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INTRODUCTION

he specific aim of this thesis is to consider the
totality of extensions of a completely regular space I ,
especizally those that can be defined by means of continuous
real-valued functions on E and by means of the unifornm
structures of E , In addition, on a nore abstract level,
it is concerned with general methbds or processes for the
construction of topologicél spaces, - These processes are
used to construct extensions. _

Let §‘ be a particuler kind of structure that can be
attached to any set I (e.g. a topologzy for E) and lett —
be a category with objects the pairs (E,X), where E is a
set and X 1s a § -structure for E , and a suitable class
of functions a:E—— E' that are (X,X') E -homorphiszs
(cege. the continuous functions or the open functions)., If =
is the category of topological spaces (i.e. objects topol-

oglcal spaces (E,Q) ~and maps the continuous functions) a

—

€ -—pi"ocess ‘P on a subecotemory —  of _-— consists of o
b4
covoyriant functor P _— - —  and a fonily
— -

(o) —

~Z(E,X) in =

_L§Pl) p.E_ is dense in P(E,X) 3 ond

of functions DX:E —DPIE.T) such thot:

(EPZ) if o dis = maoping;of_.—::c in Her((E,X),(E?, X))

then

Plc) QO Dy = Py . 0. C o
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Three kinds of process are used in this thesis:
function processes, where X is a collection S of real-
valued funections on Ij uniform processes, vhere X 1s a
unifornity for E j; and topological processes, where X 1is
a topology for L . The specific applications of each of
these Lkinds of processes are briefly discussed in the folloir-
ing chapter by chapter summary of the thesis.

Chapter one is devoted to a discussion of our function
processes that correspond to four deseriptions of Hewdtt's
v «extensicn of a completely regular space E , and to an

application of the results of this discussion to the problem

{zA): charactcrize the suvbalmebras S of C. for yhich
<

s = CXIE , vhore X is an extconsion of E (CE denotes the

algebra of continuous real-valued functions on E) .

In section one function processes are defined using
the specific category:gi of objects (E,S), where S 1is a
ccllection of real-valued functions on L, and with

Hom({(E,S),{E',S!) the set of all functions c:E E! such

that S' o a 18 contained in S . The concepts of a homonor-
piien and of an isomorphisa of one function process into

" another are introduced as a restricted tyﬁe of natural equive
alence and tiree gencral kinds of invariant properties discusscd,
The first type is a topological property.  If (t) 1is a
topologzical property a function process P on a subcategory:gz
is said to be a (t)-process when each space P(L,S),(E,S) in2P

has property (t) . The second kind deals with the 'extension!



of the functions f in S as continuous fuanctions fP to
the space P(E,S) and with properties of the resulting collee-
tion Sy of continuous functions on P(E,S) . The third and
last type of invariant property relates properties of the maps
¢ in P to properties of the continuous functions Pla) .
In addition another property of function processes is intro-
duced which is not, strictly speaking, an invariant. It is
the property of idempotence which is possessed by a process'1’
when it can be iterated to produce a new process “PoP
isomorphic to P.

Section two 1s devoted to a discussion of the idenpotent
Tychonof{ process J o It assoclates vith any collection S
of real-valued functions on a set L the subspace obtained by

taliing the closure of the natural image of E in '"'Rf

f in S
under the evaluation mapping. It is showvm to be characterized

(up to isomorphisn) by four invariant properties of the first
type {(theorem 5) .

The ﬁhird section discusses S-completely reguler filters
on a set E , .7here S 1is a collection of real-valued functions
on L , The results of this section are used in section four
to define the corpact process'TYL; vhich assoclates with each
(2,8) the space of maximal S-completely resular filters on E .
The subprocess 3 ofm is defined by consldering for each
(Z,5) the subspace of ILIT,S) consisting of the U(S)-Cauchy

filters, It is showm to be isomorphic to J (theoron 10) .

