
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Creating and Operationalizing Justification Models Using jPipe

Sébastien Mosser
mossers@mcmaster.ca

McMaster University, McSCert
Hamilton, Ontario, Canada

Nirmal Chaudhari
chaudn12@mcmaster.ca

McMaster University, McSCert
Hamilton, Ontario, Canada

Cass Braun∗
braunc8@mcmaster.ca

McMaster University, McSCert
Hamilton, Ontario, Canada

Kai Sun∗
sunk15@mcmaster.ca

McMaster University, McSCert
Hamilton, Ontario, Canada

ABSTRACT

Justification models are a lightweight approach to supporting ac-
creditation, validation, or certification. Usually, when engineers
work on pipelines (e.g., continuous integration/deployment, ma-
chine learning, notebooks), their primary focus is on the pipeline
itself, and the justification of why this pipeline is the right one
for their software is, at best, part of the documentation. This leads
to operational/maintenance problems: Is your machine learning
pipeline reusable? What is the purpose of that “weird” step in your
continuous integration pipeline that you have no idea why it is
there, but the pipeline fails if you remove it? With jPipe, we assume
that justifying software should be easy and support both the initial
modelling of a system and its incremental evolution. In this tutorial,
we will present how the jPipe compiler can be used to model a
justification, how composition algorithms can be used to support
incremental/iterative evolution, and how the compiler’s modular
nature allows one to integrate it into one’s own system. The tutorial
will illustrate these key points of jPipe by using a family of good
practices to validate a data science notebook automatically. It will
guide the audience through (1) the definition of justification mod-
els to validate notebooks, (2) their organization into composable
artifacts, (3) their operationalization into CI/CD pipelines through
code generation and (4) the integration of these justification models
in a standalone Java application.

KEYWORDS

Modelling, Justification, Pipeline, Data Science, Compiler

ACM Reference Format:

Sébastien Mosser, Nirmal Chaudhari, Cass Braun, and Kai Sun. 2024. Creat-
ing and Operationalizing Justification Models Using jPipe. In Proceedings
of ACM/IEEE 27th International Conference on Model Driven Engineering
Languages and Systems (Tutorial) (MODELS’24). ACM, New York, NY, USA,
9 pages. https://doi.org/XXXXXXX.XXXXXXX

∗Author only; Will not be presenting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS’24, September 22–27, 2024, Linz, AU
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

1 PROPOSAL

1.1 Authors

Dr. Sébastien Mosser. Sébastien received his PhD in Computer
Science in 2010 at Université de Nice (France). He is an Associate
Professor at McMaster University (Canada), which he joined after
several years as a research scientist/professor at SINTEF (Norway),
Université Côte d’Azur (France) and Université du Québec à Mon-
tréal (UQAM). He is an executive member of the McMaster Centre
for Software Certification (McSCert), an award-winning research
centre established in 2009 to ensure that software is safe, secure and
dependable. He is also Associate Chair of the Computing and Soft-
ware Department. His research interests are centred on software
engineering at scale, focusing on the definition of composition tech-
niques to support the separation of concerns in various domains.
He regularly gives tutorials in high-quality venues, from academic
conferences [6–8] to industrial forums (e.g., DevLog, General Mo-
tors, Amadeus Global Tech Forum). He has served as conference
chair of MODELS for two editions (2020 and 2022).

Nirmal Chaudhari. Nirmal studies Software Engineering at Mc-
Master University and is a member of the McMaster Centre for
Software Certification (McSCert), which he initially joined in 2023
as a summer intern (with a federal scholarship). Since then, he has
worked as a research assistant on the jPipe tool suite, designing and
implementing composition algorithms to support modularity in the
language and supporting developers by creating a language server
one can use to interact with the language smoothly. In addition to
his study and research project, he is a key member of McMaster’s
EcoCar Team, where he is using his knowledge in modelling and
software engineering to engineer the next generation of battery
electric vehicles (adapting a 2023 Cadillac)

Cass Braun. Cass studies Software Engineering at McMaster
University and is a member of the McMaster Centre for Software
Certification (McSCert). She recently joined the centre as a summer
intern (federal scholarship) and is working on improving the user
experience for developers when using the jPipe language. In her
free time, she is the vocal director of McMaster EngineeringMusical.
She implemented the latest langauge server for the jPipe language
using the Langium platform.

