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Lay Abstract

This thesis explores ways to measure the accuracy and reliability of a 3D represen-

tation called a point cloud created from radar data. Radar, like the kind used in car

driving assist features, can detect objects and people by transmitting high-frequency

radio waves. This thesis focuses on developing evaluation methods to assess how

closely point clouds match objects or people in the real world.

Experiments were conducted in a laboratory environment to validate these evalu-

ation methods. Static corner reflectors, known for their strong radar signal reflection,

were used to assess the system’s performance in capturing exact positions. Addition-

ally, the study examined the quality of point clouds in representing moving human

subjects.

The objective is to develop a set of metrics that quantify the performance of

various point cloud generation methods. These quantitative measures can improve

the accuracy and reliability of the point cloud generation pipeline, thereby improving

downstream applications such as indoor localization and monitoring.
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Abstract

This thesis tackles the challenge of employing quantifiable metrics to assess the qual-

ity of point clouds generated by various distinct pipelines using TI IWR6843AOP

mmWave FMCW radar. This study focuses on developing quantifiable metrics to

evaluate point cloud quality for both static targets, such as the corner reflectors used

in this research, and human targets.

For static point targets, this study introduces metrics that combine Euclidean

distance errors with range, azimuth, and elevation angle errors, providing a more

comprehensive assessment compared to using Euclidean distance errors alone.

For human targets, this thesis introduces metrics from two perspectives. The first

focuses on coverage, employing the Euclidean distance to the human mesh surface to

quantify errors between the ground truth human mesh and the point cloud. Addition-

ally, It calculates the Euclidean distance between each point and all joints, selecting

the minimum distance to determine the closest joint and evaluating the percentage

of points reflected from each body segment. The second focus is on consistency.

Point cloud consistency across consecutive frames is assessed by analyzing the mean

and maximum intensity values and calculating Hausdorff distances to evaluate the

stability of the point cloud distribution.
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Chapter 1

Introduction

1.1 Motivation

Remote sensing using mmWave radar has become increasingly popular in many fields,

such as smart homes and in-home health monitoring. These fields encompass a range

of tasks but are not limited to vital sign monitoring [30], people counting [10, 19],

posture classification [22], fall detection [32], as well as human target tracking and

classification [28] and construction [29, 31]. Various forms of radar data representa-

tions are explored for different kinds of tasks, such as range maps, range angle maps,

2D heat maps in Cartesian coordinates and point clouds.

The choice of representation depends on the task. Range map as shown in Fig-

ure 1.1a has combined information on every range bin, it does not contain any angular

information. For tasks like single-person vital sign monitoring, only the range map

is used to identify the range bin containing the person because there is no need to

detect a second person or object, tracking the range bin for each frame is sufficient

for further vital sign extraction [30].
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The range-angle map is a data representation where one axis corresponds to range,

and the other axis represents either azimuth or elevation angles within a single frame

as demonstrated in Figure 1.1b. For object detection and classification, where three-

dimensional positional information is unnecessary but having information on reflec-

tion intensities and object dimensions is essential, the range-angle map provides a

suitable data representation. For instance, a car and a human vary in the number

range bin and angle cells each occupies [8].

Human representation can use a 2D heat map in Cartesian coordinates [33]. A

2D heat map is a projection derived from a three-dimensional Cartesian heat map

with x, y, and z axes. The 2D heat map is generated by reducing one axis, typically

using either the average or maximum value along that axis, leaving only two axes

for visualization as illustrated in Figure 1.1c. However, for tasks requiring three-

dimensional positional data, such as localization and fall detection, a more complex

form of data representation is needed such as point clouds [32, 14].

A point cloud as shown in Figure 1.1d is a representation of radar data, consisting

of selected points with their corresponding three-dimensional Cartesian coordinates,

intensity values, and optionally velocity information. The Cartesian coordinates are

derived from the azimuth and elevation angles obtained from the radar antenna ar-

ray. Point clouds provide more comprehensive information compared to other forms

of data representations. Compared to range-angle maps and 2D Cartesian heat maps,

three-dimensional point clouds offer a more comprehensive representation of spatial

information. Range-angle maps and 2D heatmaps can provide only partial insights

into the environment as they are inherently limited. Additionally, these representa-

tions are more sensitive to the placement and orientation of the radar system induced

2
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by their two-dimensional nature. In contrast, three-dimensional point clouds capture

the full spatial geometry of the scene, enabling coordinate transformations such as

coordinate rotations. This makes them particularly suitable for applications like 3D

indoor human tracking, where precise position and height of the person relative to

the room, rather than the device placement, are essential for accurate analysis.

(a) Range vs Time Map (b) Range Angle Map

(c) 2D Cartesian Heatmap (d) Point Cloud

Figure 1.1: Examples of different representation of radar data

This research addresses two research questions.

• What are the objective measures to quantify the quality of point

clouds for target detection.

• How various pre-processing pipelines and different parameter con-

figurations for point cloud generation perform when assessed using

these metrics.

3
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For tasks that utilize point clouds as inputs, the quality of the point cloud will

impact the performance of downstream processes, regardless of whether conventional

point cloud processing or neural networks are applied. Therefore, quantitative met-

rics are essential for evaluating point clouds, enabling a thorough understanding of

their quality and identifying potential errors. The conventional method that utilizes

Euclidean distance between the ground truth point cloud and captured or simulated

point cloud could provide information on how closely the point cloud generated re-

sembles the ground truth. In [5], the mean Euclidean distance is calculated between

the reconstructed point cloud and key ground-truth landmarks, similarly in [18], it is

computed between the simulated and ground-truth point clouds. Euclidean distance

serves as an effective metric for quantifying localization accuracy for discrete point

targets. However, mean Euclidean distance alone does not account for the spatial

coverage of the point cloud relative to the full extent of the human target, limiting

its effectiveness in assessing comprehensive representation. In addition, Euclidean

distance lacks the capacity to provide insight into the underlying factors contributing

to the observed error.

Another metric commonly employed is Intersection over Union (IoU), it provides

information on how much ground truth and point cloud overlap. In [6], IoU metrics

are utilized to compare the bounding box of the ground truth with the predicted

bounding box derived from point clouds. In [20], IOU metrics are calculated based on

the predicted point cloud and the true point cloud derived from the groundtruth. IoU

metric quantifies how much the generated point cloud overlaps with the groundtruth

point cloud. However, this method does not account for the coverage of the point

cloud, which is influenced by factors such as the observed object’s geometry, the

4
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radar’s placement, and its Field of View (FOV). The IoU metric based on bounding

boxes is primarily suitable for objects with rigid shapes. For human subjects with

complex and articulated body structures, bounding box based IoU can overestimate

the occupied space by including background regions, leading to inaccurate localization

and assessment of detection accuracy. As demonstrated in [24], the distribution of

reflection points from targets such as the human body is inherently non-uniform and

varies depending on the subject’s posture and the radar’s positioning. However, the

ground-truth-derived point cloud uniformly represents the entire human body, which

can lead to discrepancies in the IoU metric assessment due to mismatched spatial

coverage.

Neither Euclidean distance nor IoU provides insight into the underlying sources of

error. Both metrics are limited in quantifying point cloud coverage of the human body,

as they primarily focus on spatial distribution while neglecting temporal consistency.

To overcome these limitations, this study introduces refined quantitative metrics and

evaluates the performance of different point cloud generation pipelines for both human

and static targets.

• For static targets, this work proposes a metric composed of Euclidean distance

error, range error, and azimuth and elevation angle errors, providing a more

comprehensive assessment of point cloud quality compared to relying solely on

Euclidean distance. Five distinct pipelines are evaluated, with the pipeline in-

corporating MVDR for angle estimation and the variance-based target detection

algorithm demonstrating the highest overall performance.

• For human targets, this work introduces a combination of coverage evaluation

and consistency evaluation. Coverage assessment measures the proportion of

5
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points originating from human reflections and evaluates the extent of coverage

across different body parts under various scenarios. Consistency evaluation in-

volves analyzing the intensity of reflections across frames and computing the

Hausdorff distance between frames, assuming the human target remains sta-

tionary with no changes in its 3D Cartesian position relative to the radar.

The pipeline involving MVDR as spectrum estimation, Mean removal as clut-

ter removal, and CFAR as target detection has the best overall performance.

An alternative pipeline employing an MTI filter for clutter removal and the

variance-based method for target detection exhibited comparable performance

in coverage assessment across most scenarios.

1.2 Organization of the thesis

Chapter 2 introduces the fundamental principles of FMCW radar and highlights key

characteristics of the radar utilized in this study. Chapter 3 will cover the pipeline of

radar point cloud generations and various algorithms employed. Chapter 4 will discuss

the quantitative evaluation metrics. Chapter 5 outlines the experimental setup and

ground truth generation process, followed by a presentation of the evaluation results.

6
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Chapter 2

Background

2.1 FMCW Radar Fundamental Principle

A Frequency-Modulated Continuous-Wave (FMCW) radar transmits signals at reg-

ular intervals, a chirp s(t) transmitted at time t is defined as

s(t) = Ate
j(2πf0t+πSt2), 0 ≤ t ≤ Ts. (2.1.1)

The chirp signal s(t) has its frequency linearly increasing over the period Ts from

the starting frequency f0. At is the complex amplitude of the signal. The slope S

of the linear frequency modulation is defined as
(fTs − f0)

Ts

, where fTs represents the

maximum frequency attained at the end of the period, and bandwidth B = fTs− f0.

For signal reflected from a single point target, the received signal r(t) has a time

delay td(t) to the transmitted signal s(t).

r(t) = AtAre
j(2πf0(t−td(t))+πS(t−td(t))

2), 0 ≤ t ≤ Ts. (2.1.2)

7



M.A.Sc. Thesis – B. Jiang; McMaster University – Computing and Software

Figure 2.1: Frequency of chirp signal as a function of time

The time delay td(t) is given by
2R(t)

c
[2], where R(t) represents the range between

the radar and the target at time t. c denotes the constant for the speed of light. r(t)

and s(t) are combined via a mixer to produce an intermediate frequency (IF) signal,

y(t) is

y(t) = AtAre
j2πf0t−2πf0(t−td(t))+πSt2−πS(t−td(t))

2

0 ≤ t ≤ Ts, (2.1.3)

The equation above can be reformulated as follows:

y(t) = AtAre
j(4π

r(t)
λmax

+4πS
r(t)
c

t−4πS
r2(t)

c2
), 0 ≤ t ≤ Ts, (2.1.4)

where λmax =
c

f0
. In the case of a stationary target, y(t) is, in fact, a pure tone signal,

for two stationary objects with a range difference of ∆r, the difference in their fre-

quencies is given by ∆f =
2S∆r

c
. Since the frequency resolution is given by ∆f >

1

Ts

,

we have
2S∆r

c
>

1

Ts

, or equivalently ∆r =
c

2STs

=
c

2B
[16]. It demonstrates that

range resolution ∆r only depends on the bandwidth B of the chirp transmitted.

FMCW radar can also transmit multiple chirps continuously within one frame, (2.1.4)

8
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can be discretized as

y(i,m) = AtAr(tm)e
j(4π

r(m)
λmax

+4πS
r(m)

c
i), 1 ≤ i ≤ nk, 1 ≤ m ≤ nc. (2.1.5)

The third term in the exponent in (2.1.4) is omitted due to its negligible magnitude

in indoor sensing, when the range r(t) is small. nk represents the number of fast-

time samples within a chirp signal, corresponding to the number of range bins. The

second term in (2.1.5) ej(4πS
r(m)

c
ti) can be translated to range information. The first

term represents the phase for each range bin. nC denotes the number of slow-time

samples, or equivalently, the number of transmitted chirps. Multiple chirps at the

same range bin can be used to extract Doppler information. To avoid ambiguity,

the phase shift between two consecutive chirps must remain below π, requiring that

4πvTs

λmax

< π. Hence, the maximum relative speed vmax can be measured by two

consecutive chirps is [16]

vmax =
λmax

4Ts

. (2.1.6)

2.2 Texas Instrument Radar Characteristics

The radar used for this work is Texas Instrument IWR6843AOP. TI IWR6843AOP

is an FMCW multiple-input, multiple-output (MIMO) radar. It has 4 receiving and

3 transmitting antennas. The multiple antenna configuration enables angle estima-

tion. Angle estimation is induced by the physical separations between antennas, as

illustrated in the figure below.

9
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Figure 2.2: Basis of angle of arrival estimation

Figure 2.2 shows that for the same chirp and the same range bin, the target travels

an additional distance d to RX2 than RX1 due to the geometry of the antenna array

In practice d is usually small, introducing an extra phase to the first term in (2.1.5),

expressed as ej(4π
r(tm)+d
λmax

). This additional phase term can be further exploited to

estimate the angle of arrival (AoA) of targets. The TI IWR6843AOP FMCW MIMO

radar, equipped with four receive antennas and three transmit antennas, forms a

virtual array of 12 elements. This configuration enables the radar to achieve a 120-

degree azimuth field of view (FOV) and a 120-degree elevation FOV [13]. The antenna

geometry is illustrated in figure 2.3.

10
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(a) Transmit and receive antennas. (b) Virtual antenna array.

Figure 2.3: Antenna array geometry of TI IWR6843AOP.

As shown in Figure 2.3, spacing between virtual antennas is
λ

2
, where λ ≈

5mm. TI IWR6843AOP radar is capable of transmitting chirps at frequencies between

60GHz to 64GHz [13]. The specifications and important setting for this work is shown

in Table 2.1.

Chirp Duration ADC Sample Rate Number of ADC Samples
50 µs 4500 ksps 225
Range Resolution Elevation Angular Resolution Azimuth Angular Resolution
4.41 cm 29 degree 29 degree
Elevation FOV Azimuth FOV Frequency Start
+/- 60 degree +/- 60 degree 60GHz
Frequency End Frequency Slope
63.4GHz 68MHz/µs

Table 2.1: Specifications and setting of IWR6843AOP

11
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Chapter 3

Point Cloud Generation

The raw ADC (analog-to-digital converter) data is initially partitioned based on the

number of frames nf . For each frame, f , the raw data is organized into a three-

dimensional complex-valued data cube with dimensions (v, nk, nc) as demonstrated

in Figure 3.1, where v is the number of virtual antenna channels. nk represents

the number of fast-time sample points, corresponding to the number of range bins

after range estimation. nc denotes the number of chirps or the slow time samples

transmitted per frame. Consistently, all frames within a single trial have an identical

number of transmitted chirps and sampled points. As shown in (2.1.4), differences in

range result in frequency variations within the raw data. To extract range information

from the raw ADC data of a single frame, a discrete Fourier transform must be applied

along the fast-time sample axis.

Y [k] =

nk∑
ti=1

y[ti]e
j
(−2π)(ti−1)(k−1)

nk , 1 ≤ k ≤ nk. (3.0.1)

This Fourier Transformed applied is the range estimation of FMCW radar. The

12
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Figure 3.1: Representation of Radar Data Cube

new array Y is referred ato as the range map. Range estimation is the first step of

FMCW radar data processing. Various pipelines employing different methods have

been proposed in numerous other studies. In this work, a generic pipeline comprising

range estimation, clutter removal, spectrum estimation, target detection, and point

generation is proposed to facilitate understanding.

Figure 3.2: Overview of pipeline

As illustrated in the figure above, the clutter removal, spectrum estimation, and

13
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target detection modules follow the range estimation module. Clutter removal is

designed to remove static clutter from the signal, though it is typically not applied

when the target of interest is stationary. Spectrum estimation, as the name suggests,

determines the angle of arrival (AOA) of the target. Target detection employs

methods to select points of interest that will be included in the point cloud. The point

cloud is generated by converting the spherical coordinates of the points of interest

from the radar into Cartesian coordinates. In the Clutter Removal, Angle Estimation,

and Target Detection modules, each consists of multiple algorithmic implementations

tailored to their respective functions. This chapter will examine some commonly

employed methods for each module introduced above.

3.1 Clutter Removal

3.1.1 Mean Removal

One of the most popular techniques for clutter removal is mean removal. As demon-

strated in (2.1.5), each frame consists of nc number of chirps. To eliminate clutter, the

average signal for each range bin is initially computed across the slow-time dimension.

Yclutter[i] =
1

nc

nc∑
k=1

Y [i, k], 1 ≤ k ≤ nc, (3.1.1)

The computed clutter signal is subtracted from all chirps in the same range bin,

resulting in a clutter-free range map.

Ŷ [i, k] = Y [i, k]− Yclutter[i], 1 ≤ i ≤ nk. (3.1.2)

14
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Two variables that influence the performance of this approach are the number of

chirps nc, and the time interval between consecutive chirp signals. However, in this

study, both variables remain constant across all trials.

3.1.2 FIR Filter for MTI

Another approach to static clutter removal is Moving Target Indication (MTI) fil-

tering. The first-order MTI filter operates by subtracting the signal response of one

chirp from the subsequent chirp [1].

Ŷ [i, k − 1] = Y [i, k]− Y [i, k − 1], 1 ≤ i ≤ nk, 2 ≤ k ≤ nc, (3.1.3)

where nk and nc are the number of range bins and the number of chirps. (3.1.3) is

also called two-pulse MTI cancellers. The transfer function of this filter is simply

H(z) = 1 − z−1, where z = ej2πfdTs . fd is the analog frequency. πfdT denotes in

normalized radian frequency ω̂
2
. The transfer function can be rewritten as

Figure 3.3: Flow chart of first-order MTI filter transfer function

H(ω̂) = 1− e−jω̂

= e−j ω̂
2 (ej

ω̂
2 − e−j ω̂

2 )

= 2je−j ω̂
2 sin (

ω̂

2
).

(3.1.4)

15
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The transfer function response of the first-order MTI filter provides significant atten-

uation for the zero-frequency components, as illustrated in Figure 3.4.

Figure 3.4: Frequency Response of First-Order MTI Filter

MTI filter may generalize to higher-order as the following

HM(z) = (1− z−1)(M−1)

ŶM [i, k −M ] =
M∑

m=0

(−1)m
(
M

m

)
Yf [i, k −m].

(3.1.5)

The transfer function of the higher-order MTI filter is represented by HM(z), while

ŶM denotes its impulse response, where M is the filter order. However, in this study,

only the first-order MTI filter is evaluated.

3.2 Spectrum Estimation

This section discusses three commonly used AOA estimation techniques. As shown

in Figure2.3, the virtual antenna array consists of v = 12 elements, enabling the

estimation of both elevation and azimuth angles. The input to this module can be

either Y obtained directly after range estimation, or Ŷ , which results from clutter

removal.

16
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3.2.1 Angle FFT

The phase difference between two adjacent virtual antennas for IWR6843AOP as

shown in 2.3 is given as

ωz = 2π
∆d sinϕ

λ

ωx = 2π
∆d cosϕ sin θ

λ
,

(3.2.1)

where ax and az represent the phase differences along the azimuth and elevation

axes. ∆d denotes the spacing between adjacent virtual antennas. ϕ and θ represent

the elevation and azimuth angles, respectively. ”For a column of virtual antennas

with a common azimuth index, the phase shift induced by the array placement is

given by az = {ej0ωz , ..., ej(nz−1)ωz}. Similarly, for a row of virtual antennas with the

same elevation index, the phase shift due to the array placement is represented by

ax = {ej0ωx , ..., ej(nx−1)ωx}. Two-dimensional fast Fourier transforms are applied to

the virtual antenna array along the azimuth and elevation axes, respectively. After

FFT, for each index kx and kz, the corresponding phase term can be obtained by

ωx = 2πkx
Nfft

and ωz =
2πkz
Nfft

, where Nfft is the FFT size.

Angle FFT is computationally efficient due to the use of FFT. However, Angle

FFT has poor resolution with ∆θ = λ
Nθ∆dcos(θ)

, and ∆ϕ = λ
Nϕ∆dcos(ϕ)

, where ∆θ and

∆ϕ denote the angular resolutions for azimuth and elevation, respectively. Nθ and

Nϕ represent the number of array elements along the azimuth and elevation axes,

respectively. The FFT also suffers from spectral leakage, which can distort angle

estimation.
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3.2.2 MVDR

The first step of Minimum Variance Distortion-less Response (MVDR) spectrum es-

timation is to estimate the correlation matrix Ri for each range index i, using all

chirps within one frame. Assuming V is the vector of signals across all antennas

V = {Y1, Y2, ...Yv}, define v as the number of virtual antennas.

Ri =
1

nc − 1

nc∑
k=0

(V [i, k])(V [i, k])H . (3.2.2)

Another component required for MVDR estimation is the steering vector, which is

derived from the geometry of the virtual antenna array [26] as shown in Figure2.3.

The steering vector represents the set of phase-delay at each virtual antenna. The

first step is to define ν-µ space.

µ = cosϕ sin θ

ν = sinϕ,

(3.2.3)

θ represents azimuth angle and ϕ represents elevation angle. The virtual antenna

array of the IWR6843AOP radar consists of four elements along the azimuth axis

and four elements along the elevation axis. The indices µ and ν are defined as follows

Iµ = [−1,−1, 0, 0,−1,−1, 0, 0,−3,−3,−2,−2]

Iν = [−1, 0,−1, 0,−3,−2,−3,−2,−3,−2,−3,−2].
(3.2.4)

The steering vector as is computed as

as[n] = ejπ(Iµ[n]µ+Iν [n]ν), 1 ≤ n ≤ v. (3.2.5)
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However, as shown in Figure2.3, RX1 and RX3 are 180◦ out of phase with respect

to RX2 and RX4. Therefore, phase rotation is required for the corresponding virtual

array elements. The phase rotation array is given by [13]

Ph = [−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1]. (3.2.6)

The phase-adjusted steering vector is represented by

âs[n] = Ph[n]as[n], 1 ≤ n ≤ v. (3.2.7)

Finally, the spectrum is estimated by the following approach [3]

CS(θ, ϕ, i) =
1

âs
HR−1

i âs
. (3.2.8)

The MVDR algorithm preserves the integrity of the target signal while minimiz-

ing the contributions of noise and interference to the array output. It also provides

high spatial resolution, making it effective in resolving closely spaced targets. How-

ever, MVDR is computationally intensive due to the necessity of correlation matrix

inversion. Additionally, its performance is highly dependent on the accuracy of the

correlation matrix estimation; any inaccuracies in this estimation can lead to degraded

angle estimation performance.

3.2.3 MUSIC

Multiple Signal Classification (MUSIC) angle estimation also utilizes the correlation

matrix and steering vector, similar to the MVDR method. The fundamental concept

19

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.A.Sc. Thesis – B. Jiang; McMaster University – Computing and Software

involves performing eigen-decomposition on the correlation matrix and partitioning

the eigenvectors into signal and noise subspaces. The MUSIC algorithm works by

searching for steering vectors that are orthogonal to the noise subspace. However,

this constraint implies that the number of signals within a single range bin cannot

exceed the number of array elements.

As mentioned above the correlation matrix Ri for range bin i can be decom-

posed into Rs
i and Rϵ

i representing the correlation matrix for the signal and noise

subspaces, respectively. To obtain the signal and noise subspaces, the initial step

involves performing eigen decomposition to derive the eigenvalues and eigenvectors.

The eigenvalues of Ri, Λ = {λ1, λ2, ..., λv} are sorted in descending order with associ-

ated eigenvectors E = {e1, e2, ..., ev}. Assuming D represents the number of signals.

Hence, the noise space is defined as Eϵ = {eD, ..., ev}. This study applies the Mini-

mum Description Length (MDL) test to estimate D [27].

L(d) = nc(v − d) ln

1

v − d

∑v
k=d+1 λk

(
∏v

k=d+1 λk)
1

v−d

D = argmin
d
{L[d] + 1

2
(d(2v − d) + 1) lnnc},

(3.2.9)

λk represents the k-th smallest eigenvalue of Ri, nc is the number of chirps. Given

the estimates of D and Eϵ, the spectrum is expressed as CS(θ, ϕ, i) [21]

CS(θ, ϕ, i) =
1

âs
HEϵEH

ϵ âs
. (3.2.10)

If the signal sources are correlated, the rank of Rs
i may be smaller than D, indicating

that Rs
i is rank-deficient. In this case, the performance of the MUSIC algorithm
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degrades. To address this issue, spatial smoothing techniques [23] are applied. Spatial

smoothing involves partitioning the virtual antenna array into overlapping sub-arrays

that share the same steering vector.

The 12-element virtual antenna array of the IWR6843AOP is divided into 4 sub-

arrays, as shown in Figure 3.5 Each sub-array consists of 5 virtual antennas, with 3

elements aligned along the elevation axis and 3 along the azimuth axis. The spatially

smoothed correlation matrix for frame i can be represented as [4, 23].

R̂i =
L∑
l=1

Rl
i. (3.2.11)

Let L denote the number of sub-arrays, and the common steering vector used across

all sub-arrays is represented by the steering vector of the first sub-array, â1s. By

applying eigenvalue decomposition and (3.2.9) over â1s to acquire the noise space

after smoothing Êϵ. The spatially smoothed coarse estimation is derived by applying

(3.2.11) using the steering vector â1s and the noise subspace Êϵ.

In summary, the MUSIC algorithm provides high resolution and accurate spatial

spectrum estimation. By isolating the noise subspace, it also ensures robust perfor-

mance even when the SNR is relatively low. However, the MUSIC algorithm requires

accurate estimation of sources, is computationally expensive, and is vulnerable to

source correlation, which necessitates high computational load smoothing.

3.3 Target Detection

The target detection module isolates targets from the background using the spectrum

CS, providing intensity information across all angles and ranges. Typically, desired
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Figure 3.5: Spatial Smoothing sub-arrays

targets exhibit higher intensity values after processing. This module facilitates the

extraction of points with higher intensities, effectively distinguishing them from the

clutter of low-intensity points.

3.3.1 CFAR

Constant False Alarm Rate (CFAR) is a widely utilized adaptive algorithm for tar-

get detection. In this study, to circumvent the computational expense of directly

applying three-dimensional CFAR to the spectrum, a two-pass CFAR approach is

employed. This method involves a one-dimensional CFAR applied along the range

dimension, followed by a two-dimensional CFAR applied to the azimuth-elevation

spectrum within the corresponding range bin [12].

The CFAR algorithm iterates over each range bin for every direction (θ, ϕ) in

the spatial spectrum. If the intensity of the range bin along the direction is greater

than the threshold TSr. Then the point is included in the temporary detection
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list DL1. Then each azimuth-elevation spectrum CSi will undergo processing by a

two-dimensional CFAR. Points that exceed CFAR threshold TSa is included in the

temporary detection list DL2. If a point is present in both DL1 and DL2, it will

be appended to the output point cloud P . The threshold for the CFAR algorithm is

given by TS = αPn, where TS is the detection threshold, and α represents the scaling

factor, Pn denotes the noise floor estimate. Two variations of noise floor estimation

are adopted for this study

Cell averaging CFAR (CA-CFAR) typically has Ng guard cells surrounding

the cell under test, as illustrated in 3.6. Guard cells are not involved in the compu-

tation of the noise floor Pn. Nt number of training cells TC is used to compute the

noise floor. The dimension of noise window Nw = Ng +Nt.

Pn =
1

Nt

Nt∑
m=1

TCm. (3.3.1)

CASO-CFAR is a variation of the regular cell-averaging CFAR. Instead of averaging,

it partitions the training cells into two groups, computes the average for each group,

and subsequently selects the minimum.

Pn = min(
2

Nt

Nt/2∑
m=1

TCm,
2

Nt

Nt∑
m=Nt/2+1

TCm), (3.3.2)

1D-CFAR can be directly applied over range map Y .However, a more complex

approach is used to apply CFAR. As illustrated in Algorithm 1, two-pass CFAR is

applied over the spectrum: first, 1D CFAR is performed along the range dimension

for each (θ, ϕ) direction in the spatial spectrum, followed by a second pass where

2D CFAR is applied across the Azimuth-Elevation spectrum within each range bin.
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(a) 1-d CFAR.

(b) 2-d CFAR.

Figure 3.6: CUT, Guard Cells and Training Cells.

Points that appear in the results of both CFAR passes are identified as points of

interest. Two-pass CFAR involves the dimensions of the noise window and guard

cells for both 1D CFAR and 2D CFAR. A larger noise window dimension allows for

better noise suppression, but it may also increase computational complexity.

The CFAR algorithm dynamically adjusts the detection threshold based on the

intensity of cells within the noise window, enhancing its robustness in non-stationary

environments. Additionally, CFAR effectively suppresses clutter in scenarios with

adequate signal-to-noise ratio (SNR). However, CFAR requires meticulous tuning of
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the noise window size and guard cell dimensions for different scenarios and applica-

tions; otherwise, it may fail to detect the intended targets. The computational load

increases significantly as the number of dimensions grows. This is because CFAR

requires the computation of the noise floor for every cell under test. As the num-

ber of dimensions increases, the number of cells under test grows exponentially with

dimensionality.

Algorithm 1 Two-Pass CFAR Processing

Input CS - Range-Azimuth-Elevation data cube
Output: P - Output point set
Initialize P ← ∅
Initialize RPOI← ∅
Initialize APOI← ∅
for each (θ, ϕ) direction do

RPOI← RPOI ∪ 1D-CFAR(CS(θ, ϕ))
end for
for each range bin i do

APOI← APOI ∪ 2D-CFAR(CS(i))
end for
P ← APOI ∩ RPOI

3.3.2 Variance-based Method

Instead of using CFAR over the spectrum to determine the output point cloud, P .

An alternative approach is to calculate the variance over the spectrum. If range bin i

exhibits a high variance in energy distribution across the spectrum CS(i), it suggests

that the reflected signal’s energy is spatially non-uniform, indicating the presence of

a target. The variance v[i] is defined as

v[i] =
1

NθNϕ − 1

∑
θ

∑
ϕ

(CS(θ, ϕ, i)− µi)
2, (3.3.3)
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whereNθ andNϕ are number of azimuth and elevation angle bins, µi is the mean power

across all azimuth and elevation angles for range i, µi =
1

NθNϕ

∑
θ

∑
ϕ CS(θ, ϕ, i).

The set of ROI (Range of Interest) is formed as

ROI = {i|v[i] > ξ,∀i}, (3.3.4)

ξ denotes the threshold, which is he median value of the variance vector v and a

scaling factor are used to define the threshold, ξ = τ Med(v) [33].

The next step is to search the point of interest over the spatial spectrum for all

range i within the set ROI. The algorithm utilizes a preset threshold TS. Addition-

ally, when mmWave interacts with an object of interest, such as a corner reflector or

human skin, it cannot penetrate the object [33].

As shown in Algorithm 2 only the closest local maximum along the range axis of

direction (θ, ϕ). Rather than directly applying 2D-CFAR exhaustively, the first local

maximum with the lowest range bin is utilized, acknowledging that mmWave cannot

penetrate the target of interest. This approach effectively reduces unwanted multi-

path noise. The predefined threshold TS governs the classification of a point as a

local maximum. A lower threshold value increases the likelihood of incorporating noise

points, whereas a higher threshold value risks excluding points critical for accurately

representing the target.

The variance-based method exhibits reduced computational complexity and en-

hanced robustness to changes in scenarios. However, it is more susceptible to erro-

neously including artifacts that resemble local maxima.
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Algorithm 2 Variance-based Method

Input: CS - Spatial spectrum for all range and angles.
TS - Preset threshold
RoI - Range of Interest (valid set of i indices)

Output: P - List of detected points of interest (θ, ϕ, i)
Initialize P ← ∅
for each (θ, ϕ) pair do

PointFound← False
for each i in RoI do

if CS(θ, ϕ, i) > TS then
if CS(θ, ϕ, i) > CS(θ, ϕ, i− 1) and CS(θ, ϕ, i) > CS(θ, ϕ, i+ 1) then ▷

Check for local maximum
P ← P ∩ CS(θ, ϕ, i)
PointFound← True
break ▷ Exit loop since first local maximum found

end if
end if

end for
if PointFound = False then

No point found for this (θ, ϕ)
end if

end for
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3.3.3 Zoom-in spectrum estimation

Once P is obtained, a refined zoom-in spectrum estimation can be applied around

the points in P , particularly if the scanning step for the angle of arrival estimation

is relatively coarse. Assuming that the coarse azimuth and elevation steps are µstep

and νstep. The step sizes for zoom-in angle estimation are
µstep

Mzi

for azimuth µ̂step and

νstep
Mzi

for elevation ν̂step. Mzi is the number of zoom-in steps for each direction. For

each point in the output, point set P acquired from Target detection, the zoom-in

steering vector derived from (3.2.4), and (3.2.5) is expressed as [12]

as[n,mµ,mν ] = ejπ(Iµ[n](µ+mµµ̂step)+Iν [n](ν+mν ν̂step)),

1 ≤ n ≤ v,−Mzi ≤ mµ ≤Mzi,−Mzi ≤ mν ≤Mzi,

(3.3.5)

ν and µ are the ν - µ space for one point p∗ selected from P . After obtaining

the steering vectors for all antennas corresponding to the zoom-in directions, the

MVDR or MUSIC algorithms can be applied to each zoom-in direction according to

the approach described in the Spectrum Estimation section to compute the zoom-in

spectrum Pzi centring at p∗. Two criteria are applied to determine whether points in

each zoom-in spectrum will be included in the P set.
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Algorithm 3 Zoom-in points detection

Input: p∗ - one point in P ; Pn - Noise estimate derived from noise floor of 1d

CFAR on range

SNRthreshold - SNR threshold; Trelative - Relative threshold

Mzi - step size for zoom-in angle estimation; Ph - phase rotation array

Output: POIzi

Initialize POIzi ← ∅

pmax ← max (η(Pzi))

pmin ← min (η(Pzi))

Sharpness = pmax−pmin

pmax+pmin

for −Mzi ≤ mµ ≤Mzi do

for −Mzi ≤ mν ≤Mzi do

as = ejπ(Iµ(µ+mµµ̂step)+Iν(ν+mν ν̂step))

âs = Phas

if Spectrum Estimation == MVDR then

pneighbor =
1

âs
HR−1

i âs
end if

if Spectrum Estimation == MUSIC then

pneighbor =
1

âs
HEϵEH

ϵ âs
end if

if pmax

Pn
> SNRthreshold and η(pneighbor) > pmax · (Trelative − Sharpness) then

Add POIzi ← POIzi ∩ pneighbor

end if

end for

end for
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The SNR threshold determines if the entire spectrum qualifies for points of interest

selection, with higher values of Trelative leading to fewer selected points. Subsequently,

Algorithm 3 is applied to each zoom-in spectrum generated from the points in P .

Then concatenate all POIzi to P

3.4 Spherical coordinates to Cartesian coordinates

After obtaining P in spherical coordinates for frame f from the preceding steps, the

Cartesian coordinates, with the radar as the origin, can be computed as follows:

x = r cosϕ sin θ

z = r sinϕ

y =
√
r2 − x2 − z2,

(3.4.1)

x is the horizontal axis, y is the depth axis and z is the height axis. r is the range

computed from the range index i, r = i∆r. If spherical coordinates P are in µ-ν

domain, given (3.2.3), x and z can be rewritten as

x = rµ

z = rν. (3.4.2)

For the IWR6843AOP radar, which has an antenna spacing of ∆d = λ
2
as depicted

in Figure 2.3, the angular frequencies ωx and ωz obtained from the angle FFT

can be normalized to dimensionless spatial frequency components. Based on (3.2.1),

these components are redefined as µ = ωx

π
and ν = ωz

π
. This allows computation of
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Cartesian coordinates using (3.4.2). The points in P are represented as {x, y, z, η(p)}

in Cartesian coordinates, where η(p) is the intensity of the point p
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Chapter 4

Evaluation Metrics

4.1 Static Point Target Metric

For the static corner reflector scenario, Euclidean distance, range difference, and

angle differences are employed as metrics. For each point cloud P generated from the

pipeline

P = {p1,p2,p3, ...,pm−1,pm}, (4.1.1)

Then, all the points are sorted based on the intensity

Psorted = {pl ∈ P|η(p1) > η(p2) >, ... > η(pm)}, (4.1.2)

Psorted represents the point cloud sorted in descending order according to intensity.

η(pl) is the intensity of point pl. The subsequent step is to select a subset Ph consist-

ing of the top h number of points from Psorted. This method reduces the number of

points involved in Euclidean distance computations while ensuring that only higher

energy points, presumed to be reflections from the corner reflectors, are considered
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in the error analysis.

Ph = {pl|1 ≤ l ≤ h,pl ⊆ Psorted}. (4.1.3)

Euclidean distances d(Ph,pgt) are computed for each point in Ph and ground truth

Pgt

d(Ph,pgt) = {dl|dl =
√
(Xl −Xgt)2 + (Yl − Ygt)2 + (Zl − Zgt)2, 1 ≤ l ≤ h}, (4.1.4)

where Xl, Yl, and Zl indicate the x,y, and z components of the Cartesian coordinates

of Ph. In the subsequent step, the index corresponding to the minimum Euclidean

distance is identified by selecting the smallest value from d(Ph,pgt).

lmin = argmin
l
{dl}. (4.1.5)

The point at the index of minimum Euclidean distance is defined as

plmin = Ph[lmin]. (4.1.6)

Then the corresponding Euclidean distance error is Ed = dlmin. Range, Azimuth and

Elevation angle errors can also be computed via Cartesian coordinates Xlmin, Ylmin,

Zlmin from Plmin and Xgt, Ygt, Zgt from the ground truth pgt.

θlmin = arctan
Ylmin

Xlmin

ϕlmin = arctan
Zlmin√

(Xlmin)2 + (Ylmin)2

rlmin =
√

(Xlmin)2 + (Ylmin)2 + (Zlmin)2,

(4.1.7)
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θgtlmin = arctan
Ygtlmin

Xgtlmin

ϕgtlmin = arctan
Zgtlmin√

(Xgtlmin)2 + (Ygtlmin)2

rgtlmin =
√

(Xgtlmin)2 + (Ygtlmin)2 + (Zgtlmin)2,

(4.1.8)

θlmin, ϕlmin, and rlmin are range, azimuth angle and elevation angle for Plmin,f .

θgtlmin, ϕgtlmin, and rgtlmin are range, azimuth angle and elevation angle for Pgt. With

the numbers computed above, range error Er, azimuth error Eθ and elevation error

Eϕ for a single frame can be calculated.

Er = |rlmin − rgt|

Eθ = |θlmin − θgt|

Eϕ = |ϕlmin − ϕgt|.

(4.1.9)

In the end, evaluating performance across multiple frames is required, the metric

can be calculated as the average over nt frames.

Ed =
1

nt

nt∑
f=1

Ed,f , Er =
1

nt

nt∑
f=1

Er,f , Eθ =
1

nt

nt∑
f=1

Eθ,f , Eϕ =
1

nt

nt∑
f=1

Eϕ,f . (4.1.10)

If multiple corner reflectors are present, a larger number of points h from Ph can

be selected. Subsequently, (4.1.4) to (4.1.10) is applied iteratively to compute the

errors for each corner reflector.
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4.2 Human Target Metric

4.2.1 Coverage

The human target scenario introduces an additional challenge in evaluation compared

to static point targets. Reflections from the human body differ from those of point

targets, as they involve multiple reflection points originating from various body parts,

each exhibiting similar intensity levels. These reflection points span a broad range

of bins across the dimensions of range, azimuth angle, and elevation angle, resulting

in a sparser point cloud representation of the human body. The point clouds vary

with random body movement, respiratory activity, and pose variations. To provide

information on the point cloud, an alternative approach is formulated using Eulidean

distance to human mesh surface as a metric to evaluate human target scenarios.

The metric is defined as

D̂(pl) = d(pl,M), (4.2.1)

where pl is a point within P , containing only Cartesian coordinate information.

d(pl,M) is the shortest Euclidean distance from the point pl to the human mesh

surfaceM.

If D̂(pl) < 2∆r, the point is classified as the reflection from the human subject,

otherwise, it is considered as noise.

Pmesh = {pl| |D̂(pl)| < 2∆r,∀l}. (4.2.2)

To measure how well a point cloud captures reflections from a human, we can

calculate the ratio of the number of points in Pmesh to the total number of points in

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.A.Sc. Thesis – B. Jiang; McMaster University – Computing and Software

the point cloud P .

c =
|Pmesh|
|P|

. (4.2.3)

Consider a set of joints J = {j1, j2, ..., jκ}, where κ is the total number of joints.

For p ∈ Pmesh, find the closest joint by the minimum Euclidean distance.

closest joint(p) = argmin
j∈J
∥p− j∥. (4.2.4)

Define subsets Pl ⊆ Pmesh where Pl is the set of points closest to joint jl :

Pl = {p ∈ Pmesh : closest joint(p) = jl}. (4.2.5)

Define a mapping B = {b1,b2, . . . ,bs}, where each element corresponds to a

body part. The set includes five body parts: the upper torso, lower torso, head,

legs, and arms. By grouping the joints into the body parts subset based on the

anatomical position of the joints, the coverage of each body segment is computed as

the proportion of points within each segment to the total number of points in Pmesh.

ck =

∑
l∈bρ |Pl|
|Pmesh|

, 1 ≤ ρ ≤ s. (4.2.6)

4.2.2 Consistency

Another critical metric for evaluating human target point cloud generation is assessing

its consistency. For the same scenario, if the subject maintains a consistent location

in Cartesian space, a stable orientation relative to the radar origin and the same

body pose in consecutive frames, such as when sitting in a chair without moving it

or changing direction, then the corresponding point clouds for any two frames should
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exhibit similar intensities and distributions. Two metrics used to assess intensities

are the maximum and mean values for each point cloud. This grouping facilitates the

identification of body parts with higher point densities in the point cloud, offering

insights into the performance of point cloud generation pipelines.

Icloud = η(P)

Imax = max(Icloud)

Imean =
1

m

m∑
l=1

Il.

(4.2.7)

σmax =

√
If,max − Imax

nf

σmean =

√
If,mean − Imean

nf

.

(4.2.8)

To assess consistency in point cloud distribution, Hausdorff distance dH between

the two point clouds is utilized. For two point clouds Pf at frame index f , and Pf+j

at frame index f + j. The Hausdorff distance dH(Pf ,Pf+j) can be defined as the

following [25].

A = Pf

B = Pf+j

dH(A,B) = max

{
sup
a∈A

inf
b∈B
||a− b||2, sup

b∈B
inf
a∈A
||a− b||2

}
.

(4.2.9)

A smaller dH(Pf ,Pf+j) indicates greater consistency between the two point clouds

from different frames.
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Chapter 5

Performance Evaluation

This chapter outlines the evaluation scenarios and their corresponding metrics. Sec-

tion 5.1 details the testbed setup, while Section 5.2 explains ground truth generation

for both static point target and human target scenarios. Experimental trials are con-

ducted to assess the performance of various method combinations and to demonstrate

how the proposed metrics provide insights into the quality of the point cloud gener-

ated by different processing pipelines. Section 5.3 presents the results of the static

target test, and Section 5.4 concludes with the results from the human subject test.

5.1 Testbed Setup

5.1.1 Radar

A TI IWR6843AOP FMCW radar and a DCA1000EVM [11] are used in the experi-

ment. As shown in Table 2.1, the radar configuration and specifications remain con-

sistent across all frames and trials. While the TI IWR6843AOP provides a relatively
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high range resolution due to its large bandwidth, the 4.41 cm range resolution may

still introduce errors when compared to the ground truth. Additionally, the limited

number of virtual antennas results in a 29-degree angular resolution in both azimuth

and elevation, which can increase Euclidean distance errors at greater ranges. The

reduced angular resolution also limits the radar’s ability to resolve multiple targets

at the same range. Furthermore, the radar is susceptible to multi-path effects. Since

the lab room is not fully covered with foam absorbers, artifacts may arise due to

multipath reflections. These signals can interfere with the direct-path signal, altering

its phase and leading to biased spectrum estimation.

5.1.2 Corner Reflector

For static point target scenarios, one or multiple corner reflectors are placed within

the FOV of the radar. Ground truth locations of corner reflectors are collected from

the motion capture system - OptiTrack motive motion capture system [17] by twelve

cameras with markers attached to corner reflectors and the radar.

The experiment was conducted in an indoor laboratory environment measuring

6.5 m by 6 m. However, the placement of infrared cameras and the radar was config-

ured to ensure the cameras could accurately capture the radar’s position. The radar

experiment zone is 5.5 m by 5 m. Foam absorbers are employed to mitigate reflections

from the floor surface in proximity to the placement of the corner reflector. The cor-

ner reflector is a polyhedron with six hollow equilateral triangles. As demonstrated in

Figure 5.1, each edge has a length of 21 cm. Each hollow equilateral triangle consists

of three solid isosceles triangles, where each has two equal edges measuring 14.8 cm

in length.
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Figure 5.1: Corner reflector marker placement

For single corner reflector, experiments are conducted in close range (r < 1m),

medium range (1m < r < 3m), and far range (r > 3m). Figure 5.4 shows examples

of close, medium and far-range placements of the corner reflector.

Figure 5.2: Lab space setup for single corner reflector

In the scenario involving three corner reflectors, the IWR6843AOP radar was

positioned parallel to the floor, oriented downward. The radar antennas face the
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floor, and three corner reflectors are placed on the floor as shown in Figure 5.3. Each

corner reflector is positioned at a minimum distance of 30 cm from the centre of any

adjacent corner reflector. A 30 cm distance from the center is maintained to prevent

physical overlap between the corner reflectors.

Figure 5.3: Three corner reflectors scenario setup

5.1.3 Human Subject

The same radar setup is used in the experiment. A motion capture system is also em-

ployed to obtain the test subject’s ground truth positions and joint angles. Markers

are attached to a motion capture suit worn by the test subject. The experiment is

conducted in the same laboratory environment as the corner reflector scenario, involv-

ing a subject with a height of 183 cm. The movement of the subject is constrained

within an area defined by the radar’s field of view (FOV). For simplicity, this area is

represented as a green rectangle in the lab space, as illustrated in Figure 5.4.

Five scenarios are included for the human subject experiment: Standing, Walking

in place, Walking, Dancing, and Sitting.
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Figure 5.4: Human subject scenario setup

5.2 Ground Truth Generation

As mentioned in the previous section, ground truth is acquired by using the motion

capture system. As shown in Figure 5.2 and Figure 5.4, there are 12 motion capture

cameras. After system calibration, the first step for both corner reflector scenario and

human subject scenario is to determine the position and rotations of radar. Markers

and radar are placed as follow

As demonstrated in Figure 5.5, four markers indicated by green hollow circles

are placed parallel to the radar board. Four markers constitute a rigid body within

the motion capture system, providing both position and rotation data for the radar.

The corner reflector has markers attached to it forming a rigid body as shown in

Figure 5.6.

The rigid body of the corner reflector defines its ground truth global coordinate

position, P̂gt. The radar’s global coordinate, P̂ radar, and rotation matrix, Rradar,
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Figure 5.5: Radar and marker placement

are derived from its rigid body. To compute the ground truth position of the corner

reflector in the local coordinate frame, the first step involves calculating its relative

position in global coordinates. Then, the ground truth location, Pgt, in the radar’s

local coordinate frame is obtained by applying the appropriate transformation.

P̂rel = P̂gt − P̂radar

Pgt = R−1P̂rel

(5.2.1)

In the human target scenario, the test subject wears a motion capture suit equipped

with markers placed at joint and bone locations as shown in Figure 5.7. The mo-

tion capture system tracks the markers to generate a skeletal model that accurately

reflects the subject’s movements. subsequently, the skeleton model from motion cap-

ture system is re-targeted to Skinned Multi-Person Linear model (SMPL) skeleton

model to obtain the pose parameter
−→
θ . SMPL is a skinned, vertex-based model

designed to represent a wide range of body shapes in natural human poses with an

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.A.Sc. Thesis – B. Jiang; McMaster University – Computing and Software

Figure 5.6: Corner reflector marker placement

underlying skeletal structure [15]. The global translation
−→
P T is determined by the

position of the pelvis joint relative to the radar’s local coordinate frame, as calcu-

lated in (5.2.1). With pose independent shape parameter
−→
β , SMPL human mesh

M(
−→
θ ,
−→
β ,
−→
P T ) model is generated [15].

(a) Front (b) Back

Figure 5.7: Motion capture suit and marker placement
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Figure 5.8: An Example of SMPL Human Mesh

5.3 Static Point Target Test

Clutter removal is not applied, as the corner reflector is a static target. As illustrated

in Figure 3.2, the Angle FFT, MVDR, and MUSIC algorithms are evaluated for

the angle estimation module. Additionally, both the variance-based method and the

CFAR method are assessed.

Method
Spectrum

Estimation
Target Detection

Method 1 MVDR
Two-pass CFAR(CASO) +

Zoom-in spectrum estimation

Continued on the next page
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Continued from previous page

Method
Spectrum

Estimation
Target Detection

Method 2 MVDR
Two-pass CFAR(CA) + Zoom-in

spectrum estimation

Method 3 MVDR Variance-Based method

Method 4 MUSIC
Variance-Based method + 1D

Range CFAR

Method 5 Angle FFT Variance-Based method

Table 5.1: Pipelines for Static Target test

CFAR used for static target test is defined in Table 5.2

1D-CFAR Dimension of Noise Window 8
1D-CFAR Dimension of Guard Cells 4
2D-CFAR Dimension of Noise Window 8
2D-CFAR Dimension of Guard Cells 4

Table 5.2: CFAR settings for Static Target Test

5.3.1 Single-Target Test

As shown in Table 5.3, ten scenarios are included for the single-target test, ground

truth location relative to the radar obtained from Motion Capture in Cartesian coor-

dinates.
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Trial X Y Z

1 -0.019 m 0.538 m 0.040 m

2 -0.018 m 1.305 m 0.062 m

3 -0.391 m 1.302 m 0.066 m

4 -0.3 m 0.464 m 0.021 m

5 -0.037 m 0.941 m 0.161 m

6 -0.373 m 0.910 m 0.158 m

7 -0.438 m 1.415 m 0.149 m

8 0.173 m 2.496 m -0.074 m

9 -0.63 m 2.535 m -0.095 m

10 0.266 m 3.632 m -0.198 m

Table 5.3: Ground Truth of Trials for Single-target Test

Figure 5.9 illustrates average errors across all trials. Figure 5.10 to Figure 5.13

visualize Euclidean distance, range, azimuth and elevation errors of all trials and

methods. The bar represents the mean error and error bar represent the minimum

and maximum error for respective trial and method. Table 5.4 to Table 5.13 illustrate

mean Euclidean distance error Ed, range error Er, azimuth angle error Eθ, elevation

angle error Eϕ, and their corresponding standard deviations σd, σr, σθ, σϕ.
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The evaluation results indicate that all methods demonstrate improved perfor-

mance when the corner reflector is positioned at a closer distance and when the

azimuth and elevation angles relative to the radar are smaller. Signal intensity ex-

periences attenuation as the range increases, following the path loss model given by

Lr = 20 log(4πr/λ) [7]. The attenuation of signal strength at greater ranges reduces

the ability of pipelines to distinguish the target from the background, thereby con-

tributing to the degradation of the pipelines’ performance. The accuracy of spectrum

estimation deteriorates due to the non-linear behavior of the phase term associated

with the angle of arrival, as described in (3.2.1). The sensitivity of the phase term

ωz to changes in the elevation angle ϕ decreases as ϕ increases. Similarly, for a fixed

elevation angle ϕ, the phase term ωx also exhibits reduced sensitivity to changes in ϕ

as ϕ becomes larger.

The Angle FFT in FFT+Var yields the worst Euclidean distance error compared

to MVDR+Var and MUSIC+Var, both of which employ the variance-based method

for target detection. This is attributed to the larger angle estimation errors asso-

ciated with Angle FFT relative to MVDR and MUSIC as shown in Figure 5.12

and Figure 5.13. Angle FFT directly applies FFT across virtual antenna channels,

leading to higher sidelobes and inherent limitations imposed by the configuration of

the virtual antenna array, resulting in inaccurate spectrum estimation. In contrast,

MVDR adaptively optimizes beamforming weights to suppress interference and min-

imize power from undesired directions, while MUSIC leverages the noise subspace to

enhance resolution and eliminate noise effects. MVDR+Var and MUSIC+Var have

similar Euclidean distance errors.
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The MVDR+CASO and MVDR+CA methods compare CASO-CFAR with CA-

CFAR, with MVDR+CASO demonstrating overall better performance than MVDR+CA.

However, in certain instances, CASO-CFAR results in higher range estimation er-

rors, as illustrated in Figure 5.10. Overall, the variance-based method demonstrates

superior performance compared to the two-pass CFAR methods. Specifically, the

MVDR+Var method, which utilizes the variance-based approach, outperforms MVDR+CASO

and MVDR+CA in Trials 3, 4, 6, 7, and 9, where the azimuth or elevation angles are

larger. This is attributed to the antenna gain pattern of the TI IWR6843AOP radar

[13], which has a higher gain at the foresight and a lower gain at larger incident an-

gles. For a CFAR algorithm employing dynamic thresholding, variations in antenna

gain can introduce inconsistencies in threshold adaptation, potentially reducing the

algorithm’s effectiveness in suppressing noise and background clutter, particularly at

boresight where the gain is highest. This effect becomes more pronounced when de-

tecting targets at larger incident angles, where the lower antenna gain further weakens

the received signal, leading to degraded detection performance and non-uniform false

alarm rates.
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(a) Euclidean Distance Error (b) Range Error

(c) Azimuth Angle Error (d) Azimuth Angle Error

Figure 5.9: Bar Graph of Average Error across All Trials
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Figure 5.10: Euclidean Distance Error of Single-target Test.

Figure 5.11: Range Error of Single-target Test.
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Figure 5.12: Azimuth Angle Error of Single-target Test.

Figure 5.13: Elevation Angle Error of Single-target Test.
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MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

Ed 5.10 cm 5.10 cm 5.11 cm 3.14 cm 4.47 cm

σd 1.53 cm 1.53 cm 1.57 cm 0.72 cm 1.78 cm

Er 2.97 cm 2.97 cm 4.05 cm 3.03 cm 2.52 cm

σr 0.82 cm 0.82 cm 1.63 cm 0.77 cm 1.08 cm

Eθ 0.066 rad 0.066 rad 0.032 rad 0.014 rad 0.052 rad

σθ 0.041 rad 0.041 rad 0.026 rad 0 rad 0.041 rad

Eϕ 0.01 rad 0.01 rad 0.019 rad 0.002 rad 0.024 rad

σϕ 0.015 rad 0.015 rad 0.032 rad 0 rad 0.019 rad

Table 5.4: Mean and Standard Deviation of Trial 1 for all methods in single-target
static test

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

Ed 6.54 cm 6.54 cm 4.9 cm 5.03 cm 3.49 cm

σd 0.4 cm 0.41 cm 0.22 cm 0 cm 0.45 cm

Er 1.73 cm 1.73 cm 2.49 cm 2.8 cm 2.03 cm

Continued on the next page
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Continued from previous page

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

σr 0.37 cm 0.37 cm 0.53 cm 0 cm 0.58 cm

Eθ 0.016 rad 0.016 rad 0.014 rad 0.014 rad 0.015 rad

σθ 0.004 rad 0.004 rad 0 rad 0 rad 0.002 rad

Eϕ 0.045 rad 0.045 rad 0.029 rad 0.0029 rad 0.015 rad

σϕ 0.002 rad 0.002 rad 0 rad 0 rad 0.003 rad

Table 5.5: Mean and Standard Deviation of Trial 2 for all methods in single-target
static test

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

Ed 13.78 cm 15.83 cm 4.29 cm 6.89 cm 34.54 cm

σd 10.16 cm 12.38 cm 0.65 cm 2.27 cm 23.38 cm

Er 1.09 cm 0.93 cm 0.99 cm 3.94 cm 1.86 cm

σr 1.26 cm 1.11 cm 1.24 cm 1.08 cm 1.86 cm

Eθ 0.084 rad 0.091 rad 0.009 rad 0.019 rad 0.204 rad

Continued on the next page
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Continued from previous page

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

σθ 0.074 rad 0.084 rad 0 rad 0.022 rad 0.161 rad

Eϕ 0.047 rad 0.059 rad 0.028 rad 0.032 rad 0.015 rad

σϕ 0.032 rad 0.054 rad 0 rad 0.008 rad 0.124 rad

Table 5.6: Mean and Standard Deviation of Trial 3 for all methods in single-target
static test

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

Ed 13.54 cm 15.72 cm 7.52 cm 7.03 cm 27.75 cm

σd 4.95 cm 4.7 cm 1.16 cm 0.51 cm 6.79 cm

Er 3.65 cm 2.72 cm 2.39 cm 2.39 cm 2.39 cm

σr 3.24 cm 1.16 cm 0 cm 0 cm 0 cm

Eθ 0.128 rad 0.148 rad 0.113 rad 0.113 rad 0.32 rad

σθ 0.093 rad 0.1 rad 0.001 rad 0.001 rad 0.131 rad

Eϕ 0.154 rad 0.201 rad 0.06 rad 0.044 rad 0.389 rad

Continued on the next page
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Continued from previous page

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

σϕ 0.116 rad 0.136 rad 0.038 rad 0.02 rad 0.14 rad

Table 5.7: Mean and Standard Deviation of Trial 4 for all methods in single-target
static test

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

Ed 18.67 cm 28.26 cm 7.56 cm 6.97 cm 39.04 cm

σd 15.13 cm 19.83 cm 5.69 cm 5.39 cm 25.29 cm

Er 2.61 cm 2.05 cm 3.31 cm 2.39 cm 2.39 cm

σr 1.76 cm 1.28 cm 0.96 cm 1.94 cm 15.94 cm

Eθ 0.151 rad 0.243 rad 0.048 rad 0.044 rad 0.256 rad

σθ 0.159 rad 0.203 rad 0.055 rad 0.054 rad 0.325 rad

Eϕ 0.109 rad 0.172 rad 0.047 rad 0.033 rad 0.296 rad

σϕ 0.084 rad 0.123 rad 0.042 rad 0.031 rad 0.189 rad

Table 5.8: Mean and Standard Deviation of Trial 5 for all methods in single-target
static test
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MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

Ed 25.3 cm 25.66 cm 12.12 cm 13.94 cm 79.65 cm

σd 12.78 cm 18.88 cm 11.7 cm 11.11 cm 20.7 cm

Er 16.39 cm 2.29 cm 2.51 cm 3.97 cm 19.45 cm

σr 12.86 cm 0.4 cm 0.27 cm 2.27 cm 37.44 cm

Eθ 0.111 rad 0.082 rad 0.028 rad 0.099 rad 0.749 rad

σθ 0.093 rad 0.076 rad 0.024 rad 0.099 rad 0.612 rad

Eϕ 0.148 rad 0.236 rad 0.102 rad 0.067 rad 0.491 rad

σϕ 0.076 rad 0.189 rad 0.13 rad 0.08 rad 0.256 rad

Table 5.9: Mean and Standard Deviation of Trial 6 for all methods in single-target
static test

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

Ed 25.1 cm 20.62 cm 6.82 cm 8.53 cm 39.98 cm

σd 17.01 cm 13.77 cm 3.62 cm 6.06 cm 34 cm

Er 4.18 cm 1.93 cm 3.65 cm 4.2 cm 1.89 cm

Continued on the next page
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Continued from previous page

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

σr 9.6 cm 1.55 cm 2.15 cm 2.36 cm 1.14 cm

Eθ 0.115 rad 0.053 rad 0.007 rad 0.02 rad 0.212 rad

σθ 0.109 rad 0.069 rad 0.022 rad 0.05 rad 0.157 rad

Eϕ 0.107 rad 0.112 rad 0.032 rad 0.031 rad 0.141 rad

σϕ 0.081 rad 0.086 rad 0.015 rad 0.013 rad 0.208 rad

Table 5.10: Mean and Standard Deviation of Trial 7 for all methods in single-target
static test

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

Ed 10.49 cm 10.49 cm 9.23 cm 13.84 cm 2.75 cm

σd 2.98 cm 2.98 cm 0.76 cm 7.73 cm 0.91 cm

Er 1.06 cm 1.06 cm 1.8 cm 2.45 cm 2 cm

σr 0.41 cm 0.41 cm 1.25 cm 1.19 cm 1.2 cm

Eθ 0.023 rad 0.023 rad 0.02 rad 0.02 rad 0.007 rad

Continued on the next page
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Continued from previous page

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

σθ 0.016 rad 0.016 rad 0.003 rad 0.002 rad 0 rad

Eϕ 0.033 rad 0.033 rad 0.03 rad 0.049 rad 0.002 rad

σϕ 0.002 rad 0.002 rad 0 rad 0.033 rad 0 rad

Table 5.11: Mean and Standard Deviation of Trial 8 for all methods in single-target
static test

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

Ed 28.99 cm 25.63 cm 11.19 cm 32.54 cm 55.23 cm

σd 21.17 cm 22.34 cm 3.66 cm 24.43 cm 36.7 cm

Er 1.83 cm 1.72 cm 2.33 cm 4.1 cm 1.69 cm

σr 0.41 cm 0.9 cm 1.12 cm 1.23 cm 0.78 cm

Eθ 0.091 rad 0.068 rad 0.01 rad 0.094 rad 0.183 rad

σθ 0.02 rad 0.083 rad 0.016 rad 0.088 rad 0.127 rad

Eϕ 0.044 rad 0.06 rad 0.038 rad 0.07 rad 0.098 rad

Continued on the next page
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Continued from previous page

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

σϕ 0.02 rad 0.0044 rad 0.011 rad 0.054 rad 0.081 rad

Table 5.12: Mean and Standard Deviation of Trial 9 for all methods in single-target
static test

MVDR+

CASO

MVDR+

CA

MVDR+

Var

MUSIC+

Var
FFT+Var

Ed 23.88 cm 23.94 cm 22.57 cm 11.97 cm 5.61 cm

σd 2.68 cm 2.66 cm 5.74 cm 0.11 cm 1.52 cm

Er 1.66 cm 1.51 cm 3.55 cm 1.21 cm 1.43 cm

σr 1.32 cm 1.09 cm 1.79 cm 0 cm 0.62 cm

Eθ 0.028 rad 0.028 rad 0.024 rad 0.024 rad 0.012 rad

σθ 0.012 rad 0.012 rad 0.0006 rad 0.0004 rad 0.004 rad

Eϕ 0.058 rad 0.058 rad 0.055 rad 0.022 rad 0.008 rad

σϕ 0.0004 rad 0.0004 rad 0.017 rad 0 rad 0.003 rad

Table 5.13: Mean and Standard Deviation of Trial 10 for all methods in
single-target static test
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5.3.2 Three-Target Test

The three-target test is conducted with three corner reflectors positioned as shown

in Figure 5.3. Table 5.14 shows the ground truth positions of the corner reflectors

relative to the radar. Corner Reflector 1 is positioned in the middle, while Corner

Reflectors 2 and 3 are on the sides.

Corner

Reflector
X Y Z

1 -0.048 m 0.79 m 0.123 m

2 -0.357 m 0.80 m 0.12 m

3 0.22 m 0.81 m 0.19 m

Table 5.14: Ground Truth of Trials for Three-target Test

As shown in Figure 5.14, Corner Reflector 1 exhibits a lower Euclidean distance

error, attributed to its significantly smaller azimuth angle. This observation reinforces

the conclusion from the single-target test, confirming that angle estimation accuracy

deteriorates as the azimuth angle θ increases. MVDR+CASO and MVDR+CA, which

utilize the two-pass CFAR approach, exhibit poorer performance than MVDR+Var

across all corner reflectors. In particular, the errors are significantly higher for Corner

Reflector 2 and Corner Reflector 3.

For MVDR+Var, MUSIC+Var, and FFT+Var, which use the variance-based
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method for target detection but differ in their spectrum estimation algorithms. MU-

SIC+Var shows a significant performance degradation during the three-target test

compared to the single-target test. CR2 and CR3 are positioned on the sides, cen-

tered at adjacent range bins. However, the physical size of the corner reflectors and

FFT leakage during the Range FFT introduce inaccuracies in estimating the number

of signals for MUSIC, leading to performance degradation. The pipelines employing

CFAR produce inferior results compared to those using the variance-based algorithm,

further reinforcing the conclusions drawn from the single-target test.

(a) Euclidean distance errors (b) Range errors

(c) Azimuth angle errors (d) Elevation angle errors

Figure 5.14: Bar Plot of Mean Errors Across Corner Reflectors and All Methods in
the Three-Target Test Scenario
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5.4 Human Subject Test

Four different pipelines are considered for the human subject test. All of them used

MVDR spectrum estimation method. Angle FFT exhibited erroneous angle esti-

mation when the target presented a large incident angle relative to the radar, as

illustrated in Figure 5.12 and Figure 5.13. For MUSIC algorithm, it is required to

know the number of incoming signals D. D is needed to be smaller than the number

of antennas in the smoothed virtual array. However, as shown in Figure 3.5, the

number of antennas is 5 and the value of D could exceed the number of antennas.

Hence, only MVDR is considered for the human subject test.

Method
Spectrum

Estimation
Clutter Removal Target Detection

Method 1 MVDR Mean Removal

CFAR(CASO) +

Zoom-in spectrum

estimation

Method 2 MVDR MTI

CFAR(CASO) +

Zoom-in spectrum

estimation

Method 3 MVDR MTI
Variance-Based

method

Method 4 MVDR Mean Removal
Variance-Based

method

Continued on the next page
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Continued from previous page

Method
Spectrum

Estimation
Clutter Removal Target Detection

Table 5.15: Pipelines for Human Subject test

5.4.1 Coverage test

To determine the optimal parameters for human subject detection, various parameter

combinations were tested using the Mean+CASO method in the standing scenario.

Parameter

Settings

1D-CFAR

Dimension

of Noise

Window

1D-CFAR

Dimension

of Guard

Cells

2D-CFAR

Dimension

of Noise

Window

2D-CFAR

Dimension

of Guard

Cells

Setting 1 5 2 5 2

Setting 2 5 2 8 4

Setting 3 8 4 8 4

Setting 4 8 4 14 8

Setting 5 14 8 14 8

Setting 6 16 10 16 10

Continued on the next page
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Continued from previous page

Parameter

1D-CFAR

Dimension

of Noise

Window

1D-CFAR

Dimension

of Guard

Cells

2D-CFAR

Dimension

of Noise

Window

2D-CFAR

Dimension

of Guard

Cells

Table 5.16: Different CFAR parameter settings

Table 5.17 presents the proportion of points identified as reflections from the

human body for all CFAR configurations listed in Table 5.16. Setting 3, which was

used in the single-point target test, exhibits relatively lower performance with human

subjects. As shown in the table, configurations with larger noise windows generally

yield better performance. Setting 5 achieves the highest proportion that satisfies

the condition D̂(Pi) < 2∆r, where ∆r = 4.41cm and will be used for subsequent

evaluations.

Scenario
Setting

1

Setting

2

Setting

3

Setting

4

Setting

5

Setting

6

Standing 0% 11.75% 42.36% 64.02% 74.03% 73.08%

Table 5.17: the proportion of points identified as reflections from human body for
different parameter settings
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Scenario
Setting

2

Setting

3

Setting

4

Setting

5

Setting

6

Point

Cloud
0.38 0.15 0.284 0.199 0.177

Pmesh 1.87 1.78 0.573 0.369 0.369

Table 5.18: Hausdorff of points identified as reflections from human body for
different parameter settings

Table 5.19 reports the percentage of points that satisfy the condition D̂(Pi) < 2∆r,

where ∆r = 4.41cm representing the proportion of points identified as reflections from

the human subject. Table 5.20 reports the average of total number of points in the

point cloud across all frames for each pipeline.

Scenario Mean+CASO MTI+CASO MTI+Var Mean+Var

Standing 74.03% 67.35% 75.22% 69.44%

Walking in

place
65.69% 70.67% 65.92% 58.46%

Walking 73.85% 77.03% 75.72% 74.02%

Dancing 73.96% 65.01% 70.71% 68.04%

Sitting 71.81% 63.20% 61.64% 62.93%

Continued on the next page
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Continued from previous page

Scenario Mean+CASO MTI+CASO MTI+Var Mean+Var

Table 5.19: proportion of points identified as reflections from human body

Scenario Mean+CASO MTI+CASO MTI+Var Mean+Var

Standing 297 279 43 41

Walking in

place
242 217 39 45

Walking 210 197 29 34

Dancing 223 200 35 53

Sitting 267 236 42 42

Table 5.20: Average number of points in point clouds across all frames

The proportion of points identified as reflections serves as a valuable indicator

of how effectively each pipeline removes noise and reduces artifacts across different

scenario setups. As shown in Table 5.19, Mean+CASO and MTI+Var exhibit su-

perior performance compared to MTI+CASO and Mean+Var in most conditions.

Mean+CASO demonstrates the highest performance in scenarios where the human

subject remains relatively stationary, as evidenced in the Sitting Scenario. The first-

order MTI filter operates by subtracting the signal at the previous chirp index from
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the current one, which may suppress slowly moving targets when variations within

a frame are minimal. In contrast, the mean removal algorithm treats the mean of

samples across the slow-time axis as background clutter, better preserving subtle

variations. The variance-based method is prone to including noise that appears as

the closest local maximum in the point cloud, whereas CFAR dynamically computes

the threshold, making it more effective at suppressing such artifacts. In the walking

scenario, where the human subject moves at a higher speed relative to the radar,

all methods produce high proportion scores. MTI+CASO and MTI+Var, which

employ MTI filters, show slight performance improvements over Mean+CASO and

Mean+Var, which use mean removal for target detection. This suggests that MTI

filtering is more effective in scenarios with greater relative movement, whereas the

sitting scenario further supports that mean removal performs better when variations

along the slow-time axis are minimal. Mean+CASO and MTI+CASO yield a higher

total number of points because they apply the zoom-in spectrum after CFAR, result-

ing in a denser point cloud representation.

Table 5.21 presents the average reflection values from different body segments, as

measured by each method.

Body

Segment
Mean+CASO MTI+CASO MTI+Var Mean + Var

Upper Torso 34.05% 31.57% 42.43% 44.13%

Lower Torso 45.19% 42.68% 19.86% 17.56%

Head 2.00% 2.80% 17.82% 18.70%

Continued on the next page
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Continued from previous page

Body

Segment
Mean+CASO MTI+CASO MTI+Var Mean + Var

Arms 0.01% 0% 5.19% 4.34%

Legs 18.75% 22.94% 14.78% 15.27%

Table 5.21: Coverage for body segments

Mean+CASO and MTI+CASO exhibit comparable body segment coverage, whereas

MTI+Var and Mean+ Var produce similar outcomes. Over 70% of the reflections in

Mean+CASO and MTI+CASO originate from the torso, with the lower torso being

the most reflective body segment. Reflections from the head and arms are minimal,

while the remaining points correspond to the legs. MTI+Var and Mean+Var exhibit

lower overall coverage of the torso. Unlike Mean+CASO and MTI+CASO, which

primarily capture reflections from the lower torso, these methods show a higher con-

centration of points in the upper torso region. Another distinction is that MTI+VAR

and Mean+VAR capture reflections from the head and arms, unlike Mean+CASO

and MTI+CASO. This difference arises because the variance-based algorithm in

MTI+VAR and Mean+VAR detects the nearest local maximum in each direction

(θ, ϕ) of the spatial spectrum. This approach enables the selection of weaker reflec-

tion points that might otherwise be suppressed by stronger reflections from the torso

within the same range bin when applying 2D CFAR across the azimuth-elevation

spectrum.
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Figure 5.15 to Figure 5.19 illustrate the absolute distances of points from the

ground-truth human mesh. A higher percentage of points within one range bin dis-

tance suggests that the variance-based method effectively captures radar reflections

from the skin while filtering out points behind it. This is consistent with the fact

that a 60 GHz mmWave signal can only penetrate 0.4 mm into human skin tissue [9].

However, the variance-based method is more prone to including artifacts, which ap-

pear as local maxima. As a result, MTI+VAR and Mean+VAR, which rely on this

method, tend to produce more points that deviate significantly from the human mesh

compared to Mean+CASO and MTI+CASO. On the other hand, the CFAR algo-

rithm can better suppress points that exhibit larger deviations from the ground-truth

human mesh by leveraging a noise window. This enables the adaptation of a higher

dynamic threshold, improving the suppression of outliers.
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(a) Mean+CASO (b) MTI+CASO

(c) MTI+Var (d) Mean + Var

Figure 5.15: Histogram of Euclidean distances between points and the ground-truth
human mesh in the Standing scenario
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(a) Mean+CASO (b) MTI+CASO

(c) MTI+Var (d) Mean + Var

Figure 5.16: Histogram of Euclidean distances between points and the ground-truth
human mesh for the Walking in place scenario
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(a) Mean+CASO (b) MTI+CASO

(c) MTI+Var (d) Mean + Var

Figure 5.17: Histogram of Euclidean distances between points and the ground-truth
human mesh in the Walking scenario
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(a) Mean+CASO (b) MTI+CASO

(c) MTI+Var (d) Mean + Var

Figure 5.18: Histogram of Euclidean distances between points and the ground-truth
human mesh in the Dancing scenario
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(a) Mean+CASO (b) MTI+CASO

(c) MTI+Var (d) Mean + Var

Figure 5.19: Histogram of Euclidean distances between points and the ground-truth
human mesh in the Sitting scenario

5.4.2 Consistency Test

Table 5.22 and Table 5.23 present the average Hausdorff distances between one point

cloud from a selected frame and point clouds from all other frames for standing and

sitting scenarios, where the human subject remains stationary relative to the radar

with minimal random body movements across all methods, Table 5.22 compares point

clouds that include only points identified as reflections from the human body, while

Table 5.23 compares point clouds containing all points. Table 5.24 and Table 5.25

demonstrate standard deviation of mean and maximum intensities across all frames for

both standing and sitting scenarios. Table 5.26 and Table 5.28 show some statistics
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of maximum intensities for standing and sitting scenarios across all frames. Table

5.27 and Table 5.29 demonstrate some statistics of mean intensities for standing and

sitting scenarios across all frames.

Scenario Mean+CASO MTI+CASO MTI+Var Mean + Var

Standing 0.199 0.251 0.306 0.429

Sitting 0.196 0.323 0.442 0.427

Table 5.22: Hausdorff Distance of points classified as reflection from human body

Scenario Mean+CASO MTI+CASO MTI+Var Mean + Var

Standing 0.369 0.37 0.544 0.477

Sitting 0.369 0.574 0.588 0.57

Table 5.23: Hausdorff Distance of all points in point clouds

As shown in Table 5.22 and Table 5.23, MTI+Var and Mean+Var produce higher

average Hausdorff distances for points identified as reflections from the human body

as well as for the entire point cloud. This indicates that the point cloud exhibits lower

consistency, even though the human subject remains in the same position across all

frames. This finding further supports the conclusion from the coverage test, suggest-

ing that variance-based methods are more prone to capturing reflections from body
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segments with weaker signals. As a result, these methods are more susceptible to

noise and artifacts.

MTI+Var and MTI+CASO, which use the MTI filter for clutter removal, both

exhibit performance degradation, as shown in Table 5.19, in terms of the proportion

of reflections and the Hausdorff distance evaluation when comparing the sitting sce-

nario to the standing scenario. In contrast, for Mean+CASO and Mean+Var, which

use mean removal, the differences in Hausdorff distances are less pronounced, both for

the original point cloud and the filtered point cloud (containing only points identified

as reflections). This is because mean removal better preserves small variations com-

pared to the first-order MTI filter. As a result, smaller and localized random body

movements are less suppressed, leading to fewer missed points and reduced spatial

deviation. In contrast, mean removal retains these small variations, ensuring higher

consistency across frames.

Scenario Mean+CASO MTI+CASO MTI+Var Mean+Var

Standing 3.42 3.54 3.22 3.03

Sitting 7.46 6.96 6.72 6.63

Table 5.24: Standard Deviation of Mean Intensities across all frames
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Scenario Mean+CASO MTI+CASO MTI+Var Mean+Var

Standing 4.56 4.01 3.34 3.22

Sitting 9.16 8.21 7.01 6.88

Table 5.25: Standard Deviation of Maximum Intensities across all frames

Table 5.24 and Table 5.25 illustrate the standard deviation of the mean and max-

imum intensities across all frames for both standing and sitting scenarios. Table 5.26

to Table 5.29 demonstrate other related statistics. In general, the variance-based

method has a lower standard deviation than the CFAR method. This is because

the variance-based method consistently identifies the first local maximum exceeding

a preset threshold, whereas CFAR uses a dynamic threshold, resulting in greater in-

tensity variation. The standing scenario also has a lower standard deviation in mean

and maximum intensities than the sitting scenario. This can be attributed to the

effects of clutter removal techniques: when the subject is standing, their random

body movements tend to be more consistent, resulting in reduced intensity variation

after clutter removal. In contrast, during the sitting scenario, body movements are

more subtle and localized, increasing the likelihood of human body reflections being

suppressed, which in turn results in greater intensity variation.
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Mean+CASO MTI+CASO MTI+Var Mean+Var

Mean 145.61 151.9 149.32 143.02

Median 145.85 152.02 149.16 143.06

0.8 Quantile 149.07 155.29 152.53 145.62

0.95 Quantile 152.85 158.31 154.99 148.37

Table 5.26: Statistics for Maximum intensities of standing scenario

Mean+CASO MTI+CASO MTI+Var Mean+Var

Mean 140.45 148.79 146.17 140.05

Median 140.5 149.09 145.91 140.04

0.8 Quantile 143.46 152.13 149.36 142.35

0.95 Quantile 145.66 154.31 151.62 145.22

Table 5.27: Statistics for Mean intensities of standing scenario

Mean+CASO MTI+CASO MTI+Var Mean+Var

Mean 149.25 153.47 146.78 146.93

Continued on the next page
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Continued from previous page

Mean+CASO MTI+CASO MTI+Var Mean+Var

Median 149.25 154 146.4 146.76

0.8 Quantile 158.34 160.68 154.24 154.24

0.95 Quantile 163.79 165.59 158.59 158.59

Table 5.28: Statistics for Maximum intensities of sitting scenario

Mean+CASO MTI+CASO MTI+Var Mean+Var

Mean 144.34 149.72 142.98 143.05

Median 144.67 150.45 141.95 142.28

0.8 Quantile 151.93 155.62 150.29 150.32

0.95 Quantile 155.94 161.4 155.17 154.99

Table 5.29: Statistics for Mean intensities of sitting scenario
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Chapter 6

Conclusion

To conclude, this thesis presents quantifiable evaluation metrics for both static tar-

gets and a human subject. For static target scenarios, the proposed metric includes

Euclidean distance error, range error, azimuth angle error, and elevation angle error,

providing a more comprehensive assessment of pipeline performance than Euclidean

distance error alone. For human target scenarios, this work introduces coverage and

consistency evaluations. The coverage test utilizes the Euclidean distance to the

human mesh surface to determine the percentage of points that originate from the

human body, while also assessing coverage across different body regions. Consistency

evaluation is conducted under the condition that the human subject maintains a fixed

position and posture across all frames. This involves computing the mean and max-

imum intensity values over all frames and analyzing the Hausdorff distance between

the reference frame’s point cloud and those of all other frames. These metrics offer a

detailed quantitative assessment of the generated point clouds and the effectiveness

of the underlying processing pipelines.
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The experiment demonstrates that angle estimation accuracy decreases with in-

creasing range and incident angles. For the static target scenario, variance-based

target detection combined with MVDR spectrum estimation yields the best per-

formance. The CFAR algorithm performs less effectively than the variance-based

method. Among the CFAR variants, CFAR-CASO shows slightly superior perfor-

mance compared to CFAR-CA in most trials. The MUSIC algorithm performs sim-

ilarly in the single-target test but experiences a decline in performance in the three-

target test. In the human subject tests, the CFAR algorithm requires larger noise

windows and guard cells than in the static target tests. The optimal configuration

for the CFAR algorithm in the human subject tests includes a noise window size of

14 and a guard cell dimension of 8 for both 1D and 2D CFAR. However, configura-

tions with larger noise windows and guard cell dimensions deliver comparable results.

All pipelines in the human subject test employed MVDR spatial spectrum estima-

tion. The pipeline achieving the best overall performance combines mean removal for

clutter removal and CFAR with a zoom-in spectrum for target detection. Pipelines

that use the variance-based method for target detection exhibit poorer consistency

compared to CFAR-based methods in the human target tests.

6.1 Limitations and Future Work

This study was conducted using a single radar device and configuration, without an

in-depth analysis of how variations in range resolution, angular resolution, and the

number of chirps affect pipeline performance for each metric discussed in this thesis.

The experiment was carried out in a controlled laboratory setting, lacking diversity

in human subject scenarios. Future research will focus on collecting a more diverse

82

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.A.Sc. Thesis – B. Jiang; McMaster University – Computing and Software

dataset, incorporating human subjects with varying body shapes. Additionally, real-

world scenarios will be included in data collection, and a broader range of radar

configurations and devices will be explored.

This study evaluates a limited set of commonly used algorithms and a standard-

ized pipeline based on previous research, focusing primarily on target detection for

human subjects and static point targets. Future research could explore a broader

range of pipelines and algorithms, incorporating both existing and newly developed

evaluation metrics. Additionally, future work will aim to establish a stronger cor-

relation between point cloud evaluation metrics and downstream task performance,

analyzing how high-scoring point clouds impact their respective applications. Further

refinements in evaluation metrics and validation across diverse radar configurations

and environmental conditions will enhance their robustness and applicability.
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