

controls. Patients with GERD had high resting sympathetic tone and normal EPs but lower 

vagal response to ES when compared to normal subjects.
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Chapter 1

Introduction

1.1 Background

Evoked Potentials (EP) represent the bioelectrical response of the brain elicited by 

an external sensory stimulation to either an organ or a receptor. They are also referred to 

as event-related potentials (ERP), because they are time-locked to a set of identical 

stimuli (event). Cortical evoked potential to electrical stimulation of the esophagus is a 

relatively novel modality and is the focus of this thesis. This new modality of stimulation 

is delivered to the esophagus through a minimally invasive probe and is a useful tool to 

study diseases that may involve visceral sensory processing. Pathological conditions that 

may involve visceral sensory inputs include noncardiac chest pain (NCCP), 

gastroesophageal reflux disease (GERD), diffuse esophageal spasms and nutcracker’s 

esophagus among others [31].

The esophageal EP signal as recorded on the scalp contains three or four peaks 

and demonstrate a reproducible pattern within and between individuals. Functional
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information about the activation of various nuclei within the brain and along the 

transmission path of the evoked potential signal can be obtained by an analysis of the

latency, amplitude and topographic distribution of the EP waveform. Physiological basis 

of the EP signal suggests that EP is a summation of potentials arising of different sources, 

which are created by current fields generated by groups of neurons in the brain.

Much of the research on evoked potentials analyzes the waveform lasting several 

hundred milliseconds after a stimulus. Independent component analysis (ICA) is a signal 

processing method that has been developed over the last decade for blind source 

separation (BSS) and is of value in EP signal analysis. It aims at separating independent 

sources from a mixed version of component signals without the requirement of knowing 

how the signals are mixed and what are the constituent signal sources. Since it is difficult 

to know which sources in the brain produce the response as recorded on the scalp and 

also because we lack of knowledge about how those sources are mixed when they reach 

the scalp, ICA is an ideal tool for EP signal analysis. Moreover, decomposing the EP 

signal with Wavelet or Fourier transformations may impose their mathematical structures 

on the EP signal. We believe that ICA would enable us to separate naturally occurring 

components, so that functional information about their transmission can perhaps help us 

to identify pathological conditions arising out of NCCP and GERD.

Independent component analysis provides a neural network solution for the unmix 

problem, by making the outputs as statistically independent as possible. Although the 

neural mechanisms that produce the EP are not folly understood, basic assumptions for
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implementing ICA algorithm to the EP signal are generally compatible with the nature of 

the EP signal. For example, such assumptions include the sources

generating the peaks and valleys in the waveform are independent and the propagation 

delays of the ‘mixing medium’ are negligible.

Evoked potential signal recorded with N electrodes can be reconstructed as a sum 

of N independent components. The output components of ICA can be specified by a fixed 

linear spatial filter that determines a time course of activation during each stimulus, 

together with a fixed pattern of strengths at each scalp electrode. ICA obtains these 

components without trying to specify their location within the brain. In this way, we can 

simplify the traditional inverse problem of EP by separating the sources and solving a 

subset of the signal localization problem [20].

ICA has also proved useful in the removal of artifacts from both EEG and EP 

signals. Besides the finding that EEG can be decomposed into overlapping phenomena, 

Makeig et al. also show ICA can separate components attributable to artifacts [18]. Jung 

et al developed the technique to deal with a subgaussian signal, which enables ICA to 

efficiently separate the line noise and low frequency eye moment artifacts, which have 

subgaussian distribution [21].

Research reported by Makeig et al [2, 9, 18, 21, 22, 23] is based on auditory or 

visual EP signals. The usefulness of ICA in understanding origins of different 

components within the cortical EPs recorded in response to esophageal stimulation has 

not been explored in literature. Since esophageal EP is generated by a sensory system 

different from auditory and visual modalities, we believe that analyzing esophageal EP 

through ICA can help us understand the genesis of this particular modality of EP signal.
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Therefore, in this thesis, we implement the ICA algorithm to process cortical EPs to 

esophageal stimulation, in order to obtain a deeper understanding of how the brain 

processes signals arising out of the esophagus.

1.2 Objectives

The objectives of this research are as follows:

1. To study components that make up the cortical EP through independent 

component analysis and study their activation waveform and evaluate its 

reproducibility and scalp distribution

2. To study the independent components due to periodic and random stimulation as 

well as the cortical maps arising out of such analysis

1.3 Organization of the thesis

This thesis is organized as follows: In chapter 2, the background information on 

EEG, and esophageal EPs is provided. The ICA theory and details of EP analysis will be 

explained in Chapter 3. Chapter 4 will focus on the experimental set up, signal 

acquisition and the details of implementing ICA. In Chapter 5 we will present the results 

of our studies. A discussion of the research will follow in Chapter 6. Chapter 7 will 

summarize the research presented herein. We also propose suggestions for further 

research.
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In summary, ICA is a useful tool for solving traditional blind source unmix 

problems. Esophageal EP research is a novel but relatively unexplored area. In this 

context ICA may help us understand the sources that contribute to cortically recorded 

EPs to esophageal stimulation.
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Chapter 2

The Electroencephalogram and Evoked Potentials

to Esophageal Stimulation

In this chapter, some background knowledge of EEG will be reviewed. Following 

a brief introduction, we will examine the physiological basis of EEG and how it is 

recorded and processed. Details of the signal acquisition and characteristics of evoked 

potential signals will be presented with particular emphasis on the esophageal EPs.

2.1 Human electroencephalogram (EEG)

The electroencephalogram (EEG) represents the bioelectric activity of the brain as 

recorded on the scalp. It is obtained by applying an array of surface electrodes to the 

scalp and amplifying the surface potentials through a set of high gain, high CMRR 

(common mode rejection ratio, >90db) amplifiers. Dr. Hans Berger first recorded EEG 

on the scalp in 1929. The EEG quickly became an important clinical tool following 

discovery of electroencephalographic patterns characteristic of epilepsy [24]. Nowadays, 

the applications of EEG include an assessment of neurological state in diseases such as
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epilepsy, states of altered consciousness in head trauma and coma, anoxia, intoxication 

and others [25].

2.2 Physiological basis of the EEG

Voltage fluctuations recorded as EEG are summations of the electrical activity of 

populations of neurons [25]. The EEG record reflects the extracellular currents resulting 

from postsynaptic membrane depolarizations and hyperpolarizations of pyramidal 

neurons in cerebral cortex [24]. Each electrical current within the nerve cells produces a

surrounding electrical field that decreases in strength.

Figure 2.1 [26] A schematic of various cortical layers
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The current field can be positive or negative. The anatomical position of dipoles within 

the brain results in the generation of relatively large electrical fields. These electrical 

fields extend out through the brain, the coverings of the cortex, cerebrospinal fluid 

surrounding the brain, the skull and the scalp, where they are sensed by EEG electrodes.

2.3 Recording of the EEG Signal

Whereas EEG can be recorded by inserting needle electrodes inside the brain

tissue, the non-invasive scalp recording is the one commonly used because of its safety,

convenience and noninvasiveness.

Figure 2.2 International 10-20 system.

Front

Back

The EEG electrode normally consists of a small round cup, made of silver, silver­

silverchloride, tin or stainless steel or even gold [26]. It is very important to have an 

excellent conductivity between scalp and the electrode. (< 5 k Ω). Although there are
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many ways of arranging the electrode array on the scalp, the one that is used most often is 

the international 10-20 system of electrode placement [19]. The international 10-20 

system measures the bony landmarks on the skull and determines the location of 

recording electrodes. A typical set of electrodes (called montage) is shown in Figure 2.2

Two major methods of recording often referred to as bipolar montage and 

referential montage are in use. Bipolar montage records the EEG signal between any two 

electrodes, while the referential montage records the difference between an electrode and 

a common reference located at an isopotential point. In our experiments we use the 

referential montage with 20 recording electrodes. The isoelectric point is chosen to be 

mastoids.

2.4 Evoked Potential (Event-Related Potentials)

Evoked Potentials (EPs), also known as Event-Related Potentials (ERPs), are 

voltages embedded within the electroencephalogram (EEG), that are time-locked to a set 

of similar repetitive experimental events [17]. These events are usually electrical or 

mechanical stimuli delivered to a sensory organ or a receptor. EPs signals are 

reproducible within and between healthy subjects under constraints of similar 

experimental conditions. Amplitudes and latencies of different peaks within the EP signal 

are employed to understand functional integrity of the central nervous system (CNS). 

During the past three decades extensive studies on EPs to electrical, mechanical and other 

type of stimuli have confirmed their usefulness in clinical medicine[35]. 

Recently evoked potentials in response to the stimulation gastro-intestinal (GI) tract, 

especially to the esophagus, have captured the imagination of many researchers [30]. In
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this thesis we focus on the signal processing of cortical evoked potentials recorded in 

response to electrical stimulation of esophagus.

2.5 Stimulation methodologies

Most of the amplifiers and related equipment used for EEG recording can also be 

used for obtaining EPs. An electrical stimulation device with control on the parameters of 

stimulation is used for generating the stimulus delivered to the sensory organ, i.e. the 

esophagus, in our laboratory.

Besides periodical stimulation, one can explore the effects of the random 

stimulation. Typically, the random stimulation trigger can be obtained by a pseudo­

random number generator. This type of stimulation has certain advantages over the 

periodic stimuli. It has been suggested that the uncertainty of when the random stimulus 

occurs will diminish the process of habituation that occurs with periodic stimuli [29]. 