Kai Sun. Kai received his MEng in Software Engineering from
McMaster University in February 2024 after obtaining a Bachelor’s
in Maths and Statistics at the University ofWaterloo. He co-founded
Dazi in January 2024, a software development company in Toronto,

1

https://orcid.org/0000-0001-9769-216X
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MODELS’24, September 22–27, 2024, Linz, AU Sébastien Mosser, Nirmal Chaudhari, Cass Braun, and Kai Sun

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Ontario. As part of his MEng degree, he modelled notebooks best
practices by extracting them from the state-of-practice in Data
Science.

1.2 Format

• Length: 1.5 hours or 3 hours;
• Level: beginner (introductory level);
• Prerequisites:

– Basic knowledge of graph
– Understanding of object-oriented programming

2 DESCRIPTION

The tutorial can be implemented as a 90-minute or 180-minute one.
This description covers a 180-minute setup. An incompressible part
concerns the presentation of (1) justification languages and (2) the
jPipe tooling, which covers the first 30 minutes. If the timeslot is
a 90-minute one, considering the MODELS audience, the tutorial
will focus on the modelling dimension and model composition
operators’ definition and usage. The integration of jPipe in an
existing toolchain through code generation will be demonstrated
in a slideware way rather than with hands-on exercises.

2.1 Validating Notebook Best Practices

The tutorial will start by briefly describing Jupyter notebooks and
how they are classically used in Data Science to implement experi-
ments, from data processing to immediate visualization of results.

Fig 1 is an example of such a notebook. A notebook can be
summarized as an implementation of the literate programming
paradigm [5], where programmers (here, data scientists) mix docu-
mentation and code into a consistent unit. For example, Fig 1a is
a mix of textual description (using Markdown) followed by a cell
that contains executable code running a script (“In [28]” on the
left margin means “input to the Python interpreter”, cell 28).

Writing a notebook is a simple task. One can open Jupyterlab, a
web-based system that will run in their browser and start writing
Python code to process data and plot results (e.g., Fig. 1b). How-
ever, making such notebooks shareable is more challenging: data
scientists might not have the discipline required to engineer soft-
ware, and, as such, makes it deployment-ready. This triggers repro-
ducibility issues for experimental work developed in notebooks.
The reproducibility crisis is not a specific data science thing, as a
recent Nature survey reported that out of 1,500 researchers (not
only data scientists), 75% were not able to reproduce experiments,
and, more specifically, 50% were not able to reproduce their own
experiments [2].

Even if the notebook presented in Fig. 1 is simple (it benchmarks
some off-the-shelf sorting algorithms and plots their execution
times), it must follow good practices to be shareable. Among all
the best practices identified in the literature, we can focus on the
following two:

• Linear execution. In our example, the code executing the
benchmark is provided in cell 28, and the code used to
generate the plots in cells 38 − 39. However, from a data
science point of view, nothing prevents a user from pulling
the plots at the beginning of their notebook to present
them first, as they are the key result. When doing so, to

out [27]:

In [28]:

In [29]:

Out [29]:

(a) Running external benchnmark

out [37]:

In [38]:

In [39]:

out [39]:

(b) Plotting benchmarked results

Figure 1: Example of Jupyter notebook

reproduce the results, one would have to first go to the end
of the notebook to execute the code and then come back to
the first cell to draw the plot. This is not maintainable, so a
good practice is to ensure that a notebook is linear, i.e., can
be executed from top to bottom automatically.

• Coding standards (PEP8). To ensure code understand-
ability, the Python community relies on the following as-
sumption: “code is read much more often than written”. As
such, they have defined an extensive coding style that pre-
scribes how Python code must be written to ensure read-
ability and, transitively, maintenance. In Fig. 1b, we can
identify a violation of the PEP8 standard, with a missing
whitespace inside function calls in cell 29 (the instruction
plot_box([bubble_vals],[’bubble’],␣ax[0]) should
be plot_box([bubble_vals],␣[’bubble’],␣ax[0])).

Participants involvment: The audience will be presented with
the use case used as an example and given a quick demonstration of
how a notebook works in JupyterLab. An example notebook will be
provided as part of the tutorial starter kit, as the tutorial focuses on
the justification of notebooks rather than the notebooks themselves.

2.2 Justification Diagrams and jPipe Tooling

The first part exemplified how notebooks work and how sharing
such artifacts is challenging. In this second part, we will introduce
justification models as a way to capture why things are the way
they are in a given piece of software. To support this task, we are

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Creating and Operationalizing Justification Models Using jPipe MODELS’24, September 22–27, 2024, Linz, AU

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Unit

fileName: String

Justification

name: String

Conclusion

JustificationElement

id: Symbol
label: String

Strategy Support

EvidenceSubConclusion

1..*

1

1 1..*

1

Figure 2: jPipe justification metamodel

using a justification diagram metamodel to capture the essence
of a justification: starting from concrete Evidence, the model pro-
gresses towards a final Conclusion by using Strategy(ies) to reach
SubConclusions, used to feed subsequent strategies. This meta-
model (Fig. 2)is a simplification of the initial justification diagram
proposed in 2016 [9], and can be seen as a simplification of the Goal
Structuring Notation (GSN) [4].

The objective is to provide the simplest metamodel to capture the
essence of Toulmin’s model [10] identified in 1958, while removing
the complexity engineers can see as accidental when discovering
these models. When users are comfortable with these notions and
realize complex cases require more complex tools, they can migrate
to more expressive tools and language, such asWF+ or Astah Safety.
The tool is available as a standalone compiler and a VS Code exten-
sion, as depicted in Fig. 3. In this picture, the left panel is where
the data scientist is modelling their justification. The right panel
provides a graphical representation of their justification. Finally,
the bottom panel allows one to invoke the compiler manually and
get helpful feedback on the model (e.g. inconsistencies or errors).

Participants involvment: The audience will have the opportunity
to install jPipe on their computer (it only requires a recent JDK) or
to use a provided image containing all the necessary software in a
containerized environment.

2.3 Modelling a Justification

jPipe is implemented as a textual domain-specific language (DSL)
to instantiate models conforming to the previously described meta-
model. The tool can compile a textual model into a graphical repre-
sentation using the graphical syntax initially described by Duffau et.
al [3]. Fig 4a describes how one can model the situation presented
in the previous section using the textual DSL, modelling why a
given notebook is shareable. Fig 4b is the graphical representation
obtained by compiling such a model.

composition complete {

justification shareable is reproducible with fair

}

Listing 1: Directive to compose independent models

Participants involvment: The audience will work with an incom-
plete justification model to run the compiler, understand the error
message, and fix the model by providing the missing information.

2.4 Merging Justification Models

Building justification models often aggregates multiple concerns.
In the previous case, one can consider two different concerns from
two stakeholders: (1) code quality concerns, coming from develop-
ers, and (2) reproducibility of the experiment, coming from a data
scientist. Even if, in the case of notebook development, these two
roles can be merged into the data scientist role, from a software
engineering point of view, one can still make a distinction, as their
objectives/goals are different.

jPipe supports the separation of concerns paradigm by defining
independent justificationmodels and using a composition algorithm
to build the final justification by merging its input. As such, one can
express a justification model targetting the reproducible concern
(in a model named reproducible), and another stakeholder can
do the same for the code fairness one (in a model named fair). One
can then compose both concerns into a model named shareable,
automatically generating, as a result, the model we manually built
in the previous step.

Participants involvment: The audience will take two existing
models (provided) and write the composition directive to merge them.
They will also add a third concern to their shareability justification
to practice (1) writing justification models and (2) their automated
composition.

2.5 Structuring Justification Models

One can assemble elements using automatic merge, but the final
structure depends on how each concern is modelled. In cases where
a given structure needs to be ensured, the open-ended merge ap-
proach might not be suitable.

Consequently, jPipe supports the user when modelling so-called
patterns to implement abstract justifications. These justifications
contain abstract supporting steps that need to be concretized when
instantiating the pattern. Such a pattern to support both repro-
ducibility and code fairness is represented in Fig. 5. The pattern,
named shareable_P, models that a notebook can be shared when
two quality gates are met. However, how these quality gates are
concretely realized (the two leaves) depends on the team, project,
and product. One can then instantiate the pattern when writing a
justification, and the compiler will reject the model if it does not
provide a concrete justification for each abstract support defined at
the pattern level.

Participants involvment: The audience will take the provided
pattern and refactor the justification modelled in the previous step

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MODELS’24, September 22–27, 2024, Linz, AU Sébastien Mosser, Nirmal Chaudhari, Cass Braun, and Kai Sun

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: jPipe environment (VS Code extension)

into a pattern instantiation. They will experiment with the compiler
completeness check when a pattern is only partially realized.

2.6 Generating Validation Code – Optional

So far, the models we developed are only descriptive. This part of
the tutorial will demonstrate how to enrich the model with so-called
implementation concerns to provide a concrete way of supporting
the validation of the requirements they modelled.

For example, the strategy “Verify notebook has linear execution
order” can be automatically verified using a tool named pynblint1,
a linter for Jupyter notebooks containing Python code.

The tutorial will demonstrate how one can enrich a justification
by associating to it an implementation, i.e., a set of meta-data that
implements the justification for a given context. One can then
use model transformations (provided in the compiler) to generate
validation code from the justification model and its implementation
meta-data.

Participants involvment: The audience will have access to an
implementation file containing complicated commands dedicated to
notebooks. They can enrich it with more common knowledge (e.g.,
check that a file exists) and use the completed implementation meta-
data to generate a Github Action continuous integration pipeline
automatically.

1https://github.com/collab-uniba/pynblint

2.7 Integrating into an existing tool – Optional

The final step of this tutorial is to demonstrate how jPipe is designed
as an extensible platform. One can use the provided library to load
justification models from text files and then (1) create their own
composition algorithm and (2) use their own model transforma-
tion to generate proprietary code or integrate it into service-based
systems, for example.

For this final step of the tutorial, we will consider a library of
“off-the-shelf” justification for best practices. According to a product
line philosophy, one can select the best practice theywant to enforce
in their notebook, and we will demonstrate how jPipe can be called
programmatically to assemble the final justification and scaffold
the development of a notebook to conform to the selected practices.

Participants involvment: The audience will load a REPL-like
(Read-Eval-Print-Loop) application that allows one to navigate among
standard best practices for notebooks and select the one they want.
They will have to write approximately 40 lines of Java code as part of
a provided skeleton to call jPipe programmatically and generate scaf-
folding code to create a new notebook and the associated validation
code based on their selection. The effort will be to demonstrate the
integration with external tooling, and notebook-specific code will be
provided. People not comfortable with Java will also have access to
the solution if they do not feel comfortable coding.

4

https://github.com/collab-uniba/pynblint

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Creating and Operationalizing Justification Models Using jPipe MODELS’24, September 22–27, 2024, Linz, AU

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

justification notebook_quality {

evidence notebook is "notebook file exists"

conclusion shareable is "Notebook can be shared"

strategy gate is "Assess quality gates are met"

gate supports shareable

sub -conclusion repro is "Execution environment is reproducible"

strategy linear is "Verify notebook has linear execution order"

repro supports gate

linear supports repro

notebook supports linear

sub -conclusion fair is "Notebook code quality is fair"

strategy pep8 is "Check PEP8 coding standard"

fair supports gate

pep8 supports fair

notebook supports pep8

}

(a) Textual DSL

notebook_quality

Notebook can be shared

Assess quality gates are met

Execution environment is reproducible

Verify notebook has linear execution order

notebook file exists

Check PEP8 coding standard

Notebook code quality is fair

(b) Graphical representation

Figure 4: Domain-specific language(s) used in jPipe

<<pattern>> shareable_P

Notebook can be shared

Assess quality gates are met

Execution environment is reproducible Notebook code quality is fair

Figure 5: Justification Pattern example

3 NOVELTY

The tutorial aligns with the MODELS conference’s core goal, as it
targets a modelling approach to support software engineers. The
novelty factor relies on its focus on “modelling justifications”, to help
the audience understand and practice how to model such dimension
of a given project using a lightweight tool like jPipe.

More specifically, quoting the MODELS 2024 call for paper, the
tutorial will provide the audience insights on the following aspects
of modelling:

• Presentation of a lightweight paradigm to support justi-
fication modelling at scale (“New paradigms, formalisms,
applications, approaches, frameworks, or processes for model-
based engineering such as low-code/no-code development,
digital twins, etc.”)

• Hands-on approach using the provided open-source com-
piler and/or the visual code extension (“Tools, meta-tools,
and language workbenches for model-based engineering, in-
cluding model management and scalable model repositories.”)

• Demonstration of applicability of the tool and language
on real-life examples, modelling best practices created by
domain experts (“Modeling in software engineering, e.g., ap-
plications of models to address common software engineering
challenges.”)

• Hands-on exercises using data science notebooks as target
(“Modeling with, and for, novel systems and paradigms in

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MODELS’24, September 22–27, 2024, Linz, AU Sébastien Mosser, Nirmal Chaudhari, Cass Braun, and Kai Sun

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

fields such as [. . .], data analytics, data science, machine
learning, [. . .].”)

3.1 Previous MODELS editions (last ten years)

The MODELS conference series has a long tradition of tutorials,
which can cover foundational topics as well as very practical tool-
ing. In this regard, this tutorial will cover both dimensions, with
an introduction to justification modelling followed by hands-on
exercises using existing open-source tooling.

Concerning previous tutorials, the closest tutorial would be
“Assurance of Complex Software-Intensive Systems using WF+ (T5)”
given in 2020, which focused on assurance case modelling using
WF+ (another tool developed and maintained at McSCert [1]). Con-
trarily to WF+, jPipe does not focus on safety-critical systems and
is defined as a lightweight approach to democratize justification-
based models. As we are using jPipe to model justification as a basis
to validate requirements, it can also be linked to “Model-Driven Re-
quirements Engineering (T6)” in 2014. From a bird-eye point of view,
as it uses an operational DSL as an interface, the tutorial builds
on top of our previous community effort on making DSL tech-
nologies accessible, such as: “Compositional Modeling Languages
in Action: Engineering and Application of Heterogeneous Languages:
compositional dimension/modularity” (2023), “Agile, Web-Centric,
Model-Driven Development of Real Systems Using Umple: code gener-
ation, product line approach” (2022), “Shadow Models: Incremental
Model Transformations as an Enabler for Language Implementations.
Incremental evolution and transformation based approach.” (2019),
“Managing the Co-Evolution of Domain-Specific Languages and Mod-
els” (2018), and “Applying Model Driven Engineering Technologies in
the Creation of Domain Specific Modeling Languages” (2016, 2015,
2014).

3.2 Required Infrastructure

The tutorial will alternate between a “lecture”- like period where the
presenter(s) deliver new material to the audience and a "hands-on"
period where participants can practice what they have just learned.
Consequently, we will need a video projector to project the training
material and access to a Wi-Fi network so that participants can
download the training material on their computer at the beginning
of the tutorial.

In the case of virtual delivery, the tutorial can easily be moved
to a remote platform such as Zoom or MS Teams by using screen
sharing to share material and having dedicated breakout rooms to
support participants while doing the practical part.

3.3 Sample slides

See page 7-9 for some sample slides related to jPipe. These slides
were initially designed for a talk given in the context of the MDENet
Research Demonstration Series on June 6th, 2024. The talk is avail-
able on the MDENet Youtube channel2. Additional material was
developed as internal training for McSCert and the NSERC/MI-
TACS Alliance project “DevOps for Software Defined Network”. This
project involves participants from TELUS (a major telco company in
Canada), Queen’s University and École de Technologie Supérieure
(ETS Montréal).
2https://www.youtube.com/@mdenet2528

REFERENCES

[1] Nicholas Annable, Thomas Chiang, Mark Lawford, Richard F. Paige, and Alan
Wassyng. 2023. Lessons Learned Building a Tool for Workflow+. In 26th
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, MODELS 2023, Västerås, Sweden, October 1-6, 2023. IEEE, 140–150.
https://doi.org/10.1109/MODELS58315.2023.00032

[2] Monya Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature News
533, 7604 (May 2016), 452. https://doi.org/10.1038/533452a

[3] Clément Duffau, Thomas Polacsek, and Mireille Blay-Fornarino. 2018. Support of
Justification Elicitation: Two Industrial Reports. In Advanced Information Systems
Engineering - 30th International Conference, CAiSE 2018, Tallinn, Estonia, June
11-15, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10816), John
Krogstie and Hajo A. Reijers (Eds.). Springer, 71–86. https://doi.org/10.1007/978-
3-319-91563-0_5

[4] Tim Kelly. 2004. The Goal Structuring Notation – A Safety Argument Notation.
https://api.semanticscholar.org/CorpusID:18921431

[5] Donald E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (1984), 97–111.
http://dblp.uni-trier.de/db/journals/cj/cj27.html#Knuth84

[6] Sébastien Mosser and Jean-Michel Bruel. 2018. Reconciling Requirements and
Continuous Integration in an Agile Context (Tutorial). In 26th IEEE International
Requirements Engineering Conference, RE 2018, Banff, AB, Canada, August 20-24,
2018, Guenther Ruhe, Walid Maalej, and Daniel Amyot (Eds.). IEEE Computer
Society, 508–509. https://doi.org/10.1109/RE.2018.00076

[7] Sébastien Mosser and Jean-Michel Bruel. 2021. Requirements Engineering in
the DevOps Era (Tutorial). In 29th IEEE International Requirements Engineering
Conference, RE 2021, Notre Dame, IN, USA, September 20-24, 2021. IEEE, 510–511.
https://doi.org/10.1109/RE51729.2021.00079

[8] Sébastien Mosser and Jean-Michel Bruel. 2024. Modern Teaching of Require-
ments Engineering and Business Analysis (Tutorial). In 32nd IEEE International
Requirements Engineering Conference, RE 2024, Reykjavik, Iceland, June 24-28,
2024. IEEE.

[9] Thomas Polacsek. 2016. Validation, accreditation or certification: A new kind of
diagram to provide confidence. In Tenth IEEE International Conference on Research
Challenges in Information Science, RCIS 2016, Grenoble, France, June 1-3, 2016.
IEEE, 1–8. https://doi.org/10.1109/RCIS.2016.7549297

[10] Stephen E. Toulmin. 2003. The Uses of Argument. Cambridge University
Press. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=
ASIN/0521534836

6

https://www.youtube.com/@mdenet2528
https://doi.org/10.1109/MODELS58315.2023.00032
https://doi.org/10.1038/533452a
https://doi.org/10.1007/978-3-319-91563-0_5
https://doi.org/10.1007/978-3-319-91563-0_5
https://api.semanticscholar.org/CorpusID:18921431
http://dblp.uni-trier.de/db/journals/cj/cj27.html#Knuth84
https://doi.org/10.1109/RE.2018.00076
https://doi.org/10.1109/RE51729.2021.00079
https://doi.org/10.1109/RCIS.2016.7549297
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0521534836
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0521534836

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 1

Safety?
• Definition from Merriam-Webster:

• “The condition of being safe from undergoing or causing hurt, injury, or loss”

• Lots of work on safety-critical systems:

• Very sharp research expertise.

• What does it mean for a Software Defined Network?

• 24-hour cell network outage in Toronto, resulting in 911 not being reachable

• What does it mean for the Mental Health Natural & Language Processing?

• Your most intimate thoughts are sent to an LLM and used for training.

So we are not talking about
Safety-Critical Systems

(and maybe not even mixed-criticality systems)

But that’s not an excuse
to ignore these situations!

(We need to a way to express and validate these “requirements”)

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 3

Explaining is not Justifying

“Documentation”

“Actionable
requirements

validation”

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 4

“The experiment shall be reproducible”.
• Context:

• Working with NLP researchers since 2019

• Worst case:

• No info. Fingers crossed, hope for the best.

• Best case:

• Notes in a meeting’s report (e.g., minutes, doc)

• Real life(c):

• info encoded in cryptic shell commands/APIs

We need to defend that the way
we’re building software is

Just, Right, Reasonable
|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering

presentation

Presentation is Ready

All conditions are met

content is approved by legal

Check contents w.r.t. NDA

Slides are available

Check Grammar/Typos

NDA is signed

Professional standard are met

6

Justification (meta-)Model?
jPipe Domain Model

Unit

fileName: String

Justification

name: String

Conclusion

JustificationElement

id: Symbol
label: String

Strategy Support

EvidenceSubConclusion

1..*

1

1 1..*

1

Toulmin-like argumentation model
(Polascek, 2016)

Keep it simple, stupid!

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Creating and Operationalizing Justification Models Using jPipe MODELS’24, September 22–27, 2024, Linz, AU

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

8127

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 7

Why Justif. Diagrams (JD) and not others?
• Lots of work exists in this realm (e.g., GSN, WF+)

• Toulmin’s work is from the 50s, after all.

• Extensive work on Assurance Cases:

• “A structured set of arguments and a body of evidence
showing that an information system satisfies specific
claims with respect to a given quality attribute.” [NIST]

• Let’s consider JD as “poor man’s language.”

• Poor man here being “average soft. developer”

• It’s not as powerful as safety/assurance cases, but easier to apprehend.

https://owl.purdue.edu/owl/general_writing/academic_writing/
historical_perspectives_on_argumentation/

toulmin_argument.html

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 8

Notebook Quality?
• Jupyter Notebooks

• Literate Programming

• Massively used in ML/Data Science

• Software Engineering support:

• Best Practices/Guidelines

• Linter (-ish) tooling

• Problem?

• Can I share a given notebook?
https://developers.lseg.com/en/article-catalog/article/how-to-set-up-and-run-data-science-development-environment-with-

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 9

Getting jPipe on your computer
• Standalone compiler

• Java & ANTLR

• VS Code Extension

• Language server using LEVER

• Basic LS support:

• Syntax highlighting

• Code completion

• Fold/unfold
https://marketplace.visualstudio.com/items?itemName=mcscert.jpipe-extension

Let’s call this
a “work in

progress” :)

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 10

A Textual DSL to express justifications models
justification notebook_quality {

 evidence notebook is "notebook file exists"

 conclusion shareable is "Notebook can be shared"
 strategy gate is "Assess quality gates are met"
 gate supports shareable

 sub-conclusion repro is "Execution environment is reproducible"
 strategy linear is "Verify notebook has linear execution order"
 repro supports gate
 linear supports repro
 notebook supports linear

 sub-conclusion fair is "Notebook code quality is fair"
 strategy pep8 is "Check PEP8 coding standard"
 fair supports gate
 pep8 supports fair
 notebook supports pep8

 }

jPipe Domain Model

Unit

fileName: String

Justification

name: String

Conclusion

JustificationElement

id: Symbol
label: String

Strategy Support

EvidenceSubConclusion

1..*

1

1 1..*

1

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 11

Using the standalone compiler

notebook_quality

Notebook can be shared

Assess quality gates are met

Execution environment is reproducible

Verify notebook has linear execution order

notebook file exists

Check PEP8 coding standard

Notebook code quality is fair

./jpipe -d notebook_quality -f SVG -i models/02_quality_full.jd -o full.svg

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 12

Using the VS Code extension

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MODELS’24, September 22–27, 2024, Linz, AU Sébastien Mosser, Nirmal Chaudhari, Cass Braun, and Kai Sun

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

9288

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 13

Composability of models?

notebook_quality

Notebook can be shared

Assess quality gates are met

Execution environment is reproducible

Verify notebook has linear execution order

notebook file exists

Check PEP8 coding standard

Notebook code quality is fair

Reproducibility
Code Fairness

Automated composition makes sense here
because of the “additive” nature of these models.

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 14

“Shareable” as composition of “reproducible” and “fair”

reproducible

Notebook can be shared

Assess quality gates are met

Execution environment is reproducible

Verify notebook has linear execution order

notebook file exists

fair

Notebook can be shared

Assess quality gates are met

Notebook code quality is fair

Check PEP8 coding standard

notebook file exists

⊕
composition complete { justification shareable is reproducible with fair }

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 15

Argumentation Patterns

<<pattern>> shareable_P

Notebook can be shared

Assess quality gates are met

Execution environment is reproducible Notebook code quality is fair

pattern shareable_P {

 conclusion c is "Notebook can be shared"
 strategy gate is "Assess quality gates are met"
 gate supports c

 @support repr is "Execution environment is reproducible"
 repr supports gate

 @support fair is "Notebook code quality is fair"
 fair supports gate

}

Off-the-shelf patterns to
be used by developers

One might need templates to structure models when
purely additive composition does not make sense

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 16

Instantiating a pattern

pep8_linear

Notebook can be shared

Assess quality gates are met

Execution environment is reproducible

Verify notebook has linear execution order

notebook file exists

Check PEP8 coding standard

Notebook code quality is fair

<<pattern>> shareable_P

Notebook can be shared

Assess quality gates are met

Execution environment is reproducible Notebook code quality is fair

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 17

Instances only “fills in the blanks”

justification pep8_linear implements shareable_P {

 sub-conclusion repr is "Execution environment is reproducible"
 strategy s0 is "Verify notebook has linear execution order"
 s0 supports repr

 sub-conclusion fair is "Notebook code quality is fair"
 strategy s2 is "Check PEP8 coding standard"
 s2 supports fair

 evidence e is "notebook file exists”
 e supports s0
 e supports s2

}

pattern shareable_P {

 conclusion c is "Notebook can be shared"
 strategy gate is "Assess quality gates are met"
 gate supports c

 @support repr is "Execution environment is reproducible"
 repr supports gate

 @support fair is "Notebook code quality is fair"
 fair supports gate

}

The compiler fails if the
pattern is not instantiated

correctly

Assemble your
elements in a software

product line way!

|04 June 2024| Sébastien Mosser, Computing and Software (CAS), Faculty of Engineering 18

Same pattern, but other instantiation

pinned_paths

Notebook can be shared

Assess quality gates are met

Execution environment is reproducible

Verify dependencies version are correctly pinned

Pipenv file exists

Notebook code quality is fair

all checks are OK

static paths are part of the repository

Verify static paths

notebook file exists

No dynamic paths are used

Record dynamic paths oath

Developer ensures absence of dynamic paths

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Creating and Operationalizing Justification Models Using jPipe MODELS’24, September 22–27, 2024, Linz, AU

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

10449

	Abstract
	1 Proposal
	1.1 Authors
	1.2 Format

	2 Description
	2.1 Validating Notebook Best Practices
	2.2 Justification Diagrams and jPipe Tooling
	2.3 Modelling a Justification
	2.4 Merging Justification Models
	2.5 Structuring Justification Models
	2.6 Generating Validation Code – Optional
	2.7 Integrating into an existing tool – Optional

	3 Novelty
	3.1 Previous MODELS editions (last ten years)
	3.2 Required Infrastructure
	3.3 Sample slides

	References