vi



In section five the first of two 'algebraic'! processes
1s defined. This is the process  which associatés wvith any
rezl unitary Ai‘.unc.tion algebra the set cf. realfvalued unitary
alzebra 'homoa?orph’isms tozether with t;lle Zarislki topolosye.
Given additiqnal conditions oﬁ the function algebra it is
$I’lOT'm (theorem 12) that ¥ and 3 are isomorphic processes on
a subecategory of £,

Section six is devoted to a cousideration of the pro-
cess L , It associztes with each translation lattice of
functions that contailns the constants and is closed under rul-
tiplication by (-i) the space of translation lattice honomor-
pilsms which map the zero function to zoro and wvhich commute
vith (-1) . This process is isomorphic toJ on a subcatezory
of <& (theorem 13) . The section concludes with the resuls
(theorea 14) ﬁhat on a suitable subcatezory of < the four
procéss.es J ’ F ,W and L are isonorphle and satisfy =11
tue invariant properties introduced in section one,

In section scven problem (EA) is discussed, It is
clear, in view of Hewitt's U -extension of completely regular
spaces, that 1t is sufficient to consider the problem {or the
Q-extcnsions of E o As an application of theorem 14 it is
showm that (up to isomorphism) any one of the procosses 5 ’
JF ’ F ana L provides all the Q-extensiong of E o A
preliminary solution to (EA) is then stated (theorem 18) .
It shows that (LA) is equivalent to the problem .
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(AC): chorancterize C a5 an alerebra of continucus real-valied

fuactions en E

In the last section of this chepter it is shoum that
problem (AC) may be solved by a solution to a third problen,

rroblem

(BC): chorzcterice CE— 2s oan alsebhra of continuvecus real-valucd

functions on E. Theoren 20 states a solution to (BC) +ihich

is then used to solve in turn (AC) and (Z4) (theorems 21 and
22)

The second chapter discusses the extensions of a coa-
pletely rezular space E by making use of the well knowm fact
that the quotient space of a compact space defined by a closed
equivalence relation is also compact,

Section one showrs that there is a Galois connection be-
tireen the set of closed equivalence relations yr on a compact
space K and the uniformly closed unitary subalgebras g of
CK (theorem 1) . It is shotm that every continuous imege of a
compact space is essentlally a quotient_space of X defined by
a closed equivalence relation on K .

In section two these results are applied to the Stone-
Cech compactification (8E,i1) of E . The unifornly closed
unitary subalgebras a of C§ define the compact spaces K
into which I may be continuocusly mapped with dense imare as

the quoticnt spaces 5Z/r(z) = X(a) , viaere r(z) 1is the
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closed equivalence relation on fE associated with a . lVhen
a contains a' it is showm that there is a canonical map
n‘(g’,g):l-’.(g)—.—rK(g') such that w{at,a) o nlz) = n(at) ,
vhere w(z)i3E—X{a) is the natural manping. _'I’hé pair
(X{z),mla) o 1) is an extension of E 4iff the weak topolozy
0(Z,2) is the topolozy of E ,- Such alzebras are said to be
characteristie and are denoted by ¢ o The extensions (XKl(eg),
nlc) o 1) are a representative collection of compact extensions
of I in 1 - 1 correspondence with the characteristic alzebras
¢ o« It i1s shown that E 1s locally compact iff E has a
smallest characteristic algebra (theorem 5) o In additioa if
BE n @€ iE contains two points the characteristic algebras of
E determine E (to within homeomorphisn) (theoren 6) .

Section three considers the translation lattices &£ (2) =
[£] for 211 A 20 (£ nA)v (-A) 1s in a ] associated with
each uniformly closcd unitary subalgebra g of Cg o« They are
characterized internally by theorem 8 and by means of the
realtions x(z) in theorem 10 .

The fourth section considers the set of extensions of
E obtained taking the subspaces X of Klg) containiﬁg
(r({c) o 1)E « Every extension is isomorrhic to one of then
(theorem 11) and a non-redundant subset may be chosen. Another
nethod of obtaining extensions by means of continuous functiéns
15 defined using the commpact extensions (X{ _g).i‘((g) o1i),

characteristice If S is a subset of C then 8C(S) is
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the lorgest subset of K(g) to which each function In S has
a continuous real-valued extension., After a discussion of
gone obvlous properties of the operators € c it 1s shomm
(theorenm 16) that if ¢ <8 & L(e) then the extensions

(E . (8),mle) o 1) ana (T(E,S),tq) are isomorphic. 4As a
res;it every Qwextension of E may be obtained using the
operators 8c e In particular Hewitt's -exctension of T

is (EGE(CET.i) = (UE,1)

In section five tuo 'qaasi-orders for extensions of L
are defineds If Xy = (Z;,J;) and X, = (Z,,J,) ere exten-

sions of Efi.c. ji:E——-.X- is an exbedding in the completely

i
recular space I;) then £ and 2 eore defined by setting
aq Z, 1if there 1s a continuous function -yzl:Xl——.Xz

such that v45q 0 J; = J, and X € X, if X 4 X, and vy,
is an embedding. llecessary and sufficient conditions aro
obtalned in theoren 18 (theorem 20) on a Q-extension (¥,%) of
E i1a ofdcr that it be £ (4 ) a given extension (X,3) of E .
Tacse results are exbdended in sectlon six to arbvitrary e:stencions
(trheorems 22 and 23) by making use of the canonical maprin
nlct,g)

The scventh section discusses two (-exxtencions of I

L11Q

3

associated with a glvea characteristic algebra c of E.
{irst one may be constructed by process of applied to (&, Llc))
{(theoren 24), viereas the sccond is defined to be tho intersection

of all the Q-subocpaces of K(g) containinzg (n{g) o 1)T .
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Soctilon cizht returns to problem (Z4) of chapter
one and provides another solution By giving (in theorem 27)
an ezplicit algebraic construction of the extension alzebras
of I in terms of the characteristic algebras ¢ of I
and the extension algebras'that contain Cg .

-

The cnaﬁter concludes with a discussion of additional
propertics of the latiices o (2) end a con:}ecturé concerairg
them which, if correct, solves (AC) for Q-spaces?ﬂ I is
shown (theoren 29) that a lattice o {z) is closed under
addition iff it 1s closed uader nultiplication which is the
case 100 it 1s closed under continuous composition. The con=-
jectuvre states that,for (~spaces, CE 15 the oaly collection
of continuvous functions on I sabtisfying the conditlons of
tlhicoren 8 vwhich is closed under addition and that contaias
unbounded functlons wiion E 1is not conipacte In the case of
locally coupact spaces coungable at infinity the conjecture
Lolds (lerma 13) .

Chzptor three is analoguous to the first four sectilons
of clhapter one. The anelogy is obtailned by considering unifora-
ities U in place of collections S of real-valued functions
&nd compatible uniformities U on topolozical spaces {i.e. the
U-unifora topolosy is coarser than the topolozy of the epace)
in place of collections of continuous functions,

The first section is a brief discussion of some results

for compatible wnifornities that are used later in this chapter

*) See Erratum p.260. prad



aad in chapter four. The analozue of the fact that a contin-
vous real-valued function on a topological space is deternined
by its value on a dense subset states (theorem 3) that a
corpatible uniformity is determined bty its restriction to a
dense subset.

Sectlion two is the analogue of section one in chapter
one with the category + replaced by the category T . Tais
catersory haes the pairs (E,U) , vhere U is a uniformity for
L, as objects and Homl{(Z,U),(E',U')) the (U,U')-uniformly
continuous functions oif—-=E' . In zddition to the defin-
itlon of isomorpnisa and the discussion of invariants, this
section olso introduces a natural (covariant) functor U:P__.T
I (E,S) is in & then U(E,S) = (E,U(S)) and if o i3 a
map of & Ula) = a « By means of this fuactor every uniform
rrocess P on T induces a function process ‘PU on b,

In section three .the well known construction of the
separated space aseociated with a uniforia space (E,U) is
shovn to rrovide a unifora process S , This process is de-
fined {up to isomorphisz) by a tumiversal! property (theorem
6) « Yt is also shown that the separated space associated with
(2,U) is complete iff (E,U) dis complete.

The fourth section discusses the space of Cauchy filters
assoclated with a uniforn space angd shows that it too defines a

uniform process on X .
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To correspond to the section on S«~corpletely resuler,
the £ifth section deals with U-completely reguler filters on
a-gset I and obtzins aralogous results.

The analogue of process M is the uniform process B
viiich is defined in scetion six by associating vith each (E,I)
the space of maximal U-completely regular filters cn E o I
is shovm that this process associates vith each separated
wniform space its Sarmwvel compactification and thet it 1s de-
fined (up to isomorphism) a2s a compact process with a Nmiverszl!
property (theorem 12) , The induced function process 13J is
not isomorphic to M ,

In section seven process < is defined as a subprocess
of B by essocizting with each (E,H) the subspace of B(E,I)
consisting of the U~Couchy filtersAin' B(E,l) « It is showm
to have a universzl vroperty and (analozaus to theoren 5 in
chapter one) to be defined up to isomorphism by four invariant
rroperties of uniform processes (theorez 16) . One irmediate
consequence of this theorem is the well known result that the
separated space associcted with the Cauchy filter space defined
Ey (z,U) is isomorphic to the separated space asesciated with
the Cauchy filter space of the separated space defined by (Z,Y) .
In aédition the well kunowm theorem on the exteasion of uniformly
continuous functions (theoren 16) is proved in a ranner uvhich is
{orizally identical with the proofs of theoren 13 and 2C in

chapteyr two. This sugzests a basic 'oxtension' theorem exists

for every proccssS.
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The fowrilr chapter is a briefl discussicn of the exten-
sions of a completely repular space L that nmay be obtained by
corpleting LT 1in its various structuwresz. It is rouzhly enale
osous to chapter tuo. |

Ti:ie first section shows that 21l the topolosicallv coxw
plcte extensions (X,j) of E (i.ese I is complete in its
finest structure) nay be obtained by aprlying G to the objects
(C,I) where U is a structure of T . The totally bounded
structures of I define its compact extensions and are 3n 1 - 1
co*rcanondence with characteristic algebras of L (thecren 2) .

defined on the set of structures o

Q]

Lo equivalence relation ic
£ by identifying Uy; and U, if c(5,5;) = G(5,L,) . thile
it 1s showm that eaclu eq 1ivalence class has a finest menbver the
proolen of chavacter o such extrenal stiructures is lelt oren.
Ia the second section the quasi-orders of chapter ti:
cre considered when restricted to the topolozically compnlete
extensions of E . Ilecessary aad sufficient conditions ars
obtained in order that two of these extensions te suitably re
lated by these orders (theorens 4 and 5) o These results suzscst
two basic types of problens for tonologiecally complete erbeansions.
An example of the second type is stated and solved (theoren 6) .
It sbates that a subspace X of X(g) mey ve obtained by
completing £ in IU(S), where cescJle) ,
%!

wrlon of G, sots in X g) .

Section three is an exposition of well lmoim results on

the collection of U-unifomaly continuous functions on a set I
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The fourtn sectioan discussés very briefly, in teras 65 Process
€§, three walformities associated with a givea uvniformity U

on a set E « They are respectively the finest totaily

bounded, o~bounded, and function unifermities coarser than U .

The.chapter coﬁcludes vith sone results wihdch character-
ize those collections C(U) of ail”gyuniformly continuous
real-valued iunctiouns on a ccmﬁletely reguler spaée E, U &
structure of E, ‘which zre extension elgevras of I . A
conneciion with the conjecture of chapter two is established,

The last cliiapier, chépter five, cdiscusses soze knoim
constructions of compacy spaces in the Iramewori of toproloziczl
LTOoCesS5es.,

Sectioa one introdﬁces and defines the concept of a
topological process on a subcategory'Z:° of the category . of
topological spaces. Unlike the sections on function and uni-
foria processes. this section contains no discussion of invor-
iantse. This is because they are not used to discuss the con-
structlon of compact spaces and because 1t is wore or lecs
obvious how an analogous discussion should proceed. Continuocu
tepelogical procesces are defined and a compaciilication on Zlo
is defined to be a coutinuous éompact topolozical process on