Furthermore, the random stimuli have favorable properties related to suppressing some 

steady state components of EEG, such as the alpha rhythm. However, the variation of the 

EP latency and amplitude in response to random stimulation is greater, and may cause 

some loss of sharpness of peaks within the EP waveform.

2.6 Computation of EP signal through averaging

Averaging is a common processing method for obtaining the EP signal from the 

background EEG. The basic premise of averaging is that the repeated presentation of an 

identical stimulus will lead to essentially the same EP each time. The background EEG 

activity (which is unrelated to stimulus and is considered to be noise) averages out to
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zero. It has been shown that the averaging of the EEG can improve the signal-to-noise 

ratio (SNR) of EP signal by square root of the number of responses that are averaged 

[27]. However, in practice, merely increasing the number of stimuli need not enhance the 

SNR, because extraneous factors such as attention and habituation may influence the 

amplitude and latency of the responses.

2.7 Inverse problem

A major focus of EP research has been, the so-called inverse problem, which aims 

at localizing the sources that generate the known potential distribution on the scalp [20]. 

Many models and techniques including dipole localization and cortical projection 

methods have been proposed. Most of these procedures try to solve source separation and 

source identification issues all at once, which makes the solution a complex one. It has 

been suggested that independent component analysis (ICA), an innovative method that 

uniquely deals with the mathematical source separation of the EP signals, may serve as 

an alternative useful research tool in the place of classic inverse problem. We will discuss 

independent component analysis in detail in Chapter 3.

2.8 Esophageal Evoked Potentials

Based on the sensory system being stimulated, one can record dififerent kinds of 

evoked potentials [34]. Somatosensory EP, for instance, is the response to the stimulus 

applied to the skin or a sensory nerve. Similarly, there are auditory EPs and visual EPs, 

which are elicited by means of stimuli delivered to the auditory system and visual system

11



respectively. Compared to these EPs, the esophageal EP is a relatively new modality and 

is receiving increasing attention lately. Esophageal EP is especially helpful in studying 

patients with functional gastrointestinal disorders such as noncardiac chest pain, 

gastroesophageal reflux, diffuse esophageal spasms and nutcracker esophagus [30]. A 

further advantage of esophageal stimulation is that it is minimally invasive and causes 

discomfort only during insertion of the esophageal tube. With esophageal EPs, we may 

gain new insights into diseases that involve abnormal sensory processing, inflammatory 

bowel disease (IBD), chronic abdominal pain and chronic inflammatory bowel disorder 

[30, 31,32, 33].

In practice, the esophageal EP are cerebral evoked potentials that can be elicited 

by esophageal stimulation of two modalities, either through mechanical or through 

electrical stimuli. For mechanical stimulation, a balloon is placed within the esophagus 

and is inflated periodically with a pump. Alternatively, short electrical pulses have been 

the preferred form of stimulation, because of their specificity. These two methods have 

different protocols and naturally the resulting EP waveforms are not identical. In this 

thesis, we focus on the electrical stimulation, which is more convenience to implement. 

The esophageal EP waveform to electrical stimulation shows a characteristic triphasic 

pattern. There are three to four peaks above and below the isopotential line [30].

It has been suggested that peaks in the esophageal EP signal contain important 

information about the synaptic activity and the functional integrity of the transmission 

pathways [34]. For example, the latency of the first esophageal EP peak, which is about 

76.4±9.3ms, is determined by the type of the afferent nerve fibers that are involved.
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Since different fibers have different conduction velocities. One can identify that ’C’ 

fibers are involved [33].

Esophageal EP signal (Cz)

Figure 2.3 Cortical evoked potential to electrical stimulation of the esophagus

It has also been shown that the amplitude of the principal peaks (Nl-P1, N2-P2) 

demonstrate a dose response pattern for intensities varying from 5-25 mA in healthy 

controls. Similarly the stimulus frequency has an important effect on these peaks [32]. 

Hollerbach et al. have demonstrated that when stimulated at frequencies varying from 

0.1-1 Hz, the principal peaks of the esophageal of EPs reach a maximum at 17.2±1.7 μV. 

So by analyzing the waveform of esophageal EPs, we can gain useful information 

regarding the physiology of the transmission pathways. It is believed that such 

knowledge will eventually provide a better understanding of the origin of the signal for 

the clinical diagnosis.

In summary, this chapter has presented a review of EEG signal generation and EP 

signal in response to esophageal electrical stimulation.
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Chapter 3

Independent component Analysis

In this chapter mathematical formulation of Independent Component Analysis 

(ICA) will be presented and will be followed by an algorithm for performing ICA. We 

will present reasons why ICA is a good analytical tool for an analysis of Evoked Potential 

(EP) signals.

3.1 What is ICA?

3.1.1 General description

Independent Component Analysis is a novel signal-processing method developed 

to solve unmix problems. Briefly, ICA is a linear transform of the multivariate input data, 

which is designed to make the output vectors as statistically independent as possible. 

Initial ideas for ICA came from blind source separation (BSS) and information theory. 

The goal of blind source separation is to extract independent sources from a signal given 

by a series of sensor observations, which are linear mixtures of independent sources. The 

term “blind source” indicates that both source signals and the way they are mixed is not 

known apriori. ICA is a convenient method to solve BSS. Stated another way, ICA is a
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procedure to find a linear coordinate system such that the signals are as independent from 

each other as possible [2]. In contrast to Principal Component Analysis (PCA), ICA not 

only decorrelates the signals( 2nd order statistics) but also reduces higher order statistical 

dependencies.

3.1.2 Definition of ICA problem

The objective of independent component analysis is to recover source signals 

after they were linearly mixed. For example, let us denote the N dimensional source 

signals as s, where s={s1(t), .... sN(t)}. All source signals have zero mean and are 

statistically independent. Assuming a zero-mean signal model essentially simplifies the 

algorithm development. If the data is non-zero, one can subtract the sample mean to meet 

this requirement. The linear mixing can be represented by a matrix A . After the mixing, 

the observed signal is denoted by x, where x = {x1(t), ..., xn(t)} = AS. We are not given 

information about the signal and how it is mixed, and therefore S and A are unknown in 

this problem, Mathematically stated, the goal is to find an inverse transform W, such that, 

given the observed signal x, an output u can be obtained from the equation

u = Wx (3.1.2.1) 

Output u should contain the same components as s, although the component order is not 

necessarily the same. What ICA attempts to do is to minimize the redundancy between 

the outputs.

Before presenting the ICA estimation, we will examine some basic concepts that 

help us formulate the ICA algorithm.
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3.2 Basic concepts of statistical signal processing and 

information theory

3.2.1 Independence

In signal processing, we often encounter the term “statistically independent”. 

What does it imply? Consider a simple case of two scalar-valued random variables y1 and 

y2. When they are said to be independent, the information regarding y1 does not 

provide any information about y2 , and vice versa. [37] This property can be defined by 

probability densities. Denote p1y1 and p2 as the marginal probability density 

functions (p.d.f.) of y1 and y2 respectively, and p(y1, y2) as the joint p.d.f. of these two 

random vectors. Then 

p1(y1)= p(y1,y2)dy2 (3.2.1.1)

Then y1 and y2 is statistically independent if and only if the joint p.d.f. is factorizable into 

their marginal p.d.f. This implies 

p(y1, y2) = p1(y1) p2(y2) (3.2.1.2)

Extending this case to the general situation for any number n of random variables, 

equation 3.2.1.2 becomes 

n
p(y1, y2 ... yn) = pi (yi) (3.2.1.3)

i=1

A very important property of independent random variables can be derived from 

this definition. Given any two functions, g1 and g2, the following equation is always true: 

E{g1(y ), g2(y2)} = E{g1(y1) }E{g2(y2)} (3.2.1.4)
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This is proved as follows:

E{ g1 (y1) , g2 (y2)} =  g1 (y1) g2 (y2) p(y1, y2) dy1 dy2

= g1(y1)p1(y1) g2(y2)p(y2)dy1dy2

= g1 (y1) p1(y1) dy1  g2(y2)p(y2) dy2

= E{g1(y1) }E{g2(y2)} (3.2.1.5)

A weaker form of Independence is uncorrelatedness [40]. For example, we can 

say two random variables y1 and y2 are uncorrelated, when their covariance is zero, 

which is :

E{ y1 ,y2}-E{ y1 } E{ y2} = 0 (3.2.1.6)

This equation is valid when we choose g1 (y1) = y1 and g2 (y2 ) = y2 for equation 

(3.2.1.4).

However, Independence is much stricter condition than uncorrelatedness, which is 

imperative when we compare the equation (3.2.1.6) with (3.2.1.4). The special case 

where these two conditions are equivalent is when the y1 and y2 have a joint Gaussian 

distribution [4]. And because of this special case, ICA is not interesting for Gaussian 

variables [37].

3.2.2 Information theory basis for ICA

3.2.2.1 Entropy and Negentropy

Entropy is one of the basic concepts we will use often while discussing ICA. Its 

definition is as follows:
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Denote Y as a discrete random variable, and ai are the possible values of Y, Then the

Entropy H(Y) is given as:

H(Y) = - Σ P(Y= ai )log P(Y= ai) (3.2.2.1)

When generalized for the case of continuous valued random variable y, it is called 

differential entropy:

H(y) = - p(y)logp(y)dy (3.2.2.2)

It is because a Gaussian variable has the largest entropy among all random 

variables of equal variance, entropy can be used to assess nongaussianity [47,48]. For this 

purpose, there is a slightly modified version of the differential entropy, called negentropy 

J, which is zero for a Gaussian variable and is always nonnegative.

J(y) = H(ygauss)- H(y) (3.2.2.3)

Here ‘ygauss’ denotes the Gaussian random variable with the same covariance matrix as 

y. Since negentropy is an optimal estimator of nongaussianity, maximizing it can be an 

approach for solving the ICA problem. Computing negentropy is rather difficult, because 

it requires an estimation of the p.d.f. of the random variable.

3.2.2.2 Mutual Information

The mutual information can be used as a measure of independence. Based on the 

entropy concepts, we can define the mutual information I, between n random variables yi 

as follows, where i=l..n

I(yi...yn) = Σ H(yi) -H(y) (3.2.2.4)
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This definition is equivalent to the Kullback-Leibler (KL) divergence [37], which 

describes the mutual information with their joint density p(y) and the product of the 

marginal densities

p(y) = tipM

When we substitute the equation above into equation (3.2.2.5), mutual information 

becomes zero.

An important property of KL divergence we can consider is: It is invariant under 

an invertible transformation. This is one of the key ideas that helped develop the infomax 

solution of ICA.

The mutual information takes into account the whole dependency structure of the 

variables [37] , and gives a very direct criteria for ICA development. However, it cannot 

be directly implemented because equation (3.2.2.5) is very difficult to minimize.
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Z(y) is always nonnegative and it has a useful property that is important for ICA: It is 

zero if the variables are independent. This is because, when yi are statistically 

independent, p(y) can be factorized according to equation (3.2.1.4)

(3.2.2.5)



3.2.3 Statistical basis of ICA

Independence involves higher-order statistical information, which is often 

described by cumulants and moments. Among them, the 4th order cumulants, which is 

also called kurtosis, is a key parameter for some ICA estimation [2].

Moments are discrete parameters that can be used to describe the p.d.f. of a 

random variable. If we denote x as the random variable, the nth-order moment μ x(n) is as 

follow:

μ x(n) = E{xn} =  xn p(x)dx (3.2.3.1)

According to (3.2.3.1), the first-order moment is the mean value of x. Normally, we use 

central moments because it describes the manner in which the distributions is spread 

about its mean value. Let us denote the mean for x as mx, then we can calculate the nth- 

order central moments mx(n) from the equation( 3.2.3.2) 

mx(n) = E{(x- mx)n} (3.2.3.2)

For example, the second-order central moment is the variance, which is 

Variance = E{(x- mx)2}

Cumulants characterize the random variables as function of mean and moments. 

They can be computed from the central moments. Our discussion will only involve up to 

the 4th order. They are defined as: 

cx (1) = mx (1) 

cx (2) = mx (2) 

cx (3) = mx (3) 

cx(4) = mx(4)-3mx2(2) (32.3.3)
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The first three cumulants are equal to their same order center moments. The 

absolute value of forth-order cumulant (kurtosis), can be taken as a measure of the 

nongaussianity. Because a zero-mean Gaussian distribution random variables can be 

completely described by the first and second order statistic, its kurtosis is equal to zero. 

On the other hand, almost all the random variables that have non-Gaussian distribution 

have non-zero kurtosis [38]. Based on the sign of kurtosis, we can state if a random 

variable is subgaussian or supergaussian. Random variables that have a negative kurtosis 

are called subgaussian and those with positive kurtosis are called supergaussian [39].

3.2.4 Distribution requirements for ICA

The typical supergaussian distribution is more “spiky” and has a heavier tail 

compared to the Gaussian distribution. Laplace distribution is a typical example of 

supergaussian distribution [38], which is shown in Figure 3.1. On the other hand the 

subgaussian distribution is rather “flat”, i.e. the uniform distribution [2]

Figure 3.1 Probability Density function for supergaussian and Gaussian distribution.
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Since ICA algorithm are based on higher order statistical information, it follows 

that ICA will not separate a mixture of Gaussians. So the ICA is constructed for 

nongaussian variables only [37]. This can be illustrated by an example given as 

following:

Let’s assume two sources, s1 and S2, have Gaussian probability density 

distribution. After being mixed by an orthogonal matrix A, the observed variable X1 and 

x2 are Gaussian, uncorrelated and have unit variance. Their joint density is

p(x1, x2 ) = -1/2π exp(-(x12+x22)/2) (3.2.4.1)

When the density distribution in equation (3.2.4.1) is plotted with X1 and x2 as axes, we 

get a completely symmetric density function, which gives no information about the 

directions of the columns for estimating the mixing matrix A [40]. Therefore, we cannot 

find an inverse matrix W for it. Moreover, it can be proved that the distribution of any 

orthogonal transformation of the Gaussian has exactly the same distribution [40].

X2

Figure 3.2 The joint distribution of the observed mixtures X1 and x2
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3.3 Infomax Algorithm for Independent Component Analysis

There are several methods to perform Independent Component Analysis derived 

from different theoretical backgrounds. It was shown that although they are developed 

from different principles and not strictly equivalent, they can be unified based on the 

information theory [37,40,46]. For example, the Maximum Likelihood Estimation 

(MLE) approach to ICA was proved to be equivalent to the principle of the infomax 

approach derived by Bell and Sejnowski [49]. Also, the algorithm based on nonlinear 

PCA criterion can be related to the maximum likelihood estimation [50]. Many cumulant­

based algorithm can be reinterpreted as approximation of minimizing the mutual 

information [37],

When comparing these different algorithms, they all have promising theoretical 

performance. However, when applied to real data, the accuracy of these algorithm is 

difficult to ascertain and compare because there are no predetermined solutions for data 

which have completely unknown sources. The infomax approach has been applied to 

biomedical signals for many years and has proven to be useful in evoked potential signal 

analysis. For this reason, we chose infomax algorithm for the current problem. We will 

discuss ICA solution based on Infomax below.

3.3.1 Information Maximization

Direct minimization of the mutual information equation (3.2.2.5) is a complex 

task [1]. Therefore, Bell and Sejnowski derived a solution for ICA based on Nadal and
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Parga’s research. It has been shown that for low-noise data, the maximum of the mutual 

information between the inputs x and the outputs y of a neural processor implies that the 

output distributions can be decomposed into its factors [11]. In other words, 

maximization of information transfer in a nonlinear neural network, leads to a 

minimization the mutual information among the outputs, when the optimization is 

performed over both synaptic weights and nonlinear transfer function [2]. Bell and 

Sejnowski showed that maximization the joint entropy H(y) of the output of a neural 

processor will approximately minimize the mutual information among the output 

components [46] .

Denote g(ui) as an invertible monotonic nonlineartiy, then yi = g(ui). The joint 

entropy H(y) equation can be derived from equation (3.2.2.4) as follows

H(y)=Σ H(yi) - I(yi ...yn) (3.3.1.1)

Maximizing the joint entropy H(y), implies that we are maximizing the marginal 

entropies and minimizing the mutual information. Since outputs yi are amplitude- 

bounded random variables, the marginal entropies are maximum for a uniform 

distribution of yi [46]. And because I(yi ...yn) is always nonnegative, it will decrease 

with a maximization of the joint entropy. If yi is statistically independent, 

I(yi ...yn)=0. Equation (3.3.1.1) becomes

H(y)=Σ H(yi) (3.3.1.2)

Therefore when maximum joint entropy is achieved, it implies the independence of yi. 

As mentioned in section 3.2.2.2, KL divergence is invariant under an invertible 

transform, thus the nonlinearity g will not change the independence of the variables. So

24



when/(y, ...yn)=0, the mutual information before the nonlinearity Z(uj ...un) must be 

zero too, which means Ui are independent. Thus, a solution for ICA problem can be 

achieved.

There is a constraint in choosing the nonlinear function g, because the derivative 

of it works as an approximation of the source density in this algorithm. The marginal 

entropy H(yi) in equation (3.3.1.1) is given by:

H(yi) = -E{logp(yi)} (3.3.1.3)

The nonlinear mapping between the output density p(yi) and sources estimate density 

p(ui) can be described by the absolute value of the derivative with respect to u, [2] 

p(y>) = p(ui)/|(9yi/aui)| (3.3.1.4)

Which can be substituted in equation (3.3.1.3 ) and giving

H(yi) =-E{log (p(Ui)/1(3^73^)1)}= E{Iog (| g (Ui)| / p(Ui))} (3.3.1.5)

Then the mutual information I(u) related to the joint entropy, H(y) = H(g(u)) , of the 

outputs passed through function g can be represent as follows:

(3.3.1.6)

Thus, if the absolute values of the slopes of the functions g(u ), are the same as the

independent component p.d.fs, p(ui), the Infomax criteria discussed above is achieved. 

Equation (3.3.1.6) also gives the reason of why | g (Ui) | should be an approximation of 

p(uj ): if the | g (iii ) | and the p(ui ) doesn’t match, the maximum of H(y) may be 

achieved without I(y) being zero. The algorithm still works in the cases like this, because 

although unproven, the robustness conjecture states any supergaussian prior will suffice 

to extract supergaussian independent components and any subgaussian prior will suffice
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to extract subgaussian independent components [54]. This conjecture leads to the 

generally successful of extended ICA algorithms, which switch the component priors 

between supergaussian and subgaussian functions [9]. In practices, as the robustness 

principle suggests, this switching may be all the estimation needed to obtain a correct 

solution [54]. Bell and Sejnowski had performed a comparison between typical functions 

of g and their research demonstrates that logistic sigmoid y=(l+e-u)-1 or the hyperbolic 

tangent y= tanh (u) is flexible enough to sufficiently approximate the EEG source 

density [51].

3.3.2 Stochastic gradient learning rule

In order to process infomax, we need a nonlinear transfer function g(u). Now we 

can write equation (3.1.2 .1) as the follows:

y = g(u) = g(Wx) (3.3.2.1)

The relation between the output and input probability distributions in equation

(3.3.2.1) is described by the following equation [12]:

P(y) = P(x)/J (3.3.2.2)

where J is the determinant of the Jacobian matrix J=det([ ϑyi / ϑxj ] ij ), and J denotes 

its absolute value.

Substituting equation (3.3.2.2) in the entropy definition equation (3.2.2.2)

H(y) =-E[logp(y)] = -J p(y)log p(y)dy

We can get

H(y) = E[log|J|]+H(x) (3.3.2.3)
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Since the input entropy H(x) is not affected by the change of W, the H(x) can be ignored 

when we consider the learning rule for W [1].

We now can derive the learning rule for W with entropy

ϑH(y)/ϑW =E[ϑ(log |J])/ϑW] (3.3.2.5)

where log | J] is given by

N

log J = log detW + Σ log yi  (3.3.2.6)
i=l

Combining equation (3.3.2.5) and (3.3.2.6), the learning rule for W can be presented:

ΔW = ϑ(log|J])/ϑW = W-T + Φ(u)xT (3.3.2.7)

Where [] -T denotes the inverse transpose. Φ (u) is a vector function, which includes the 

following elements

Φ(ui) = ϑyi/ϑyi = ϑ(log | yi'|)/ϑui (3.3.2.8)

Φ( ui ) depends on the nonlinear function g in equation (3.3.2.2). As discussed in section 

3.3.1, the g is a nonlineartiy which is required not only to be invertible and monotonic but 

also be able to approximate the source density [2].

The equation (3.3.2.7) is the stochastic gradient learning rule for Infomax ICA 

algorithm [13]. A pictorial representation of the infomax ICA algorithm is given in 

Figure 3.3.

3.3.3 Natural gradient rule

In 1996, Amari et al. proposed a procedure to simplify the stochastic-gradient 

learning rule to the natural gradient rule [14]. The entropy gradient in equation (3.3.2.7)
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was multiplied by WT W. By doing this, we can avoid performing inversion of W at 

every learning step. The learning rule then becomes

ΔW = (ϑ(log |J])/ϑW) WT W = W (I + Φ (u)uT) (3.3.3.1)

Although equation (3.3.3.1) is not exactly same as equation (3.3.2.7), it has been 

shown that they yield similar results [15]. Since it is easier to implement equation 

(3.3.3.1) and has been shown that can speed up the convergence , it is generally used in 

practice.

3.3.4 Extended Infomax

The original infomax derived by Bell and Sejnowski is suitable for supergaussian 

sources but doesn’t work well for the subgaussian sources [9]. In 1998, Lee et al derived 

the extended infomax algorithm to handle both subgaussian and supergaussian sources 

[2].

The supergaussian signal has positive kurtosis, while the subgaussian signal has 

negative kurtosis. So to estimate the kurtosis of pi (ui), we can switch the term Φi (ui) in 

equation (3.3.3.1) depending upon the type of the signal.

Based on the Girolami’s scheme, we can chose different Φ (u) for subgaussian 

and subgaussian sources

 Φ (u)=u-tanh(u) (subgaussian)
 Φ (u)=u+tanh(u) (supergaussian) (3.3.4.1)
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w
y1 y2 ... yN

Maximize H(y)

Figure 3.3. The mixing and unmixing model. Independent signal sources s become mixed 

by matrix A. The observed signals are x. The goal is to learn W that inverts the mixing 

matrix A and u are the estimates of the recovered sources. The infomax approach is one 

way to find the unmixing system W. It requires a nonlinear transfer function g(u) [2]
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Substitute equation set (3.3.41) into the natural learning rule, we can obtain the learning 

rule for subgaussian sources [16]:

AW = W (I +tanh(u). u T -u u T) (3.3.4.2)

And for supergaussian sources learning rule is

AW = W (I-tanh(u). u T -u u T) (3.3.4.3)

Combining equation (3.3.4.2) and equation (3.3.4.3) the extended infomax learning rule 
as follows:

ΔW = W (I-K tanh(u). u T-u u T) (3.3.4.4)

For K,  ki = 1 (supergaussian)
 ki=-1 (subgaussian)

In equation (3.3.4.4), ki is the sign of kurtosis , it can be estimated by the follow 

equation: [2] 

ki=sign(E{sech 2 (ui)} E{ (ui2)}-E{ tanh(ui). ui }) (3.3.4.5)

The extended infomax provides a practical method to handle both supergaussian 

and subgaussian sources.

ICA has been successfully used in many signal-processing areas, such as image 

processing, speech enhancement, telecommunications, and medical signal processing. 

After Makeig et al [18]. first applied ICA to analyze the EEG data in 1996, ICA is fast 

becoming an important tool for biomedical signal processing.
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3.4 ICA in EEG Analysis

3.4.1 Preprocessing tool for source localization

Many EP studies employ the peak and latency measurement to develop some 

clinical diagnostic criteria. EPs are not easily decomposed into functionally distinct 

components, since the time course and scalp projections of those components generally 

overlap [1]. Research conducted by Makeig et al. on visual evoked response shows that 

ICA is a very strong candidate for decomposing multiple overlapping components [21]

From Chapter 2, we note that the neural mechanisms that produce EP are not 

completely known. Anatomical and physiological studies have suggested that sensory 

perception and processing occur in multiple cortical areas. The interaction of the activity 

in neuronal fibers connecting cortical areas does not necessarily produce the macroscopic 

field visible on the scalp [18]. At each stage of EP signal transmission within the brain, 

potentials are generated by one or more sets of neurons. However, scalp distributions of 

such potentials may overlap in time and space. This causes the EP topography to shift 

continuously making it very difficult to identify sources which are spatially fixed. 

However, in the present context, the inverse problem, which attempts to localize the 

sources that generated the observed potential distribution on scalp, is a major issue in 

EEG signal analysis. Therefore, solving the source separation and the source localization 

problem concomitantly makes the problem a hard one indeed.

In this instance, ICA may specify what temporally independent activations result 

in the observed potentials (EPs) on the scalp. However, ICA does not indicate where
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within the brain these activations arise. Makeig et al. have shown that ICA can be used to 

separate the problem of EEG source identification from the problem of localization [52].

3.4.2 Artifact removal

Since it has been shown that ICA is an efficient tool for separating different signal 

sources, it has been successfully used in EEG artifact removal [21]. The EEG signal 

often contains different types of noise which can not be easily removed by other 

techniques [17]. Since sources of such noise may be different from normal EEG signal 

generators, ICA can separate such noise by diverting them into separate components. One 

can then retrieve the uncorrupted EEG by reconstructing the signal without those noisy 

components. Jung et al. have demonstrated EEG artificial removal using extended 

infomax ICA in 1997 [2]. The artifacts, such as the blinks, muscle noise, cardiac noise, 

can be successfully separated.

3.4.3 Validity of ICA Assumptions for EP signal Processing

Following assumptions have to be made when applying ICA analysis to EEG.

1. The sources are statistically independent.

2. The propagation delays of the ‘mixing medium’ are negligible.

3. Statistical distributions of the component activation values are not Gaussian.

4. The number of independent signal sources is the same as the number of sensors 

[18].
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We will outline below arguments that favor application of ICA to EEG and 

related signals.

The first assumption is a very general one for modeling the complexity of EEG 

dynamics [17] and is likely to be valid as generators are anatomically distinct.

Since the volume conduction in brain tissue is instantaneous, and therefore the 

second assumption is reasonable in practical.

In practice, although some observed EEG signal do appear to be Gaussian, it 

doesn’t imply that their sources are gaussian. Also the central limit theorem suggests that 

a mixture of nongaussian components may appear Gaussian. Researches of Lee et al 

shows that the EEG signal contains a number of subgaussian components such as some 

low frequency activity and the line noise, sensor noise [2]. Therefore the assumption 3 is 

proven can be satisfied in EEG or EP signals study.

In the case of EEG, assumption 4 implies that if we collect EEG from N 

electrodes, we can separate only N sources through ICA. This assumption is not easy to 

satisfy, because we do not know how many source within the brain contributed to the 

mixed observed cortical signal we collect. It is difficult to decide how many electrodes 

are necessary and sufficient to identify all signal sources. For this reason, a better strategy 

of performing EEG analysis using ICA is to set the number of output channel to be equal 

to the number of input channels and then focus on the components that have large 

projections on the scalp and ignore those with small magnitude in projection. This is 

based on a simulation study performed by Makeig et al., whose results shows that when 

the number of sources is greater than the number of sensors, the separation of the small
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component is relatively poor, while it is quite accurate in identifying the large 

components [23].

3.4.4 ICA Training and decomposition

To illustrate ICA training and signal decomposition we present below Figure 3.3 , 

which servers as a simple pictorial representation of the procedure applied to EP signal in 

the present research. Upper panel consists ICA training and the lower panel illustrates the 

signal decomposition

In Figure 3.4 upper panel, the observed signal x, which is the EP epoch recorded 

from the scalp in response to the stimuli, is fed into to the ICA algorithm. It is used to 

train the unmixing matrix W, by maximizing the entropy of the nonlinearly transformed 

output, g(Wx).

During the decomposition (Figure 3.4 , lower panel), the EP signal recorded by N 

electrodes is decomposed into N independent components. The data is reconstructed with 

the W estimated during training. The row vectors of W can be viewed as a fixed linear 

spatial filter: When we pass the EP signal x through these filters, we have the output u 

according to equation (3.1.2 .1). Output u is also termed as “activations” of various 

components, because it represents the time course of each component.

Activations= Wx ( 3.4.4.1)
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ICA Training

ICA Decomposition

Data ICA Components

Figure 3.4 Model of implementing ICA in to EEG or EP analysis [18]
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We can choose different combination of component activations to reconstruct the input 

signal. Such reconstruction is also known as projection of the components. This is 

because the reconstruction (projection) represents contribution of ICA components to the 

original scalp signal. It is produced by first zeroing out all but the chosen component in 

the activation matrix, then multiplying by the inverse weight matrix

Projection= W-1 Activations (3.4.4.2)

In equation( 3.4.4.2), the W-1 represents the strength of the components in the 

reconstructed data. For this reason W1 is plotted as a topographic map to show the fixed 

pattern of strengths at each scalp electrode. Although this map is not a location map for 

the EP component (since it doesn’t show the location of the component) we can use it to 

characterize various components of the EP signal.

When we study the output components, we mainly study their activation and 

topographic map.

3.5 Conclusions

ICA is a very efficient and innovative tool for EEG and evoked potential 

analysis. It has the potential of solving several interesting problems associated with 

identifying the number of sources, source separation and therefore, provides different 

information that was not available before.
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Chapter 4

Acquisition of human Evoked Potential Signals 
and Implementation of Independent Component 
Analysis

In this research, we demonstrated how ICA is applied to experimentally recorded 

human evoked potential signals. We present the details of laboratory set up, experimental 

protocol and how the EP signals are recorded under controlled conditions in this chapter. 

We will also explain how the ICA algorithm is implemented.

4.1 Evoked Potential signal acquisition

4.1.1 Apparatus for Electrical Stimulation

4.1.1.1 Stimulation electrodes

The stimulating electrode consists of 0.2mm (diameter) stainless-steel wire 

attached to the tip of a polyvinyl catheter and fixed with surgical silk. The catheter is 

85 cm long and 5 mm in diameter. The catheter is inserted into the esophagus through a 

nostril. The stimulating electrode is placed about 33 cm from nostril [30, 42]. The
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electrodes are connected to a Programmable Stimulation Unit (CSH Design Inc, New 

Maryland, NB, Canada) with a shielded electrode cable. A reference electrode is placed 

on the epigastric abdominal wall, about 5 cm below the xiphoid process, over the linea 

alba [33]. The stimulus electrode is set negative in order to stimulate the biomedical 

sensors receptors on the wall of esophagus. The quality of electrode contact was verified 

by measuring the impedance across the electrode, before and after each study. This 

impedance was between 0.5 kΩ to 3.6 kΩ for all subjects.

4.1.1.2 Stimulus parameters

Optimal electrical simulation parameters are chosen according to previous studies 

in our laboratory [43,44,45]. These parameters include duration, intensity, and frequency 

of the stimulus waveform. In the present research, the stimulus duration is set to 200 μs. 

If the stimulus duration is too long, it may cause muscle contractions. On the other hand, 

if the duration is less than 150 μs, adequate number of fibers may not be stimulated to 

generate a cortical potential. Another important parameter to be considered is the 

stimulus intensity. It is known that the amplitude of esophageal evoked potential is 

intensity dependent [41]. When stimulus intensity is smaller than the threshold, which is 

about 7 mA for normal subjects, the magnitude of the response to the stimulation is too 

small to be recorded. This is likely due to the fact that adequate number of sensory fiber 

are not stimulated at or below 7 mA. On the other hand, if the intensity is higher than a 

certain value (~ 25 mA) , it will likely cause pain. The objective of this research is to 

study evoked potentials below pain thresholds. In our experience no subject experienced 

pain during any of the stimulation protocols. Experimental results show that the
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amplitude of the response increases linearly between the threshold (~7 mA) and 16 mA 

and tend to remain flat until 25 mA for healthy controls [41]. Based on these observations 

we choose 15.2 mA as stimulus intensity for the present series of experiments.

The stimulus frequency can also have a significant effect on the amplitude and 

latencies of peaks various and morphology of the esophageal evoked potential. There is a 

progressive decrease of EP amplitudes , as the stimulus frequency increases from 0.1 Hz 

to 1.0 Hz. Moreover, mean latencies of the principal peaks (P2, P3 ) shorten when the 

stimulus frequency increases. The phenomenon of decreasing EP amplitude with the 

stimulating frequency may reflect an alteration of processing of stimulus related signals 

between thalamic structures and cortical association fields ( Ref 42). The research done in 

our laboratory suggests that electrical stimulation in the range of 0.1-0.2 Hz may provide 

optimal esophageal EP stimulus pulses. Therefore we choose 0.2 Hz in for the present 

study.

Besides the periodic stimulation, we also use random stimulation for this research. 

The random stimulation is set such that its mean frequency was 0.2 Hz with a 10- 

percentage variation . It is believed that random stimulation makes the subjects more 

alert when compared to the periodic stimulation, and the noise due to alpha (α) rhythm 

within the EEG signals can be depress and the speed of adaptation of EP waveform can 

be slowed down.

Each recording contains twenty-four stimuli, for both periodic and random 

protocols. This number is chosen based on experience in our laboratory. If there are too 

many stimuli, the adaptation will diminish the evoked response. If there are too few
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stimuli, there will not be enough number of single stimulus EP signals epochs for 

averaging [53].

4.1.2 EP Signal Acquisition

The recording is performed in a quiet environment with lights dimmed to reduce 

extraneous inputs. The subject is in supine position and is required to remain awake 

throughout the study. During recording the subject is asked to fix his eyes on a stable 

target, to minimize potentials generated due to a movement of eyeballs. The subject is 

also instructed to avoid swallowing, because the electrical potentials generated thereby 

may overwhelm the EP signals. Each stimulus session lasts approximately 150 seconds. 

And between stimulating sessions the subject is given a break of five minutes.

The EEG signal containing the EP waveform is picked up by twenty electrodes 

placed on scalp according to the International 10-20 system. This corresponds to the 

required number of input channels (N=20) in the discussion of chapter 3. Two reference 

electrodes are placed on both combined mastoids, and a ground electrode in on the 

forehead. The impedances of the recording electrodes are less than 5 kΩ. The EEG 

signals are passed through SynAmps amplifier and handled by software named 

NeuroScan (Neurosoft Inc, Sterling, Virginia, USA). The gain of the amplifier is set to 

500, and the accuracy is 0.168μV. The band pass filter is set between 0.15 Hz to 100 

Hz.. The recording epoch is from -100 msec to 500 msec [33,49,50]. The sampling rate 

of the A/D converter is 1000 samples per second.
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4.1.3 Data Sets

There are 41 sets of EP signals obtained from healthy controls (n = 4) and patients 

(n = 4) in this research. Control subjects were not is under any medication at the time of

study. Table 4.1 presents the list of data sets obtained from each subject:

Study No Recorded Date
Data Set 
Name Control/Patient age Sex

Number 
of 
recording

Number of 
recording

periodic Random
1 28-Sep-2000 Gt0928 Control 41 M 2 2
2 5-Oct-2000 RI1005 Control 23 M 3 2
3 31-Oct-2000 Db1031 Patient 49 F 3 2
4 17-Nov-2000 Yy1117 Control 19 M 3 2
5 17-Jan-2001 Ve0117 Control 30 M 3 3
6 24-Jan-2001 Tk0124 Patient 27 M 3 2
7 19-Mar-2001 PL0319 Patient 43 M 3 3
8 4-May-2001 HL0405 Patient 41 M 3 2

Total 41 23 18

Table 4.1 List of EP signal datasets

One of the periodic EP signals from subject Nol are plotted together with its scalp 

distributions in Figure 4.1. The ICA analysis is implemented in all data sets to test the 

algorithm

4. 2 Extended Infomax ICA implementation

In this research, the extended infomax ICA is performed. The basic ICA implementation 

was made available to us from Dr Makeig’s lab and was modified to suit our application. 

The block diagram of the algorithm is shown in Figure 4.2.
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Figure 4.1 Twenty channels of esophageal evoked potential signals and scalp distribution 

of main peaks: N1 (73 ms), Pl (93 ms), N2 (134 ms), P2 (176ms), N3(153 ms), 

P3(283 ms)
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Figure 4.2 Block diagram of the extended infomax ICA algorithm
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4.2.1 Preprocessing

The Evoked Potential signals are reformatted into a 20x600 matrix, corresponding 

to 600 ms data from 20 channels. This corresponds to the observed data x in the 

discussion of chapter 3, which is input data to the ICA algorithm. The first and second- 

order statistics of the data should be removed before training in order to make the 

convergence more stable. Otherwise the training noise will swamp the higher order 

statistics [1]. To remove the fist order statistics: mean of the signal is given by equation 

(4.2.1.1) is subtracted.

m(x) = E{x} (4.2.1.1)

This also makes the output components have zero-mean. If needed, we can 

correct this in the formatting output block in figure 4.2, by adding the mean vector of u to 

the centered estimates of output u. The mean vector of u is given by 

m(u) = W m(x) (4.2.1.2)

The sphering is done by multiplying the decorrelating matrix with the zero-mean 

input data

x = Sx (4.2.1.3)

where the decorrelating matrix S is given by

S =2<xxT>-1/2 (4.2.1.4)

This decorrelation is called zero-phase decorrelation or whitening, which constrains the 

matrix to be symmetric. Compared with other popular whitening techniques such as 

Principal Component Analysis (PCA), which constrains the matrix to be orthogonal, the
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zero-phase decorrelator is non-orthogonal, and gives much better starting points than the 

PCA [50]. Theoretically, the sphering is not necessary for the natural gradient, but it is 

implement because the convergence is more stable on sphered data.

4.2.2 Initializing and updating

Before ICA training, W is initialized to the identity matrix I, as recommended by 

Bell at al [36].

According to extended infomax ICA, the update equation for W is different for 

super-gaussian and sub-gaussian signal source. As derived from equations (3.3.4.4) and 

(3.3.4.5), the update rule for W is

AW = ε (I -K tanh(u). u T -u u T) W (4 2.2.3)

For K,  ki = +1 for super-Gaussian source
 ki= -1 for sub-Gaussian source

This switching is performed in the sign estimation block in figure 4.2, where the ki is 

estimated with equation (3.3.4.5), and is given by:

ki=sign(E{sech 2 (ui)} E{ (ui2)}-E{ tanh(ui). ui })

The learning rate ε is normally set to <0.01, in our experiment. It is chosen 

empirically:

ε =0.015/log(Number of channel) (4.2.2.4)

The ε is equal to 0.0115 in our study, for N=20 signal channels.

The computed update is based on small batches of randomly selected data vectors 

drawn from input data set x. The batch size is chosen according to the equation:

batch size =floor(sqrt(timepoint/3)) (4.2.2.5)
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This is suggested by Bell and Sejnowski [51]. Based on equation (4.2.2.5), since our 

signal has 600 samples for each channel, the batch size is set to 14.

After each pass through data points, an angle representing the difference in direction 

between the update vectors in the current and previous passes is computed. Whenever 

this angle is larger than 60 degree, the learning rate is reduced by 2 % [22].

4.2.3 Stopping rule and formatting output

The training stops when the learning rate decreases below 0.000001, which 

implies the change of W has stabilized. Or if W blows up, which happens when the 

elements of W become very large, i.e. 108, the training will restart with a lower learning 

rate.

The components are sorted by descending order of mean projected variance. The 

projection is computed by ( 3.4.4.2) then for each output component i

Projection ( i )= (SW)-1 (i)*Activations(i) (4.2.3.1)

Since the original data is multiplied by the decorrelating matrix S before, the S-1 is used 

when we compute the projection. And the mean variance is

Mean Variance = mean (Σ(Projection(i).* Projection(i))/n ) (4.2.3.2)

Where n is the number of time point in each channel.

4.2.4 Summary

In this chapter we have outlined recording procedure to obtain reproducible 

esophageal evoked potentials. An outline of the ICA computation is also presented.
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Chapter 5

Results

In this chapter, we will describe the results of subjecting esophageal evoked 

potential signal to independent component analysis. We intend to study the 

reproducibility, artifact removal and examine the common components present in the 

averaged evoked potentials generated due to both periodic and random stimulation 

applied to the human esophagus.

5. 1 Evoked Potential Signal Processing

In this research, all signal analysis is performed using Matlab 5.01 software on a Dell 

Dimension XPS B866 PC with 866 MHz processor. Initially the extended ICA 

decomposition is applied to each averaged EP signals as well as to the grand averaged 

signal obtained from each subject. The initial learning rate started at ~0.0115 and 

gradually reduced to 10-6 during 100-300 training iterations that required ~15 seconds of 

computer time. The component map and activation matching are performed by 

computing their correlation coefficients (CC). The correlation coefficient is a measure of
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where i=l,2...n , (n is the number variables in the vector); mx is the mean of x and my is 

the mean of y

The values of the coefficient can range from -1 to +1. When the components maps 

look similar, their correlation coefficients are high (>80%). A second measure of 

variation of the EP signals naturally, the coefficients of variation (CV) of the CC is 

computed, which is given by the equation 

CV=((standard deviation )/mean of CC)*100% (5.1.2)

The rationale for using correlation coefficients and CV to study reproducibility, is that if 

r is large and close to 1.0 across different data sets, then the components under 

consideration is reproducible. Alternatively, if CV is small (<20%), then there is minimal 

variation across different trials conducted for studying reproducibility.

5. 2 Within Subject Reproducibility

In this section, we intend to test if the result of the extended ICA decomposition is 

reproducible. Initially, for each periodic stimulation session (n=24 stimuli) an averaged 

EP signal was computed. This was repeated three times (denoted by P1, P2 and P3) as 

described in section 4.1 of Chapter 4. A grand average of the EP signal generated from 

these three stimulus sequences was also computed for comparison. Extended ICA
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how closely two variables or waveforms are correlated. For example, denote vector x and 

y as vectors that are used to generate component maps, then their correlation 

coefficients can be computed by :

(5.1.1)



algorithm was used to compute independent component set for each stimulus sequences

(i.e. P1, P2 and P3). Each component set contains 20 component maps and their 

activation waveforms. A fourth component set was generated out of the EP signal arising 

out of the grand average of these three stimulus sequences (averaged response to Pl, P2 

and P3 stimulus sequences). Next, the highest-correlated pair of the component maps, 

i.e. those with the highest correlation coefficients, are determined and tabulated for each 

subject. We repeated the above procedure until all 20 successively decreasing correlated 

pairs are found. Subsequently, the average correlation coefficient for each component is 

computed and its coefficient of variation (CV) is determined. The same procedure was 

repeated for random stimulation sequences. Thus all 41 datasets (23 periodic and 18 

random) were analysis as described above. Table 5.2.1 is a typical representation of 

correlation coefficient and CV of EP signal recorded from subject No.7, to random 

stimulation. The table is sorted by the mean correlation coefficient of the components, 

which lists the highest matching component at the top. The scalp distribution maps of 

four of the twenty components are highlighted in Table 5.2.1 and shown in Figure 5.2.1 . 

These maps demonstrate the effect of matching using correlation coefficients and CV. 

The components in the upper two rows are highly reproducible. The mean correlation 

coefficient in each row is greater than 0.80 and CV are less then 20%. The components 

in lower two rows are components which have poor reproducibility (r<80% and 

CV>20%).
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Table 5.2.1 Matching result of component map from esophageal EP of random stimulation of subject No.7.

AVG Random 1 Random 2 Random 3 Mean
Comp.No. Comp.No. r CV Comp.No. r CV Comp.No. r CV r

1 0.986 0.0066 1 0.9932 0.0007 1 0.9983 0.0058 0.9925
2 7 0.9471 0.0144 2 0.9514 0.0099 2 0.9842 0.0243 0.9609
4 9 0.9069 0.0244 4 0.9063 0.0251 6 0.9757 0.0495 0.9296
11 13 0.9348 0.0234 3 0.8502 0.0692 5 0.9553 0.0458 0.9134
5 15 0.9403 0.0342 6 0.876 0.0365 8 0.9114 0.0024 0.9092
3 2 0.9259 0.0335 7 0.8069 0.0993 12 0.9547 0.0657 0.8958
7 12 0.9508 0.0987 8 0.855 0.0121 7 0.7906 0.0865 0.8654

0.952 0.1224 11 0.788 0.071 13 0.8045 0.0514 0.8482
6 8 0.9668 0.161 10 0.6201 0.2554 4 0.9115 0.0944 0.8328
13 4 0.8858 0.1032 9 0.9034 0.1252 10 0.6196 0.2284 0.8029
8 5 0.8631 0.0851 5 0.831 0.0447 18 0.6921 0.1299 0.7954
9 14 0.846 0.124 12 0.7852 0.0432 15 0.6269 0.1672 0.7527
12 18 0.8676 0.1686 13 0.5133 0.3087 3 0.8465 0.1401 0.7424
16 17 0.8615 0.3149 14 0.8547 0.3045 20 0.2494 0.6194 0.6552
18 16 0.7368 0.6345 16 0.0623 0.8618 19 0.5532 0.4508
14 10 0.707 0.7621 20 -0.3869 1.9643 11 0.8836 1.2022 0.4012
10 11 0.9033 1.3427 19 -0.2916 1.7562 14 0.545 0.4134 0.3856
20 6 0.3748 0.0339 18 0.5386 0.4859 9 0.1741 0.5197 0.3625
19 20 0.1219 1.4129 17 0.1202 0.5928 0.8871 2.0057
15 19 -0.4709 3.9536 15 0.4054 1.5427 16 0.5438 2.4109 0.1594
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AVG R1 R2 R3

1 1 1 1

17 3 11 13

18 16 16 19

19 20 17 17

Figure 5.2.1 A typical set of matching samples of component map from esophageal EP of 

random stimulation of subject No.7.(Rl, R2, R3 are random stimulus sequences ) Top 

two sets of component have high reproducibility (r>0.8,CV<20%) Lower two sets of 

components have low reproducibility (r<0.8, CV>20%). (Refer to table 5.2.1.)
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For the periodic stimuli, we note that between 6-14 components are found to be 

highly reproducible (r>80% and CV<20%) within each subject. For the random stimulus 

paradigm, number of reproducible components varies between 6 to 12, for different

subjects. These results are summarized in the following table:

Table 5.2.2 Number of reproducible components within each subject

Subject No Data Set Name
Number of Reproducible
Components
periodic Random

1 Gt0928 14 7
2 RI1005 9 11
3 Db1031 7 10
4 Yy1117 7 6
5 Ve0117 9 8
6 Tk0124 7 12
7 PL0319 6 10
8 HL0405 12 8

Mean ~9 9

These observations suggest that approximately 9 out of 20 components are 

reproducible for both periodic and random stimulation protocols.

5.3 Removal of the Stimulus Artifact From the Averaged Evoked

Potential Signal Using ICA

A consistent and reproducible artifact is generated on the cortex by the electrical 

stimulus. This artifact shows up within the first 15 ms following the stimulus in all 

channels of the EP signal and in all subjects. This phenomenon can be demonstrated
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through Figure 5.3.1, the normalized power ratio of the stimuli artifact in a typical subject 

(Subject No.l). The normalized power ratio is computed as the power within a channel 

but normalized to highest amplitude of the signal across all electrodes. In this subject, the 

artifact power is distributed in all EP signal channels but predominantly in frontal 

channels (F7, F8, Fp1 and Fp2). Such artifact was concentrated in one component 

following the extended ICA decomposition. This artifact component can be identified by 

examining the activation of the component waveforms. Furthermore, computing the 

power ratio of all the component projections between 0-15 ms can confirm this 

observation. Results for subject No. 1 is shown in Figure 5.3.2, the first component has 

the dominate power compared to all the other components, which implies that it is the 

stimulus artifact.

Since channel Cz is one of the most commonly used channels to study esophageal EP 

signals, we demonstrate the effect of removing the stimulus artifact component on the EP 

signal for that electrode. Figure 5.3.3 is the projection of stimulus artifact component in 

channel Cz. The waveform shows that this component contributes to the activation 

between 0 to 15 ms. Figure 5.3.4 is a comparison between the original signal and the 

signal reconstructed with all the other component but without the stimulus artifact.

The removal of stimulus artifact component is a clear evidence that ICA algorithm 

provides functional separation of different components within the esophageal EP signal. 

Since we know that the stimulus artifact is from sources independent of the EP signal 

generators, Figure 5.4.4 demonstrated that such artifact can be extracted fully using 

extended ICA decomposition. We believe this experimental evaluation of the algorithm 

verifies its validity and separability of independent components..
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Figure 5.3.1 Normalized Power Ratio of the stimulus artifact in original esophageal EP 

signal from subject no.l
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Component Artifact Power Ratio

Figure 5.3.2 Normalized Power Ratio of the stimulus artifact in ICA components from 

esophageal EP signal for subject no.l
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Stimuli Artifact Component in Channel Cz

------Artifact Component

Figure 5.3.3 Stimulus Artifact component projection in channel Cz.

Figure 5.3.4 Comparison between original signal and signal reconstructed without 

stimuli artifact component in channel Cz.
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Besides the component attributed to the stimulus artifact there are three other 

components that present strong activation before the stimulus (0 ms) in their activation 

waveforms. These are due to noise and were removed from further study.

5.4 Comparison between the ICA components of the EP signal due to 

periodic stimulation and random stimulation

5.4.1 Comparison of ICA components across subjects but within the same 

stimulation protocol

In order to compare different components arising out of the ICA algorithm in 

response to identical stimulation protocols, we examined correlation coefficients of 

different activation waveforms as well as their maps across all subjects. Components with 

highest correlation coefficients were identified and listed in Table 5.4.1.1. It was noted 

that certain components appear at distinct latencies in four or more subjects with high 

correlation (r>0.9). These components were verified visually by examining the activation 

waveforms. A sample set of the waveforms from two subjects is show in Figure 5.4.1.1.

Table 5.4.1.1 Reproducible components across subjects in EP signal of periodic 

stimulation

Periodic
Component

Mean of max peak latency 
(ms) Number of Subject

Mean CC. of
Activation

CP1 59.50 4 0.9563
CP2 93.57 7 0.9361
CP3 129.38 7 0.9500
CP4 150.60 5 0.9568
CP5 174.20 5 0.9186
CP6 282.00 4 0.9458

57



Figure 5.4.1.1. Activation waveforms of reproducible components due to periodic 

stimulation from subject No. 5 and subject No 7.
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Table 5.4.1.2 Reproducible components within the EP signal of random stimulation and

Random 
Component

Mean of max 
peak latency 
(ms) Number of Subject

Mean CC. of 
Activation

CR1 84.71 7 0.9630
CR2 127.20 5 0.9896
CR3 143.00 7 0.9423
CR4 208.11 8 0.9021
CR5 240.86 6 0.9424
CR6 265.40 4 0.9437
CR7 256.71 5 0.9824
CR8 374.14 7 0.9032

across subjects

A similar analysis performed on random stimulation protocol yielded a slightly 

different result (table 5.4.1.2) indicating that certain components are highly reproducible 

across different subjects for random stimulation. However, latencies of their activation 

are different from those due to periodic stimulation, an issue examined in greater detail 

below.

5.4.2 Comparison of activations and maps across subjects for different 

stimulation protocols

Since the components due to periodic and random stimulation protocol seemed to 

appear around the same latency, we computed correlation coefficients of activation 

waveforms for the component listed in table 5.4.1.1 and table 5.4.1.2. It is interesting to 

note that the component responding to random stimulation seem to appear a few
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milliseconds before a related component due to periodic stimulation, perhaps suggesting 

that response to random stimulation is generated more rapidly within the nervous system

Table 5.4.2.1 Common components of esophageal EP signal from periodic and random 

stimulation (CP stand for components obtained from the periodic EP signal, and CR for 

those of random EP signal)

Periodic Random
Mean CC of 
Activation

Component Mean of max peak latency Component Mean of max peak latency
CP2 93.57 CR1 84.71 0.9320
CP3 129.38 CR2 127.20 0.9442
CP4 150.60 CR3 143.00 0.9393
CP6 282.00 CR6 265.40 0.9617

The activation waveforms and scalp distribution map of these component pairs are 

plotted in Figures 5.4.2.1-5.4.2.4

5.4.3 Study of Common Components for periodic and random 

stimulation

5.4.3.1 CP2 and CR1

Figure 5.4.2.1 plots the activation waveforms of CP2 and CR1 and allow easy 

comparison of the time courses between these two components. These waveforms are 

very similar in shape. Latency of the component due to the random stimulation (CR1) is 

84.71 ms, whereas the latency due to the periodic stimulation (CP2) is 93.51 ms.
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Figure 5.4.2.1 Activation waveforms and maps of component CP2 and component CR1

CP3

CR2

Figure 5.4.2.2 Activation waveforms and maps of component CP3 and component CR2
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Figure 5.4.2.3 Activation waveforms and maps of component CP4 and component CR3

CP6

CR6

Figure 5.4.2.4Activation waveforms and maps of component CP6 and component CR6
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Also, we observe that components CP2 and CR1 are perhaps related to the P1 peak in the 

standard averaged EP signal (Chapter 2 figure 2.3)by virtue of having a latency close to 

the peak at 101.9 ± 15.5 ms [30]. The scalp distribution maps of CP2 and CR1 

demonstrate that these two components both have a strong positive potential in the frontal 

pole area and a small negative potential at T5, T6 and F4 electrode locations. However, 

CP2 has a strong positive activation in the mid-central and mid-parietal area while the 

CR1 is neutral in that area.

5.4.3.2 CP3 and CR2

The second pair of common components due to periodic and random stimulation are 

shown in Figure 5.4.2.2. It can be observed that their latencies are at 127.20 ms (CR2) 

and 129.38 ms (CP3). Their component maps show that there is negative potential all 

over the scalp except in frontal pole area (i.e. Fp1 and Fp2). However, the component due 

to random stimulation (CR2) is neutral while CP3 appears as positive in the mid-central 

areas. Also, CR2 seems to have a relatively higher positive activation than the CP3 in the 

frontal pole area.

5.4.3.3 CP4 and CR3

The component pair CP4 (150.60 ms) and CR3 (143.00ms), which are shown in 

Figure 5.4.2.3, appear to be activate near the N2 peak (141.1 9 ± 19.4) of the standard EP 

signal (Chapter 2 Figure 2.3) [30]. The activation pattern of the these two components is 

negative in right frontal pole and posterior temporal areas (proximity of T5 and T6
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electrode ). For CP4, the left frontal pole and the mid-central areas seem more active then 

that for CR3.

5.4.3.4 CP6 and CR6

The CP6 and CR6 component pair has almost the same activation area as CP4 and 

CR3, except this pair has positive potential. Furthermore, the activation of CP6 in right 

posterior temporal area is stronger than that of CR6. The latency of CP6 is 282.00 ms 

and for CR6 the latency is 265 ms. Their activation waveforms(Figure 5.4.2.4 ) suggests 

that they may related to the late response N3 at 262.3± 38 ms of the standard esophageal 

EP signal (Chapter 2 Figure 2.3) [30].

5.4.3.5 Summary of comparison between periodic and random stimulation

There are common characteristics in these four pair components we studied above. 

They are as follows:

1. The activation waveforms due to periodic stimulation show latencies later than 

their related components due to the random stimulation.

2. The periodic stimulation generates components with higher activation in the 

middle brain area (Cz and Pz electrode location) than the random stimulation.

3. Some of the selected ICA components seem related to the peaks of the standard 

esophageal EP signal (Chapter 2 figure 2.3), which suggests that the components 

due to ICA may contain functional information of interest to clinical medicine.
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5.5 Summary

In this chapter, we studied the output of the extended ICA as applied to the 

esophageal EP signal. Analyses were performed on the reproducibility of various 

components. We also identified differences between components in response to random 

and periodic stimulation protocol. Based on our results, we believe ICA algorithm can 

provide functional separation of the esophageal EP signal.
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Chapter 6

Discussion

In this chapter we will discuss the results reported from Chapter 5 and also 

present the limitations and suggestions for future research for this study.

6.1 Comparison between the ICA components of the EP signal 

due to periodic stimulation and random stimulation

In section 5.4.1, a comparison of latencies across subjects following periodic/random 

stimulation demonstrates that certain components appear at distinct time following a 

stimulation pulse with high correlation (r >0.9). It is likely that these components may 

originate in the same neuronal structures and hence are reproducible across different 

subjects. The typical activation waveforms of the ICA components have a dominant peak 

within a certain time window (Figure 5.4.1.1) and do not appear any other time. This 

phenomenon may suggest that the response of the neuronal source is localized.

We observed that EPs studied across subjects but for different stimulation protocols 

(section 5.4.2) demonstrate that activation waveforms due to periodic stimulation show
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latencies later than corresponding components due to the random stimulation. Such 

correspondence between two stimulation protocol may be due to the fact that the random 

stimulation protocol gives irregular stimuli that makes the subjects more alert. Thus 

specified peaks of the evoke response to the random stimulation is generated earlier.

The second finding of section 5.4.2 is that the periodic stimulation generates 

components with higher activation in the mid-brain area (Cz and Pz) when compared to 

components due to random stimulation. This phenomenon was not reported by any other 

research on esophageal EP before. It may suggest that the response of the periodic 

stimulation involve neurons structures slightly different from the random stimulation. 

However this observation needs further study with more subjects.

Figure 5.4.2.1 to Figure 5.4.2.4 also demonstrate that some of the ICA components 

seem related to the peaks of the standard esophageal EP signal (Chapter 2 Figure 2.3). 

The occurrence of peaks and similarity of the maps in EP at approximately the location 

(i.e. CP2 and CR1, CP3 and CR2) suggests that these peaks are generated in the same 

location and transmitted to the cortex along similar structures and therefore result in 

similar scalp distribution. The physiological meaning of these scalp maps need to be 

further studied.

The removal of stimulus artifact component also provides a confirmation of the 

analytic power of ICA, that it can decompose the EP signal into meaningful components.
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6.2 Limitations and suggestions for further research

6.2.1 Choice of the algorithm

There are several criteria for estimation of the ICA model, including mutual 

information, likelihood, cumulants, nongaussianity measures, and nonlinear principal 

component analysis (PCA) criteria. Extended infomax algorithm is only one of several 

algorithms that can be derived from information theory. It has been shown that all these 

algorithms are closely connected and can be unified based on the information theoretic 

point of view [37, 40,46]. However, there are still differences in their performance. A. 

Hyvaerinen et al performed experimental comparison with stimulated data for the 

different algorithms including: FastICA, infomax, extended infomax and recursive least­

squares algorithm for a nonlinear PCA (NPCA-RLS). Their results show that extended 

infomax can provide good statistical performance for separating different component, 

because it involves a tanh function in the nonlinearity, which gives the best results [55]. 

They also investigated as to how the statistical performance of the algorithms changes 

with increasing number of components. Their results show that original infomax and 

extended infomax achieve the best accuracies compared to the other algorithms [55]. The 

computational load of extended infomax ICA algorithm is relatively high. But in our 

study, the average converging time is around 15 seconds, which is acceptable for the 

present application. However, from the point of view of the robustness, the extended 

method has a major weakness: when many sources are close to Gaussian, the training 

noise will cause the learning rule to switch between the regimes of super and sub­

gaussian [17]. But we did not encounter this problem in our research. Moreover, the
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extended infomax algorithm has been applied to biomedical signals for many years and 

has proven to be useful in evoked potential signal analysis [9]. Based on the discussion 

above, extended infomax is practical and is a suitable ICA algorithm for the present 

study.

FastICA algorithm could also be deployed to examine and confirm the results of 

extended infomax ICA. The FastICA algorithm can deal with both supergaussian and 

subgaussian sources [55].

6.2.2 Addition of Electrodes

The maximum number of ICA output components depends on the number of 

EEG channels at the input. We are currently using twenty EEG channels as inputs in our 

research. Therefore, the number of output is restricted to twenty components only. 

Further, we could identify about nine reproducible components from each subject. There 

are many reasons that may result in ICA components which are not reproducible between 

successive trials within subjects. An important reason may be that we may have used 

fewer channels than the number of actual biological sources of signal. A simulation study 

shows that when the number of sources is greater than the number of sensors, the 

separation of the larger component is still quite good while it is relatively unsuccessful 

for the smaller components [23]. Therefore as the number of recording channels 

increases, we can expect more reproducible independent components from the ICA 

algorithm.
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6.2.3 Single-Trial vs. Averaged Evoked Potential

Since we have recorded both single trial and averaged EP signals, it could be 

natural to consider if we can apply ICA to both instead of to the averaged EP only. There 

are some good reasons to do single trial EP analysis, since the response and scalp 

distributions successive stimulus sweeps. Those variations from stimulus to stimulus may 

contain useful information regarding habituation or the ability to concentrate. When we 

analyze the averaged data, we may be ignoring useful information. Therefore, one can 

argue that analysis of single-trial ERP might provide more information about brain 

dynamics than averaged response. However, we foresee following limitations for such 

analysis. First of all, single-trial EP signal has poor signal-to-noise ratio, since averaged 

data is able to remove those non- time locked artifacts, but single trial signal contain all 

of them. If we apply it into ICA, there will be more noise components in output. 

Secondly, often the non-time locked background EEG has larger amplitude than the time 

locked response. If we apply ICA to single trial EPs, the background activities 

components might draw more attention than the response we are interested in. Moreover, 

the variability in latencies and amplitudes of single trial signal may cause ICA to produce 

more components than what really exist [21]. Since we have limited number of sensors in 

EEG recording, it is preferable to focus on the time locked response than the 

background EEG. These reasons led us to choose average EP for the present ICA 

research. However, evaluation on single trial EP through ICA decomposition is a good 

avenue to explore.
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6.2.3 Patient studies

In our study, we are limited by only a small number of patients and controls. If a 

larger data pool is available, we can conduct a study to compare the ICA components 

arising of stimulating the esophagus of patients and healthy controls

6.3 Conclusion

The results of the present research suggest that extended infomax ICA algorithm 

is able to separate the esophageal EP signal into components, which may have 

physiological origin. Present research has potential for further development. It can be 

easily implemented for studying patients, and perhaps serve as clinical diagnosis tool.
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Chapter 7

Conclusions

Independent component analysis is a recently developed analytical procedure to study 

evoke potentials signal in response to electrical stimulation of esophagus. ICA 

decomposition may be particularly useful for comparing the latencies, time course of the 

signal along the afferent pathways in the brain, scalp topography and activation strength 

of numerous brain generators involved in producing evoked responses to a stimulus 

delivered to a sensory organ, peripheral nerve or a receptor.

Our studies reported in this thesis on the application of applying extended infomax 

ICA algorithm to averaged esophageal EP signals appear quite promising. Our results 

clarify and confirm the observation from earlier studies on the EP that esophageal 

stimulation generates cortical potentials that have several peaks each with distinct 

characteristics [33]. It is likely that stimulation protocols consisting of periodic and 

random stimulation may involve different pathways and ICA may perhaps help identify 

these pathways in a discriminatory fashion. Four pairs of reproducible common 

components were identified in response to comparing periodic stimulation and random 

stimulation. These four pairs of ICA components have distinctly different scalp
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distributions and vary with the stimulus protocol to a large extent and with subject, and 

response time. The neurophysiological implication of the scalp maps as well as activation 

waveforms of the components, and how they related to the activity of the independent 

neural structures needs to be further study from both theoretical and experimental.

In addition, ICA can isolate and extract widely distributed stimulus artifact as a 

single output component, and remove it from the reconstructed signal.

Although the ICA technique is relatively new, and its effectiveness in separating 

esophageal EPs into components that reflect underlying brain processes has not yet been 

fully understood, the results reported here are encouraging. They demonstrate that ICA 

could parsimoniously decompose esophageal EP signals into temporally independent, 

spatially fixed, and physiologically plausible components [2]

We believe ICA may lead us to identify components of EP, which may be related to 

neurophysiological generators within the nervous system.
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