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Lay Abstract

Let I be a monomial ideal in R = K[x1, x2, . . . , xn], a polynomial ring over a field K. The

Waldschmidt constant of I, denoted α̂(I), is a numeric invariant of I. The Waldschmidt

constant manifests in many ways in commutative algebra and algebraic geometry, and is

related to open problems such as the ideal containment problem and Nagata’s conjecture.

For a monomial ideal, the computation of α̂(I) reduces to solving a linear optimization

problem. This thesis shows how to construct a monomial ideal with α̂(I) equal to any

rational number greater than or equal to 1. The family of monomial ideals investigated are

intersections of powers of prime monomial ideals (in Chapter 3) and square-free principal

Borel ideals (in Chapter 4).
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Abstract

Let I be a homogeneous ideal in R = K[x1, x2, . . . , xn], a polynomial ring over a field

K with characteristic zero. Define the m-th symbolic power of I as the ideal I(m) :=⋂
P∈Ass(I)(I

mRP ∩R).

The Waldschmidt constant of I is defined as

α̂(I) = lim
m→∞

α(I(m))

m
.

Here, α(J) denotes the smallest degree of a generator of the ideal J . The Waldschmidt

constant is interpreted as an asymptotic invariant of I. The ratio α(I)
α̂(I) gives a measure of

the growth of the symbolic power I(m) compared to the ordinary power Im as m → ∞.

The focus of this thesis is answering this question: for a given rational number q
p ≥ 1,

how can we construct a monomial ideal I such that α̂(I) = q
p? Computing the Waldschmidt

constant for a monomial ideal reduces to solving a linear optimization problem. We study

two families of monomial ideals in depth.

In Chapter 3 we study ideals of the form

I = ⟨x2, . . . , xn⟩e1 ∩ ⟨x1, x3, . . . , xn⟩e2 ∩ · · · ∩ ⟨x1, . . . , xn−1⟩en .

Our main result in this chapter (Corollary 3.3.4) is that by choosing the ei’s appropriately,

we can construct an ideal I with Waldschmidt constant for “almost all” q
p ≥ 1.

In Chapter 4 we study square-free principal Borel ideals, denoted sfBorel(m), where m is

the generating square-free monomial. We give upper and lower bounds for the Waldschmidt

iv



constant of sfBorel(m) in terms of the support of m, and in some cases, exact values. Our

main result (Corollary 4.3.2) is that for any q
p ≥ 1, we show that there exists a square-free

principal Borel ideal with Waldschmidt constant equal to q
p .
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Chapter 1

Introduction

In Section 1.1 we introduce symbolic powers and the Waldschmidt constant, the main

objects of study of this thesis. In Section 1.2 we give an overview of this thesis, and

highlight its main results.

1.1 Symbolic powers and the Waldschmidt constant

We begin by giving a brief overview of the development and position of symbolic powers

and the Waldschmidt constant in mathematics.

Let I be a homogeneous ideal in R = K[x1, x2, . . . , xn], a polynomial ring over a field K

with characteristic zero, and denote Im to be m-th (ordinary) power of the ideal. Noether

showed that any ideal in a Noetherian ring can be written as the intersection of primary

ideals [Noe21]. This primary decomposition allows for another type of power of I, the

symbolic power of an ideal, denoted I(m).

Formally, the m-th symbolic power of I is defined as

I(m) :=
⋂

P∈Ass(I)

(ImRP ∩R)

where RP is the ring R localized at the prime ideal P , and Ass(I) is the set of associated
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primes from the primary decomposition of I.

Zariski [Zar49] explored how the symbolic power I(m) provides more differential and

geometric information about I than its ordinary powers. In terms of the algebraic variety

V (I) defined by radical I we can write the symbolic power as:

I(m) = {f ∈ R | f vanishes at V (I) to order m}.

Symbolic powers, rather than ordinary powers, seem more amenable to study for algebraic

geometry. In general, the symbolic power of an ideal does not equal the ordinary power,

and the symbolic power is more difficult to compute. Comparing and measuring the differ-

ence between symbolic and ordinary powers has proven useful in many areas of algebraic

geometry and commutative algebra.

The first question in comparing symbolic and ordinary powers is to ask if and when

one contains the other. It is known that we have the containment Ir ⊆ I(m) if any only if

r ≥ m. The more interesting question is the following:

Question 1.1.1. (Ideal containment problem) For a fixed integer m, what is the smallest

integer r such that I(r) ⊆ Im holds?

The ideal containment problem is difficult because symbolic powers are difficult to com-

pute. There is a large literature available which give bounds and solutions for certain

families of ideals. The papers [ELS02], [HH02], [BH10], [DHSTG11], [HT19], and [BJZ21]

are a small sample of the research available.

Introduced in the 1970’s by Waldschmidt ([Wal77],[Wal79]) to study points in Cn, the

Waldschmidt constant plays a pivotal role in the study of the asymptotic properties of ho-

mogeneous ideals. For a given homogeneous ideal I ⊆ R = K[x1, . . . , xn], the Waldschmidt

constant of I is defined as

α̂(I) = lim
m→∞

α(I(m))

m
.

Here, α(J) denotes the smallest degree of a generator of the ideal J . The Waldschmidt

2
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constant is interpreted as an asymptotic invariant of I. The ratio α(I)
α̂(I) gives a measure

of the growth of the symbolic power I(m) compared to the ordinary power Im as m →

∞. Bocci and Harbourne were among the first to use the Waldschmidt constant to study

Question 1.1.1 (ideal containment problem). In their paper [BH10] Bocci and Harbourne

also introduced the resurgence of I, defined as ρ(I) = sup
{

r
m | I(r) ̸⊂ Im

}
, which provides

the bound α(I)
α̂(I) ≤ ρ(I). For more on the Waldschmidt constant see [BDRH+19], [BH20],

and [NH21].

A major open problem in connection with the Waldschmidt constant is Nagata’s con-

jecture. In 1959 Nagata (a collaborator of Zariski) provided counterexamples to Hilbert’s

fourteenth problem [Nag59] and proposed a follow-up conjecture on complex curves. This

conjecture (known as Nagata’s conjecture), which remains open, can be rephrased as a

statement involving the Waldschmidt constant of the ideal associated to a set of points.

Theorem 1.1.2 (Nagata’s conjecture re-phrased). [GHVT13] Let I ⊂ K[P2] be the ideal

of s ≥ 10 generic points of P2. Then α̂(I) =
√
s.

1.2 Monomial ideals with a prescribed Waldschmidt con-

stant

We now give an overview of the purpose and content of this thesis. The focus of this thesis

will be answering the following natural questions about the Waldschmidt constant.

Question 1.2.1. What are the possible values of the Waldschmidt constant?

Question 1.2.2. For a prescribed number q, how can we construct an ideal I such that

α̂(I) = q?

The Waldschmidt constant for a general ideal is difficult to compute because it involves

taking the limit of symbolic powers (which in themselves involve intersections and local-

izations). In this thesis we will focus on monomial ideals (polynomial ideals which are

3
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generated by monomials). Fortunately, computing the Waldschmidt constant for monomial

ideals is simpler than the general case; we can transform the analytic problem into one of

convex geometry and linear optimization.

We now give an overview of the sections of the thesis and highlight its main results.

Section 2.1. Here we give the definition of the Waldschimdt constant, and basic prop-

erties and terminology for monomial ideals, square-free monomial ideals, and linear opti-

mization problems.

Section 2.2. The goal of this section is to show how the computation of the Wald-

schmidt constant for monomial ideals can be recast as a linear optimization program. We

make use of the work of Cooper, Embree, Hà, Hoefel in [CEHH17] which shows that the

Waldschmidt constant of a monomial ideal can be viewed as an invariant of a convex poly-

hedron called the symbolic polyhedron (see Theorem 2.2.8, [Corollary 6.3 in [CEHH17]]).

The work of Bocci, Cooper, Guardo, Harbourne, Janssen, Nagel, Seceleanu, Van Tuyl,

and Vu in [BCG+16] explicitly shows how the primary decomposition of a square-free mono-

mial ideal can be used to construct a linear optimization problems whose value is the Wald-

schmidt constant of ideal. (see Theorem 2.2.11, [Theorem 3.2 in [BCG+16]]).

Section 2.3. In this section we expand on the result of [BCG+16] to give an explicit

procedure for constructing a linear optimization problems whose value is the Waldschmidt

constant for any monomial ideal without embedded primes presented in irreducible form.

The main result of this section is given below.

Theorem 1.2.3. (Theorem 2.3.4) Suppose I is a monomial ideal in R = K[x1, . . . , xn]

with minimal irreducible primary decomposition

I = Q1 ∩Q2 ∩ · · · ∩Qs

where Qi = ⟨xai1i1
, x

ai2
i2

, . . . , x
aik
ik

⟩. Furthermore, suppose this I does not contain any em-

bedded primes. For each Qi associate an n-vector r(i) with the ij-th entry equal to 1
aij

for

1 ≤ j ≤ k and otherwise equal to 0. Let A be the s×n matrix with row i equal to r(i). Then

4
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α̂(I) is the value of the linear optimization problem

min{1Ty | Ay ≥ 1,y ≥ 0}.

Section 2.4. This section uses the work of Camarneiro, Drabkin, Fragoso, Frendreiss,

Hoffman, Seceleanu, Tang, and Yang in [CDF+22] to give a more complete framework for

the correspondence between the algebra of the monomial ideal and its associated polyhedra.

The following lemma gives the Newton polyhedra (see Definition 2.4.1) of the power of

prime monomial ideal. This will prove useful in Section 3.

Lemma 1.2.4 (Lemma 2.4.7). Let B = {b1, b2, . . . , br} ⊆ {1, 2. . . . , n} with |B| = r.

Let I = ⟨xb1 , xb2 , . . . , xbr⟩ be a monomial ideal in R = K[x1, . . . , xn]. Then for Id =

⟨xb1 , xb2 , . . . , xbr⟩d we have

NP (Id) =

{
r∑

i=1

1

d
ybi ≥ 1

∣∣∣ ybi ∈ R≥0

}
.

Section 2.5. Here we begin to answer Question 1.2.1 by looking at ideals in just two

variables. By analysing the generators of any monomial ideal I in K[x1, x2], we find that

the Waldschmidt constant α̂(I) equals the initial degree α(I):

Theorem 1.2.5 (Theorem 2.5.3). Let I be a monomial ideal in K[x1, x2]. Then α̂(I) =

α(I).

Since α(I) is the degree of the smallest generator of I, the Waldschmidt constant can only

take on a natural number in two variables. To find an ideal with a non-integer Waldschmidt

constant, we need add more variables.

Chapter 3 - Waldschmidt constant for monomial ideals in n > 2 variables

To attempt to answer Question 1.2.1 and Question 1.2.2 we want to choose a family

of monomial ideals that are described by few parameters while producing a large range of

Waldschmidt constants. In Chapter 3 we look at monomial ideals that are intersections of

powers of prime monomial ideals.

5
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Section 3.1. In this section we focus on the family ideals in R = K[x1, x2, x3] of the

form

I = ⟨x2, x3⟩e1 ∩ ⟨x1, x3⟩e2 ∩ ⟨x1, x2⟩e3

with e1 ≥ e2 ≥ e3 > 0. By analysing the feasible region of the linear optimization problem

associated to I, the following corollary shows how we can choose e1, e2, and e3 to construct

an ideal with Waldschmidt constant equal to q
2 > 1 for a prescribed positive integer q > 2.

Corollary 1.2.6 (Corollary 3.1.2). Fix a positive integer q > 2. Then write the integer

partition q = e1 + e2 + e3 where
e1 =

q
3 , e2 =

q
3 , e3 =

q
3 if q ≡ 0 mod 3

e1 = ⌈ q3⌉, e2 = ⌊ q3⌋, e3 = ⌊ q3⌋ if q ≡ 1 mod 3

e1 = ⌈ q3⌉, e2 = ⌈ q3⌉, e3 = ⌊ q3⌋ if q ≡ 2 mod 3.

Then

I = ⟨x2, x3⟩e1 ∩ ⟨x1, x3⟩e2 ∩ ⟨x1, x2⟩e3

is a monomial ideal in R = K[x1, x2, x3] with α̂(I) = q
2 .

Section 3.2. In this section we focus on the family ideals in R = K[x1, x2, x3, x4] of the

form

I = ⟨x2, x3, x4⟩e1 ∩ ⟨x1, x3, x4⟩e2 ∩ ⟨x1, x2, x4⟩e3 ∩ ⟨x1, x2, x3⟩e4

with e1 ≥ e2 ≥ e3 ≥ e4 > 0. We derive a similar result as the above corollary with a notable

exception: we can choose e1, e2, e3 and e4 to create an ideal I with Waldschmidt constant

q
3 > 1 except for when q = 5.

Section 3.3. In this section we focus on the family of ideals in R = K[x1, . . . , xn] of

the form

I = ⟨x2, . . . , xn⟩e1 ∩ ⟨x1, x3, . . . , xn⟩e2 ∩ · · · ∩ ⟨x1, . . . , xn−1⟩en

6
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with e1 ≥ e2 ≥ · · · ≥ en > 0. The following result allows us to choose the ei’s so that we can

attain a Waldschmidt constant equal to q
p for almost all rational numbers greater than 1.

By “almost all” we mean for a given denominator p, there are only finitely many numerators

q such that α̂(I) = q
p is not attainable by this method. Our result is summarized below.

Corollary 1.2.7 (Corollary 3.3.4). Consider the fraction q
p ≥ 1 for some positive integers

q, p. Let n = p+1 and q ≡ k mod n. Then write the integer partition q = e1+e2+ · · ·+en

where we set

ei =


⌈ q
n⌉ for 1 ≤ i ≤ k

⌊ q
n⌋ for k + 1 ≤ i ≤ n.

Now suppose n2 − (k + 1)n+ k ≤ q is true. Then

I = ⟨x2, . . . , xn⟩e1 ∩ ⟨x1, x3, . . . , xn⟩e2 ∩ · · · ∩ ⟨x1, . . . , xn−1⟩en

is a monomial ideal in R = K[x1, ..., xn] with α̂(I) = q
p .

Chapter 4. The content of Chapter 4 first appeared in the paper On the Waldschmidt

Constant of Square-free Principal Borel Ideals [CMKSVT22] in collaboration with Camps

Moreno, Sarmiento, and Van Tuyl.

We investigate theWaldschmidt constant of a family of monomial ideals called square-free

principal Borel ideals. We denote these ideals by sfBorel(m), where m = xi1 · · ·xis is the

square-free monomial which generates the ideal. Given a monomial m, if xi|m and j < i,

then we call xj · m
xi

a Borel move of m. A monomial ideal is a Borel ideal (or a strongly

stable ideal) if for every m ∈ I, all of the Borel moves of m are also in I. For example, let

m = x2x5 and let I = sfBorel(x2x5) ∈ K[x1, . . . , x5]. The set of monomials attained via

every Borel move on m = x2x5 is the following set:

B = {x21, x1x2, x22, x1x3, x2x3, x1x4, x2x4, x1x5, x2x5}.

7
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The generators of sfBorel(x2x5) are the square-free monomials of B:

gens(sfBorel(x2x5)) = {x1x2, x1x3, x2x3, x1x4, x2x4, x1x5, x2x5}.

Since these ideals are square-free monomial ideals, the method of Section 2.2 for comput-

ing α̂(sfBorel(m)) applies. In practice, solving the linear optimization problem for square-

free principal Borel ideals can be especially difficult due to the large number of inequalities

involved. As an example, suppose we wish to compute α̂(sfBorel(m)) where the generating

monomial is

m = x33215x33216 · · ·x104348 ∈ K[x1, . . . , x104348]. (1.2.1)

To apply the method of Theorem 2.2.11 to find the Waldschmidt constant for this ideal

would involve solving a linear optimization problem in 104348 variables and
(
104348
33215

)
≈

5.1 × 1028347 inequalities defining its feasible region. By contrast, the ideals of Section 3.3

have only n variables and n inequalities.

We provide an upper bound (Theorem 4.2.4) and a lower bound (Theorem 4.3.4) for

α̂(sfBorel(m)), expressed in terms of the support of m = xi1 · · ·xis , that is, {i1, . . . , is}. Our

analysis relies on the work of Francisco, Mermin, and Schweig [FMS11] which describes the

associated primes of sfBorel(m).

The following corollary is the highlight of the chapter: when the monomial m =

xi1xi2 · · ·xik has no “gaps” or “jumps” in the ij ’s, we can compute α̂(sfBorel(m)) exactly.

Corollary 1.2.8 (Corollary 4.3.2). Let I = sfBorel(xixi+1 · · ·xi+l). Then

α̂(I) =
i+ l

i
.

Consequently, let q
p ≥ 1 be a rational number. Then there exists a square-free principal

Borel ideal I such that α̂(I) = q
p .

The above result is constructive in the sense that we can explicitly choose the required

monomial m such α̂(sfBorel(m)) = q
p ≥ 1. So this result gives an answer to Question 1.2.2

8
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for rational numbers. Also, observe the monomial m of (1.2.1) was chosen to approximate

π up to nine digits

α̂(sfBorel(m)) =
104348

33215
= 3.14159265392. (1.2.2)

Chapter 5. In this final chapter we show that we can construct a monomial ideal I in

three variables whose Waldschmidt constant has a prescribed denominator (Example 5.1.1).

We observe that while the square-free principal Borel ideals of Chapter 4 can attain any

rational Waldschmidt constant greater or equal to 1, they do so “inefficiently” compared

to the ideals from Section 3.3. By “inefficient” we mean that an ideal from Chapter 4 will

often require far more variables than an ideal from Section 3.3 with the same Waldschmidt

constant. The thesis concludes by proposing questions for further inquiry, including:

Question 1.2.9. For a prescribed Waldschmidt constant q
p ≥ 1, what is the monomial

ideal I that most “efficiently” (e.g., in terms of minimal number of variables or associated

primes required) that attains α̂(I) = q
p?

9
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Chapter 2

Background

2.1 Monomial ideals, primary decomposition

In this thesis we will consider ideals in the polynomial ring R = K[x1, . . . , xn] over a field

K with characteristic zero.

The Hilbert Basis Theorem implies that an ideal I in R can be described by a finite

generating set of polynomials (Corollary 7.7, [AM69]):

I = ⟨f1, f2, . . . , fs⟩ := {g1f1 + · · ·+ gsfs | gi ∈ R}.

We denote the set of generators by gens(I) = {f1, f2, . . . , fs}. A set of generators for I is

called a minimal generating set if no element of gens(I) can be omitted. In general,

gens(I) is not a unique set.

An ideal I is prime if fg ∈ I implies either f ∈ I or g ∈ I. An ideal I is primary if

fg ∈ I implies either f ∈ I or gm ∈ I for some m > 0. The radical ideal of an ideal I is

the set

√
I = {f ∈ R | fm ∈ I for some m ≥ 1}.

If I is primary, then
√
I is the smallest prime ideal containing I.

10
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Theorem 2.1.1 (Theorem 7.3 [AM69], [Noe21]). Every ideal I in R can be written as a

finite intersection of primary ideals. That is, we can write

I = Q1 ∩Q2 ∩ · · · ∩Qr

where the Qi’s are primary ideals. Additionally, this decomposition is called minimal or

irredundant if
√
Qi are all distinct and

⋂
j ̸=iQj ̸⊆ Qi.

Definition 2.1.2. Suppose I = Q1 ∩Q2 ∩ · · · ∩Qr is a primary decomposition. Then the

set of associated primes of I is

Ass(I) = {
√
Q1 = P1,

√
Q2 = P2, . . . ,

√
Qr = Pr}.

The associated primes of I which are not minimal (with respect to set-theoretic inclusion)

in Ass(I) are called the embedded associated primes of I.

Definition 2.1.3. A ring R is called a graded ring if it can be decomposed into a direct

sum R =
⊕∞

i=0Ri of additive groups where RmRn ⊆ Rm+n. Since R is a direct sum, any

non-zero element a of R can be uniquely written as a = a0 + a1 + · · ·+ an, where each ai is

either 0 or homogeneous of degree i (the non-zero ai are called homogeneous components

of a). A non-zero element of Rn is called a homogeneous element of degree n. An ideal

I ⊆ R is called a homogeneous ideal if for every a ∈ I, the homogeneous components of

a are also in I.

Definition 2.1.4. For a homogeneous ideal I, denote α(I) to be the smallest degree of an

element in a minimal set of homogeneous generators for I.

Definition 2.1.5. The m-th symbolic power of I ⊆ R, denoted I(m), is the ideal

I(m) :=
⋂

P∈Ass(I)

(ImRP ∩R)

where RP is the ring R localized at the prime ideal P .

Remark 2.1.6. The definition of symbolic powers is not uniform in the literature, where in
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some references, the indexing set is only over the minimal associated primes as in (Definition

4.3.22, [Vil15]) In this thesis we use the version as written in Definition 2.1.5 above.

We now define the main invariant of study for this thesis.

Definition 2.1.7. For any homogeneous ideal I, define the Waldschmidt constant of I

as

α̂(I) := lim
m→∞

α(I(m))

m
.

Remark 2.1.8. The limit in the above definition converges because α(I(m)) is an a subad-

ditve function: α(I(m1+m2)) ≤ α(I(m1)) + α(I(m2)) (see Lemma 2.3.1, [BH10]).

2.1.1 Monomial ideals

An ideal I is a monomial ideal if it can be generated by a set of monomials (polynomials

with one term). A prime monomial ideal is generated by a subset of the variables, i.e.,

of the form ⟨xi1 , . . . , xik⟩. The height of a prime monomial ideal P , denoted ht(P ), is the

largest number h such that there exists a chain of distinct prime ideals P0 ⊂ P1 ⊂ . . . Ph =

P . For a prime monomial ideal P = ⟨xi1 , . . . , xik⟩ we have ht(P ) = k.

The following proposition summarizes how we can compute a set of monomial generators

under standard ideal operations.

Proposition 2.1.9 (Section 1.2.1, [HH11]). Let I, J be monomial ideals in K[x1, . . . , xn]

with generating sets gens(I) and gens(J), respectively. Then I, J under the following stan-

dard ideal operations are again monomial ideals.

1. I + J = ⟨{m | m ∈ gens(I) ∪ gens(J)}⟩.

2. IJ = ⟨{m1m2 | m1 ∈ gens(I),m2 ∈ gens(J)}⟩.

3. I ∩ J = ⟨{lcm(m1,m2) | m1 ∈ gens(I),m2 ∈ gens(J)}⟩,

where lcm(m1,m2) denotes the monomial that is the least common multiple of m1 and m2.
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A monomial is often denoted by m but we may also write a monomial as

xa = xa11 xa22 · · ·xann

and refer to a = (a1, . . . , an) ∈ Nn as the exponent vector of the monomial. A monomial

xa11 xa22 · · ·xann is square-free when ai ∈ {0, 1} for all i. A monomial ideal is square-free

if each of its generators is a square-free monomial.

The following theorem summarizes useful properties of square-free monomial ideals and

their symbolic powers.

Theorem 2.1.10 (Theorem 10.4, [CHHVT20]). Let I be a square-free monomial ideal in

R = K[x1, . . . , xn].

1. There exist unique prime monomial ideals of the form Pi = ⟨xi1 , . . . , xiti ⟩ such that

I = P1 ∩ · · · ∩ Ps.

2. With the Pi’s as above, the m-th symbolic power of I is given by I(m) = Pm
1 ∩· · ·∩Pm

s .

3. For all integers m ≥ 1,

α(I(m)) = min{a1 + · · ·+ an | xa11 · · ·xann ∈ I(m)}.

2.1.2 Linear optimization problems

Definition 2.1.11. Let S be a subset of Rn. Then S is a convex set if for all x, y ∈ S, the

line segment connecting x to y is also in S. The convex hull of S, denoted conv(S) is the

smallest convex set containing S. A convex polyhedron is a convex set which equals the

solution set to a system of linear inequalities. An extreme point or vertex of a convex

set S is a point in S which does not lie in any open line segment joining two points of S.

Notation 2.1.12. Suppose A is an m × n matrix, b is a n-vector, c is an m-vector,

and 0 is the zero n-vector. The standard form of a linear optimization problem (or
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linear program) is expressed as:

Solve min{bTy |Ay ≥ c,y ≥ 0} (2.1.1)

where y = [y1 y2 · · · yn]
T is a n-vector of variables.

In (2.1.1), the vector order d ≥ e means the i-th coordinate of d is greater than or equal

to the i-th coordinate of e for all i. Any vector y satisfying Ay ≥ c and y ≥ 0 is called a

feasible solution. The set of feasible solutions, denoted F , is a convex polyhedron called

the feasible region. The objective function is the expression bTy.

If y′ is a feasible solution which minimizes the objective function bTy, then y′ is called

an optimal solution or minimizer and bTy′ is the value of the linear optimization

problem.

Theorem 2.1.13 (Theorem 2.3 (Fundamental Theorem of Linear Programming), [FP93]).

For a linear optimization program in its standard form with a non-empty feasible region

F , the minimum value of the objective function bTy over F is either unbounded below or

attained by a vertex of F .

If we can compute the vertices of F , then solving the linear optimization program

amounts to testing which vertex minimizes the objective function. The following character-

ization of the vertices of F will prove helpful in Chapter 3.

Definition 2.1.14 (Definition 2.9, [BT97]). The feasible region F associated to the linear

optimization problem (2.1.1) is the intersection of m+n half-spaces defined by inequalities.

Let (A)i,∗ be the i-th row of A. There are m inequalities of the form

(A)i,∗ · y = ai,1y1 + ai,2y2 + · · ·+ ai,nyn ≥ ci

and n inequalities of the form yi ≥ 0. A vector z ∈ Rn is called a basic solution if it

is the unique solution to any n of the inequalities changed to equalities (i.e., hyperplane

equations). If a basic solution is feasible, i.e., it further satisfies the remaining m inequalities
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(those not changed to hyperplane equations), then z is called a basic feasible solution or

vertex of F .

Definition 2.1.15. The dual of the standard linear optimization problem (2.1.1) is a linear

optimization problem of the form

Solve max{cTx |ATx ≤ b,x ≥ 0} (2.1.2)

where A,b and c are the same as in (2.1.1), and x ∈ Rm.

The following theorem which relates (2.1.1) and (2.1.2) will be useful in Chapter 4.

Theorem 2.1.16. 1. (Theorem 4.2 (Weak duality), [BT97]) For each feasible solution

y′ to (2.1.1) and each feasible solution x′ to (2.1.2) we have cTx′ ≤ bTy′.

2. (Theorem 4.4 (Strong duality), [BT97]) If either (2.1.1) or (2.1.2) have an optimal

solution, then so does the other and both linear optimization problems have the same

value.

2.2 Symbolic polyhedrons and the Waldschmidt constant as

a linear optimization program

We now introduce the symbolic polyhedron of a monomial ideal and show that computing

the Waldschimdt constant amounts to solving a linear optimization problem.

Definition 2.2.1. Let M be a monomial ideal or finite set of monomials. Define

L(M) = {a ∈ Nn | xa ∈ M}

to be the set of lattice points (i.e., elements of Zn
≥0) corresponding to the exponent vectors

of monomials in M .

Definition 2.2.2. Let A,B ⊆ Rn. Then the Minkowski sum of A and B is formed by

adding each vector in A to each vector in B, that is, A+B = {a+ b | a ∈ A, b ∈ B}.
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Lemma 2.2.3 (Lemma 5.2, [CEHH17]). Let I be a non-zero monomial ideal. The convex

hull of L(I) is

conv(L(I)) = conv(L(gens(I))) + Rn
+,

where + is the Minkowski sum.

Example 2.2.4. We will compute conv(L(I)) for I = ⟨x21, x32⟩ in R = K[x1, x2]. The set

of monomials in I is the set

{xk11 xk22 | k1 ≥ 0, k2 ≥ 3, k1, k2 ∈ N} ∪ {xk11 xk22 | k1 ≥ 2, k2 ≥ 0, k1, k2 ∈ N}.

The exponent vectors for the generators of I are: L(gens(I)) = {(2, 0), (0, 3)}.

The convex hull of the two exponent vectors is the line segment joining (2, 0) and (0, 3):

conv(L(gens(I))) = {(y1,y2) | 1
2y1 +

1
3y2 = 1, (y1,y2) ∈ R2

≥0}. Then taking the Minkowski

sum with R2
+ gives:

conv(L(I)) = {(y1,y2) |
1

2
y1 +

1

3
y2 ≥ 1, (y1,y2) ∈ R2

≥0}.

See Figure 2.1.

The following lemma generalizes Example 2.2.4 for any monomial ideal generated by

powers of the variables.

Lemma 2.2.5. Let I = ⟨xai1i1
, x

ai2
i2

, . . . , x
aik
ik

⟩ be a monomial ideal in R = K[x1, . . . , xn]. Let

r be an n-vector with entry the ij-th equal to 1
aij

for 1 ≤ j ≤ k and every other entry equal

to 0. Then

conv(L(I)) = {y | r · y ≥ 1,y ≥ 0},

where y = [y1 y2 · · ·yn] is a vector of real variables.

Proof. For each of the k generators of I we have the corresponding exponent vector

(0, . . . , aij , . . . , 0), i.e., an n-vector with aij in its ij-th coordinate and 0 elsewhere. Let

y ∈ Rn and observe that the k exponent vectors lie on the hyperplane H =
∑k

j=1
1
aij

yij = 1.
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Figure 2.1: Convex hull of Example 2.2.4
The filled in dots represent exponent vectors for monomials in I. The grey area equals

conv(L(I)).

Then the convex hull of the k exponent vectors is the intersection of the hyperplane H with

the non-negative orthant of Rn:

conv(L(gens(I))) =
{
y
∣∣∣ k∑

j=1

1

aij
yij = 1,y ≥ 0

}
where y = [y1 y2 · · ·yn] is a vector of real variables. Now let r be an n-vector with the

ij-th entry equal to 1
aij

for 1 ≤ j ≤ k and every other entry equal to 0. Then we get

conv(L(gens(I))) = {y | r · y = 1,y ≥ 0}.

Now taking the Mikowski sum with Rn
+ equals the set

conv(L(I)) = {y | r · y ≥ 1,y ≥ 0},

giving the result.

Definition 2.2.6. [Definition 5.3, [CEHH17]] The symbolic polyhedron of a monomial
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ideal I is the polyhedron SP (I) ⊆ Rn given by

SP (I) =
⋂

P∈maxAss(I)

conv(L(Q⊆P )),

where Q⊆P is the intersection of all primary ideals Qi in the primary decomposition of I

with
√
Qi ⊆ P . We denote maxAss(I) to be the subset of Ass(I) that are maximal with

respect to set-theoretic inclusion.

Definition 2.2.7. For any polyhedron P ⊂ Rn, define

α(P) = min{1Ty | y ∈ P}

where 1 is the column vector of appropriate size with all entries being 1.

Theorem 2.2.8 (Corollary 6.3, [CEHH17]). Let I be a monomial ideal and SP (I) be its

symbolic polyhedron. Then α(SP (I)) = α̂(I).

The above two definitions and theorem taken together tell us: For a monomial ideal

I, computing the Waldschmidt constant α̂(I) is equivalent to solving a linear optimization

problem where the symbolic polyhedron SP (I) is the feasible region F .

2.2.1 Waldschmidt constant of a square-free monomial ideal

In this section we compute the Waldschmidt constant for square-free monomial ideals.

Theorem 2.2.9 (Corollary 1.3.4, [HH11]). A square-free monomial ideal is an intersection

of prime monomial ideals.

Example 2.2.10. Consider the following ideal in R = K[x1, x2, x3, x4] with primary de-

composition

I = ⟨x1, x2, x3⟩︸ ︷︷ ︸
P1

∩ ⟨x1, x2, x4⟩︸ ︷︷ ︸
P2

∩ ⟨x1, x3, x4⟩︸ ︷︷ ︸
P3

∩ ⟨x2, x3, x4⟩︸ ︷︷ ︸
P4

.

Each Pi is a prime monomial ideal since it is generated by variables. So by Theorem 2.2.9

I is a square-free monomial ideal. By inspection no associated prime contains another so
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Ass(I) = maxAss(I) = {P1, P2, P3, P4}. This means we have Q⊆Pi = Pi for each i. Then

applying Lemma 2.2.5 we have:



conv(L(Q⊆P1)) = conv(L(P1)) = {y | [1 1 1 0]Ty ≥ 1,y ≥ 0}

conv(L(Q⊆P2)) = conv(L(P2)) = {y | [1 1 0 1]Ty ≥ 1,y ≥ 0}

conv(L(Q⊆P3)) = conv(L(P3)) = {y | [1 0 1 1]Ty ≥ 1,y ≥ 0}

conv(L(Q⊆P4)) = conv(L(P4)) = {y | [0 1 1 1]Ty ≥ 1,y ≥ 0}.

Letting

A =



1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1


,

we get

SP (I) =
⋂
i

conv(L(Q⊆Pi)) = {y | Ay ≥ 1,y ≥ 0}.

By Definition 2.2.7, we have α(SP (I)) = min{1Ty | y ∈ SP (I)}. Then by Theorem

2.2.8 and the form of SP (I) computed above we get

α̂(I) = α(SP (I)) = min{1Ty | y ≥ 0, Ay ≥ 1}.

We have expressed the Waldschmidt constant as the value of a linear optimization

problem in standard form (2.1.1). The unique optimal solution to the linear optimization

program is z = [13
1
3

1
3

1
3 ] (in Section 3.2 we will show how to compute the optimal solution

for this family of ideals). So the Waldschmidt constant is α̂(I) = 1T z = 1
3 +

1
3 +

1
3 +

1
3 = 4

3 .

The following theorem shows that the above example of computing the Waldschmidt

constant as a linear optimization problem generalizes to any square-free monomial ideal.
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Note this method only requires knowing Ass(I) and importantly avoids computing local-

ization and limits.

Theorem 2.2.11. Let I ⊆ R = K[x1, . . . , xn] be a square-free monomial ideal with minimal

primary decomposition I = P1 ∩ P2 ∩ · · · ∩ Ps. Define the matrix the s× n matrix

Ai,j =


1 if xj ∈ Pi

0 if xj /∈ Pi.

Then α̂(I) is the value of the linear optimization problem

min{1Ty | Ay ≥ 1,y ≥ 0}.

Proof. Note that since I is a square-free monomial ideal we cannot have Pi ⊂ Pj , otherwise

the primary decomposition has a redundant component and is not minimal. So we have

Ass(I) = maxAss(I) = {P1, . . . , Ps} and Q⊆Pi = Pi for each i. Define the s× n matrix

Ai,j =


1 if xj ∈ Pi

0 if xj /∈ Pi.

Then by Lemma 2.2.5 we can write

conv(L(Q⊆Pi) = conv(L(Pi)) = {y | (A)i,∗ · y ≥ 1,y ≥ 0}

where (A)i,∗ is the i-th row of the matrix A. Then

SP (I) =
⋂
i

conv(L(Q⊆Pi)) = {y | Ay ≥ 1,y ≥ 0}

and so the result follows from Definition 2.2.7 and Theorem 2.2.8.

Note that a different proof for Theorem 2.2.11 is given as Theorem 3.2 in [BCG+16]

which does not use the symbolic polyhedron.
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2.3 Waldschmidt constant of a monomial ideal without em-

bedded primes

With the method of Theorem 2.2.11 in hand we can provide a partial answer to the following

question.

Question 2.3.1 (10.23, [CHHVT20]). Is there a procedure similar to (Theorem 2.2.11) to

find α̂(I) for non-square-free monomial ideals?

Definition 2.3.2. An ideal I is called irreducible if whenever we can write I = I1 ∩ I2,

then I = I1 or I = I2. An irreducible decomposition of an ideal I is I = I1∩I2∩· · ·∩Is

where each Ii is an irreducible ideal.

We require the following facts on irreducible monomial ideals.

Theorem 2.3.3. 1. (Theorem 1.3.1, [HH11]). Let I ⊆ R = K[x1, . . . , xn] be a monomial

ideal. Then I =
⋂s

i=1Qi, where each Qi is generated by pure powers of variables. In

other words, each Qi is of the form ⟨xai1i1
, x

ai2
i2

, . . . , x
aik
ik

⟩. Moreover, a minimal (or

irredunant) presentation of this form is unique.

2. (Corollary 1.3.2, [HH11]). A monomial ideal is irreducible if and only if it is generated

by pure powers of the variables.

3. (Proposition 1.3.7, [HH11]). The irreducible ideal ⟨xai1i1
, x

ai2
i2

, . . . , x
aik
ik

⟩ is

⟨xi1 , xi2 , . . . , xik⟩-primary. That is,
√

⟨xai1i1
, x

ai2
i2

, . . . , x
aik
ik

⟩ =⟨xi1 , xi2 , . . . , xik⟩.

The following theorem gives a similar procedure for computing the Waldschmidt con-

stant non-square-free monomial ideals, provided they are presented in their minimal irre-

ducible form and do not contain embedded primes.

Theorem 2.3.4. Suppose I is a monomial ideal in R = K[x1, . . . , xn] with minimal irre-

ducible primary decomposition

I = Q1 ∩Q2 ∩ · · · ∩Qs
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where Qi = ⟨xai1i1
, x

ai2
i2

, . . . , x
aik
ik

⟩. Furthermore, suppose this I does not contain any em-

bedded primes. For each Qi associate an n-vector r(i) with the ij-th entry equal to 1
aij

for

1 ≤ j ≤ k and otherwise equal to 0. Let A be the s×n matrix with row i equal to r(i). Then

α̂(I) is the value of the linear optimization problem

min{1Ty | Ay ≥ 1,y ≥ 0}.

Proof. Since I has no embedded primes we have

Ass(I) = maxAss(I) = {
√
Q1 = P1,

√
Q2 = P2, . . . ,

√
Qs = Ps},

and Q⊆Pi = Qi for each Pi ∈ Ass(I). For each Qi associate an n-vector denoted r(i) with

the ij-th entry equal to 1
aij

for 1 ≤ j ≤ k and every other entry equal to 0. Let y ∈ Rn.

Then by Lemma 2.2.5 we have

conv(L(Q⊆Pi)) = conv(L(Qi)) = {y | r(i) · y ≥ 1,y ≥ 0}.

Define the matrix A to be the s× n matrix with row i equal to r(i). Then we get

SP (I) =
⋂
i

conv(L(Q⊆Pi)) = {y | Ay ≥ 1,y ≥ 0}

and so the result follows from Definition 2.2.7 and Theorem 2.2.8.

In both Theorem 2.2.11 and Theorem 2.3.4 we require the assumption that Ass(I) =

maxAss(I). To see why, consider the following example.

Example 2.3.5. Consider the monomial ideal I = ⟨x31⟩ ∩ ⟨x41, x2⟩ ⊆ K[x1, x2].

This ideal is in its minimal irreducible presentation, but note that Ass(I) = {⟨x1⟩, ⟨x1, x2⟩}

̸= maxAss(I) = {⟨x1, x2⟩}. Computing the symbolic polyhedron gives

SP (I) =
⋂

P∈maxAss(I)

conv(L(Q⊆P )) = conv(L(Q⊆⟨x1,x2⟩)) = conv(L(⟨x31⟩ ∩ ⟨x41, x2⟩)).

In general, computing the minimal generators of an intersection of ideals is not trivial.

Additionally, computing the convex hull does not commute with intersecting ideals. So

when we have embedded primes, it is not possible to “read off” the entries of A as in
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Theorem 2.2.11 and Theorem 2.3.4.

2.4 Newton, symbolic, and irreducible polyhedra

In general, a monomial ideal I may have embedded primes and may not be presented in its

minimal irreducible form. The definitions and theorems of this section allow us to describe

the Waldschmidt constant, and other asymptotic properties associated to I, for a monomial

ideal in general.

The following definition is another notation for conv(L(I)):

Definition 2.4.1. [CDF+22] Let I be a monomial ideal. Then the Newton polyhedra

of I, denoted NP (I), is the convex hull of the exponent vectors for all monomials in I.

That is, NP (I) = conv(L(I)). We will often write the symbolic polyhedron as SP (I) =⋂
P∈maxAss(I)NP (Q⊆P ).

Definition 2.4.2. [CDF+22] The irreducible polyhedron of a monomial ideal I with

irreducible decomposition I = Q1 ∩ · · · ∩Qs is

IP (I) = NP (Q1) ∩ · · · ∩NP (Qs).

Solving a linear optimization problem over each of these polyhedra gives a constant

associated to I.

Theorem 2.4.3. (Equation (4.1), [CDF+22]) The initial degree of a monomial ideal I,

denoted α(I), is the value of the following linear optimization problem with feasible region

given by its Newton polyhedron:

minimize y1 + y2 + · · ·+ yn

subject to (y1, y2, . . . , yn) ∈ NP (I).

Theorem 2.4.4. (Corollary 4.6, [CDF+22]) The Waldschmidt constant of a monomial ideal

I, denoted α̂(I), is the value of the following linear optimization problem with feasible region

given by its symbolic polyhedron:
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minimize y1 + y2 + · · ·+ yn

subject to (y1, y2, . . . , yn) ∈ SP (I).

Definition 2.4.5. (Corollary 4.7, [CDF+22]) The naive Waldschmidt constant of a

monomial ideal I, denoted α̃(I), is the value of the following linear optimization problem

with feasible region given by its irreducible polyhedron:

minimize y1 + y2 + · · ·+ yn

subject to (y1, y2, . . . , yn) ∈ IP (I).

The following theorem gives the containment of the above three polyhedra and ordering of

their associated constants:

Theorem 2.4.6. (Theorem 3.9, Proposition 4.8, [CDF+22]) For any monomial ideal I we

have

NP (I) ⊆ SP (I) ⊆ IP (I).

which gives

α̃(I) ≤ α̂(I) ≤ α(I).

The following lemma describes the Newton polyhedra of the power of a prime monomial

ideal. This will prove useful in Chapter 3.

Lemma 2.4.7. Let B = {b1, b2, . . . , br} ⊆ {1, 2. . . . , n} with |B| = r. Let I = ⟨xb1 , xb2 , . . . , xbr⟩

be a monomial ideal in R = K[x1, . . . , xn]. Then for Id = ⟨xb1 , xb2 , . . . , xbr⟩d we have

NP (Id) =

{
r∑

i=1

1

d
ybi ≥ 1

∣∣∣ ybi ∈ R≥0

}
.

Proof. Suppose I1, . . . , Id are monomial ideals. Then their product is a monomial ideal (see

Proposition 2.1.9) that can be written as:

I1I2 · · · Id = ⟨{m1m2 · · ·md | mi ∈ gens(Ii) for i = 1, . . . , d}⟩.
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Now suppose I = ⟨xb1 , xb2 , . . . , xbr⟩. Then Id can written as:

Id = ⟨{m1m2 · · ·md | mi ∈ gens(I) for i = 1, . . . , d}⟩ or,

Id = ⟨{xa1b1 x
a2
b2

· · ·xarbr | a1 + a2 + · · ·+ ar = d}⟩.

So each generator of Id is a product of xb1 , xb2 , . . . , xbr with degree d. Let y ∈ Rn. Then

since the exponents of the generators satisfy a1+a2+· · ·+ar = d, the exponent vector of each

generator of Id lies on the hyperplane yb1+yb2+· · ·+ybr = d or 1
dyb1+

1
dyb2+· · ·+ 1

dybr = 1.

The convex hull of the generators is the intersection of this hyperplane with Rn
≥0, i.e.,

conv(L(gens(Id))) =
{ r∑

i=1

1

d
ybi = 1

∣∣ ybi ∈ R≥0

}
.

Taking the Minkowski sum of conv(L(gens(Id))) with Rn
+ gives the result.

Example 2.4.8. Let I = ⟨x41, x1x22, x32⟩ ⊆ R = K[x1, x2, x3, x4]. Then we have the minimal

irreducible primary decomposition

I = ⟨x4, y2⟩ ∩ ⟨x, y3⟩.

Since
√
⟨x41, x22⟩ =

√
⟨x1, x32⟩ = ⟨x1, x2⟩, we have Ass(I) = maxAss(I) = {⟨x1, x2⟩}.

Observe this means Q⊆⟨x1,x2⟩ = ⟨x41, x22⟩ ∩ ⟨x1, x32⟩ = I which gives

SP (I) =
⋂

P∈maxAss(I)

NP (Q⊆P ) = NP (Q⊆⟨x1,x2⟩) = NP (I).

Since α(I) is the smallest degree of a generator of I (Definition 2.1.4), we know that

α(I) = 3. We showed SP (I) = NP (I) so by Theorem 2.4.6 we get α̂(I) = α(I) = 3.

2.5 The Waldschmidt constant for monomial ideals in two

variables

In Example 2.4.8 we saw that α(I), the minimal degree of a generator of I, was equal to

the Waldschmidt constant. In this section we will show this is true for any monomial ideal
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in two variables. We will use the following two lemmas:

Lemma 2.5.1 (The Splitting Lemma, [EGSS02]). If m is a minimal generator of a mono-

mial ideal I with m = m1m2 and gcd(m1,m2) = 1, then

I = (I + ⟨m1⟩) ∩ (I + ⟨m2⟩).

Lemma 2.5.2. Let I be a monomial ideal in K[x1, x2] of the form

I = ⟨xa11 xb12 , xa21 xb22 , . . . , xar1 xbr2 ⟩

with a1 > a2 > · · · > ar and b1 < b2 < · · · < br. Then I has irreducible primary decomposi-

tion

I = ⟨xar1 ⟩ ∩ ⟨xb12 ⟩ ∩ ⟨xa11 , xb22 ⟩ ∩ ⟨xa21 , xb32 ⟩ ∩ · · · ∩ ⟨xar−1

1 , xbr2 ⟩.

Proof. Start with I = ⟨xa11 xb12 , xa21 xb22 , . . . , xar1 xbr2 ⟩. Split I on the monomial xa11 xb12 (i.e.,

apply the Lemma 2.5.1 on m = xa11 xb12 ) to get

I = ⟨xa11 , xa21 xb22 , . . . , xar1 xbr2 ⟩ ∩ ⟨xb12 ,(((((((((
xa21 xb22 , . . . , xar1 xbr2 ⟩

I = ⟨xa11 , xa21 xb22 , . . . , xar1 xbr2 ⟩ ∩ ⟨xb12 ⟩.

Note b1 < b2 < · · · < br gives cancellation in the second component.

Now split the first component of I on the monomial xa21 xb22 to get

I = ⟨
�
��xa11 ,xa21 , xa31 xb32 , . . . , xar1 xbr2 ⟩ ∩ ⟨xa11 , xb22 ,(((((((((

xa31 xb32 , . . . , xar1 xbr2 ⟩ ∩ ⟨xb12 ⟩

I = ⟨xa21 , xa31 xb32 , . . . , xar1 xbr2 ⟩ ∩ ⟨xa11 , xb22 ⟩ ∩ ⟨xb12 ⟩.

Note a1 > a2 gives cancellation in the first component.

Now split the first component of I on the monomial xa31 xb32 to get

I = ⟨��x
a2
1 , xa31 , xa41 xb42 , . . . , xar1 xbr2 ⟩ ∩ ⟨xa21 , xb32 ,(((((((((

xa41 xb42 , . . . , xar1 xbr2 ⟩ ∩ ⟨xa11 , xb22 ⟩ ∩ ⟨xb12 ⟩

I = ⟨xa31 , xa41 xb42 . . . , xar1 xbr2 ⟩ ∩ ⟨xa21 , xb32 ⟩ ∩ ⟨xa11 , xb22 ⟩ ∩ ⟨xb12 ⟩.
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Continue splitting the first component of I on the monomial xai1 xbi2 up to i = r − 1 to get

I = ⟨xar−1

1 , xar1 xbr2 ⟩ ∩ ⟨xar−2

1 , x
br−1

2 ⟩ ∩ · · · ∩ ⟨xa21 , xb32 ⟩ ∩ ⟨xa11 , xb22 ⟩ ∩ ⟨xb12 ⟩.

Then split on xar1 xbr2 to get

I = ⟨���x
ar−1

1 , xar1 ⟩ ∩ ⟨xar−1

1 , xbr2 ⟩ ∩ ⟨xar−2

1 , x
br−1

2 ⟩ ∩ · · · ∩ ⟨xa21 , xb32 ⟩ ∩ ⟨xa11 , xb22 ⟩ ∩ ⟨xb12 ⟩.

giving the result.

Theorem 2.5.3. Let I be a monomial ideal in K[x1, x2]. Then α̂(I) = α(I).

Proof. Let

I = ⟨xa11 xb12 , xa21 xb22 , . . . , xar1 xbr2 ⟩

with a1 > a2 > · · · > ar and b1 < b2 < · · · < br.

First suppose r = 1. If a1 ̸= 0 and b1 ̸= 0, then I = ⟨xa11 xb12 ⟩ = ⟨xa11 ⟩ ∩ ⟨xb12 ⟩. So

Ass(I) = maxAss(I) = {⟨x1⟩, ⟨x2⟩}. This gives

SP (I) =
⋂

P∈maxAss(I)

NP (Q⊆P ) = NP (Q⊆⟨x1⟩) ∩NP (Q⊆⟨x2⟩) = NP (I).

Since SP (I) = NP (I) we have α̂(I) = α(I). The argument is similar if one of a1, b1 is zero.

Now suppose r ≥ 2.

Case 1: Suppose ar = 0 and b1 = 0. Then by Lemma 2.5.2 the primary decomposition of

I is

I = ⟨xa11 , xb22 ⟩ ∩ ⟨xa21 , xb32 ⟩ ∩ · · · ∩ ⟨xar−1

1 , xbr2 ⟩.

and so Ass(I) = maxAss(I) = {⟨x1, x2⟩}. Note that each primary component Q of I is of

the form ⟨xai1 , x
bi+1

2 ⟩, so we have
√
Q =

√
⟨xai1 , x

bi+1

2 ⟩ ⊆ ⟨x1, x2⟩. This gives

SP (I) =
⋂

P∈maxAss(I)

NP (Q⊆P ) = NP (Q⊆⟨x1,x2⟩) = NP (I),

and since SP (I) = NP (I) we have α̂(I) = α(I).

Case 2: Suppose ar ̸= 0 and b1 ̸= 0. Then by Lemma 2.5.2 the primary decomposition of
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I is

I = ⟨xar1 ⟩ ∩ ⟨xb12 ⟩ ∩ ⟨xa11 , xb22 ⟩ ∩ ⟨xa21 , xb32 ⟩ ∩ · · · ∩ ⟨xar−1

1 , xbr2 ⟩.

Thus Ass(I) = {⟨x1⟩, ⟨x2⟩, ⟨x1, x2⟩} and maxAss(I) = {⟨x1, x2⟩}. Note that
√
⟨xar1 ⟩ =

⟨x1⟩ ⊂ ⟨x1, x2⟩ and
√

⟨xb12 ⟩ = ⟨x2⟩ ⊂ ⟨x1, x2⟩. So for each primary component Q of I we

have
√
Q ⊆ ⟨x1, x2⟩, meaning Q⊆⟨x1,x2⟩ = I. So we have

SP (I) =
⋂

P∈maxAss(I)

NP (Q⊆P ) = NP (Q⊆⟨x1,x2⟩) = NP (I)

and since SP (I) = NP (I) we have α̂(I) = α(I).

Case 3: Suppose ar ̸= 0 and b1 = 0. Then by Lemma 2.5.2 the primary decomposition of

I is

I = ⟨xar1 ⟩ ∩ ⟨xa11 , xb22 ⟩ ∩ ⟨xa21 , xb32 ⟩ ∩ · · · ∩ ⟨xar−1

1 , xbr2 ⟩.

Thus Ass(I) = {⟨x1⟩, ⟨x1, x2⟩} and maxAss(I) = {⟨x1, x2⟩}. Note that
√

⟨xar1 ⟩ = ⟨x1⟩ ⊂

⟨x1, x2⟩. So for each primary component Q of I we have
√
Q ⊆ ⟨x1, x2⟩, meaning Q⊆⟨x1,x2⟩ =

I. So we have

SP (I) =
⋂

P∈maxAss(I)

NP (Q⊆P ) = NP (Q⊆⟨x1,x2⟩) = NP (I)

and since SP (I) = NP (I) we have α̂(I) = α(I). The argument is similar if instead we have

ar = 0 and b1 ̸= 0

Since α(I) is the degree of the smallest generator of I, the Waldschmidt constant can

only take on a natural number in two variables. To find a monomial ideal with a non-integer

Waldschmidt constant, we need to work in a ring with more variables. This is the focus of

the next chapter.
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Chapter 3

Waldschmidt constant for

monomial ideals in n > 2 variables

In the previous chapter we saw how in two variables, the Waldschmidt constant of a mono-

mial ideal is always equal to the initial degree α(I) (Theorem 2.5.3), which is a positive

integer. In this chapter we will explore what values of the Waldschmidt constant can be

obtained with a larger number of variables. The family of ideals we will investigate in

Chapter 3 are in R = K[x1, . . . , xn] for n ≥ 3 and have the following form

I = ⟨x2, . . . , xn⟩e1 ∩ ⟨x1, x3, . . . , xn⟩e2 ∩ · · · ∩ ⟨x1, . . . , xn−1⟩en (3.0.1)

with e1 ≥ e2 ≥ · · · ≥ en > 0. In other words, the intersection of powers of all height

n− 1 prime monomial ideals in R = K[x1, . . . , xn]. Our main result is that by choosing the

appropriate ei’s, we can attain a Waldschmidt constant equal to q
p for almost all rational

numbers greater than or equal to 1. By “almost all” we mean that for a given denominator

p, there are only finitely many numerators q which are not attainable by this method (see

Corollary 3.3.4).

29



Ph.D. Thesis – C. Kohne; McMaster University – Mathematics and Statistics

3.1 Intersections of powers of height two prime monomial

ideals in three variables

In this section we will compute the Waldschmidt constant for ideals in R = K[x1, x2, x3] of

the form

I = ⟨x2, x3⟩e1 ∩ ⟨x1, x3⟩e2 ∩ ⟨x1, x2⟩e3

with e1 ≥ e2 ≥ e3 > 0. The results of this section illustrate the ideas later in the chapter.

We now compute the symbolic polyhedron of I. Label the associated primes of I by P1 =

⟨x2, x3⟩, P2 = ⟨x1, x3⟩, and P3 = ⟨x1, x2⟩. Then Lemma 2.4.7 gives us the form of the

Newton polyhedra of each primary component Qi = P ei
i . Let y = [y1 y2 y3]

T be a vector

of real variables. Then we have

NP (Q1 = P 1
e1) =

{
1
e1
y2 +

1
e1
y3 ≥ 1 | y2,y3 ∈ R≥0

}
NP (Q2 = P 2

e2) =
{

1
e2
y1 +

1
e2
y3 ≥ 1 | y1,y3 ∈ R≥0

}
NP (Q3 = P 3

e3) =
{

1
e3
y1 +

1
e3
y2 ≥ 1 | y1,y2 ∈ R≥0

}
.

Observe for I we have Ass(I) = maxAss(I) = {
√
Q1 = P1,

√
Q2 = P2,

√
Q3 = P3} so we

have Q⊆Pi = Qi. Then by Definition 2.2.6 we compute SP (I) by

SP (I) =
⋂

P∈maxAss(I)

NP (Q⊆P ) = NP (Q1) ∩NP (Q2) ∩NP (Q3)

which can be re-written as

SP (I) =

y | Ay ≥ 1,y ≥ 0 with A =


0 1

e1
1
e1

1
e2

0 1
e2

1
e3

1
e3

0


 .

Now by Theorem 2.4.4, solving for the Waldschmidt constant α̂(I) amounts to solving the

following linear optimization problem:

Solve min{1Ty | Ay ≥ 1,y ≥ 0} for (3.1.1)
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A =


0 1

e1
1
e1

1
e2

0 1
e2

1
e3

1
e3

0

 ,

where y = [y1 y2 y3]
T is a vector of variables. Define hk to be the expression equal to the

k-th coordinate of Ay:

h1 =
1
e1
y2 +

1
e1
y3

h2 =
1
e2
y1 +

1
e2
y3

h3 =
1
e3
y1 +

1
e3
y2.

The symbolic polyhedron SP (I) associated to the above linear optimization problem

is defined by the intersection of six half-spaces. For k = 1, 2, 3 we have three half-spaces

of defined by the inequality hk =
∑3

i=1,i ̸=k
1
ek
yi ≥ 1. We also have three half-spaces

coming from the non-negativity constraint: y1 ≥ 0,y2 ≥ 0, and y3 ≥ 0. Changing the six

inequalities to equations gives the six bounding hyperplanes of SP (I). So for k = 1, 2, 3 we

have three hyperplanes hk =
∑3

i=1,i ̸=k
1
ek
yi = 1 and 3 hyperplanes yk = 0.

A minimizer to the linear optimization problem (3.1.1) must be a vertex of SP (I) by

Theorem 2.1.13. The (potential) vertices of SP (I) can be computed by intersecting 3 of

the 6 bounding hyperplanes. We will denote such an intersection by z ∈ R3. Among these(
6
3

)
= 20 intersections, only those that exist and satisfy Az ≥ 1 and z ≥ 0 (i.e., those that

are feasible) will be the vertices of SP (I).

Let H,Y ⊆ {1, 2, 3} with |H| + |Y | = 3. Then each choice of H and Y corresponds to

an intersection of 3 hyperplanes. For example H = {1, 3} and V = {2} corresponds to the

intersection of the hyperplanes h1 = 1, h3 = 1 and y2 = 0, i.e., the intersection of
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h1 =
1

e1
y2 +

1

e1
y3 = 1

h3 =
1

e3
y1 +

1

e3
y2 = 1

y2 = 0.

We will denote this intersection by z13|2, and similarly for other intersections. By ana-

lyzing the vertices of SP (I) we will prove the following result on the Waldschmidt constant

of I.

Theorem 3.1.1. Let R = K[x1, x2, x3] and consider the following ideal

I = ⟨x2, x3⟩e1 ∩ ⟨x1, x3⟩e2 ∩ ⟨x2, x3⟩e3

with e1 ≥ e2 ≥ e3 > 0. If e1 ≤ e2 + e3, then

α̂(I) =
e1 + e2 + e3

2
.

Otherwise, α̂(I) = e1.

Proof. We will organize the intersections by |H ∩ Y |.

Case 1: |H ∩ Y | = 0.

Case 1.1: |H ∩ Y | = 0 with |H| = 3 and |Y | = 0.

Here H = {1, 2, 3}. So we are computing the intersection of h1 = 1, h2 = 1 and h3 = 1,

i.e., the intersection of

h1 =
1
e1
y2 +

1
e1
y3 = 1

h2 =
1
e2
y1 +

1
e2
y3 = 1

h3 =
1
e3
y1 +

1
e3
y2 = 1.
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This intersection is a distinguished intersection so we will label it z∗ instead of z123|.

Let M =


0 1

e1
1
e1

1

1
e2

0 1
e2

1

1
e3

1
e3

0 1

 , then column 4 of rref(M) = z∗ =


−e1+e2+e3

2

e1−e2+e3
2

e1+e2−e3
2

 .

For z∗ to be feasible it needs to satisfy the other three inequalities: y1 ≥ 0,y2 ≥ 0, and

y3 ≥ 0. In other words, each coordinate of z∗ must be non-negative. Since we are assuming

e1 ≥ e2 ≥ e3 > 0, the first coordinate is minimal of the three, so z∗ is feasible, and thus a

vertex, when −e1+e2+e3
2 ≥ 0, or e1 ≤ e2 + e3.

Case 1.2: |H ∩ Y | = 0 with |H| = 2 and |Y | = 1.

There are three intersections in this case:

z12|3 = (e2, e1, 0), feasible if e1 + e2 ≥ e3 (always feasible)

z13|2 = (e3, 0, e1), feasible if e1 + e3 ≥ e2 (always feasible)

z23|1 = (0, e3, e2), feasible if e2 + e3 ≥ e1.

Since we assume ei > 0, these intersections are always non-negative. The feasibility condi-

tions are attained by substituting the intersection point into hk ≥ 1 where k is the element

missing from H. For example substituting z12|3 = (e2, e3, 0) into h3 =
1
e3
y1+

1
e3
y2 ≥ 1 gives

e1 + e2 ≥ e3 which is always true since e1 ≥ e3. So we get that z12|3 and z13|2 will always

be vertices of SP (I), but z23|1 is a vertex only if e2 + e3 ≥ e1.

Case 1.3: |H ∩ Y | = 0 with |H| = 1 and |Y | = 2.

Solving for z1|23, z2|13, and z3|12 gives an inconsistent system. So they are not intersec-

tion points. To see this, consider z1|23 which is the intersection of h1 = 1
e1
y2 +

1
e1
y3 = 1,

y2 = 0 and y3 = 0. Substituting y2 = 0 and y3 = 0 into h1 = 1 gives 0 = 1. Solving for

z2|13, and z3|12 gives a similar contradiction.

Case 1.4: |H ∩ Y | = 0 with |H| = 0 and |Y | = 3.

The intersection of y1 = 0,y2 = 0 and y3 = 0 is the zero vector. Note that z|123 = 0 is

never feasible since A0 = 0 ≥ 1, a contradiction.

33

http://www.mcmaster.ca/
https://www.math.mcmaster.ca


Ph.D. Thesis – C. Kohne; McMaster University – Mathematics and Statistics

Case 2: |H ∩ Y | = 1.

Case 2.1: |H ∩ Y | = 1 with |H| = 2 and |Y | = 1.

The intersections are:

z12|1 = (0, e1 − e2, e2), feasible if e1 ≥ e2 + e3

z12|2 = (−e1 + e2, 0, e1), feasible if e2 ≥ e1 + e3 (never feasible)

z13|1 = (0, e3, e1 − e3), feasible if e1 ≥ e2 + e3

z13|3 = (−e1 + e3, e1, 0), feasible if e3 ≥ e1 + e2 (never feasible)

z23|2 = (e3, 0, e2 − e3), feasible if e2 ≥ e1 + e3 (never feasible)

z23|3 = (e2,−e2 + e3, 0), feasible if e3 ≥ e1 + e2 (never feasible).

The feasibility conditions are attained by substituting the intersection point into hk = 1

where k is the element missing from H.

Case 2.2: |H ∩ Y | = 1, |H| = 1 and |Y | = 2.

The six intersections are

z1|12 = (0, 0, e1), z1|13 = (0, e1, 0)

z2|13 = (0, 0, e2), z2|23 = (e2, 0, 0),

z3|12 = (0, e3, 0), z3|23 = (e3, 0, 0).

These intersections are never feasible. If an intersection has only one non-zero entry, say in

coordinate k, then substituting the intersection into hk ≥ 1 gives 0 ≥ 1.

This covers all 20 possible intersections. There are three types of SP (I) depending on

e1 compared to e2 + e3:

Type 1 of SP (I): The case that e1 < e2 + e3.

There are four vertices: z∗ = (−e1+e2+e3
2 , e1−e2+e3

2 , e1+e2−e3
2 ), z12|3 = (e2, e1, 0),

z13|2 = (e3, 0, e1), and z23|1 = (0, e3, e2).

Recall a minimizer to the linear optimization problem (3.1.1) is a vertex of SP (I) which

minimizes 1T z. In other words, a vertex with minimal sum of coordinates. We compute
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the coordinate sum 1T z for each of the above four vertices.

1T z∗ = −e1+e2+e3
2 + e1−e2+e3

2 + e1+e2−e3
2 = e1+e2+e3

2 ,

1T z12|3 = e2 + e3, 1T z13|2 = e1 + e3, and 1T z23|1 = e2 + e3.

We will now show 1T z∗ = e1+e2+e3
2 is the minimum of the coordinate sums. Substituting

the assumption e1 < e2 + e3 into e1+e2+e3
2 gives:

1T z∗ =
e1 + e2 + e3

2
<

e2 + e3 + e2 + e3
2

= e2 + e3 = 1T z23|1 = 1T z12|3.

Additionally, e2 + e3 ≤ e1 + e3 = 1T z13|2 since e2 ≤ e1. So we get:

1T z∗ < 1T z23|1 = 1T z12|3 ≤ 1T z13|2.

This shows z∗ is the unique minimizer to the linear optimization problem (3.1.1). The

optimal solution equals the Waldschmidt constant for I, so for Type 1 we get α̂(I) =

e1+e2+e3
2 .

Type 2 of SP (I): The case that e1 = e2 + e3.

There are three vertices; the first two are z12|3 = (e2, e3, 0), and z13|2 = (e3, 0, e1). The

third vertex is any of the following four intersections: z∗ = (−e1+e2+e3
2 , e1−e2+e3

2 , e1+e2−e3
2 ),

z23|1 = (0, e3, e2), z12|1 = (0, e1− e2, e2), and z13|1 = (0, e3, e1− e3). We observe that these

four intersections are equal when e1 = e2 + e3. So for Type 2 we get α̂(I) = e1.

Type 3 of SP (I): The case that e1 > e2 + e3.

There are four vertices: z12|3 = (e2, e1, 0), z
13|2 = (e3, 0, e1), z

12|1 = (0, e1− e2, e2), and

z13|1 = (0, e3, e1 − e3). So for Type 3 we get α̂(I) = e1.

The following corollary shows we can choose e1, e2, and e3 to construct an ideal with

Waldschmidt constant q
2 > 1.

Corollary 3.1.2. Fix a positive integer q > 2. Then write the integer partition q =
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e1 + e2 + e3 where 
e1 =

q
3 , e2 =

q
3 , e3 =

q
3 if q ≡ 0 mod 3

e1 = ⌈ q3⌉, e2 = ⌊ q3⌋, e3 = ⌊ q3⌋ if q ≡ 1 mod 3

e1 = ⌈ q3⌉, e2 = ⌈ q3⌉, e3 = ⌊ q3⌋ if q ≡ 2 mod 3.

Then

I = ⟨x2, x3⟩e1 ∩ ⟨x1, x3⟩e2 ∩ ⟨x1, x2⟩e3

is a monomial ideal in R = K[x1, x2, x3] with α̂(I) = q
2 .

Proof. We consider three cases that depend on the value of q mod 3.

Case 1: q ≡ 0 mod 3. Let e1 =
q
3 , e2 =

q
3 , e3 =

q
3 . Since q ≡ 0 mod 3, q

3 is an integer. We

have e1 < e2 + e3, so by Theorem 3.1.1 we get α̂(I) = e1+e2+e3
2 = q

2 .

Case 2: q ≡ 1 mod 3. Let e1 = ⌈ q3⌉, e2 = ⌊ q3⌋, e3 = ⌊ q3⌋. If q = 4, then e1 = 2 and

e2 = e3 = 1. Since e1 = e2 + e3, by Theorem 3.1.1 we have α̂(I) = e1 = 2 or α̂(I) = q
2 .

Otherwise if q > 4, observe that q ≡ 1 mod 3 implies that ⌈ q3⌉ =
q+2
3 and ⌊ q3⌋ =

q−1
3 . Then

e1 < e2 + e3 is true since q+2
3 < q−1

3 + q−1
3 holds for q > 4. So by Theorem 3.1.1 we get

α̂(I) = e1+e2+e3
2 =

⌈ q
3
⌉+⌊ q

3
⌋+⌊ q

3
⌋

2 =
q+2
3

+ q−1
3

+ q−1
3

2 = q
2 .

Case 3: q ≡ 2 mod 3. Let e1 = ⌈ q3⌉, e2 = ⌈ q3⌉, e3 = ⌊ q3⌋. Observe that q ≡ 2 mod 3 implies

that ⌈ q3⌉ =
q+1
3 and ⌊ q3⌋ =

q−2
3 . Then e1 < e2 + e3 is true since q+1

3 < q+1
3 + q−2

3 holds for

q ≥ 5. So by Theorem 3.1.1 we get α̂(I) = e1+e2+e3
2 =

⌈ q
3
⌉+⌈ q

3
⌉+⌊ q

3
⌋

2 =
q+1
3

+ q+1
3

+ q−2
3

2 = q
2 .

The following two examples illustrate the above corollary.

Example 3.1.3. We will construct an ideal I with Waldschmidt constant equal to 17
2 .

Since 17 ≡ 2 mod 3 we can set e1 = ⌈173 ⌉ = 6, e2 = ⌈173 ⌉ = 6, and e3 = ⌊173 ⌋ = 5 so that

I = ⟨x2, x3⟩6 ∩ ⟨x1, x3⟩6 ∩ ⟨x1, x2⟩5

has α̂(I) = 17
2 by Corollary 3.1.2. Since e1 < e2 + e3, we have SP (I) of Type 1 (see proof

of Theorem 3.1.1) and so it has four vertices:
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z∗ = (52 ,
5
2 ,

7
2), z

12|3 = (6, 6, 0), z13|2 = (5, 0, 6), and z23|1 = (0, 5, 6).

See Figure 3.1 for an image of SP (I).

Figure 3.1: Symbolic polyhedron of Example 3.1.3

Example 3.1.4. Consider the ideal

I = ⟨x2, x3⟩11 ∩ ⟨x1, x3⟩3 ∩ ⟨x1, x2⟩3.

Here we have e1 = 11, e2 = 3, and e3 = 3. Since e1 > e2 + e3, we know α̂(I) = e1 = 11

by Theorem 3.1.1.

We have SP (I) of Type 3 (see proof of Theorem 3.1.1) which has four vertices: z12|3 =

(3, 11, 0), z13|2 = (3, 0, 11), z12|1 = (0, 8, 3), and z13|1 = (0, 3, 8). Observe the line segment

joining z12|1 = (0, 8, 3) to z13|1 = (0, 3, 8) is a face of minimizers. Note we can compute

z∗ = (−5
2 ,

11
2 ,

11
2 ) which lies outside of SP (I). See Figure 3.2 for an image of SP (I).
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Figure 3.2: Symbolic polyhedron of Example 3.1.4
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3.2 Intersections of powers of height three prime monomial

ideals in four variables

In the previous section we showed that any rational Waldschmidt constant α̂(I) > 1 with a

denominator of two can be attained by intersecting powers of height two prime monomial

ideals in n = 3 variables. In this section we will compute the Waldschmidt constant for

ideals in R = K[x1, x2, x3, x4] of the form

I = ⟨x2, x3, x4⟩e1 ∩ ⟨x1, x3, x4⟩e2 ∩ ⟨x1, x2, x4⟩e3 ∩ ⟨x1, x2, x3⟩e4

where e1 ≥ e2 ≥ e3 ≥ e4 > 0. We will find that we can choose appropriate ei’s to attain any

Waldschmidt constant α̂(I) = q
3 > 1 with the exception of q = 5.

In a similar fashion to the formulation of the linear optimization problem (3.1.1) in

Section 3.1, we can use Lemma 2.4.7 and Theorem 2.4.4 to show that solving for the

Waldschmidt constant α̂(I) amounts to solving the following linear optimization problem:

Solvemin{1Ty | Ay ≥ 1,y ≥ 0} for (3.2.1)

A =



0 1
e1

1
e1

1
e1

1
e2

0 1
e2

1
e2

1
e3

1
e3

0 1
e3

1
e4

1
e4

1
e4

0


,

where y = [y1 y2 y3 y4]
T is a vector of variables.

Define hk to be the expression equal to the k-th coordinate of Ay:

h1 =
1
e1
y2 +

1
e1
y3 +

1
e1
y4

h2 =
1
e2
y1 +

1
e2
y3 +

1
e2
y4

h3 =
1
e3
y1 +

1
e3
y2 +

1
e3
y4

h4 =
1
e4
y1 +

1
e4
y2 +

1
e4
y3.

The symbolic polyhedron SP (I) associated to the above linear optimization problem is
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defined by the intersection of 8 half-spaces. For 1 ≤ k ≤ 4 we have 4 half-spaces defined

by the inequality hk =
∑4

i=1,i ̸=k
1
ek
yi ≥ 1. We also have 4 half-spaces coming from the

non-negativity constraint: y1 ≥ 0,y2 ≥ 0,y3 ≥ 0, and y4 ≥ 0. Changing the 8 inequalities

to equations gives the 8 bounding hyperplanes of SP (I). So for 1 ≤ k ≤ 4 we have 4

hyperplanes hk =
∑4

i=1,i ̸=k
1
ek
yi = 1 and 4 hyperplanes yk = 0.

A minimizer to the linear optimization problem is among the vertices of SP (I). To

compute the (possible) vertices of SP (I) we intersect 4 of the 8 bounding hyperplanes. We

will denote such an intersection by z ∈ R4. Among these
(
8
4

)
= 70 intersections, those that

exist and satisfy Az ≥ 1 and z ≥ 0 (i.e., those that are feasible) will be the vertices of

SP (I).

Denote z∗ to be the intersection of the four hk = 1 hyperplanes. The following lemma

concerns this distinguished intersection.

Lemma 3.2.1. If z∗ is the intersection of the four hyperplanes h1 = 1, h2 = 1, h3 = 1, and

h4 = 1, then it has the form

z∗ =



−2e1+e2+e3+e4
3

e1−2e2+e3+e4
3

e1+e2−2e3+e4
3

e1+e2+e3−2e4
3


.

Furthermore, z∗ is a vertex of SP (I) when e1 ≤ e2+e3+e4
2 .

Proof. We can compute z∗ by reducing the augmented matrix [A|1].

[A|1] =



0 1
e1

1
e1

1
e1

1

1
e2

0 1
e2

1
e2

1

1
e3

1
e3

0 1
e3

1

1
e4

1
e4

1
e4

0 1


, last column of rref([A|1]) = z∗ =



−2e1+e2+e3+e4
3

e1−2e2+e3+e4
3

e1+e2−2e3+e4
3

e1+e2+e3−2e4
3


.

Feasibility of z∗ requires its coordinates to be non-negative. Since we are assuming

e1 ≥ e2 ≥ e3 ≥ e4 > 0, the first coordinate of z∗ is minimal, and so z∗ will be a vertex
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of SP (I) when the first coordinate is non-negative. So we get that z∗ is a vertex when

e1 ≤ e2+e3+e4
2 .

Our next theorem gives the Waldschmidt constant for our family of ideals.

Theorem 3.2.2. Let R = K[x1, x2, x3, x4] and consider the following ideal

I = ⟨x2, x3, x4⟩e1 ∩ ⟨x1, x3, x4⟩e2 ∩ ⟨x1, x2, x4⟩e3 ∩ ⟨x1, x2, x3⟩e4 .

Assume without loss of generality that e1 ≥ e2 ≥ e3 ≥ e4 > 0. If e1 ≤ e2+e3+e4
2 , then

α̂(I) =
e1 + e2 + e3 + e4

3
.

Otherwise, α̂(I) = e1.

Proof. To prove this we will compute the form of every intersection of 4 of the 8 hyperplanes,

which exhausts every possible vertex of SP (I). To specify the 4 hyperplanes, we consider

H,Y ⊆ {1, 2, 3, 4} with |H| + |Y | = 4. Each choice of H and Y will correspond to an

intersection of 4 hyperplanes. For example, H = {1, 3} and Y = {2, 4} is the intersection

of the hyperplanes h1 = 1, h3 = 1,y2 = 0,y4 = 0. We notate this intersection as z13|24 (and

similarly for other choices of H and Y ).

Associate to H the |H|-tuple t which records the elements of H in ascending order, e.g.,

the above H gives t = (1, 3). Similarly associate to Y the |Y |-tuple s, e.g., the above Y

gives s = (2, 4).

We will consider cases depending on |H ∩ Y |. For each case we will (i) determine the

form of the intersection z (if it exists), (ii) determine the constraints the intersection must

satisfy to be a vertex of SP (I), (iii) show that e1 ≤ 1T z (for every z except z∗), and (iv)

show that 1T z∗ ≤ 1T z.

Case 1.1: |H ∩ Y | = 0 with |H| = 1 and |Y | = 3.

The intersection in this case is always empty. If we choose H = {1} and Y = {2, 3, 4}

then substituting y2 = 0, y3 = 0, and y4 = 0 into
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h1 =
1

e1
y2 +

1

e1
y3 +

1

e1
y4 = 1

gives 0 = 1. We get a similar contradiction for any other choice of H and Y .

Case 1.2: |H ∩ Y | = 0 with |H| = 2 and |Y | = 2.

We compute the six intersections for this case:

z12|34 = [e2, e1, 0, 0]
T z13|24 = [e3, 0, e1, 0]

T

z14|23 = [e4, 0, 0, e1]
T z23|14 = [0, e2, e3, 0]

T

z24|13 = [0, e4, 0, e2]
T z34|12 = [0, 0, e4, e3]

T .

In general for this case we can write the intersection z as:

zi =


et1 for i = t2

et2 for i = t1

0 for i ∈ Y.

This intersection z is a vertex if the following two constraints are satisfied:

es1 ≤ et1 + et2 (3.2.2)

es2 ≤ et1 + et2 . (3.2.3)

To justify these inequalities, substituting z into hsj ≥ 1 gives the inequality et1+et2 ≥ esj

for j = 1, 2. Since each ei is assumed to be non-negative, z is non-negative (i.e., every

entry of z is non-negative). Observe we have coordinate sum 1T z = et1 + et2 . We will

show that for any vertex z in this case we have e1 ≤ 1T z. If 1 ∈ H, then we have:

e1 = et1 < et1 + et2 = 1T z. If 1 /∈ H, then we have: e1 = es1 ≤ et1 + et2 = 1T z, by applying

inequality (3.2.2).

We will show that for any vertex z in this case we have 1T z∗ ≤ 1T z. Indeed

1T z∗ =
et1 + et2 + es1 + es2

3
≤ 3(et1 + et2)

3
= et1 + et2 = 1T z,
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where we apply inequalities (3.2.2) and (3.2.3).

Case 1.3: |H ∩ Y | = 0 with |H| = 3 and |Y | = 1.

First let H = {1, 2, 3} and Y = {4}. Then the intersection is computed to be

z123|4 =

[
−e1 + e2 + e3

2
,
e1 − e2 + e3

2
,
e1 + e2 − e3

2
, 0

]T
.

Non-negativity of the first coordinate gives the constraint e1 ≤ e2 + e3. Substituting z123|4

into h4 =
1
e4
y1+

1
e4
y2+

1
e4
y3 ≥ 1 gives −e1+e2+e3

2e4
+ e1−e2+e3

2e4
+ e1+e2−e3

2e4
≥ 1 which simplifies

to e4 ≤ e1+e2+e3
2 . Similarly for the other three intersections of this case we get:

z124|3 = [−e1+e2+e4
2 , e1−e2+e4

2 , 0, e1+e2−e4
2 ]T feasible if e1 ≤ e2 + e4 and e3 ≤ e1+e2+e4

2 .

z134|2 = [−e1+e3+e4
2 , 0, e1−e3+e4

2 , e1+e3−e4
2 ]T feasible if e1 ≤ e3 + e4 and e2 ≤ e1+e3+e4

2 .

z234|1 = [0, −e2+e3+e4
2 , e2−e3+e4

2 , e2+e3−e4
2 ]T feasible if e2 ≤ e3 + e4 and e1 ≤ e2+e3+e4

2 .

In general for this case we can write the intersection z as:

zi =


−ei+

∑3
k=1,k ̸=i ek
2 for i ∈ H

0 for i ∈ Y.

This intersection z is a vertex if the following two constraints are satisfied:

et1 ≤ et2 + et3 (3.2.4)

es1 ≤ et1 + et2 + et3
2

. (3.2.5)

Constraint (3.2.4) is the non-negativity condition of the intersection, and (3.2.5) comes

from substituting z into hs1 ≥ 1 (recall s1 is the element missing from H). Observe we have

coordinate sum 1T z =
et1+et2+et3

2 . We will show that for any vertex z in this case we have

e1 ≤ 1T z. If 1 ∈ H, then we have: e1 = et1 =
et1+et1

2 ≤ et1+et2+et3
2 = 1T z (apply inequality

(3.2.4)). If 1 /∈ H, then we have: e1 = es1 ≤ et1+et2+et3
2 = 1T z (apply inequality (3.2.5)).

We will show that for any vertex z in this case we have 1T z∗ ≤ 1T z :

1T z∗ =
et1 + et2 + et3 + es1

3
≤

et1 + et2 + et3 +
et1+et2+et3

2

3
=

et1 + et2 + et3
2

= 1T z,

by applying inequality (3.2.5).
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Case 1.4 |H ∩ Y | = 0 and |H| = 4.

This the distinguished intersection z∗ of Lemma 3.2.1.

Case 2: |H ∩ Y | = 1. Note this requires 1 ≤ |H|, |Y | < 4.

Observe that since |H|+ |Y | = 4 and |H ∩Y | = 1, there is one number which is common

to H and Y and one number of {1, 2, 3, 4} absent from H and Y . Let H ∩ Y = {a} and let

{1, . . . , 4} \ (H ∪ Y ) = {b}. Let l be the position of a in t and let p be the position of a in

s, i.e., tl = sp = a.

Case 2.1: |H ∩ Y | = 1 with |H| = 1 and |Y | = 3.

The intersection of the corresponding hyperplanes in this case is always empty. If we

choose H = {1} and Y = {1, 2, 3}, then a = 1 and b = 4. The corresponding augmented

matrix is 

0 1
e1

1
e1

1
e1

1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0


which row reduces to



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 e1


.

This matrix has full rank, but [0, 0, 0, e1]
T is not feasible since substituting it into h4 ≥ 1

gives 0 ≥ 1. In general, any intersection with only one non-zero entry in its j-th coordinate

will not be a vertex since it will fail to satisfy hj ≥ 1.

Case 2.2: |H ∩ Y | = 1 with |H| = 2 and |Y | = 2.

We will first display the interesections for a = 1, 2, 3, 4 and then show 1T z∗ ≤ 1T z and

e1 ≤ 1T z.

For this case let a′ denote the element of H that is not a. Also let c denote the element

of {1, 2, 3, 4} that is not a, a′ or b.

If a = 1, then we have the following six intersections:

z12|13 =

[
0

e1−e2
0
e2

]
, z12|14 =

[
0

e1−e2
e2
0

]
, z13|12 =

[
0
0

e1−e3
e3

]
,
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z13|14 =

[
0
e3

e1−e3
0

]
, z14|12 =

[
0
0
e4

e1−e4

]
, z14|13 =

[
0
e4
0

e1−e4

]
.

If a = 2, then we have the following six intersections:

z12|23 =

[
e2−e1

0
0
e1

]
, z12|24 =

[
e2−e1

0
0
e1

]
, z23|12 =

[
0
0

e2−e3
e3

]
,

z23|24 =

[ e2
0

e2−e3
0

]
, z24|12 =

[
0
0
e2

e2−e4

]
, z24|23 =

[ e4
0
0

e4−e2

]
.

If a = 3, then we have the following six intersections:

z13|23 =

[
e3−e1

0
0
e1

]
, z13|34 =

[
e3−e1
e1
0
0

]
, z23|13 =

[
0

e3−e2
0
e2

]
,

z23|34 =

[ e2
e3−e2

0
0

]
, z34|23 =

[ e4
0
0

e3−e4

]
, z34|13 =

[
0
e4
0

e3−e4

]
.

If a = 4, then we have the following six intersections:

z14|24 =

[
e4−e1

0
e1
0

]
, z14|34 =

[
e4−e1
e1
0
0

]
, z24|14 =

[
0

e4−e2
e2
0

]
,

z24|34 =

[ e2
e4−e2

0
0

]
, z34|14 =

[
0
e3

e4−e3
0

]
, z34|24 =

[ e3
0

e4−e3
0

]
.

For this case of we can write the intersection z as:
zb = ea′

za′ = ea − ea′

zsj = 0 for j = 1, 2.

This intersection z is a vertex if the following constraints are satisfied:

ea ≥ ea′ (3.2.6)

ea ≥ ec (3.2.7)

ea ≥ ea′ + eb. (3.2.8)
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The constraint (3.2.6) is the non-negative requirement on the a′ coordinate. The con-

straints (3.2.7) and (3.2.8) are obtainted by substituting the intersection z into hc ≥ 1 and

hb ≥ 1, respectively.

The coordinate sum in this case is 1T z = ea. We will now show that e1 ≤ 1T z by

showing that when z is a vertex we have 1T z = ea = e1. This is clear when a = 1. Observe

that {1, 2, 3, 4} = {a, a′, c, b}. Now suppose a ̸= 1. Then one of a′, c, or b must equal 1. If

a′ = 1, then (3.2.6) gives ea ≥ e1 and so ea = e1 (by assumed ordering of ei’s). Similarly if

c = 1, then (3.2.7) gives ea = e1. If b = 1, then (3.2.8) gives ea ≥ ea′ + e1. Since e1 ≥ ea

and ea′ > 0, this condition is never satisfied. So when z is a vertex, 1T z = e1 as needed.

We will now show that 1T z∗ ≤ 1T z. Indeed

1T z∗ =
e1 + e2 + e3 + e4

3
=

ea + ea′ + ec + eb
3

≤ 3ea
3

= ea = 1T z,

by applying the inequalities (3.2.7) and (3.2.8).

Case 2.3: |H ∩ Y | = 1 with |H| = 3 and |Y | = 1.

We will first display the vertices for a = 1, 2, 3, 4 and then show 1T z∗ ≤ 1T z and

e1 ≤ 1T z.

For a = 1:

z123|1 =

[ 0
e1−e2
e1−e3

−e1+e2+e3

]
feasible if non-negative and e1 ≥ e2+e3+e4

2 .

z124|1 =

[ 0
e1−e2

−e1+e2+e4
e1−e4

]
feasible if non-negative and e1 ≥ e2+e3+e4

2 .

z134|1 =

[ 0
−e1+e3+e4

e1−e3
e1−e4

]
feasible if non-negative and e1 ≥ e2+e3+e4

2 .

For a = 2:

z123|2 =

[ e2−e1
0

e2−e3
−e2+e1+e3

]
feasible if non-negative and e2 ≥ e1+e3+e4

2 .

z124|2 =

[ e2−e1
0

−e2+e1+e4
e2−e4

]
feasible if non-negative and e2 ≥ e1+e3+e4

2 .

z234|2 =

[−e2+e3+e4
0

e2−e3
e2−e4

]
feasible if non-negative and e2 ≥ e1+e3+e4

2 .

For a = 3:

46

http://www.mcmaster.ca/
https://www.math.mcmaster.ca


Ph.D. Thesis – C. Kohne; McMaster University – Mathematics and Statistics

z123|3 =

[ e3−e1
e3−e2

0
−e3+e1+e2

]
feasible if non-negative and e3 ≥ e1+e2+e4

2 .

z134|3 =

[ e3−e1
−e3+e1+e4

0
e3−e4

]
feasible if non-negative and e3 ≥ e1+e2+e4

2 .

z234|3 =

[−e3+e2+e4
e3−e2

0
e3−e4

]
feasible if non-negative and e3 ≥ e1+e2+e4

2 .

For a = 4:

z124|4 =

[ e4−e1
e4−e2

−e4+e1+e2
0

]
feasible if non-negative and e4 ≥ e1+e2+e3

2 .

z134|4 =

[ e4−e1
−e4+e1+e3

e4−e3
0

]
feasible if non-negative and e4 ≥ e1+e2+e3

2 .

z234|4 =

[−e4−e2+e3
e4−e2
e4−e3

0

]
feasible if non-negative and e4 ≥ e1+e2+e3

2 .

In general for this case we can write the intersection z as:
zb = −ea +

∑3
k=1,k ̸=l etk

zti = ea − eti for 1 ≤ i ≤ 3.

This intersection z is a vertex if the following constraints are satisfied:

ea ≤
3∑

k=1,k ̸=l

etk (3.2.9)

ea ≥ eti (for 1 ≤ i ≤ 3) (3.2.10)

ea ≥
eb +

∑3
k=1,k ̸=l etk
2

. (3.2.11)

The constraints (3.2.9) and (3.2.10) are non-negativity requirements on the coordinates

of z. Substituting z into hb ≥ 1 gives the constraint (3.2.11). The coordinate sum in this

case is 1T z = ea. We will now show that e1 ≤ 1T z by showing that when z is a vertex we

have 1T z = ea = e1. This is clear when a = 1. Now suppose that a > 1 and b ̸= 1. Then

(3.2.10) for i = 1 gives ea ≥ e1 and so ea = e1. Otherwise suppose that a > 1 and b = 1.

Then (3.2.11) becomes

ea ≥
e1 +

∑3
k=1,k ̸=l etk
2

.

Applying (3.2.9) gives ea ≥ e1+ea
2 which requires ea = e1 since e1 ≥ ea. So when z is a
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vertex the coordinate sum is 1T z = e1.

We will now show that 1T z∗ ≤ 1T z. Indeed

1T z∗ =
e1 + e2 + e3 + e4

3
=

ea +
∑4

k=1,k ̸=a ek

3
≤ ea + 2ea

3
= ea = 1T z,

by applying constraint (3.2.11).

Case 3: |H ∩ Y | = 2.

We will show this case is always infeasible. Suppose H = {1, 2} and Y = {1, 2}. The

corresponding augmented matrix is

0 1
e1

1
e1

1
e1

1

1
e2

0 1
e2

1
e2

1

1 0 0 0 0

0 1 0 0 0


which row reduces to



1 0 0 0 0

0 1 0 0 0

0 0 1 1 e1

0 0 0 0 1− e1
e2


.

If e1 > e2, then the bottom row gives an inconsistent system. If e1 = e2, then A does not

have full rank and z is not a vertex. We similarly do not get a vertex for other choices of

H and Y in this case.

The above Cases 1, 2, and 3 exhaust all possible vertices.

We have shown that if z is any vertex of SP (I), then 1T z∗ ≤ 1T z. So if z∗ is a vertex,

then it is a minimizer to the linear optimization problem (3.2.1) and so α̂(I) = 1T z∗ =

e1+e2+e3+e4
3 . We will now show that if z∗ is not a vertex, then there is a vertex z such that

1T z = e1 and thus α̂(I) = e1.

Now suppose the feasible condition of z∗ is not satisfied so we have e1 > e2+e3+e4
2 . We

have also shown that if z is any vertex of SP (I) (other than z∗) , then e1 ≤ 1T z. So if z∗

is not a vertex and if there is a vertex z with coordinate sum 1T z = e1, then z must be a

minimizer of the linear optimization problem 3.2.1.

First consider the intersection z123|1 =

[ 0
e1−e2
e1−e3

−e1+e2+e3

]
from Case 2.3.

It is a vertex when non-negative and the constraint e1 ≥ e2+e3+e4
2 is satisfied. The
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constraint is always satisfied since we are now assuming z∗ is not a vertex and so e1 >

e2+e3+e4
2 . We require e1 ≤ e2 + e3 and e1 ≥ e3 for non-negativity. (Observe that e1 >

e2+e3+e4
2 implies e1 > e3 so there will always be more than one non-zero coordinate.) So if

e1 ≤ e2 + e3 then z123|1 is a vertex and a minimizer.

Suppose z∗ and z123|1 are not vertices. Then we can consider the intersection z12|14 =[
0

e1−e2
e2
0

]
with constraints e1 ≥ e2 + e3 and e1 ≥ e4. If the intersection z123|1 failed to be

vertex, then it must be that e1 > e2 + e3 which means z12|14 is a vertex. (Observe that

e1 > e2 + e3 implies e1 > e2 so there will always be more than one non-zero coordinate.)

In summary, if z∗ is a vertex of SP (I), we have α̂(I) = e1+e2+e3+e4
3 . Otherwise, at least

one of z123|1 and z12|14 is a vertex and α̂(I) = e1. This concludes the proof of Theorem

3.2.2.

Similar to Corollary 3.1.2 from Section 3.1, the following corollary allows us to control

α̂(I) by choosing the appropriate ei’s.

Corollary 3.2.3. Fix a positive integer q > 3, q ̸= 5. Then write the integer partition

q = e1 + e2 + e3 + e4 where

e1 =
q
4 , e2 =

q
4 , e3 =

q
4 , e4 =

q
4 if q ≡ 0 mod 4

e1 = ⌈ q4⌉, e2 = ⌊ q4⌋, e3 = ⌊ q4⌋, e4 = ⌊ q4⌋ if q ≡ 1 mod 4

e1 = ⌈ q4⌉, e2 = ⌈ q4⌉, e3 = ⌊ q4⌋, e4 = ⌊ q4⌋ if q ≡ 2 mod 4

e1 = ⌈ q4⌉, e2 = ⌈ q4⌉, e3 = ⌈ q4⌉, e4 = ⌊ q4⌋ if q ≡ 3 mod 4

Then

I = ⟨x2, x3, x4⟩e1 ∩ ⟨x1, x3, x4⟩e2 ∩ ⟨x1, x2, x4⟩e3 ∩ ⟨x1, x2, x3⟩e4

is a monomial ideal in R = K[x1, x2, x3, x4] with α̂(I) = q
3 .

Proof. We consider four cases that depend on the value of q mod 4.

Case 1: q ≡ 0 mod 4. Let e1 = e2 = e3 = e4 = q
4 . Since q ≡ 0 mod 4, q

4 is an integer.
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We have e1 ≤ e2+e3+e4
2 , so by Theorem 3.2.2 we get α̂(I) = e1+e2+e3+e4

3 = q
3 .

Case 2: q ≡ 1 mod 4. Let e1 = ⌈ q4⌉, e2 = e3 = e4 = ⌊ q4⌋. If q = 5, then e1 = 2 and

e2 = e3 = e4 = 1 which makes e1 ≤ e2+e3+e4
2 false so we cannot apply Theorem 3.2.2.

Otherwise if q > 5, then q ≡ 1 mod 4 implies that ⌈ q4⌉ = q+3
4 and ⌊ q4⌋ = q−1

4 . Then

e1 ≤ e2+e3+e4
2 is true since q+3

4 ≤ ( q−1
4 + q−1

4 + q−1
4 )/2 holds for q > 5. So by Theorem 3.2.2

we get α̂(I) = e1+e2+e3+e4
3 =

⌈ q
4
⌉+⌊ q

4
⌋+⌊ q

4
⌋+⌊ q

4
⌋

3 =
q+3
4

+ q−1
4

+ q−1
4

+ q−1
4

3 = q
3 .

Case 3: q ≡ 2 mod 4. Let e1 = e2 = ⌈ q4⌉ and e3 = e4 = ⌊ q4⌋. Observe that q ≡ 2

mod 4 implies that ⌈ q4⌉ = q+2
4 and ⌊ q4⌋ = q−2

4 . Then e1 ≤ e2+e3+e4
2 is true since q+2

4 ≤

( q+2
4 + q−2

4 + q−2
4 )/2 holds for q > 5. So by Theorem 3.2.2 we get α̂(I) = e1+e2+e3+e4

3 =

⌈ q
4
⌉+⌈ q

4
⌉+⌊ q

4
⌋+⌊ q

4
⌋

3 =
q+2
4

+ q+2
4

+ q−2
4

+ q−2
4

3 = q
3 .

Case 4: q ≡ 3 mod 4. Let e1 = e2 = e3 = ⌈ q4⌉ and e4 = ⌊ q4⌋. Observe that q ≡ 2

mod 4 implies that ⌈ q4⌉ = q+1
4 and ⌊ q4⌋ = q−3

4 . Then e1 ≤ e2+e3+e4
2 is true since q+1

4 ≤

( q+1
4 + q+1

4 + q−3
4 )/2 holds for q > 6. So by Theorem 3.2.2 we get α̂(I) = e1+e2+e3+e4

3 =

⌈ q
4
⌉+⌈ q

4
⌉+⌈ q

4
⌉+⌊ q

4
⌋

3 =
q+1
4

+ q+1
4

+ q+1
4

+ q−3
4

3 = q
3 .

So for this family of ideals in R = K[x1, x2, x3, x4] our method allows us to attain any

rational Waldschmidt constant q
3 > 1 except for 5

3 .
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3.3 Intersections of powers of height n − 1 prime monomial

ideals in n variables

We will now generalize the techniques of Sections 3.1 and 3.2 to see what values of the

Waldschmidt constant can be attained from ideals of the form

I = ⟨x2, . . . , xn⟩e1 ∩ ⟨x1, x3, . . . , xn⟩e2 ∩ · · · ∩ ⟨x1, . . . , xn−1⟩en ,

where e1 ≥ e2 ≥ · · · ≥ en > 0. In a similar fashion to the formulation of the linear

optimization problem (3.1.1) in Section 3.1, we can use Lemma 2.4.7 and Theorem 2.4.4

to show that solving for the Waldschmidt constant α̂(I) amounts to solving the following

linear optimization problem:

Solvemin{1Ty | Ay ≥ 1,y ≥ 0} for (3.3.1)

An =



0 1
e1

... 1
e1

1
e1

1
e1

1
e2

0 1
e2

... 1
e2

1
e2

1
e3

1
e3

0 1
e3

... 1
e3

...
...

...
...

...
...

1
en−1

... 1
en−1

1
en−1

0 1
en−1

1
en

... 1
en

1
en

1
en

0


,

where y = [y1 y2 · · · yn]
T is a vector of variables.

Lemma 3.3.1. Consider the matrix An of the linear optimization problem (3.3.1). The
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inverse of An is:

A−1
n =



− (n−2)e1
n−1

e2
n−1

e3
n−1 · · · en−1

n−1
en
e1

e1
n−1 − (n−2)e2

n−1
e3
n−1 · · · en−1

n−1
en
n−1

e1
n−1

e2
n−1 − (n−2)e3

n−1 · · · en−1

n−1
en
n−1

...
...

...
. . .

...
...

e1
n−1

e2
n−1

e3
n−1 · · · − (n−2)en−1

n−1
en
n−1

e1
n−1

e2
n−1

e3
n−1 · · · en−1

n−1 − (n−2)en
n−1


.

Proof. Recall that (M)i,j denotes the (i, j)-th entry of a matrix M . Then define

(A−1
n )i,j =


− (n−2)ei

n−1 for i = j,

ei
n−1 for i > j,

ej
n−1 for j > i.

For i = j we get (AA−1)i,i = 0−(n−2)ei
n−1 + (n − 1) ei

n−1
1
e1

= 1. And for i ̸= j we get

(AA−1)i,j = 0
ej

n−1 − (n−2)ej
n−1

1
ei
+ (n− 2)

ej
n−1

1
ei

= 0. This shows AA−1 = In.

Define hk to be the expression equal to the k-th coordinate of the vector Any:

hk =

n∑
i=1,i ̸=k

1

ek
yi.

The symbolic polyhedron SP (I) associated to the above linear optimization problem is

defined by the intersection of 2n half-spaces. For 1 ≤ k ≤ n we have n half-spaces defined

by the inequality hk =
∑n

i=1,i ̸=k
1
ek
yi ≥ 1. We also have n half-spaces coming from the

non-negativity contraint: yk ≥ 0 for 1 ≤ k ≤ n. Changing the 2n inequalities to equations

gives the 2n bounding hyperplanes of SP (I). So for 1 ≤ k ≤ n, we have n hyperplanes

hk =
∑n

i=1,i ̸=k
1
ek
yi = 1 and n hyperplanes yk = 0.

A minimizer to the linear optimization problem is among the vertices of SP (I). To

compute the (possible) vertices of SP (I) we intersect n of the 2n bounding hyperplanes.
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We will denote such an intersection by z ∈ Rn. Among these
(
2n
n

)
intersections, those that

exist and satisfy Anz ≥ 1 and z ≥ 0 will be the vertices of SP (I).

Denote z∗ to be the intersection of the hi = 1 hyperplanes. The following lemma

concerns this distinguished intersection.

Lemma 3.3.2. If z∗ is the intersection of the n hyperplanes h1 = 1, h2 = 1, . . . , hn = 1,

then it has the form

z∗ =



−(n−2)e1+e2+···+en
n−1

...

e1+···−(n−2)ei+···+en
n−1

...

e1+···+en+1−(n−2)en
n−1


.

Furthermore, z∗ is a vertex of SP (I) when e1 ≤ e2+e3+···+en
n−2 .

Proof. Since hk is the expression from k-th coordinate of Any, z
∗ is the solution to Any = 1.

Using the inverse of An from Lemma 3.3.1 we get:

z∗i = (A−1
n 1)i =

−(n− 2)ei +
∑n

j=1,j ̸=i ej

n− 1
.

Since An is an invertible matrix, z∗ is the unique solution to Any = 1. Since we are

assuming e1 ≥ · · · ≥ en, the first coordinate of z
∗ is minimal. To satisfy z∗ ≥ 0 it suffices to

check that the first coordinate is non-zero. So the condition for z∗ to be a vertex of SP (I)

is −(n−2)e1+e2+···+en
n−1 ≥ 0 or e1 ≤ e2+e3+···+en

n−2 .

We will prove the following theorem on the Waldschmidt constant for our family of

ideals.

Theorem 3.3.3. Let R = K[x1, . . . , xn] and consider the following ideal

I = ⟨x2, . . . , xn⟩e1 ∩ ⟨x1, x3, . . . , xn⟩e2 ∩ · · · ∩ ⟨x1, . . . , xn−1⟩en
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with e1 ≥ e2 ≥ · · · ≥ en > 0. If e1 ≤ e2+e3+···+en
n−2 , then

α̂(I) =
e1 + e2 + · · ·+ en

n− 1
.

Otherwise, α̂(I) = e1.

Proof. We will compute the form of every intersection of n of the 2n hyperplanes, which

exhausts every possible vertex of SP (I). To specify the n hyperplanes, we consider H,Y ⊆

{1, 2, . . . , n} with |H|+ |Y | = n. Each choice of H and Y will correspond to an intersection

of n hyperplanes. For example, if n = 5, then the choice H = {1, 5, 4} and Y = {4, 3} is

the intersection of the hyperplanes h1 = 1, h5 = 1, h4 = 1,y4 = 0,y3 = 0. Associate to H

the |H|-tuple t which records the elements of H in ascending order, e.g., the above H gives

t = (1, 4, 5). Similarly, associate to Y the |Y |-tuple s, e.g., the above Y gives s = (3, 4).

We will consider cases depending on |H ∩ Y |. For each case we will (i) determine the

form of the intersection z (if it exists), (ii) determine the constraints the intersection must

satisfy to be a vertex of SP (I), (iii) show that e1 ≤ 1T z (for every vector z except z∗), and

(iv) show that 1T z∗ ≤ 1T z.

Case 1: |H ∩ Y | = 0.

Case 1.1: |H ∩ Y | = 0 with |H| = 0 and |Y | = n.

If |H| = 0 and |Y | = {1, . . . , n}, then we have yi = 0 for 1 ≤ i ≤ n. So the intersection

is 0, the zero vector. The zero vector is never a vertex since An0 < 1.

Case 1.2: |H ∩ Y | = 0 with |H| = 1 with |Y | = n− 1.

Since |H| = {t1}, we have the equations ht1 =
∑n

i=1,i ̸=t1
1
ek
yi = 1 and ysj = 0 for

1 ≤ j ≤ |Y |. Since H and Y are disjoint, substituting each of the n− 1 equations ysj = 0

for 1 ≤ j ≤ |Y | into ht1 yields 0 = 1, a contradiction.

Case 1.3: |H ∩ Y | = 0 and n > |H| ≥ 2.

After relabelling, we can suppose that H = {1, . . . , |H|} and Y = {|H|+1, . . . , n}. Then

solving for the intersection z is equivalent to solving My = c where the rows of M and c

encode the hyperplane coefficients of h1 = 1, h2 = 1 . . . , h|H| = 1,y|H|+1 = 0, . . . ,yn = 0, in
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that order.

We will show that M can be written as a block matrix. Let A|H| to be the same matrix

as An from the linear optimization problem (3.3.1) with inverse A−1
n from Lemma 3.3.1(ii),

but now we will set n = |H|. Define L to be the |H| × |Y | matrix with every entry in row i

equal to 1
ei
. Define 0|Y |×|H| to be the |Y | × |H| matrix with every entry equal to 0. Then

we can write

M =

 A|H| L

0|Y |×|H| I|Y |

 .

Since M is a block upper triangular and A|H| and In are invertible, we have the form of the

inverse of M :

M−1 =

 A−1
|H| −A−1

|H|L

0|Y |×|H| I|Y |

 .

Note −A−1
|H|L simplifies to a |H| × |Y | matrix with |H|−2

|H|−1 − 1 in every entry and that

c = [1, . . . , 1, 0, . . . , 0]T (i.e., |H|-many 1’s followed by |Y |-many 0’s). Solving for z:

(M−1c)i = zi =


−(|H|−2)ei+

∑|H|
k=1,k ̸=i ek

|H|−1 for 1 ≤ i ≤ |H|

0 for |H| < i ≤ n.

An example to illustrate this case: suppose n = 5 and H = {1, 2, 3} and Y = {4, 5}.

Then

M =

 A3 L

02×3 I2

 =



0 1
e1

1
e1

1
e1

1
e1

1
e2

0 1
e2

1
e2

1
e2

1
e3

1
e3

0 1
e3

1
e3

0 0 0 1 0

0 0 0 0 1


, and c =



1

1

1

0

0


.
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z = M−1c =

A−1
3 −A−1

3 L

02×2 I2

 =



− e1
2

e2
2

e3
2 −1

2 −1
2

e1
2 − e2

2
e3
2 −1

2 −1
2

e1
2

e2
2 − e3

2 −1
2 −1

2

0 0 0 1 0

0 0 0 0 1





1

1

1

0

0


=



−e1+e2+e3
2

e1−e2+e3
2

e1+e2−e3
2

0

0


.

The result generalizes to any disjoint partition of {1, . . . , n} into H and Y with |H| ≥ 2.

Suppose we have H = {t1, . . . , t|H|}, and Y = {s1, . . . , s|Y |}. Then M and M−1 have the

same form as above but with permutated columns and permutated rows respectively. Note

the general case of M and M−1 replace e1, . . . , e|H| with et1 , . . . , et|H| . This is the form of

z in general:


zti =

−(|H|−2)eti+
∑|H|

k=1,k ̸=ti
ek

|H|−1 for 1 ≤ i ≤ |H|

zsj = 0 for 1 ≤ j ≤ |Y |.

This intersection z is a vertex if the following constraints are satisfied:

et1 ≤
∑|H|

i=1,i ̸=1 eti

|H| − 2
(3.3.2)

esj ≤
∑|H|

i=1 eti
|H| − 1

for 1 ≤ j ≤ |Y |. (3.3.3)

Non-negativity on zt1 , the minimal coordinate, gives constraint (3.3.2). Substituting z

into hsj ≥ 1 gives the constraint (3.3.3). The coordinate sum is 1T z =
∑|H|

i=1 eti
|H|−1 . We will

show that for any vertex z in this case we have e1 ≤ 1T z. If 1 ∈ H, then we have

e1 =
(|H| − 2)e1 + e1

|H| − 1
≤
∑|H|

i=1,i ̸=1 eti + e1

|H| − 1
=

∑|H|
i=1, eti

|H| − 1
= 1T z.

by applying the inequality (3.3.2). If 1 ∈ Y , then (3.3.3) for j = 1 gives
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e1 = es1 ≤
∑|H|

i=1 eti
|H| − 1

= 1T z.

We will now show 1T z∗ ≤ 1T z. Observe we can write

1T z∗ =
e1 + · · ·+ en

n− 1
=

∑|H|
i=1 eti + es1 + · · ·+ es|Y |

n− 1
.

Then repeatedly applying the inequality (3.3.3) for each esj gives

1T z∗ =
e1 + · · ·+ en

n− 1
≤
∑|H|

i=1 eti +
|Y |

∑|H|
i=1 eti

|H|−1

n− 1
=

(|H|+|Y |−1)
∑|H|

i=1 eti
|H|−1

n− 1
=

∑|H|
i=1 eti

|H| − 1
= 1T z.

Case 1.4: |H ∩ Y | = 0 and |H| = n.

Here we have H = {1, . . . , n}, Y = ∅. This is z∗ of Lemma 3.3.2.

Case 2: |H ∩ Y | = 1. Note this requires 1 ≤ |H|, |Y | < n.

Observe that since |H|+ |Y | = n and |H∩Y | = 1, there is one number which is common

to H and Y and one number of {1, . . . , n} absent from H and Y . Let H ∩ Y = {a} and let

{1, . . . , n} \ (H ∪ Y ) = {b}. Let l be the position of a in t and let p be the position of a in

s, i.e., tl = sp = a.

Case 2.1: |H ∩ Y | = 1 and |H| = 1.

This case is never feasible. The intersection has the form zb = ea, and for 1 ≤ j ≤ |Y |

we have zsj = 0. Substituting z into hb ≥ 1 gives 0 = 1, a contradiction.

Case 2.2: |H ∩ Y | = 1 and |H| ≥ 2.

We will begin with an example: suppose n = 7 and let H = {1, 2, 3, 4, 5} and Y = {5, 6}.

So a = 5 and b = 7. Then solving for the intersection z is equivalent to solving My = c

where the rows of M and c encode the hyperplane coefficients of h1 = 1, h2 = 1, h3 =

1, h4 = 1, h5 = 1,y5 = 0,y6 = 0. This is the matrix M and vector c:
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M =



0 1
e1

1
e1

1
e1

1
e1

1
e1

1
e1

1
e2

0 1
e2

1
e2

1
e2

1
e2

1
e2

1
e3

1
e3

0 1
e3

1
e3

1
e3

1
e3

1
e4

1
e4

1
e4

0 1
e4

1
e4

1
e4

1
e5

1
e5

1
e5

1
e5

0 1
e5

1
e5

0 0 0 0 1 0 0

0 0 0 0 0 1 0



, and c =



1

1

1

1

1

0

0



.

The inverse of M is computed:

M−1 =



−e1 0 0 0 e5 1 0

0 −e2 0 0 e5 1 0

0 0 −e3 0 e5 1 0

0 0 0 −e4 e5 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

e1 e2 e3 e4 −3e5 −4 −1



.

Then

z = M−1c =



−e1 + e5

−e2 + e5

−e3 + e5

−e4 + e5

0

0

e1 + e2 + e3 + e4 − 3e5



.

More generally let H ∩ Y = {a} and |H| ≥ 2. Then solving for the intersection z is

equivalent to solving My = c where the rows of M and c encode the hyperplane coefficients
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of ht1 = 1, ht2 = 1, . . . , ht|H| = 1, ys1 = 0, . . . ,ys|Y |
= 0, in that order. We will give the

form of each column of M . There are four types of columns:

(M)i,b =
1
eti

for 1 ≤ i ≤ |H|, and 0 otherwise.

(M)i,a = 1
eti

for 1 ≤ i ≤ |H|, i ̸= l, and 1 for i = |H|+ p, and 0 otherwise.

(M)i,tk(k ̸=l) =
1
eti

for 1 ≤ i ≤ |H|, i ̸= k, and 0 otherwise.

(M)i,sj(j ̸=p) = 1 for i = |H|+ j, and 0 otherwise.

Given the above M , we now give the form of each row of M−1. There are three types

of rows:

(M−1)b,i =



eti for 1 ≤ i ≤ |H|, i ̸= l

−(|H| − 2)etl for i = l

−1 for i = |H|+ j, j ̸= p

−(|H| − 1) for i = |H|+ p.

(M−1)tk(k ̸=l),i =



−etk for i = k

etl for i = l

1 for i = |H|+ p

0 otherwise.

(M−1)sj ,i = 1 for i = |H|+ j, and 0 otherwise.

We will now verify that this constructed M−1 is the inverse of M by showing the dot

product (M−1)i,∗ · (M)∗,j = 1 if i = j, and (M−1)i,∗ · (M)∗,j = 0 if i ̸= j.

(M−1)b,∗ · (M)∗,b =
∑

1≤i≤|H|,i ̸=l

eti
1
eti

− (|H| − 2)etl
1
etl

= (|H| − 1)− (|H| − 2) = 1.

(M−1)b,∗ · (M)∗,a =
∑

1≤i≤|H|,i ̸=l

eti
1
eti

+ 1(−(|H| − 1)) = (|H| − 1)− (|H| − 1) = 0.

(M−1)b,∗ · (M)∗,tk(k ̸=l) =
∑

1≤i≤|H|,i ̸=k,l

eti
1
eti

− (|H| − 2)etl
1
etl

= (|H| − 2)− (|H| − 2) = 0.

(M−1)b,∗·(M)∗,sj(j ̸=p) =
∑

1≤i≤|H|,i ̸=l

eti
1
eti

−(|H|−2)etl∗ 1
etl

+(−1)1 = (|H|−1)−(|H|−2)−1 =

1− 1 = 0.

(M−1)tk(k ̸=l),∗ · (M)∗,b = −etk
1

etk
+ etl

1
etl

= 0.
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(M−1)tk(k ̸=l),∗ · (M)∗,a = −etk
1

etk
+ 1 · 1 = −1 + 1 = 0.

(M−1)tk(k ̸=l),∗ · (M)∗,tk(k ̸=l)= etl
1
etl

= 1.

(M−1)tk(k ̸=l),∗ · (M)∗,sj(j ̸=p) = etl
1
etl

− etk
1

etk
= 0.

(M−1)sj ,∗ · (M)∗,b = 0 (no matching non-zero entries).

(M−1)sj ,∗ · (M)∗,a:

Case 1: j = p, so this is (M−1)a,∗ · (M)∗,a = 1 · 1 = 1.

Case 2: j ̸= p, so this is (M−1)sj ,∗ · (M)∗,a = 0. (no matching non-zero entries)

(M−1)sj ,∗ · (M)∗,tk(k ̸=l) = 0. (no matching non-zero entries)

(M−1)sj ,∗ · (M)∗,sj(j ̸=p) = 1 · 1 = 1.

This verifies M−1M = In. The intersection is computed by z = M−1c where c =

[1, . . . , 1, 0, . . . , 0]T (i.e., |H|-many 1’s followed by |Y |-many 0’s). The value of zb will equal

the sum of the first |H| entries of the row (M−1)b,∗, and the value of ztk is the sum of the

first |H| entries of the row (M−1)tk(k ̸=l),∗. In summary the solution z has entries:


zb = −(|H| − 2)ea +

∑|H|
i=1,i ̸=l eti

zti = ea − eti for 1 ≤ i ≤ |H|,

zsj = 0 for 1 ≤ j ≤ |Y |.

This intersection z is a vertex if the following constraints are satisfied:

ea ≤
∑|H|

i=1,i ̸=l eti

|H| − 2
(3.3.4)

ea ≥ eti (for 1 ≤ i ≤ |H|) (3.3.5)

ea ≥ esj (for 1 ≤ j ≤ |Y |) (3.3.6)

ea ≥
eb +

∑|H|
i=1,i ̸=l eti

|H| − 1
(3.3.7)

The constraints (3.3.4) and (3.3.5) are non-negativity requirements on the coordinates
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zb and zti , respectively . Substituting z into hsj ≥ 1 and hb ≥ 1 gives the constraints (3.3.6)

and (3.3.7), respectively. The coordinate sum in this case is 1T z = ea. We will now show

that e1 ≤ 1T z by showing that when z is a vertex we have 1T z = ea = e1. This is clear

when a = 1. Now suppose that a > 1, b ̸= 1 with 1 ∈ H. Then (3.3.5) for i = 1 gives

ea ≥ e1 and so ea = e1. Similarly if 1 ∈ Y , then (3.3.6) for j = 1 gives ea ≥ e1 and so

ea = e1. Otherwise suppose that a > 1 and b = 1. Then (3.3.7) becomes ea ≥ e1+
∑|H|

i=1,i ̸=l eti
|H|−1 .

Applying (3.3.4) gives ea ≥ e1+(|H|−2)ea
|H|−1 which requires ea = e1 since e1 ≥ ea. So when z is

a vertex the coordinate sum is 1T z = e1.

We will now show that 1T z∗ ≤ 1T z.

From the above we know that if z is a vertex we require e1 = ea, which implies e1 = e2 =

· · · = ea by the ordering of the ei’s. Recall that {1, . . . , a} contains l-many elements from H

and p-many elements from Y with only H∩Y = {a}. This means
∑a

i=1,i ̸=b ei = (l+p−1)ea.

So we can write:

1T z∗ =
e1 + · · ·+ en

n− 1
=

(l + p− 1)ea + eb +
∑

l<i≤|H|
eti +

∑
p<j≤|Y |

esj

n− 1
.

Observe the inequality (3.3.7) can be re-writtten as eb ≤ (|H| − 1)ea−
∑

1≤i<l

eti −
∑

l<i≤|H|
eti .

Substituting this inequality for eb into the above gives

1T z∗ ≤
(l + p− 1)ea + (|H| − 1)ea −

∑
1≤i<l

eti −
∑

l<i≤|H|
eti +

∑
l<i≤|H|

eti +
∑

p<j≤|Y |
esj

n− 1
.

Now after simplifying and noting
∑

1≤i<l

eti = (l − 1)ea we get

1T z∗ ≤
(|H|+ p− 1)ea +

∑
p<j≤|Y |

esj

n− 1
.

Since
∑

p<j≤|Y |
esj is |Y | − p terms less than or equal to ea, we see the numerator has |H| +
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p− 1 + |Y | − p = n− 1 terms less than or equal to ea. This gives

1T z∗ ≤
(|H|+ p− 1)ea +

∑
p<j≤|Y |

esj

n− 1
≤ (n− 1)ea

n− 1
= ea = 1T z

as needed.

Case 3: |H ∩ Y | ≥ 2.

We will show this case is always infeasible. Start with |H ∩ Y | = 2 and assume without

loss of generality thatH∩Y = {1, 2}. To compute the intersection z we solve the appropriate

system My = c using the n× n+ 1 augmented matrix [M |c]. There will be a 4× (n+ 1)

submatrix of [M |c] with rows corresponding to the hyperplanes (h1 = 1, h2 = 1,y1 =

0,y2 = 0):

0 1
e1

1
e1

· · · 1
e1

1

1
e2

0 1
e2

· · · 1
e2

1

1 0 0 · · · 0 0

0 1 0 · · · 0 0


which row reduces to



1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1
e1

· · · 1
e1

1

0 0 0 · · · 0 1− e1
e2


.

If e1 > e2 the bottom row gives an inconsistent system. If e1 = e2, then [M |c] does not

have full rank and z is not a vertex. The same rows are present in [M |c] if |H ∩ Y | > 2. So

in all cases z fails to be a vertex.

The above Cases 1, 2, and 3 exhaust all possible vertices of SP (I).

We have shown that if z is any vertex of SP (I), then 1T z∗ ≤ 1T z. So if z∗ is a vertex,

then it is a minimizer to the linear optimization problem (3.3.1) and so α̂(I) = 1T z∗ =

e1+e2+···+en
n−1 . We will now show that if z∗ is not a vertex, then there is a vertex z such that

1T z = e1 and thus α̂(I) = e1.

Now suppose the feasibility condition of z∗ (see Lemma 3.3.2) is not satisfied so we have

e1 >
e2+e3+···+en

n−2 . We have also shown that if z is any vertex of SP (I) (other than z∗) , then

e1 ≤ 1T z. So if z∗ is not a vertex and if there is a vertex z with coordinate sum 1T z = e1,

then z must be a minimizer of the linear optimization problem (3.3.1) and so α̂(I) = e1.
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Recall in the n = 4 case we examined following set of three intersections: z∗ =

z1234|, z123|1, z12|14 and determined that if z∗ was not a vertex, at least one of z123|1, z12|14

must be a vertex.

For the general n ≥ 5 case, we will construct a similar set of of n− 1 intersections:

H Y Constraint Non-negativity

{1, . . . , n} ∅ e1 ≤
∑n

i=2 ei
n−2

{1, . . . , n− 1} {1} e1 ≥
∑n

i=2 ei
n−2 e1 ≤

∑n−1
i=2 ei
n−3

{1, . . . , n− 2} {1, n} e1 ≥
∑n−1

i=2 ei
n−3 e1 ≤

∑n−2
i=2 ei
n−4

{1, . . . , n− 3} {1, n− 1, n} e1 ≥
∑n−2

i=2 ei
n−4 e1 ≤

∑n−3
i=2 ei
n−5

...
...

...
...

{1, 2, 3} {1, 5, . . . , n} e1 ≥ e2+e3+e4
2 e1 ≤ e2 + e3

{1, 2} {1, 4, . . . , n} e1 ≥ e2 + e3

The first intersection listed above is z∗. The n − 2 intersections that follow z∗ are

from Case 2.2 with a = 1 and their “Constraint” and “Non-negativity” conditions obtained

from (3.3.7) and (3.3.4), respectively. Each intersection from Case 2.2 has coordinate sum

1T z = e1.

If the first intersection is not a vertex then, the failure of its non-negativity condition

means the second intersection’s constraint is satisfied. If the second intersection is not

a vertex, then the failure of its non-negativity condition means the third intersection’s

constraint is satisfied, and so on. If the first n − 2 intersections are not vertices, then we

have e1 > e2 + e3 which means the final intersection must be a vertex since e1 > e2 + e3

satisfies its constraint and guarantees that it has more than one non-zero coordinate.

This shows that if z∗ is a vertex we have α̂(I) = 1T z∗ = e1+e2+···+en
n−1 . Otherwise we have

α̂(I) = e1. This concludes the proof of Theorem (3.3.3).

The technique of Corollary 3.2.3 for n = 4 misses only α̂(I) = 5
3 . As n increases, more
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numbers are missed by the technique. The following corollary gives a condition on positive

integers q, p which will guarantee the Waldschmidt constant q
p ≥ 1 is attainable in n = p+1

variables using a technique generalizing Corollary 3.2.3.

Corollary 3.3.4. Consider the fraction q
p ≥ 1 for some positive integers q, p. Let n = p+1

and q ≡ k mod n. Then write the integer partition q = e1 + e2 + · · ·+ en where we set

ei =


⌈ q
n⌉ for 1 ≤ i ≤ k

⌊ q
n⌋ for k + 1 ≤ i ≤ n.

Now suppose n2 − (k + 1)n+ k ≤ q is true. Then

I = ⟨x2, . . . , xn⟩e1 ∩ ⟨x1, x3, . . . , xn⟩e2 ∩ · · · ∩ ⟨x1, . . . , xn−1⟩en

is a monomial ideal in R = K[x1, ..., xn] with α̂(I) = q
p .

Proof. By Theorem 3.3.3 we need e1 ≤ e2+···+en
n−2 to get α̂(I) = q

p .

Set

ei =


⌈ q
n⌉ for 1 ≤ i ≤ k

⌊ q
n⌋ for k + 1 ≤ i ≤ n.

Observe that if q ≡ k mod n, then we have ⌈ q
n⌉ = q+n−k

n and ⌊ q
n⌋ = q−k

n . We will now

re-write the condition e1 ≤ e2+···+en
n−2 in terms of q, k, and n = p+ 1. We start by re-writing

the LHS and RHS of e1 ≤ e2+···+en
n−2 in the following way:

LHS : e1 =
q + n− k

n
=

(n− 2)(q + n− k)

(n− 2)n
=

nq + n2 − kn− 2q − 2n+ 2k

(n− 2)n
,

RHS :
e2 + · · ·+ en

n− 2
=

(k − 1)⌈ q
n⌉+ (n− k)⌊ q

n⌋
n− 2

=
(k−1)q+n−k

n + (n−k)q−k
n

n− 2

=
kq+kn−k2−q−n+k+nq−kn−kq+k2

n

n− 2
=

−q − n+ k + nq

(n− 2)n
.
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Then LHS ≤ RHS requires

nq + n2 − kn− 2q − 2n+ 2k

(n− 2)n
≤ −q − n+ k + nq

(n− 2)n
.

Simplifying gives

nq + n2 − kn− 2q − 2n+ 2k ≤ −q − n+ k + nq

or equivalently,

n2 − (k + 1)n+ k ≤ q.

If this holds, then e1 ≤ e2+···+en
n−2 holds. So by Theorem 3.3.3 we have

α̂(I) =
e1 + e2 + · · ·+ en

n− 1
=

q

n− 1
=

q

p
.

Note n here refers to the number of variables in R = K[x1, ..., xn].

Corollary 3.3.5. Consider the fraction q
p ≥ 1 for some positive integers q, p. Let n = p+1

and q ≡ k mod n. If n2 ≤ q, then we can find a monomial ideal I with α̂(I) = q
p .

Proof. Observe that n2 − (k + 1)n+ k = (n− 1)(n− k). Since k ∈ {0, . . . , n− 1} we have

(n − 1)(n − k) ≤ (n − 1)(n) = n2 − n ≤ n2. So if n2 ≤ q then the condition of Corollary

3.3.4 is satisfied.

Observe that the above corollary implies that the technique of Corollary 3.3.4 only

misses finitely many numerators q for each denominator p = n − 1. Figure 3.3 displays

which values q
p ≥ 1 are attainable by choosing ei’s by the technique of Corollary 3.3.4 for

1 ≤ q ≤ 100 and 2 ≤ p ≤ 10.
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Figure 3.3: Waldschmidt constants attainable by Corollary 3.3.4

The Waldschmidt constants α̂(I) = q
p ≥ 1 attained by Corollary 3.3.4. Rows are associated

to q and columns are associated to p. Green is attainable and red is not attainable.
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Chapter 4

On the Waldschmidt constant of

square-free principal Borel ideals

The content of Chapter 4 first appeared in the paper On the Waldschmidt Constant of

Square-free Principal Borel Ideals [CMKSVT22] in collaboration with Camps Moreno,

Sarmiento, and Van Tuyl.

The goal of Chapter 4 is to investigate the Waldschmidt constant of square-free principal

Borel ideals. In Chapter 3 we saw that we could construct a monomial ideal that attains a

Waldschmidt constant for “almost all” fractions q
p ≥ 1. One motivation to study square-free

principal Borel ideals is to fill in the “gaps” that are missed by the technique of Chapter

3 (e.g., those fractions indicated in red in Figure 3.3). In this chapter, we show that

by allowing more variables we can attain any rational Waldschmidt constant q
p ≥ 1 (see

Corollary 4.3.2).

Given a monomial m, if xi|m and j < i, then we call xj · m
xi

a Borel move of m. A

monomial ideal is a Borel ideal (or a strongly stable ideal) if for every m ∈ I, all of the

Borel moves of m are also in I. A monomial ideal I is a principal Borel ideal if there is

a single monomial m such that every generator of I is obtained via a Borel move of m. The
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study of (principal) Borel ideals has a rich history; refer to [FMS11] and [Her02] for more

on this topic.

4.1 Square-free principal Borel ideals

In this section we define square-free principal Borel ideals, introduce our notation, and then

give the structure of their associated primes.

Definition 4.1.1. Let X = {m1, . . . ,mt} be a set of square-free monomials in R =

K[x1, . . . , xn]. The square-free Borel ideal generated by X, denoted sfBorel(X), is the

square-free monomial ideal generated by the square-free monomials that can be obtained

via Borel moves from any monomial m ∈ X. If X = {m}, then we abuse notation and write

sfBorel(m) for sfBorel({m}); furthermore, we call sfBorel(m) a square-free principal

Borel ideal.

Example 4.1.2. Let m = x2x5 and let I = sfBorel(x2x5) ∈ K[x1, . . . , x5]. The set of

monomials attained via every Borel move on m = x2x5 is the following set:

B = {x21, x1x2, x22, x1x3, x2x3, x1x4, x2x4, x1x5, x2x5}.

The generators of sfBorel(x2x5) are the square-free monomials of B:

gens(sfBorel(x2x5)) = {x1x2, x1x3, x2x3, x1x4, x2x4, x1x5, x2x5}.

The support of a square-free monomial m = xi1 · · ·xis is the set supp(m) = {i1, . . . , is}.

For our future arguments, we need two tuples that can be constructed from supp(m).

Definition 4.1.3. Let m = xi1 · · ·xis be a square-free monomial. Let

T (m) = (t0, t1, . . . , tk)

where t0 = s and ti = max{j < ti−1 | ij < ij+1 − 1}. Furthermore, let

IT (m) = (it0 , it1 , . . . , itk).
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Remark 4.1.4. The following observations will hopefully help the reader with our notation.

The ti’s are recording where the indices of xi1xi2 · · ·xis are “jumping” by more than one.

For example, if m = x2x3x5x6x8x10, then

T (m) = (t0, t1, t2, t3) = (6, 5, 4, 2)

records the positions where the indices increase by more than one. Note that we are

recording this information from right-to-left. Equivalently, we can define the ti’s as fol-

lows. Consider the tuple (i1 − 1, i2 − 2, . . . , is − s). The ti’s are then the locations where

ij − j < ij+1 − (j + 1), again reading right-to-left. In our example, (2− 1, 3− 2, 5− 3, 6−

4, 8 − 5, 10 − 6) = (1, 1, 2, 2, 3, 4), so t0 = 6, and t1 = 5, t2 = 4 and t3 = 2 since these are

the indices where ij − j < ij+1 − (j + 1). Continuing with this example, the tuple

IT (m) = (i6, i5, i4, i2) = (10, 8, 6, 3)

records the indices of the variables where the “jump” occurs.

The following lemma records some facts that follow immediately from the definitions.

Lemma 4.1.5. Let m be a square-free monomial with T (m) = (t0, t1, . . . , tk) and IT (m) =

(it0 , it1 , . . . , itk). Then

1. s = t0 > t1 > · · · > tk ≥ 1,

2. it0 > it1 > · · · > itk , and

3. itj − tj > itj+1 − tj+1 for j = 0, . . . , k − 1.

Proof. (1) and (2) are immediate. For (3) we have

i1 − 1 ≤ i2 − 2 ≤ · · · ≤ ij − j ≤ · · · ≤ is − s (4.1.1)

for all j = 1, . . . , s. So

itj+1 − tj+1 < itj+1+1 − (tj+1 + 1) ≤ itj − tj

since the ti’s are precisely the locations where the inequalities in (4.1.1) are strict.
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Recall that if I is an ideal, we let Ass(I) denote the set of associated primes of the ideal I.

The following theorem characterizes the associated primes of sfBorel(I). This will allow us to

construct the linear optimization problem required to compute the Waldschmidt constant.

Note that the original statement of Theorem 4.1.6 involved the language of Alexander duals.

We have given an equivalent expression for this statement.

Theorem 4.1.6 (Theorem 3.17, [FMS11]). Let m = xi1 · · ·xis be a square-free monomial

with T (m) = (t0, t1, . . . , tk) and IT (m) = (it0 , it1 , . . . , itk), and suppose I = sfBorel(m).

Then

⟨xj1 , . . . , xjl⟩ ∈ Ass(I)

if and only if xj1xj2 · · ·xjl is a minimal generator of the square-free Borel ideal

sfBorel({xtkxtk+1 · · ·xitk , xtk−1
xtk−1+1 · · ·xitk−1

, . . . , xt0xt0+1 · · ·xit0}).

The monomials xtj · · ·xitj for j = 0, . . . , k are minimal in the sense that if we remove any

of them, we change the generators of the resulting square-free Borel ideal.

Example 4.1.7. In Remark 4.1.4 it was shown that the monomial m = x2x3x5x6x8x10 has

T (m) = (6, 5, 4, 2) and IT (m) = (10, 8, 6, 3). So the associated primes of sfBorel(m) are in

one-to-one correspondence with the minimal generators of

sfBorel({x2x3, x4x5x6, x5x6x7x8, x6x7x8x9x10}).

Since we are dealing with square-free monomial ideals, Theorem 2.2.11 gives the proce-

dure for computing the Waldschmidt constant for sfBorel(m). We will refer to the matrix

A of Theorem 2.2.11 as the matrix of associated primes of I.

Example 4.1.8. Recall the monomial from the introduction:

m = x33215x33216 · · ·x104348 ∈ K[x1, . . . , x104348].

Here we have T (m) = (71134) and IT (m) = (104348). The associated primes of sfBorel(m)

are in one-to-one correspondence with the generators of sfBorel(x71134x71135 · · ·x104348).
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But this is the ideal generated by all the square-free monomials of degree 33215 in 104348

variables, of which there are
(
104348
33215

)
. So the matrix of associated primes of sfBorel(m) will

be a
(
104348
33215

)
× 104348 matrix.

4.2 Upper bounds

In this section we give an upper bound on the Waldschmidt constant of a square-free

principal Borel ideal. Our strategy is to show that there is enough structure in the linear

optimization problem of Theorem 2.2.11 that we can bound the Waldschmidt constant.

We begin with a lemma which allows us to reduce to a smaller polynomial ring.

Lemma 4.2.1. Let m = xi1 · · ·xis be a square-free monomial in R = K[x1, . . . , xn] with

I = sfBorel(m) ⊆ R. Consider the same monomial m, but in the ring S = K[x1, . . . , xis ],

and let J = sfBorel(m) ⊆ S. Then α̂(I) = α̂(J).

Proof. By Theorem 4.1.6, the associated primes of I and J are the same (although viewed

in different rings). So the matrix of associated primes of J in Theorem 2.2.11 is the same

as the matrix of the associated primes of I, except that the columns in matrix of associated

primes of I indexed by the variables xis+1, . . . , xn all contain zeroes. The result now follows

from Theorem 2.2.11.

Before proceeding, we introduce additional notation. Given a square-free monomial m

with T (m) = (t0, . . . , tk) and IT (m) = (it0 , . . . , itk), we have the inequalities

tk < tk−1 < · · · < t0 = s and itk < itk−1
< · · · < it0 .

by Lemma 4.1.5. Let ℓ be smallest integer such that

itℓ+1
< t0 ≤ itℓ .

In particular, ℓ identifies where in the sequence of itj ’s we would place t0 = s.
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Let A be the matrix of associated primes of I = sfBorel(m). We will let AP denote the

row associated to the associated prime P . The row AP corresponds to a minimal generator

m of the ideal in Theorem 4.1.6.

Example 4.2.2. For example, if m = x2x3x5x6x8x10, then we have T (m) = (6, 5, 4, 2) and

IT (m) = (10, 8, 6, 3). For this monomial, ℓ = 2 since t2 = 4 and t0 = 6 ≤ i4 = itℓ = 6.

As the next lemma shows, we can bound the optimal solution of Theorem 2.2.11 by

considering only a submatrix of the matrix of associated primes.

Lemma 4.2.3. Let m = xi1 · · ·xis be a square-free monomial with T (m) = (t0, t1, . . . , tk),

IT (m) = (it0 , it1 , . . . , itk), and ℓ as defined above. Let I = sfBorel(m), and let A denote

its matrix of associated primes. Let B be the submatrix of A where the j-th row of B

corresponds to the associated prime ⟨xtj , . . . , xitj ⟩ for j = 0, . . . , k. Suppose x ∈ Rn is such

that

1. Bx ≥ 1,

2. xj ≥ xj+1 for 1 ≤ j ≤ itℓ, and

3. xitℓ
≥ xj, for itℓ ≤ j ≤ n.

Then Ax ≥ 1.

Proof. By Lemma 4.2.1, we can assume n = is. Consider any row AP of A. By Theorem

4.1.6, P corresponds to a monomial m that is a Borel move of exactly one of

{xtk · · ·xitk , . . . , xt0 · · ·xit0}.

Say m is a Borel move of xtj · · ·xitj . The j-th row of B (which corresponds to xtj · · ·xitj )

is given by

Bj = (0, . . . , 0︸ ︷︷ ︸
tj−1

, 1, . . . , 1︸ ︷︷ ︸
itj−tj+1

, 0, . . . , 0).
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The rows AP and Bj have the same number of 1’s. Additionally, AP is formed from Bj by

swapping some of the 1’s with some of the 0’s among the first tj − 1 spots.

Since Bjx ≥ 1, we have xtj + · · · + xitj
≥ 1. Note that APx is formed from Bjx by

subtracting some xp’s with p ∈ {tj , . . . , itj} and adding in some xq’s with q ∈ {1, . . . , tj − 1}.

If p ∈ {tj , . . . , itℓ}, then the hypotheses imply that xq ≥ xp for all q ∈ {1, . . . , tj − 1}.

If p ∈ {itℓ , . . . , itj}, then tj < t0 ≤ itℓ ≤ p ≤ itj . But then xq ≥ xitℓ
≥ xp for all

q ∈ {1, . . . , tj − 1}. But this means

APx ≥ Bjx ≥ 1

because every time we subtract an xp with p ∈ {tj , . . . , itj} we are replacing it with an xq

with q ∈ {1, . . . , tj − 1} which is larger.

The result now follows since APx ≥ 1 for all rows of A.

We can now bound the Waldschmidt constant of a square-free principal Borel ideal in

terms of T (m), IT (m), and ℓ.

Theorem 4.2.4. Let m = xi1 · · ·xis be a square-free monomial with T (m) = (t0, t1, . . . , tk)

and IT (m) = (it0 , it1 , . . . , itk), and suppose I = sfBorel(m). If ℓ is the smallest integer such

that itℓ+1 < t0 ≤ itℓ, then

α̂(I) ≤ (t0 − tℓ)

(
1

itℓ − tℓ + 1

)
+ (itℓ − itℓ+1

)

(
1

itℓ − tℓ + 1

)
+ · · ·+ (itk−1

− itk)

(
1

itk−1
− tk−1 + 1

)
+ itk

(
1

itk − tk + 1

)
.

Proof. By Lemma 4.2.1, we can assume that the number of variables is is = n. Set a =
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itℓ − tℓ + 1, and consider the vector y ∈ Ris=it0 where

yT =

(
1

itk − tk + 1
, . . . ,

1

itk − tk + 1︸ ︷︷ ︸
itk

,
1

itk−1
− tk−1 + 1

, . . . ,
1

itk−1
− tk−1 + 1︸ ︷︷ ︸

itk−1
−itk

,

. . . ,
1

a
, . . . ,

1

a︸ ︷︷ ︸
itℓ−itℓ+1

,
(tℓ−1 − tℓ)

(itℓ−1
− itℓ)a

, . . . ,
(tℓ−1 − tℓ)

(itℓ−1 − itℓ)a︸ ︷︷ ︸
itℓ−1

−itℓ

,

(tℓ−2 − tℓ−1)

(itℓ−2
− itℓ−1

)a
, . . . ,

(tℓ−2 − tℓ−1)

(itℓ−2
− itℓ−1

)a︸ ︷︷ ︸
itℓ−2

−itℓ−1

, . . . ,
(t0 − t1)

(it0 − it1)a
, . . . ,

(t0 − t1)

(it0 − it1)a

)
︸ ︷︷ ︸

it0−it1

.

Let A be the matrix of associated primes of I. We will use Lemma 4.2.3 to verify that

Ay ≥ 1. Theorem 2.2.11 then gives the required result after we sum all the entries of y.

It follows from Lemma 4.1.5 (3) that

1

itj − tj + 1
≥ 1

itj−1 − tj−1 + 1
for all j = 1, . . . , k.

These inequalities imply that the first itℓ entries of y form a non-increasing sequence. Thus,

condition (2) of Lemma 4.2.3 holds for y. In addition, it follows by Lemma 4.1.5 that

tj−1 − tj
itj−1 − itj

< 1 for j = 1, . . . , ℓ.

Hence 1
a ≥ yr for all r = itℓ , . . . , it0 , and thus condition (3) of Lemma 4.2.3 also holds for

y.

Let B be the submatrix of A where the j-th row of B corresponds to the associated

prime of I that is associated to xtj · · ·xitj . That is, written as a row vector:

Bj = (0, . . . , 0︸ ︷︷ ︸
tj−1

, 1, . . . , 1︸ ︷︷ ︸
itj−tj+1

, 0, . . . , 0).

We now show that B and y satisfy condition (1) of Lemma 4.2.3, thus completing the proof.
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Consider the j-th row of B, denoted Bj . If j ≥ ℓ, we then have

Bjy ≥ Bj



0

1
itj−tj+1

...

1
itj−tj+1

y
it0
itj+1


≥ 1

where y
it0
itj+1 represents the last it0 − itj entries of y, the fraction

1
itj−tj+1 appears itj − tj+1

times, and the 0 is the vector with tj − 1 zeroes. Since every entry of this new vector is less

than or equal to the corresponding entry in y, the first inequality holds.

Now suppose that j < ℓ. Consequently, note that tj < t0 ≤ itℓ < itj . So we then have

Bjy =

is∑
r=1

(Bj)ryr =

itℓ∑
r=tj

yr +

itj∑
r=itℓ+1

yr

≥ itℓ − tj + 1

itℓ − tℓ + 1
+

tℓ−1 − tℓ
itℓ − tℓ + 1

+ · · ·+ tj − tj+1

itℓ − tℓ + 1

=
itℓ − tj + 1

itℓ − tℓ + 1
+

tj − tℓ
itℓ − tℓ + 1

= 1.

The inequality follows from the fact that yr ≥ 1
a for all 1 ≤ r ≤ itℓ . Hence, Bjy ≥ 1 for all

rows of j, so condition (1) of Lemma 4.2.3 also holds.

We derive the following corollary; in the next section we will show that this bound is

exact under additional hypotheses.

Corollary 4.2.5. Let m = xi1 · · ·xis be a square-free monomial with T (m) = (t0, t1, . . . , tk)

and IT (m) = (it0 , it1 , . . . , itk), and suppose I = sfBorel(m). If ℓ is the smallest integer such

that itℓ+1 < t0 ≤ itℓ, then

α̂(I) ≤ t0 − tℓ + itℓ
itk − tk + 1

.

Proof. Recall that t0 = s. Note that

1

itk − tk + 1
≥ 1

itj − tj + 1
for ℓ ≤ j ≤ k.
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The result now follows from Theorem 4.2.4 and this inequality.

Example 4.2.6. Our bound in Theorem 4.2.4 is sharp. Continuing Example 4.2.2, if

m = x2x3x5x6x8x10, then we have T (m) = (6, 5, 4, 2), IT (m) = (10, 8, 6, 3), and ℓ = 2.

Then

α̂(sfBorel(m)) ≤ 2

3
+

3

3
+

3

2
=

19

6
,

and this is the actual Waldschmidt constant.

4.3 Some exact values and lower bounds

In this section we compute the exact value of the Waldschmidt constant of principal square-

free Borel ideals under some additional hypotheses. We then present a theorem that can

be used to find lower bounds recursively.

Recall that ℓ is defined to be the smallest integer such that itℓ+1
< t0 ≤ itℓ , and

consequently, 0 ≤ ℓ ≤ k. In the case that t0 = s ≤ itk , that is, the case when ℓ = k, we

have the following exact formula:

Theorem 4.3.1. Let m = xi1 · · ·xis be a square-free monomial with T (m) = (t0, t1, . . . , tk)

and IT (m) = (it0 , it1 , . . . , itk), and suppose I = sfBorel(m). If t0 = s ≤ itk , then

α̂(I) = 1 +
s− 1

itk − tk + 1
.

Proof. The hypotheses imply that ℓ = k, with ℓ as in Corollary 4.2.5. Consequently,

Corollary 4.2.5 then shows that

α̂(I) ≤ t0 − tk + itk
itk − tk + 1

=
s− 1 + (itk − tk + 1)

itk − tk + 1

where we use the fact that t0 = s.

For j = 0, . . . , k, let Pj denote the associated prime of I that is associated with the

monomial xtj · · ·xitj using the correspondence of Theorem 4.1.6. For any other associated

prime P ∈ Ass(I), we will write P ∼ Pj if the prime P is associated to a monomial m that
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can be obtained from xtj · · ·xitj via a Borel move. Note that each associated prime satisfies

P ∼ Pj for exactly one j ∈ {0, . . . , k}.

Let A be the matrix of associated primes of I. There are |Ass(I)| rows, and we write

AP for the row indexed by the associated prime P . Let x ∈ R|Ass(I)|. We will write xP to

denote the corresponding coordinate in x. That is, if P indexes the i-th row of A, then xP

denotes the i-th coordinate of x.

With the above notation, we now define the vector y ∈ R|Ass(I)| as follows:

yP =



1

(itk−1

tk−1
)
s−1
itk

P ∼ Pk

1

( itk
s−1

)
P ∼ P0 and ⟨xitk+1, . . . , xis⟩ ⊆ P

0 otherwise.

Note that the second criterion means we are only interested in those prime ideals that arise

from Borel moves of xt0 · · ·xit0 that also contain the variables {xitk+1, . . . , xis=it0
}.

The r-th row of AT is such that (AT )r,P = 1 if xr ∈ P and 0 otherwise. Then

(ATy)r =
∑
xr∈P

yP .

So, in order to compute ATy, we have to compute how many times xr appears in some P

such that P ∼ Pk, or P ∼ P0 and ⟨xitk+1, . . . , xis⟩ ⊆ P .

Observe that there are
( itk
tk−1

)
associated primes P such that P ∼ Pk. This number is

the number of Borel moves that can be made from xtk · · ·xitk . There are
( itk
s−1

)
=
( itk
itk+1−s

)
associated primes P such that P ∼ P0 and ⟨xitk+1, . . . , xis⟩ ⊆ P . To see why this is true,

suppose that we consider a Borel move of xt0 · · ·xit0 that is also divisible by xitk+1 · · ·xit0 ,

i.e., the Borel move has the form m′(xitk+1 · · ·xit0 ) where m
′ is a degree itk−t0+1 monomial

in {x1, . . . , xitk}. Since s = t0 ≤ itk , there are
( itk
s−1

)
≥ 1 possible m′.

For itk < r ≤ it0 we have that xr appears in every P such that yP ̸= 0 and P ∼ P0.
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Therefore

(ATy)r =

(
itk

s− 1

)
1( itk

s−1

) = 1.

Now, for 1 ≤ r ≤ itk , xr appears in
(itk−1
tk−1

)
elements P such that P ∼ Pk, and in

(itk−1
s−1

)
elements P such that P ∼ P0 and ⟨xitk+1, . . . , xis⟩ ⊂ P . Therefore

(ATy)r =

(
itk − 1

tk − 1

)(
1(itk−1

tk−1

) s− 1

itk

)
+

(
itk − 1

s− 1

)
1( itk

s−1

)
=

s− 1

itk
+

itk − s+ 1

itk
= 1.

This proves that ATy = 1. Finally

yT1 =

(
itk

tk − 1

)(
1(itk−1

tk−1

) s− 1

itk

)
+

(
itk

s− 1

)(
1( itk

s−1

))

=
itk

itk − tk + 1

s− 1

itk
+ 1 = 1 +

s− 1

itk − tk + 1
.

Due to the duality theorem (Theorem 2.1.16), we can conclude the result.

We arrive at the following corollary which was highlighted in the introduction.

Corollary 4.3.2. Let I = sfBorel(xixi+1 · · ·xi+l). Then

α̂(I) =
i+ l

i
.

Consequently, for every rational number a
b ≥ 1, there exists a square-free principal Borel

ideal I such that α̂(I) = a
b .

Proof. We have T (m) = (l + 1) and IT (m) = (i+ l). Now apply Theorem 4.3.1.

For the second statement, if a
b = 1, we can take I = sfBorel(x1) = ⟨x1⟩, from which it

follows that α̂(I) = 1. If a
b > 1, i.e., a > b, we have a

b = b+(a−b)
b . Then the result follows if

we take m = xbxb+1 · · ·xa = xbxb+1 · · ·xb+(a−b).

Remark 4.3.3. When I = sfBorel(xixi+1 · · ·xn), then I is generated by all the square-free

monomials of degree n− i+ 1 in R. The Waldschmidt constants for these ideals were first

computed in [BCG+16, Theorem 7.5].
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We now give a lower bound for the Waldschmidt constant of a square-free principal

Borel ideal in terms of a smaller square-free principal Borel ideal.

Theorem 4.3.4. Let m = xi1 · · ·xis be a square-free monomial with T (m) = (t0, t1, . . . , tk)

and IT (m) = (it0 , it1 , . . . , itk), and suppose I = sfBorel(m). Suppose that ℓ is the smallest

integer such that itℓ+1
< t0 ≤ itℓ. Define ν = itℓ+1

+ 1. Then

α̂(I) ≥ α̂(sfBorel(xi1 · · ·xitℓ+1
)) + 1 +

t0 − ν

iν − ν + 1
.

Proof. By Lemma 4.2.1, we can assume we are working in the polynomial ringK[x1, . . . , xit0 ].

Consider the monomials

m1 = xi1xi2 · · ·xitℓ+1
∈ K[x1, . . . , xitℓ+1

]

and

m2 = xiνxiν+1 · · ·xit0 ∈ K[xν , . . . , xit0 ].

Observe that while m1m2|m, m is not necessarily this product.

Let I1 = sfBorel(m1) and I2 = sfBorel(m2), in their respective rings, and furthermore,

let A(I1) and A(I2) be the corresponding matrices of associated primes.

Take p to be the biggest integer such that ν ≤ tp. Then

T (m2) = (t0 − ν + 1, t1 − ν + 1, . . . , tp − ν + 1)

and

IT (m2) = (it0 − ν + 1, it1 − ν + 1, . . . , itp − ν + 1).

We have p ≤ ℓ, then itp ≥ t0. So by Theorem 4.3.1 we have

α̂(I2) = 1 +
t0 − ν

itp − tp + 1
.

Observe that iν − ν + 1 = itp − tp + 1, since tp+1 < ν ≤ tp, meaning that xν · · ·xiν is a

Borel movement of xtp · · ·xitp .
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We claim that A(I1) 0

0 A(I2)


is a submatrix of A(I), the matrix of associated primes of I.

First notice that any row of A(I1) is comes from a Borel movement of a corresponding

xtxt+1 · · ·xit for some t ∈ T (m1). By Theorem 4.1.6, these are also associated primes of I,

implying that [A(I1) 0] is a submatrix of A(I).

Now, for any ℓ + 1 > u > p, xtu · · ·xitu corresponds to a row of A(I), and any of its

Borel movements contain at least one xj with j < ν, otherwise ν ≤ tu, contradicting the

choice of p. For a row R, let supp(R) denote the set of indices of the non-zero entries of

the row. Then for a row R in [0 A(I2)], there cannot exist a row R′ of A(I) with supp(R′)

⊊ supp(R). Thus any associated prime of I2 can be viewed as an associated prime of I by

Theorem 4.1.6. Thus [0 A(I2)] is a submatrix of A(I) and by our choice of ν.

Let y1 and y2 be such that

A(I1)
Ty1 ≤ 1, 1Ty1 = α̂(I1) and A(I2)

Ty2 ≤ 1, 1Ty2 = α̂(I2).

After permuting rows, we can assume that

A(I) =


A(I1) 0

0 A(I2)

B1 B2


where B1, B2 are some appropriately sized matrices. Set z = (y1,y2,0), where 0 is a vector

of zeroes, where the number of zeroes in this vector are the same as the number of rows as

B. Then A(I)T z ≤ 1. Thus, by the dual version of Theorem 2.2.11, we have

α̂(I) ≥ α̂(I1) + α̂(I2) = α̂(I1) + 1 +
t0 − ν

iν − ν + 1
.

Theorem 4.3.4 reduces the problem of finding a lower bound on the principal square-free
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Borel ideal m = xi1 · · ·xis to finding a lower bound on the principal square-free Borel ideal

of xi1 · · ·xitℓ+1 . Note one can now reapply Theorem 4.3.4 to this smaller ideal. At some

point, the hypotheses of Theorem 4.3.1 will hold, which stops our recursive calculation.

This idea can be formally expressed as a formula, provided one is willing to introduce

even further notation (involving further subscripts on our subscripts). Instead, we provide

the following example in the hope of being more illuminating.

Example 4.3.5. Consider the monomial

m = x3x4x5x8x9x10x48x49x50x98x99x100 ∈ K[x1, . . . , x100]

and let I = sfBorel(m). For this monomial T (m) = (12, 9, 6, 3) and IT (m) = (100, 50, 10, 5).

Since it2 = i6 = 10 < t0 = 12 < it1 = 50, then ν = 11 and Theorem 4.3.4 gives

α̂(I) ≥ α̂(I1) + 1 +
12− 11

98− 10 + 1
= α̂(I1) +

90

89

where I1 = sfBorel(x3x4x5x8x9x10) = sfBorel(m1). For this new monomial, we have

T (m1) = (6, 3) and IT (m1) = (10, 5). Again using Theorem 4.3.4, we get

α̂(I1) ≥ α̂(I2) + 1 +
6− 6

10− 6 + 1
= α̂(I2) + 1

where I2 = sfBorel(x3x4x5). Then by Theorem 4.3.1 (or in this case, Corollary 4.3.2), we

have α̂(I2) =
5
3 . Hence

α̂(I) ≥ 5

3
+ 1 +

90

89
=

982

267
.

Note that if we apply the upper bound of Theorem 4.2.4 we get

3.6904 ≈ 155

42
≥ α̂(I) ≥ 982

267
≈ 3.6779.

We finish this chapter with a result that allows us to make small changes to the generator

of the square-free principal Borel without changing the Waldschmidt constant.

Theorem 4.3.6. Let I = sfBorel(xi1 · · ·xis−1xis) and J = sfBorel(xi1 · · ·xis−1xis+r) for

r ∈ N. Then α̂(I) = α̂(J).
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Proof. Let A be the matrix of associated primes of I and let y = (y1, . . . , yis) be an optimal

solution to

min{1Tx | Ax ≥ 1}. (4.3.1)

First consider r = 1 with J = sfBorel(xi1 · · ·xis−1xis+1). Let A
′ be the matrix of associated

primes of J . Any element of Ass(J) not in Ass(I) includes both xis and xis+1 as generators,

so the columns of A′ corresponding to xis and xis+1 are identical. Let y′ = (y′1, . . . , y
′
is+1)

be an optimal solution to

min{1Tx | A′x ≥ 1}. (4.3.2)

and suppose for contradiction that y′1 + · · · + y′is+1 = α̂(J) < α̂(I). But this means

(y′1, . . . , y
′
is

+ y′is+1) is a feasible solution to (4.3.1), contradicting y being optimal and

showing α̂(J) ≥ α̂(I). Observing that (y1, . . . , yis , 0) is a feasible solution to (4.3.2) gives

α̂(I) ≥ α̂(J). This shows α̂(I) = α̂(J), and an inductive argument gives the result for

r ∈ N.
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Chapter 5

Further Questions

We conclude this thesis with an example and questions for further investigation.

5.1 Waldschmidt constant in three variables with prescribed

denominator

Example 5.1.1. Consider the following monomial ideal I in R = K[x1, x2, x3]

I = ⟨xa1, xb2⟩ ∩ ⟨xc1, xd3⟩

and assume a, b, c, d > 0. Since I has no embedded primes and is presented in its irreducible

form by Theorem 2.3.4, solving for the Waldschmidt constant α̂(I) amounts to solving the

linear optimization problem:

Solve min{1Ty | Ay ≥ 1,y ≥ 0} for (5.1.1)

A =

 1
a

1
b 0

1
c 0 1

d

 ,

where y = [y1 y2 y3]
T is a vector of variables.

The vertices of the symbolic polyhedron of I are the feasible intersections of the following
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5 hyperplanes:

h1 =
1
ay1 +

1
by2 = 1

h2 =
1
cy1 +

1
dy3 = 1

y1 = 0,y2 = 0,y3 = 0.

SettingH = {1, 2} and Y = {1, 2, 3} and following the procedure and notation of Section

3.1 (e.g., z12|1 is the intersection of the hyperplanes h1 = 1, h2 = 1 and y1 = 0). We get the

following 10 intersections:

z12|1 = (b, d, 0), z12|2 = (a, 0, d(c−a)
c ),

z12|3 = (c, b(a−c)
a , 0), z1|12 = never feasible,

z1|13 = never feasible, z1|23 = (a, 0, 0),

z2|12 = never feasible, z2|13 = never feasible,

z2|23 = (c, 0, 0), z|123 = never feasible.

Now suppose d > a > b = c = 1. Observe then that z12|2 is infeasible since the second

coordinate is negative. The intersection z2|23 is infeasible since it fails the inequality h1 ≥ 1.

Consider the intersection z12|3 = (1, (a−1)
a , 0) with coordinate sum 1T z12|3 = 1+ (a−1)

a =

a+(a−1)
a . Observe that 1T z12|3 = a+(a−1)

a < 1T z1|23 = a and 1T z12|3 = a+(a−1)
a < 1T z12|1 =

b+d. This makes z12|3 the minimizer to the linear optimization problem (5.1.1). So we have

α̂(I) = a+(a−1)
a . This means we can always construct a monomial ideal I in three variables

with a prescribed denominator a in its Waldschmidt constant.

The above example shows we can construct a monomial ideal I in R = K[x1, x2, x3]

with Waldschmidt constant equal to any prescribed denominator, but with limitations on

the numerator. By Corollary 3.1.2 we can construct a monomial ideal I in R = K[x1, x2, x3]

with Waldschmidt constant equal to q
2 > 1 for prescribed q > 2. This leads to the following

question:
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Question 5.1.2. Is it possible to construct a monomial ideal I in R = K[x1, x2, x3] such

that α̂(I) = q
p for any q

p ≥ 1? If not, which values are forbidden?

5.2 Efficiently constructing a monomial ideal with a pre-

scribed Waldschmidt constant

We have developed two techniques for creating monomial ideals with a prescribed Wald-

schmidt constant. The Section 3.3 technique (Corollary 3.3.4) works for fractions q
p that

satisfy certain conditions on the relative size of q and p, and the value of q mod p+1. The

Chapter 4 technique (Corollary 4.3.2) of using square-free Borel principal ideal allows us

to construct a monomial ideal with any rational prescribed Waldschmidt constant q
p ≥ 1.

The example of the square-free Borel ideal which approximates π in the introduction (see

Equation 1.2.2) would not work with Chapter 3’s technique.

Suppose we want to construct a monomial ideal I with α̂(I) = 101
2 .

By Corollary 3.1.2 the following ideal in R = K[x1, x2, x3]

I = ⟨x2, x3⟩34 ∩ ⟨x1, x3⟩34 ∩ ⟨x1, x2⟩33

has α̂(I) = 101
2 .

Instead, if we construct a square-free principal Borel ideal I with using (Corollary 4.3.2),

we get the ideal I = sfBorel(x2 · · ·x101) which also has α̂(I) = 101
2 . But notice this ideal is

in R = K[x1, . . . , x101]. So the technique of Section 3.3 is more efficient in that it requires

only 3 variables instead of 101.

We conclude this thesis with the following question:

Question 5.2.1. For a prescribed fraction q
p ≥ 1, what is the monomial ideal I that most

“efficiently” (e.g., in terms of minimal number of variables or associated primes) attains the

Waldschmidt constant α̂(I) = q
p?
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[CHHVT20] Enrico Carlini, Huy Tài Hà, Brian Harbourne, and Adam Van Tuyl. Ideals

of Powers and Powers of Ideals, volume 27 of Lecture Notes of the Unione

Matematica Italiana. Springer International Publishing, 2020.

[CMKSVT22] Eduardo Camps Moreno, Craig Kohne, Eliseo Sarmiento, and Adam

Van Tuyl. On the Waldschmidt constant of square-free principal Borel ideals.

Proc. Amer. Math. Soc, 150:4145–4157, 2022.

[DHSTG11] Marcin Dumnicki, Brian Harbourne, Tomasz Szemberg, and Halszka Tutaj-
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