% core

ielined and used to obtain topological processes froa function

Lie subcategory Zo o liatural functors A: Zo

rrocesses, It i3 prroved that every continuous Q-process P on

a subecatesory Zo is isomorphic to one obtaincd by means of a



natural functor A and the function prccess'#y (theorenr 1) .
As a corollary to this theorem it s shown that when'f)_is

a compactification the esscciated natural functer A is
wigquely defined by requiring A(Q) to be a uniformly closed
unitary‘subalgebra of C?n O; e This raises the basic problem:
civen a compactilication oﬁjz_ deternine the associated
natural functor. |

The renainder of the chapter is devoted to a discussion

of this problem.for the £ollowring compactifications: the Stone-
Cech compactification; the Alexandroff one-point compactifica-
tlony Banaschetskil!s zero-dimensional compactification; Freud-
enthalls rin-compact process; and Freudenthall!s L ~compactil-

decation.
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and let sQ - [lef in 8], If foisin 8§ let fp = fQ o y(z,8).

The functions f> are continuous and fp © pg = fQ o v(E,8) o Ps

= fQ 0 qq = £, Tlience P satisfies (FPB) and so this property

ig iavariante.

Since the functions £fq and fp are uniquely defined
by being continuous and by satisfyinz i‘Q 0 qy = fP 0 pg = £
it follows that the correspondence fQ —1p of SQ viith
Sp = [:E‘Plf in 8] i35 1 -« 1 and onto. This result has two
immediate consequeaces. First, SQ separates the points of
Q(E,S) 1ff Sp separates the points of P(L,S). Sccond,
v(E,€) is a homeoworphisn with respect to the weak topolozies

defined by SP and Sq. This 13 because if £ 1is in G,

e >0 and wu,v, are such that ¥(E,5)u, = v, then

¢’ o
v(E,5)[u ¢ P(E,8)] lfpu - fPuol <el] = [v ¢ Q(E,s)]
}va - i‘Qvol <&l and [u e P(E,S)] IfPu - fpuol < e]
= v HE,0) v & 2(E,S)| lva - .vaol < £]. This proves tha%
the following tvwo properties of processes are also invariant

under isomorphism?

(FPA) P antisfics (FPB) and for each obijcet

(£.8) ef P Sp.£cparatos the reints of p(r=,S);

(FPS) P saticrics jFPB) and for cach object
(£,8) of ¥ the topclo~r of P(X,8) is o{p(z.2), S?~L'~

Using the notation of the previous two parasrarhs let

P and QL be isomorphic processes on F that satisfy (FPB)'



9

The cooarscest uniformity oa P(E,S) such that each fP in
SP is wnlforrmly continuous is gonerated by the surroundings
Vifp,e) = [(u,v) uyw 4n P(E,S)| |fpu - wal < €],
Denote this uniformity by p_(SP) . Lot -y_(sQ) denote the
corresponding uniformity on Q(E,S) . It is clear that
(vy(p,s) x v(&,s)) V(fp,e) = V(fQ,e) and that V(fp,c) =
(v(E,8) x Y(E,S)Y]V(fq,e) . Consequently ¢(E,S) 4is an
isomorphisn of the uniform space (P(E,S), U(S;)) with the
uniform space (Q(E,S), Q(SQ)). o This proees the invariance
of property

(FP6) P satisfics (F’P3 ) and for each obicct

{z.8) of ¥ tho set P(E,S) ~ is complete in
the vniformity  U(Sp) .

The third gencral type of invariant rrorerty of a
process P on ¥ relates properties of the mappings a of
F o prepertics of tho corresponding continuous functions
Ple) « To exanples are of interest for the purposes of this
thesis, The first is

(FP7) if (£,8), (E'S!) are tun objcets of P ana

if o is a napping of ¥ in Hon((r,S),(=t,51))

such that S = 3! o0 ¢, then Ple) embeds P(E,S)

on a closed subsnace of P(E!,St) .

This ig an invoriant propertve Let Q be a second process on

¥ uhich is isomorphic to Pana let v(E,S) and y(Z',S')
Lo homeomorphisns such that y(E',S') o Pla) = ala) o ¥(E,S) .

‘Since Yfl(E,S) is aloo a homeowmorphism it follows that
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(FP,) in definition 1. Let o be a mappiang of ¥ in
Hoa((Z,5),(E',5')). Then (Q @aP)(a) o (qo p)g =
Q(rl{a)) o %, © Ps = 951, © P(a) o pg = dg1, © Pgr © @
= (¢ b plgy 0 cs In general, howvever, does
not satisfy (FPy) as the following example shows.
Torarmple. Assume that P 1s a process on 2F that satisfies
(FPB)' Let Q ULe the process defined in example 2.
Iz (E,S) is an object of E then (gqo p)E = qSP(pSE)
= pgE, wilch 1s dense i ¢ o P)(E,S) = P(L,8) - a5 a
discrete space - 1ff p.E = P(E,S). This condition is
not necessarlily satisfied if ‘P nas FPB) - §e@ process
7] in the next section - and so in geaeral for this U,
Q a*P is not a process on P .

The reason wiy (qa p)SE 15 rot necessarily deunse
in (Q o P)(Z,S) is due to the fact that in general qSP is
not related to the topolozy of P(L,S) definei by P .

Specifically it is not continuous since (q O p)y I is dense

1 (oapr)E,5) 4f aq. 315 contimons. Let U be a non-void
open subsct of (2 B P){E,S) = Q(P(E,5), Sp). Since

g P(E,S) 1s dcnse in this set qS;(U) is non-void, Uhen
P

qs_ 1s continuous it is an open subset of P(E,5). The fact
P
hat pgE 1s dense in P(E,5) then irplics that p (e (U))
S P
is non-voide In other words (quplgE N U 9 1.e.
(@ o p)gE is dense ia(Q o P)(T,5).
This introduces the fcllowing rroblem: if P i5 a

process on ¥ ona (£,5) is an ebjeet of ¥ when is



pg ¢ B P(E,3) continvous with respect to a topology

QE for LE? One answer to this question ls stated as

Theoren: 1. Lot P ve a process on*F that satisfies

c
(F‘PB) and et  (%,8) be an obiect o2 F ., If 0. is

o tovoln=r for I +then p~ ¢ E——P(H,8) is continvous
&

j{®]

t'

1ith respect to

~ 3f7 cach £ 3n 8 4s econtinuous

with respect to  On.

Proof: Since P satislies (FPB) S = Sp 0 py aad So
viien Ps- is continuous every function £ in S is also
continuous,

On the other hand S = SP 0 pg 2also lmplieu that
p5T[ O(P(E,S), 8,)] = O(E,8), Ir O = O(P(E,8),5,) thea
1o

——e

Py 1is continuous with respect to pg and 0 . Siace
the functions in SP' are Q = coantinuous it follows th=z
pé'l 0 contains 0(Z2,S) or equivalently that the functions
in S8 are pgl 0 - continuous. Let £ Ve a funetloa ia 3
and choose g> o and v, in P(E,S)s Then psl[v in P{z,3)]
[£pv - fov | <€ ] s open dn Q(E,S). If x; dsdin E
guch that [fplpgx,) - :i‘onl <e a2nd e'< g ~ [fplpgxy)
- fpvol, then pglx in Bl £« -.i‘xll< e! 1 is5 contained in
[v in P(5,8)| lfpv - fpvo]< g 1 = VU, Coasequently pgl U
is ecpen in 0O(E,S) eand so pgl_(_)_ is contained in 0(z,s).

If P satisiles (FPS) it then follouws that pg is
continuous when 0(E,S) 4is coarscyr than _Q:, l.c., viren cach

function in S8 is 0, - coatinuous.
ad






P(rs)

P(PCE;S),Sp)






& : wapping of £
(Q(E,5),8)) and heace is a mapr

(EIS)
y \
TE,S S), S)
(P(E,S),Sp) A
P 1
Psp ‘Lsp SQ
P(QEID, S4)
P(P(E5),5p) Plr(E,s)
o s TIQUED,S o)
e QCPCE,s) ,Sp) ~RCRELS) 5o
)

Q (T(E. )
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Proof: Let ¢ be an isomorphisa of ‘P into Q , If PaP
1s a proccss onE g0 igPrQ , Since Palis a procesa
on F it follous that QA4 Q is a process on £ ,
The homomorphisms “Ply) and (@A) are isomorphisus.
Consecquently v(Q) o Ply) is an isomorphisa of PoPinto QoQ.
It P is idompotent then PoP iz a procezs on P
igomorphic to P . This implies that QAQ is a process oa
F hich is isomorphic to PoP and heace to P . Since P
and QU cre isomorphic this implies Q and Q@ Q zre isomorphic
1.0, Q 1is 1dempotent.
Ronarks. The piroof of this theorem will apprly to a pair of
1somecyrphlc processes P ond Q on E isomorphiic under vy
such that y(E,S) is a mapping of ¥ in Nou((P(E,5), Sp)
(Q(E,8), 843)). This leaves the guestion opea when y does
not have this property. Another question left open is the
problem of the connection between “PoP and Po Q : is
“PaQ necessarily a process if PaP 15 a process?
$2 ProcessU, Let I be an index sct and for each i in I

lect Ri be the set of real nunbers together with the usual
uniformity vhich is defined by the netric dix,y) = |x - vl.
LetW R; bo the cartesian product of the cpaces Ri togcther

1in T
with the product wnilornity. It is a llausdorif wniforii space

whilch is complete because each of the coordinate opaces P‘i

15 completes If 1 ds in I define my:llR——2, by
i1inI

e [ o by -’ g 7 L .y e [
setting s = !i vien Z = (zi)i 4n T °® The product unifornity

is thon the unifornity U((m)y 4, 1) 1.es the coarsest one for
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vhieh each real-valued function N ig uniformly continuous.
Consequently the uniform topolozy of1T'Ri is the wezk torol-
ogy O (MRy, (mydy 4. 1) o iial

1inX ‘

Wiith these observations on the product of a family
of real lines it 1s relatively easy to define and discuss
a prrocess on € which vill be denoted by J .

Let {E,S) be an objeect of P and consider S as en

index set. Form R. and define to:1Z——\IR, by setting
£ihs S z

tx"(fX) [~ 2 m o 1) . 1

S £fin s Let T(E,S) be the topolozical space

obtained by taking the closure of tgE in Ry and the
£ in S
subspace topology for this closed set.

If £ isin 8 defined £y to be m [T(E,8). The
fuactions fT are continuous and satlsfy fT 0 pg = fo The
topology of T(L,5) is the weak topology C(T(E,S), Sq),
where Sq = [lef in S8]. Since T(5,53) is a clesed subset

of TR, it is complete in the induced uniformity
£ in S
Bl(ma)e 4, S)IT(E,S) vbich is clearly U (Sq).

Let (E',S!') be a second object of P and let o be
in lom((5,8),(E%,5")). Since S' o c 1 containcd In S it
is possible to define a function agy g * tgE T(C1,3') by
setting cgy g © by = tgy O ao This function 1s (B(Sy) ltsz:,
U(s*;)) - uniforaly continuous and since (T(E',S'), B(3';))is
a complete scparated uniform space the. Lfact that tSE isc

denge in T(E,S) dmplies that Ggr g has a wiique (Q(ST ,E(S'T) -
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Proof: In the course of the definition of J it iras shom

that J satisfics (FPB)’(FPE) and (F:?G) e Since for any

indest set I the projections iy i in I, seporate the

‘points ol "Ri it is clear that J satisfies (FPZ;,) .
1idn X

Let ¢ be in FEom((z,S),(Z?,8%)) ond such that

S =8%'0 a0 ., Define the funetion 63 “Rf-—-»“;’if, by
£in 8 £V in St

o

= <Y ‘\' o= 4
cettlng €((Tp)p ;) o) = (Bpedpy 4, g vhore f'ow =1
iuplies Zny = