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INTRODUCTION

Big specific aim of this thesis is to consider the
totality of extensions of a completely regular space E , 

especially those that can be defined by means of continuous 

real-valued functions on E and by means of the uniform

structures of E • In addition, on a more abstract level, 

it is concerned with general methods or processes for the 

construction of topological spaces. ■ These processes are
used to construct extensions.

Let ^ be a particular kind of structure that can be 

attached to any set E (e.g. a topology for E) and let Ji­

be a category with objects the pairs (E,X), where E is a 

set and I is a ? -structure for E , and a suitable class

of functions a:E-----* E1 that 

(e.g. the continuous functions 

is the category of topological

are ) ^ -honorphi sms

or the open functions). If 

spaces (i.e. objects topol­

ogical spaces (E,0) and maps the continuous functions) a

-process on a subcategory -^-_ of -Ji- consists of a

covariant functor P: — Q— ------ and

(Pv) __ of functions p^?E----- »r( I) such tl

(M p^]n^E, , is, dense in P(EJ) ; and 

then
P(q) o Py o a
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Three kinds of process are used in this thesis: 

function processes, where X is a collection S of real- 

valued functions on E; uniform processes, where X is a 

uniformity for E ; and topological processes, where X is 

a topology for E • The specific applications of each of 

these kinds of processes are briefly discussed in the follow­

ing chapter by chapter summary of the thesis.

Chapter one is devoted to a discussion of our function 

processes that correspond to four descriptions of Hewitt’s 

v -extension of a completely regular space E , and to an 

application of the results of this discussion to the problem 

(EA):characterise the subalgebras S of CP for which 

S = C7Je , where X is an extension of E (Cv denotes the 

algebra of continuous real-valued functions on E) .

In section one function processes are defined using 
the specific category^ of objects (E,S), where S is a 

collection of real-valued functions on E, and with 

IiOn((E,S),(Et,S,) the set of all functions c:E... . -E* such 

that S1 o a is contained in S . The concepts of a homomoEt- 

phisa and of an isomorphism of one function process into 

another are introduced as a restricted type of natural equiv­

alence and three general kinds of invariant properties discussed. 

The first type is a topological property. If (t) is a 
topological property a function process *P on a subcategory 5 

is said to be a (t)-procoss when each space P(E,S),(E,S) in35 

has property (t) • The second kind deals with the ’extension *
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of the functions f in S as continuous functions fp to 

the space P(E,S) and with properties of the resulting collee- 

tion Sp of continuous functions on P(E,S) • The third and 

last type of invariant property relates properties of the maps 

a in 31 to properties of the continuous functions P(a) • 

In addition another property of function processes is intro­

duced which is not, strictly speaking, an invariant* It is

the property of idempotence which is possessed by a process '"P
when it can be iterated to produce a new process ~Po*P
isomorphic to ^ .

Section two is devoted to a discussion of the idempotent

Tychonoff process It associates with any collection S

of real-valued functions on a set E the subspace obtained by

talcing the closure of the natural image of E in IT R^
f in S

under the evaluation napping. It is shown to be characterised 

(up to isomorphism) by four invariant properties of the first 

type (theorem 5) •

The third section discusses S-completely regular filters

on a set E , where S is a collection of real-valued functions

on E • The results of this section are used in section four 

to define the compact process TIL, which associates with each 

(E,S) the space of maximal S-completely regular filters on E • 

Hie subprocess 3 of 7J1 is defined by considering for each 

(E,S) the subspace of M(E,S) consisting of the U(S)-Cauchy 
filters. It is shown to be isomorphic to ^ (theorem 10) •
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In section five the first of two ’algebraic’ processes 

is defined. This is the process ^ which associates with any 

real unitary function algebra the set of real-valued unitary 

algebra homomorphisms together with the Zariski topology. 

Given additional conditions on the function algebra it is 
shown (theorem 12) that^ and ZJ are isomorphic processes on 

a subcategory of ^ . .

Section six is devoted to a consideration of the pro­
cess ^ . It associates with each translation lattice of 

functions that contains the constants and is closed under mul­

tiplication by (-1) the space of translation lattice homomor­

phisms which map the zero function to zero and which commute 

with (-1) . This process is isomorphic to-3 on a subcategory 
of ^ (theorem 13) . The section concludes with the result 

(theorem 14) that on a suitable subcategory of 3 the four 
processes J , 5^ ,^ and ©f are isomorphic and satisfy all 

the invariant properties introduced in section one.

In section seven problem (EA) is discussed. It is 

clear, in view of Hewatt’s u -extension of completely regular 

spaces, that it is sufficient to consider the problem for the 

Q-extensions of E . As an application of theorem 14 it is 

shown that (up to isomorphism) any one of the processes S , 
5 , ¥f and oC provides all the Q-extensions of E • A 

preliminary solution to (EA) is then stated (theorem 13) • 

It shows that (EA) is equivalent to the problem ,
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(AC): characterise tssjialsibra of continuous real-valued 

functions on E .

In the last section of this chapter it is shown that 

problem (AC) may be solved by a solution to a third problem, 
problem

(BC): characterise C^ . as an algebra of continuous roal-valucd 

functions on E. Theorem 20 states a solution to (EC) which 

is then used to solve in turn (AC) and (ZA) (theorems 21 and 

22)

The second chapter discusses the extensions of a com­

pletely regular space E by malting use of the well known fact 

that the quotient space of a compact space defined by a closed 

equivalence relation is also compact.

Section one shows that there is a Galois connection be- 

tween the set of closed equivalence relations r on a compact 

space K and the uniformly closed unitary subalgebras a of 

C-, (theorem 1) . It is shown that every continuous image of a 

compact space is essentially a quotient space of K defined by 

a closed equivalence relation on K •

In section two these results are applied to the Stone- 

Cech compactification (pE,i) of E . The uniformly closed 

unitary subalgebras a of Cg define the compact spaces K 

into which E may be continuously mapped with dense imago as 

the quotient spaces pz/r(a) = K(a) , where r(a) is the
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closed equivalence relation on pE associated with a • Wien 

a contains a* it is shown that there is a canonical nan ••—• *M* 4*
^(a*»a);K(a)------^K(aT) such that rr(ar,a) o n(a) = rrCa*) , 

where rr(a):pE------ ^(a) is the natural mapping. The pair 

(^(s)#tr(a) o i) is an extension of E iff the weak topology 

O/E,a) is the topology of E •• Such algebras are said to be 

characteristic and are denoted by £ . The extensions (K(£), 

n(£) o i) are a representative collection of compact extensions 

of E in 1 - 1 correspondence with the characteristic algebras 

£ * It is shown that E is locally compact iff E has a 

smallest characteristic algebra (theorem 5) • In addition if 

pE n <£ iE contains two points the characteristic algebras of 

E determine E (to within homeomorphism) (theorem 6) •
Section three considers the translation lattices ^ (a) = 

[f | for all X ^ 0 (f n X) v» (-X) is in a ] associated with 

each uniformly closed unitary subalgebra a of C^ . They are 

characterized internally by theorem 8 and by means of the 

realtions r(a) in theorem 10 •

The fourth section considers the set of extensions of 

E obtained taking the subspaces X of K(£) containing 

(tt(£) o i)E . Every extension is isomorphic to one of them 

(theorem 11) and a non-redundant subset may be chosen. Another 

method of obtaining extensions by means of continuous functions 

is defined using the compact extensions (K(£)»n(£) o i), 

characteristic. If S is a subset of C-, then ^ _(S) is
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the largest subset of K(c) to which each function in S has 

a continuous real-valued extension. After a discussion of 

some obvious properties of the operators ^ c it is shown 

(theorem 16) that if c_ ^ S ^ Jf(c) then the extensions 

(£_(S)tn(c) o i) and (T(E,S),tc) are isomorphic. As a 

result every Q-extension of E may be obtained using the 
operators ^_ • In particular Hewitt’s -extension of E 

is (^r«(Cr),i) “(^Eji) •

In section five two quasi-orders for extensions of E

are defined. If E^ = (Z^,j^) and X2 = (^’^ are exten­

sions of E(i.e, j^E-------X^ is an embedding in the completely

regular space Z^) then ^ and 3 are defined by setting
T- 
""I ^2 if there is a continuous function Y21:Zr

such that y22 ° Jj “ Jo ^^ ^1 ~ ^2 ^ ^1 ~ ^2 ^^ *^22

is an embedding, Necessary and sufficient conditions aro 

obtained in theorem IS (theorem 20) on a Q-extension (Y,k) of 

E in ofder that it be ^ H ) a given extension (X»J) of E • 

Those results are extended in section six to arbitrary extensions 

(theorems 22 and 23) by making use of the canonical mappings 

^(c^c) •

The seventh section discusses two Q-extensions of E

associated with a given characteristic algebra c, of E , The

first one may be constructed by process <5* applied to (E, XCp.))

(theorem 24), whereas the second is defined to be the intersection 

of all the Q-subspaces of K(£) containing (n(c) o i)E .



Section eight returns to problem (EA) of chapter 

one and provides another solution by giving (in theorem 27) 

an explicit algebraic construction of the extension algebras 

of E in terms of the characteristic algebras c of E 

and the extension algebras that contain Cb •

The chapter concludes with a discussion of additional 

properties of the lattices ^ (a) and a conjecture concerning 

them which, if correct, solves (AC) for Q-spacos. it is 

shown (theorem 29) that a lattice ^f (a) is closed under 

addition iff it is closed under multiplication which is the 

case iff it is closed under continuous composition. The con­

jecture states that,for Q-spaces, C? is the only collection 

of continuous functions on E satisfying the conditions of 

theorem $ which is closed under addition and that contains 

unbounded functions when E is not compact. In the case of 

locally compact spaces countable at infinity the conjecture 

holds (lemma 13) •
Chapter three is analoguous to the first four sections 

of chapter one. The analogy is obtained by considering uniform­

ities U in place of collections S of real-valued functions 

and compatible uniformities U on topological spaces (i.e. the 

U-uniform topology is coarser than the topology of the space) 

in place of collections of continuous functions.

The first section is a brief discussion of some results 

for compatible uniformities that are used later in this chapter

■M) Sae Err'a.tuvw p. 2. GO .



and in chapter four. The analogue of the fact that a contin­

uous real-valued function on a topological space is determined 

by its value on a dense subset states (theorem 3) that a 

compatible uniformity is determined by its restriction to a 

dense subset.

Section two is the analogue of section one in chapter 
one with the category 5 replaced by the category I • This 

category has the pairs (E,U) , where U is a uniformity for 

E, as objects and IIom( (E,U), (E’,U*)) the (U,U*)-uniformly 

continuous functions a:E——E* . In addition to the defin­

ition of isomorphism and the discussion of invariants, this 
section also introduces a natural (covariant) functor U:3---- ZE 

If (E,S) is in 3? then U(E,S) = (E,U(S)) and if a is a 

map of ^ U(a) = a • By means of this functor every uniform 
process *P on I induces a function process T^ on 3? .

In section three the well known construction of the 

separated space associated with a uniform space (E,U) is 

shown to provide a uniform process ^ • This process is de­

fined (up to isomorphism) by a ’universal* property (theorem 

6) . It is also shown that the separated space associated with 

(E,U) is complete iff (E,U) is complete.

The fourth section discusses the space of Cauchy filters 

associated with a uniform space and shows that it too defines a 
uniform process on I .



To correspond to the section on S~completely regular, 

the fifth section denis with U-completely regular filters on 
a set E and obtains analogous results.

The analogue of process TH is the uniform process 13 

which is defined in section six by associating with each (E,U) 

the space of maximal U-completely regular filters on E . It 

is shown that this process associates with each separated 

uniform space its Samuel compactification and that it is de­

fined (up to isomorphism) as a compact process with a ’universal 

property (theorem 12) « The induced function process 13T is 

not isomorphic to"WL •
In section seven process ^3 is defined as a subprocess 

of D by associating with each (E,U) the subspace of B(E,U) 

consisting of the U-Cauchy filters in B(E,U) • It is show’ll 

to have a universal property and (analogous to theorem 5 in 

chapter one) to be defined up to isomorphism by four invariant 

properties of uniform processes (theorem 16) • One immediate 

consequence of this theorem is the well known result that the 

separated space associated with the Cauchy filter space defined 

by (E,U) is isomorphic to the separated space associated with 

the Cauchy filter space of the separated space defined by (S,U) 

In addition the well known theorem on the extension of uniformly 

continuous functions (theorem 16) is proved in a manner which is 

formally identical with the proofs of theorem 13 and 20 in 

chapter two. This suggests a basic ’extension1 theorem exists 

for every process.
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The fourth chapter is a brief discussion of the exten­
sions of a completely regular space E that nay be obtained by 

completing E in its various structures • It is roughly anal­

ogous to chapter two.

Tile first section shows that all the topologically com­

plete extensions (l,j) of E (i.e, X is complete in its 

i finest structure) may be obtained by applying ^ to the objects 

(E,E) where U is a structure of E • The totally bounded 

Structures of E define its compact extensions, and are in 1-1 

correspondence with characteristic algebras of E (theorem 2) • 

Ln equivalence relation is defined on the set of structures of 

E by identifying U^ and U2 if CCE,^) = GCE,^) . Thilo 

it is shown that each equivalence class has a finest member the 

problem of characterising such extremal structures is left open. 

In the second section the quasi-orders of chapter two 

are considered when restricted to the topologically complete 

extensions of E , necessary and sufficient conditions are 

obtained in order that two of these extensions be suitably re­

lated by those orders (theorems 4 and 5) • These results suggest 
two basic types of problems for topologically complete extensions. 

An example of the second type is stated and solved (theorem 6) • 

It states that a subspace X of X(£) may be obtained by 

completing E in V(S), where ££S^X(£) , iff X is a 
union of G, sots in l(c) • o ~

Section three is an exposition of well known results on *
the collection of U-uniformly continuous functions on a set E • 
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The fourth section discusses very briefly, in terms of process 

^ , three uniformities associated with a given uniformity U 

on a set E • They are respectively the finest totally 

bounded, astounded, and function uniformities coarser than U •

The chapter concludes with sone results which character­

ise those collections C(U) of all U-uniformly continuous 

real-valued functions on a completely regular space E, U a 

structure of E, which are extension algebras of E . A 

connection with the conjecture of chapter two is established.

The last chapter, chapter five, discusses some known 
constructions of compact spaces in the framework of topological 
processes.

Section one introduces and defines the concept of a 

topological process on a subcategory 21 o of the category X- of 

topological spaces. Unlike the sections on function and uni­

form processes, this section contains no discussion of invar­

iants. Tliis is because they are not used to discuss the con­

struction of compact spaces and because it is more or less 

obvious how an analogous discussion should proceed. Continuous 

topological processes are defined and a compactification on 21$ 

is defined to be a continuous compact topological process on 
the subcategory 21 o . natural functors A: ZQ--------►<£ are 

defined and used to obtain topological processes from function 
processes. It is proved that every continuous Q-process *P on 

a subcategory2$ is isomorphic to one obtained by means of a
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. natural functor A and the function precess ^ (theorem 1) • 
As a corollary to this theorem it is shown that when ‘P is 

a compactification the associated natural functor A is 

uniquely defined by requiring A(0) to be a uniformity closed 

unitary subalgebra of C^ qx • This raises the basic problem: 

given a compactification on Z Q determine the associated 

natural functor.

The remainder of the chapter is devoted to a discussion 

of this problem for the following compactifications: the Stone 

Cech compactification; the Alexandroff one-point compactifica­

tion; Banaschewski’s Kero-dimensional compactification; Freud­

enthal’s rim-compact process; and Freudenthal’s ^ -compactif­

ication.
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CHAPTER OUE

THS CO’^PUCITTOII OF TOPOLOGICAL SPACES 

FPOn COLLECTIONS OF FUNCTIONS

£1. .Sanction .p5^ocos.ses. Consider the category^ with 

objects the pairs (E,S) where E is a non-void sot and 

S is a non-void collection of real-valued functions on 

E, and with IIon((E,S), (ESS*)) tho set of all functions 

a:E-----*E’ such that S’ o a = [f’ o a|f’ in S’] is contained 
in S • Let 2t denote the category with the topological 

spaces X,Y,... as objects and non(Z,Y) tho set of all con­

tinuous functions y:X------*Y.
Definition 1. A. function process "^ on, a subcategpry 

of consists, of a, covariant functor P;S ' 1
and, a, f rpiilv ^g ^ (g S) in3i 2£J£E2Sii2£Il£l^ 

such that:

_(Fpp PgS zJLPo&L^ in E] is dense in the space 

P(E,S); and
(??p) if a is a. canning of 3i in PoattS^jjBSS*)). 

then
P(e) O r>n 3 P

Ee^arkso 1. Categories and functors are considered from 

the ’naive’ standpoint of Cod orient til. A subcatogory is 

obtained by restricting both objects and mappings, although 

in this thesis only subcategories obtained by restricting 

objects are considered.
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2, The following commutative diagram illustrates 

^FP2) ! (E.S) ---------- 1----------- ► <£',S')

Ts *5'

■ PC*) '
pce.s) ---------------------- * PCe',s’)

3, The type of function process defined here 

could more properly be called a real function process 

since the functions involved are always real-valued* Ey 

chansing the range of the functions different typos of 

function processes could be considered* 

5:ct)1os of function, processes on ^

1. Define P(E,S) to be the discrete space [E] with P(a)E = E 

and pcx ~ E fox’ all x in E*

2. Define P(E,S) to be the discrete space E with P(a) = a 

and p$x = x for all x in E*
3* Define P(E,S) to be the space (E, O(E,S)) where O(E»S) 

is the weak topology defined by S i*c* the coarsest topol­

ogy for E with respect to which all the functions in S 

are continuous* Define P(a) -a and pox = x for all x in kJ
E.
4* Let r(S) be the equivalence relation defined on E by 

setting x r(S)y if fx ° fy for all f in 3* Define P(E,S) 

to bo the quotient space of (EsO(E,S)) by r(S)* Define 

P(a) to be the unique continuous function a such that 

a o n(3) = rCsO o c, where w(S):E------»E/£(S) is the natural 
mapping* Define pg to ^3 w(S),



3

Iii general if P is a function process on a subcat­

egory S' of S’and if 3?o is a subcategory of i then P 
defines a process'iF’/i^on ^„- the restriction o£ ~P 
to ^L^ • If (2,3) is in i^ then (pj 3EO)(Z,S) « 
P(E,S) and (>| 3EO )$ = pg. If a is a napping of ^° 

then (Pl3Eo)(c) “ P(a)«
General Remark. In algebra there exist many constructions

which are closely related to the construction of topological

spaces by means of processes. Consider for example the con­

structions of free (left) R-modules, R a given ring. One

method of construction corresponds to each set 2 tho (left)

nodule 11(E) of R-valued functions for E which take on the

value 0 except at a finite number of points of E. The 

set E may bo mapped into 11(E) by the function m^ defined 

by sotting mPx “ f„, where f.jx = 1 and f„y “ 0 if y | x. 

The pair (11(E) jE^) has the property that if II is any 

R-niodulo and m:E---- *11 is a function then there exists a

unique Il-linear function y:Il(E)-----*1-1 such that y o r^ “ m 

as shown in the diagram

This ’universal* property implies that if a:E

is a function then there is a unique R-linoar function

11(a) :I1(E)----- ^Il(E’) such that 11(a) o m^ = i.^j o a. The
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uniqueness part of the ’universal’property is equivalent to

the fact that n-E is a set of nodule generators for 11(E),

It follows that this method of constructing free R-module

nay be considered to consist of a covariant functor M

(easily established from the uniqueness condition) on the

category of sets valued in the category of R-znodules to­

gether with a family 

that:

of functions rig such

(1) m^E is a set of module generators for 11(E) 

(which corresponds to (FP^)); and

(2) if a:E------*E’ is a function thoi 11(a) o r:P = 

ms# o a (this corresponds to (FP2)),

There are many other algebraic constructions which

can be presented in this setting, including all the construc­

tions of algebraic entities defined by ’universal’ properties 

such as the tensor product of a right R-modul© with a left 

R-module, th© tensor algebra on an E-module (E-conmutative) 

and so on. For other examples see Chevallcy [2],

To return to function processes, consider two proces­

ses P and Q, on a subcatogory 3E of J& . They nay be compare!

by moans of the restricted type of natural transformation

defined in

Definition 2, A kp;naytfdgi y . of the process. on into 
the process 3? consists of a. family (y(Evf))^ gj ^ -^ 

of continuous functions y(E,S) :P(E.S)’ *C;(E,S.) ouch that:

(1) if a is a running of in I!om(( E,S), (E»,S«))
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then

X^E^S^ljDjlh^^ and

(2) for each (3,S) inSvfE^) 0 Pg g Qg •

A homomorphism y is called an isomorphism if each y(E,S) 

is a homeomorphism. Uhon an isomorphism y of ~P into Q 
exists they are said to b© isomorphic processes on 31 . 
Remarks. The first condition shows that a homomorphism is 

a natural transformation. The second imposes an additional 

condition on the natural transformations. These two con­

ditions together with (FP2) state that the following dia­
gram is commutative: ------ *P<E»s)

Qt^S*)

The relation of isomorphism between processes on a 

fixed subcategory ^ of 3! is an equivalence relation. It 
is clearly refle:rive and symmetric. Lot ^ , Q and ^. 

bo three processes on ZE and lot y and 6 be homomorph­

isms of ~P into Q and of Q_ into ^ • Thon if (E,S) and 

(E^S1) are two objects of3i and a is a mapping of ZE 
in Hom ((E,S), (E^S1)) ib follows that:

(1) 6(E,S) o y(E,S) : P(E,S)-------R(E,S) is a contin­

uous function;

(2) 6(E,S) o y(E,S) o p3 “ 6(E,S) o q3 = rs; and
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(3) GUSS’) o y(E»,S») o P(a) - gU’,3’) o Q(a) oTU,S) 

“ R(a) o 6(2,S) o y(E,S).

This choirs that 6 and y define a homomorphism

of ^ into *^ TJliich is an isomorphism if both 5 and y are 

isomorphisms. In particular the relation of isomorphism is

transitive.

Hie introduction of the concept of isomorphism for 

processes on a fixed subcategory ±E loads to an investigation 

of those properties of processes that ere invariant under iso­

morphism i.e., those properties possessed by both or neither 

of a pair of isomorphic processes. Eire© basic types of 

invariant properties are of interest.

The first and simplest type of invariant property is 

a topological property. If (t) is. a tonolegical, -roporty ami 

V7 is a nroccss on ^ such that all the,, spaces £(2,8), (2,3) 

in $ , have property (t) then is. said to be a (tl-rrpeess 

£XlJ£L-£^Ji2^^vi^^ Since topological

properties are precisely thoso invariant under homeomorphisms 

it is clear that any topological property of a process is 

invariant under isomorphism. For example a process ^ on 3E 
is a Hausdorff process on 3E if each space P(E,S),(2,S) in 3 
is a Hausdorff space. In the case of Hausdorff processes 

condition (1) in definition 2 is a consequence of condition (2) 

as stated in 
Lcurm 1. Let ^ and ^Le^ocesseson^ and lot (y(EtS))^_ 

he a family of continuous ■ £inctionfl.y.(E,S).:P^^
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filfh-ife^^&jilLjXf^^^
this fedly,, defines a, homomorphism y o;? P into •

Proof: Frora (l^) and the hypothesis it follows that

y(3’,Sj) o P(a) o pc « y(ET,S’) o ps, o a = q^, o a

“ 0(a) o q3 - Q(a) o y(E,S) o p$. Since (?Pf) states 

that pgE is dense in P(E,S) it follows that yfE’jS*) o P(a) 

= Q(a) o y(E,S) when QtE^S*) is Hausdorff.

The second type of invariant property connects the 

functions in S with continuous functions on P(E,S). Let
*P bo a process on ^ and if (E,S) is an object of ^ let 

$P(Z S) ^-G^0'00 the algebra of continuous real-valued functions 
on the space P(E,S). Since p^E is dense in P(E,S) the corres- 

pondence g------.g o ps of Cp(E>s)--------Cp(E(E) o Ps is 1 - 1 . 

It is even an algebra homomorphism when the operations in 

CP(E S) ° ^3 cre defined pointwise. In general, as for example 
in ©sample 1 there is no connection between S and Cp^ g)° Pg* 

In the case however of examples 2, 3 and 4 it can be seen that 
S is contained in Cp^g) ° Pg ^ each object in 2 .

It is clear that a process V7 on 3? is such that 3 

is contained in Cp(5 $) $ Pg for each object of ^ iff ^ satis­

fies condition
(FP^) for, .each, object. (3,5.). of SE jdvjdot f in 3

defines a continuous function f« on PC3J3) with f o v =f 
Property (PP^). is fevariant, under jporA^rfeferu Let ^ and Q_ 

be two isomorphic processes on the subcategory 3E • If (E,S) 

is an object of 3Z let y(E,S) : P(E,S)-------*Q(3,S) bo a homeomor­

phism such that y(E,S) o Pg = Cj. Assume Q satisfies (FP^)
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and let Sq « Cf0|f in Sj. If fQ is in S let f p = fq o y(E,S) 

The functions fp are continuous and fp o ps = f^ o y(E,S) op, 

« f$ o qs = f. Hence ^ satisfies (FP^) and so this property 

is invariant.

Since the functions fq and fp are uniquely defined 

by being continuous and by satisfying fq o q$ » fp o p$ = f 

it follows that the correspondence fq----- *fp of Sq with 

$P ° ^p^ in S] is 1 - 1 and onto. This result has two 

immediate consequences. First, Sq separates the points of 

Q(E,S) iff Sp separates the points of P(E,S). Second, 

y(E,S) is a homeomorphism with respect to the weak topologies 

defined by Sp and Sq. This is because if f is in S, 

e > 0 and uQ,vo are such that y(E,S)uo “ vQ, then 

y(E,S)Cu e P(E,S)| |fpu - fpUQl <el = [v e Q(E,S)| 

|fqV - fqVQ| ^ sJ and [u e P(E,S)| |fpu - fpuj ^ e] 
= y“1(E,S)Cv s Q(E,S)| |fqV - fqVQ| ^ el. This proves that 

the following two properties of processes are also invariant

under isomorphism:

(FP^) ^ satisfies (F?^) and for each object

(B,S) cf JE Sp separator the points of P(E,S);

and _
• (FP$) ' satisfies (FP^) and for each object

(E,S) of ^ the topology of P(E,S) is O(P(E,S), S 

Using the notation of the previous two paragraphs let

~P and CL be isomorphic processes o n 3F that satisfy (FP-.).
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Tho coarsest uniformity on P(E,S) such that each fp in 

Sp is uniformly continuous is generated by tho surroundings 

V(fp,e) “ [(u,w) u,w in P(E,S)| |fpu - fpw| < el • 
Denote this uniformity by U(Sp) • Let U(S$) denote the 

corresponding uniformity on Q(E,S) • It is cioar that 

(y(E,S) X Y(E,S)) V(fp,e) « V(fQ,e) and that V(fp,c) » 
(y(E,S) X y(E,S) T^f^E) • Consequently y^jS) is an 

isomorphism of the uniform space (P(E,S), U(3P)) with the 

uniform space (Q(E,S), U(Sq) ) • This promos the invariance 

of property

W satisfies (F?J and for each object 
(E.S) of 3 tho set P(E,S) is complete in 

tho uniformity U(S^J_ •

The third general type of invariant property of a 
process ^ on 3 relates properties of tho mappings a of 

3 to properties of tho corresponding continuous functions 

p(a) • Two examples are of interest for the purposes of this 

thesis* The first is
(FP?) if (E>S), (E^*) are two objects of 3 and

if a is a mapping of 31 in HgnLL=Lu£llj^^

such that S 0 S* o a, then P(g) embeds P(E,S) 

on a closed subspace, of P(E*tS*) ,

This is an invariant property* Let Q be a second process 0x1 

3 which is isomorphic to "Pand let y(e»$) and y(e,»s*) 

bo homeomorphisms such that y^SS1) o P(a) “ a (a) o y(E>S) • 

■Since y~ \E,S) is also a homeomorphism it follows that
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Q(a) embeds Q(E,S) oxi a closed subspace of QfE’jS’) 

when P(a) embeds P(E,S) on a closed subspace of PtE^S*). 

The second example which is obviously an invariant property 
is

(FP^) . if 3<S)» .(E^S*) aye two objects of^. 

and, if a is a mapping, of in !fe((r,3), 

(E^S/)) such that S = S* og and the 

COZToapoudoncG f1* o a is 1-1, 

then P(a) is a homeomorphism.

Let 3E be a cubcategory of 5 and denote by "P a 
process on 31 that satisfies (FP,). It induces a covariant 

functor P._ : H---------- *31 defined as follows: if (E,S) 
is an object of ^ define Ph(E,S) to be (PfEjS), Sp) - 

considering P(E,S) as a set - and if a is a mapping of 
31 in Hom( (EXCESS’)) define P^fa) to be P(a). To 

chow that P„ is a covariant functor it is sufficient to show 

that Pja) is in nom(P„(E,S), P (E»,S»)). Let f* Lein 

S*. The function f^ o P(a) “ (fr o a)p because frp o P(a) o p, 

= f*p o Ps । o a = f ’ o a. Consequently S rp o P(a) is contained 
in S„. Let P„3 be the image of 31 under P *

If Q- is a process defined on a subcategory containing 

fjE then Q o P__ : 3------------- ”2 is a covariant functor.

Define Q- ° 3d to be the functor Q D P = Q o P and the 

family ((q o 1)3 of functions (q ° P)Q ” o .
u E,S) in 5 b "P ° *

E------ ~(Q aP)(E,S) = Q(P(E,S), Sp). Then Q o'P satisfies
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(FP,,) in definition 

Hom((E,S),(E»,S*)).
Q(P(a)) o qSp o ps = 

= (q 0 p)$t o a. In 

not satisfy (FPj) .

. 1, Let a be a mappin. 

Then (Q a P)(a) o (q a 

' qs, O P(a) O pQ = qqlQ p ° p
. general, however, 

as the following example

p)
o pn r o a o

does

shows

Assume that is a process on 3 that satisfies

(FP^). Let d be the process defined in example 2.

If (E,S) is an object of i then (q a pJ^E = q„ (p«E) O Op o
= p^E, which is dense in (Q ° P)(E,S) « P(E,S) - as a 

discrete space - iff p^E « P(E,S). This condition is 
not necessarily satisfied if *P has (FP^) - see process 

{J in the next section - and so in general for this O-, 
0.0*^ is not a process on 5 •

The reason why (q o p)sE is not necessarily dense 

in (Q a P)(E,S) is due to tho fact that in general qQ is 
_ p 

not related to the topology of P(E,S) defined by r .
Specifically it is not continuous sinco (q o p)n E is dense 

in (Q QP)(E,S) if Op is continuous. Let U be a non-void 

open subsot of (Q °P)(E,S) = Q(P(E,S), Sp). Sinco 
qQ P(E,S) is dense in this set q”^(U) is non-void. When

qs is continuous it is an open subset of P(E,S)* The fact 
that pqE is dense in P(E,S) then implies that p^CqX1 (U)) 

b S
is non-void# In other words (q a p)$ E o U | $ i.e.

(q d p)gE is dense in(Q a p)(E,S).

Tliis introduces the following problem! if ~P is a 
process on J and (E,S) is an object of i when is
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Pg : E----- *P(E,S) continuous with respect to a topology 

Og for E? One answer to tills question is stated as 

^eoreri 1. Let *P he a process on ^ that satisfies 

(FP^) and let (E,S) , bo an object of ^ . If 0^ is 

a topology, for E then Pg ; E—■—»P(E,S) is continuous 

with respect to 0-, iff each f in 3 is continuous 

with respect to

Proof: Since ^ satisfies (FP^) S = Sp o p$ and so 

when pg is continuous every function f in S is also 

continuous.

On the other hand S = Sp o p$ also implies that 
fA O(P(E,S), Sp)] = O(E,Sh If 0 = O(P(E,S),Sp) then 

Po is continuous with respect to p^ 0 and 0 • Since

the functions in Sp. are 0 - continuous it follows that 
pg1 0 contains O(E,S) or equivalently that the functions 

in S are pg 0 - continuous. Let f be a function in 5 
and choose s ^ o and v_ in P(E,S). Then pZ^Cv in P(E,3)| 

|fpV - fpVQ| ^e ] is open in O(E,S). If :^ is in E 

such that IfpCpg^) - iyol ^ £ and e*< e - l^pCp^) 

- ^Pvo^’ ^ien Ps^c in $1 1^ - i^l^ e* ] is contained in
[v in P(B,S)| |fpV - fpVo|< e ] = U. Consequently pl^ U

is open in O(E,S) and so pg^O is contained in 0(2,3).

If V7 satisfies (FP^) it then follows that pg is

continuous when O(E,S) is coarser than 0^ i.e. when ouch 

function in S is 0^ * continuous.
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Proof: llio functions fp in Sp are 

on P(£,S). Since Q-satisfies (FP^)

qq is continuous. Hence 
°Pfor each (E,S) in 3E .

(a a p>s

all continuous functions 

this implies that each

2 is dense in (2 P)(2,3)

Let P be a process on I for uhich Pa ^ is defined

i.e. which Satisfies (FP,) and is such that P 3E is a
suLcate^ory of 2^ « If *P satisfies

corollary to theorem 1. Pa "P is
(FP^) then by the

it is defined)• 

between P and

5 • A process

In many cases there is no essential difference

Pg P - they are isomorphic processes on

P on 3^ is said to be idempotent if P° '
is an isomorphic process on 3 •
Hgmnt^s. ^’0 questions that occur in this context are the

fallowing:
(1) if ^a ^ is defined is it necessarily a process; 

and (2) if PoP is a process is it necessarily idempotent?

Let P be a process on 3 such that ■Pa -p is defined. 
If 3^ is a subcutesory of 3 then PI 3O and QP a p) J3O 
are defined. This docs not necessarily imply that ■PiX^ ° PHC 
is defined since this is the cas© Im P -3^o xs contained in 
-3^ • However when pi Si o -Pl^ is defined it is clear 
that -PIS. a? IX. = CP” P>!^..



The property of being an idempotent process la not

independent of the other properties of processes os shown

by

Theorem 2* lot 3E bo a subcatogory of 35 obtained byre- 

,str5-ctinr-’: the, objects, and lot be. a .procoeo on 3E such that

Pjc^ is, a Pi^catQW of o If satisfies (?Pr) and 

,(F?y) or (FPj, then ~P is idempotent.

Proofs Sinco ^ satisfies (FP^) Y’o^P is a process oni. 

Consider tho following commutative diagram, whore (E,S) is an 
object of 5 :

(E, S )------------ - ------------- > PC E, 3)

fs
"P S p

(P (E>Si,Sp)---------------

Tho continuous function Pfp^) exists because (P(E,S), Sp) 
is an object of 3L and p$ is a mapping of 3L , henco a 

napping of 3E •

Elion satisfies (FP~) or (FPa) P(po) is a 

homeomorphism. The function p$ has tho property that

S « Sp o p$ and that the correspondence fp----- *fp o p^ = f 

is 1-1. Tills shows that P(p$) is a honeomorphism if ~P 
satisfies (FPa). In addition if *P satisfies (PP7) it 

follows that Hp^) embeds P(E,S) on a closed subspace 

of P(P(E,S), Op). It is clear that P(p$)P(E,S) contains

o po)E which is dense in P(P(E,S) 

io a homeomorphism.

SP^ Consequently



Tho family (P(po)), % of homeomorphisms
° (E,S) In $

defines an isomorphism or ~P into ~P a ~P • Since

(p O p)o = p- O pn the homeomorphisms Ftps’ satisfy

condition (2) of definition 2 by virtue of the commutativity
of the diagram* Lot a be a mapping of ^ in IIom((E,S),

(ET,S’)). Then F(p$t) o ?(c) “ Hp^f o a) « P(P(a) o p^) 

" P(P(a)) o r(p$) - ( P n P)(a) o P(p3)» Thio shove that 

the homeomorphisms P(p^) define a natural transformation 
of ~P into ~P^^ * This proves that *P is idempotent.

Fermrks. Tills proof is valid for any subcategory 5 for which 

p$ : E------♦P(E,S) is a mapping of SE . In all the applications 

of tills theorem the categories are obtained by merely restrict­
ing the objects of ^ , and so they are of thio typo. The 

argument used to show that the P(ps) define a natural trans­

formation is tho first eirplieit use of the fact that P is

a covariant functor.

The property of being idempotent is not an invariant

property because if P and ^ are isomorphic processes on a

cubcatogory 31 it is possible that Pa ^P bo defined and
that ^D Q- be undefined. Consider the folloxjing almost

trivial

ferlo... Lot E and Er be two distinct sets with a:E---- »Er 

1-1 and onto. Lot SE bo the sub category consisting of the single 

object (E,F.) - uhere F$ is tho collection cf all real-valued 

functions on E - and the single mapping being the identity 
mapping i of E into itself. Define ~P as follows: let
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P(E,F,J be the discrete space E : lob P(i) be the identity 
Xj

napping of E into itself; and lot fp » P(i) • Define ^ 

in a similar way using the discrete space E* and = a • 

It is clear that ^ and Q-are isomorphic processes on ^ 

for which *E* is idempotent and Q.a Q. io not defined*

Assume that SE is a subcategory of 5 obtained by

restricting the objects. Let * and Q. he two processes on

are

that satisfy (FP^) 
subcategories of 5

and are such that P 3E and Q 3a

« Then four ’potential* processes

are defined: V^'P, Q- a^9 ^Pa Q- and Q_ n Q- ,
. Let y bo a homomorphism of * into O • Fer each object 

(E,S) in SE the homomorphism y and the four ’potential*

processes define the following diagram, where Sp and S 

are the collections of continuous functions defined by

Sp o p$ “ Sq 0 $S “ S: ^n0^e that y(E,S) is in Eom((P(E,S),Sp),

This diagram is commutative with the possible exception of the

bottom *face* • Let Z and Y be topological spaces and
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¥ s^-----*1 a continuous function. Sinco for any outset 

A of X ^Ti is contained in ^A it follows that ^ 

maps dense subsets on dense subsets iff FX is dense in Y. 

The continuous functions y(E,S), y(F(S,S), Sp), and 

y(Q(E,S), Sq) all mop their domains on dense subsets of the 

spaces in which they are valued. The commutativity of tho 

end ’faces1 of the diagram has tho following consequences:
(1) ^ a ^ "D £ process, if _ ^a ^ is a process; 

and (2) Q- is g process if V^Q Gl <3 a process.

In addition tho, homomorphism v defines a homomorphic."! x£2Z2 
of ~Pa '~P into ^^^.^^ and a hor.''.omorphisia y( ^) of '/~^a Cl. 
into ^ ° ^ . The homomerphiomg y(^) and Y(O.) are 

defined by sotting y^H2,S) = y*F(E,S), Sp) and y^) 

(E,S) = yCQ)2»3) » Sp). To show, for example that y(^) is 
a homomorphism of ^n ^ into ^ a ^ it is sufficient 

to prove that Yt^HSSS’) o (P°D(a) = (Q“P)(a) oyWUjS), 

sinco., y already satisfies condition (1) of definition 2. It 

io clear that y(*P)(E»,S») o (?op)(a) »y(P<2*,S») S»p) oP(P{a)) 

u C(P(c)) o y(p^>3)» Sp) since P(a) is a napping of in 

nom((P(E,S), S?), (P(E»,S»), S’p)). Because Q(p(a)) o Y(P(E,S),Sp)

3 (Q°P)(a) o y(^)(2jS) it then follows that y(^) is a 

homomorphism. From the definition of y^) ^d y(^) it is

clear that teUS!Ljf222fajlS£l^
Consider the identity P(y(Z,S)) o p$ o y(2,S).

The continuous function P(y(S,S)) naps r(P(2>S), S-J on a



dense subset Ox P(Q(E,S) iff p„ o y(E,S) rasps P(E,S) 

on a dense subset of this space* This is the case if 

y(E#S) is onto. In particular, if y is an isomorphism of 

. into Q- then ^aQ^ is a. troco3s v'x&ri..^ is a 

process,, This is because P(y(E,S)) maps its domain on a 

dense subset of its value space when y is an isomorphism. 

The function p(v(EvS)) is a konoonorphism when y(E,S) is 

a. .l^xpgnrdi^^ because P is a functor.
and ~P&Q- gm processes on ^ then the 

functions F(y(E,S)) define a homomorphism ^(7). of *Pa^ 
into ^ Q* . From tho diagram it follows that P(y(E,S)) 

o (pn p)o - (pDQ)o* Let (E^S*) be a second object of ^ 
and let a be a map of ^ in IlonC (E,3), (E*,S *) )• Then 

P(y(E»,S*)) o (PDP)(a) = F(y(E»,S«) o (P(a)) « P(C(a) o 

y(E,S)) - P(Q(a))o P(y(E,S)) - (PnQ)U) o P(y(E,S)). This 

shows that the functions P(y(E,S)) define a homomorphism 

of ^“^ into ~Pa Q. . Thia homomorphiem ~P(y) is. an 

ispmorphi on if y is an isomorphism •

Similarly if Q-a~P and ^aft are processes on 3& 

the factions Q.fyfBjS).) define a homomorphism Q(y) of Q0^ 
into. Q-° Q~ qhich. is an isomorphism if y is an isomorphism.

Uith the aid of these results it is easy to prove 
Theorem ,3* let ^ bo a ts^erto^ory. of JS obtained, by restrict- 

inr* the objects*.. Let *^and Q- be icpmornhic nrpcpgp.es on j^ 
such tliat^°^ and Q-aQ- are defined* If "P<»~P is a 

process, on then co. * I Tien, thio is. the .case they
ore isomorphic precesses on 3^ . If is idomnotent so is Q*
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Proof: Let y be an isomorphism of ~P into Q- • If 'Pn-p 
is a process on ^ so is *PaQ- * Since /^ ^ is a process 

on 2E it follows that QaCl is a process on 3E »

The homomorphisns ^(t) and y(O-) are isomorphisms. 

Consequently y(^) o^?) is an isomorphism of *A» “Pinto daQ-.
If ^ is idempotent then *Po“P is a process on ~*p 

isomorphic to ‘P’ . This implies that d^d is a process on 

$ which is isomorphic to ~Pa~P and hence to "^ • Since ^ 

and Gt are isomorphic this implies GL and CLo-Q. are isomorphic 

i.e. d is idempotent.

Remarks. The proof of this theorem will apply to a pair of 
isomorphic processes *P and Q, on 3 isomorphic under y ; 

such that y(E,S) is a mapping of S in Hom((P(E,S), Sp) 

(Q(E,S), Sq) ) • Tliis leaves the question open when 7 does 

not have this property. Another question left open is the 

problem of the connection between 'Po'P and ~P 0 Q~ i is 

‘PaQ, necessarily a process if ^a^ is a process?

£2 Process^ . Let I be an index set and for each i in I 

let R^ be the set of real numbers together with the usual 

uniformity which is defined by the metric d(x,y) « |x - y|. 
Let IT P^ bo the cartesian product of the spaces R^ together 

i in I
with the product uniformity. It is a Hausdorff uniform space

which is complete because each of the coordinate spaces R^

is complete. If i is in I define rr^! IT R^------• R^ by
i in I

setting n\s ° E^ when Z = t2!^ T • The product uniformity 

is then the uniformity U((tt^ ^n 1^ *#G* ^e coarsest one for
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which each real-valued function rr^ is uniformly continuous

Consequently the uniform topology of IT P^ is the weak topol> 
osy 0 (TUp (rr^ ln p . 1 131

i in I

With these observations on the product of a family

of real lines it is relatively easy to define and discuss
a process on 25 which will be denoted by 3 .

Let (E,S) bo an object of 5 and consider S as an 

index set. Form R~ and define ta:S *TTr- by setting 
f i£ S 3--------------- x ~

tgA -• (xx)^ in g • Let 2(2,5) foe the topological space 

obtained by taking the closure of tgE in TTk.^ and the 
f in S 

subspace topology for this closed set.

If f is in S defined fy to be rr^llfEjS). The

functions f^ are continuous and atisfy fy o ps “ f. The

topology of T(E,S) is the weak topology O(T(E,S), S^), 

where ST = Cf^Jf in S]. Since T(E,S) is a closed subset 

of TT R^ it is complete in the induced uniformity
f in S

Ud^Jf in S)|T(E,S) which is clearly U_.(ST).
Lot (E^S*) be a second object of i and let a be

in IIom( (E,S), (E’,S’)). Since Sr o a is contained in S it

is possible to define a function agt^g s t$E TfE^S1) by 

setting cn , e o tn = tn. o u. This function is (U(Sm)It^E, O j O O u> A kJ
U(SfT)) - uniformly continuous and since (T(E’,S’)t U(S*T))is 

a complete separated uniform space the., fact that tgE is 

dense in T(E,S) implies that aq, q has a unique ($(3™) ,VC
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uniformly continuous extension T(a):T(E,S)------- »T(E’,S’)

(see Bourbaki [3] p. 151).
Let (E*’,S“) be a third object of 3? and let 

a’:E*-------*E“ be a second mapping of ^ • It is clear that 

c% c r o cu t q = (ar o a)CMl 0 and hence from the unique- 

ness of the extension that T(a*) o T(a) « T(a* o a). 

Consequently T: 3E---------“^ is a covariant functor.
Sinco for each object (E,S) in 3i tn caps E on 

the dense subset t^E of T(E,S) and since for a in 

nom((E,S), (E’,Sr)) T(a) o to ® aq» a o tc- “ to. o a, it U O ,O U O
follow that the functor T and the family (t^)^ s) ^^ 

of functions % defines a -process on 3L . This process till 

be denoted by .

Remark. Tychonoff [4] made use of this method of construction 

to show’ that every completely regular space may be embedded in 

a compact space. Instead of using the whole line R he used 

the unit interval [0,1] and functions tilth values in that 
range. For this reason process ^ will be called tho Tychonoff

process.

Th® process 3 has all of tho specific process properties 

introduced in 51 with tho exception of (F?J. This result is o 
stated as
^heoi^2L&A. Iho process J on S satisfies (F?J,(h^,UFp51»lrP^) 

and (FPy). Consequently it is completely rcmd?y and idempotent. 
It. doos,not satisfy on S .
lin ir.- v ' - ■ ~ t-irir- r r-- -
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Proofs In the course of the definition of ^ it was shown 

that 3 satisfies (FPg),(FP^) and (P?^) • Since for any 

index sot I the projections w^, i in I, separate the 
points of IT R.. it is clear that 3 satisfies (FP,_) • 

i in I

Lot a bo in Hom( (EtS), (Ef,S •)) and such that

S “ S’ o a • Define the function 6: TT R «—>11?^, by
f in S f» in 3* 

setting e((Y^)f ^ s) = (Z^,)^, $ where f * o a « f
implies Z^t = Y^. • Tills function embeds TTr^ inTfr^f • 

f in S f ’ in 5*

In addition 9 o to = f o a since if x is in E,(9 o t~)x 

= G((fx)f ±n s) = ((f* o a)x)f, in s, = (t3, o a)x • It 

follows that T(a) = ©|t(B,S) since tgE is dense in T(E,S) 

Tliis proves that T(a) naps T(E,S) homeomorph!cally onto 
tho closure in T(E*,S*) of (tg, o a)E • lienee^ satisfies 

(fp7) .
Process 3 is completely regular because it satisfies 

(FP^) and (FP$) • It is idempotent in view of theorem 2 

since it satisfies (FP^) and (FP?) •
To prove that 3 does not satisfy (FPg) on ^ it 

is sufficient to find,a pair of objects in 5 and a mapping g 

such that the conditions of (FPa) are satisfied but for o 
which T(a) is not a homeoiiorphism. Consider the following 

Example. Lot E’ be the space R of real numbers and let 

S 1 be the collection of polynomial functions f * on R . If 

fUX) is in EM the corresponding polynomial function f ’ is 

defined by setting f’x equal to the value of ff(X) at x • Let
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E be any closed interval of R, say £-1,1] and let 

a:E------ tE* be the natural injection. Define S to be 

3 r o a. Since S* consists of polynoMal functions 

f *------->f1 o a is 1 - 1. The continuous function T(a) 

is not a homeomorphism. This is because T(E,S) is 
compact and T(E’,Sr) is not (for any object (E,S) of ^ 

T(E,S) is compact iff all the functions in S are bounded).

An interesting property of the Tychonoff process -3 

is that the first four properties of theorem 4 characterise 

it. In other words the following Converse’ of theorem 4 holds 
Ihoorem Let ^ bo a process on 3 that satisfies

Proof: Let (E,S) be an object of 31 • Since *^ satisfies 

(FP,) and (FP, ) it follows that p^x - pny iff fp(Po^) = P 4 O O
. S i.e. iff fx = fy for each f in 

x = tgy iff fx = fy for each f in S. 

- 1 function y^(E,S):pgE----- *T(E,S)

let fy denote the continuous function 

t3 = f. Then fy o y^E^) = fp’pgE, 

) is an isomorphism of tho uniform spaco 

(pgE, E(Sp)IPgE) with the uniform space (tgS, U(Sy)|tgE). 

The,argument used to establish the invariance of (FP/J also 

applies here to prove the assertion.

f.U-p.x) for each f in X iJ
S. This means that tg 

Therefore there is a 1 

.3) o ps 

If f is in S 

on T(E,S) with fy o 

This means that vME.S

such that



If y^(E,S) is considered as a function :pgE---- ^T(E,3) 

it follows from considerations of uniform continuity that it 

has a unique (U(sp), U(s?)) - uniformly continuous extension 

y(E,S):P(E,S)----- -T(E,S) (see Bourbaki Ef] p 151) • Similarly 
y£\e,S) :t$E----- *P(E,S) has a unique (Ufs^) , U(S_)) - uniformly 

continuous extension to T(E,S) • This proves that y(E,S) is 

an isomorphism of (P(E,S), U(3P)) with (T(E,S), U(3?)) •

Since *P and 3 satisfy (FP^) it follows that 7(2,0) 

is a homeomorphism of P(E,S) with T(E,S) •

The functions y(E,S) are such that y(E,3/ o p^ = 
Y^C^S) o ps = tg and since 3 is a Hausdorff process lemma 1 

shows that the family (y(E,S))^ 3j ^n^ defines an isomorphism 

of ^ into 3 I 3E *

Corollarv. &ot ^ be a subaatogpry of 3? obtained by restricting: 

the objects. If is a process on 21 that satisfies (F?n_), 

,(F.?r) and (FP^) then *P satisfies (FP?) , Consequently

if^2£Li2_defined is idempotent, •

Proof: ^ is isomorphic to 3 I ^P by the theorem, Since 3 

satisfies (FP?) by theorem 4 it follows from the invariance of 

(FP?) that ^ satisfies this condition. If ~Pn~P is defined 
then by theorem 2 ^ is idempotent,

A process on 3 , which is isomorphic to 3 , can be 

defined by associating with each object (E,S) of 31 a space 

of filters. These filters are defined by means of the functions 

in S and are loosely speaking tho trace filters on E of the
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nQighbourliood fillers or T(E,S). They form, the subject of

the next oocuxon*

$3, S-'Cr/zw3jr^^Yrs~ul?^filt Lot E be a set and—»—C*.—A- »»>^«—» »«* >^»«M*—«^WwtfM»«4*»^»-N—>*M*M«Ba»^*t^~>*MaW*-^M*«»~^*aM*M*>**

lot S denote a collection of real-valued functions on E*

The functions of S may be used to separate the subsets of

3 in the following way*
* het _ F^ containing . Fp be tiro subsets of  2. 

£L^JiUg£iiL£2^Ql-122^x&ZU-^£X£&^^ 
exist ti-jo integers n > OTjithO ^k^ n« n factions 

£l»xsx,£n._j£^_J2^J^_^^ (e)r..

P^JjlL>.Jb2iJLj5^

(1) \ (1). > X; (a) , i, ~ 1,k and |U1) < K-(2).

(2) ^£LS1J^^i^Ld_&M.x^sMi> 

k n~k ,

i-1 - - 3=1 ~ J ~

£^u2*k§x This definition is cumbersome because 5 is not 
assumed to have any particular structure* Eton it has a sufficiently 

elaborate structure this definition is equivalent to: Fp and 

<£ F^ are completely separated if there exists a function 3 in 

3 with 0 ^ s^ 1 and Fp ^ Cx|gx - Oj — [x|gx < 1] ^F^* For 

example this is the cose if S is a lattice that contains tho . 

constant functions and is closed under the addition of and 

rn.Implication by tho constant functions (all operations being 

defined pointwise in tho usual way) • A special case of this 

example is obtained when S is the collection of real-valued.
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functions on 2 continuous with respect to cone topology 

0 for 2# It is in this context that the concept of com­

plete separation usually arises particularly when 0 is a 

completely regular topology. Then P9 and (Cf^ ^^ defined 

to to completely separated if there is an 0 - continuous 

function g with 0 ^ g ^ 1 and Fo ^ Lx|gx = 0] and

<£r, & M;?: = 1L

The filters F on E that are of interest in this 

section are these that satisfy the condition of

EefiT7ittion r4.< - ——'cr. F , on E is said to. be S-completely

afdlXXjyLX^ -X1L. X .implies. there cc^sts Fr, in X fn\ch 
that E^ and ^Cf.,. arc completely separated by S, 

Remarks., In tho case where E is a completely regular space 

and 3 is the collection of continuous real-valued functions 

on E this definition of 3-conpletely regular filters coincides 

with that of banasclicwaki £53* The notion of a completely reg­

ular filter is implicit in the work of Alexandroff £63.

Exar' plc s ofS-comulctclyregulsr fi1tera,

1. Let f be a function in S and assume X is in £2, Then 

the countable collection of sots [x|fx < X + l/n]^£z|fx> X - l/n3 

for n > 0 fora a filter basis on E. The resulting filter is 

clearly S-completely regular since if n^ < no and F^ “

£x|fx < X * l/n^ntxlfx > X - 1^3 i « 1, 2 then 1\ and C^

ere completely separated by S,
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2# Let f bo a function in S which is not bounded above 

(below) by a constant function. Then the countable collec­

tion of seta £x|fx > nJ ([x|fx < -nJ) for n > 0 form a 

filter basis on E • The filter defined in cither case is 

S-completely regular, ■

3, If x is a point of E let y., be the filter generated 

by the collection of sets [u|fu < fx + 1/nJ n Cu|fu>fx-l/nJ 

whore f is in S and n > 0 . This filter is S-completely 

regular (it is here that all the details of definition 3 ere 

necessary when no structure for S is assumed).

The third example K, is an S-complctely regular 

filter along which each f in S converges to fx. The 

function f converges to X along the first filter and to +oo(-<® 

along the filter of example 2, This suggeststhat the convcrgenc. 

of the functions in S along the S-complotely regular filters 

should bo considered.

Since infinite limits are to be admitted it is 

convenient to describe briefly the tw*o point compactification R 

of the real numbers R obtained by adjoining + «* and - «=» • 

Let If be the set R ° [+<*’] M [-<**] and define a topology on 

R by defining neighbourhood filters for each point. If x is 

in R and x is in a subset V of R then V is an R - neigh­

bourhood of x iff V n R is on R-neighbourhood of x 

(in the usual topology for the real numbers F.) , A fundamental 

system of neighbourhoods for + <»(-<») is defined to be 

the countable filter basis of sets CxcR|x > nJ ^ [+^J 

([xcR|x < -nJ ^E-^J) , It is clear that R is compact in thi
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topology and that it contains R as a dense subspace.

Tho first result on tho convergence of functions in 

S along arbitrary S-conpletely regular filters is 
Theorem 6. If F is an S-coapletely regular filter and 

if f is in „ S, then there G^-sts an S-comnlctely regular 

filter F* containing F such that lim f culets in R .

Proofs Assume that lira f does not exist in R (otherwise 

F itself is a filter that will do). Then there arc tiro 

possibilities. Either, for sone A in F fA is a bounded

sot of real numbers or, for each A in F fA is unbounded.

In tho first case tho closure fa of fA in R is

compact and so.a fA | 0 . If A is in AeF
tho sots [x|X - 1/n ^ fx < X + 1/nJ, n^ 0

f/T, then F and

generate a filter

F* along which f converges to X.

In tho second case cither F and tho sots [x|fx> nJ, 

n > 0, or F and the sots [x|fx < -nJ, n > 0 generate a 

filter on E. Assume that the first of these possibilities held 

Let F’ be the filter generated by F and tho sets Ex|fx>- nJ, 

n > 0. Clearly lim f = + **, which is in Ii .

The filter F* is S-completely regular because of

examples 1 and 2 and the following

Lemma 2. let F and F’ bo two S-connlotely regular filters on t- • -^■ •^^ ——— —• —._ — -—~—~—-»————JJ————U-——_—___———^^^-^-^^-^
E that generate a filter _F on E. Thon F is S-complctolv 

rcr^-Iar.
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froof The cats F

filter F Lot F

in F and F* in Fs form a 

be in F" and choose Fn

F FJ in F* with Fi a r* contained in ^ • . Let Fp,

F’ be in F and F»•m* respectively and such

<CF1# F2 ^ ^l 

F9 A FJ and (C(F,

are completely separated by S 

* F]) are completely separated

2
Thon

(an almost immediate consequence of definition 3)

F2 ^ F2 ^^ ^F1 ^Q completely separated by S

Hence

Since

Fg A F^ is in F" it follows 

regular.

" is S-ccmpletcly

To complete tho proof of

consider the situation whore

theorem 6 it remains to 

and tho sets Di|fx> n]

n ^ 0 do not generate a filter In this instance and

the sots Cx|fx < -a] generate a filter F’ on

In view of example 2 and tho above lemma is an 2-co:

pletely regular filter. Since f converges along FT to - «»

tho theorem follows.

The S-completely regular filters F on E may bo

partially ordered by inclusion. This order is inductive and 

co by Zcm’s lemma maximal S-conplotely regular filters H 

exist above each filter F « It follows from theorem 6 that 

if II is a, maximal £~completcly. ro^lpr filter on E then 

li'i f exists in IT for all f in S. Tho converse of this
MX

statement is a corollary to the following theorem.
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Eicpyon 7». If F is on S~corolptely regular filter end if 

lia f c:d5t3 in 2 for ill f in S t then F is penernted

by tho inhere V is any R neighbour­
hood of* . lira . £ .

Proof: Left F^ be a set in F and let F, be a subset of 

Fj be a set in F with Fg and (Lf^ completely separated 

by 5 ♦ This means that there eidst two integers n, k with 

O^k^ n, n functions fi,M,,fn in S, and 2n real 

numbers 1 (©)»•••» X (c), p^ (o),•••»p, (c), e = 1 or 2 such
1 k “ n-k

that:

(1) X.(l) > L(2), i = k and |ijl) < u.(2),

1 =!,..«, n-k ; and
(2) F2c(n Cxl^x <^(2) J) n ( n‘ [xlf,.^ > |^(2)]) 

k 1=1 n-k ^ “ "
^^[xf^x <^(1)3) n (^ £*1%^: ^^1)3)^^ .

For any f in 3 let f (F) denote lim f • Since F„ 

is in F it follows from (2) that f^(F) ^ XJ2), i = l,s««,k 

and f^jt?) ^ ^-(2), J « !,.••,n-k • As a result

[ueRlu <1/20^1) + \(2))] ^ [-*"3 is an R - neighbourhood

Vi of
is an R

f^F) * “ l»»*»»k and [usR|u > l/2([i.d)

- neighbourhood l\+j 
Since fj^ ” b^f^x

of f^F) J - 1,... 

< l^C^d) + ^(2))]

+ p.T<2) ^ E**] 
,n-k .

and

^k+J^k+j “ k^k+j* > ^(pjd) + pj(2))3 it follow from (2)
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k n-k
F2 — ^A. ^Xi? n Pl fkij Vj^ — Fl*

The set F^ was chosen as an arbitrary set in F and 

as a result the theorem holds.
Corollary 1. Let F be an S-completely re,^l?r filter on E.

Thon lim f ordsts in Pi for all f in S iff F is a 

maximal S-completely regular filter. 

Proof: It has been shown that every f in S converges along a

maximal S-completely regular filter.

On the other hand if lim f exists in R fcr all f

in S let II containing F be a maximal S-completely regular 

filter. It is clear that lim f = lim f for each f in S 

because II is finer than F • From the theorem it then follows 

that F and II are generated by the same family of sets. 

Consequently F = II .
Corollary 2. Lot 11^ and 1^ be two maximal S-comnletely 

rcmlar filters on E. Then IL = Ik iff lim f a lim f for “ 1 -2 ^ ^
each f in S,

Proof: If lim f “ lim f for each f in S then both filters
4l ^

are generated by the same family of sets and so are identical. 
Corollary 3. If x is i± E let II be the filter defined 

in example 3. It is a maximal S-completely regular filter on E. 

Proof: It is S-completely regular and as observed in example 3 

each f in S converges along IL, to fx. By corollary 1

it is therefore a maximal S-complotely regular filter.
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The maximal S-completely regular filters IL., x in E,

all have the property that for each f in 3 lira f is

finite or equivalently lira f is in R. The maximal S-com-
LU

pletoly regular filters with this property ere characterised by

^■corea o* Let F bo an S-completely regular filter on E.

Thon for all f in S lim f . exists in II iff F is a . II uLLx

Cauchy filter on E.

Proof! The uniformity U(S) is defined in 5 2 to be the 

uniformity on E generated by the entourages V(f,e) whore 

f is in S and e > 0 and V(f,e) 3 C(x,y) | |fx - fy| < a].

A filter G on E is U(3) - Cauchy iff it contains

V(f,e) - small sets for any f in 3 and e > 0. Hence if 

G is a U(S) - Cauchy filter on E lisa f exists in R for

each f in 3, regardless of whether”or not G is

S-completely regular#

Conversely let F be an S-completely regular filter 

on E such that lira f exists in R for each f in 3.
F

From theorem 7 it follows that F contains V(f,c) - small cots 

for any f in 3 and e > 0. Consequently F is a U(3) - 

Cauchy filter on E.

Femur!:. The U(S) - Cauchy filters on E that are S-completely 

regular.are precisely the minimal U(S) - Cauchy filters. Thia 

can bo seen from the next theorem.

The relation of maximal S-coinplotely regular filters on 

3 to filters on E along which all the functions in 3 converge
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is stated as
Theorem 9. Let C be a filter on E such that lim f exists

in R for eachf in S. Then G contains a unique 

S-co^pletely regular filter 21 ♦ , Tho filter Li is generated 

by vtqre V is any Tf - neighbour hood cf

lira f . If G is U(S) - Cauchy, so is ’I «

Proof: Assume that a^ and F^ °-e maximal S-coupletely 

regular filters contained in G . Thea lin f = liia f for

each f in S and so by corollary 2 to theorem 7 1$ ” L^ • 

The filter F generated by the sets f^T where V

is any R - neighbourhood of lim f is S-completely regular.

This is a routine consequence of definition 3. Since lira f

exists for each f in S it follows from corollary 1 to

theorem 7 that F is maximal. Trie filter F is contained in

G and so must be the unique maximal S-completely regular filtei' 

II contained in G • •w* •
G is U(S) - Cauchy then lim f is in R for

each f in S • This is true for H as well and so by 

theorem d H is U(S) - Cauchy.
54* Proc esses#and^-t if (3>S) is an object of 25 

consider the collection of maximal S-completely regular filters 

H cn E . This set nay be given a topology as follows? ii a



subset U of E is in the weak topology O(E,S) lot

u " till U ^s la 113 » the eets U^ fora a base for a 

topology on thia set since (U^ n U^)^ « Iff *\ Up • Let 

11(2,3) denote tho resulting topological space#

Lot a be a Mapping in IIoin((E,S), (E,,S,))• If 

M is in Ti(E,S) let all be the filter generated on E’ 

by the sets oF, F in II • Since S contains S * o a 

it follows from corollary 1 to theorem 7 that lim f * o a 

« lim f* exists in & for each f* in S’. Ey theorem 9 
an 

there is a unique filter II* in I1(3*,ST) contained in 

ah’ # Define 11(a) by setting 11(a) II = IP .

The function 11(a) is continuous. Lei U* be an 

O(E*,S*) open set in K(a)?^ • Theorem 7 shows that there 

are m functions fj in S *. and n R - neighbourhoods XL 

of L, “ 11m f • = lira f. such that U * contains o fJ V4 * 
cu^ ^ta)4j i“l

Lot b4 bo an open R • neighbourhood of such that V. 

contains Th. Tho set IT « ^f ° Ci^ui ^3 ^n O(E,S)

and belongs to IL by theorem 7# Furthermore if IT is in II

then liia 17 is in Th 
all 1 x

Therefore I f^ (a) (U *) ^

h^ of IL# Consequently

and hence in th for i « !,#.., m.

contains IL and the neighbourhood

11(a) is continuous at IL and hone

is continuous on Il(E,S) since II is arbitrary#

lot a* be in Hom ((USS’), (E",E*)). Then l(a* o a) «



Il(a’) o ?i(a) . Let H bo in 12(3,S) • The filters 

(a* o a)H and a* (all) ar® identical* Sine® a (all) 

contains a*(M(a)n) it follows that (a* o a)M contains 

(ll(ar) o H(a))M .. Therefore Ufa* o a)H = (ll(a*) o M(a))M • 
Consequently II: 5------- ^ is a covariant functor.

Let (E,S) bo an object of £^ • Corollary 3 of 

theorem 7 states that IL - tho filter on E generated by 

the sets Eu|fx - 1/n < fu < fx * 1/n], f in S and n > 0 

- is a maximal S-completely regular filter on E. Define 

nq:3---- 4l(E,S) by setting nox * M •

The set r^E is a dense subset of il^S) • To provo 

this it is sufficient to show that when U is in the weal: 
topology 0(3,S) then lf£n WgE = m^U u Assuming this to be 

so the fact that tho sets U~ form a base for the topology 

implies e^E is donee in 11(3,3) as r^U 13 $ iff U = $ 

and ^ a ^ .

Let U bo in C(E,S) and let x bo a point of U.

Then there exist ej functions f,,...,f in S and n "> 0
ra

such that A Cu|f4x - 1/n < f.u<. f.x + 1/n] is contained in 
i=l 1

U . Jtom the definition of ^, this shows that U is in r 

iff x is in U i.e. Ua^ nsE « r^U .
Let (E*,Sr) bo a second object of 3E and lot a bo in 

Hon ((2,3), (Er,S’)) • If x is in E then all contains 

Tl* and co K(a)LL « K’ or in other words IZ(a) o Ko ® eu. o a



Consequently the fyicfcr. , 2 . ;v^d th o^f.' T ) 
’ ^-*(E»S) in^

Co-'.o'ted b^TH., 
••»*-»»•'*-> •*»«•*»--► •••'••*• ■«^»< *»<-**»«^^

IT (E,S) la any object of tho funccions - in 

S define ft - veiled functions xf on 2(2,3) ouch thut 

T o D’~ 53 f by settin* = Ibn f for each 2 in 2(2,3)* 

£'2XJ^2J&j&iQ~JL»£Jl^^ het 7 be an open

subset of S’ • Theorem 5 and its first corollary show that 

Xin f is in V iff f 7 is in 2 . Since h is a cubspi-ce 

of If, fwlV io in 0(2,S). ThU Keens that (f^^ is 
defined and that f ^^ (f^V)4* « [Zjlf”**? is in hL Since thio 

io an open subset of I“(2,S) it follows that £ io continuous

^£,Jhn~22£~2Jl^^__ is ?itlx^KftQpjo^ 0(2(2,23^ 17).

Gince thia topology io coarser than the topology of 17(2,0} it

is sufficient to shou that tho seta U* are open in thio x/cak
topology. Let U be in 0(2,3) and assum that 2 is in u*

i.c# U is in I! • Theorem 7 shovo that there arc ra £sr.etioi

^ TT^V. Is is contained in U5* and since 
1=1 1 1

is in
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(theorem 7) it follows that F* is an 3(11(2,3) ,8) - neighbour­

hood of every point it contains i.e. U" is in 0(!.'.(2,3)-5) •
One property of ^1 that distinguishes it from 3 is

the fact that each E(E,S) is a compact space ite,7His

a compact process. To prove this M(E,S) may be mapped into
the compact space IT TL, by the function 5 where oil = 
: f in s

^(W)-p <n s * toa f)^ in 3 • Corollary 2 to theorem 7

shows that 3 is 1 - 1 . It is also an embedding since tho 

topology of 11(E,S) is tho weak topology 0(11(3,8),S’) • Hence

• I1(E,S) -is compact iff 6(11(3,S)) is closed.

Let 2 be in the closure of 6(11(2,8)) . Then Z in

also in tho closure of 6(1^2) since «2,c) .
Lot Z - (Zf)f in s and 

neighbourhood of Z^ .

let Vz. denote an J.
Tho family of sets

is dense in

filter F on E • To prove this take n functions f^ and n

corresponding neighbourhoods V^ • Since Z 

of 6(moE) there is a point x of E ixlth 

V4 • Tile point x is in H f4 74 because

is in the closure

((6 o Ein)x)r4 in 

(U o ru(x)f. ~ f.x
*2 X X

The filter F is S-comvletelv regular and lim f » for each 

f in S . Tills shows that F is in 11(3,8) and that 5 2 = 2. 

Consequently I1(E,S) is compact.
Process 3 is not a compact process because as observed

in tho example of theorem 4 T(E,S) is compact iff every function 
in S is bounded. As a result J. and ^nre not isororrhic



processes on , 

Remarks* From the proof of the compactness o.f”^ it can be 

seen that m is essentially a modified version of 17 • The 

modification consists of replacing tho real line by its tw- 

point compactification H . in general each method of 

extending the real line will produce a corresponding modifi­
cation of J . In each case tho modified process will satisfy 

suitably modified versions of (FP^)(FP^)(FP^) and (??^) - 

assuming only completely regular extensions are considered*
The second process of this section - process H* - is 

defined by means of^l. If (E,S) is an object of 5. define 

F(Z,S) to bo the subspace of K(E,S) consisting of all the 

U(S) - Cauchy filters in that set* If a is in Eom((E,S)t 

(E',8’)) define F(a) to be K(a)|K(E9S)« To show that 

F: 5----------- *21 is a covariant functor it is sufficient to prove

that F(a):F(E,S)------- »F(E’,S») and that F(a’ o a) - F(a») o F(d.

Doth of these assertions are consequences of theorem 9 and tho 

definition of 11(a)* If K is in 11(2,3) M(a)M is the unique 

maximal S ’-completely regular filter 1? contained in cZI • 

Since a is (U(S), U(3’)) - uniformly continuous aU is 

U(S’) - Cauchy if II is U(S) - Cauchy* Theorem 9 then shows 

that M(a)FI is U(Sr) - Cauchy and so F(a) maps F(E,S) into 

F(E’,S*). It also proves that F(a’ o a) = F(a’) o F(a) sinco 

when LI is a U(S) - Cauchy filter in Il(E,S), the U(S'• ) - 

Cauchy filter K(a’ o a)M = lUaOM’ whore II’ = Il(a)H is U(S’) -
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Cauchy•

Theorem 8 shows that the filters ^, x in E, are 

all U(S) - Cauchy. Consequently m^E is contained in 

F(E,S)» Let fc = r^* Then fcE is dense in F(E,S) and 

F(a) o f“ f©» o a •
The process j5 15 defined to be the functor F and 

the family (f^) _  of functions f^. •^E>s) in ^ --
From the definition of^ as a ’subprocess’1 of W it is

clear that the natural injections i(E,S):F(E,S)-------*J:(E,S)
define a homomorphism of 3 into 31 •

The all inclusive property of this process is stated as 
Theorem 10, ^ and 3 areisomorpMorrocesscs on 3? • Hones 

idempotent.
Proofs Let (E,S) bo an object of 3- * Then IT R« is a

f in S
subspace ofTT^ • Theorem & shows that 5 naps F(E,S) onto 

6(H(E,S)) n TT Rf . Let y(E,S) - 6|F(E,S). Thon y(E,S) 
f in S

is a homeomorphism of F(E,S) with a closed subset of TT R?
f in S 

such that y(E,S) o fg “ tg. This duplies that
y(E,S)F(E,S) = T(E,S). Since 3 is a Hausdorff process these 
homeomorphisms define an isomorphism of 3" into 3 (lemma 1).

T«ie ’potentialT process <3 a 3" is defined because /3 
is defined on ^ and satisfies (FP^). <3 is therefore idempotent 

(by tho corollary to theorem 5 or by either of theorems 2 and 3).
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rei^rkn., Tho process & can be defined without explicit use 

of process 771 . When this is done it is possible to prove 

this theorem by means of an argument similar to that used to 
show that^ is compact•

Coe property of process 3" which will be useful later 

in tho chapter is stated as

Lemma 3. Let (2,S) be an object of • Let g denote a 

real-valued function on E. Then g is in CP^ sj ~~S iff 

lim g exists in R for, each II in F(E,S).

Proof: Let h be a continuous real-valued function on F(E,S). 
Let M be a point of F(E,S) and let AX (K) denote the 

neighbourhood filter of II • It has a basis of sets U^n F(E,S) 

where U is in 0(2,3) and belongs to K • Consequently 
fe^ AX^Ui) “ Il • Since h is continuous - lira h exists in R

for each M • This shows that lim(h o fn) exists in R for 

each II since f$II contains AXp(E) •

Assume that g is a real-valued function on E such 

that lim g exists in R for each IT in F(E,S) ♦ Then g 

is 0(2,3) continuous since the filters IT^ are tho neighbour­

hood filters of the points of E.

Define g on F(E,S) by setting g II = lim g • Let

V and VI be open neighbourhoods of g H such that W is

contained in V. Then IL is in (g"xW) * which is contained in V
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since if g^W is in LT lim g is in V . This proves that

G is continuous. Since g of fg ° g the lemma is proved.

Processes 5- and in. coincide on the subcategory 

consisting of those objects (2,3) for which every maximal 

S~completely regular filter is U(S) - Cauchy. This is the 

case iff each function, in 3 is bounded. Uhen every function 

f la S is bounded it is clear that lira f is real for each

f in S and IT in I1(E,S). This shoe's that the sets 

F(E,S) and M(E,S) coincide when every function in S is 

bounded. Assume that S contains an unbounded function fQ . 

Then one of the two filters of example 2 in $ 3 is defined.

Since there is a maximal S-completely regular filter H finer than 

it, it follows that lira f. “ +*»(or -*”)♦ The filter IT is not 

U(S) - Cauchy.

Let 5 “ be the subcategory of ^ obtained by considering 

only those objects (E,S) for which S consists entirely of 
bounded functions. Then ^ I ^ ” ^ I ^ and so ^ | 3^ 

is isomorphic to ^ o 

Remark. Alexandroff [5] essentially used process'll to construct 

•3E. Banaschewski [51 used this construction of £2 to construct 

'UE in a way analogous to the construction of 3-as a ‘’subprocess7* 
of TH . Si-ace 3” is isomorphic to 3 it satisfies (FP^). If 

(E,S) Is an object of 3? it is clear that for f in S fn io 

the restriction of f to F(E,S) i.e., fpTI * lira f for each 

IIinF(E,S).
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f 5# ^2£^ipJLt ^^ (3,3) be an object of 3? • The 

collection S will be said to be a unitary, real algebra, on 

B if S has the following properties: when f and g 

are in S the functions f + g, fg are in S where 

(f + gh: « fx + gx and (fg)x “ (fx)(gx) for each x in 

E; the function 1 is in 3 where lx = 1 for each x in 

E; and if X is any raal number and f is in 3 then 

Xf is in S, where (Xf)x “ X(fx) for each x in E# 

Let A be the subcategory of 3? obtained by 

restricting the objects to be those pairs (E,S) such that 

3 is a unitary real algebra on E*

If (B,S) is an object of A lot H(E,3) bo the 

set of real-valued unitary algebra homomorphisms h:S------ *H 

(where unitary means that h(l) = 1) together with tho 

topology generated by the sets V^ f in S, where

Vj, “ Ch in E(E,S)}h(f) t 0] • This topology is called Zariski 

topology# The sets Vb. f in S, form a base for the Zariski 

topology since for f,g in S V^n V « V^^ •

Let (E^S*) be a second object of A and lot a be 

in Ho-m((B,S),(E,,S»))« The correspondence f’------ ►f* o a is 

a unitary algebra hor-omorphisr.1 of S’ into 3* Consequently 

it induces a function H(a):I*(E,S)------ •H(Er,S’) - the transpose 

of this correspondence - which is defined by setting K(a)h « h* 

where h’(f *) = h(f* o a). The function h* is a real-valued 

algebra homomorphism and it is unitary because 1’ o a =1 and so 

h*(V) - hd’ o a) = h(l) « 1.
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The function H(a) is continuous* If I’ is in S’ 
then If^aH^, « Chia I1(E,S) | (ll(a)h) (f 9 t 0] = 

Ch in Il(E,S)|h(f’ o a) t 0] = • Since the sets

VI । , f* in S', generate the topology of lUE^SO tihis 

sho;?© that 11(a) is continuous.

Let (£“,£*) be a third object of A and lot a’ 

be in IIon((h9S9> (£%£”)) . Then Ete* o a) = U(a9 o 11(a)* 

Let h be in H(E,S) and pick f" in SH • (H(a9 [H(a)h]) (f’9 

CllfaJhKf’o a*) « h(fMo a* o a) = (Ufa* o oJhHf”). This 

completes tho proof of the feet that H:A------- »-Z is a covarian 

functor.

Let (2,$) be an object of A* Define b^iE E(T,S 

by setting h$x = h_, where h..f 88 fx for any function f in 

3. Since S is a unitary real algebra on E h is a real­

valued unitary algebra homomorphism of S for each x in Z.

Tho set hsE is dense in Il(E,S). If V^ n h^E = $ 

]> f - fx » 0 for all x in E. Tills means that f ~ 0 and 

so Vb. a V “ $. The fact that the sets Vc> f in S, form 

a base for the topology of HfL^S) implies that h$E is dense 

in H(Z,S) .

If x is in E then (ll(a)h.J(f9 * h (fr o a) = 

(fr o a)x = f r(ax) » h’ f* This shows that Jl(a) o h„ ~ 

hej, o a »
Consequently tho functor II on A and the family 

Ihol of functions hn doline a process on A
^(3,3) in A - ~ ~

which will be denoted by ^



-ft is a Tj-process on A, Let (E,S) be an object 

of A and let h^ 4 hQ be two points in H(S,S). Since 

they are distinct there exists at least one function f in 

S with hUf) 4 h9(f) . Let g=f -h9(f)»l . Tais 

function is in S and hj(g) 4 0, h^(g) =0 • Consequently 

hn is in V_ and h9 is in V_ • This shows that X to ^ to
<£[h2] is open and hence that [h2J is closed,

^ satisfies (FPj on A, Let (E,S) and (E’,S’) 

be two objects of A and let a be in IIoin( (E,S), (E’,S *)) • 

Assume that S = S’ o a and that f’------ *f* o a is 1 - 1, 

The correspondence f ’------*fT o a is then a unitary isomorphism 

of the algebra S’ with the algebra S, As a result H(a) 

is 1 - 1 and every h’ in H(E*,S’) is 11(a) h for some h 

in H(E,S) . If f is in S and equals f * o a then 

H(a)V£ “ [H(a)h|h(f) 4 0] = [H(a)h|h(f*oa) 4 01 ” 

[H(a)h| (ll(a)h) (f’) 4 O]=VJ.r • This shows that ll(a) is an open 

napping and as a result that H(a) is a homeomorphism. 
Process ^ is not Hausdorff on A and it does not 

satisfy (FP^) . on A., Consider the following

Example. Let (E,S) be tho object of A where E is the 

space of real numbers R and S is the collection of polynomial 

functions on R, If f(x) is in R[X] it defines the polynomial 

function f on It by setting fx equal to the value of f U) 
at x# The correspondence f(X)------*f is an algebra isomorphism

of R[X] with S, Hilbert’s Eullstellensatz shows that each
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maximal ideal of fcElj consists of all polynomials with a 

common real root. This implies that hqE ^ n(E,S) in this 

case. Since a polynomial f(X) has only a finite number 

of real roots it follows that for every f in 3 <C V.? is 

finite. The fact that haE is not finite shows that 

II(E,S) = h$E is not a Hausdorff space. In addition the 

functions cannot all define continuous functions f^ on 

H(E,S) such that ip o ho = f. This is because they would 

then septate the points of n(E,S) which would imply that 

the topology is Hausdorff.

Itenark. This example shows that # is not isomorphic to «^4^**«>>W. >)«. *> * *
J|A.

Let (E,S) be an object of A. Tho functions f in 

3 do define real-valued functions f on 11(2,3) in a 

•’natural’* way by setting fh = h(f) for each h in H(E,S) . 

The functions f are such that f o hg 83 f for each f in 

3. In addition o « Ef [f in 3 3 is a uni^ real algebra cm 

Hj&SJa H f ^ 3 ^e -n 3 then f~+~T h = h(f + g) « 
h(f) + h(g) « fh + gh and similarly fib « (Th)(gh), Th = 1, 

and (Xf)h = X(fh) for each h in H(E,S) .

In general, as the previous example shows, S contains 
functions that are not continuous. Sinco V^ “ T “^(2 ~[Cj) 

it follows that each f ^ 3 ~^ continuous i-_ Cvb^jo),. ) 
is the topology of K(E,S). Ige main purpose of the remainder 

of this section is to obtain sufficient conditions on S for 

S’ to consist of continuous functions. These conditions
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determine a cubcategory of A on which it will be shown 
that tho restrictions of ^f and J are isomorphic processes# 

Remarks, Suppose that (2,3) is an object in A such that 

each function f in S does define a continuous function 

f^ on 2(2,3) for which f^ o h^ “ f • Uhat is the connec­

tion between fj, and f? If 11(2,3) , is a Hausdorff space

then f„ = f for each f in S . This can be proved by

showing that S„ is a unitary real algebra on 2(3,3) and 

defining 5:2(2,S) 2(2,S) by setting (5h)(f) = f„h * 

Since the functions in S^ are continuous 6 is continuous# 

It is clear that 5 o hn “ hq and so when 2(2,3) is a 

Hausdorff space 6h “ h for each h in 2(2,3) • This implie 

that f^h ~ (6h)(f) = h(f) = Th for each h in 2(2,3) and 

so f»j = f ♦ The question prompted by this result is whether 

the functions fTT exist when 2(2,3) is Hausdorff i.e# if 

2(2,3) is Hausdorff are the functions in 3 all continuous?

Let (2,3) bo an object of A and define y(E,3)s 

2(2,3)—Ifn.P by sotting y(E,S)h = (?a)f . « = (h(f))r . q
f in 3

.The function y(3,3) is ail, embedding iff each f in S’, is 

continuous,# This is because 0(li(E,S),5) is tho topology of 

2(2,S) iff each f in 5 is continuous#

The image sot y(2,S) 2(2,3) is a closed subset of

TT • Let Z = (Z^)„ . o bo in the closure of tho image# x ix in o
-f in S-

It follows from tho definition of the product topology that

= Zf + 2g* 2fg “ zf2g» Z1 ~ 1 a11^ ^ p “ ^2f • This
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shows that h^:3----- • R. where hr4f) s Z~ is a unitary 

algebra homomorphism. Since yCEjS)!^2 it follows that the 

image is closed*

From the definition of y(E,S) it follows that 

y(E,S) o ho ” $2 • As a result T(E,S) is contained in. 

X^Sj^Jlj^Sj^ In particular if y(EtS) is an embedding 

it is a homeomorphism of T(E,S) with H(E,S) «

If f ,g are in S set f ^ g if f x ^ gx for each 

x in E. It is clear that ^ defines a partial order onS 

wliich is preserved under addition by arbitrary functions and 

under multiplication by positive ones i.e. f ^ g implies 

f + k ^ g + k for all k in S and fk ^ gk if k ^ 0 . A 

unitary algebra frompy/)rr^ h:S—■—-»R is said to bo ordor

preserving if f>. p; implies. Mf)^ h(y) or. equivalently if 

f.> 0 implies that h(f) ^. 0 

let h be in Il(E,S) . ££A_jd^lUl_^^

iff h is order ,^ Let y(E,S)h bo in T(E,S) •

If f in S is ^ 0 then (tox)z. a fx ^ Q .• Since T(E,C) is 

the closure IoTTr^ of toE it follows that h(f) ^ 0 i.c.
f in 5

h is ox-dor preserving. Assume y(E,S)h is not in T(E,S) •

Thon there exist n functions in S and some'

e ^ 0 such that for all x in E at least one of the 
lUfp - f±x| ^ e . Let ^ = hff^*! - f± and let g « ^^i* 
Ulis function is in S and if x is in E gx ^- c“' ^ 0 .
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Sinco g .1 io in S it follows that g - e .1 ^ 0 • The 

hoooraorphisia h Goes not proservo order because h(g - e .1) 
* h(s) - c2.l = - c%l < 0 •

rote. This assertion and its proof are duo to Isbell [7] • 

S^urrh^ Since tho ain of tho rest of this section is to 

obtain conditions on S in order that tho functions of S’ 

are all continuous it io natural to wonder why the process 

was not defined using the weak topology O(II(E,S),S) • The 

reason is that h^E , is dense in H(E,S) wWj respect to 

Stl&^Q^UsJi&A-M-JliSiSiJ^fi^

This is an immediate consequence of tho previous assertion# 

The connection between tho continuity of tho functions 

in S’ and tho order preserving properties of tho honomorphiszis 

in li(Z#S) is stated CIS
Theorem 11. lot _ (E,S) be an object of A. _ If each ? in 5*  *3^L£^xxaEa0£C^xrJi

• £cr real X ^ 0 and f in S tho .functions f n X and 

fv(-20 are in .where (fA X)x ° win (fz^J and (fof-X):; ^

ga^if?^ -X) - tlien o?ch f 3 in.continuous.

Proof: If each ? in S’ is continuous then y(E,S) M(E,S) = 

T(E,S) and so every real-valued unitary algebra bonoworphica

is order i^cserving.

Conversely, if each... h in H(EtS) is order nrceerying and 3 

satisfies. condition , (rd ,
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To prove tho second half of tho theorem it io sufficient 

to find a function g in S given hQ in H(E,S), f in S 

and e > 0 such that V “ [h in H(E,S) | |fh - fh I < e3 = 

[h in M(E,S)Hh(f) - h_(f) | <e3 . Lot &. = f - h (f) V J* W -
and lot g « (gj^ 0 - g^ n 0) a e - e*l • This function io 

in S and has the desired property*

If f is in 3 and the real number 4 is ^ 0 

then for each x in E Kjf a X) “ (f a X)x “ fx o 4 “ 

h (f) a X and h (fv(-.X) = h (f) o (-X) • From tho character­

ization of the order preserving algebra homomorphisms h of 

II(E,S) it follows that for such a homomorpliism h, h(f a X) 13 

h(f) n X and h(fw (-X) “ h(f) ^ (-X) • Furthermore if |f| = 

f ^ 0 - f a 0 then h(|f|) = h(f)w 0 - h(f)a 0 “ |h(f) | for 

any order preserving homomorphism h*

Consequently when each h in Il(E,S) is order 

preserving it follows that h(g) = h(Ig^l a c - G.l) = 

hClg^l a c) - c “ MIsjIJa c - e = IMgjJ | n e - e “ 

|h(f) - hQ(f)| a e - e • Tliis shows that h(g) « 0 iff 

|h(f) - h0(f)| ^ e .

To complete this section it is sufficient to obtain a 

condition on S which implies that every h in H(E,S) is 

order preserving. Isbell [73 defined a unitary real algebra 

S on E to bo closed under bounded, inversion if 1/f is in S 

when f > 1, where (l/f)x = 1/fx • Iio showed that jX-JL-JLtL. 

closed under bounded, inversion then each, h in Tl(EtS) is 

order, pros crying.* Lot h be in Il(E,S) and such that for
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some f ^ 0 h(f) = X < 0 • The function f - X ^> “X ^ 0 

and eo has an inverse g in 5. This implies that 

1 “ h(l) - h(f - X)*h(g) - 0 which is a contradiction.

Let A* be tho subcategory of A obtained by 
restricting the objects to be those objects (E,S) of A 

for which S satisfies condition (as) of theorem 10 and is 

closed under bounded inversion. On this category the re­
strictions of ^ and 3 are isomorphic as stated in 

X^Off^-lJMlo. ^J^L^JL?L!AL^2^2^2£^^ 

on A1 .^Ia? is idempotent...

Proof: If (E,S) is an object of A* it follows from the 

previous assertion and theorem 10 that S’ consists entirely 

of continuous functions. As a result y(E,S):H(E,S)------ -7(3,8) 

is a homeomorphism. Since y(E,S) o ho “ tn and 3 is 

Hausdorff it follows from lemma 1 that those homeomorphisms 
define an isomorpliism of iff (Ar into ^|A‘ •

To provc- ^ |A* is idempotent it is sufficient to shew 

that ^ |Af a ^ |A* is defined (see corollary to theorem 5) 

Low A* contains H__ A* because if (E,S) is in A’ it 

follows that S’ is closed under bounded inversion and satisfic. 
condition (k) of theorem 10. Consequently iff |Ar is idompotc.r 

SSdSSks^ 1. Theorem 12 could havo been obtained by a subproces; 
^ 0 of Tf and establishing an isomorphism theorem with J • Fo: 

ouch object (E,S) in A define II (E,S) to be tho subspace 

of H(E,S) consisting of all tho order preserving homomorphism! 

in I;(3,S). Define Ih(a)to be 11(a) |ll(E,S) and let (h)Q « h-
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It is not hard to seo that this defines a subprocess ril of
ft • In addition ft is isomorphic to 3 when both are 

restricted to the subcatcgory of A obtained by considering 

those objects (E,S) for which 3 satisfies (sd • Tho 

desired homeomorphisms are the functions y(E»S)|U (E,S) = 

Y0(m,S) • Since their inverses are always continuous this 

raises the question as to whether they define a homomorphism 
of J |A into ft • This is so iff y^ESS’) o T(a) = 

11(a) o yZ1 <s>s> ^hen a is in hom((1,3),(S’,3f)) . This 

doos not appear to be the case in general since if 2 is in 
T(2,S) and (H(a) o yI1^3))2 33 h’ then h»(f») = 2„, o „ 

but (y^CSSS*) o T(a)Z = h where h" (f •) = (l(a)Z)~f • In 

general (T(a)Z)«f $ Z-,t . The equality holds if
X x w

fr------ -f’ o a is an injection of 3* into S because T(a) 
is then tho restriction to T(E,S) of the projection of TT RP 

f in 3
on Klipf

f’ in 3*
which naps (Zp)--------------- >(Z^. „ )

A f in 3 x ° ~ f* in 3

The proof of the idempotone© of ft |A’ could have

been achieved by defined a modified form of composition of

with itself utilising tho functions f in a more or loss obvious

way to define a covariant functor M+:A A • Since ft 

ft is idonpotsatisfies (TP, J it is not hard to seo that Tl is idempotent

with respect to this modified type of composition. In addition 

tills new type of composition coincides with the original one on
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3. Tho origins of this precess go back to Stone’s 

work on Boolean rinse where he introduces a topology into 

the space of maximal ideals of a Boolean ring which is the 

analogue of tho Zcriski-topology. In the case of a Boolean 

algebra it is this topology. .•

$ 6 • S£tIi23^M£XJL2J$l^£SJ2L^ 
^Cs.»^_ . and*^. Let E be a sot and denote by 3 a 

collection of real-valued functions f^g... on E. The 

collection S may bo partially ordered by setting f ^ g if 

fx ^ gx for each x in E. 3 becomes a lattice in this order 

if f and g in S imply that f^g and fn^ arc in 3 

where (f ^ g)x ° max[f:<»gx] and (fng)x « ninCfXjgx] for 

each x in E. If in addition S contains with each f 

and real number X the function f + X defined by setting 

(f + X)x- =• fx + X for each x in E then S will be called 

a, tronslatip^ lattice of functions., on r E.

Remarks. Translation lattices were first defined by Kaplansky (31 

He defined a translation lattice to bo a distributive lattice L 

such that for x in L and X real a sum x + X is defined in 

L which satisfies:

(TL^) x + 0 ® x for each x in L ;

(TL2) (x + X) * ja = x + (X + }J far each x in L and
X, J-1, real;

(TL^) X > 0 implies x + X ^ x for each x in L J
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(TL^) x ^ y implies x + X > y + X for each real X; and

(^)

f^1

Condition

for any pair x,y in L there exists X such that 
x + X ^ y ; and

x < y + X for each X ^ 0 implies x ^ y

(TL^) is not in general satisfied by a translation

lattice of functions on a set* It was used by Kaplansky to 

obtain a representation of a translation lattice as a trans­

lation lattice of continuous functions on a compact space* 

Shirota [9] defined a translation lattice to be a lattice L

with an external operation + that satisfies (TL^) to (TL^)

inclusive* This definition of Shirota’s is equivalent to 

saying that a translation lattice consists of a lattice L 

and an order preserving monoid homomorphism 9 of tho totally 

ordered abelian group of real numbers under addition into tho 

lattice ordered monoid of order preserving functions that nap 

L into itself* This last order is defined by sotting oj_^ S^,

where each 6^:1 L is order preserving, if 6jX 6ox for

each x in L. In other words a translation lattice L is a 

lattice that admits the real numbers as lattice automorphisms* 

This suggests a possible representation theory for ordered 

groups - admitting the group as lattice automorphisms of a given 

lattice L*
A translation lattice homomorphism L of S into th

real numbers is a lattice homomorphism 1 :S-----*R such that 
1 (f + X) = 1(f) + X • From tho definition of a translation 
lattice of functions on a set B it is clear that each x in
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defines a translation lattice homomorphism l„:S------ -R, where 

V(f) ” fx.

The real numbers may be considered as the translation 

lattice of constant functions on a one-point set. In this 

case addition has the usual meaning and the lattice order is 

the usual total order of the real numbers*

Let L:S------*R be a translation lattice homomorphism. 

Define 1+ X on S by setting ( 1 + X)f = 1(f) + A • Then 

I + X is also a translation lattice homomorphism of S into 

the real numbers. From the standpoint of the lattice S these 

homomorphisms are essentially the same.

Fick fQ in S. Then if X :S------*R is a translation 

lattice homomorphism there is a unique translation lattice 

homomorphism to:S----- *R such that Xo(fo) ” 0 and ^°K * ^o* 
1^ ^ “ \ + X and t0(f0) = 0 then l(fQ) - (t, + X)fQ = 

lo(fQ) + ^ " ^ • ^^s shows that lQ a ^ “ ^ (fQ) is the unique 

translation lattice homomorphism with To(fQ) ” 0 and 

1 “ ^ n + X •

Assume that S contains the zero function 0 defined 

by setting Ox = 0 for each x in S. Then S contains the 

constant functions on E. Such a translation lattice of functions

on E will bo said to bo a translation lattice that contains the

constants.
. Let A be the subcategory of 5 obtained by restricting 

the objects to be those pairs (E,S) far which S is a 

translation lattice that contains the constants. If (E,S) is 
an object of A define LO(E,S) to bo the sot of all translation
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lattice homonorphisms X :S----- *H which nap the sero func­

tion on 0. If (E^S1) is a second object of A and if a 

is in Bom((E»,S), (E^S1)) define LQ(a):Lq(E,S)---- >L0(E»,S») 

by sotting (L0(a)l)(f’) “l(f‘ o a) • L0(a)t is a trans­

lation homomorphism because tho correspondence f ’-----*f * o a 

is a lattice homomorphism such that f1 + X------*(ff + X) o a 

“f’oa + X. If (E^S*) is a third object and a’ is in 

Kom( (Er,Sf), (E'^S*’)) then L^a1 o a) » L^a1) o LQ(a) 

since (L^a1 o c’JU(f") «lx(f“o ar o a) " (Lo(a)t)(f'‘o a1) =» 

(Lo(a»)[Lo(a)t])(f<), for each f“ in S".

If (E,S) is an object of A define l-^sE----*Lq(E,S) 

by setting T^x = L„ where X„(f) “ fx for each f in S. 

Then if a is in Hom( (E,S), (Ef,S f) Ija) o lj ® ^s> o a since 

(Lia) t^Kf*) »K,U’ o a) » (ff o a)x - f’(ax) = 1* (f’) • U A Ju
It follows-that a process on A may be defined by 

giving topologies for the sets L (E,S) such that the subsets 

toE are dense and the functions L^(a) are continuous. Since 
the development so far is parallel to that of process ^ on 

A it is natural to consider tho topology generated by the sets 

Tip f in S, where W^ = [1 eLQ(E,S) 11, (f) i 0] ♦ Unfortunately 

these sets do not appear to form a base for this topology and 

so the fact that V^ a t^E ? 0 implies T?^ * WQ = $ cannot

be used to prove that IgE is dense in the resulting space.

However if 0* is tho topology generated by the sots 

V-. f in S with f >0 they do fora a base since Ur A V «
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^ r when f ,g ^ 0 • Similarly if. 0 is the topology 

Generated by the sets U-j f in S and f ^ 0 this topology 

has these sets for a base since Wf a Ug - Vf „ g if f, S ^ 0.

Define L+(EsS) to be LQ(E,S) with the’positive” 

topology 0 + . Then tgE is dense in this space because the 

sets Wf, f ^ 0 form a base for 0+ • If a is in 
nom((E,S),(E»#S*)) and f» ^ 0 then L”1 (a)Wf, - [1 eLq(3,S) 

(L(g) t )(fr) “Kf1 o a) + 0] = W-f . and since f’ o a^ 0 

L0(a) is a continuous function:L+(E,S)----- ^L^fE’jS’) • Consequ

ently if 1,? A is the co variant functor with

L.(E,S) “ (L_(E4S), 0 .) and L.(a) = L.(a) then together 

with the family (lo) of functions « it defines
^(E,S) in A---------- - ------------------

a process . on A .
Similarly define L_(E,3) to be the set L0(E,S) 

together with the negative topology 0 _ . As before each 

tnE is dense and each L_(a) is continuous. Lot L (a) “ 

L (a) • Then L : A------- *2L is a covariant functor which 

together with the family (t p) of functions q
----------------------------------------------- -^,5) in A-----  
defines a process ^ _ on A .

As in the case cf process iff if (E,3) is an object of 

A the functions f in S define roal-valued functions i 

on LQ(E,S) in a ’’natural” way by setting fl “1(f) for 

each T in Lq(E,S) • The functions f are such that f o T$ “ 

f and S = [f }fcS] is a translation lattice of functions on 

L0(E,S). If f and g are in S then f vg 1=1 (f Mg) ”
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and f~+~Xl« 21? X • This shores ^' is a translation 

lattice which coiijn^s the constants since in addition 

OT « 0 for etch T in LQ(E,S) .

These functions f connect the positive and negative 

topologies since 0 + ^ 0 _ (the smallest topology finer 

than both) * 0(Lo(E,S),S) • To prove tills it is sufficient 

to show that for fQ in S, e > 0 and lQ in L0(E,S) 

[1 cL^EjS) | |?ol - ^p^ol < el is the intersection of an 

0. -open set with an 0 -open set*

Let g = f _ - KtfJ • Tills function is in 3 and 

so are g^ “ (g a e) - e and ^ ” ^M (-e))+ e • If 1 is 

in Lq(E,S) Kg^) “ Kg /i e) - c = Kg) a1(e) - e = 

(X (g) a e) - s since KcJ^'Mo + c)'3 Ko) + e = e and 

similarly Kg^) “ ('Kg) ° (-s)) + E • The functions gj 

and gp are respectively ^ 0 and ^ 0* Furthermore 

Kg^) 4 0 iff Kg) < e and ^^ 4 0 ^^ ^s^ > -e • 

Therefore l.^ a W^ = [1 cL0(E,S)|| l(fQ) - ^b^o^ < ^ 

“ [^ cL0(S,3) Hfjl - f^l | < e] . This proves that 0 +^ 0 

« 0(Lo(EtS),S) .
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The functions 7, f in S, define a function 
fi(E,S):L (E,S)—»TTr^ by setting 6(E,S) 1 = (fl) 83 

fES fs3

( ^(^))^^ • Wie image of L (E,S) under 6(E,S) is closed. J. Q

Lot Z be in the closure of 6(E,S)LO'^»S) • ^

Z “ ^PfaS then Zf ~ g “ Zf M Zg* Zf n g " Zf ° zs ^ 

Zf+A “ Zf + X • Consequently Z defines a translation 
lattice homomorphism t7:S----- *R by setting 't^ff) • = Z« .

Since Z = 0 it is in L (E,S) and 5(E,S) 1/ „ = E . This 

shows that 6(E,S)LO(E,S) is a closed subset of 7Tr« • 
feS

It is clear that o(E,S) o ^ g = tg and hc-nce &s a 

result that 6(E,S)L0(E,S) contains T(E,S) • From this it 

follows that 1OE is dense in the, tonologv generated by the

sets f in S, iff 6(E,S)LjE,3) = T(EtS) . Tills is 

because this topology is 0 + M 0 ^ “ Ofl^CEjS)^) and so 

6(E,S) embeds (LQ(E,S), 0 + ^ 0 J in 7TRf • 
feS

Assume that S is a translation lattice that contains 

the constants which is also closed under multiplication by 

(-1) i.e. if f is in S, -f is in S where (-f)x = -fx . 

Then 5(E,S) is in T(EtS) iff l(-f) = -Uf) for all f in S .
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Since the honorphisms 1., are such that l_(-f) = - T_(f) 

for all f in S it is clear that if 5(2,3)1 is in 2(2,3) 

K-f) = - Kf) for all f in S . Suppose lQ(-f) = - TQ(f) 
for each f in S but that 6(2,3)!^ is not in 2(2,S) • 

Then there exist n functions f^,***,^ in. 3 and o 0 

such that if x is in E at least one of |f^x - 1 (f -) I ^ e 

i = l,...,n • Let g^ = f^ - T0(fn>) ^^ define gr = 

-(Cgi a c] - e) and g? = Eg.. ° (~e)]+ g * Since 1 (-f) = 

- l0(f) it follows that l0(g^)» ^(s^) = s, i = !,•••,n . 
n

Let g « A Eg.? A gfl • Then VJg) “ e • However g = 0 • 
i=l 1 °

n 1 2
If x is in E rac = A Egfx a gfx] and at least one of the 

i=l “ x
gtx A g~x = 0, i = l,...,n • Since gj A gJ ^ 0 i » l,...,n 

it follows that gx = 0 . Since g ® 0 1 (g) a 0 . This is 

a contradiction. Hence 6(E,S) 1 is in T(E,S) if TQ(-f) = 

- lo(f) fox’ each f in S .

PcHurk. If S is a unitary real algebra on E -which is also 
closed under u and A then it follows that if 1 :3  , 2 is. a 

translation lattice lior.or.orphion such that 1(0) ° 0 and l (-f) 

porphisn.

Let A’ bo the subcategory of A obtained by restricting 

the objects (E,S) to those pairs for which S is dosed under
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multiplication by (-1) . If (2,3) is an object of A’ 

define L(2,S) to he tho subspace of 1^ (2.S) consistin'* 

fihf^jL J21_J‘o (£*SL_J££_lM2ilJL^-^^

If (E^S*) is a second object and a is in 

nom((E,S),(E',S*)) let L(a) « ^(ct) |1(3,S) • disfunction 

maps 1(2,3) into 1(3*,S’) • Since (-f*) o a « - (fT o a) 

if f’ is in S', this fact implies that (L(n)T )(~f‘) = 

KC-fO o a) -K-ff o a)) = - l(f» o a) = -(Kg) D(f’) . 

It is clear that L(ar o a) “ L(af) o 1(a) if a1 is in

11014(2,5), (3 S3’)) .

Thon L: A- »Z- is a covariant functor. Sines 

for each (E,S) in AS^s2 is contained in L(3,S) it 

folio: "3 that L to,not her with tho feilv ^~ \ ■ ) x »

of fun abler o t $ defines a precess on A* . It trill bo 

denoted by ^ .

Thia process ^ is a *subprocess* of o^+ J A1 • It 

is also a ^subproceos* Of< I A' . This is because 

0 . |L(E,S) <1(1,3) for any object (E,S) of A* •

If (2,3) is in A* and f ^ 0 is in 3 then U^n 1(2,5) = 

U^ H L(E,S) and hence the two topologies coincide on this set
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Since 0 +vO w * 0(Lo(E,S) ,3") it follows that the topology 

of L(2,S) is the restriction ox this treat topology to 

1(3,3) . One consequence of this result is

TheoryiJm .^f^d 1^ * "re isorpr;~hic processes on Ar_ »

is idenrotent.

Proof: If U,S) is in A » c(3,0) |L(E,S) is an embedding 

in ITlh, . It is a homeomorphism v(E,S):L(E,S)------ *1(3,3) 
f in S

which satisfies y(E,S) o ^“t. ♦ Since 3 is Hausdorff 

lemma 1 shows that those homeomorphisms define an isomorphism 
of cT into 3 I A ’ •

’ As in the proof of theorem 12 it follows that oCis 

idempotent if ^ncC is defined. If (2,3) is in A* and 

SL « SIUE.S) then (L(E,S),Sl) is also in A 1 . This is 

because (-f^)! ® ~(f-l ) “ - (T(f)) ® l(-f) » -f^ 

and so ST is closed under multiplication by -1 • Since 5 

is a translation lattice of functions on L0(E,S) which 

contains the constants it follows that (1(2,3),3-) is in A1 
Consequently JJfn ^ is defined and so of is idempotent

(corollary to theorem 5).
Pomarks. It is not hard to see that ^ satisfies (FPJ and
•—>«-^*^« ■vw—^-W .'«—«« «

hence as a result /JIA’ satisfies (IT^) • Process*^ was 
o

suggested by a result of Shirota^ [91 (his theorem 9) • The

proof Given by Shirota doos not appear to be correct.

To conclude this section on translation lattice proc­

esses it will bo shown that <Z > I A‘ a*^ I A ’ sre
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i^I^iMLJi^^cs.^^ Let (3,3) be an object of 

/V and denote by J:S---- *£ the napping defined by 

netting Jf « -f • Then (J o J)f - f for all f in S 

and J(fvg) - jr n Jgr j(f ng) = Jf w Jg, j(f + X) “ Jf - X • 

Let K:R—*R be tho corresponding antiautomorphism of the 

lattice R i.e* Kx « -x if X is in R,

-Define y(E,£):LO(E,S)—*LQ(E,S) by setting 

y(E,S) T = K o T o J . It is a routine calculation to show 

that K o 1 o J is in LO(E,S) when 1 is in Lq(E,S) • 

The function y(S,S) is 1 - 1 and onto since (y(E,S) 0 y(E,S}) 

* K©(K o 1< o J) o J c (K o K) o 1 o (J o J) “ T for each 

in Lq(E,S) • Hie function y^^Ji^CEjS)------*!_(£,£) is a 

honeoriorphisnu If f ^ 0 is in 8 then Jf ^ 0 and 

Y(EjS)tff “ L^ • This is because 1(f) = 0 iff (I o I c JHff) 

= - X (f) “ 0 . Similarly if f ^ 0 is in S then Jf^ 0 

and Y(s>s)^f “ L^ • This shows that ylEjS) is an 

(0 + > 0 _) ~ homeomorphism. Hie family Me»s))(e s) pn a ’ 

of homeomorphisms y(L,S) defines an isomorphism y of<Z\J A r 

into ^^ | A* . If (E,S) is in A* then y^js) ° ^5 ~ % 

because K 0 t„. o J = \., for each x in E. Let f be in S 

then (I o o J)(f) = (X 0 IJ(-f) - K((-f)x) - K(-fx) = 

fx « T_(f) • If (ESS1) is a second object of A1 and a 

is in HosUl^SMESS') letl be in Lo(f,S). Thon 

(t o (Ljcdt ) o J')(f') »(Ko (Lo(am)(-f») - E(i((-fr) o a)) 

~ K( 1 (-(f ’ o a))) « (X o 1- o J) (f ’ o a) “ (LQ(a) (K ot o J)) (f *)
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This shoe’s that y(3’,S’) o L*(a) = L_(a) o y(E,S), and 

hence that y is an isomorphism of , I A’ into ^C | A’ . 
Son-ark. For any (E,S) in Ar tho set L(E,S) = 

E 1 in Lq(E,S) |K o T o J cl] . If either L+(E,S) or 

L_(E,S) is a Hausdorff space it follows that L(3,S) = 

Lq(E,S) • Hence if <56J A* or <Z_| A* is a Hausdorff 

process they coincide and are both equal to oC . is^^A 1 

a Hausdorff process on A’?
Mo. Process es^and ^ are examples of ’algebraic’ function 

processes. Any suitable structure defined for collections of 

functions on a set provides a corresponding process. As with 
‘ff and of algebraic properties may be deduced by comparing th© 

process with J •
To conclude this discussion of specific processes it 

is convenient to combine theorems 10, 12 and 13. Let A’AA’ 

denote the subcategory of 31 obtained by restricting the 

objects to be those common to A’ and A’ i.e. those pairs 

(E,S) where 3 is a unitary real algebra on E closed under 

bounded inversion and the binary operations o and o • The 

result of combining these three theorems is stated as 

Theorem 14* J|A«nA», 3-|A» O A*, ^ |A’ A A» and 

0^!?? A Ar are isomorphic processes on A’ Q A’ . They 

all __ CE£j._^_Jn~

addition they arc all idenrotcnt (as processes on A’A A1) .
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Proof: The first two assertions are an immediate consequence

of theorems 10, 12 and 13 and the properties of these pro cesses*

To prove that they are all idempotent it is sufficient 

to show that 5 [A'n A* o 3|A’nA' and so on are all 

defined. If (E,S) isA»nA»then (?(E,S), Sj is also 

in A1 A A 1 . This is a consequence of the properties of the 

product topology and the fact that t^E is dense in T(E,S) . 

(F(E,S) ,3^) , (ll(E,3) ,SjP and (L(E,S) ,STj) are also in A1 A A r 
This can be established in each case by computation or by 

noting that the homeomorphisms from T(E,S) to F(E,S) ,TI(E,S) 

and L(E,S) induce correspondences of S? with Sp, ST- and S- 

uhich preserve the properties of closure under bounded inversion

and u and A .
§7» The e:ctension algebras of E. Let E denote a completely

regular space and let C-, denote the algebra of all real-valued

continuous functions on E. In the introduction the original

problem was stated as

(EA): characterise the subalgebras S of C-, for which

S 23 Cv|E, whore 2 is an extension of E .

Two definitions are introduced to make this problem more precise

Dcfinition 5• An extension of a completely regular space E 

is a nair (X- j) idicre X is a completely regular space and 

4;E------« is a homeomorphic embedding with JE dense in , X .

Definition 6., If (X, J) is an e:rtonsion of E the subalgebra 

C„ o 1 ra Eg o i I g in C-,] of C-, is colled an extension algebra

of E .
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Uhen no confusion is likely X is used to denote

(X,j) and Cyi^ to denote 0,, o j •

Two extensions (^,ji) and (-^’^ Gr0 ea^$ bo 

bo isomorphic if there is a homeomorph!sn dpi : ^i------->X9

such that j,^ o <L = j^ . For the purposes of tho original 

problem isomorphic extensions are identical since C-, n 4 a 
-^l 0 ^1

% 0 J21 0 Jl ” % 0 ^2 *

Let ^ be a process defined on a subcatogory 3? of 3? . 
If an object (3,3) of 3& is in 5 then "P will be said to be 

defined at (E,S) • Lot (3,3) be an object for which ^P is 

defined# Then it associates with (3,3) the pair (P(E,S),ps) 

where Pq;E------ ♦P(E,S) is a function with dense inage. Theorem 

1 gives necessary and sufficient conditions on a topology CL, 

for E in order that bo 0~, - continuous, assuming that 
*^ satisfies (1TJ at (3,3) (from the statement of 

properties (FP^),(FP^)(FP$) and (FP^) it is clear what is 

ricant by saying that a process satisfies one of then at a 
specific object). If tho process^ satisfies (FP^) and (FP^) 

at (3,3) tho space P(E,S) is completely regular. This leads 

to the consideration of those completely regular topologies of 

2 for which (P(E,S),pg) is an extension of E . Tho following 

theorem shows that under these conditions there is a unique 

completely regular topology with this property.



^^^J-5Eot (.3,3) be. an ob ject of and let bo a

process defined at

at (3,3) • Let 0^ bo a topology for E • ThonS^Kiiannl, a^>-H» k ■■ *woni —■ »»«*- w» •—•, f^^^»-^«M*w*»««M4»-*^MM»<*aM ,w^— ■ ..n »— m—., »w mxwxw w.4

ps:E---- ^P(E, 3) Is an CL-,.. - embedding iff 0^ 0(Ea3) py!

,3. separatos the joints of 3 ,

Proofs Theorem 1 states that Pq is 0- - continuous iff

0(3,3) is coarser than Or, • On tho other hand Pr is 0-, - open 

iff O(E,S) contains 0^ , sinco •% o po = S and "P satisfies 

(P?,.) at (3,3) .
Since "P satisfies (FP^) at (3,3) pg is 1 - 1 iff

S separates the point of 3 •

Combining these results the theorem follows.

Examples of extensions of 3 obtained from -processes, 

1, Let E be a completely regular space. The object (E,C-,) 
is in A*AA * and so J , <3",^ and©C may be applied to it. 

In each ease an extension of 3 is obtained since by theorem 14 

each of these processes satisfies (FP,) and (FP^) at (E,C-J • 

Since the processes 3|A’ A A » t 3"[A’ aA • , *ff [A” A A* 
and oC|A* A A* are isomorphic tho extensions (T(E,C,), t^ ) , 

(F(S,Crj)fQ ), (l*(3,Cg),hQ ) and (LfujCg), Lq ) are all 

isomorphic. If X is any of them it is clear that C^lE ~ Cg • 

2. Let E bo a completely regular space. The object (E/Jg ) 

is in A’ A A* where C^ is tho collection of all bounded 

continuous real-valued functions on E . As before each of the
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processes *^ > ^ , ^ and oC are defined at (E,C$) and 

they yield the isomorphic extensions (T(E,ct),tr*), 

(FfEXJjf^) - (MCE^hnu*) , (H(E,C*)thr,) and 
xi

(L(E,C*), 1 «•), If X is any of these extensions of E 
E

then C^lE “ C^ . All these extensions are compact. In

addition the extensions of example 1 can all be embedded in

these extensions. For example consider tho extensions defined 

by # • Let Cg ba the bounded functions in CE • Then 

C* 0 hCE “ CE ^ ^------“^ 0 hCE i3 1 “ 1 • Since ^

satisfies (FPj H(hn ):H(E,Cj-----► ti(H(E,Cr) ,C*) is a

homeomorphism and the following diagram is commutative 
E_________ S-------------  HCE, Q)

^c^ ^Eg

HCE j c*)--------------—------- RCH CE>Q\ Ce )

Tho function H”1^ ) o h^* embeds H(E,Ce) as a denso 

subspace of n(E,C^) •

The extensions (X, j) in these two examples have one

property in common: namely, all tho real-valued algebra 

homomorphisms of C^ ar© of tho form h^, x in Z, whore



h„(f) = fx. Thia is because theorem 14 states that fl’fA’AA * 

is idempotent and so hg :X------ ►H(",C-r) is a homcomorphis;!

since n |A* n A * is Hausdorff . (which show's that the 

homeomorphism: H(E,Ce)------- *H(H(E#Ce), C^^ c j) is

hc ) . 
gh(e,ce)

Howitt [10] first considered topological spaces

with this property# Iio called then Q-spacos and defined

thorn in terras of the maximal ideals of the algebra of all

continuous real-valued functions. If E is a sot and S

is a unitary real algebra on E then the kernel of 

h is " [f in S|fx " 0] . A maximal ideal K of S 

is said to bo fixed if II “ 11^ for some x in E , other­

wise it is said to bo free# II is said to bo real if S/H 

is isomorphic to tho field R of real numbers as an R-algebra. 

Otherwise II is said to be hyperreal. Using this terminology 

Hewitt defined a Q-space to be a completely regular space for 

which every free 1. ICLr £X£ led# ideal of C2 is by hyperreal or 

equivalently for wliich every real maximal of Cn is fixed# 

This definition is equivalent to 

Ee^intion 7. A completely regular space E is said to be a 

C-spnceifhn ,:E------»n(E,C^) is a

The equivalence fallows from tho fact that h$ is a

homeomorphism iff it is onto i.e. iff every real maximal ideal 

is fixed#
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Since the Bpace 11(2,0..,) is homeomorphic to the 

space Il(F,Cp) when C^ and C7, ore isomorphic real 

algebras it follows that two Q-spacos E and F are 

homeomorphic iff 0$ and C^ are isomorphic real algebras.

If E is a Q-space and F is homeomorphic to E

under y then F is a Q-space, This is because E(y) is
a homeomorphism and hcF “ MW 0 hcE 0 V-1 •

fesses of Q-snucos,

1* A compact Grace is a Q-space, Let K bo a compact space.

It is completely regular and eo hc :K------ ►n(X,C„) is an 

embedding, Since K is compact hP is a homeomorphism.

2• A locally compact space. E which is countable, at infinity 

is a .Q-spyco, Consider the diagram in the second example of 

extensions defined by processes. Identify E with hc E and 
liCE.C^) with its homeomorohic imago under ir^(hn ) o h-~* •

Then E ^ H(E,CP) ^ H(E,C*) .

Lerma,J?, A completely regular space E is locally compact 

and countable at infinity, iff there,, is. a function f in C„

With 0 ^ fG ^ 1 such that:

(1) f has no scros in E i.e. 1/fh is in C-, : and

(2) j£_Ji^i_JdL2k£?--JJlJl^^ ) ~ o
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Assuming ’thio lemma it is easy to prove the assertion. IT 

h in HCSjC^) is not in E » bg E then h(^o) “ 0 .

1/i* has a finite value at h i.o. h(l/f ) is a real 

number • Therefore 0 “ h(f ). h(l/f ) « h(l) “ 1 which 

is a contradict lea. Consequently h$ is a homeomorphism 

and so E is a Q-space.

Proof of tho lemma: If such a function fQ exists thon E 

is locally compact and countable at infinity. Consider E 
as a subspace of Ii(E,C*) and fQ as tho extension of fQ 

to this extension, whcro fQh = h(fQ) • Since is 

continuous 2(fh) = Ch in Il(2,C*) |h(f.) = 0] is ooen 

and coincides with E. The fact that M(E,C*) is compact 

implies E is locally compact. Also Ch in H(E,C*) |h(fo) ^ 

" E_, is compact and E « U E . This shows that E is 
a a 7,1 *

countable at infinity.

_ If E io locally compact it is an open subset cf

II(E,^) . If E is countable at infinity then there is an 

increasing sequence (3 ) _ n of compact subsets such that 

b> E ^ E . A compact space is normal and so for each n 
n^l n "

there is a continuous function i* on E(E,CP) with 0 ^ f Al AU
and f„|3 - 1 , fJ(EE = 0 . Let f * X 2“n.fn . Thon 

n n n n^l n
f is a continuous function on Il(E,Cp) such that 0 f 1 

and fh “ 0 iff h is in (Eh • The function f = f {E is

the desired function.



71

3 • £®ZJl:3Li^2^LJL2LjLjfLAsjLIi2^^
Tliis is a special case of example 2 since Rn is a locally

compact space countable at infinity for each n > 0 •

Q-spaces are characterized by the following theorem

which was essentially proved by Hewitt [10] •

Theorem 15, A completely roller space E is a Q-space iff 

It is complete in the structure^ B(Cr) .

Proof: Since ft |A» A A * and 3 |a* n a * are isomorphic

by theorem 14 it is clear that E is a Q-space iff tP :E-----►l(E,C_)

is a homeomorphism. The space TfE,^) is complete in the 

structure U((CE)j) since 3 satisfies (FP^) • Identifying

E with its image under tP 
CE

u((cr) )|e , jj T
Consequently if tg 

E
in U(C„) • Conversely if E

it follows that UfC^) =

is a homeomorphism E is complete 

is complete in U(Cr) it is o.

closed subset of T(E,C ) and therefore coincides with this set.

hence tP ^s a ]ionconorphiam.

Corollary 1^ If *P is a process on a subcategory fE that satisfies 

(FPn),(FP,),(FPr) and (FPZ) then ~Pio a_Q-proccss on^ . Hence 

is a Q-proccss on S ,
Proof: Since for any object (E,S) of ^ Sp is contained
« it follows that U(Sn) is contained in U(Cp/r ox
C?(E,S) - 1 %
Uicn P(E,S) is complete in U(Sp) then it is complete in

V(Cp(E S)^ 5111(1 henco is a Q-space. The next corollary is duo to 

Shirota [9] •
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Corollary 2. A completely regular space £ is a C^snaco iff fc_^_>—4- -r c*v*w «tfaMM>^ «M#M^^«XMX^X#--^X#>M»^^#*--««M-MX^X*-^U^X^^M*wXXL#M^3^*-^JX«MXMZ^~«tXXXMJ^r#X#

every closed subsroce is r Q-snace. ^ • •*- I^^^W^liU l>^■4X^^^»^M*^»*^*W^ »*»■ ■■■ aFR ** Ji^ww—w-.*^-4*^-—••^^•A-^^^" MK> l•••R••r ^

Since 0p|f is contained in Cn it follows that F is

complete in U(0n) and so by the theorem is a Q-space#

An extension (X,j) of 2 will be said to be a

Q-extension of E if X is a Q-spnce# Since "# [A* A A • 
is isomorphic to J |a» aa ’ it follows that (ll(E,Cr) ,h„ )

is a Q-esctension of E . It has the following ’universal1 

property noted by iJrowIta [11] which is stated as
Theorem 17. Let E be a completely regular space and let 
.(1^) bo a pair consisti^ of a Corr^o Y . and a. .continpcv? ..

^2^fl«Ji!ife£El"^XJ^ -JUL-j

Proof: Sinco Cv o £ is contained in C-, and II is a functor

on A* x oral st s

E RCe.Ce)

g HCg>
h

HCf^r)

Since 1 is a Q-space hp is a homeomorphism and if » o 11(5) 

is tho required function# It is unique because hP E is 

dense in 11(2,0-,) and Y is Hausdorff#
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This theorem shows that (H(E,C_) satisfies

the conditions of

Definition o* Let E be a completely regular space and lot 

(TV's) be a. pain consisting of a Q~smco , Y and a continuous 

function gsE---- >Y . An, 1/pretension of E is a pair (Yi>^) 

such that for any, other, pair (Y,g) there is a undone, continuous

function . V?^-----►Y with w o. ^ = g ,

There are three inmediate formal consequences of this

definition. First, if (fy,^ and C^*^ are 17 -o-tensioms 

of E then thc^Q-XT a. vMiouo homeomorphism JY,zzzxXo S^i

is a unique continuous function w:Y^-

If n:V------ *W is the natural injection n o g^ = g^ and so

The uniqueness condition implies that

is the identity mapping and so V ® V^ .

Third, if E* . is a completely regular space, and f:E----- »F»y

is continuous then riven V -egtonsionn^^ and. . (.Y-1,,r f.), .

ial2L^2i.JlJlhJ^OiK*^ there exist unique

continuous functions w*4 i r j equal to 1 or 2 with v^j o g

e £4 Tiiis shows that u

condition in the definition shows that

io tho identity napping and hence that
wij
w. 4

o W44 x

Therefore

w. 4 is a homeomorphism, in particular

Second
V21 
of

is a homeomorph!

C-subspaco of Y^ containing V bo a Q-space

therecontaining gjE . The pair admissible and so

V such that w o g^ " C-?

n o w o g-^ = &|_ .

n o w:Yj----- *Y^
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of E and E* regroctivoly •there is a unique conUnv.ov.s

function f^;!' •YJ ; such that 1\ o

This is an automatic consequence of the definition since 

^1’^1 0 ^^ is an admissible pair for E •

Corollary 2 of theorem 16 and the second property of

•v-extensions show that y-^E is doiaso in Y-^ when C^tS^^

is an 'V -extension of E .

So far no use has been made of the complete regularity 

of the space E • Even the pair (11(2,0^),!^ ) exists 

independently of the complete regularity of E • To say that 

5 is completely regular is equivalent to asserting that hg is 

an embedding. Consequently if E is completely regular then 

an ^ -tx-rtons ion of E is, also an extension of E . 

itejnarks^ Hewitt [10] introduced tho concept of an 'v’ -errtencion 

of E by showing that (up to isomorphism) there exists a 

unique Q-extension ^ E of the completely regular space E such 

that C^^lE = Cp • He gave two constructions of ^ E • One 

was by moans of the real maximal ideals of C^ and was essentially 

(■He,^) ,hc ) • The other construction was by means of tho 

Tvchon off process-J and yielded the extension (T(E,Cp),t ).The 

o -extensions defined in definition o coincide nd.ththose of

Hewitt since (H(E,C„),hn ) satisfies both definitions. Other 

constructions of Hewitt’s space E were provided by Shirota l9j • 

lie gave two, the most important of which will bo considered in 

chapter three section ono. He also considered tho construction of
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-v 2 iron ths. translation lattice C-, but his writ doss not 

appear to be correct* Eonaschewski t?] showed that

(^(E,^) ,f$ ) is also ail -v»-extension op 2 *

Ono result ox Hewitt's work io that (El) can be

completely solved by considering just the Q-cxtensions cf 2 

This is because for any extension (X. ^) of 2 tho extension 

(E(X,C,?) ,hn o $) is a Q-extension of 2 and C^|E -

Ch(X,Cj I

Let (Y,k) be a Q-extension of 2 , It is isomorphic 

to the extension (11(3,0,? o k) ,hr o k) • Consider the

commutative diagram
E- HQEj Cyk)

H(K)

*HQY>Cy)

Sine© the correspondence g------g o k is 1 - 1 and onto it follows 

that Ii(k) is a honeonorphiSLi* Y is a Q-space and so Iw

is a homomorphism. The homeomorphism hX o Il(k): 11(2,0,- o k)------Y

satisfies h^ o H(k) o hr o k = k, and so tho two extensions

are isomorphic.
Consequently the construction process ^ applied to 

suitable objects (2,3) yields 'all* tho Q-extensions of 2 . 

The collections 3 are restricted to be unitary subalgebras of

C,, that are:
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(1) closed under bounded inversion;

(2) closed under m and a i.e. S is a sublattice

of CE ; and such that

(3) O(E,S) is the topology or E • In other words 

those collections S for which (E,S) is in A’ A Ar and 

C(E,S) is the topology of E. Since the extension algebras 

of S satisfy these conditions it follows that process -ff 

applied to these objects yields all the Q-extensions of E 

(see theorems 14, 15 and corollory 1 to theorem 16) •

To conclude this section, the following theorem

reduces (EA) to a new problem.

Theorem 16. Lot S be a unitary subalgebra of C_ . S is 

an extension algebra of E iff

(1) $ is a cublattice closed, under bounded inversion;

(2) 0(E,S) is the topology of E ; and

(3) -H-^IlCEjS)-2-

Proof: If S » Cy|E where (Y,k) is a (^extension of E, 

S satisfies (1) and (2) • It also satisfies (3) since (Y,k) 

is isomorphic to (H(E,Cy o k) ,h^ o ,:) = (ll(Z,S),hg) •

Conversely if S satisfies (1) and (2) then by theorem 

14 and 15 (H(E,S),hg) is an extension of E . If S satisfie

(3) then S = Sr|E = ch(E,S)^E is an $ztension algebra
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Condition (3) of thio theorem shove that (BA) could 

bo solved by providing a suitable solution to problem 

(AC); if " is. a cp:ylotGly Ferula?, spaco. charactorigo the 

collection C-n . an an algebra of continuous .functions 

on B .

A satisfactory solution to (BA) uould also provide a solution 

for (AC) since G^ is equal to its largest extension algebra. Xi
In this sense the problems (EA) and (AC) are equivalent. 

fel£2£din^^ The argument folloving tho remarks on

Hewitts ^ -extension could (in view of theorem 14) equally

veil have boon carried out by applying any one of the processes

5 » S' er ct to obtain the extensions. In addition there

uould Lo no advantage in using any particular one of these

processes since in the last analysis it rill bo as difficult

to prove Sr, = C,-^ 3) as to shov* for example, 

• Mien the investigation of (BA)

that

scarfed tae

various constructions of ^ E vere knoun. Trie argument follovii

the preceding remarks was developed in four ways, one to 

correspond to each of the constructions of a Ecwitt 'V -extender 

It became evident that there vac no advantage in using one way 

rather than another* and in attempt to shov this clearly it was 

found convenient to develop the idea of a function precess and 

to carry the discussion through in the above manner.
A charactering^ CM • Let F^ denote tho collection 

of ell real-valued functions on E • It nay be given a topology 

by defining the fundamental neighbourhoods of a function f to
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bo the sets V.o n /„ = [g||fx - gx| zlAi for each x in. E] •

This topology is called the, topology of unifom convergence 

on E . A sub coll octi on S of Pg is said to be uniformly 

closed if it is a closed subset of F • When E is given 

a topology Cp is a uniformly closed subcollection of FP •

' The collection F^ is

It is a lattice with respect to

a unitary real algebra on E • 

the partial order ^ defined

by setting f ^ g if fx ^ gx for each x in E , since

Ft, is closed under M and n • In addition if f in Fn

has no zeros in E then 1/f is in Fg • This function

is called the inverse of f . The collection is a sub-

lattice of CP that is closed under inversion i.e. if f in

has an inverse 1/f then 1/f is in C„ A subcollection

of Ft, is said to be closed under positive inversion if

when f in S is such that fx ^ 0 for each x in E then

1/f is in S . A subalgebra 3 of ?E is closed under

inversion when it is closed under positive inversion if f in

S implies f *> 6 and f n 6 are in 3 • Eris is because 

when f in S has no zeros in E neither has |f | af u 0 - 

f a 0 , and so l/|f I is in S • The inverse of f is
2

f* l/|f I which is in 3 .

With the aid of this terminology a preliminary character­

ization of Cs may be stated as
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Theorem 19. let Tbc n com^lotclv roller snoco andcssuue " ~ t*i--a-r owiiei^iM ■ ■* .—^-.j^w..*.--^.^*—» ^.m*~^..«l>«.^» _^-^>—.. ^ ■» ^w.-*-.^. *»■.*■■ »-*^«» ■»< * —■ ^ . ^ ,. ^>>—s.-»~«»
trvit S^saji4b^ of__C"> which contains C^ • Thon 

3^0-, if S is uniformly closed and is closed under ■positive 

in vopsiOxi • 

froof: If £ is in C,, and f m 0- f n 0 are in S then 

x • is in S • Hence it is sufficient to shew that S contains 

all positive continuous functions on E •

Let f ^ 0 bo in Cn and sot g = f + 1 • The function

g a n is in Cg and so in S for each n ^ 0 • Since

g a n ^ 1 ^ 0 tho fact that S is closed under positive inversion

implies that 1/g a n = 1/g n 1/n is in S • The functions 

1/g n 1/n tend uniformly to 1/g as n tends to infinity and 

co S is uniformly closed 1/g is in S • The function 1/g 

has no zeros in E and is positive. Therefore g is in S , 

which implies that f = g - 1 is in S •

For any unitary subalgebra S of tho collection 

S" of bounded functions that belong to S is a subalgebra of 

f^ • Theorem 19 shots that to obtain a solution to (AC) it 

is sufficient to characterize those uniformly closed subalgebras 

S cf C-. which are closed under positive inversion and for 

which S « tn . In other words a solution to (AC) is provided 

Ly a solution to problem 

(DC): £am-JL-£manl£dtfhi_^^ —2 £i2Ea£&r£i££^^  nUf

algebra of byandod .continuous functions on E .



Pryork,* On the face of it (LG) appears to La a harder 

problem than (AC) • In chapter tiro section tlirce it ‘/ill be 

shown to te an equivalent problem in a non-trivial sense#

An almost trivial solution for (SC) is provided by 

Theorem 20* Let. 8“" bo a unitary subalgebra of Cm • 

P:' u - S"~ satisfies

(f"): when. f in. factors, as f - eh then 

rud h ■so’O in if th err aro bor.ndod and 

continuougj, 

Proofs C'-Z satisfies (r ) by definition* Assume that 

SH $ $3 «nd ^k ^ in ^ k® a function that does not belong 

to 5s * Since S’1 contains tho constants it may La assumed 

that f > 1 . Tho function 1/f belongs to Cm and 1 = f-1/f 

The unit of C^ is in S" and so SK doos not satisfy (f’) •

Ulis theorem provides a similar solution to (AC) thic 

may bo stated as 

^eoron 21* Lot 3 Le a unitr.r,z subalgebra, of C-. that is 

uniformly closed and closed, under positive inversion* Then 

3 = C-. iff S satisfies

: whan f . in 3 factors then a

and, h are in 3 if they ere contimyrn.

Proof: Lion 3 satisfies (?) it fellows that 3" satisfies 

(p^) * Theorem 20 shows that 3“ - Ch . Under these circumston 

theorem 19 applies and so S = C™ •
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To conclude this chapter consider the application of 

theorem 21 to (EA) by means of theorem IC • Let S be a 

unitary subalgebra of 0$ that satisfies conditions (1) and 

(2) of theorem IC • It is necessary and sufficient to give 

conditions on S in order that Sy satisfy the conditions 

of theorem 21 •

The algebra STT Is uniformly closed iff S is 

uniformly closed* As S is a sublattice of Cg it folloss 

that Sy is a sublattice of C,^g g) • Consequently Sy is 

closed under positive inversion iff it is closed under 

inversion* This is the case iff 1/f is in S whenever f 

in S is such that h(f) t 0 for all h in H(E,S) •

The algebra Sy satisfies (?) on H(E,S) iff the 

algebra S satisfies

.(Zgl! vhen f in S factors as f - gh then g 

and h are in S if they converge to. finite 

limits along the filters in the set F(E,S) 

i.e. the sinhul U(S) ~ Cauchy filters on E * 

Since tho extensions (F(E,S),f$) and (ll(E,S),hg) are 

isomorphic this assertion is an immediate consequence of lemma 

3 in section four*

This completes the proof of the following strong version 

of theorem 13 •

Theorem 22* Let S be a unitary subalgebra of C-. • S is =xs=s=x===a=s —   •— • ■ ---------————---------——•—-j ..................... • -

an c'^onoion algebra of C? iff:
(1) S is a sublattice, closed, under bounded inversion;

(2) 0(EtS) is the,tocology of E ;



(3) ^Jj^jel&s^^
(4) 2Z£_J$£jyi^JLJl&£^^ Pdk^ h in

n^s) ; and
(5) S satisfies (Tp) *



$ 1#' £vJr?V:chxys.x’V^ ?y^^y^.«. Lol; A denote

rii arbitrary real associative- algebra uith unit 1 and let 

II (A) be the set of unitary real-valued algebra hor.or.orph- 

isrs h of A • ’.The Zariski topology for 11(A) is tho 

topology generated by tho cots Y^, & in A# vhcra 

Va » Ch in B(A)| h(a) 4 C] • Let H(A) also Cenote the 

resulting; topological space#

Denote by(& the set of equivalence relations r 

on 12(A) and by d the set of unitary subalgebras 2 of 

A * Loth cots may be partially ordered: set r^ ^ £o if 

^[hj CZ gpEh] for all h in H(A)(r[h] is the r-cquiv- 

alence class of h); set f7 ^ Dp if D^ is a subalgebra 

of •

Every equivalence relation r defines a unitary 

subalgebra c(r) of A and every unitary subalgebra B of 

A defines an equivalence relation /’ll) on 11(A) in the 

following uay: u(r) “ [a in Af^r k, implies h^ta) “ hUc) j ; 

and h^ /’(S)^ 1- k, |D « h2|B •



define a Galois connection between & and ^ Eirkheff [12] •

The iiumediate problem that arises is tho problem or

characterising the ’closed* subalgebras and equivalence 

relations, i.o. those subalgebras B for which 3 = (a o/’Hb) 

and those equivalence relations r for which r = (/> o a)(r)

Consider the special case of this problem that arises

when A » Cr> K a compact space. Since a compact space is

a Ch-space

hr . If
CK

KCK.OtJ a II (CT,) is homeomorphic to K under
' Ik Xk

K and H(K,CjJ are identified by means of Lc

then the problem can bo stated in terns of equivalence relation

r on K • From no?; on. lot r denote an equivalence relation 

on K and let a denote a unitary subalgebra of C^ • Let 

^ (a) be the equivalence relation on K defined by

x ^s)y if f-- a ty ^°- each f in A . With these conven­

tions a complete solution to the problem is stated as 

T'j.ccrem l.r lot K bo a compact space and let A = C-- . Lot 

r be an equivalence relation on K and lot a bo a unitary 

subalgebra of C„ » Then r ” (^ o a) (r) iff r is closed 

and a ~ (a o f} (a) iff a is uniformly closed.

Proof: First, in both assertions the conditions are accessary. 

Let r be an equivalence relation on K and let

a = a(r) • Then a is uniformly closed. If f is in the 

uniform closure of a and x r y, then gx « gy for all g 

in & and so fx = fy . In other words f is in a .



$5

Let a be a unitary subalgebra of Cr, and let 

r ia /> (a) • Consider the pair (T(K,a),t„) corresponding 

to the object (K,a) under process 3 • Since 3 satis­

fies (FP,) and (FP, ) it follows that x r y iff t x 

“ t^y • If x £ y then fx 43 fy for all f in a and 

so (fj o ta and so (f^ o t^Jy for all f in a, which 

implies that t x = t,sy • Conversely if t^x “ t„y then 

fx “ (f o t„)x = (f™ o t )y => fy for all f in a and 
T s x £

so x r y • Hie space T(K,a) is Hausdorff and t^ is a 

continuous function by theorem 1. This means that the sub­

set C cf K X K consisting of tho pairs (x,y) for 

which t„x 62 tv is a closed set# Thea because K is 

compact this implies that r is closed (see Bourbaki [3] p.97)# 

Consider the sufficiency of the condition in each case# 

Let £ bo a closed equivalence relation on K . Then

K/r is a compact space Samuel [13 ] (also Bourbaki [3Lp 97)* 

Let w(r) :K----- - K/r bo the natural mapping# It follows that 

f is in a(r) iff f ® f # o ^(r) where f^ is a 

continuous real-valued function on K/r i.e. a(r) “ C-y, ott(^) 

It is clear that a(r) contains CL,^ ow(r) • Let f be in 

a(r) • Thore is a unique real-valued function f^ on K/r 

such that f « fo "W (r) • Tiiia function f^ is continuous. 

Lot 0 be an open subset of the real numbers. Then f~“ 0 
is an open ^saturated subsot of K • Since MrHf"1 C) « 

iC^ 0 it follows that this set is open and hence that fi is



continuous. Consequently a(r) = C„ / o n(?) . Since — Wil “
a compact space is completely regular, the functions in 

^K/r separate the points and so if fx “ fy for each f 

in a(r), ir(r)x -irC^y i.e. x r y . This proves that 

r « ( p o a)(r) when r is closed.

Let a be a uniformly closed unitary subalgebra 

of Crr • Then ^(n) is a closed equivalence relation on 

K and so K/^(a) is a compact space. Since a is 

contained in (a o /> ) (a) it follows that every f in £ 

my be written as f = f ^ o ^r ( ^(o)) where f^ is a 

(uniquely defined) continuous function on K//° (a) • Let 

~L “ ^1^ in —^ * ^1Gn £i -° a uniformity closed unitary 

subalgebra of $&/yo(^) * $7 the Stone-Ueierstrass theorem 

it coincides with CK/ ^j iff it separates the points. Thi 

is certainly the case as i* (^ (a)x “ ^C ^»(a))y iff fx =• fy 

for each f in a . Therefore a « a,^ o ^ ( p (a)) ~ 

^/p (') 0 ^ ^p (a) ) “ a( /’^f.^ “ ($ °/>) (^ when a is a 

uniformly closed unitary subalgebra of CK • 

Remarks. Having solved the general problem for tho special 

case A 88 CK, K compact, it is natural to consider how tho 

proof applies to case A » C3» E a Q-space. Besides needing 

a characterization of those equivalence relations r for 

which E/r is a Q-space (or just completely regular) it is 

necessary to have some analogue of the Stone-Ueierstrass



theorem. This would be a solution to (AC) by an interns 

condition* Although the colutiou in chanter one is rot of 

this typo it could bo applied here# This theorem also 

justifies tho X'ollGviug change in novation:

if a in a it;ifornl*7 doc-oil Ev.bel'’*ohrv’. of C*> lot ^(o) •-ye^0 •** fc_h.’.«f«T4» ««h».\M ^—»n-^‘'.^ir-.^Lt»u #-.-*^, .. ♦- •*>~«.i^^^.'*>4*^^.J^»/«z^.«*-»*l«k-Z»>.«».^ ^«*M*r^' WMMI» ti..,^.^ «<<^—» * »i«
bo denoted r(?) .
*• »-..«*:r*..* ^-.«. 4 - ^ ^_-4r«>« X« »AW •*♦ KM •- ♦ »<

1* If D is a closed subset of IT let ^ “ C^ in ^J * 

io constant on D] * This is a subalgebra cf this type. 

Tor eiossplo m. equals tho collection «f'.constant function 

and e^ ” C^ • The corresponding equivalence relations 

identic all points and no points respectively. Other 

cner.ploo of closed cutsets of IC ere the finite cots and : 

particular the two points cots Dr.y] * He algebras



distinct from C~ since a « ^ Sr-- -I ~ the inter­
" x rU)y *

section over ell pairs D^yj such that x £(&)? • In 

addition a « a- x^th each finite iff them

exist only a finite number of pairs Ex, 7 J tith x 4 7 a 

-^ ^(^y •

4. Another description of a may bo Given in terms of the 

non-trivial &{a) - equivalence classes (D ) i.e.

those classes that contain at least Ixto pointe# It it 

clear that a « • In thio connection the

follGuinG kind of problems arise: car any of the classes 

E be emitted vithent chanG^C ? vhat kind of

separation statements can be msfe about the I* ? for 

example are there mutually disjoin open sets u„ vith 

D, contained in U for each c in -Q- ? end go on. 

Thece craestiona are of importance because as mill lo seen 

later in this chapter they have a definite bearing on (AC) 

Tills is in section nine, vhc-ra tho concept of a set deter­

mining an dfoevu a is introduced.

let (i fi) cs a pair cOa-sxs^xnG ox a L^ais^-mnj. 

space P and a continuous function f:E------ »F x.iti* fit «



u tkcy ftg raid to bo ioor.urphie if there in a ho~eo-

rwphisn fz--, :r\------ such that o r, » . yr

(Fjf) is a contiguous Ilic^c cf X then it is obvious 

that ? is compact apace#

XT £ is a closed equivalence relation o-i S 

then UVr, tt(&)) is a continuous isAyo of £ . Pi-rchcr-

^ 2 • uyijyJ^uyVr^tJl^J^

Let 2 denote a completely reeler space. Stone [143 curl 

voch [15 j choucd tbmt a cci^act onbcncion (l,b) of 3 is 

Ccfinel up to i£O~crphis::i by x*cquirinc that C.; o b ® 

C^ • /my cor^pact extension ulth thio property is called a 

Stone-Cech co^'pactification of 2 •
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Tho cwtcacion ) is a Stone-Cech

compactification of E « It will bo donated by (3E,i) •

K bo a compact space and let k:E-------

be a continuous function* Then th£S£kJLtiJl^

ZlQ22JiJ2un?ffjXL-JXmm^Z^ She
uniqueness follows from the fact that IE = h~*E is dense 

Ut*

in pS = 11(3,0*) * Consider the commutative diagram

E----------------------—---------------------* H C &» C £ )

k HUO

Since a compact space is a Q-spnco hp is a houeomombJLsm 

and f » h“" o H(l:) is the desired function*

Tills shoe’s that (pS,!) satisfies tho condition cf

definition 1* A 3-certcnsion of a cannlctolv rotrier Grace 
*.Uc—J -4».*«^ — **-*•--- m*«)*m^«» —■■>■» <-*K» f,<»t*..i»..»».,«. *1 T *M|*.<,*||«O«|«.*|-* ■<»»*«*>■«»•»>• I* »■»»..* »*'*HI *,*,^M. *.«*!* ^ *
•«**•» M-^ M^ <*!«■* ■»«*,*» *Wl.*il*

t>i^-—^3 is a continuous .function^ such that .phen. (”,^)

Thora are three immediate formal consequences of

this definition which preserve the analogy between it and

definitions cf chapter one* first, any; two A-cuter rf err

are isorcor^hic,. and
. a are said to bo isomorphic there is a home amor* 
V-^^ /



pruora ko- t’h----- • 1.^ vtth o in - It, . SecondB if

3 1 such♦ • i» ^“U < -«*.^e»-i» -^ ^.^.^n.^ • rny^—- M^^u^m^M^MMbMb^AvAx^WlkVMxete^ttf&^W^IV**^^ J l>-^^fr^. fe^MK^ ..o.^^.^w w**aw.-^ .^- ---^ 
*—

P^.^PU.^1^^ ^i ^Lx Saira a ^

£i£zxrnrJ[LL^dblt£i££l£^A^^ 
H—c".uO~io5.cnr of E orc. E’ rcsnectivcl"’* than, tilers is 

o u^c^n cent Anu our. fnretion f\:E-----*£1 such that
*.i>fl^..»«».ae»!»i.>«-fc-^a ♦^-^*-.^» •J- . n-«r-^ -•* <* w^v ♦_-^.»^-J»- «>«-*>.. a^W*#**-. 4 «.-_^-<«>v«r. »^j<^ ^« -xk.«r^«—- .> ..« ^..'*x«^f>..« •* ^t».» 

n b bg £he recaps of these assertions aro 

formally tho sens co those of the corsjop^ assertions 

follouins definition 5 of cheater ere*

Iko record consequence inplies that 2X-Jt>iXL£ 

"x^ri^I&21J&L«Jl^JJi£u^«^^ be calico a
closed subspace of a compact space is also contact*

Au in the case of tho definition of an -v -c-rtoncion 

of S idle fact that (3E,i) is an extension of 2 and a 

^-extension of E implies that every p-ozteusion (f>b) 

of E is also an extension of 2 . furthermore it implies 
er

that p-extensione of E and Stone-Cech conpactificationa 

of E era oho and the sasie thinn* 
•r

Eci~rvks» CocVs oz*i.-;lr.al construction of a G-exte scion of 

L’ is as follovs# Let I denote the closed unit interval 
lO,1J and let C~ * Cf in C*l 0^ f ^ 1J * ^o extension 

(TCl^hvr. ) of E is a p~ejfwCiision of 2 • It is cn 

extension of 2 by theorem 15 of chapter ono. It is a 

corslet extension sinco SQ consists entirely of bounded 

functions. It io a Stone-Coch coi.ipactificabion of 2 nine



every g in Co, my to expressed as g « AgQ + [i whore 

g_ is in S • Hewitt [10] showed that (H(E,C*),hr» )
U O xj Un

is a Stone-Cech compactification of 3 . Theorem 14 of 

chapter one shows that (1(3,0?), l„#) and (p(E,c5),fA*) 
• Ju -j

= (IC(E,cg) ,m^«) ere also ^-extensions of E • This

last construction is due to Mcxondroff [6] •

Convention. If f is in CW it will ba convenient to 

let f also denote the function f on pS such that 

f o 1 = f • Kith this identification C? ~ Cn^ and tho •y pi/

closed equivalence relations r on pE are all of tho 

fora r ra r(a), whero a is a uniformly closed unitary 
subalgebra of eg * ^3 natural rappings^{rfa)) will 

bo denoted by'Mo) .

T? icoromj?. Lot  IC. bo  a, comoot space, and  let  k: 3 —-—* IC.

bo a continuous function.__ The following statement a, are .
u-»,«}<l»L_f»^feM^M.^-j^»-#-^»A-i>—•^-^--«—»-^*^*-«—»M*«.^^^»^«^«m^>»~^-—^*-**-*»—*«-^<^^~*—«-*»«»►-*—*»-«—»-*-^*<*~*^*^**

(1) !fCafc"cp^ Hj

(2) th2£&J&JLJixI2£2£2£2L^^ »g) m*J

•M.

(3) if. f ».3E "— ♦IC is the contdr^o^



93

Proc;?* Consider the commutative diners
E-------------------=---------------------— HCE.a)

k H(k)

K-----------—------------- * HCKj^k)

If kf is donee in K the correspondence £------>f o I: 
of Cr. with a ~ c- o k is 1 - 1 end since *K satisfies 
(P?^) E(k) is a homcomor^Msm. Hie function g = hZ~ o E(k)

is the desired homeomorpiiicm when K is canpact#

In the follow-ins diagram 
E-----^---------- „ H( e , c^)

e H(e)

there e:: “ :: for all :: in 3 , the continuous function 

E(o) is onto. This is because it raapo 12(3,C’^) on a 

compact, hence closed, subset of H(3,£) which contains- 

the dense set h 3 • If there is a homooncrpliism 

C5H(S,&)------*K such tliat p o h^ = k then f « c o Il(e) . 

Ulis follows from tho uniqueness of f and the fact that 

5 o n(c) o i = c o Il(c) o hc “ C o h o o « g o h^ = k .

Consequently f(p3) ~ K if statement (2) holds.

Assume that f(2Z0 « £ . Zhen kf “(f o i)S is a 

dense subset of I because if is a dense subset of 22 • 

Cnr*cnLet K be a compact c-usco and let k:U------- -K 

he a continuous function <S» * »'i^i.i-.«»'»»7.» .i^^tu: -*«.r j. <••<1-.^ — r ^- »*.»»-*• r ^^r .frw.i - _- . r

^ii^-i^r. Ftet^-'.nnbn are carAv^lr <t thou a ~ fh. o k: t\^r,iii^*^^*-^*^--^----ib^*4*J‘-*,'“^*-“"-^^ ^ *~^f, <^—^-#-



^^ "s an extension or 3 ;

(2) -(n(E.a)tK) is on emersion of E ;

(3) $ (3, a) io tb.o top’oloay of E; and

(4) 'n'(a) o. i an eiibodding..

Proof: Tho equivalence of (1) and (2) is an immediate con­

sequence of the theorem# Statements (2) and (3) aro equiv­

alent by theorems 14 and 15 since (E,a) is an object of 

A* A A f (note that a = C? ok) •

Since kE is dense in K the theorem ehws that 

(K,k) is a continuous image of pE • There is a homeomor­

phism n:pE/r(a)------*K such that n o ^ (a) ® f . There­

fore n o ^(a) oiafoi-k and so ^ (a) o i is an 

embedding iff k is an embedding# 

Pomares. Banascheuski [15] essentially showed the equiv­

alence of (1) and (3) • (H(E,a),h ) may of course be an 

extension of 2 even if 1:3 is not dense in K • It will 

then be isomorphic to (^k) •

If E is a completely regular space lot Q- = 3 ( 

denote the collection of uniformly closed unitary subalgebr. 
a of C^ • Let ^ “ ^ (3) be the subcollection of 

consisting of those algebras a in ^ for which 0(3,a) 

is the topology of E . The algebras in ^ will be called 

the characteristic algebras of E . When 3- is ordered by 

inclusion it is a complete lattice and tS is a conditional!; 

complete sublattice. In addition if c is in C and c i; 

contained in a then a itself is in 3“ • fn general
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^ is not a complete lattice, as it will be shown later 

that ^ is a complete lattice iff E is locally compact 

(theorem 5) •

The relations r(£) for c in nay be distinguish­
ed among the r(a) for a in Q- and as a result provide 

another method of characterizing the characteristic algebras 

of E • This characterization is stated as

Theorem 3* For an algebra a in G the following conditions 

are equivalent;

(1) je(a) o i is an embedding }

(2) ^ x ^3 "n iE ^d V ^ x is -n BE 

there exists f in a with f:: | fy ; 

and

(3) for all x in iE r(a)M a Dr] .

Proofs From the definition of r(a) (2) and (3) are clearly 

equivalent. The equivalence of (1) and (2) is an immediate 

consequence of the following lemma since iE is dense in £E. 

ka<ia 1. let F be a Hausdorff space. and, lot r be an omen 

(closed) equivalence relation on F . Let E be a subset of 

F, such that E is dense in r[E] , If tt:F * F/r denotes 

the natural mapping then is an embedding iff for all ;:

in E, rpd ~ Ex] .

Proof: Assume that for all x in E r[x] = [x] . Then E « 

r[x] and since r is open (closed) E/r|E may be honcomor- 

phically embedded in F/r by a function j such that non0 

j o m, # where n:E------*F is the natural injection and
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^•E------.E/rjE is tho natural mapping (see Bourbaki [3]

pjj2 and pf3) • Since ^ ~s obviously a homeomorphism in 

this case it follows that won- w(E is an embedding.

Suppose w|e is an embedding. Let G = tq and 

denote by f:F-------*F the identity function where fx = x

for all x in F • Lot V : G----- - E be the continuous 

function such that *fow|g=y|E, If O is the function 

^ o wj^g] : rEB]----- E contained in r[E] , then 

G|E = f |E * Since F is Hausdorff and E is dense in 

r[E] it follows that & - f|r[x] . Consequently E « r[fj 

and co for all x in E r[x] = [x] since rr|E is 1 - 1 .

An immediate consequence of this theorem is the 

following 

Corollary. If (Ktk) is a compact errtencion of E and 

f K , is the continuous function with , f o i a k t

then f(3B A <£iE) is contained in ICQ 431 kE •

Proof: If a “ C^ 0 k then 17 (a) 0 i is an embedding by 

the corollary to theorem 2 • The proof of this corollary 

shows that there is a homeomorphism n:3f/r(a)------- K such 

that n o n(a) - f . This theorem shows that if y is in

PE A C iE then n(a)y is not in rr(a) (iE) , because

it (a)y - u(a)x implies x is not in IE by (2) • Since

n o w(a) o i = f o i = k it follows that n naps <£(n (a)(iE))

on kEt !•©• f(£EA GZ IB) —HO GZ. KE •



97

nemark. I'ore generally if (K,k) is a pair where K is a 

compact space and k:E------ -X is continuous, then f (£E A (CiE) 

is contained in K n (L kE iff iE is r(a) - saturated

where a « d, o k .

To each c in corresponds the collection of •—• ••
compact extensions (K,k) of 2 with C^ o k = £ . One

such extension is (3E/r(c), n(£) o i ) . Let K(c) =

(U(c) , Tr(c.) o i ) denote this extension of E • Since

Etc?) is the identity equivalence relation, K(Cg) and

(3L,i) nay be identified. Although the definition of

(3E,i) as (ll(E.C^) ,hn*) suggests that the compact extension 

corresponding to £ should be taken to be (ll(E,£),hc) it

will be more convenient to use the quotient construction

K(c) .

The correspondence c----- *K(c) defined for c in 

may be extended to & by defining K(a) = (*E/r(a) , rr (f)) •

Let o’ and a be two elements of with a?

contained in a • When a is identified with C^^j then 

a1 is identified with a uniformly closed unitary subalgebra 

of C-/> \ • Let r(a!a) denote the closed equivalence 

relation on K(a) defined by a* considered as a subalgebra 

of Cj,^) • In other words for x,y in K(a) x r(a/a)y 

iff f *x 83 f’y for all f1 in a’, where f ’ denotes Loth 

a function on E and a function on K(a) such that 

f* o n (a) o i ^ f’ •



Lot ^(o»,o):K(n) ^ fe) /^S. ’ > £;) b 0 tdlO

natural napping. It is clear that ^f(-)/-(nt -) ° ^^S^ ° 

~ a* and hence there is a horieonorpliis^ SSK(a)/r(af,a) 

----*K{at) such that 6 o ^(**>£) o TiW “ ^(g*) (see the 

discussion of continuous iaages in section 1). Let ^Ca’^a)

“So ^(a1^) • Then ^(aSa) :K(a)-------^(a1) is the function 

(continuous) such that ^(a*,^) o Tf(s) 43 ^(aj) •
Let a » af and a be three elements of & such

that af contains a and is contained in a • Thon

rr(a >2/) ° ^f/sf;) ” ^'2 »&) since it (a ,0’) o ^(a^a) o w(a) 

~ u(a Jia’) 0 '^L*) ~ ufa ) •

Using this notation ^fa) = since

n(^s^) 0 'u(Cu) = tt(o) • Hiis fact suggests the following 

analogue of theorem 3 •

Thermon A. Lot a bo tun elouonts of d with 0?
«ieitjuxssu£s5si« ——• — —

contained in a and lot Z bo, a subset of ECa) that

contains ( ^Co.) o. i)3 . dho fplle:flr\t conditions r.re ori'.ivr.

(1) rrUSj L^£zz^(&O_£lJI^^

(2) if “’ is la X nnd , r ^ :: is in !:(n) 

there o^stsf’ nr uuthfi: 7 f f^ :

(3) sU’ sf JLdfiilj^Lfl
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lYoof; Since rCu^a) is closed and X is dense in K(a) 

(1) and (3) are equivalent by lemma 1 • From the definition 

of rfa^a) it is clear that (2) and (3) are equivalent.

If a* is identified with Cy(a«) it follows that 

(1) implies (4), provided the restriction to X of the 

extension to K(a*) of a function f1 in a’ is its extension 

to X . Let f1 be in a? and let f^ be its extension to

K(a*) i.e. fr on (a») o i = f ’ • If f * = f-^ o Ha^a) |Z

then fr o T^a) o i = fT o MaSf) o Ma) o i ''[because

X 2 ( Ma) o i)E) = f7 o Ma*) o i = f * • This shows that f *

is the extension of f* to X •

Assume that a* satisfies (4) and let a’ also 

denote its extension to X • Then (H(X,ar) ,h? t) is a compact 

extension of X • The function G = h.^ r o Ma) o i:3 ——H(Z,a ’) 

is continuous with dense image. Consequently there is a 

homeomorphism Sillas’)------ ♦X(a*) such that 5 o g = Mu’) 

where gipE------ •MX^a’) satisfies g o 1 = G • Let 7 =

6 o hnt:X----- *K(at) * It is a homeomorphic embedding and 

7 o Mo) o i = 5 0 h„t 0 Ma) 01 = 50501= Ma’) o 1 . 

Consequently 7 -Ma^oJlX and so (1) implies (4) • 

ZgHf^.a The relations r(a*,a) and the mappings (a’,a) 

IV a7^ a are used in section five to investigate the 

corrections between the various extensions of 2 . For 

example this theorem shows when a subset X of K(c) that 

contains (Me.) o i)E may be embedded in tho compact extension 

K(c*) for when c contains c/, i.e. when the extension X 
is *contained in* the extension l(c,’) •
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Thio section concludes -with a discussion of sons

1. Lot D be a closed subset of 33 * Tho algebra 

aj = [f in Cg| f |D is constant] is a characteristic 

algebra if D A iE = 0 since pE is normal. ’-hen

D A iE = 0 let c; also denote the algebra a^ Specific

examples of such closed sots are the finite subsets disjoint

from IE in particular the two point subsets of £E A d if . 

If x f y arc two points of BE n (£ iE c.^ ^j is a nawimal 

characteristic algebra of E distinct from CT • Thon 

£ | 0*5 is a characteristic algebra of E r(£l identifies 

at least two points and so c cl or n for some pair of

points identified by r(c) ♦ This shows that £ is defined 

by the maximal characteristic algebras that contain it*

Per any point x in pE A (£13 £[xj ~ A) “ °E * 
If BE n C iE is a closed subset of BE then c.,- _ • —-uJ

is the smallest characteristic algebra of E . This is 

because c is characteristic iff the non-trivial r(c) - 

equivalence classes all lie in £3 n <£ iE (theorem 3) .

Hie set 33 A (£ iE is closed iff E is locally compact,

from which follows the first half of

Thcf^fS. Tno cone1 it ion ally complete lattice C(n)

ccrm:lej5olatt^cpgJLlX 7f J^^

Proof: Consider the algebra If f is in

then f is constant on pE A (£ iE because for x t y in
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£3 A <£iE cr n is a characteristic algebra and so

fx « fy . For each £ in a let X^ ~ f [^E A <E iE] • 

Then A f ([Kd) is a closed set D containing 
f in a 1

(1) thorn is a homoomor-nhisri Q:E——*E’ such that

Op t °r
(2) h (a) is a r^d^pl characteristic algebra of E1 

iff a is a maximal characteristic algebra of E ; 
and

(3) h(q) io a, .characteristic algebra of 3* iff a 

is a characteristic algebra, of E .

pS n (£ IE and if x is in pE n <L iE r (a) [x] = D . 

^(E) is a complete lattice iff a is a characteristic 

algebra. This is the case iff D n iE = $ or in other 

words iff D = pE n (C iE . Consequently if 'C(E) is a 

complete lattice pS A <£ iE is closed and so E is 

locally compact. The converse has been proved.

Ecmcrk. This theorem is equivalent to Samuel’s character- 

isaticn of locally compact spaces [13J • The equivalence 

is discussed in chapter four.

The ma:DJtal characteristic algebras cf E (distinct 

from G^ ) characterise E as a completely regular space 

when £3 A <C iE contains two points. This result known to 

Lanas chew-ski [16] is stated as 
Theorem 6. Let E and E* be two completely regular spaces 

and let h;C^----►Cgj bo a unitary algebra isomorphism. The

folloi-ing statements aro equiT,alent when BE n (£ iE contains 

two points }
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Proof: it is clear that hhiHtE^C^j)------ ► E(EtG^ is a 

homeomorphism. Consider the commutative diagram

E------------------------- - M C£, C e)

6 Hte) fch

E'----------------—--------------- . HdE'j CE*,)

which exists when (1) holds# 11(0) = h because the 

diagram is commutative. Since H(0) mans h^E on hn« E*

and its complement on (Chg^E’ it follows that h(c£ _-|)

= £■[?'( $)■ ^(0)"] till ch is then characteristic. If 

^k.y]’ “ ^(elx.llfejy] is ^araotcristic then :: end y 

do not belong to h^^E and so i[Z)7] -s characteristic. 

This shows that (1) implies (2) •

Every algebra a in (X (E) is defined by the

maximal algebras arv -i containing it. It is characteristic

iff all the £[r>y] containing a are characteristic. Since

h(an) Ues in h(a2) iff a^ is contained in a2 it

follows

and let 

if £?

Assume that (3)

that (2) implies by (3) .

holds. Let Ei =

Ei = hr< Er • They are subsets of IE’ such that

is in &(£’) then a*|Ei is a characteristic algebra
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of tho subspace EJq iff c’l^ is a characteristic algebra 

of the cubspace H* * To show that (1) holds it io necessary 

and sufficient to prove that E{ “ 14 • Since £2* and tho 

natural injections n* of E! are S-osztensions cf the E!

this follows from the following lerzia co pE’n <t iE? 

contains two points when (3) holds and £3 n (£ 13 contains

two points*
Lemina. 2* Lot " be a compact space and let Ih , Eo be two . » ^ .*^x**-w "^~-~~"~-~“~’^*~“,~~~^“—~“—-~"—^——““~~*——*••*—~~’~**~——'——'*—~‘~——~io—~~~—~£Z—~‘~—~~~~~-~-~

aubsraces with Li and E9 each containing at least tn 

points* Then E^ ~ ^ if these subspaces satisfy the 

followin''1; conditions then a is a imifor.:^ closed unitary 

s^tal^ebra of C-r a lib is a characteristic algebra of Ih -------- —----------------u— x --------------------- ------ ——X—_—— 
iff a|h9 is a characteristic algebra of S0 *

Proofs Assurze tnat S^ ^ Eg ^*d that x^ in xn <—-^O ^E -ug • 

Let x, 'r Xj he a second point in (E Eg * The algebra ar,r -., 3 

has the property that £[z >z jl-^2 ~s a characteristic algebra 

of Eo but orx ... ]|E^ is not a characteristic algebra of

Ej (see theorem 4)* This is a contradiction* 

Tlierasoro Ej ^ (E a

symmetry of the ar rumen t this implies that E^ 83 Eg •

henerhs^ Theorem 2 is the best result that can bo obtained in 

ti&? of the fact that there are completely regular spaces 3 

such that £3 a (E IE consists of one point (0.3. the space 

cf ordinals loss than the first uncountable ordinal) • For 

such a space E tho restriction mapping o— a^r*------- ♦C^ 13
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tn algebra isomorphism for which (3) holds. Obviously (1) 

5.3 false in this case.

2. Let Dpn.jD bo Ei closed mutually cis joint subsets 

of pE A (E E . If D = U D. then is defined and

c^ 83 up is contained in £n #<>$ ~ O o^ . This 

shot’s that ~ io characteristic and justifies set-

** ^j^, , o , D^ ^i)^; • • • y 3^ *

Tho characteristic algebras - have tho

property that the intersection of any two is characteristic 

and is of this typo.

Ibis x-aisea the question of whether IX is a lattice. 

If it is not in general, what are the topological consequences 

for E when ^(E) is a lattice? In view cf thecreiii 1 these 

questions be considered in terms cf closed equivalence rela- 

taons on BE • Let a, arid bo tuo elements ox C^~ (-a) 

and let a ~ • Thon r(a) is the coarsest closed

equivalence relation finer than r(an) and ria,,) * If 

r (a,) nnd e(&>) satisfy condition (3) of theorem (3) does 

£(a) satisfy this condition? It io not herd to see that the 

coarsest equivalence relation finer than rfa^) and r(no) 

satisfies this condition. Is it a closed equivalence relation? 

§ 3 , Translation lattices associated pith the algebras a jn EL(f). 

Let E bo any completely regular space and lot C_ and C^ 

denote respectively the collection of continuous re al-valued
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functions on E and the collection of bounded continuous 

real-valued functions on E • Then C^ determines C-, 

as shoun by. . .

Lemma 3. & ilL^jjUssJL^^JteJl^^

Proof: It is clear that C^ is contained in this set# Lot 

f be a real-valued function on E such that 1^0 implies 

(f n X) o (-X) is in C* • Pick xQ in E and c > 0 

and let UQ = [x in E)| £xQ - fx| < e] » Let XQ be creator 

than |fxQ - e| and |fxQ + e( and let fQ « (f ^ XQ) ^ (-XQ) 

Then UQ = [x in E[|foxQ - fQx| <e] and so is open# This is 

because f xA = fx and so by the choice of 1 000 J o
i^o'^q “ ^*o^^ ^ $ 2af I'^q — xz| < e •

This connection between C^ and Ci su^ests tho 

folloving; definition of a function df on ^= #(E): if a 

is in ^ let ^ (a) » [f in IsJ for X » 0 (f ^ X) ^ (-X) 

is in a] « Some obvious properties of ^ are listed in 

Theo??an .7. The function is such that:

(1) if £n is contained in a? then °^(a^) is 

contained in <^(.%) * iZLJ£h^"flL~L<^^

(4)
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Proofs Tiie first tuo properties ere immediate consequences 

of the definition of ©c (note that a^ o a- is tho stillest 

algebra in ^containing ^ and a9) and lemma 3 •

Since each a in Q is isomorphic to. C^ for some 

compact space K (for example K “ K(E,a) or pf/r(a)) it 

follows that a is a lattice that contains the constants and 

so (3) is satisfied# Property (4) holds because of (3) and 

the obvious fact that f in X(l) is bounded iff f is in

The collections <Z(a) of continuous functions on 3 

are characterised by

Theorem £♦ Let S bo a collection of continuous functions on 
E • Then there exists an algebra a in Cl (2) . tlth 3 “^ (a) 

iff S satisfies tho following conditions:

f*^) S ig a translation s’Alrttico of C-, that 

contains the. constants and is closed under 

multiplication by real numbers;

( 3 is uniformly closed;

(^) S is closed under •positive inversion ; and

Proof: First consider the necessity os those conditions# Let 

a be in Cl and consider ^ (a) •
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Let f and g be in if (a) and let X be ^ 0 • 

Bio distributivity of tho lattice of real numbers implies 

that C(f a g) a X] u (-X) = C(f a X) a (gA X) ] u (-X) =

C(f a X) u (-X) ] a C(g a X) u (-X) J • Since a is a

lattice f a g is in (a) • Similarly fug is in
of (a) • ^(a) contains the constants because a is a unitary

subalgebra and a is contained in if (a) • If a is > 0 

then of is in X(a) because for X »0 (of a X) m (-X) = 

aC(f n X/a) u (-X/a) J • Since C(-l)f a X] u (-X) = 

(-l)C(f n X) u(~X)J it follows that <^(a) is closed under 

multiplication by real numbers#

To show that ^(a) satisfies (X^) it remains to 

chow that ^(a) is a translation lattice i.e# if f is in 

^(a) and a denotes tho function cs: = g for all x in E 

then f + a is in ©2f(a) • Lot X be ^ 0 and consider 

C(f + a) a X] u (-X) = [f a (X - g) + a] U (-X) “ Cf a (X - a)] 

u (-X - a) + g • Sinco a is a translation lattice it is 

sufficient to show that when f is in ^(a) and X ^ p then 

(f n X) u p) is in a •

Lot XQ = ma;:C |X|, |p| ] . The function fQ = (f a Xq)u 

(-X ) is in a and so also are the functions 1’ n X and 

(f n X) u u • From the definition of X_ it follows that 

(f a X) v p = (fQA X) u p and so (fA X) up, is in a .

This shows that ^ (a) satisfies (^ ) • 

Let (fn)n he a sequence of functions in ^f (a.) that



convert uniformly to sone function f * If X is o 0 

then the functions (f n X) *-» (-X) converse uniformly 

to (f n X) u (-X) • Since a is uniformly closed 

(f a X) ^ (-X) is in a and co f itself is in ^(a) • 
Consequently oT(^) is uniformly closed.

. Let f in ^ (a) bo ^ 0 and assume that for each 

x in 2 fx I C . The function 1/f is continuous and if 

e^ 0 1/f u 1/c is in ^(n) • Let 5 be >0 and consider 

(f m g) ns which is in a since f is in ^(oj . This

function is ^^nc and since a is closed under bounded 

inversion (being isomorphic to C-> for acme compact space 

E) l/(f o 6) A c = l/(f o a) O 1/e = (1/f ^1/5) Ml/S

is in a . Using tho distributivity of the lattice cf real 

numbers it follows that (1/f a 1/g) u i/- □ (1/f u 1/c) a 

(1/3 m l/e) =» (1/f u 1/g) a 1/g . Let X 53 1/3 • Thon 

(1/f m i/e) a X is in a for all X ^0 and so 1/f m 1/e 

is in ct(o) for all c > 0 . Hie functions 1/f ^ 1/n are 

in bC(a) for each n > 0 and as they converge uniformly to 

1/f it follow that 1/f is in ^(n) because ^(o) is 

uniformly closed. This show thatch a) is closed under pos­

itive inversion.
If f is in ^(a) then since X(n) satisfies 

(^ ) f m o and f a 0 aro in of (a) . Assume that f is a fun 

ctiou such that f u 0 and f n 0 are in (a) . Then f is
in ^(a) . Ilion X is^ C/f a X) ^ (-X) “ (f v C) a X *
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(f n C) u (-X) and sinco a is closed under addition 

(f n X) u (-X) is in a if X is > 0 .

This completes tho proof of the necessity of those 

four conditions,

Assume that 5 satisfies ( ^2^’ (<J and

(Z.) Conditions (Zj) and (^) show that Sx

uniformly closed translation sublattice of C^ which con­

tains the constants and is closed under multiplication by real 

numbers# Assume that Ss is an algebra. Thon S" is in 

3(2) .

If f is in S and X is »0 then (f n X) *-» 

(-X) is in SK and so S is contained in Z(S”) •

Since S satisfies (Z^) and is closed under 

multiplication by (-1) it follows that S =Z(S") if S 

contains all tho positive functions in Z(S”) • Let f ^ 0 

be in ZsH) • From the first part of the theorem f wi/n 

is in Z(5”) for each n^ 0 . Also 1/f v» 1/n = 1/f m n 

is in Z(S") for all n > 0 . If ^ “ 1/f ^n, it is in 

SH and hence in S . For each x in E ^x > 0 and since 

3 satisfies (Z^) l/gn = f ° 1/n is in S for each 

n ^ 0 • The functions f ^1/n converge uniformly to f and

sinco S satisfies (^J 1$ follows that f is in S .

Consequently S •=Z(sM) .

Eiis completes the proof of the theorem assuming 

that S" is an algebra.
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The following lemma completes tho theorem, by shooin'* 

that S“ is an algebra if S satisfies (^) and (X9) • 

Lenaa Lot B bo any set and lot . S" be a ’uniformly 

closed translation sublattice of F^ that contains the ---------------- —----------------------------- -------------- ------------------------- -------------------- ---------------- . 

constant, functions, Thon „ S~£ is a subalgebra iff it is 

closed tinder multiplication by the real numbers. 

Proof: The object (E,S") is in A * and so process «£ is 

defined for (E,S") • The space L(EtSs) is compact since 

it is homeomorphic to 7(2,3"') • The collection (S3^ of 

functions fT on L(E,S' ) such that fT o 1^ = f is a

uniformly closed translation lattice which contains the con-

starts and separates the points of L(E,S") •

If SH is closed under multiplication by real 

numbers the fact that cC is isomorphic to J | A’ implies

that (Sa)T is also closed under multiplication by real Xi
numbers• Wien (S”)T is closed finder multiplication by real

numbers it has the tiro-point property i,e, if m ^ y are two

points of L(E,S“) and if X,n arc tiro real numbers there 

emists a function fL in (S”)L with fjX = X and fLy “ 

|i • Assume that gL is a function in (S“)L such that 
A1 - gLx + cLy " Pl • Let e « ^'y . Then egL is in

(Sk)l and (egL)x - (s~L)y = X - p . If o = p - ei.^ then 

f- = egT +6 is a function with the desired property since 

fjX ~ fL7 = X - p, and f^ = ^ •
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Stoners proof of th© Stone-Veierstruss theorem (see 

Dourbaki [17J ) shows that a lattice of continuous real­

valued functions on a compact space K is uniformly dense 

in C„ if it has the two-point property# Since (e“)T 

is uniformly closed it follows that (SH)_ = C^p $hj • As 

a result S^ is an algebra since S" “ ^(r g-2) ° ^rH • 

Mc^ Theorems 7 and 8 show that a solution to (AC) provides 

a solution to (2C) since ^ is 1 - 1 and a solution to (AC) 

characterises X{ C^) among the lattices satisfying (^), 

( <<V^) and (^ .

Tho characterisation of the lattices <£(a) Given by 

theorem 0 is an internal one. For souq purposes it is core 

useful to relate ^(a) to the equivalence relation r^D on 

pE * In order to do this it is necessary to show that every 

function f in C« defines an K - valued continuous function 

f on GF with f o i » f • ««* b •—•
First consider the following lemma, 

J^mFbJ1 s. ^c£_j£~~i_LlJli^

n ^0 is an intovor.Thpn if m is in 3f tho sequence 

(f r) is moot one.

Proof: To simplify the notation identify 2 with iE and 

any £ in with its ccrtension to •

For all x in pF fQ:c 53 0 . Assume fnx > 0 for 

cone n > 0 • Consider f-^: . Since (f^ * n) M (-n) “ fn



Similarly if ^: ^ - ^ the function is continuous 

st :r0 •

Since rQ is arbitrary it fellows that f is con­

tinuous .

— C* denotes [f |f in it coincides with

C„~, iff Cr « i.e. iff E is pseudocorrect. Also C-, 

nay be made into an algebra by requiring the correspondence 

f------*f to be an algebra isomorphism. It will not in general 

bo true that CP is an algebra of functions.

Theorem. 9 permits a second characterisation of the 

lattices ^Zf(a) . It is stated as

^ioon?n,ip,. Let a be in^t- (E) . Tiieri f is in<^(n) iff 

for yay in BE, rr(u)y implies ® fy •

Proof} If f is in <?f (a) then for each n ^ 0 f is in a 

lienee if :^(a)y > f^:: » fpy for each n^ 0 • This shows that 

£c a £y ♦
Assume that fx « fy when nr(.a)y • The function 

(£ n n) m (-n) io a continuous function on pE which coincide; 

on iE with f^ = (f a n) m (-n) • Therefore (f n n) v» (-n) - 

f . Consequently if wrfcH fwc = f„y and so the functions 

f are in a for each n ^ 0 •

Let X be ^0 and let n^ X be an integer. 3ir.ee 

(f n X) o (-X) » (f n X) o (-X) it follows that (f zi X) ^ (~: 

is in a and hence that f is in X(d .



Cp'^lp^r 1. 1'^. ^-7 £ - £7*P. ^- .Q
^i<yy.f + g is. in c£(.~). Tf . f is i-.ioC(a) /^- i~ ^ 

£ ^HJL±Jl-_£^£^

. IT £ and g arc positive continuous functions then 

f and £ are positive. Therefore fx + gx = (r + Jz: for 

each :: in GE • Tae first assertion Soileau immediately 

from the theorem.

If C is in C* then 5 “ g and co £ is bounded. •J «^»
Consequently if f is any continuous function f:: + m: ~ 

(f + ^x ^^ each ' :: in pE . The rest of the corollary fol- 

lo’js from tho theorem* Another almost immediate corollary is 
Corolla™* 2. het a bo in G-{I) and lot C-T^ -° ^-° 

collection of continuous - valued functions £ ®*L— 

such that g(Tf(a) o i)E is real-valued. Then <^(o) “ 

&1 °- ‘fe^ 0 “ *

Proofs If 2 is in ^C') ^lcn & ° T^^ is ~n ^y a ^ • 

Since it is compatible fith r(a) g o p(o) o i is in^(a) . 
••• 

Conversely if £ is in f£(a) the function f is 

compatible uith r(a) • Therefore there is an H - valued 

function g on K(n) such that g o nl?) ^ f « If 0 is an 

oncn subset of h then f^O is an open r(a) - saturated
-1 -1 ~

subset of pE • Since n(a) f 0 « g 0 it folione that g «*• *~e
is continuous.
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completely regular spc.co and let (Y,j) cenote an extension 

of E . It will be considered to have been constructed if 

any isomorphic extension has been constructed# In this 

sense to construct all tho extensions cf E it is sufficient 

to construct a collection of extensions of E such that any 

extension (",j) is isomorphic to one of them. Such a 

collection of extensions is said to be rv^n^ontutivo^ One 

of the purposes cf this section is to construct a roprosentati 

set of extensions of 3 which is non-redundant in tho sense **^^»««* aMBN^M*M*M^>^»>«M*M^M«rf«»^«»

no two distinct extensions in the set are isomorphic.

from the definition cf a characteristic algebra and 

theorem 3 it follows that if c is in C(E) then (K(c,), 

wk) o i) is a compact extension of E . Consequently if 2 

us a subset or ^(c) thau conoams ^''^f^ o x)^ tiien as a •~<^-O‘“ 

space of K(c) (h^rk) o i) is an extension of E . LetHZ ( 

be the collection of extensions of this type. It is a set and 

it io a representative collection as stated in 

’^;oo-'cn ^T ♦ If cf E there exists an

:o_ a l.^obra c_ rxy bo taken to bo,. *

Proof: First, ££BV29 Y is a compact space. Then Cm o J « 

Cy 0 J is a characteristic algebra £ of E • By the defin- 

ition of a p~exter.sion J has an extension f to pE with 

f o i “ j . Since jE is dense in Y theorem 2 shows that
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o| 
H

I

(Y,f) is a continuous image of pE • Therefore there is a 

homeomorphism y:K(£)------ -Y such that y o Trfc.) = f • This 

meams that y o r(c) o i = j and so (Y,j) is isomorphic 

to (K(c), w(£) o i) .

Second, assume Y is not compact. Since Y is com­

pletely regular it has a p-extension (pY,iy) » The exten­

sion (pYjiy o j) of E is compact and isomorphic to 

(2(c), rr(£) o i) where £ “ Oy o j . Let y:K(£)------ *pY be 

the homeomorphism such that y o n(£) o i = iy o j • The 

space Y is mapped homcomorphically by y““ o iy on 

(y”“ o iy)Y = Z which is contained in K(£) • Clearly Z 

contains („(£) o i)E and so (Ytj) is isomorphic to 

(^pi(c) o i) •

P-emark. ^® se& ZHI ^) is defined by means of the specific 

compact extensions E(£), c in ^(E), of E • Any other 

specific choice of compact extensions of E defines a corres­

ponding representative of sot of extensions of E •

The extensions (Z,n(£) o i) in 2EZ (^) • ^Y ^o con­

structed as quotients of extensions in pE in view of 

Theorem 12.. If Z is a subset of 33 that contains iE and 

is in ^(E) then (Z/r(£) Iz, n^(£) o i) is an e:^onsipn of 

(where vt7 (£) is the natural mapping of Z onto Z/r(£) |2)

If Z is £(£) -saturated this extension is isomorphic. to the 

extension Me)'h ~(c) o i) of E « If I is a subset of 

K(£) that contains (rr(c) o i)E the extension (X,o(c) o i) 

is isomorphic to the extension (Z/r(c)|.Z, 5^(0) p_ i) where
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Proof: Consider tho diagram
iE------------- ^------------- .Z--------“------------^E

nigicj ^(s) ires.)

whore n(ix) ” ix for all x in E, m(y) - y for all y in 

Z# end .n,n era tho unique continuous 1-1 functions which 

are defined by requiring the diagram to be commutative.

Since c is a characteristic algebra rr(c) o n o n « 

n(c)|iu is an embedding and ^^(c.) is a homeomorphism. 

Consequently mon is an embedding. This implies that n is 

an embedding. Let U ho an open subset of i~/rfa) |iZ and 

let 0 be an open subset of pE/r(c) such that fa o n)U - 0 

A fa o n) (il/r(c) Sie) . If P - n“x0 then nU ® P n n(iE/&fa) |iE) 

and since m is continuous it follows that n is an embedding.

Therefore ^(c) o n o i » ^(c) o i is an embedding and 

so (2/rfa) 12, ft,fa) o i) is an extension of Ej.

The second assertion is a particular case of a veil known 

result for closed equivalence relations and saturated subsots 

(see Bourbaki [>] p35) which shows that n is an embedding if 

3 is rfa)-saturated.
The third assertion follows from the first two since 

tT1(c)X is r(c)-saturated.



li-^i. The 1-1 correspondence between th© r(c)-saturated 

subsets Z of pZ that contain iZ and the subsots X of 

K(c) that contain (Me) o i)E (Z----►Mo)" and X—>rf’~(&)X 

sets up a 1 - 1 cciTSSpondonco between the corresponding extern' 

cions of E • This shows thatTEX^) may 'to constructed with­

out duplication by weans of the relations r(£) and those 

r(c)-saturated subsets of ^3 .

The relation ’(XjMc) o i) is isomorphic to 

(X^Mc’) o i) ‘ is an equivalence relation on^EKD • let 

(f^) bo the corresponding partition of EEC Z) into
'" a in -SL 

isoworphism classes • It is clearly sufficient for tho 

purposes of constructing a representative non-redundant sot of 

extensions of E to choose precisely one extension from each

Lot (X,M.c) o i) and (T,Mc) o i) be isomorphic 

esetonsions of E and let j:X----- *Y bo the homeomorp'iism cue* 

that 5 o Me) o i ~ Me.) o i • Since (Me.) o i)E is dense 

in X and I is Hausdorff it follows that jx = :: for each 

x in X and so X = Y • Therefore for each c in C there 

is at most one subsot X of K(c) with (X,rr(c.) o i) in a 

given isomorphism class I •

Let (X,Mc) o i) be in IQ and let c^ be the 

characteristic algebra Cm o Me.) o i • The algebra c... is 

independent of the representative of Ir. sinco if (Z,k) and
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(T* j) are isomorph!c extensions of E Gw O k « Cy O J • 

Theorem 11 shows that there exists a (necessarily unique) 

subset 2 of K(c) for which (X . n(c ) o i) is in 

I • Consequently the family ((X . n(c ) o i)h ~ 

of extensions (X , ^(c ) o i) is a representative non- 

redundant set of extensions of E • 

Remark. This shows that for a given construction of tho

compact extensions of E a representative non-redundant

set of extensions of E may bo defined by identifying each

extension (Y,j) with a subspace of that compact extension

of E which loosely speaking is a ^-extension of (X,j) •

As shown in section seven of chapter one the 

processes a,a , *f and cC. provide methods of construc­

ting a representative collection of Q-extensions of E • 

Tlie remainder of this section is concerned with another

method of obtaining a representative collection of Q-exten-

sions of E • It consists of defining subsets of the

compact extensions K(s) to correspond to collections S of

continuous real-valued functions on E •
Let £ be in ^ and let E also denote (~(g) o i)E 

Then E is a subset of K(e) • Let f be in C2 and denote 

by Br th® trace filter on E of '^(x) - the neighbourhood 

filter of x in K(c) • If x is in E lim f exists in

r and is fx • If x is in E and lim f exists in R
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then f has a continuous real-valued extension £ to the 

subspace E«[x] with fx = lim f (see Bourbaki U] p 54) • Let

£ ([f]) “ [x in K(c) [ lim f exists in R] considered as a

subspace of K(cJ • Since it contains E = (r^c.) o i)Ef
£ (Cf]) = ( 6JCf]), n(c) o i) is an extension of E •

The spaco E_ ([f]) is the largest subspace of K(c) to

which f has a continuous finite-valued extension.

Hie operator £ may be defined for any collection

S of continuous real valued functions on E by sotting
f (s) = " . £JM) • Some elementary properties of it

*M 9M»

are listed in
Tlicoren 13. Let £ be in and let Sj , Sg be two subsets 

of C-r. • Then it follows that:

(1) g- (Sx ». sp. “ £c (3,) A £e jsp-i

(2) ^c (8^^ Sg) contains, £ c (3-) ^ ^c (3g)_; and

(3) if - ^ is contained in Sp then ^c -(^)

contains (3a)_ t

Proof: (1) implies (2) and (2) implies (3) • Property (1)
holds because £ (3^) A £ (S2) ~ ( ^ £ (CfJ) } A

£ x f in 3^ &
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( ^ (W)) - n £ (W) = E (s oS?) .
f in S2 “ f in S1M S2 “ “

Instead of fizzing c and varying S as in theorem

13 consider a fizzed S and the relations between the member

of the family ((€ (S), w(c) o i)) . of ezrtensions of

2 « The first and more or loss obvious result is stated as

•2'----- c

Theorem.. Ik*, het c^ c^ be two elements of ^ with c^ 

contained in c? . The set it

subset X of ^c |S) such that?

(1) % contains (it(cJ o i) E ;

(2) X , is r (^,£2) ~ saturated ; and

(3) iL-2 £(£1 >£2 ^ f~-^2£_fi__JfL^^
for each f in S (where f is the extension

of f to 6 (S)) .

Proof: Since (4c^) o 1)3 lies in

w(c,,co) o n(co) « rrtej it follows

E
~1 

that

(S) and
^(c-^) ^cJ3^

contains (wC^) 0 i)E The set irCc^#^ ^c ^^ is

obviously £(£^#£2) ~ saturated and is a subset of ^c (S)

It also satisfies (3) •

Assume that X is contained in £_ (3) and

satisfies these throe conditions and let X. “ ^,0^)1 .
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It is clear that Zj 

(n fc^ ) o i)E and so

is a subset of

2 3 ^S?1^?^

8
~1

(3) containing

contained in

^’(jxl »f,O^ ^Q (S) •

An almost immediate consequence of this theorem is

Theorem. 15. Lot

contained in c9
-l’^ bo two elements. of_^ with £j

, . The, following statements ore equivalent!

(1)

(2) ~^1’~2^—Cn

- saturated and for(3) (3)- - is

in this sot . x r (c^ >Cg)y implies fe = fy for

each . f in 3 .

In particular if. S is contained in ^(c-i) then n(cn ,c?) 

£ (3) « £ (3) for every co in that contains c1 •—22 ' £i — ■ j-

Proof! Theorem 14 shows that (2) and (3) are equivalent.

then ~2^ ^c

(1) • On the other hand if

(3) contains £ (3) whic’

(1) hold

shows

theorem 14 that (2) is true.

XAUbUiaU UXiU-U O / • U^X-A^

notation of theorem 10 it follows that every f defines a

continuous K * valued function f in
-2

since JT^)

is contained in bince in <Z( cp these



o

functions f, f in S, are compatible with Hc^ ’-2^ *

Tho set £ (3) = [x in K(co)| |f::| <^fo? each £

in S ] Tills sot is • saturated (since the

functions f are compatible with r/c^fj and since f = 

f | £ (3) it follows that statement (3) is satisfied# Con­

sequently all three statements hold in this case.

To show that the operators £ , £ in C , define a

representative collection of Q-extensions of E it is sufficient

to establish tho following connection between these operators 

and process 3 •
Thppreri 16. If 3 is a subset of <^(c) that contains c 

the extensions (T(StS),to) and ( (3), n(c) 0 i) arc

isomorphic.

Proof: Since -^ satisfies (FP^) and (FP^) theorem 15 of 

chapter one shows that (7(3,3),^) is an extension of E

when 3 contains a characteristic algebra of E .

Let 3 « [f |f in S] where f is the extension of f

to £q (3) • Consider the objects (E,S) and ( ^c(3) >3) of

$ and the napping w(£) o i in Hoza ((E,S)( Ec (3),3)) •

Since S o n(c) o i “ 3 and the correspondence f f o wfcj o i

« f is 1 - 1 the fact that -J satisfies (FP?) implies that 

T(n(c) o i) embeds 7(3,3) on a closed subset of ?(f (3) ,3) •

Consider the commutative diagram
(E, S)------------—------------- *T < E> s>

T(VCs>»*>
OWoi. J

> ’ —
(£cCS\ S)--------------------—Tt E« ^S), S) .
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The function trr is continuous since tho topology of £ (S)
■■a

is the weak topology 0( £ (3),3) (see theorem 1 of chapter 

one) • Consequently (t^ o n(c) o i)E is dense in T(£-c(S)t3)

ibis implies that T(n(c) o i) is a homeomorphism#

To prove the theorem it is sufficient to show that 

tg is a homeomorphism# Theorem 15 of chapter one shows that 

t-T is a homeomorphic embedding and so it is sufficient to show 

that tj ^ (S) » T( £c (3),3) • 
•—» MA

Since S is a subset of <23 (c) containing £ it 

follows that SH =* c • Let £? = (3^)" “ (3"),? • Then £,

is a characteristic algebra of T(3,3) and (H(T(E,S),0^),h ) 

is a compact extension of T(E,S) • It is clear by the Stone-

Ueicrstrass theorem that 

that the compact extension

CH(T(E,S),ct) ° hc? “ % • 

(h(T(E^S) ^£^1) $ h^ o tg)

Tliis ShOWS

Ox S

is isomorphic to the extension (K(c),tr(c) o i) Let yiKCc.) —

n(T(2,S),£T) bo the homeomorphism that makes the following

diagram commutative
E —

1TC£)«i

Kco-

fcs
_______ _T(E»S)

Define the homeomorphic embedding G:T( £_ (3),3) by setting
A—#

e = y"1 © o TCtT^Cc) o i) • Then 0 o t« o r(c) o i «
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T o h o T(n(c) o 1) o ty o n(c) o 1 = v’^ o h_ o to “ 

t-Xc.) oi# Therefore O o tg io the identity napping of 

EL (5) into itself.

It is clear that 0T(E (3),S) is contained in 

£ (3) and therefore since 0 is 1 - 1 that tn £ (S) = 
r Mm.

T( E (S),S) . This completes the proof of the theorem.

Tills theoroa has a number of corollaries that arc all 

consequences of properties of process O • 

Corollary 1« 3 is a subset of £ (c) then E (3) is a
MM 

C.-spaco.

Proofs E_ (3) « E (3 « c) which is homeosorphic to tho 
Mm MM

space Iff,3 °C.). Since 3 is a Q-process the corollary 

follows.

Corollary 2. If X is. a subset of K(c) contain^ (~(c) o i 

and if K(c)ndix is a union of G$ -. sots then as a suhonoco 

I io, a. c-ppnee?

Proof: Lot xQ bo in <C X . Then there is a sequence (U,J.n q

of open sots In K(c.) such that Un 2 U^ and such that iro 

is in ^ n which lies in C X . For each n let /*

be a function C^^j such that gnxQ « C, ^1 Cu^ = 1, and

and 2(&r ) = Ex in K(c) Igu « 0] contains x and is disjoint
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from 2 * This is because 2(g) lies in n •

Let g., = g„ o tt(c) o i • Then c is in c and since

g,, x y 0 for each x in E it follows that 1/g., is in ^C (c) •
^o "Q

Clearly ^(k/gx 2) contains X and omits x0 • Therefore

£ “ ^ (3) where S = [1/c |x_ in K(c)A<Tx] which is a 
— o

subset of £(c) . Tills corollary follows from corollary 1 .

Corollary 3.. Lot 3 bo a translation sublattico of coutinaoro

real-valued functions on E that contains, tho constants and is 

closed under multiplication by (-1) . If 3” = 3 C^ is a 

characteristic algebra , c oJL-JLJili!lJsw£2a2^^  ̂

o i) are isomorphic.

Proof: It is clear that 3 is a subset of ©^ (c) containing c

The result follows from the theorem and theorem 13 of chanter one 

wliich states that J | A' and cZ* are isomorphic processes.

Corollary/ A, Let 3 be a unitary subalgebra of continuous 

real-valued functions on 3 which io closed under bounded in­

version and which is also, a sublattice of , C? » , If 3” - 

S A is a characteristic algebra c of E tho ^tensions 

(11(3,3) ^) and . ( €-c (3), tt(c) o i) are isomornhic .

Proof J Analogous to the proof of corollary 3 (writh 14 replaced

by 12) .

Uhen S = C-, corollary 4 shows that the extensions

(£r.*(CP)#i) and (11(3,0$) »hc ) are isomorphic. Consequently
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( £r* (CL,) ,i) is an i>-extension of 2 Let ^B 13

As diom in section seven of chapter one a repres­

entative collection of C-extensions of E nay be obtained 

by applying any one of tho processes J , 3- , ^ or <^ to 

the objects (E#S) uhcre S is an extension algebra. If 

3 is an extension algebra then 3“ is a characteristic 

and 3 is a subsot of £ (3s) containing S" . Consequently 

the family (( ^(S),n(e) o i))_ °^ Q-extensions

( £ (S^nfc.) o i), Sa subset of <^ (c) is a representative 

collection of Q-extensions of E .

$5 • ^'t quasi-pyders on the collection of extensions of E . 

Let (X, nfcO o i) and (Y,n(c) o i) be two extensions of 

E in ZEZ(f) that both *lio in* K(c) • A natural uay to 

compare these extensions is to compare the subsots X and 7 

of K(c) and to set (Xtn(c) o i) ^ (Y^nfc) o i) iff X is 

contained in Y • The relation thus defined has th© following

obvious extension to the collection of all extensions of E •

Epfinition 2. Lot >4i.) end (Zoig) bo t'.v extensions of

E . Set ^ ^E>^^ ^- there exists a homeomorphic

e^cddinr^21ai:==^

This definition expends ^ since in the previous

situation the natural injection of X into Y is tho desired

embedding.
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The relation ^ is obviously rc.ClcilTOt If ^1’^1^ 

^Z.’AP ~ f^?^) end 321^2 £ro ^^ corresponding embed- 

dings. then j^? o jpl’^l-----*^3 ^ a homeomorphic embedding 

such that 3^2 o j^ o j^ = j^2 0.^2 = ^3 * Consequently 

the relation^ is transitive.

If (h^jj^) and (Lg.^) are isomorphic extensions

then it is clear that (S^t Jp ^ C^ntdp) — ^1>^1^ • Con­

versely assume that this is the case and let ^21 ^ ^12

be suitable embeddings. Eien ^12 0 ^i^L? 0 J2 ” ^1 “^

Qpi o 312) 0 ^2 ° ^21 0 ^1 a ^2 * Since Xj and Xg are

Hausdorff and j. E is dense in X. it folloustthat ^12 and

j,^ are homeomorphisms. Consequently (z^i^ ^a’h’ ^

^1’^1^ "““ ^"G G-^casions are isomorphic. This shows that __ 

induces a partial order on the set of icomorphirri classes of 

the colicction of .er^cnsions of E »

Assume that ^1’^1^ ^ ^t2*'^2^ end lot Joi •Xj^—“^x^ 

be an embedding such that J2i 0 ^1 = ^2 * ®ie ^c^c^^S lemma 

shows that J21 is ^iQ110 not onl7 £G 031 embedding but also as 

a continuous function.

Lpr?a 6... L2kULapdiL-md2d>UL±2jd£l~JixJmi2_^ 
^en there exists, at most one .continuous function y^^ : Xn----- * ~
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Proof: Let Yoi ^d 

tills property* Then 

dense in X^ end X,

Y^ *ce tvo continuous functions with

^J31L ~ ^21 ^1E • Since ^l3 is
is Hausdorff it follows that ^21 = ^1-

Ec:?i±t In view of tliis lerxia it makes sense to speak of the

^2*^2) of 2 * Consider three extensions

existence of the function Y21 *or a Pa-ir of extensions

^l^P ^

^i»^i^ ^ ~ ^’2»^ of E . If Yoi ^^ Too exist so does

Y^ and y^i a Y32 0 ^21 * -^s is ^ecaUG0 T32 0 Y?1 0 J1 ~

V32 0 3, = J3 .

Lenina 6 suggests the definition of a second quasi-order

for extensions of E •

Pf£?-I“d^ Let (X^^) and (X>5c). be two extensions of 

ZLjL^O^&ijJi}^^ if tho continuous function

^21—1=^°—^^^ (such that y?i 0 ^1 = ^ •

Hie arguments used when dealing with the relation 

nay be repeated to sho:?: 3 is ~ anrc5.~o;?dor which induces, a 

partial order on the set of isomorphism classes of the collection 

of extensions of E *

It is clear that (^^J 3 (X,,^) if ^i*^) ' 

(X, jo) i.e* 3 is a 'coarser* relation than ^ • A. 4*
Let U>j) be an extension of E • An examination of 

tho proof of theorem 11 shows that (X,j) ^ (^(X o j)>r(C^ o j) o i’ 

Hence this theorem nay be restated us
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Theorem 17. IT (Z, j) is an e^onsion of E there erf st s •— *^—- •—^* Ml . ■^..-»«a »>«. / —A ^^^MJ.^-,^^^-^-̂ ^t^.^^—^M»—^ -^-r»— -**'!*'■ ■ «*toMMMM*M^MaH^*^MM^*MBMVMMMM**M*WaaM*a^MMBM^M^«*MM.^^M*^^

cn element £ ££L3=Ljl'12“lJ?ll~k-ULn^

■ This raises the question as to that are necessary

and sufficient conditions on £ in order that (T,j) be-^ 

(h(c), 77(c) o i) . An answer to this question is contained 

in ■
Theorem 1$. het Utj) be an extension of E and let (7,!:) 

bo a QrojtenGion of E * Then (X,j) ^ (Y,k) iff C- o I: 

is contained in C,. o j and C^ o k, when extended to X, is 
•^^^^wM^^«^mw»«M«A^Mm*Mm#m|MM^^*MM^m^*mMMMMM^m«^M^^^»*w.«m^-1MMm^  ̂

a characteristic algebra of X .

Proof: Assume (X,j)^ (T,k) and let 1- :X----- -T be the embed­

ding such that to j « k • Obviously Cy oL ^ Of and

Cy o X is a characteristic algebra of X . This shows that

Gy O k « Cy Oto j 

when extended to

is contained in CT o 3 and that

X, is a characteristic algebra of

^A O ‘“’ 
a^ (ounce

it is Oy o ) •

Conversely assure that Cy 0 k is contained in

C-r o j and that CJ ok, when extended to X, is a character­

istic algebra of X • If S is the algebra C^ o k extended 

to X then S" is the extension of Cf: ok. Since S is a

sublattico of Cv' that contains th© constants, the topology 

C(X,S) is also the topology O(X,S"), which is the topology of 
oinco s" is a characteristic algebra. Furthermore the object 

(X,S) is in A1 nA* since Cy o k is closed under bounded

inversion.
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Consider tho following commutative diagram

• HOo HH) ♦HOT, CY^-------- H(E* Cvtf------X H(X.S)

Cine© -If satisfies (F?J h(j) and Il(k) ar© homeomorphisms. 

Tho fact that 7 is a C-space moans that hn is a homeonor- 

phism* Since (2,3) is in AM a* and 0(7,3) is tho 
topology of X it follow from theorems 14 and 15 of chapter 

one that hQ is an embedding* Therefore the mapping
1 “ hZ1 o L"(k) o ir^j) o hqJX-------*7 is an embedding such that 

to j »k « Hence (X,j) ^ (Y»k) •

Let (X,j) be an extension of E * It is said to be

KmdiTl..mth respect, to ^ if (X, j) -6 (X’J*) implies that

USd’) ^ (x,j) Theorem 17 shows that such a nominal extension

is compact* Since compact spaces are absolutely closed the con­

verse holds as stated in

Thceve• ?i 19• (X>.1) £s maximal with respect to ^ iff X is

eery oct*

Proof: It is sufficient to show that (X,j) is maximal if X 

is compact* Assume that (X,j)^ (IS J*) and that 1 :f——♦ ‘ 

is the embedding with lo j = jr • The subspace 11 of Xs is 

compact and since X’ is Hausdorff it is also closed. Cisco 

to j = J* it follows that 1X contains j*E which is dense in 

X • Consequently IX « X* and 1 is a homeomorphism* This shows 

that (XSP) ^ (X,j) and hence that (I,*) is mawimal*
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Theorems 13 and 19 are concerned Lit’! the quasi-order

^ • Thore are analogous theorems for the quasi-order ^ • Tho 

first of these is
^lSP‘<'en 20. het (Z,j) be an extension of 5 and let (Tyk) 

be a P-errtension of E ♦ Then (X»d) (~>k) iff ^ o. k is

contained C., o i •

Proof: Assume that y:h------*Y is the continuous function such 

that y o j = k • Since Cy o y is contained in C-r it 

follows that Cy o k = Cy o y o j is contained in Cy o j .

Conversely assume that Cy o k is contained in Cy o j 

Thon the following diagram is commutative

' HtW HG^ I
H cy, Cy)---------- HC&) ^y^-----------HCX>cx)

The functions E(j) and II(k) are homeomorphisms since

satisfies 

Q-space.

y:h------ -Y

(FPa) , and h& is a homeomorphism since T is a 
Lot y = -^ o ^(k) o iT1^) o hp . Thon

is continuous and y 0 J " k . Consequently (Z,jM

An extension U}j) is said to be rr:±T.l with rosy oct

to±Lif UjH USJ') implies (X%j»)3 U,j) . Theso

maximal extensions are characterised by



Theorem 21* J~, j) is nominal with respect fro 3 1?? Z 5.3 

compnot and Ck. o J is a Einia^L characteristic algebra of S» 

Proof: If (X, j) is matinal with respect to J it is maximal 

Kith respect to ^ . Theorem 19 shows that X is compact. Lot 

c in be such that c is contained in o J ♦ Theorem 20

show's that (X,j) 4 (K(£),rdc) o i) . Since U,j) is maximal 

tho continuous function y:T------ ♦E(c) such that Y ° J ~ ^'(f) o i

’ is a homeomorphism. Consequently C-,^ o Y = C^ and so c = 

°K(c) ° ^c) o i = Cg(c) o y o j = C~ o j • This shows that 

C-r o J is a minimal characteristic algebra cf E .

Conversely assume that (X, j) satisfies those condition 

Let (Z’jj’) be an extension of E and let y:X ►I* be a 

continuous function such that y o j = 5’ • Then, as in the 

proof of theorem 19, yX ° X* and X* is compact. Since 

o j1 = o y o j’ it follows that C^, o j* « Cv o j • A A ^---------------- **
This shows that C„ = o y • The fact that C-r separatos the 

points of X implies that y is 1 - 1 . Since y is 1-1 

onto and X is compact y is a homeomorphism. Therefore 

U’J’)^ (d,j) ^nd co ^>j) is maximal with respect to ^ . 

ncr-iark. Theorem 20 show’s that (£3,1) is ^ all compact exten­

sions of E • Usually (£E,i) is considered to bo the largest 

compact extension of E • This is because the usual quasi-order­

ing of the compact extensions of E is the opposite order to ^ •

If E is locally compact theorem 21 shows that there is (up

to isomorphism) a unique extension of E naxlDal with respect
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Proofs? Consider lemma 7 • If a subset of

then because

^l*2^^

Conversely

Then X2 ^ K(c^) * Clearly n(c, ,c9) Jz^:assume 2 -
K(c^) ~G ^e continuous function y on Xo -with

y o n(£p) o i « w( c3) o i .

from the fact that X? 3 X^

Since ysZp—Kfc^) it follows 

that yX, io a subset of Zp i.e.

is contained in

Lemma £ is an immediate consequence of lemma 7 and

theorem 4.

The second sizzle situation occurs when £9 is contained

in c7 • The solutions are stated in the next two lemmas.

Lemma 9. If co is contained in c_ then ^ X, iff X, ^ X.
XX^SSXSStXS •—- *“<- ——————————— —2, —----------r z^ ————_l_————

Lemma 10. I- £2 is contained in Cj 
= rf 1 (c^, c-i) X, is a subset of X, *m»L “i ^ jtb*—*»• *“**^ ^« <^o^^^M^fc^^*^«.^.^.^^®.^^M^^^*^^^^.*..x^^^*^'^i^^^>.^^w^*^^^^*^®

then X, ^ X, iff (1) 
and (2) £(£2>£i)I11X

Proois? is a continuous function end

that y o n(c2) o i “ ^(c-J 0 i . Then n^,^) o y o r<(co) o i 

~ rc(£n) o 1 end so nj^,^) o y:Z2-----‘^fe) Is the identity

mapping of X, on itself. Also y o n^tC^lyX? o nfc^) o i = 

y o ^(c.p) 0 i = t'(c^) o i and so y 0 n(co,c^) [yZp^X^—yZp is

tho identity napping of yX, on itself. Therefore y is an

embedding and so X, £ Zj if Xg 3 Xp ^-I5 proves lemma 9.



Assume that 

embedding with j1? o

Zg £ X^ and that 

rr(co) 0 i = tt^)
312:Z2-----*Z1 is thG 

o i * Consider the

diagram (commutative)

keep
| ^tSi.Si)

where the unlabelled maps are the natural injections. Since

^2^2 Is homeomorphic to Xg it follows that co when e;:ten-

ded to ^2^2 “D a c-a^C'keristic algebra of this space*

Theorem 4 shows that for each 2c in ^^ S^’^k^ = ^

and consequently that ^12^2 is £(£o»£i) - saturated* Since

the diagram is commutative (trf^jc^) o j^Jx “ x for each x
in 1’2 and so j^Zg “ ^(So*-!^ “ Z’ Thas shows t-mt ax

the conditions of the lemma are satisfied*

Conversely if Xg and Xj are such that (1) and (2)

hold then by theorem 4 n ^2 ’ “i ^ z£1 zi * is a homeomorph!

and so q and 

it follows that

isomorphic extensions. Since ■1

These solutions of tho two problems for the special

cases c^ contained in £2 and Cg contained in c^ can be

used to obtain solutions for the general case. In the case cf

the relation the solution is stated as

Thecrqm22.. h£L^i.JiJjai JL^£nl~fLAL_f£-L^^.JLXa^^

be two^gxtonsions, in ^,(S) associated with the algebras c^ and.

C i • Tao, following conditions are, equivalent;.
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(1) J^fJ^J. 523

13 c “ £i—!i £2~~^^----^^
(3) £ - Is isomorphic to. t

(ii) tf(cvc)a is a cutset of

(iil) & when emended to Xis a. chore ct cri die

algebra £ or equivalently for, each a in Z

r(c1#c)£i^I^

Proof: If (2) (ii) and (iii) are satisfied then by lemma £

14^, Therefore condition (2) 

Assume that ^ ^ Xj •

Z “ 7« (cgjcJX • The extensions 

by lemmas 10 and 7 if for each . 

This is the case because c is a

fore X ^ Zq and so by lemma 3, 

conditions (2)(ii) and (iii) are

implies (2) .

An answer to the second

implies (1) •

Let £ ~ £q <-» Cp and let

X and ^2 ^o isomorphic 

x in X r(c.n,c)[:c] = Ex ]. 

subalgebra of C~ |E • Thcre- 

since c^ is contained in c, 

satisfied. Therefore (1) 

problem is given as

Theorem 23.. A£t_Jn-X-Zj ^(c-J o i) and 1, ~ (-^r(,Cp) o i).

be two. oX;pnsion3 in 2Z (h), asso.o^ with the algebras Cq and

co . The folio: ling conditions are craivalent:

(1) X ^ X . and 
. ~'2 .
(2) if c “ Cq ±l cQ and X w rr^Cp, £) X.^^thcn

’ ■ . (i) X is a subset of ^“(.Cp.c).^ । uni

(ip for w in I if y is in r(co,c)[w2

then it is in r(cq ,c) Ew 3 .
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not in _z_(E) • The Danie is true of lemmas 7,3 and 10. On the 

other hand lenna 9 has the following consequence: lot (Yt.i) 

and (Z..^) bo. tap crto^sions of B . si:ch that Cy o. .1 is a 

Ih^^^

(S, 1) . Tliis assertion follows from theorem 11 and lemma 9 • 

It is clear that the same result holds if *a characteristic 

algebra of Z is a characteristic algebra of Y*. Hore 

precisely, if there are characteristic algebras c and cf 

of Z and Y respectively such that c contains c |B • 

§7• Ttro. P.-cxbensions of E associated with a characteristic 

algebra c , In chapter one section seven anv -extension of 

3 is shown to be a Q-extension of S3 every other Q-eztonsion 

of E • Various examples of ^ -extensions are given in that 

chapter and a further one, namely (vg,i), is given in section 

four following corollary 4 of theorem 16. The extension (^ E,i) 

is defined to bo the extension ( C-p*^),!) •

Two other descriptions of the subset ■vE of SB can 

be given. First, it is the intersection of all tho subsets 

X of. SB that contain iE and as. subspaces of 33 are

-HS2££f2x het X be such a subset of £B • Since CT o i

is contained in CP it follows from theorem 13 that v E «

is contained in ^C*(C^ o i) . As an extension of E

It is clear that
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^C^CL° ") ^s ^coniorPI1ic bo (n(E,C- o i),hc o i) by 

corollary 4 of theorem 16* Since rf satisfies (FP^) this 

c:ztension is isomorphic to the extension (ll(X,CU) »hn o i) .

Consider tho following commutative diagram

Since X is a
G = hl1 o H(i)

Q-spaco 
o Js E

hr, is a homeomorphism and therefore

ri'®" ( Ctt O i ) ♦ X is a homeomorphism*

Since 0 o i “ i it follows that 0 is the identity mapping

and so E p* (d, o i) - X • Therefore •vE is a subset of X

and since ^E is a Q-space the result follows#

■ Second, ^E . is__th.o_. union of all the Go-subsets X 

of 3E disjoint fuori 3E .* Corollary 2 of theorem 16 shoxzs

that the union cf all the G„-subsets of p3 is a Q-subspaco 

and so by tho previous result it contains "VS • It coincides

with 'ME as a special case of
Lermm 11* het -S be contained in Z(c) • Thon ^ £ (S) is 

a union of C^-sots disjoint from (Me) o i)E *

Proof: If f is in S let f bo the function in Cj^ ) suc^ 

that f o n(c) o i (see corollary 2 of theorem 10)* Let z0 

be in <C E* (S) • Then there is a function f in S with fxo
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” +•» saj. Tho function f ° 1 is in C^^j c-nc3 ^ w 1 is 

in df (c) । It is infinite at those points y where fy « 

+ «» • The function g « 1/f ^ 1 is in of (£) and since it 

is bounded is in c • Furthermore if x is in E gx 1 0 . 

Let g also denote its extension to K(£) • Then gx0 = 0 

and so xQ is in the C.-sct Z(g) - [y in K(£) |gy = 0] • 

Since gy “ 0 iff fol is infinite, i.e# iff fy =* + ^ 

it follows that Z(g) n E (S) ® (J # Similarly this argu- 

neat nay bo applied to the case when fxQ =»-.«« by consider­

ing f n (-1) .

Cprollory# If 3 is a subset of X(c) that contains £ 

and T;dth any function f the functions f nl and f <j 

thpn^E^ (S) » O Z(f) .
- f in £,l/f in S

Proof: It is an immediate consequence of the proof of the 

lemma#

These two descriptions of ^ E suggest the following 

definition, 

Definition^. Lot £ be a characteristic algebra of E . 

Define ^(cIS to be the intersection of all the, O-subspacos 

I of K(c) that contain (n(c) o 1)3 .. Define ^^(c)E 

to be the complement of the union of C>-subsets cf K (c) 

dioJoinjLj^f^^
Using this notation the above descriptions of -of 

Shou that fB = •v(0S)B - -«J.(C*)E .
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Definition 4 defines for each characteristic algebra 

of E the two extensions (v(c)E, nfc) o i) and (^(cjE, 

t'(£) o i) • The next two theorems state that these are both 

Q-extensions.

Consider first tho space -u,(c)E • Not only is it a 

Q-space but it can be constructed from the lattice «^ (c) 

as stated in

Theorem 24. If £ is a characteristic algebra then^CclE 

X^ei^-t- Consequently •v^clB is a Q-space and the 

extensions (v^(c)B, n(c) o i) and (L(E, X(c)), ^pj£_ 

are i somorphic.

Proof: Lemma 11 shows that £ GC(c)) contains ^ (c)E • 

Hie proof of corollary 2 of theorem 16 shows that "^(cjE = 

£ (S) where S is a subset of ^f (c) • Since E_(<^(£)) 

is contained in £ (3) by theorem 13, it follows that 

<\(c)E “ £ («ZS(£)) .

Corollary 1 (or corollary 2) of theorem 15 shows that 

o.(c)E is a Q-subspace. The third corollary of the same 

theorem shows that the extensions ('V^(£)E, rr(c) o i) » 

(£c(X(£))> n(c) o i) and (L(E,X(c)), ^Cay) ' - ^g -s°- 

morphic.

Tho space 'uf^E is also a Q-space as stated in 

Theorem 25. If c is a characteristic algebra then *v(c)E 

as a subspace of K(c) is a Q-sraco.
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Proof: It is sufficient to show that when (X ) • is a
a a inxi.

family of subsets X^ of K(c) each containing (n(c)o i)E, 

then X = c^n^ is a °"sPace' if each xa is a Q“sPace*

(1) z£^(c)cLjLjLJi_JL^^ and

(2) on: , Z tb.o_ extensions of the, functions in _ S 
> ESS compatible, with r(c) |Z .

Uhen X is a Q-spaco the cot S nay be token to be C^ o tt(c) o i.

Given the lemma, the proof of this theorem is as follows.
Let Z = n^CcJX • Then Z„ 53 £p*(S ) whore S = C„ o r(c) o i. 

a. —a a Og a a ^

Let z « tt^c)! = n^tcH n zj = ri (^(cjx ) «
ci in_n_ a inxi_

n z„ ♦ It is clear that Z = ^c* ( o Sa) and that on Z 
a in-st. ^ a in_n_

the extensions of the functions in O S are compatible with 
a in xi_

r(c) • 310 lemma shows that X - Tr(c.)Z is a Q-spaco.

Proof of lemma 12: Assume that X is a subset of K(c.)

containing (tt(c) 0 i)E and let ch 63 C^ o Tr(c.) o i = C-jZ •

Consider tho following diagram

This nay be proved by means of

Lemma 12. Lot X bo a subset of K(c) containing (77(c) o i)E .

As a subspace of . K(c) X is a Q-snaco iff there exists a

collection S of continuous reel-volv.od functions such that:
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whore j is the homeomorphism that exists by corollary 4 of

theorem 16. The function ll(n(£) o i) is a homeomorphism 

sinco ^ satisfies (FPa) and when X is a Q-space hA o * vv
is also a homeomorphism. Then hl**- o H(rr(c) o i) o J:

(cJe)-------- >x is a homeomorphism 0 such that

0 o iHc^ Joi* tt(c) o i . Therefore

Since £c(C,-|e) contains X it follows from theorem 14 that

ntc.c.) £c (cJS) " £0(C2Ie) “ 2 • 
~1 —

Theorem 15 shows that

£ (C^lE) * ^“(cjCq) £ (C,jE) and also that £p*(CT|E) * 

n^fcJ £„ (C |E) .

Consequently Z * ff’^cjX * n"“(£) £- (C^lE) =

-1,, , Cn-1(c,e1) EJCJS)] = n’1^) £ (C..|S) = E^tcjs)

Clearly C-Je when extended to 2 is compatible with r(c) 

on Z and so conditions (1) and (2) are necessary.

Assume that Z is an r(£)-saturated subset cf £E 

containing iE and such that Z = ^c*(3) whore S is a 

subset of C^ which when extended to Z is compatible with 

r(c) on Z . If X * ^(^JZ then S is contained in C-Js
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and so by theorem 13 Z = Er«(C |e) .

Let c^ =• Cx|E . Theorem 15 shows that tT1^) ^( O^ls)

= Z and therefore X « rrfcjZ c

Corollary 1 of theorem 16 shows that

^c (C^|E) is a Q-space• To complete the proof it is

to show that rrfc.c-Jl^ (Cv|e)j£ (C-Je) X is a honeomor-

phism. Let x be in ^^X^ and assume y £(£»£1 )x Then

since C y is in ^c (C^jE) shows that y

because c^

^(c,c1) I £c

separates the points of Klc^) •

(C-Ue) is a homeomorphism and so

theorem

is a Q-space•

Remark* Theorem 25 docs not provide another explicit construc­

tion cf <* (c)E • Loes such a construction exist that uses one 

of the function processes or the operator ^ ? Another 

problem of interest is the determination of those characteristic 

algebras c of E for which -m (c)E “^ ^(£)E •

£$• A, construction of the extension algebras of . E * Let E 

denote a completely regular space. The purpose of this section 

is to show that all the extension alg6’°-as of E may be 

constructed from the characteristic algebras c and the exten­

sion algebras of E that contain Cj • These particular 

algebras are characterized by



Theorem 26. Lot 3 bo a auhcl^ebm of Cn that contains

Cj . Then 3 is an extension algebra iff

(^) S is a sublattice of C^ closed under bounded 

inversion}

(2) S is w^ori&y’closed} and

(3) 1/f is in S yhen f in 3 is such that 

h(f) 4.0 for all h in K(E,S) .

Proof: The necessity of these conditions is cloar (see theorem 

13 of chapter one) •

Since 3 contains Cg 0(2,3) is the topology of E . 

The object (E,S) is in A*HA1 and so by theorems 14 and 15 

of chapter one (H(E,S),hg) is an extension of E and the 

algebra 3 consists of continuous functions. Since S 

satisfies (2) and (3) S is uniformly closed and closed under 

positive inversion. Also Cg « S "|E is contained in 

CiL- IE vhich is also contained in C« and so 3 " ”

Cx,^ • Therefore S » Cn/„ c\ by theorem 19 of chapter one. 

Consequently 3 = Cn(S S)|3 and so S is an extension 

algebra.
If S is an extension algebra containing Ci then 

every characteristic algebra £ of E is a subalgebra of S . 

Therefore each £ defines an equivalence relation on I’(E,S) 

(see section one) vhich in turn defines a nev subalgebra of 3 .
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Let 3(c) « [f in S| for h^ ,h2 in H(E,S), hjc = h,Jc

implies ^(f) = h2(f)J Algebras like this are extension

algebras and every e::tension algebra is of this form as

stated in

Theorem 27* Let 3 be on cutter ion algebra of E that 

contains C^ and let c be a characteristic algebra, Thon 

the algebra S(c) an extension algebra, ; Conversely if

Pi ' is an extension algebra there exists an czzten.sion algebra

S containing and. a characteristicalgebra c such that
>«mm<'»m*^»<.^.w<'-^—*~**>^-«*-«»»4>>-^><Ma~a'apn#< -I.^^.i.aow * —— ».^..»^i wwMm».^n>..*M- ■■«--■ ... ■* m»» —• m.^m»w ■^■—■■^■—■^.^»

3, « S(c) • In this case c nay be taken to be S? .
—'X •——— ~ „—.—-™_.~—_^- — ~—^—~—►—-»-~——~— —~j_—-

Proofs Let Z = ^*(S) • Since is contained in 3 it 

follows from corollary 4 of theorem 16 that 3 = Cj3 since 

(Z,i) and (H(E>S),h3) are isomorphic extensions of E (see 

theorem 13 of chapter one) • Furthermore Z is a Q-space and

consequently 3(g) is the collection of functions in S whose

extensions to Z arc compatible with r(c) |Z • Therefore

3(c) ~ C-r o j where X = Z/r(c) |Z and j = n2(c) o i . Since 

(X,j) is an extension of E by theorem 12 it follows that

3(g) is an extension algebra.
Let Sj be an extension algebra and lot c = sj , It 

is a characteristic algebra of E . Let Z « ^q*^^) and

lot

are
c^l Since Sn is contained in

both Q-spaces and by theorem 15 tr” (g)

X(c) they

Z . If 3 =



Cg|3 then 3 is an extension algebra containing C$ • The 

first part of the theorem shows that 3^ ”3(0,) • 

I’cmarks, The correspondence (S,c)____ *S(c.) is not 1 - 1 .

For example if S = C^ and x $ y are two points in pE 

that do not lie in E then Cn = C^fC?) 53 C„(cr t) •

Hot.’ever for any extension algebra 3n tho algebra C (3 
• CE

JIS

is uniquely defined among those extension algebras 3 contain­

ing Cg for which S(3p = Sj by the following property;

if hq is in I'(g,S-;) then there exists h in Il(EtS) meh 

that h^ « h1 , The characteristic algebras are extension 

algebras and so the theorem suggests the following problem* 

If Sp is contained in 3^ are a pair of extension algebras cf 

E is SjfSp) “ [f in S-J for h1#h2 in 11(3,3^, hjj32 =

2 = hp(f)] also ail extension algebra?

Tliis is so since S^tSp) = S^fS^) and the 

theorem applies when ^q* is replaced by ♦ and
1

of the

n(c) by

5€

£9# A conjectiro concerning the, lattic 

a completely regular space and let a be

Lou ij • be

lattices ^(u) “ Cf in Fj for X ^ 0 (f n X) o (-X) i 

are characterised as collections 3 of continuous functions on
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E with the following properties:

Jli^l--JL«jLiJlJ2£12cl2&i2ZLJ2£^^ 

cop^^s the constants., end is closed ^^0? ml- 

■ tiplicatip by real numbers ;

' ( 3 is uniformly closed ;

(Zj S is . closed trader •positive inversion ; and 

(Zj f is in S f «-* 0 and 0 ere in S .

The lattice Z(Cg) 53 Cg has additional properties. For 

example it is a vector lattice and also satisfies the conditions 

of • , 

Definition 5. A collection S of real-valued functions, on a 

sot £ is said to bo. closed trader continuous, composition or to 

be composition closed if for f^t...,^ in l^Ji^JLf^l^ 

tinuous function on Rnt n ^1, the function k a y(fq >*«.m??). . 

dci^£e<Lfe_JSJSJ^i£juuL^^

Demarks. This definition is due to Isbell [7] . A collection 

S is certainly composition closed if for f-j, • • • >fn in S 

and g a continuous function on the closure in Hn of 

[(f^x,...,fnx) Jx in E] the function gCf^,...,^) is in 3 • 

The operations of addition, multiplication, inversion, and 

tairing the maximum or minimum of a pair of functions may bo 

defined by means of continuous functions g • Consequently if 

3 is composition closed, it is closed under all those operations
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Do these additional properties of ^(Gh) distinguish 

it from tho other lattices that satisfy (Z^lJZjJJ^J 

and {X.f )^ Since every a in £L is equal to C7(,) o 17(a) o i 

it follows that none of these additional properties distin­

quiches) fvoLi ^(C?) if <Jf(a) = a • The algebras a for 

vhich this happens ore characterised by 

Sg^^lJLl*. ^(f) 2 1 iff vlo;i. a is oz^onded to lb 

f(f) H for £ in £ inrlics Z(f) rt IE 4 (!> . 

Proofs Assume that £ is an unbounded function in ^(o) .

Then f ^ 0 or f n 0 is unbounded and so £ nay bo assumed 

to bo a positive function belonging to <£ (a) but not a « 

Ilion expended to pE f is necessarily infinite at some point# 

If g « f L' 1 the sumo is true of £ ♦ The function g docs 

not vanish at any point of E and so tho bounded function 

I: = 1/g is in Z(i) and hence in a . furthermore Zu: “ 0 

iff gx « + ^and therefore Z(k) n if =* 0 • iron tho choice 

of £ 1(b) | $ •

Lot k be a function in a such that Z(k) v $ and 

Z(k) a 13 £ ($ , Tho function k may be assumed to Lo ^ 0 

since otZierud.se If- could be used# Hie function g « 1/k 

is in <2^ a) by (S^) and it is cioar that £::«+*» iff 

kx » 0 • Therefore £ is unbounded# 

hcmrrk^ This theorem provides a characterisation of pseudo­

compact spaces sE^lsjssor^ocompagt^  ̂

ZU) f 0 implies £(£) ruiS r Q #

otZierud.se


Tiiore ore, however, many examples of algebras a 

for which <Sf (a) t a when E is not pseudocompact. Among 

these there are a lot of characteristic algebras as shown by 

the following ■

Example. Assume E is not pseudo compact and let x f y be 

two points in £E that are not in -u E • Then there is a 

positive function f„ in C^r. ” C^ which vanishes at 
--»y p^

x and y and such that Z(f „) n iE - (J (this is because 

<Cv E is a union of C> sets of pE that are disjoint from 

iE) • Consequently ^(c^ y]^ ~[x y] by theorem 20. ^et 

S ” Vf^y • It is in ^£[x#y]) and gx « gy « + °®. If 

k is any function in Cq^ ” Cg then

+ <*» and so by theorem 10 k * g is in ^£[x y]) • Ihis 

shows that o£(c£_ y.j) is not closed under addition. Assume 

the opposite. Then k = k + g + (-l)g is in*^ (££---,>]) 

and so C^ is contained in <3f(cr „n) • Therefore Cm =
J/ ~LX,yj Ji

C£r yj and x = y ♦ This is a contradiction. Consequently 

if m is the cardinal number of ^“° E there are at least m

examples of characteristic algebras £ of E such thatX(c) 

is not a vector lattice.

These examples of algebras a for which X(a) is 

not closed under addition lead to the consideration of those 

algebras a such that £ (a) is not closed under multiplic­

ation. Tho following theorem shows that these two kinds of

algebras a coincide.
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Theorem 29. Lot a be a. unlfoyrly closed unitary subalgebra 

02? • Tho following statements are equivalent:

^)^.k) closed under, addition ;

(2)_^,(£) is closed under multiplication ; end
(3) .^(a) is closed under continuous, composition.

Proof; Obviously (3) implies both (1) and (2) • The proof of 

tho converses depends on the following lemma, a modification 

of a result due to Isbell [73 •

Let . E be locally compact and countable at. infinity.

Let c be. a characteristic, algebra of E » Tho. following 

statements are equivalent.:.

(1) - ^(c) is closed under addition }

(2) <^(c) is closed under multiplication ; and

(3) £ g ^ ./ i.e, ^f(c) 3 C^ x

Proof: Since (3) implies (1) and (2) it is sufficient to con­

sider the converses.

The space E is locally compact and therefore the fun­

ctions in C^ constant on <C iE define a characteristic 

algebra which by theorem 5 is contained in £ • Lerma 4 of 

chapter one shows that c contains a positive function fQ in 

Cp for which Z(fQ) « <£iE , since E is also countable at 

infinity. The function l/fQ is in cf(c) by (J^j •

Assume that Z(c) is closed under addition (multiplica­

tion) and let g be in Cp • The function 1/f + g (f *5) is 

infinite on ^ iE (vanishes on <TiE) and so l/fQ + g (fQ.g) 

is in o?(c) by theorem 10. Since c^Cp) is closed under



addition (multiplication) g - l/fQ + g + (-l)l/fQ

(g = l/io»fo»g) is in Z(c) • Therefore c « C^ snd (1) 

implies (3) ((2) implies (3)) • .

To return to the proof of the theorem lot

bo n functions in ^(a) and let Z be tho closure in En of

[(f^x»..##fnx)|x in E] • Consider tho sot C of continuous 

real-valued functions g on Z such that gf^i***^) is in

^(a.) « The set C inherits properties from tho translation

lattice^(a) • For example if &pg2 a*6 in C then gl° s2

and g^ n go are in C • This is because if x is in E

(Si m c2) (f1#*,*#fn)x » g1(f1#..Mfn)x o g2(f1#*..,fn)x and

similar manner it follows that

and Tiie projections

in asimilarly for gj ag2 •

w^lz are in C where t^Cf-p**,,^) = fj and so the topology

of Z is the weals topology C(Z,C~) since C satisfies (^p • 

In other words 0" is a characteristic algebra of Z • Since 

Rn is locally compact and countable at infinity Z as a closed

subspace also satisfies these properties#

Lerma 13 applies to C and Z • Since C is closed 

under addition (multiplication) whenX(a) is closed under addition 

(multiplication) it follows from tho lenma that C » C^ if ^(a) 

satisfies (1) or (2) * Consequently o^(a) is composition 

closed if ^(a) satisfies (1) or (2) •
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Remark, Th© proofs of this theorem and lemma are essentially 

the proofs given by Isbell [7] for his theorem 1.13 and 

corollary 1.14.

The algebras a in ^ determine the closed equivalence 

relations r(a) on 0E and are in turn defined by these 

relations (see sections one and two) • A subset 2 of ,33 

will be said to determine a if the functions f in C^ = 

C^ such that f|Z is compatible with r(a)|1 are in a • 

The algebras a for which ^(a) is closed under con­

tinuous composition are characterized by 

Theorem 30. ^ (a) ^c closed under continuous composition iff 

for any f in a Z(f) n jg = $ implies that dLZ(f) 

determines a • 

Proofs Lot f in a be such that Z(f) n iE = $ and assume 

that Z(f) does not determine a • Tho function f may be 

assumed to be positive since f' is in a and has the same 

two properties. Let g be a function in C^ such that 

g|Cz(f) is compatible with r(a)|<£Z(f) but such that g 

is not in a • Since k - 1/f is in cC (a) and k is 

infinite on Z(f) tho function k + g is infinite on Z(f) • 

Theorem 10 shows that 1: + g is in ^f(a) • Since g is not 

in S> (cj Is no^ closed under addition and hence is not 

closed under continuous composition.

Assume that ©^( a) is not composition closed or 

equivalently is not closed under addition. Then there enist
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two functions f,g in <^(g) such that f + g is not in X(a). 

Corollary 1 of theorem 10 shows that f and g are both un­

bounded. Since by (^,) f ^ 0, f y% 0, g vr 0 and g n 0 

are in ^(a.) the functions k-f^O+g^O and T ® f z» 0 

+ g /» 0 are in ^ (a) by corollary 1 of theorem 10. Also 

k + 1 = f + g and so f and g nay be assumed to be respec­

tively positive and negative.
Since ^(a) is a translation lattice it contains fj “ 

f + 1 and gj ® g - 1 • As f "* 0 and g ^ 0, f^ ^ 1 and 

gj ^-1 . By (^) and (^) tho functions l/f^ and l/g^ 

are in a and so also is k = 1/f-, .l/g2 • it is clear that 

Z(k) = Z(l/f2) ° £(1/^2) ^^ since 2(1/^ ) = ^^(^D and 

Zd/C1) “ ^c^sp) it follows that Czia - E^wp) n 

^C*^el^ “ ^ C*^1’G1^ • eloquently on <Cz(k) ^ + B, = 

f + g is compatible with r(a) as both functions are finite 

on that sot. This means that (f + g)n » E(f + g) ^ n] vj (-n) 

is a bounded continuous function such that (f + g)nl <C Z(k) 

is compatible tri.th r(a) I <£Z(k) • However f + g is not in 

if (a) and therefore for some n (f + g) is not in a • 

This shows that <CZ(k) does not determine a • It is clear

that Z(k)n IE M •

Remark. This theorem nay be stated in terns of the compact 

space I: (a) . If f is in a let it also denote its ’exten­

sion’ to K(a) and let Z„(f) - [x in K(a)[fx=0, f in a] • 
Then ^(a) is composition closed iff (w(n) o i)E A Z (f) s (|
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inplios CK(a) The concept of a set

S determining a is essentially the same as an equivalence 

relation from which non-trivial classes may be omitted (see 

example 4 in section one) •

The results of this section have been obtained in an 

attempt to make the following conjecture plausible.

Conjocture. Let B be, a Q-space and lot S be a subset of 
figJSauisag&sa^

S satisfies

(1) C(S«S) is the to~olo.Tr of B ;

(2) s = iff e is compact lj^l.

(3) 5 i~ closed under addition (or equivalently 

composition or multiplication closed).

The conjecture is restricted to Q-spaces because if 

13 is pseudo compact ^(a) = a for every a in ^(E) and 

there seems to ba no satisfactory falgebraic* way to distin­

guish C^ from the ether characteristic algebras of E (other 

than the factoring condition of theorem 20 in chapter one) •

liken E is compact the conjecture holds by virtue of 

the Stone-Ueierstrass theorem. In fact for compact spaces it

is equivalent to this theorem because a compact space K has 

exactly one characteristic algebra and it is tho solo algebra 

in ^(K) that separates the points of K .

Lemma 13 shotts that the conjecture holds for all locally 

compact spaces that are countable at infinity (they are Q-spaces,

*) Gee. ErrcCtuwv p>2.GO.



doo section seven of chapter one) •

In addition tho example of this section shows that if 

2 is not a compact space then when E is a Q-space there are 

many characteristic algebras c I c5 for which 5f (c) satis- 

fios conditions (1) and (2) of the conjecture but not condi­

tion (3) •

Tlie alternative fora of theorem 30 (in the previous 

remark) shows that to obtain a counterexample for the conjec­

ture it is necessary and sufficient to e:dubit a compact space

K and a dense subset E such that:

(1) as a subspace 5 is a 0-snoco ;

(2) c* ±_C;JEj; c X

(3) there is a function f in E^ with Z(f) o E e Q

then thio is the case df (c.) satisfies the conditions of the

conjecture.

An example of this type of situation is provided by a

Q-space E with the following property; there is a clcspd sub­

cot D of 62 distinct and disjoint from. iE that lies in no

Cy-cet disjoint from iE . Let c^ be tho characteristic algebra 

cf functions constant on E * Then if f is in c^ and 

2(f) A is a (J it follows that Z(f) n L = ^ . Fy theorem 30

of^) Is composition closed# Furthermore ^(c^) r £^ Lot
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xQ be in £E and in neither iE nor D • Since E is a 

Q-spaco there is a function g in Cn_ for-tiki ch g?r = 0, 

g|D « 1 and Z(g)A IE “ $ . By theorem 2o ^(e. ) £ cn •

The importance of this conjecture is due to the fact

that it emends the Stone-Lei er strass theorem to a class of

completely regular spaces which contains those that are local­

ly compact and countable at infinity« For which spaces is it 

correct?*^

*) See. Er>ra't«vw p. 2.00.



CHAPTER THEBE

THE CONSTRUCTION CP TOPOLOGICAL SPACES FROM UNIFORMITIES

$1. Fy.elir.iinar ios« Let E denote a completely regular 

space and let U be a uniformity for E • The uniformity U 

is said to be compatible (with the topology of E) if the U- 

unifomi topology is coarser than the topology of the space E • 

A uniformity U for 2 is compatible iff it has a filter 

basis of open surroundings (entourages) • Every uniformity 

has a base consisting of surroundings open with respect to the 

product of the uniform topology* Hence if it is compatible it 

has a base of open surroundings. Conversely if a uniformity 

has a base of open surroundings then for any point the neigh­

bourhood filter contains the filter defined by the uniformity. 

Consequently it is compatible. A compatible uniformity U 

for E is said to be a structure of E when the U-uniform 

topology coincides with that of the space E . If U is a 

compatible uniform!ty for E, E is said to be complete in U 

when every U-Cauchy filter converges in tho U-uniform topology. 

Examples of uniformities, for Ei

1. Let 3 be a collection of real-valued functions on E • 

Let U(S) denote the uniformity for E generated by the sets 

V(f ,c) « C (x,y) | |fx - fy | < e] where f is in S and c > 0 . 

The U(3)-uniform topology is the weak topology 0(^,3) • Hence 

U(S) is a compatible uniformity iff the functions in S are 

all continuous. This suggests that there is a possible parallel

159
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between compatible uniformities and continuums functions# A 

uniformity of this type is called a function uniformity#

2. Let a be a uniformly closed unitary subalgebra of Cm • 

Then U(a) is a compatible uniformity for E which is a 

structure of E iff a is a characteristic algebra of E # 

In particular U(Cg) is a structure of E #

3# Let £ be a characteristic algebra and let S bo a col­

lection of functions containing c and contained in 5f (£) • 

Then U(S) is a structure of E . In particular U(C:J is 

a structure cf E • It is the finest compatible function 

uniformity for E •

If (U-;) £ in i is ^7 family of compatible uniformities 

for E then the uniformity U generated by this family is 

also compatible. This is because tho U-unifom topology is 

the supremum of the IL-uniform topologies. If one of the 

LL is a structure of E then U itself is a structure of E 

Since E has at least one structure, for example h(C^), it 

follows that there exists, a finest structure of E which will 

be denoted by UL • It is clear that a uniformity U for E 

is compatible iff U^ contains U «

Llille there is a coarsest compatible uniformity for E 

namely the uniformity consisting of the single set E X E - in 

general there is no coarsest structure# Samuel [131 showed 

that the existence of a coarsest structure characterises the

locally compact spaces.
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A useful lemma due to Weil [lo] is the following well 

known variant of Urysohn’s lemma. It is stated without proof 

as 

.Lew 1* LSi H be a uniformity for L and lot F bo a 

subset of E » If V is a surround inf, of U there is a un­

iformly continuous function f on E such that O^f ^lt 

fx 3 0 for x in F and fx 0 1  for in C(y[F]) , 

Hie examples of compatible uniformities in example 2 

all satisfy the following equivalent conditions:

(1) for any sitrrounding V in U thorp, crests a

finite number of roints xn ...in E 

with E = VEx^] ; and

(2) for any surrounding V in U there, exists a

finit onunber cfVrsmalloets ^XJL-jZ-^^1

that E

Since V[x] is V^-small for any x in E, it is clour that (1)

implies (2) • On the other hand if xi is ** ri then VEx.]

contains F. and so (2) implies (1) • Tho uniformities U for

E that satisfy either (1) or (2) are said to bo totally bound-

cd. Condition (2) implies that tho uniformity generated by any 

family of totally bounded uniformities is itself totally bounded* 

Since U(ch) is a totally bounded structure of E a^fircst 

totally bounded structure U exists^ Hie totally bounded un­

iformities are cf interest because of the close connection be­

tween them and compact spaces. This is stated as the folloxring
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well known theorem, 

Theorem 1 • Eet E be a completely regular space. The fol­

lowing statements are equivalent!

(1) s -s compact ;

(2) E is complete in U(C^) ;

(3) E is complete in ; and

(4) E is,complete in a tot.ally bounded structure.

Proof: A compact space is a Q-space and since by theorem 16 

of chapter one a completely regular space is a Q-space iff it 

is complete in U(C^) it follows that (1) implies (2) »
E

Since U contains U(Ck) it is clear that (2) 

implies (3) and since U is totally bounded (3) implies 

(4) .

Assume that E satisfies (4) and that U is a 

totally bounded structure of E in which it is complete. 

Let F be an ultrafilter on E and if V is in U lot 
n “ 

ben V-small sets such that E “ u rh • Since

F is an ultrafilter it contains of the sets F4 • There­

fore every ultrafilter is U - Cauchy and hence converges. 

Tiiis shows that E is compact and so (4) implies (1) . 

Remark. It is known (seo Banaschewski [16]) that for any 

completely regular space U = U(C^) and so (2) and (3) 

are actually identical. This result is established in the 

first section of chapter four as theorem 2 •
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Ilie compatible uniformities in examples 1 and 2 are 

totally bounded iff the functions in S are all bounded# 

However, all these uniformities U do satisfy the following

weaker equivalent conditions:

(1) "Q? ^ surrounding V in U there exists a

X, in E. such that

(2) for any surrounding V in U there exists a 

sequence (F.J of V-snall sots F., such 
•o * 

that Z - ^ F •

Since V[x] is V -small for any x in E, (1) implies (2) •

Choose 3^ in Fn for each n » Then V[^] contains Fq

and so (2) implies (1) ♦ A uniformity U is said to ba

^-bounded if it satisfies either (1) or (2) • Condition (2)

implies that a uniformity generated by a family of ^ -bounded 

uniformities is also cr-bounded# Since U(C^) is a <r-bounded 

structure of E it follows that E has a finest o~-bounded 

structure which will be denoted by U •

. Tiie tr-bounded compatible uniformities of a completely 

regular space E nay be used to distinguish the Q-spaces as 

shown by the following theorem, due to Shirota [91 • 

Theorem 2# Let E be a completely regular space# The, follow­

ing statements are equivalent:

(1) E is a C-space ;

(2) E is. comnlcte in U(C?J_ b
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(3) E is couple to in U^^ ; and

(4) E is complete in a ^-bounded. structure, of E .

Proof: Theorem 16 of chapter one states that (1) and (2) 

are equivalent. It is clear that (3) and (4) are equivalent 

and also that (2) implies (3) • 
p<r

Assume that E is complete in U and let F be 

^y H^j]) ~ Cauchy filter. Then since every continuous real- 

valued function converges along F it follows from theorem 9 

of chapter one that there is a unique maximal Cg - completely 

regular filter II contained in F • The remark following 

definition 3 of chapter one shows that K has a basis of zero 

sets Z i.e. sets Z = Z(g) = [x in E|gx = 0] where g is 

in Cg • To prove that E is complete in U(C$) it is 

sufficient to find a U - Cauchy filter containing K as this 

will imply that both K and F converge.

Consider filters on E that have a basis of zero sets. 

If any two generate a filter it too has a basis of zero sets, 

because for any two functions g^ and g^ 2(sp A Z(g2) « 

^ ^1^2^ • If 2 is a zero set then the filter of sets contain­

ing Z obviously has a basis of zero sets. Consequently if Z 

is a zero set which together with a filter generates a new 

filter, the new filter has a basis of zero sets if the original 

filter had such a basis. Filters of this type, i.e. with a 

basis of zero sets, when ordered by inclusion fora an inductive 

set and so by Zorn’s lemma any filter of this type is contained 

in a marctmal one. Among these maximal filters there are US -
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Cauchy filters as shown by

Lemrin 2, ^e^ F a filter on E maximal among those with a 
basis of zero sets# Then F is a U *^ - Cauchy filter if for 

CO 
any sequence (F.,^ of sots Ff in F H «

Proof! Let V and W be surroundings of U^ such that 
U3 is contained in V . Let (h-Jn be a sequence of U- 

CO
small sets such that E = J^ Dp • For each n let f be 

a continuous function on E such that Z(fn) contains Dn 

and is contained in V[D ] • Such functions exist by lemma 1* 

The zero sets Z(f.J cover E and each of them is V'-snall 

and hence V-small.

Since F is a maximal for each n Z(fn) is in F 

or else there exists a set Fn in F with Fn a Z(fp) ® 0 • 

Assume that none of the Z(fn) belong to F and choose Fn 
00 09

disjoint from Z(fn) for each n • Then ^^ Fn “(^jE^n 

(5< z(fr)) = TM ((-Oj F ) n Z(fK)) = (J . This is a contra- 

diction. Therefore F contains one of the Z(fn) and as a 

result is a Uu^ Cauchy filter.

To complete the proof of this theorem it is sufficient 

in view of lemma 2 to show that any filter F with a basis of

zero sets which contains M has the property that any countable 

intersection of sets in F is non-void. Assume this is not tho 

case. Then there is a filter F on E with a basis of zero 

sets that contains H and a sequence (^l of functions in 

Cg with O^g^ 1 such that for each n Zf^) is in F
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end such that ^ Zf^) = 0 . Let g * ^ 2^ . It is in 

C$ and converges along F to zero* Therefore g converges 

along K to zero. Furthermore if x is in E gx + 0 and 

so 1/g is in C$ • It therefore converges along 'II to a 

finite limit. This is a contradiction. Therefore II is a 

convergent filter and so (3) implies (2).

Remarks^ The statements of theorems 1 and 2 are parallel. 

This raises the following problems. Are the uniformities 

U(CE) and U the sane for any completely regular space E? 

If not, for which spaces E do they coincide? The proof that 

(3) implies (2) is essentially the same as that given by 

Shirota [91 •

This preliminary section concludes with a theorem about 

the uniqueness of compatible uniformities. Its corollary fill 

be used later in this chapter to identify particular uniform­

ities.

Theorem 3. Let X be a topological space ar.d let F bo a 

dense subset. Lot U^ and ^ Lo two compatible uniformities 

on X . If U-jF = Un|F then l^ = u*2 .

Proof: Since F is a dense subset of X F x F is a dense

subset of XXX. Let Vj be a surrounding of U^ that is

open. Then V^ contains VjnFXF which in turn contains

V^n F3TT “ ^i • 

open surroundings

Since U^ is compatible it has a base of

?! . Their closures Vj also form a base

for Uj . Therefore the sets Vj. n F x F form a base for U^
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Consequehtly if U^|F = U0|F U^ and Up have a 

common base and so are identical.

Corollary»i ket X be a topological space and let n:E------*X 

be a function on tho set E with pE dense, in X . Let U^

and UQ be compatible. Uniformities, on X . Thon

under p coincide UjJ

if their inverse images under p coincide.
Proofs For any uniformity U on X (p x p) (p •* p) 1U =

U|pE • This is because if V is in U (x,y) is in (p x p) ^7 

iff (px,py) is in V • Consequently when the inverse images

P - ~ UplpE. Since pE» F is a dense

subset of X the theorem implies that U-, 88 Up •

Fem-arks. While compatible uniformities were not defined for

arbitrary topological spaces it is clear what they are:

uniformities whose uniform topology is coarser than the topology

of the space. The space is completely regular iff a separated

structure exists. This theorem is analogous to the theorem

which asserts that two continuous functions valued in a Haus­

dorff space coincide if they agree on a dense subset of their

domain•

$2. Uniform processes. Consider the category JL with objects

the pairs (E,U), where E is a non-void set and U is a 

uniformity for E, and with Hom( (E,U), (E’jU*)) tho set of all

(U,Uf) ~ uniformly continuous functions a:E--------E1 • A

general method of associating with each object of 3? a topolog­

ical space is said to be a uniform process if it satisfies the

conditions of
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Definition 1. A uniform process on T consists of a cover­— -, T - - -r — - ■ ^ -jf. — .j <—»m i । ii ■■■»■ । i» । » iw^w^ ,»■<■■ » i» mww**»—»—i»^^»^»»»*^**»**"——*»^-*—**»■——r«w a ■■■ *»>
**MB.«MMi.MMM»^MM*Ma*MMMMM*M*^B

iant functor P: I- —21 and a family (nIT) of
-------------------------------------- ------- '--(E.U in X —

functions n^E——^P(E,U) such that: 
•MM

(UP^) ^E is dense in P(E,U) { and

(U?2) if a is in Hom( (E.U) JE’.U’)) then 

PkLo^jjij>ut.oja. 
mm* an*

• Dor arks • 1* Condition (UPg) states that the following diagram 

is commutative

(e, u)---------—------ - PCE. V>

C£\ V')—____• PCE', V).

2. Tliis definition differs from definition 1 of 

chapter one in two respects. In the first place it defines 

processes on T not on subcategories of IE • Tills is because 

for the purposes of this thesis there is no immediate point in 

considering processes on subcategories of 3D • The second 

difference is much more basic. In tho case of a uniform 

process it is nonsensical to speak of a ’real* uniform process 
because no analogue to the value space exists.

Examples of uniform processes on 32

1. The first two examples of function process on 2 suggest 

correspondingly ’trivial* examples of uniform processes.

2. To correspond to the third example of a function process 
on 5 there io the following process. Let P(E,U) be the set E
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together with the U-uniforn topology* Define P(a) to a 

and p^x “ 3: for all x in E *

The close analogy between the definition of a func­

tion process and the definition of a uniform process suggests 

that it is possible to develop the discussion of uniform pro­

cesses in a manner parallel to the development in chapter one 

of the •theory * of function processesf •

Consider tiro processes *F and Q on X • They nay be 

compared by means of the restricted type of natural homomor­

phism defined in
Definition 2, A homomorphism y of the process finto the 

process Q consists of a family (y(EtU))^^j^ -n ^ of 

continuous functions y(E,U) :P(E,U) ■■■—<?(£,U) such that:

(1) 1^L^_J£J^UI2£L^
rCESU1) o PU) ° O.(a) o r(E,U) ; and

(2) for each . (fjl).  in T l(B,U) OJ2UX_SU_‘.

A homomorphism y is called an isomorphism if each y(f,U) is 

a homeomorphism* Uhen an isomorphism y of ^ into Q- exists 

they are said to be ie onorphi c pro cesses*

As in the case of function processes it is easy to 

show that the relation of isomorphism between uniform processes 

is an equivalence relation.

The introduction of the concept of isomorphism for 

uniform processes leads to a consideration of those properties 

of uniform processes that are invariant under isomorphism* The
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simplest kind of invariant property is a topological property# 

If (t) is a topological property a uniform process "P is 

said to be a (t)-procoss if for each (S,U) in 3? P (S,U) 

satisfies (t) ,

As in the case of function processes when is a

Hausdorff process condition (2) of definition 2 inplies con-

dition (1) . This result is stated as

Lot ^andClbo two uniform processes and let

be a famil

OCE,U) Pu—°*u
a homomornhism

of *P into CL .

Proof: The same as that of lemma 1 in chapter one.

In the case of function processes properties (fp3),(f?4),
(i^)

in S

and (FP^) deal with the ’extension* of the functions 

as continuous functions on the space P(E,S) • The

analogous properties for uniform processes deal with the 

’extension* of the uniformity U to tho space P(E,U) as a 

compatible uniformity#

Let ~P be a uniform process. If (E,U) is an object 

of T then there is a finest compatible uniformity Uo for 

P(E,U) such that py is (U, Up)-uniformly continuous. The 

properties (UP,), (UP^), (UPp and (UP$) are defined as 

follows:
(UPp for each (U,U) in T x U ^JnyljS-^pI^p-x

(UP, ) for each (E^) in I ? Up is a separated

uniformity J
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(UP$) ^or sack (E,U) inTt Up is a structure 

of P(EtU) i.e, the Up-uniform topology 

is the topology of P(E,U) ; and

(UP^) for each (E,U) in T । P(E,U) is complete

• in 5P •
All four of these properties are invariant under 

isomorphism. Let P and Q. be isomorphic processes on T 

be a family of homeomorphismsand let (y(E,U))^

that satisfies the conditions of definition 2. Let (E,U) 

be an object of T • Then y(E,U) is an isomorphism of the 

uniform spaces (P(E,U),Up) and (Q(E,U),Uq) • The inverse 

image of Un under y(E,U) is a compatible uniformity for 

P(E,U) whose inverse image under Py is the inverse image 

of Uq under qy • This shows that y(E,U) is (Up>Uq) - 
uniformly continuous. Similarly y^1^!^ ^s (Ho»Hp) “ 

uniformly continuous. This shores that yCE>U) is an isomor­

phism of these two uniform spaces. From this fact it follows 

that the above properties are invariant.

The argument used here suggests that if *P is a uniform 

process and if a is, in Hom( (E.U). (Ef,Ur)) then P(a) is 

a__(Up,UJj-uniformly continuous function. This is an almost 

immediate consequence of the fact that P(o.) o p7J = pu# o a • 

The function pyr o a is (U# Up-uniformly continuous and so 

Py is uniformly continuous with respect to the inverse image 

under P(a) of U*p • Since P(a) is continuous this uniform­

ity has a basis of open surroundings and is therefore compatible
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The definition of Up then implies that P(a) is 

uniformly continuous •

(i.p>7n)“

Kemurk^ If a process satisfies (UP^) then the corollary 

to theorem 3 shows that for any object (2,U) the uniform­

ity Up is the only compatible uniformity of P(E,U) whoso 

invex*se image under p^ is U • for some processes *P this 

property makes it easy to give a specific description of the 

uniformity Up ,

One application of these properties is stated as the 

corollary to

Lemma 4, Let T be a uniform process that satisfies (UP^) . 

Then for an object (E,U) in X , Up is totally bounded 

iff U is totally bounded.

Proof: Since U = (p-j X p^l^Up it follows that U is
*«« •—•

totally bounded when Up is totally bounded.

Assume that U is totally bounded and let Vp be a 

closed surrounding in Up • Let V = (pj X P^)” Vp and let 
•—.» •—•

7^,,,,,Fr be n V-snall sets such that ^}^ = 2 • Hie sets 
~ ‘ i=l

P^F^ are Vp-snall and since Up is closed so are their 

closures ” Pu1^ in P(2,U) , Since p^E is dense in P(E,U) 

it follows that the sets 0^7 , i = l,,,,,n cover P(E,U) •

The uniformity Up has a base of closed surroundings 

and as a result is totally bounded.
Corollary,.. Let *P be a uniform process that satisfies (UP-^), 

-^^^♦^'^^ and (UP<) * ^7 (s»H) is an object of I then



173

^lliH) is compact if U is totally bounded*

Proof: The lemma shows that Up is totally bounded. The 

result follows from theorem 1.

Penar!:. It will be shown in section seven that any two uni­

form processes that satisfy these four properties are isomor­

phic* Tliis is the analogue of theorem 5 in chapter one.

The third general type of invariant property of a 

process *P relates properties of the mappings a to properties 

of the continuous functions P(a) • An example of this type 

analogous to (FP?) is

(UP?) if (E,U),(E’,U’) are two objects of X and 

if a is in HomfjEtU) (E ’, U ’)) such that 
U » (a x ajP^U’ then P(a) embeds. P(E,U) 

on a closed subspaco of P^1, U ’) •

Tliis property is invariant. Tho proof of this 

assertion is the same as that of (FP?) • Since property (FP$) 

is satisfied by ’algebraic’ function processes there does not 

appear to be a useful analogue for uniform processes.

Another difference between uniform and function pro­

cesses is that if T is a uniform process it (always) induces 

a covariant functor P : X----------I which is defined as follows: 

if (E,U) is an object of X lot PX(E,U) 53 (P(E,U),U?) and 

if a is a mapping of X lot P„(a) “ P(a) • Tliis defines 

a covariant functor because if a:E — » E ’ is (U>U’)— 

uniformly continuous P(a) is (U^^^-uniformly continuous.
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If Q is a process on T then Qo^P iS defined to

be the covariant functor Q o p ~ Q o P_ and the family 

((q d p)t7) of functions (a o p)„ = o.T o p.T .
-^ (L,U) inY * x

As in the case of function processes Qn'P satisfies the

second condition of definition 1 since when a is in

Eom( (E,bJ , (E’jU1)), (Q op) (a) o (q o p)g = Q(P(a)) o q^ o pg

~ Qwt 0 ^^^ J. p 0 Py “ <hji o pg, o a « (q a p)g 0 a .

In General Qa*P is ant a uniform process as the

following example shows.

ra:ample. 7.3 in the analogous example in chapter one if Q is 

the process on Y such that Q(E,U) is the discrete space E , 

QgX = x for each x in E and Q(a) = a , then Qo*P is a 

process iff p-E = P(S,U) for every object in Y . As will 

be seen later this is not the case for every uniform process^

If the functions qTT are all continuous, then Qo"P 

is, a process,. This introduces the following problem: if r 

is a uniform process and (E,U) is an object of X when is

PnSE---------P(E,U) continuous with respect to a topology 0-, 

for E? One answer to this question is stated as 

-^ff^PfhA?. Icb *P be a uniform process that satisfies (L7Pr) 

and let (E,U) be an object of X , If 0? ia a topology for 

E thennTYE------ -PfE/J) is continuous wuth respect to On

when__ P^ is finer than the U-uniform topology of E . In 

addition if *P satisfies (UPn) tho converse holds.
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Proof: Since py is (U, Up)-uniformly continuous it is con­

tinuous with respect to the U-uniform topology and the Up- 

uniforra topology, which is the topology of P(E,U) • Further­

more when (py x Py)Up “ H It follows that the inverse ■ •—• *■■
image of the topology of P(E,U) under py is the U-uniform • 

topology. This proves the theorem.

Corollary. Let'Pand Q^bqtwounifoiuirrocesses.^ThenQd-P aiQeaMEXsaftKaaK^M •—•——-—»——-——»—•—————^——^——^———«^—»——•—»——-^»_^__—_ 
is a process when Q- satisfies (UP^)L

Proof: Since the uniformities Up are compatible the Up- 

uniform topology is coarser than the topology of P(E,U) • The 

theorem shows that all the functions qTT are continuous and so 

do*P is a process.

If P is a uniform process then ■pop is defined. If it 

is a process isomorphic to "P then*P is said to be idempotent.

As in the case of function processes two obvious questions 

arise. First, is top necessarily a process? Second, when 
Tn^ is a process is jR idempotent?

For the purposes of this thesis the following theorem 

on idempotonce of uniform processes will be sufficient.
Theorem 5 • LotTba a uniform process that satisfies (UP^) , 

and (UP?) . fnenT is idonrotent.

Proof: Since T satisfies (UP^) 'Pa'P is a uniform process.

Consider the following commutative diagram
(E, V)_________ ^---------------- -  PCH, U)

pv PCpu-)

( PCE, Vh Vp)_____ —________• PC p IE. V Wp).
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Sine© *P satisfies (UP?) Hp^)

because (% 0 Pu)E is dense in

is a homeomorphism.

Hp(E,U),U?) .

This is

The family (P(pTT)) _ of homeomorphisms defines' (E,U) inT
an isomorphism of > into Top * Since (p d p)« = p o p7T 

■ “"P
the homeomorphisms Hp-j) satisfy condition (2) of definition 

since the diagram is commutative. Let a be in IIom( (2,U) (ESH*)) 

Then P(put) o Ha) = P(pufo a) = P(P(a) o py) = (paP)(a) o P(p~). •W. •<■ «M* W^
Consequently the family of homeomorphisms defines an isomorphism 
ofT into To? and so *P is idempotent.

Uniform processes may be related to function processes 

in the following natural way. Define the covariant functor 

U:^-------- *1 by setting U(E,S) = (E,U(S)) and U(a) = a 

(this defines a covariant functor because if a is in 

Hom( (E,S), (E* ,s)) it Is (U(S),U(S *))-uniformly continuous. 
Let T be a uniform process on 32 and consider the covariant 

functor P o U: ^——-X and the family (Pyfs)), _
' (E,S) in 

of functions p^^jiE------- -(? o U)(E,S) - P(E,U(s)) . It is 
clear that they constitute a process on 5 which will be denoted 

by*Pj • The function process *Py is said to bo induced by 

the natural functor U . and the uniform process ~P .

In the case of the uniform processes in examples 1 and 2 the 

corresponding induced function processes are the examples 1,2 

and 3 of section one in chapter one.
§3* Process^ • This process is the analogue of example 4 of 

a function process in chapter one. Let (E,U) be an object of
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T and let C = V * Th© set C defines an equivalence 
V in U

relation on E which will also be denoted by C • Let

E^’ = E/C and let w^:E-------Ej be the natural mapping which 

associates with each x in E its C-equivalence class# 

Let S(E,U) be the sot E^ and the quotient topology cor­

responding to tho U-uniform topology on E •

Assume that (E^U1) is a second object and that a 

is in IIom( (E,U), (E^U*)) • Then since a is (U,Ur)-uniformly 

continuous (a X a) C* contains C and so (a„,a__) is in C* x y
when (x,y) is in C * Let S(a):Ej-------*E^ bo the unique 

function for which ^ o a = 3(a) o w^ • (Since a is contin­

uous with, respect to the uniform topologies S(a) is a 

continuous function, i.e* S(a) is in Eom(S(E,U) ,S(E,,U,)) •

Ehen a1 is in Hom( (E»,U»), (E'^U")) then S(a» o a) 

= S(a’) o 3(a) because S(a) o S(a) o n^ = S(a’) o rr£ o a = 

n^” o a'o a • Consequently S:T---------21 is a covariant functor

For each object (E,U). in X let sy be the natural 

mapping tt^ • Then by definition S(a) o 6y.= s^, o a and 

sTj3 = S(E,U) • This shows that the functor S and the family 
(sTT) of functions s7T defines a uniform process ^ *

^“(E,U) in X —————£

Theorem 6. l222SssjeL£2&ls£!£S-jL^31dL^^^__ 1- 

~P is any process on X that satisfies those three properties 

then there is a unique homomorphism y of ^ into *P .
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Proofs

S(E,U)

Let (E,U) be an object of X and consider s^:L—► 

• If 7$ is in Uq then (s^ X Sy)“~/s ~ ^ ^s ~n

U and from the definition of s7T , C o V o C = V and

(S„ X Su)v - vs .

The collection of surroundings V in U for which

0 o V o C = V is a base for the uniformity U since

C o V o C contains V and is contained in • If V is

such a surrounding of U let 7^ = (w^X ty^Y • The sets V^ 

are a base for a uniformity on E, which is Uq •
First, note that V = (n^ X rr^)~'^r1 * ^ ^c>7^ is 

such that (njX,Trjy) is in 7^ there are points u and v

Therefore (x,y) isinCoVoC=V. Since (rr^x ~7 J”^^ 

contains V this proves the equality.
Second, (v^)”1 = (V-1)^ v^ contains V^ if V 

contains W and Vj_oVj = (VoV)1. The first two assertions 

are clear and so is the fact that (7 o 7)^ is contained in 

V1 ° V1 • ^et (xi>2jJ be in 7^ o 7^ • ^ea there is a 

point y^ in E^ with (x^,y^) and (yj»Sj) in Vj • Let 

TinX 53 x^ , n^y = y^ and n^z = z^ . Since V = (r^ x ^““T^ 

(x,y) end (y,z) are in V and so (x,z) is in V o V ♦ 

Therefore (V o 7)7 contains V^ o 7^ and the equality follows. 

This proves that the sets 7n form a base for a uniformity on 

E which has U for its inverse image under n^ = Sy • Ma
The natural mapping is uniformly continuous with respect 

to this now uniformity and as a result is continuous with respect
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to the corresponding uniform topology. Consequently this new 

uniformity is compatible. It follows that it is Ug by the 

remark following (UP^) .

The uniformity Un is separated (x1>y1) is

in each Vq then (x,y) is in each V of U if rr^x = Xj 

and n^y = y^ • Consequently (x,y) is in C and so nyx = 

”1? i.e. xj = yx •

The uniformity U.-, is a structure of S(E,U) . Let

Oj be an open set of the quotient topology for 3^ and let 

0 = ^j °i • Then 0 is a C-saturated open set. Let x be 

in 0 and let V be a surrounding in U such that C o V o C=V 

and VEx] is contained in 0 . Then r^CvEx]) * V^En,x] 

which is contained in tt^O = 0^ • If (x,y) is in V then

The opposite inclusion holds because C o V o 0 = C • This 

shows that the quotient topology, for E^ is the IK-uniform 

topology.

Uiis completes the proof of the first assertion

Let "P be a uniform process on If there is a

homomorphism y of 5 into*P it is unique as for each (E,U)

in J SyE = S(E,U) Furthermore for this same reason tho

argument of lemma 3 applies to show that a homomorphism y of 

5 into *P is defined by a family of continuous functions that 

satisfy condition (2) of definition 2.

Assume *P satisfies (UP-),(UR) and (UP-) • Let

(3,U) bo an object of I Since r satisfies the first two
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of these properties pyX ~ PyY iff (xfy) is in each surround­

ing of U . Therefore there is a 1 - 1 function y(E,U):3(E,U) 

-------- ►P(EjU) such that y(E,U) o Sy = Py (since SyE = S(E,U))# 

Theorem 4 Shou's that py is continuous with respect to the 

U-uniform topology. Since y(E,U) o Sy « Py it follows from 

the definition of a quotient topology that y(E,U) is continuous# 

remark. The second assertion of this theorem states that S

satisfies a ’universal’ property with respect to (up3),(up4),

and (UP^) # It is clear that this ’universal’ property’’ defines

tho separation process 5 up to isomorphism# Hie uniform space

(SfEjU),^) is called the separated space associated with 

(E,U) .

An important property of this process is that it

preserves completeness as stated in

Theorem 7# (S(EtU) tUn) is a complete uniform grace iff (EtU) 

is complete#

Proof: Let F denote a U-Cauchy filter on E and let F

denote a U^-Cauchy filter on E^ • Since Sy is (U,Un)- 

uniformly continuous • SyF is a U^~ Cauchy filter on E^ tiiich 

converges if F converges in the U-uniform topology#

On the other hand su~Zj ^s a U-Cauchy filter which 
converges if F^ converges# Since 5 satisfies (Upp 

s-y“ £]. is a U-Cauchy filter# If Fj converges to a point of 

S(E,U) j say SyX, then F^ is finer than the neighbourhood filter 

H^CsyX) • This filter consists of sets Vg[syX]# V$ in U$ 

and so Sy^^tsyx) = Vfe) - the U-uniform neighbourhood filter 

of x . This shows that Sy^F^ converges if F^ converges.



131

Assume that (E,U) is complete. Then s^Ei 

converts in the U-unifora topology and so does su^su^“l^ 

which contains F^ • Hence Fn converge3 and so (S(E,U),UC,) 

is a complete uniform space.

Assume that (S(E,U),Ug) is complete then s-jF 
converges and so also does s^tsyF) which is contained in 

** *M
F • Therefore F converges and so (E,U) is a complete space.

This section concludes with the following obvious 

result. If (E,U) is an object in T then s^ is a homeomor­

phism iff U is a separated uniformity. Consequently ^ is 

idempotent. The first assertion since 8$ is 1 - 1 iff it 

is a homeomorphism. The process 5 is idempotent because 

S°Sis a process and each Sy is a homeomorphism.

$ 4* The Cauchy filter process H . If (E,U) is an object of 

X let N(E,U) be the set of U(Cauchy filters F on E 

together with the following topology for E: if F is any 

subset of E let F^ = [F in U(E,U) |F is in F] ; the sets 

Fx form a base for a topology for H(E,U) since (F^ n F2)“

Let (ESU*) he a second object of 1 and lot a 

be in Eom((E,U) jUSS1)) • Define H(a) by setting E(a)F = 

aF . Tliis is a U ^Cauchy filter because a is (U,U*)* 

uniformly continuous. The function £(a) is continuous since 
ir^(a)(Fr)M = (a”^F,)x for any subset F* of E* •



132

If a* is in Hom( (E’,U»), (E ,U )) then K(a* o a) 

“ Ufa’) o N(a) since (a* o a)F = a’(a?) as both filters 

have a common base* Consequently EsI- -^ is a cov­

ariant functor.

Veen (E,U) is an object of I define n^E-------m 

N(E,U) by setting n^x equal to the filter x of sets that 
•MM 

contain x . It is U-Cauchy and if F is a subset of E 

n^x is in F1 iff x is in F i.e. Fs A n^E = n^F • 
*—• MM «M»

Let a be in Hom( (E,U), (Ef,U*)) • Then 11(a) o ny 

83 n^ । o a because a (A) = (ax) . This shows that the 

functor IT and the family (nTT) of functions nT,
------------------------------------------- ------- £"(E,U) in X------------------------ £ 
define a process which will be denoted by * 

Remarks * For any object (E,U) of ' there are two obvious 

mappings of E into tho set U(E,U) • One is the function

ny and the other is the mapping which corresponds the U- 
•MV

uniform neighbourhood filter of x to each point x • If the 

second one is used the topology of M(E,U) has to be defined 

in terms of the sets F where F is in the U-uniform top­

ology of E ♦ Given this modified version of the functor H

the second type of mappings fail to satisfy condition (UP?) .

For this reason the functions n^ are the ones used to 
mm

define TV. These functions and the modified version of N

also define a process.

For the purposes of this thesis, tho properties of TV

that are of interest are stated in
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Theorem 0* H is a To -process which satisfies ('u'Pj and 

(UP^) . It is not idempotent.

Proof: Let (E,U) be an object of X and let F,F* be 

two distinct U-Cauchy filters on E . Then either F 

contains a set F not in F* or F* contains a set F* 

not in F and so there is a neighbourhood of one of these 

two filters that does not contain the other.

To prove that IT satisfies (UP^) it is necessary 

and sufficient to find a compatible uniformity for N(E,U)

whose inverse image under nTj is U , .

If V is a symmetric surrounding of U lot V2 be 

the set of pairs of U-Cauchy filters that share a V-small 

set. The family (V2)T synmetI>ic in u is a baso for a ml" 

fornity for N(E,U) • The sets V2 are symmetric and if 

V contains V then Vo contains U2 • Also V2 o V2 is 

contained in (V o V)2 • Let F, F’ and F be three U- 

Cauchy filters such that F and Fr share the V-snall set 

F and F1 and F share the V-snall set F* . Then 

F n F* t 0 and if x is in F n Ff then V[x] contains 

both F and Ff . It is a V o V-small sot common to F and 

F and so V2 o V2 is contained in (V o V)2 • This shows 

that the sets V2 are a base for a uniformity for N(E,U) • 

It is clearly compatible because for any filter F in h(E,U) 

and surrounding V2 if F is a V-small set in F then F^

is contained in V2CfJ •



The inverse image of this uniformity under By is U • 
This is because (n-yX nu^"^2 “ ^ • ^ ^ and y chare a 

•MM mm

V-small set then (x,y) is in V . If (z,y) are in the sym­

metric surrounding V so are (xrx), (y,y) and (y,x) • The 

set [x,y] is therefore V-small and common to x and y •

This shows that . Uy is generated by the sets V^, 

or more accurately, they form a base for Uy and also that 

Tl satisfies (UP^) •

The uniform space (n(E,U)#U$) is complete# Let F2 

be a U -Cauchy filter on N(E,U) and let F* be the filter 
2

generated by the sets ^2^2^ v^GrG ^2 ^s ^n —2 * ^ “s 

a Uy-Cauchy filter contained in F’ • Furthermore since 

n^E is dense in N(E,U) and Uy is compatible F « nTy*F^ 

is a proper filter on E • Since T^ satisfies (UP^) it is 

a U-Cauchy filter. The filter n-F on H(E,U) converges 
MM

to F since for any set F in F n^F = n^E A F^ is a subset 

of F^ . Hiis proves that FJ, which is contained in n^F , 

also converges to F and hence that F9 converges to F • 

Mote that in the case of F4 and F2 the convergence is with 

respect to the Uy-uniform topology.

A cardinality argument may be used to prove that

is not idempotent. Assume that HXu iL is a process and let 

(E,U) be an object of I such that E is an infinite set 

and U is totally bounded. Then every ultra filter on E io 

a U-Cauchy filter. If n is the cardinal of E then there 

are 2 distinct ultrafilters on E(see Pospisil [19]) and so



the cardinal of M(E,U) is greater than or equal to 2 •

Lemma 4 shows that U-j is totally bounded and so this 

argument- applies to show that H(E,U) and M(H(E,U) ,U<J 

are not even equipotent, let alone homeomorphic* 

Remarks * If the modified version of the functor H is used 

the theorem holds with the exception that 71 is no longer 

a Tq-process. The process 71 is of especial interest because 

it is a non-trivial example of a process that is not idem­

potent. The proof of this fact does not show that TloTL 

is a process and so it could be simplified if this were not 

the case. Process TL suggests that another non-trivial 

process could be defined in the following way (either as a 

function or a uniform process): correspond to (E,S) or 

(E,U) the set of ultrafilters on E with the topology anal­

ogous to that of Il(E,U) and map E into this sot by corres­

ponding to x the ultrafilter x • If a:E---------E* is any 

function it maps ultrafilters on E onto ultrafilters on E’

since ultrafilters are characterized by the property that they

contain a subset or its complement. It is not hard to see that

this defines a Hausdorff (function or uniform) process which

is again not idempotent. Both these examples are in a sense

’extravagant’ processes. Are there non-idempotent processes

which do not appear to be so ’extravagant*?

Corollary. 5 Q 71 Pn(i § o H o ^ ^o two uniform processes 

that satisfy (UPj.iIUP; IxIlIl^l-JSS^ _ t



Proof: Since 5 satisfies (UP^) and (UP^) it follows 

that 5 oTt is a process and that SnTlnS is a process 
if TLo ^ is a process (see the corollary to theorem 4) • 

Tic 3 is a process because for each object (E,U) inT , 

SyE - S(E,U) and so (ny o Sy)E = By S(E,U) which is 

dense in NtsC^U),^) •

Both processes satisfy the first three properties 
because 3 satisfies then (theorem 6) • They satisfy (UP$) 

since TL does and because 3 preserves completion (theorem 7) 

Remark. Exercise 5 on page 156 of Bourbaki [3] states that 

these two processes are isomorphic. This will bo proved in 

section seven by showing that the four properties of this 

corollary characterise a class of isomorphic processes* 

§5* U-comnletely regular filters* Let E be a set and let 

U be a uniformity for E • The filters on E that are of 

interest in this section are those that satisfy the condition 

of 

Definition 3* A filter F on E is said to bo H-completely 

readier if F in F ir.pli.es there is a set D in F and a. 

si^rrounding V of U with V[D] contained in F *

Uken the uniformity is defined by a collection S of 

functions on E an S-completely reeler filter is a U(3)- 

completely regular filters This is an immediate consequence 

of definitions 3 and 4 of chapter one and the fact that if 

e “ X^ - X2 is Positivo V(f,e)[F2] is contained in F^

ir.pli.es


when Fo is contained in [x|fx < X~] and F, contains 

[x|fx < ^3 .

.^^■inlcs of* TJ-completely regular filters

1. If F is any subset .of E the family (VCf])^ in $ of 

sets V[F] is a U-completely regular filter • In particular 

the U-uniform neighbourhood filters of the points of E are 

U-completely regular.

2. If U contains U^ then the Uy completely regular 

filters are U-completely regular. If S is the set of U- 

uniformly continuous real-valued functions then U(S) is 

contained in U and so every U(S)-completely regular filter 

(in particular every S-completely regular filter) is also a 

U-completely regular filter.

When ordered by inclusion it is clear that the U- 

completely regular filters form an inductive set and so by 

Zorn’s leiama every U-completely regular filter is contained 

in a maximal U-completely regular filter. These maximal 

filters II have the property that for any U-completely regular 

filter F either H contains F or F and II do not 

generate a proper filter. This is a consequence of 

Iemma 5.. Let F and F’ bo two U-completely regular filters 

on E that generate a filter F on E . Thon F is U- 

complotely regular. 

Proof: Let F be a set in F . Then there are sets F and 

F* in F and F* respectively such that F a F* is in F 

and is contained in F . Let D and D’ be subsets cf F



and F* which belong to F and Fr and are such that there 

is a surrounding V in U with VED] contained in F and 

VED’J contained in F* . The set D a D* is in F and 

sinco FED] nvED’] contains VED o D1] it follows that F 

contains VED a D’J • Hence F is U-completely regular. 

CorollorTr 1. — - is a U-miforaly continuous real-valued 

function on E and F is a U-connletely regular filter 

then there exists a U-completely regular filter F1 contain­

ing F such that lim f exists in B •

Proof; From example 2 it follows that if S is the collection 

of U-uniformly continuous real-valued functions on E then 

the S-completely regular filters are U-completely regular 

filters. Consequently the argument of theorem 6 in chapter 

one applies to prove the existence of such an F* .

Corollary 2. If f is a U-vnifoynlv continuous rc~l-v^lnci 

.function on B and, H is a maximal U-co^Iotcly royaler 

filter then lim f emsts in R .

Proof: It is an immediate consequence of corollary 1.

Uiis second corollary may bo used to show that there 

are U(3)-completely regular filters that are not S-completoly 

regular. Consider the following

Example. Let E be the set R of real numbers and let S =Ee] 

where ex = x for each x in B . The uniformity U(S) is 

the usual uniformity for R • The maximal S-completely 

regular filters are the neighbourhood filters of the point 

with respect to the usual topology and the two filters at
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'infinity' generated by tho families (C<-,-n)) and 

((n,-*)) • The function sin x is a U(S)-uniformly contin­

uous function which does not converge along the filters at 

’infinity' • Consequently corollary 2 to lemma 5 shows that 

there are maximal U(3)-completely regular filters which are 

not S-completely regular.

Given any filter F on E the sets V[F], F in 7 

and V in U generate a filter U[F] which is contained in

in V^] n V^J The filter U[F] is U-completely

regular and F is U-connletely regular iff U[F] = F . Let 

F be in F and V,W be surroundings of U such that V 

contains V; • Then U[U[F]] is contained in V[F] and so 

U[FJ is U-completely regular. If F is U-completely reg­

ular the sets VEfJj F in F and V in U form a base 

for F and so F = u[F] • Tho converse is obvious. If F' 

is U-completely regular and F contains F' then U[?J 

contains F' . It is clear that U[F] contains U[F’] , but 

this filter equals F' •

If F is a U-Cauchy filter so is U[F] • Let V
. — I —1 — K —T— •—• «n^i^——HI—-1 — —w

and 17 be surroundings of U such that V contains L-
If F is a U-small set in F then LT[F] is a iP-small set 

(and hence V-snall) in U[F] . If F* contains F and F 

is a .U-Cauchy filter then U[F * ] ° UE?] . It is sufficient 

to prove that U[F] contains UEF'] • Let V and W be

surroundings in U with V- contained in V and let F, F'
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be W-small sets in F and F* respectively. If z is in 
F n F* then W^Cx] contains U[F] and is contained in V[F’J 

Consequently U[F] contains U[F *1 •

Thore are tiro immediate consequences of this last 

assertion. The first is that a ' IT-Cauchy IF complete!”’ 

regular filter is a maximal U-completely rernilar filter. The 

second is a characterisation of the minimal U-Cauchy filters: 

a .U-Cauchy filter is a minimal U-Cauchy filter iff it is 

U-completely regular. If F is a minimal U-Cauchy filter 

then F = U[F] and so it is U-completely regular. If F is 

a U-Cauchy U-completely regular filter and F contains a 

U-Cauchy filter F* then F = U[F] = UE?’] which is contained 

in F • Hence F « F* find so F is minimal. 

Remark, This shows that if S is any collection of real-valued 

functions on 3 the maximal S-completely regular filters 

that are U(S)-Cauchy are the maximal U(S)-completely regular 

filters that are U (3)-Cauchy.

The ma:zimal U-completely regular filters are character 

ized as follows: a U-comnletely regular filter F is maximal 

iff there exists an ultrafiltcr cent airing F with F = 

U[Fq1 , If K is a maximal U~completely regular filter and 

F is any ultrafilter containing M then UE^J . is clearly 

equal to M , Let F^ be an ultrafilter and assume that F 

is a U-completely regular filter containing UQ^l • Lot F 

be a set in F that is not in UEF^] • Then there is a set 

D in F and a symmetric surrounding V in U such that F
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contains V^Ef] . The cats I'M end VE &72M] are dis­

joint. Since F is not in UE^] it fellows that V2ED] 

is not in ^ . Therefore C VE?] is in and so
VE £ V^Ed]] is'in uEf] and hence is in F . This is a

con±r«adiction. Consequently F = UE^] i.e. UE? ] is a

raxirial h~completely regular filter.

One consequence of this result is that if TJ con-

jnylns Hi flKLJJ-L. ri is. a ri!r±ml- U-completely regular

fl?.tor then u7 Eli] is a maximal V-, — cormletelTF re'^nlnr

filter. het Fq be an ultra-liter containing . H . Then 

&EF-] contains U^Em] and since it is U-coapletely reg­

ular is contained in H ♦ Therefore Hi Eij] = h-Er^] and

tho assertion follows.

A U-ccmnlctely regular filter has a basis of cots in
«M* *^ IU^»-^>» —-O *-^ »><l><l * J>A»i*. «. I <M». W.l M^'X ^ »«» *. * WM*-*^*^^-^-***-**^^*^*^*^*-^.-*-**^*-*^*

the U-uriform tOL-alpyy. Tills is because with respect to the 

U-uniforn topology U has a base of open surroundings U 

and for any such surroundings the sets L’[F] ere in the U- 

uriform topology then F is a subset of 2 .

Let S’ be a second sot and let U* bo a uniformity 

for E* • Denote by a:E------ *E* a (U,UO-uniformly cent in* 

uous function. In tills situation the following lemma will be

of use.
LeimanjS^ Assume that (c x gF^U* » U . Lot F be ^filter 

on 2 ♦ The following statements hold: .
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(1) U[F] is contained in cSilk

<2) Vfc^jg)] ° a^dJ'W);

(3) U[F] ° ^(U^cF]) .

Proof: Obviously (1) and (2) inply (3) since . UEuEfJ] = 

uEf] .

Let F be a subset of E and assume cy is in aF . 

Then there is a point x in F with ax = ay • Therefore 

(x,y) belongs to every surrounding V of U and so VEF] 
contains a^faF) • This proves (1) •

Let V be a surrounding of U and let V* be a 

surrounding of U* such that (a X a)~~Vt = V • Then for 
any subset F of EjG^CV’LF]) = VEa^CaF)] . If (x,y) 

is in V and x is in a^CaF) then (az,ay) is in V* 

and ax is in aF . Consequently y is in a^fV’EaF]) • 

Conversely if (ax,ay) is in Vf and az is in aF then 
(x,y) is in V and x is in a"^(aF) • Tills proves the 

equality from which (2) follows# 

Corollary 1. If F is U-comnlotely regular then F = 
q^Cu ’Eg?]) q a^tcF)^ 

Proof: UEF] is contained in a“^(cF) which in turn is 

contained in F . If F is U-completely regular F = UEF] 

and the corollary follows from (3) •

Cor oil ary 2 ■ Tf II is a maximal U-completelv regular filto** 

then U’Ecull is a maximal, IT ^completely regular filter*
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Proof: Lot F1 be a U’-completely regular filter containing 

U’Eail] • Since a is (U,U’)-unifomly continuous a” 7* 

is a U-completely regular filter. Corollary 1 shows that 

it contains LI and hence is equal to H ♦ Since all - 
aCa*^?’) contains F’ it follows that F’ = U’Ccll] and so 

IL^^ i>3 a maximal U’-completely regular filter#

The corollaries to this lemma are used to prove the 

following theorem which has an application in the next section 

analogous to the use of theorem 9 of chapter one in the 

definition of process TR• 

Theorem 9. het ct:E------*E* be a (U,U’)-uniforrily continuous 

function.If II isanaxipial U-conpletolyregular filter 

on , E then U’tam3 is a naidinal U’-completely regular filter 

on E’ », Hen II is U-Cauchy, U’EallJ is U’-Cauchy# If 
in addition (a x c)"^’ = U the correspondence II----- -U^f.] 

is 1 -1 #
Proof: Let U-j “(ax a)“\7* • Let r^ = Up Eh] • It is a 

mssrinal Uj-completely regular filter as U-, is contained in 

U . VW
Tlie filter H’^Uj Is a maximal U’-completely 

regular filter by corollary 2. Since ell contains alh it 

follows that V’Cc^] = U’EcZj] which proves the first assertion 

If 21 is U-Cauchy then ell is U’-Cauchy as a is 

(U,U’)-uniformly continuous# Consequently U’CaLl] is U’- 

Cauchv#



The last assertion is an immediate consequence of 

corollary 1 since under the additional assumption LI = 
a^Cu^aii]) .

$6# Process B , Let (E,U) be an object of X . Define 

B(E,U) to be the set of maximal U-completely regular fil­

ters H together with the topology generated by the sets 

CK, 0 a subset of E in the U-uniform topology, where G~ 
- [II in B(E,U) |0 is in II] . The sets ^ form a base

= (Ojo o2)* .

object of X and a is in 

by setting B(a)H = U’Eail]

for this topology since Oy ^ O^ 

If (E’jU*) is a second 

Kom((E,U)>(E,,U#)) define V(a)

which by theorem 9 is in B(E,,Ur) • The function B(a): 

B(E,U)----- ►B(E’,U*) is continuous* Let O’ be a subset of 

S’ in the U^uniform topology and assume B(a)^ is in 

(0*)K, i.e. 0* is in B(a)IL * Let 0, • be an open set in 

B(a)I* and W* a surrounding of Ur with 0T containing 
U’EO^ • If a^CO^’) is in II then 0^’ is in all and so 

W’EOt’] is in U’EcIl] - B(a)II • Therefore the set D^UXO’) 

contains the neighbourhood (a ^(0^r))K of 1^ since a is 

continuous with respect to the uniform topologies. Hence 

B(a) is continuous.
Let a» be in nom((E\U»),(E,,>UM)) . Then E(af o a) 

= B(a’) o 2(a) • If II is in B(E,U) then E(a* o a)m = 

U^EaXaM)] which contains y" Eg* (U ^all]) ] » (B(a’) o B(a))n * 

Since those filters are maximal they coincide and the identity
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holds. Consequently BsT------- .2 is a covariant functor, 

Uhen (E;U) is an object of T define by-x to be 

the U-uniform neighbourhood filter IL of tho point x • 

It is a U-Cauchy filter and since it is also a U-completely 

regular filter it is in B(E,U) • The set byE is dense in 

B(E,U) because for any set 0 in tho U-uniform topology 

G”A hyE = byO •

If a is in Hom( (E,U), (Er,U»)) then U’CellJ « M* . 

Ulis is because cM,, is a filter tMch generates a filter 

with K’ and so Ur[a£L] and H* generate a proper 

filter, i.e. these two maximal filters coincide.

This shows that tho functor 3 and the family

(b -) of functions b-T define a uniform nrccessl^ •
“^“(E,E) ini -------------------------2------------------------------------------------

The basic properties of this process are stated as 

Theorem 10. T3 is a compact process that satisfies. (UPJ J??,) 

(UPj and (UP?) . It is idempotent.

Proof: It is idempotent by virtue of theorem 5 if it satisfies

the first assertion.

Let (E,U) be an object of The space E(E,U) is

Hausdorff. If T. and are two distinct maximal U-

completely regular filters then there are two disjoint sets

01 and 0o in the U-uniform topology such that 0. io in 

Lj • Since 0^ A $2” “ ^l^ °2^ “ $ H which is void, 

it follows that Mi and L^ have disjoint neighbourhoods.
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To show that every open cover has a finite subcover 
it is sufficient to consider open covers ^* of B(E,U) by 

sets 0M from the base of the topology*
Let ^*be an open cover of B(E,U) by sets 0” , 

where 0 is a subset of E in the U-uniform topology* 
Assume that X*has no finite subcover* This implies that the 

cover X of E by the sets 0 has no finite subcover* There­

fore the sots ^0, 0 in 3C form a filter basis for a filter

F on E •

This filter lies in no U-completely regular filter 
on E since X*is a cover of B(E,U) * Let F_ be an ultra­

filter containing F • Then U[Fq] does not contain F • 
Consequently there are n sets 0j,***,0n in 5 such that 

n . .
n (£ 0. is not in U[F_], i.e* if F is in Fh and V is 

i=l 1 ~ ~° . .
in U then V[F] n ( o 0.) | Q . Since U has a basis of

n 
symmetric surroundings this is equivalent to F a V[ ^^ 0^] ^ 0 

n n
i*e* V[ U 0. ] = V V[0. J is in FL . This leads to a 

1=1 1=1

contradiction in the following way*

If Cr is in X and IF is in 0x there is an open set 

0, in II such that for some V in U VEOq ] is contained in 

0 • Choose subsets Cq of 0 in this way to obtain a refine­

ment * j of <1 i.e. U.-^ consists of sots 0n such that 
each 0-| is not only contained in sone 0 in X but there is 

a surrounding V of U such that VEO^] lies in some 0 in 
X * Assume X^ has no finite subcover*

Let Fq be the filter defined byX ^ . It is contained



in F and for the same reason as before Fj doos not lie in

UEfI • Therefore there 
El

such that m VCO, .] is 
1=1

there are sets 0. in

that Oj contains Vj[O
12 12
n V4 * Then u 0.

5=1 3 j=l J

Tills is a contradiction

are m sets 0-^,.. 

in for each V

•»°ln in^l

in U • However*M*

in U such

• Let V =

which is in fQ •

Th * Therefore

and surroundings Vj

B(E,U) is compact.

Tho unique structure of B(E,U) has as a basis tho

Cranks o (0/ X C/1) of the finite open covers Ot’*, ...#0 
1=1 x x ~

of B(B,U), where the sets 0^ are in the U-uniform topology

The inverse image under brT of such a graph is the crank 
n - ■
V (0. X 0.) which is a subset of 2X2 containing the 

1=1 1

diagonal. Tho argument used to show that 2(2,U) is compact 

also proves that thcro is a refinement 0^ ’>•••>$1-2 cf th-s

cover and a surrounding V of U such that each VEO^j] 

lies in sone 0.. • Since 0-,-,,...,0, is a cover of 2 this

proves that o (0.. X 0.) contains V • Consequently U^ is

the unique structure of B(E,U) and so o automatically satisf

(UP^MUP^) and (UP6) .

Let a be in Hom((E,U)>(E’jU*)) and assume that
(a X a)"^1 = U • Theorem 9 shows that 2(a) is 1 - 1 . Let
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0 bo a subset of E in the U-uniform topology and assume 

that 0 is in the maximal U-completely regular filter T” • 

Fick V* in U* an open surrounding such that if V = (ax a)~”V* 

there is a set F in with V'EF] contained in 0 . The 

set aF is in cw^ and the open set V’EaF] is in B(a)^ • 
Furthermore a^fY* EgF]) = VEa^taF)] which is contained in 

V^EF] (see the proof of lemma 6) • Therefore ^ is in 
Star1 (V'[aF])H which is contained in 0K • This shows that 

E(a)(O*) is an open subset of the subspace B(a)B(E,U) • 

Consequently B(a) is an embedding and since 3 is compact 

it follows that HB satisfies (UP?) .

Remark. In general if *P is a compact process that satisfies 

(UP^) it also satisfies (UP^) and (UP^) •
The ’universal* property that characterizes^ is 

an immediate consequence of a corollary to 

Theorem 11# Let E be a set and let U be a separated unif­

ormity for E, . Lot 0 be the uniform topology and let E 

also denote the topological space (E,0) . Then byjXz----- - 

E(EtU) is an embedding.

Proof: If 0 is in 0 then 0*0 byE a byO and so by is an 

embedding iff it is 1 - 1 • Since U is a separated structure 

by is 1 - 1 and is therefore an embedding.

Corollary 1. 0 is a completely regular tenology.

Proofs A compact space is completely regular and any subspace 

of a completely regular space is also completely regular.
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^°^^^r^ 2. Lot , H he a C~nnn£t,,^ J^ be... i-ts

r£l£!iiLJ2££^^ a hcLieomornbJ.s:.?..

Proof: b K embeds K on a dense subset of the Hausdorff 

space B(K,U~) • Since K is compact it follows that 

b^K maps K onto BfKjbf) •

An immediate consequence of corollary 2 is that 13 

has the following ’universal* property for each object (2,U) 

of X : lot K be a .compact, space and lot k;E——-K bo a 
•F

(U s ) <rniformlv cent inuous fun etionhthen therconis t s a 

unique continuous function k^sBCgaU) - —— K such that

o b-7i « k . Consider the fcllouins commatative diagram 

E--------—----- ► B(E»V) 
k-----BCk)

Dy corollary 2 b-K is a home oner phi an and so k^ = b^H o 

D(k) is the desired function. It is unique because b^D is 

dense in D(E,U) and K is Hausdorff.

One application of this ’universal* property is the 

follovzing result. If f is a bounded Ixmitely continuous 

rcnl^aliipd. function on E there is a uni rue continuous real- 

valued function f^ on D(E.U) ouch that f^ a b7T c f . Can- 
*-t-i .-4*.fc^ -1tri»r r-’f- - -*-•-- T1«*H - ~ ~ - l«r * J Wir - -1 t r T' r r " 1

eider tho closure of fB • It is a compact space K fith 

respect to uliich f plays th© role of k » The result follows 

immediately.
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This ’universal*  property also shows that there is a

• Then since *P is a Hausdorff process

ox

hoqonorpliinn of the, function process B v into > . This is

because for each object (E>S) in $ the function
I"(3,S) is (U(S) fU^^’S))-uniformly continuous and so the

continuous function (mq) :B(E,U(S))-------ix(E,S) is defined 

such that (mg) 0 ^(3) “ ^g * Since Bl is a Hausdorff

process lemma 1 of chapter one shows that the family

((mn) ) of functions (m<J defines a homomorphism
B (E,S) in 3  B*

of B^j- into TH . Tliis homomorphism is not an isomorphism bo-

cause of the example following corollary 2 of lemma 5 in sec­

tion five#
The ’universal*  property characterises 13 as a com­

pact process that satisfies (UPj as shown by

Theorem 12# het ^P be a uniform process that is compact and

satisfies (UP^)

^ into ^P »

Then there is a unique homomorphism y of

Proof: For each object (E,U) in X the function p^iE-------- -  

P(E,U) is (U,Up)-uniformly continuous# Since *P satisfiess 

(UP^) and is compact Up is the unique structure of P(E,U) •

The ’universal* property defines a continuous function

^U P(E,U) with (Pjj) 0 by “ Pj • Define

y(E,U) to be (prT)
~ B
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A compact process is a Hausdorff process and so the 

homomorph!sin y is unique (in view of condition (2) of defin­

ition 2) •

Co;.~ eluding remarks, Samuel [131 was the first to demonstrate

a compact extension of a separated uniform space (E,U) with

the ’universal’ property. His construction was by means of a

quotient of the compact space of ultrafilters on E • Two 

ultrafilters Fq and F^ are identified if bE^] = UE?^] . 

The construction of this space by means of the filters UE]?] 

i.e. the construction of B(E,U)t is due to Banaschewski [20] 

(although he defined the topology in another way) • It is

perhaps worth noting that three compact extensions of the space 

R of real numbers nay now be associated with the identity 

function e • They are (H(R,Ee]), m^j), (B(RtU(Ee])), ^(^j) 

and the Stone-Cech compact ifi cation (,3R,i) • This last ezrten- 

sion io associated with e since it is the Wallman extension of

the normal space R which is characterised by the fact that

sets with disjoint closures in R(i.e. eT^ and e-2 are disjoin

have disjoint closures in the compact extension. The Samuel

compactification of R associated with U(Ee]) is not a £-

extension because there are bounded continuous real-valued

functions that are not uniformly continuous (and hence have no

extension to B(E,U(Ee])). These three distinct extensions cor­

respond to three different ways of using functions to distinguic 

between sets. Let 5 be a collection of real-valued functions

on a set E and let F, and Fo be two subsets of E with
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i

Fj containing Fg • Then Fg and (C F^ are said to be:

(1) S-comnletely separated if the conditions of def­

inition 3 in chapter one are satisfied;

(2) U (5)-completely separated if there is a surroun­

ding V in U(S) such that Fj contains

VtFg] ; and

(3) S-closure separated if there is a finite number

of functions, say f^,...,fn in S such that 
n   n
n f. Fo is contained in the interior of n f.F, 
i=l i=l 1 1

i.e. n and H fTCF, are disjoint. 1=1 i=l 1 1
.u "“ . . • ^ * e «» «

These tliree types of separation are progressively stronger and

when E = R and S = [e] they are mutually distinct since 

they define the above three distinct compact extensions of R .

§7, Process ^ . This process is defined by means of ^

in a manner analogous ; bo tho tray in which in chapter one 5-

is defined as a subprocess of "Wt. 

Lot (E,U( be an object of T • Define G(E,U) to

be the subspace of B(E,U) consisting of the maximal U~com­

pletely regular filters that are U-Cauchy. If a is in 

Hom( (E,U), (ESU1)) define G(g) to be B(a)|G(E,U) . It 

maps G(E,U) into G(Ef,Ur) in view of theorem 9. Further­

more if a’ is in Hom( (E,U), (E’,U*)) then G(a* o a) = 

G(a’) o G(a) by direct computation. Therefore G: T------ *21

is a covariant functor.
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If (EtU) is an object of T then byE is contained 

in the set G(E,U) • Define gy to be by • It follows 

immediately that the functor C- and the family (gTT)
- (E,U) ini 

of functions gy define a uniform process* Let ^ 

denote this process*

Since § is a subprocess of T3 it follows that ^ 

satisf5.es (UP^), (UP^) and (UP?) * The first two properties 

belong to 5 since for any object (E,U) in X U$ obviously 

contains U3|G(E,U) . 9 satisfies (UP?) because it is a 

subprocess of a process with this property*

Process ^ satisfies (UPj and (UP^) , To prove 

this assertion an solicit description of Uq is obtained by 

essentially the same argument that is used to describe U? 

in theorem o*

Let (E; J) be an object of X • If V is a symmetric 

surrounding of U let V^ be the set °^ pairs of filters II 

in G(E,U) which share a V-small set. The argument of theorem 

G shows that the family (Vo) of sets V, is
p V symmetric in U 

a base of a uniformity for G(E,U) •

Ulis uniformity is compatible* Let V be a symmetric 

surrounding of U and let M be a point of G(E,U) * Then 

II contains a V-small set 0 in the U-uniform topology and so 

0”H G(E,U) is contained in V^En] • Therefore the correspond­

ing uniform topology is coarser than the topology of G(E,U) *

This uniformity is U$ because its inverse image under 

&t is U • Let V and W be symmetric surroundings of U

atisf5.es
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such that V contains w and such that W is open with 

respect to the U-uniform topology. If (gy-x, gyy) is in 
•—•» **

V^ the neighbourhood filters share a V-small set and so 

(x,y) is in V . On the other hand if (x,y) is in V 

the V-small open set WEx] contains x and y and so 
(gy^»gyy) is 111 v3 • Therefore (gy x gy)”^ contains 

U and is contained in V . This proves that the inverse 

inage under gy of the uniformity generated by the sets V^ 

is equal to U . * «M»

Th© uniform space (G(E,U),Uq) is complete. Let 

F^ be a U-Cauchy filter on G(E,U) and let FJ be the 

filter generated by the sets V3EF3] whore F^ is in F^

and V^ is the surrounding corresponding to a symmetric V 

in U . It is a Up-Cauchy filter and F = g Fi is a U-

Cauchy filter. If the filter gyP converges to UEFJ then 

since it is finer than FJ both FJ and F^ converge.

The filter gyF is finer than gy(U[F]) . If 0 

is an open sot in UEF] (with respect to the U-uniform 

topology) then gyO = 0ha gyE and so gy(UEF]) converges 
— •—• **

to UEf] . Tllis proves that gyF converges. Consequently  ̂•■w
satisfies (UP^) and so the following theorem has been proved 

theorem 13.. Process J-jEsSIsOss-J^LlI^

Bj (BPj . Consequently it In Merootont,
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Corollary X* ^__ ^,0 is am object cf T C-(F.U) = l(EtU) 

Kf U is totally bounded.

Proof: If G(E,U) = B(E,U) then U,, = U^ which is totally 

bounded. Then by lemma 4 U is totally bounded.

If U is totally bounded leans 4 shots that Un is 

totally bounded. Then by theorem 1 G(E,U) is compact and 

as it is a dense subset of B(E,U) it follow that G(E; J) 

= B(E,U) .

Remark. This corollary is analogous to the result in chapter 

which shows that J and X coincide on ^" • 

Corollary 2. If (3,U) is an object ofT then Up is 

<r-bounded iff U is <r-bounded. Consequently G(3»U) is 

a Q-space if U is <r-bounded.

Proof: If Uq is ^-bounded it is obvious that U is 

<r-bounded. Assume that U is (r-bounded and let V and U 

be two symmetric surroundings of U such that V contains 

U^ • Assume also that If is open with respect to the U-uni- 

forn topology. Let (F ) be a sequence of »7-small cots 

that covers E . If H is in G(E,U) let 7 be a U-small

sot in H . Then F A F f 0 for some n and so ^ con­

tains the open set 0 = U[F ] • These sets are V-small
no * o

and the sequence (0^ A G(E,U))n is a cover of G(E,U) by 

Vo-small sets. Fence Un is °~-bounded.

The second assertion is an immediate consequence of

Shirota’s theorem (theorem 2) •



Another property of § which is a consequence of the 

fact that it is a subprocess of B is stated as 

^.^iL~i>* Lot 3 be a completely regular space and let 

U 135 a compatible uniformity for E , Then ^: E---- - G (E, U) 

is an embedding iff U is a structure of E.

Proof: Theorem 11 shows that g^ is an embedding with res­

pect to the U-unifom topology iff U is a separated unif- 

ormity. It is therefore an embedding of the space E if U 

is a structure of E . On the other hand if g$ is an embed­

ding then U is a separated uniformity* and so the U-uniform 

topology is the topology of E i.e, U is a structure of E • 

Cprollaz7~. Let E be a completely regular Grace and let U 

bo a structure of E • Then g-JE------*G(E.U) is a homeonor- 

£bign iff E is complete in U • 

Proof: Since S is a structure of E the theorem shows that 

gy is an embedding. It is also an isomorphism of the uniform 

epace (EfU) with the space (Etj3» flLjs-jE) since it is 1 - 1, 

If gy is a horiconorphisri theorem 13 shows that E is complete 

in U • Conversely if E is complete in. U then g-jE is a M^ 
closed set as it is complete in the restriction of U„ . Hence 

CgE = G(E,U) and so g~ is a homeomorphism.

An immediate consequence of this consequence cf this 

corollary is that S has the following ’universal* property 

for each object (E,U) in X slot (IW) ho a connlote comr- 

ated uniform synce and let cuE----- -F be a (U, V) -uniformly 

continuous function ; then there exists a unique continuous 

function e.g:G(E.U)—> V such that rc o_j^j » c . Consider
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the following commutative diagram

E SV ^/E.p)

* I QC^

F--------L--------C^Y).

The corollary shows that g^ is a homeomorphism and hence 
$0 " ^V^ ° $($) “s ^^ desired function. It is unique be­

cause F is a Hausdorff space. The function cn is 

(Uq।V)-uniformly continuous . because G(a) is (U^Vy)- 

uniformly continuous and gy is an isomorphism of (F,V) 

with (KF,?),^)*

As in the case of process "B this ’universal* pro­

perty may bo applied to extend uniformly continuous real- 

valued functions. If f is a. U-uniformly continuous real- 

valued function on E there is a unique continuous real- 

valued function f,u on G(2,U) such that fn o g»T a f . 

Tliis function is U^-unifornly continuous. Those assertions 

follow immediately from the ’universal’ property since the 

set of real numbers is complete in its usual uniformity

which is separated.

From this it follows that for any object (E,U) cf

- U_ is a function unifQTnAity iff U is a function uniformity. 

Assume that Uy is a function uniformity. Then since U is 

the inverse image of Un under gy the ’restrictions’ of 

the functions that define Un (by means of gy) is a collection 

S of functions such that U = U(S) • Conversely assume that
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H “ H(S) * Then each f iii S has a U^-uniformly contin­

uous ’extension’ fQ to G(E,U) . If Sc = [fGJf in S] then 

Up contains the compatible uniformity U(Sq) • These two 

uniformities coincide since the inverse image of U(Sq) 

under gj is U(3q o gy) « U(S) = U .

As an immediate consequence ^ TJis isomorphic to J . 

Since (U(S))q = U(S$) it follows from theorem 13 that 9u 

satisfies (FP^), (FP^), (Fpp and (FP^) * Therefore by 

theorem 5 of chapter one § u ^^ ^ are isomorphic*

To return to tho ’universal’ property, consider tho 

following theorem which characterizes ^ •

Theorem. 15 * Let/^ be a uniform process that satisfies (UPj ,

(UP^), and (UP^) * Then there is a unique horor.ornhism Y of 

^ into * If /P satisfies (UPd this, homomorphism is on 

isomorphism*

Proof: Since *P satisfies UP^ and UP^ for any object (Z,U) 

of T (P(E,U),Up) . is a complete separated uniform space* The 

’universal’ property defines the (l^,Up)-uniformly continuous 

function (pTj-)G:G(E,U)------ *P(E,U) • Since UP is a structure 

of P(E,U) this function is continuous. Let y(E,U) = (=?tPq • 

Then as y(E,U) o gTj = pG and *P is Hausdorff, lemma 3 shows 

that the family (vlM^^^j) in T °^ ^h^-0113 yCE,U) 

defines a homomorphism y of ^ into ‘P . It is unique be­

cause ~P is Hausdorff.

Assume that'P also satisfies (UP^) • Consider the
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following cor2juts.uive diagram for any object (E,U) of T 
(e, y)------------- ?V__________ q <E>y)

fV ^CPu)

(Pte/yOAV------------ —----------^CPCe.U), Up).

The corollary to theorem 14 shows that gn is a homeomor-

nd so

ago of Up under p-j
£u °
is U••■*

\Py) • Since the inverse in- «M»
the fact that § satisfies

(UP?) shews that G(py) is an embedding. It is also a

homeomorphism because the closed image of G(E,U) under

the embedding G(py) contains the dense set

Consequently y(E,U) is a homeomorphism and so y

is an isomorphism.

C oro11ary. ^ is isomorphic to ^ ° 'TL and ^ oTto S t
Proof: It is an immediate consequence of this theorem and

the corollary to theorem o,

Remarks., Then (E,U) is a separated uniform space the uni­

form space (G(E,U),U$) and the embedding gj constitute a 

completion of (3,U) • A completion of (E,U) is a complete 

separated uniform space (Z,V) and a function a:E——X 

which is a dense embedding with respect to the uniform topol­

ogies and such that (a X a)~~V = U • i,e, such that a is 

an isomorphism of (E,U) with (aEfyJaE) • The argument used

in the last part of theorem 15 may be used to show that given

a pair of completions ((ZpVp,^) i = 1,2 of (E,U) there

is a homeomorphism Y21^1 Xgf which is a (V-pV^-lso&or
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phis:*. This unique-jess is usually proved by means or the 

following well known theorem on the extension of uniformly

continuous functions, 

Ci-eorern. 16. let (X,V), (Y,X)and (L,V) be three uniform 
spaces and let elf ■ *Y he such that (a x aT^S - 17 and 

o,5 ^_^7LS£. in , Y with respect to the b-uniform topology. 

If y:E -X is a (U, 7)-vnifcri.ily c o^at inuous function 

then there is a unique continilous function y:Y —X 

such that y o a = y when (X.V) is a complete separated 

u.niform space • The function y^ Is (]^)-uniformly con- 

tinuous•

Proof: Consider the following commutative diagram

The corollary to theorem 14 shows that g-r is a horieomorpliisn 

(and hence a (V,V$)-isomorphism). Since g^ is continuous 

with respect the U-uniform topology by theorems 4 and 13 it 

follows that (g— o tt)5 is dense in GCYjU) • This shows 

that G(a) is a homeomorphism since § satisfies (UP?) .
Tho function g"? o (Uy) o G(a)”1 o g7J is the desired contin­

uous function Y • -^ -s UT'iwQ because X is a Hausdorff 

spacer

The function y is (U,W)-uniformly continuous be­

cause G(a) is a (17$, U$)-isomorphism and G(y) is (11$,Vn)-

uniformly continuous.
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Corollary. If a uriforn process T satisfies (UP-,) the 

fimction process, *Pj induced by U satisfies (FPj_ , 

Proof: Let (E,S) be an object of S’ . Let W = U(3) 

and let (Y,U) « (P(E,U(S)), (U(S) )p) and a = p^S) . In 

place of X and y consider the real numbers R and a

function in 3 . Th© corollary follows immediately.

To continue these extended remarks it is worth noticing

the close similarity of this theorem to theorem 20 of chapter

two. The statement and proof in each case are essentially 

the same. This suggests that to every process "P (function 

or uniform) there corresponds an analogous extension which 

may be proved in an analogous way. The proof nay be broken in 

two - each half referring to each ’cell* of the diagram. In 

other words the extension theorem is an immediate consequence 

of an analogue to the corollary of theorem 14 and a condition 

on the mappings a which ensures that P(a) is a homeomorphism 

This suggestion raises the following problem. Is there 

a process ’P (function, uniform or perhaps of a third type) 

whose extension theorem is the well known extension theorem 

for continuous functions valued in a regular space (see 

Bourbaki [31 p54)?

In tho case of process 13 the extension theorem is the 

theorem obtained from theorem 16 by assuming in addition that

X is compact.



CHAPTER FOUR

THE TOPOLOGICALLY COMPLETE EXTglSIOHS 
OF A COMPLETELY REGULAR SPACE

£1. Tho construction of topologically cor.ip3.oto extensions. 

Lot E be a completely regular space and lot (X,i) be an 

extension of E • It will be said to be a topologically 

complete extension of E if X is complete in some structure 
Y

or equivalently if X is complete in U -its finest struc­

ture.

The corollary to theorem 14 in chapter three shows 

that process ^ applied to the objects (E,U), whore U is 

a structure of E , yields the topologically complete exten­

sions (G(E,U),gy) of E . Tiiis collection of extensions is 

a representative collection of topologically complete exten­

sions in view of 

Theorem 1. Lot (Xti) bo a topologically complete extension 

of E and lot V bo a structure of X in which it is com­
plete . If U|E = (iXl)*1# it is a structure of E and the 

extensions (Xti) and (G(E,V|Ej^।gJ are isomorphic.. 

Proof: LT|E is a structure of E because 1 is a homeomor­

phic embedding. Consequently (G(E,u|E) ,gTT[s) is an ©ten­

sion of E • The function i is (w|E,U)-uniformly continuous 

and so by the universal property of 5 has ^ extension as a 

continuous function iG:G(E,w|E)----- -X such that 1$ o gT,|s 53 

1 .
212
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On the other hand theorem 16 of chapter three shows

that there is a continuous function ^Ie’^2—Q(E>£lE)
such that (&w|e) . 0 ^ 23 ^;|e • Consequently the extensions 

are isomorphic.

Remark. Th© proof of this theorem shows that the homeomor­

phism: X----- -G(E,V|E) which extends i is also an isomor­

phism of (X,W) with (G(E,W|E),(w|E)G). . If tho extension 

ICfE.U)^)- is said to be obtained by completing E in the 

structure U, then this theorem states that every topologically 

complete extension of E may be obtained by completing E in 

some structure.

Tiie compact extensions, and more generally the Q-

extensions, of E are particular types of topologically 

complete extensions of E • Let U be a totally bounded 

structure of E • Then corollary 1 of theorem 13 in chapter 

throe states that (G(E,U),gTj) is a compact extension of E . 

Process § applied to the objects (E,U), where U is a 

totally bounded structure of E, yields ’all* the compact 

extensions of E . Tills is a consequence of theorem 1 and the 

fact that if X is compact and U is its unique structure, 

then W|E is totally bounded.

Similarly process <5 applied to the objects (E,U),

where U is a <r-bounded structure of E, yields ’all* the 

Q-extensions of E . Corollary 2 of theorem 13 in chapter 

three shows that (G(E,U),gG) is a Q-extension if U is

o' -bounded. Since X is a Q-space iff it is complete in some 

o'-bounded structure U (theorem 2 of chapter throe) and since

ViE is then <r-bounded the result follows.
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The totally bounded structures of E nay be described 

in terms of the characteristic algebras <2 of E • If £ 

is a characteristic algebra of E then U(c) is a totally 

bounded structure of E ♦ Tho compact extensions 

(G(EtU(£) jg^^ ) and (T(E,c),tc) are isomorphic since ^xr 

and JT are isomorphic function processes. The extension 

(T(E,c)»t,J is isomorphic to the extension (K(c).tt(c) o i) 

sines oj = Ct(E)£) .

If U is a totally bounded structure of E then 
G(E,U) * B(E,U) . Consequently U = (byX ^J’^CstE^)) 

“ ~^B(E U) 0 ^ip • ff £ ^ cb(e y) 0 ^U ^ ~3 a ch^^cbo^- 

istic algebra of E since (B(E,U),brj) is a compact exten­

sion of E(theorem 11 of chapter three). This completes the 

proof of 

Theorem 2,(.A structure U of E is totally bounded iff 

there exists a characteristic algebra £ of E such that 

U “Ute) • —G extensions (G(E,U(c)) tgTj(c)) and (l(c), 

Ti(c) o i) arc isomornhic. 

Remark^ The proof of this theorem shows that a uniformity U 

for a set E is totally bounded iff there is a uniformly 

closed unitary subalgebra a of Fg such that U = U(a) • 

Furthermore a is uniquely determined by U .

This theorem shows that the correspondence U------- - 

(G(E,U) ,gTT)-which associates with each structure U of E 

the completion of E in U - is 1 — 1 when restricted to the
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totally bounded structures of E , This is not the case for 

the correspondence itself as shown by the following 

Example. Let R be the space of real numbers. It is a Q- 

space and therefore complete in U(CR) • it is also complete 

in its usual uniformity U([e]) where e:R-------R is the 

identity function. Tlierefore G(R,U(c$) = G(R,U([e])) which 

equals the sot of neighbourhood filters of the points of R • 

Consequently the two extensions are identical. However 

U(Cn) + U([ej) because there are continuous functions, for 

example ezsin x, which are not U([e])-uniformly continuous.

This correspondence therefore defines an equivalence 

relation c on the set of structures of E . If U7 and U9 

are two structures set U^ e U2 ^ the sets G(E,U-,) and 

G(E,U2) are identical i.e. if the minimal U^-Cauchy filters 

are the minimal Uo-Cauchy filters. It is clear that e is 

an equivalence relation and that U^ e Up iff the correspond­

ing completions of E are identical.

Tliis equivalence relation is of especial interest be­

cause of

Lemma 2. Let U3 and U2 be two structures of E such that

the- jext-ensiona and iGlE>U?)^2^ ) a»x Iso,"■or.-.

rbic, , Then the sets C-(E,U^) and G(E,U2)... are identical

and. so the extensions are identical.

Proof; If U is a structure of E and if H is a point in

C(E,U) let q(M) be tho neighbourhood filter of H • It has
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as a basis tho cots 0” G(E,U) Bihoro 0 is an open subset 
of E contained in H • Since g^ (0“n G(E,U)) =0 it 

follows that H = gu^CVQCH)) •

Let y:G(E,U^) ——GCE,^) be a homeomorphism such

that

that

Y

Y

Sn • ~2
Lot ^ and 1^ be two points such

• Then y^C^q^) ) =

~1 = SU^^G^1^ 

= G(E,U9) and so
= <(!W’
the extensions

= Hj • Therefore 

are identical.

Gte.Uj

This lemma shows that to obtain a non-redundant

representative collection of topologically complete extensions

of E, it is necessary and sufficient to choose one structure 

from each of the ^-equivalence classes. Ono way to do this 

is to show that each e-equivalence class contains a finest 

member. This can easily be done by first proving two elemen­

tary properties of the relation o .

Lot U be a structure of E and let (X»i) = 

(G(E,U) fGn) • If H e V then (X,i) is tho completion of 

E in V and so X is complete in the structure U$ and

Vo • On the other hand if V] Is a structure of X in which 

it is complete and if U = U^jE theorem 1 and lemma 1 show 

that V c U . In view of theorem 3 of chapter three it 

follows that there is a 1 - 1 correspondence between tho elements 

of c[U]-the e-equivalence class of U- and tho structures of 

X in which it is complete. The correspondence is V—Vn

which preserves order. Since X is topologically complete
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it is complete in its finest structure U whose restriction 

U^fE is the finest structure of E e-equivalent to U • 

This completes the proof of

Theorem 3, Let U be a structure of E . Then the e-equiv­

alence class c[U] cf U contains a finest structure.

Remarks. The existence of the finest structure in e[U] was 

pointed out to the author by Banaschewski in a written commun­

ication. He also gave a preliminary characterization of those 

’extremal’ uniformities: the finest structure in e[U] is the 

finest uniformity coarser than the intersection of the filters 

(it x tt)M on EXE, where for each K in G(E,U), (nr x rr)ZT 

is the filter generated by the sets F X F, F in M •

It follows from Shirota’s theorem (theorem 2 of 

chapter three) that for a structure U of E, G(E,U) is a 

Q-space iff U is e-equivalent to some <r -bounded structure 

of E ♦ Furthermore, since any completely regular space X 
has a finest <r -bounded structure UA ^ and a finest function 

structure U2^ 83 U(C,-) > when G(E,U) is a Q-space the 

above argument shows that the class c[U] contains a finest 

o'-bounded structure end a finest function structure. The 

fact that the argument applies depends on the result: UQ 

is (r-bounded (a function structure) iff U is <r -bounded 

(a function structure) .
The main problem that arises with all these ’extremal* 

structures is their characterization. The ’extremal’ function
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sion algebras of E . Since the internal character!cation or 

extension algebras scans to be complicated it is likely that 

the problem of characterising these extremal structures of 

E is also difficult.

$ 2 . The cuasi-ordors restricted to the tonoloyic.all?r complete 

extensions. Since for a given completely regular space E 

the completions in its structures form a representative collec­

tion of topologically complete extensions it is sufficient to 

consider ^ and ^ restricted to the family. ((G(3,U),gn))
~ ~ U

of extensions (G(E,U),g~) of E . '
a structure of E —

The first result is a consequence of the fact that ^ 

is a uniform process. It is stated as

Theorem 4. Let U and 7 be two structures of E . The 

folloxring statements are equivalent;

(1) LI contains U ; and

(2) llJEjU)j^ J ^ (GtE^h.gj,) and the continuous 
M —••

function is (Lq ,Uq) -rmiformly continuous..

Proof: Since W contains U the identity function c:E——3 

is (V,U)-uniformly continuous. Consequently the continuous 

function G(e):G(E,£)--------UnE,U) such that G(e) o g^r = 

gg o e = gg is defined. The function G(e) is (Eg»bg)- 

uniformly continuous (see section two of chapter three) • 

This shows that (1) implies (2) •
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On th© other hand if y:G(E,V)____ X-(2,U) is a con­

tinuous (Wq,U^)-uniformly continuous function such that 

y o g]j “ Sy > then U = (g^ x £u)"1Uq is contained in 

(g^r * Cpp'^Q 3 2 * Consequently (2) implies (1).

y contains U • The following statements ere equivalent:

(D H(g v) ^ a structure of G(EtV) X

(2) I^,l?)x&;)_±J^>H)^uLi_££il

(3) G(EtU) is contained in C(EtU) i.e.. every mini":al

V-Cauchv filter is a minimal U-Cauchy filter.

Remark. If y:X------ -Y is a continuous function and X,Y 

are completely regular spaces then y io (U^U ) - and 

(u( (X) ,U(Cy))-uniformly continuous. Consequently if (X,i) 

and (Y,j) are topologically complete extensions and

X ^ Y the continuous function y:X------Y such that y o i = 

j is uniformly continuous with respect to structures in 

which X and Y are complete (with both of then function 

structures if X and Y are Q-spaces) •

If U is a structure of E contained in the structure «M»
U it defines a subunifornity H(q w) of Uq • ^h® uniform­

ity U^c_ tT) is the compatible uniformity for C(E,U) whose 

inverse image under g^ is U • In this notation Uq = 

"(G U) * ^ie station is introduced in order to state tho 

analogue for ^ of theorem 4 which is

Theorem 5. Lot U and W be two structures, of E suck that
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Proof: Consider tho commutative diagram

(E > V>-----fa____^CQ C e, *), V^^p

^ ^c^
Gee*') -

<5 £E» v>________ ~ .^ Q£E,w\ U^^)

where G(gTT) is defined because &T is (H>H(q w))-'uniformly 

continuous* It is a homeomorphism because Q satisfies (UP?), 

the inverse image of U^q ^j under g^, is U, and 

(Gt o &J2 ^s a dense subset of G(G(E,V) ,U/« T \) •
~(G,V) “

Consequently the continuous function c-fa.,)"1 o £„
- -(G.E)

:G(E,W)------G(E,U) is an embedding iff gTT is an enbed-
“ ~ “(G,W)

ding i*e* iff U^q yTj is a structure of G(E,W). This shows 

that (1) implies (2) •

Assume that y:G(E,U)---- >G(E,U) is an embedding with 
Y o ^.r = gn • If H is in G(E,U) then H = ^(^(W) “

G‘/ ^^ H)) = Y H • Consequently G(E,U) is contained in

G(E,U) .

If G(EjV) is contained in G(E,U) then the restric­

tion of Uq to G(E,W) is a compatible uniformity whose 

inverse image under g^ is U • Therefore U/q ?t\ = Uq|G(E,U) 

Since Uq is a structure of G(E,U) this implies that

T.,t is a structure of G(E,W) •
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Eenark, In this theorem it is only of interest to consider 

the case where 17 contains U since theorem 4 shows that 

this implies that the continuous function on 0(2,17) that 

extends gy is (77$, Ua)-uniformly continuous.

These two theorems suggest the following two types 

of general problem for each of the quasi-orders ^ and 3 • 

Let 5 = (X,i) and Y = (Y,i) be two topologically complete 

extensions of E and assume that X ^ Y or X 3 Y • Then 

two basic types of questions occur:

(1) if X has been obtained by completing E in 

t^ when can Y be obtained by completing E 

in a coarser structure? and

(2) if Y has been obtained by completing E in 

UQ when can X be obtained by completing E 

in a finer structure?

Uken 77$ and UQ are extremal structures of E these 

questions are trivial unless they are modified by putting ad­

ditional conditions on the respectively coarser and finer 

structures of E .

An example of a modification of the second kind of 

question for ^ is the following problem. Let c bo a 

characteristic algebra of E and let X = (X, n(c) o i) be 

an extension of E with X •$ K(c) . Characterise those X 

which may be obtained by completing E in a function structure 

U = U(S) where S contains c and is contained in Z(c)
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(note that this implies U(S) contains U(c) and that K(c) 

may bo obtained by completing E in U(c)) . The solution 

is stated as

Theorem 6, (Xtw(c) o i) is isomorphic to (G(EtU(S)) ,^3)) \

where S contains c and is contained in^ (c) iff <E X 

is a union of G,-sots of K(c) *

Proof: (G(E,U(S)) ,2^$)) is isomorphic to (T(E,S),ts) as 
9^. and J are isomorphic processes. The extension

(T^S),^) is also isomorphic to (£c(S),tt(c) o i) by 

theorem 16 of chapter two. To prove the theorem is sufficient 

to prove that X = £C(S) where S contains c and is 

contained in df(c) iff ^Cx is a union of G^-sets of K(c) • 

Lemma 11 of chapter two shows that this condition is necessary. 

This condition is sufficient in vie?; of the proof of corollary 

2 to theorem 16 in chapter two.

$3* Functions defined by uniformities.. Let E be a set and 

let U be a uniformity for E • Denote by C(U) the collec­

tion of U-uniformly continuous real-valued functions on E 

and let 0" (U) be the collection of bounded functions in 

C(U) . The following theorem about C(U) is well gnown.. 

Theorem 7. C (U) is a uniformly closed vector sublattice of 

F-. which contains tho constants and is closed under bounded 

inversion.

Proof: It is a routine application of the fact that f is in 

C(U) iff for every e > 0 [(x,y) | |fx - fy| < e] is in U • 

Remark. Since a vector lattice of functions contains f iff
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it contains f o 0 end f n 0 it follows that C(U) satis­

fies conditions (^x^) and (^ ) of theorem # in

chapter two* As it is a vector lattice theorem 29 in this

sane chapter shows that the extra condition (©C,) is a very 

strong one to be satisfied by C(U) •

Corollary * C_(U) is a uniformly closed nnlt?rv suhnjrgbra of

Proof: From tho theorem it follows that CH(U) satisfies the•M*
conditions of lemma 4 in chapter two. Since it is closed under

multiplication by real numbers the corollary follows.

Remark. Uhen E is a completely regular space and U is a 

compatible uniformity then C”(U) is an algebra a and ^(a) 

contains C(U) •

The collections C(U) and CH(U) are connected with 

processes § and 13 as shown by 

Theorem 3. If (E,U) is an object, of T then tho following 

stat orient s hold:

(1) C(U) = C(UG) o .^ ;

(2) C^U) = ^(U^frjJJ^l

( 3 ) C~~ (b) ~ Op (E J U) ~ ~ ^ J —

Proof: Since gy is (U,D$)-uniformly continuous and b^ is 

(U^U^)-uniformly continuous these results are immediate conseq­

uences of the ’universal’ properties of $ and 13 as applied to 

the extension of real.-valued functions.



Corollary 1. C"(u) lie" €p<terdedtoC(L,U) is a. character- •"•■m —• •—■ *••—•*—*—*—*-««—«w—**»m—»*—*«*—^a^^^mnwM^M r m^ wi*.*-**^**.—^*****.***^**^*^—*^*^*^.

i s t i c algebr c..

Proof: Since (G(E,U) is a subspace of B(L,U) this is 

obvious.

Corollary-* The U-uniforn topplor"- is the weal: topology 

ot^a)!^

Proof: If Or, is the topology of G(E,U) its inverse image 

under gy is the U-uniform topology. This corollary follow’s 

from the previous one.

On© immediate consequence of corollary 2 is the follow­

ing obvious characterization of compatible uniformities, which 
21.2 SuduOCl exo 

Theorem 9. Let E be q completely regular snaco and let U 

be, a uniformity for I • Then U is compatible (is a struc­

ture) iff C"(U) is contained in (is a characteristic 

algebra of S) .

Proof: It is a consequence of corollary 2 to theorem £ and the 

definition of a compatible uniformity (structure) of E in 

chapter three♦

^4* Three, itiiforriities, associated with riven uniformity. Lot 

2 be a set and let U be a uniformity for E • Th© uniformity 

consisting of the single set EX E is certainly <r -bounded., 

a function structure, and totally bounded as it is the uniformity 

generated by the constant functions. Therefore there exists a 

finest uniformity of each of these types coarser than U . Let 

these uniformities be denoted respectively by U**, Uv and UH .
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Tho uniformit~f U^ « U(C"(U))_ , Thio is because, in 

view, of the remark following theorem 2, U5' = U(a) where a 

is a uniquely defined uniformly clooed unitary subalgebra of 
Fg • Hence CK(U) contains a but since UfC^fU)) is tot­

ally bounded and contained in U the converse holds i.e. 

a = (T(U) .
The, uniformity U^ = U(C(U)X since U contains 

U(S) iff C(U) contains S .
In addition u^ * (U^ )K = (U*’)* and (U®" )^ = U^.

Cne consequence of those results is

Theorem 10, Let E be a completely regular sunce and let U 
ar 

be a uniformity for E . Thon all four uniformities U , 

u —*__ U -.ml. U ,^^goa£il2^^ 

of them is compatible (a structure of E) •

Proof: Since for any uniformity U , Ua = U(C"(U)) the

result follows from theorem 9*

Corollary. Let E be a completely regular space. The follow­

ing statements are equivalent:

(1) E has a coarsest structure }

(2) E has a coarsest totally bounded structure ; and 

(3) E is locally compact.

Proof: The theorem shows that (1) and (2) are equivalent. Since 

the totally bounded structures are all of the form U(cJ by 

theorem 2, where c is a characteristic algebra of E • There­

fore there exists a coarsest totally bounded structure of E 

iff there is a smallest characteristic algebra i.e. iff ^(E) is
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a complete lattice* By theorem 15 of chapter two this is 

equivalent to (3) •

Pomarkt This result is due to Samuel [131 •

Another consequence of these preliminary results is 

Theorem 11. Lot 3 bo a set andlet U beauniforruity •—• - — ^*rr3^L~^2*^fZZl «m—*~*MM*M*^**#^^»-«»^*8-fc—«m»»-^-^-h-fc-»^w» «■* ^.^ miwi#»» ..■ ^.^^ .....^■^>

^AjJIisi^^}^^,^!^^,?^^ •
Proof! If C(E,f) « B(E,U) then 3(3,U) « 2(2,U**) = 

3(2,U*i • Since a U-Cauchy filter is U ^-Cauchy and a U0"- 

Cauchy filter is U -Cauchy the result follows.

Let (E,U) be any object of T . The function by 

is (U^, U^)-uniformly continuous since the inverse image of 

Up under by is totally bounded. Consider tho following 

commutative diagram

(E, V*}________±-__B(E, V )

by BC b^)

(BC a .V\ VB)________ ^BC BC £ > V>,VB).

The function bTT is a homeomorphism by corollary

11 in chapter three. Since process o satisfies

2 of theorem 

(U?7) and

(UP^) it follows that 3(by) is also homeomorphism. Tae

•trace filter♦ argument in lemma 1 may be applied hero to

show that 2(2,2^) “ 2(2,U) because there is a homeomorphism

7;2(E,/)------ *2(2,U) such that 7 o by* ® by • Since

0(2,2^) « 2(2,1^), by corollary 1 of theorem 13 in chapter throe 

it rollout that G(2,U*) « 2(3,U) .
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Corollary;* Lot 5 bo a completely rerailer space and let U 

bo a structure of E , Then (G(E,U),gn) ^ (G(E,U<r) ,g7T«- ) ^ 

(G(E,U fU"u-‘fL±L^>l£L-EuJ^ 
•—• m«

Proof: It is an immediate consequence of the definition of

and the theorem.

The subset G(E,U) of B(E,U) is described by means 

of the uniformity U • Are descriptions of this type possible 

for G(E,U<r) and G(E,U^)? The following theorem character­

izes G(E,U*J when the functions f in C (U) are considered 

as functions on B(E,U) .
Theorem 12. II in B(EtU) is in G(EtUy) iff there is, a 

function f in Ca~(U) such that f M | 0 and 1/f is in

Proof: Let S - C(U) and let X be the subspace byE of 

B(E,U) • Let £ be the characteristic algebra C^^ y) |l 

« CK(U) |x . Then G(E,Uv) = ^c(SGk)> where SQ is the 

extension of S to G(E,U) i.e. SQ = C(UC_) • Assuming this

to be the case the theorem follows from the corollary to lemma

11 of chapter two.

(G<E,U / ,gy«r) is ’isomorphic1 to 

U ^ = U(S) and ^v is isomorphic to J .

(T(E,S),tg) since

Furthermore

(T(E,S),t„) is ’isomorphic’ to since

X = gy E and ^ satisfies (FP?) • Theorem 16 of chapter two 

shows~that (T(S,SGl3),tg [2 ) is Hsonorphio* to E£(SG|x) 

and the natural injection. Therefore there is a homeomorphism
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y:G(E,U )—•£ (Sp|a) ouch that y o gnE = y o bnE • Hence 
-m

'g(e,2*’> - £ C<SGU) .

Remarks. The problem of describing G(E,U ) by means of U 

seems to be much more difficult - presumably because cf the 

somewhat inaccessible nature of the uniformity U • In the 

case of a completely regular space E, Shirota’s Theorem 

(theorem 2 in chapter three) shows that G(E,U ) = 0(2,15^ ) 

since U^ = U(CP) • An examination of the proof that (3) 

implies (2) in this theorem shows that - by using Veil’s lemma 

(lemma 1 of chapter three) - if II is a filter in B(E,U) 
which is U^ -Cauchy but not U^ -Cauchy then there is a 

function f in CK(U) with Z(f) disjoint from GtEjU^) 

and f II = 0 . Therefore <CG(E,U‘r ) is a union of G^- 

subsets of B(E,U) • This suggests the following problem: is 

<CG(E,U^) the union of tho G^-subsets of B(E,U) disjoint 

from G(E,U)?

<5. Extension algebras and structures. Let E be a completely 

regular space and let U be a structure of E . This section 

considers the question of when C(U) is an extension algebra 

of E . One answer is given as

Theorem 13 • C (U) is an extension algobra iff C (U)= 

£L(E,C(U))-2-ic(U) .

Proofs Since U is a structure of E the weak topology 

O(E,C(U)) is the topology of E (see corollary 2 of theorem 0) 

and so (L(E,C(U)), ^(-j)) is an extension of E • Therefore
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the condition is sufficient.

Conversely if C(U) is an e^ztension algebra of E the 

object (E,C(U)) is in the category A'nA1 • Then since 

^f |A*n a’ and ff |A'nA’ ere isomorphic processes it 

follows from theorem Id of chapter one that the condition is 

necessary.

The extension (L(E,C(U)), Xc^ ) is isomorphic to the 

extension (T(E,C(U)) jt^^ ) since ^ and 31 A' are isomor­

phic processes on A* • As § y and 3 are isomorphic processes, 

it follows that both extensions are isomorphic to the extension 
(GCEjU^J,^ ) because U ^ = U(C(U)) .

Let S be a collection of real-valued functions on a 

set E and let V be a uniformity for E • Tho collection S 

is said to be V-inversion closed if 1/f is in S when 

lira f exists and is different from zero for each minimal V- 

Cauchy filter M •

With the aid of this definition and the fact that 

(L(E,C(U)), %(u)) ^d (G^iH^JjCu^ ^ a**® isonorphic exten­

sions of E it is not hard to obtain the following theorem, 

Theorem 1.4... C(U) is an extension algebra iff C(U) is Uy - 

inversion closed and C~~(U) ° Cq^ ^y jjJL^.

Proofs When C(U) satisfies these conditions its extension to 

G(E,UV ) satisfies the conditions of theorem 19 in chapter one. 

Therefore C(U) = ^GtEjU*^)'3 *



If C(U) is an extension algebra then C(U) - 

^G(3,U^)'^ as a result °^ theorem 13. Therefore C(U) satis­

fies the conditions of the theorem#

Remarks. This theorem is quite similar to theorem 22 in 

chapter one since the conditions are stated partly in terms of 

the C(U)-completely regular filters that are U(C(U)) = U^* 

-Cauchy. There is a connection between this theorem and the con­
jecture of chapter two. G(E,U^) is a Q-spaco and the extension 

of C(U) to G(E,U^) satisfies (^J.C^J.fcfJ and (^ ) 
J. A»

of theorem 3 in chapter two when C(U) is U -inversion closed. 

The conjecture asserts that as a result C“(U) = ^G(E,U^)I^ * 

This provides a setting in which to look for a counterexample 
to the conjecture.^

If S is an extension algebra of E then there exists a 

Q-extension (Y,g) of E such that S = Cy o g = Cy|E . Since 

Y is complete in U(Cy) and the extension (G(E,U(S)) ,g^$)) is 

isomorphic to (Y,g) by theorem 1 it follows that;

(1) S = C(U(S)) ; 1
(2) S is (U(S))^ = U(S)-inversion closed; and

(3) SH = C*^ ^^^jIe . Combined with theorem 14 

this completes the proof of

(1) s = c(u) .;.
£2) 3 is U** -inversion closed; grid

(3) gfjufa^^ilim .

^) &«e. Erccutukw p. 260.

Theorem 15. S is an extension algebra of 3 iff there is a 

uniformity U for E - such that*
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P^“2Zi22x ^G unsatisfactory part of theorems 14 and 15 is the
requirement that Cf^U) = C3^^ u^)'S * ~^ the con3®cture of

chapter two is valid it can be omitted# On the other hand

failing that, it is still of interest to attempt to character­

ize internally those uniformities U for which CK(U) = 

C^QJ) « ^GfE,!!^) lE °~ for ^lich °K® = ^-(E.U)^ * Zt 

is not hard to see that the erctromal structures of section one

satisfy the second more restrictive property.



CHAPTER FIVE

THE COHSTRUCTIO’J OF COJIPACT SPACES "

$ !• Topological processes« The objects of the category X 

of topological opaces nay be written as pairs (E,0) whore 

E is a set and 0 is a topology for E . In this notation 

Hom( (E,0), (E’,0l)) is the collection of (0,0*)-continuous 

functions a:E------- -E’ • This formal similarity of 51 to ^ 

and X suggests the following definition, 

Ecfinition^ 1. If 51 is a subcategory of 51 a topological 

process *P on 5 . consists of a covariant functor P: 21 _ 

-------- and a family (pn) of functions p^if - --------- -----------------------4------ v_(E>2) laS. -----------------------
- ■ •» P (E10) such, that:

(~?2"" c is a mapping of 51Q in Hom((E,0), (ESP8)) 

then
£$fJLO-J?C--^^

Eemark. 1. As preliminary examples of topological processes 

on 51 the first three examples of function processes in chapter 

one suggest corresponding examples of topological process. An 

analogue of the fourth example is tho process which associates 

with each topological space a completely regular space by iden­

tifying points that are not distinguished £y the continuous 

real-valued functions.

232



233

2# By now it is apparent that to each kind of struc­

ture that can be attached to a set there is a corresponding 

category and a corresponding type of process. For each type 

of process a corresponding theory can be built up.* Given 

two processes of the same type it is obvious what is meant 

by a homomorphism of one into the other. The simplest kind 

of invariants are always the topological properties and in 

each case the analogue of lemma 1 in chapter one nay be proved. 

In the case of topological processes the second type of invar­

iant is similar to that for uniform processes. If‘P is a 

topological process on zo and (E,0) is an object of this 

category (in place of Up) the topology 0? is defined as 

the finest topology for P(E,O) which is coarser than the top­

ology of this space and for which pQ is (0,Op)-continuous.

Given a topological process *f on ZQ tho fact that 

the functions PqSE-------*-P(E,0), (E,0) in zE 0> are defined on 

and valued in a topological space suggests a class of problems 

of the following type: characterise those objects (E,0) ofZQ 

for which pQ is an embedding (a continuous, open, or closed 

function) • If every function. Pq is continuous the process 
■M.

is said to be a continuous process (note that this is equival­

ent to assorting that 0? is the topology of P(E,O) for 

each (E,0) in^0 and that this property is the analogue 

of (Upp and hence should be denoted by (TP^)) • It is 

clear that this is an invariant property of topological proc­

esses. A continuous compact topological process on 21 is 
o 

also called a compactification on X .
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Topological processes may be defined by function pro­

cesses and the following special kind of functor.

Definition 2. A functor A on a subcategory ^ Q of 

valued in S is said to be a natural functor if it satisfies:

(1) if(E,0) is in £ Q then A(E,0) ° (B,A(0)), 

where A (0) is a collection of 0-continuous 

real-valued functions on E; and

(2) ^ G ^s a napping of 2 Q then A(q) 3 a . 

Remarks. Roughly speaking, a natural functor on 2 q chooses 

a collection of continuous functions for each space in 2 

such that the choice is compatible with the mappings of 2 Q . 

natural functors on subcategories of 3 and GT valued in any 

of the three categories 5 , X or 21 are similarly defined.

Essentially a natural functor replaces compatible structures

on the sets by other compatible structures of the same or an­

other type.

Examples of natural functors

1. For each (E,0) in 2 let C(0) = C^>oj-the algebra of 

O-continuous real-valued functions on E • •MW
2. For each (E,0) in 2. let CK(0) » ^,0) • ^cre 0^^

is the collection of bounded functions in C^q) • 

Remarks. Other natural functors associate with each (E,S) 

in ^ the topological space (E,O(E,S)) or the uniform space 

(E,U(S)) and with each (E,U) in X the space (E,O(E,U)) or 

the object (E,C(U)) in 3? (the topology 0(E,U) denotes the 

U-uniform topology on E) . Another natural functor on zL 
associates with each (E,0) the uniform space (E,U ^^J #
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vhere H^’^ is the finest 0-compatible uniformity for E

Let A be a natural functor on a subcategory 51 0 

and let ^ be a function process defined on the subcategory 

AZ o of ^ • Define T^ to be the topological process 

on 5 Q consisting of the covariant functor P o A and the 

^1^—J^AfO)^ Q) ^ PiJZlS^tl^ns^

P(EtA(O)) e (Pq’aHe^) ? Although the definition of 'P

presupposes that a process is defined it is in any case trivial

to verify this, keeping in mind the definition of a natural 

functor. The topological process ^ ^ on ^0 is said to be 

induced by the natural functor A and tho function process

Examples of induced topological processes on^

1* For any space (E,0) the object ^>^(3,0)^ “s ^n A,/r,^•, 

and so the induced processes ^ q, ^C’ ^ C and ^C 8X18 

all defined on X • Since the original function processes

are all isomorphic on A’n A' (theorem 14 of chapter one)

it follows that the induced processes are all isomorphic. 
Another process that is induced is ^^q •

2. For the same reason the natural functor C induces the 
topological processes Jq*» ^C* = ^0*’ ^C* ^^ ^C* 

which are all isomorphic processes on Z_ .

The fact that there are topological processes induced 

by function processes raises the following question. Uhich 
topological processes on a subcategory 27 Q of 21 can (up to



isomorphism) be ’factored* as a ’product* of a function process 

and a natural functor? A result in this direction is stated

as

Theorem 1 • Lot ^ be a continuous O-topological process on
W*4-«M*«MM*M»^>M«M«*«»«*U»«MM«N<»MA4»>*««*>«M*Maw«^M»*^M««^M«MMMmM*MeM»><»M-*M»*>*M

a subcotogory ^ 0 of X . Trion there ezists. a natural 

functor A: X--------- -32 such that:

(1) AXp is contained in A*A A1 ; and

(2) is isomorphic to

Proof: If (3,0) is inX.Q let A(0) = Cp^ q) 0 Pq •
Since "^ is a continuous topological process on ^Q this de­

fines a natural functor A which satisfies (1) •

ative

For any object (E/0) in ^Q the following cozmut- 

diagram is defined.

E
UAtq}

MCE, A CQ})

PCE.O)
CP£E,Q) HtPOEi ^jCp^Qj)

Since ft satisfies (FPj H(p0) is a homeomorphism. Uhon 

‘P is a Q-process hn is a homeomorphism too. Tho
CP(E,0)

function y(E,O) :II(E,A(O))-------~P(E,O) defined as y(E,C) =

h”1 o H(pa) • is also a homeomorphism.
CP(E,O) $

Since T is a Hausdorff process tho family

<Y<E,O))(E(o) in z of homeomorphisms 
o

y(E,O) defines an

isomorphism of "^ into
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Corollary. Let *P bo a compactification on 2\ . Then there

.exists a unique. nF.to.1 functor A; X - ----------such that:-r r -r _ . Q* r— Tr - - L- - - - nr

(1) for each (E,0) inzL. , A(0) is a uniformly 
•-*——--*---*-—-—*—*— •^^^-^^^^^^^^  ̂ •^^^^^^^^^^^^^^^^.

closed unitary subalgebra of C^ $j ; and

(2) £.- is isomorphic to .

Furthermore are two isomorphic processes

of this typo onE Q> the corresponding natural functors A,

and Ap are identical.

Proof: If A is a natural functor on X Q that satisfies 

(1) then A<0) - Cg^jo)) o hA(2) . Mien ^ is isener- 

phic to ^ this means that A(0) = Cp^ qj o Pg and so A 

is uniquely defined by *P . The second assertion is no?/

obvious• .

Eenarks. This corollary show that tf |A»n A'ni plus the 

family of natural functors A on zLQ valued in A’AA*Hi 

yields (up to isomorphism) all the compactifications on ^0 

In other words ’ff |A* A A*A^* satisfies the conditions of 

the following definition. Given a kind of structure that can 

be attached to a set, a compact process "P on a subcategory

of the corresponding category is called a general method of 

compactification if, for any natural functor A on a sub­

category ZQ o^^ with valued in the oubcatogory, the in­

duced process "P^ is a compactification on^Q .

Other examples of a general method of compactification are 

provided by the restrictions of 3 9 3~ and ©C to A’A/Vj 

The process TH on ^ is a general method of compactification



as also is the process ^ oa T • Since 13 | X* « <3 IX* , 
where T* is the subcategory of X obtained by restricting tho 

objects to bo the pairs (2,U) where U is totally bounded, 

it follows that § IX* is another general method of compac­

tification. General methods of compactification are also of 

interest because Freudenthal’s results on tho relation ^ 

and compactification (see Freudenthal [21]), and the work of 

Fan and Gottesman [22] on normal bases can, by suitable choice

of structure, be shown to define two more examples.

The corollary to theorem 1 raises the following problem:

given a specific compactification on a subcategory ^o find

tho associated natural functor A:ZQ In the

following sections of this chapter this problem is considered

for five known compactifications#

Femark^ Given any general method of compactification a corres­

ponding problem exists providing the compactification can be

suitably ’factored1 •

To conclude this section consider the following sub- 

process of a compactification 'P on XQ: define "X- to be 

the functor P# and tho family (pn) * , where
0 “• (2,0) in ^o

P$(2,0) is the complement of the union of G$ sets in P(2,0) 

disjoint from pQ2 and P-(a) 83 P(a) if a is a mapping of 21 
— o

Lot A be the natural functor on ZQ defined by 'P and define 

An by setting A-(2,0) a (2, X(M0))) and A„(a) = c; • The 

argument of theorem 24 in chapter tiro may be applied to show
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that * - ^^ ^^ are isomorphic processes on X 0 • This 

shows that ^*. is a Q-process# Hence every compactification 
^ onZQ has associated iith it the continuous Q-process ^g, 

which can be obtained by means of the natural functor A of 

and the lattice function cC •
f 2. The Stone-Coch compactification on Z . As noted in 

chapter two Stone and Cech defined a compact extension for a

completely regular space E by requiring that every function

in Cg have an extension. One construction of such a space is 

(t3E,i) = (H(E,Cg),hc ) . Tliis topological process on the sub­

category of completely regular spaces may be extended to Z_

as the process Tig* defined in the previous section. The nat­

ural functor is of course the functor CH also defined in

section one. It was observed in chapter two that h^ is an

embedding iff the space E is completely regular. Consequently 
the compactification ^c* on Z provides an extension of an 

object (E,0) inZ iff 0 is a completely regular topology,

$3, The Alcxandroff compactification on Z «, Alexandr off [231 

described a ’one-point1 extension of a locally compact space 

as follows. A point p«- (could be [Ej) is adjoined to E and 

the topology of E <J [p «] is defined by setting a subset 0 

open if it is an open subset of E or if it contains p^ and 

its complement is a compact subset of E • Since E is locally 

compact this defines a topology for E u Cp^J with respect to 

which it is a compact extension of E .
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A completely rogalar E is locally compact iff it is 

an open subset of pE (identifying E and IE) and so it is 

clear that [poo ] corresponds to the closed set pE n <L E • 

In other words tho corresponding equivalence relation iden­

tifies all the points of BE n <L E . This means that tho 

characteristic algebra associated with the ’one-point* compact 

extension E ^ [peo] is the algebra of functions in 0^

whose extensions to pE are constant on pE a <t E • This 

algebra is the uniform closure of the subalgebra cf C* of 

functions g that are constant outside come compact subset 

of E (depending on g) • To prove this it is clearly 

sufficient to show that any function g in Cp which is con­

stant on ps n <£ E nay be uniformly approximated by functions 

in C* which are constant outside some compact subset of E .

It is not hard to see that this is the case*

If E and E* are locally compact and a:E——E’ 

is a continuous (function it has an extension to the * one-point*

o^ctensions iff a is proper i.e* iff the inverse image of a

compact set under *
Define Zip

a is compact (see Bourbaki [3] p!03).

to bo the subcategory cf Z_ obtained by

restricting the maps to be proper* Define the natural functor 

A on by setting 4^(0) equal to tho uniform closure 

cf the algebra of O-continuous bounded real-valued functions 

g on E that are constant outside sone compact subset (depend­

ing on g) • Uiis defines a natural functor because if a is
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a proper function in hom( (E,0), (E’,0’)) and 3’ is constant 

outside the 

the compact 

The

compact set D’ then g’ o a is constant outside 
set a^D» .

Alezandroff compactification on 51 is

process jf A which is isomorphic on the subcategory of locally 

compact spaces to Alexandroff’s original process, hence A**, 

is the associated natural functor. Furthermore /^(O) is a 

characteristic algebra of (E,9) iff 0 is locally compact 

in view of

Lemma 1. Lot S be a collection of real valued functions on 
••■ ^- ^Wl> J»- »<> ■ .—
a set E and let S. bo its uniform closure in F_ , Then 

0(3,S) = O(B,S.) .

Proof: Let x. be a point in E and let f be in S . 

Fick e > 0 and an integer n such that e/2 > 1/n • Let

fn be in S and such that |fRx - fx| < 1/n for all x in 

E • Then [x in E||fvlx - fnx| < e/2] is contained in [x in E| 

|fX_ - fx| <d . Tills shows that C(E,S) = 0(B,3 ) .

Remark. The definition of A^ suggests the definition of two 
more natural functors on ^n • Replace tho plirase ’are constant^ 

by ’assume only a finite number of values ’ or by ’assume only a 

countable number of values* • The resulting algebras are char­

acteristic when A^CO) is characteristic. Is the converse 

true? What are the resulting compact spaces like and how cun 

they be described without the use of functions?

£4» Banaschowski’s sorc-dimonsional compactification on £ .

Banaschewski [24] described a sero-dinonsional compact extension



(22,is) of a zero-dimensional space E which is defined up 

to isomorphism by the usual ’universal’ property: if (K,k) 

is a compact extension of 2 and K is zero-dimensional 

then there is a unique continuous function k :I— > K 44 4-*
such that k_ o 1 = k .

To describe E_ it is necessary and sufficient to 

characterise 0^ o i„ • Let 2 be a connect zero-dimensionn 

space. Then 0^ is the uniform closure of the algebra gener­

ated by the continuous characteristic functions on 2 (this i 

a consequence of the Stone-L’eierstrass theorem). If (2,1:) i 

an extension of 2 then C-r o k is tho uniform closure of an 

algebra generated by continuous characteristic functions on 2 

Consequently C„ o i„ is the uniform closure of the algebra 

generated by all the continuous characteristic functions on 2 

Obviously this algebra contains C^ o i„ and to prove the 

converse it is sufficient to observe that its juaximal ideal

space is zero-dimensional.

Define the natural functor A_ on by setting A_(0 

equal to tho uniform do si-re cf the algebra generated by the 

O-continuous char act eristic functions on 2 • The eem-difi- 
.cation ^* is tho zero-dimensional process on ^ . In view 

of lemxaa 1 it is clear that ^ provides an extension of 

(2,0) iff 0 is a zero-diEensionol topology for 2 • Res­
tricted to tho zero-dimensional spaces ^f. defines Banasch-
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Guski's maximal zero-dimensional space (K_,i„) • 

ncgark. The Tact that a compactification can be associated 

with dimension zero raises the problem as to whether this is 

possible for any finite dimension n • Tho argument used to 

define Az . may be applied when the algebra C^ is suitably 

characterized for a compact n-dimensional space K • 

^5* Tiefenthal's rim-compact process on T_, » An open sub­

set 0 of a topological space E is said to bo rim-compact 

if the boundaryJ3 (0) of 0 is compact* If 0 is rim-com­

pact so is <EU and if 0* is rim-compact so is Ov O' 

since J (0 VO’) is a closed subset of ^8 (o) ^^ (0') •

A filter F on E is said to be rim-compact if for 

each set F in 7 there is a rim-compact set 0 in F such 

that F contains 0 • A topological space E is said to be 

rim-compact if all the neighbourhood filters are rim-compact 

and E is Hausdorff* This is equivalent to asserting that 

E is Hausdorff and has a basis of rim-compact sets*

A continuous function f on a topological space E 

is said to be rim-compact if f and (-l)f satisfy the con­

dition .(r*c*): when X < u there is a rim-compact set 0 

with Cm in Ej^i ^ M CO ^ 0 £ £ ::h E|~:^ u J *

These concepts are linked by the following lemma, 

L°-na Let E be a rim-compact space and let ? be on 

open set containing the closure of the rim-comnact sot 0 . ^^t^.-^^^^^^-^^^—----*-*—--------' —*-*—- _- - - - .- '*,,*—-~*^*^—^*^*—***—*—*—*—-•
Thon there exists a rin-compactfunc^^^ 0 ^ f ^ 1

such that f 10 - 0 and f | <t U*l*
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Proof: Sinco the boundary^ (C) is rim-compact and 3 is 

rim-compact there exists a finite collection of

rim-compact sets 0. such that u 0. contains B (0) and 
i=l

0. is contained in U for each i • Let W « 0 ^ ( *J 0.) • 
1 i=l 1

Ehen 0 & 0 ^- U ^ !? ^ U • Repeating this argument the proof

of Urysohn’s lemma shows that there exists a bounded contin­

uous function f with 0 ^f ^ 1 such that f |0 = 0 and

f I <^U = 1 • The definition of this function shows that it

is rim-compact#

CorpllaLyr 1. A rim-compact space is completely regular*

Fro of: Obvious•

If S denotes the collection of bounded rim-compact

functions on E then two other immediate corollaries to this

lemma are

Coi^onarx^. If E is rim-compact 0(5,3) is, tho. topology of

E > and

Corollary 3.* If E is rim-compact a filter F on E is rim- 

conpact iff it is S-comrletely regular.

The collection S has a definite structure as stated in

Theorem 2* The collection S is a uniformly closed unitary sub- 

aTrebra of C* • Hence it is a characteristic algebra of tho 

rin-compact space E .

Proof: It is sufficient, in view of lemma 4 in chapter two, to

prove that S is a uniformly closed translation lattice of
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functions on E that contains the constants and is closed 

under multiplication by the real numbers.

The set S obviously contains the constants and is 

closed under multiplication by real numbers. If f and g 

are in S and A, is any number then [x| (f n g)x < X] = 

[x|fx < X] v> [x|gx <X] and [x| (fMg)x <X] = [z|fx < X] n 
[z|gx <X] • Consequently since the intersection and union 

of two rim-compact sets are both rim-compact, S contains 

f n g and fog. Hie set S is obviously closed under the 

addition of constants. Furthermore it is easily seen to be 

uniformly closed.

Hence S is a uniformly closed unitary subalgebra of 

0^ and in view of corollary 2 to lemma 2 it is a character­

istic algebra of E .

Freudenthal [21] showed that if E is rim-compact the 

space of maximal rim-compact filters on E i.e. the space 

F(E,S) by corollary 3 to lemma 2, and the embedding f^ 

constitute a compact extension of E . Since F(E,S) is 

compact it follows from the Stone-Ueierstrass theorem and 
properties of the process ^ that Cp^gj o fg = 3 ,

Define the natural functor A^ on £ by sotting 

A^(0) e<Iual to the collection of bounded O-continuous rim­

compact functions on E. This defines a natural functor because 

if c is a proper continuous function the inverse imago of a

rim-compact set is a rirircompact set.



Freudenthal hs rk-co:?^ct process, on ^ _ is tho connactifi- 

cation . (or the isomorphic process ^. ) . It agrees 

with his original method of associating a compact space with 

a rim-compact space and clearly provides an extension cf 

(3,0) iff 0 is a rim-compact topology, 

remarks. From the point of view of the natural functor 

theorem 2 is the important result. It is an immediate formal 

consequence of the condition (r.c) and the fact that the 

intersection and union of t:ro rim-compact sets ere Loth rim- 

compact. Hence any other general class of open sets that is 

closed under finite union and intersection define a correspon-

ding natural functor and consequently a compactification. 

For example consider the open-closed sots or the open sets with 

sequentially compact boundaries. In the first case the 

resulting compactification is Banaschevski’s process. Since a 

compact spaceiis sequentially compact it is not hard to coo 

that there is a homomorphism of tho compactification defined

by the second example into Freudenthalrs rim-compact process.

^6. Freudenthal*s X -compactification on ZZ- . Freudenthal [251 

defined a compact space that can be associated -with a given 

topological space (E,0) by means of a relation X defined for 

open subsets of (E,0) . This relation is defined with the

aid of the following concept.

In a topological space E a subset D is said to

connect the subsots _ Fj and , F^ ^ - s ^ in tho subspace

*i° DOF2 ’ there is no decomposition into two open sets
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which separate Fj and 7. It is clear that if D connects

i aud Fg then D’ connects Fj and Fg when P’ contains
D • Also if D connects F^ and it connects F£ and Fg

when F£ contains F^ • 

if D connects $1° $2 
Fj and F or D n C F^

A more important property is that

and F then D n (L Fo connects

connects Pg and F .

The relation X is defined on a space (5, 0) as fellows:

Oj and Og are in O(i.e. are open) set >2 when for

any decreasing (i*o. Dn contains Dp+^) sequence (Dn> c-

closed sets D that connect 0-. and 09 Q D does not lie

in 0x X Og #

Lemma. 3» The relation «t is clearly symmetric and has the

foilCTin^ properties:

(^) if O1 »t 09 and 0, contains Oj then Of X C^;

(X9) if 0, X 0. 
t rr - J^ r.. ^ 2{^ then 1^ m Qp X 0.- .

Proof: The first property is an Immediate consequence of the 

fact that if D connects 0£ and Og it also connects Cj

and 09 • The second property follows from tho third property

of the relation ‘one set connects two others’ • Let (Dm) he 
n

(0_u Cl) X *-a decreasing seouence of closed sets D.. that connect

and 09 . If D A ^ 01 does not connect 0, and 09 for

all integers n there is an integer nQ such that D ^ n (L 01 
no 1

doos not connect On and 02 • Consequently if n » n
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^n^ ^ O|’ does not connect 0^ and -S and so for n-^ n

DA do, connects end • Therefore D n <E 0, con­n x ±4 n 1
neats 0^ and C2 for all integers n .

ne ct

Consequently either the closed

C-| and 02 for all integers n
sets f„ « £ C^’ Con­

or the sets IL n (£ 0^

connect O^1 and C2 for all n , Assume that one of these

situations, say the first, holds. 3^ lies in C-m 0^ *o C2

then n (d^a (TO./) = (A Djn (LC-j/ lies in (^ u 0o .

Tliis contradicts the fact that C-. X 0o Consequently, since

tho same argument applies vhen tho second situation holds, it

follows that (On VC1»)XO2 .

Corollary, Lot -21^2- and ho four or an sots, The

following statements hold?

(1) if_0j£ontgins 0.» , i = 1,2, end ^ 0- 

then 0-, * X Op * ; and

(2) if 01^ Oq , and Oj/X OJ then (0^ n c, ») X

Proof: The first assertion is an immediate consequence of (AJ 

and the fact that X
If 0^ o2

(01 n Oj ’) X 02 and

is syruaetric.

and Oj ’ X 02 ’ then (X ^) shovra that

(0n n •) X ‘ • The second statement

follows from this, property ( X^) and the symmetry of X .



Freudenthal sheared that there exists Tor every topolog­

ical space (1,0) a compact apace a^ ana an O-ceata-vous 

function 1^ :Z-----*1^ such that:

(1) i^Z is dense in Zx ;

(2) if Oj and 0^ are open subsets of K^ vith 
disjoint closure then (iJ^O-JX (ij^op ; and

(3) if (1,1) is any pair that satisfies the previous 

conditions then there exists a (unique) continuous 

function k, such that k. o = I: .

The np<z» (1, ) is clearin' defined, no to isonomhisu by

these three conditions. Freudenthal called such a pair a max­

imal JV -ccr.nactificr.tion of (1, C) _.

Hie construction cf (1^ ,ix) elven bp Freudenthal seems 

to be rather involved and as a result it null net be discussed. 

Instead the algebra C- o i^, rill be described and the com­

pactification obtained as its hcmorpbmsm space.

Let (1,0) be a topological space and let k:Z------ *1 

be a continuous function uith kF a dense subset of the compact 

space K . Then (1,1) satisfies (2) iff for every g in 

C-, and X c p, [x in 1! (g o k)x c A] vb [x is 1} (3 o k)x ^ p] 

(this is because a compact space is normal). In ether Koris 

every function f in C~ o k satisfies the follouirg condition: 

(ML ) if A < u then [x in f!fm < ?,]cc [m in Z|fx > uj .

Let A , (0) be the collection of functions in C:J- 

that satisfy (iM • This collection has a definite structure
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as stated in

Theorems. A . (0) is a unifor^yclcsed uniterv subalgebra of 
^»0)~

Proof: It is sufficient, in view of lemma 4 in chapter tiro, to 

prove that A ^(0) is a uniformly closed translation lattico 

of functions on 3 that contains the constants and is closed 

under multiplication by the real numbers.

Since $JHS it is clear that A 4,(0) contains the con­
stants. It is clear that A^fO) is closed under multiplication 

by positive numbers and also, since »4 is symmetric, by (-1) • 

Statement (1) of the corollary to lemma 3 shows that A^ (0) 

is uniformly closed and statement (2) shows that A^ (0) is 

closed undem and u • Since A 4, (0) is obviously closed wider 

the addition of constants, the theorem follows.

£o;h?^Aryi IMliA 4, c0) b^Ji^• j 0 ^) is a maximal 4, -connactific- 

ation of (3,0) ,.

Proof: Hiis pair obviously satisfies tho preliminary conditions 

and condition (1) • Since A^O) = ^(e, A^O))^ ^* 

satisfies (2) . Prom the definition of A^fO) it follows that 

if (K,k) satisfies conditions (1) and (2) then A^fO) 

contains C,- o k = Cr|2 • Consider the following commutative 

diagram k
E_________ ^£!________. H( E, AXC o))

k Rik)
ke



As a compact snace is a Q-snace, hr is a homeomornhism and 

so hg^ o H(k) is the desired continuous ^unction k • 

hem-arks, Tho proof of the theorem and the corollary depend 

solely on the symmetry of *V , the fact that Ox E and tho 

corollary to lemma 3 . Any other general relation on 0 with 

these formal properties defines a corresponding algebra, 07 
means of which a corresponding maximal compactification is 

defined. One example of this type of relation is obtained

by relating 0^ and 

ox ^ 0 ^0 ^ (Co2 .

Op if there is a rim-compact set 0 with 

The resulting compactification is the rim­

compact process of the previous section. Another example is

obtained by modifying the definition of <t itself. Replace the

phrases ’decreasing sequence (D.J of closed sets D • and 
n n

• O D^ * by ’filter F with a basis of closed sets D ’ • and

’OF’. It is not hard to see that tho nroof of lemma 3 
f in F
applies to this modification of X and consequently that the

corollary to the lemma holds.

The algebra A^(0) is defined for any topological

Hence to obtain a natural functor i 

(0,0’)-continuous 

contains 

(a“"0

space (E,0) • 

cleat to define a class of

------ ►E’ such that A^/0)

case if 0^ ’ *V 0o ’ implies 

a^O. ’ and assume that (D )
1 n

closed sots D such that each

is suffi- 

functions a:E 

^tL-^^ o a . Tliis is tho 
1 *) *A» (a ^0o*) • Lot 0. s’ •-•A.

is a decreasing sequence of 

Dn connects 0^ and 02 .
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Since qO. lies in 0. 1 it follows that ( *X (^^2 ' 2nd

If a la closed then the sets aD connect aO^ and c09 •

so Q (uD ) is not contained in (aO-Ju (aO,) . This inplies 

^Dr does not lie in 0^ m O2 if in addition a preserves 

countable intersections. .

Let X $ be the subcategory of ^ obtained by restric­

ting the maps to those that are closed and which preserve count-

able intersections. Then A^ is defined as a natural functor

on X £ by setting A^2,0) = (EjA^O)) and Ajfu) = a if a 
is a map of • Freudenthal’s it-compactification on ^. is 

tho compact process- *^^ * '

Freudenthal was not interested in compact extensions

provided by this compactification. The ostensible motivation

for this process is tho fact that it can be used to obtain 

i-jiasurkiex-rf.cz1. ’topological frontier’ of a manifold (see 

I-inzurkiexrf.cz [25]) • Freudenthal proved that if E is a mani­

fold and d" is the natural metric for E (i.e. d '(x,y) =
x,y in C 

inf dian(O) then Fazurkierrf.cz space is obtained by applying 
a continuum
this «V-compactification to tho topological space that results 

from completing E in d” •

Uhile the problem of characterizing those topological 
spaces (2,0) for which ^« provides an extension remains open, 

a preliminary result is stated as

inzurkiexrf.cz
Fazurkierrf.cz


Theorem 4. Let (5, 0) bo a locally compact space and essme

that if as | y there are disjoint open sees 0„ and 0,r

containing x and y respectively with O.,J> 0.

A1..^ . is a characteristic algebra*

Then

Proof: Pick () and 0_r with compact closures that lie dis­

Joint open sots 0 ’ . and 0 ’ • Let IL. be a continuous 

function with C f„^ 1 , fx = 0 and f,J<£ 0_„ = 1 . Let

f„ be a continuous function with C ^ f ^ 1, f y = 1 and 

f.„.|(CO = 0 . Define f to be f + f • Then 0 < f ^ 2 > 

fx = 0, fy =2 and f |<0x n C 0 - 1 .

The function f is in A^O) ♦ If * < p, ^. 1 and D 

connects Cx|fx <41 and [x|ix>|d then D a o n [xffx ^ X] 

A k|fx ^ g] is non-void. '.Since 0„ is compact this 

implies that [xjfx < X] X [x|fx > pj . If 1^ X <^ p a simi­

lar argument applies with 0 instead of 0 • If X < 1 < p 

then Cx|fX ^ X] lies in 0 and Ex|fx > p] lies in 0 and 

so Ex[fx <X]^ Ex|fx.> p] . Tills shows that f satisfies 

( 4J and hence is in A^fO) • From the definition of f and 

the fact that x and y are arbitrary points it follows that 

AjJ^ ^s a characteristic algebra.
Hcriark^ The proof of this theorem applies to the modification of

vV defined in the remarks following the corollary to theorem 3 •
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COliCLUDIHG HENRIS

To conclude this thesis it seems fitting to make some

general remarks about the main innovation that has been intro­

duced, namely the concept of a process. From the use that

has been made of processes it is clear that they have a signi­

ficant role to play in the theory of extensions, if for r.o

other reason than the fact that they introduce order into what

was a relatively chaotic situation. This order is apparent 

in that it is now possible to compare and classify tho various 

methods of constructing topological spaces and in addition to 

make more formal the proofs of theorems about the extensions 

(for example theorem 16 in chapter three). It also appears 

likely that most results on extension procedures (for example 

Stone’s work on Boolean maps) can be discussed in the frame­

work of topological processes.

khile processes may be applied with good effect to the 

problem of constructing extensions they are also of interest in 

themselves. With the introduction of the concept of isomorphism 

the way is open to the consideration of the various invariant 

properties. Of the three general types considered the third 

seems to be the most interesting one from tho point of view of 

additional results. However, it is perhaps worth noting that 

all the theorems which characterise processes by means cf in­

variant or ’universal* properties involve only properties of 

the second type.
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In general topology topological processes are likely 

to be the most important# The function processes and the 

uniform processes are of interest in that they can be used 

to define topological properties by means cf suitable nat­

ural functors. From the point of view of topology they 

appear as a means to an end i.e. the definition of topological 

processes.

In the introduction a more or less intuitive definition 

of an^ -process was given# Tlie intuitive aspect of the defin­

ition being found in the phrases ’kind of structure ’ and 

’ % -hctiomorphism ’ which may be given an ©illicit formal mean­

ing (see Eourbaki [271) • While a process as defined in the 

introduction always constructs topological spaces there is no 

obvious reason why a process should bo restricted in this way# 

In other words if 5 ^ and ^ 2 arc two Iliads of structures a 

(59i W,)-process could be defined in tho analogous way to con- 

sist of a functor which ’turns ’ a W^ -structure on a set into 

a ^^-stmeture on another set together with a family of fume- 

tions that is related to the functor in the analogous way# If 

t denotes the kind of structure that is called a topology then, 

in this notation, a^ -process is a (t,^) -process# It 

appears possible to introduce natural functors in this general 

setting and in short to carry most of the details over to the 

general setting. In an analogous fashion the (^ ,^)-processes 

will be of basic interest in the study of ^ -structures and the
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(5 ,!s-J-processes of interest as a means of defining (^,^)- 

processes Kith the aid of (^5 ^/^ )-natural functors.

In this setting many of the veil known algebraic con­

structions can be considered. For example for a commutative 

ring R the passage from an R-module II to a specific 

construction of a tensor algebra T over II is essentially 

a process which replaces module structure by algebra structure.

Consequently the concept of a process seems to present

a number of interesting possibilities for further investigation.
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Erratum
2GO

I. fi. Isbell Informa no that "The important conjecture of ^9, Chapter 

Two, is false, and is refuted by a complicated c;^lo in the literature you 

cito and by a simpler example to appear soon. (1) dee Example 1.22 of your 

reference [73 • (2) The Baire functions on the real lino also give a counter- 

cxuiaplo. Thia is K« Henriiuson and J. G. Johnson, "On the structure of a class 

of archiiaedean lattice ordered algebras”. Fund. Hath., to appear. Further, 

Thcorea 5*2 of that pa^er will chow that your conjecture is valid for Linoloff 

spaces (extending Isbell’s result for locally compact spaces countable at 

infinity)2

Another counterexample to tho conjecture, provided by B. Banaschewaki, 

may be described us follows: Let E bo the discrete apace of cardinality ?^ 

and ^ a well-ordering of E such that each proper segment of (E, ^ ) is countable 

Then consider the set A of nil real functions f on E such that f(x) = f(a) 

for all x > a with some suitable a (depending on f). Clearly, A is distinct 

from C.,, contains unbounded functions and the characteristic functions of all 

subsets {x} of E. Moreover, A is closed under any finitary and countable 

operations which uro defined "pointwise”, in view of the choice of the well- 

ordering. Hence, A is a unitary algebra of functions, sublattico of Cs and 

closed under uniform convergence, i.o., satisfies all conditions of tho con­

jecture. Since E is a Q-spaco (wJiich follows from Sats 2 of K. Landsberg, 

Dor Durchschnittsgrad hypercharukteristiochor Filter, Hath. Annalen 151 (19>O, 

429 - 4j4) tills disproves the conjecture.


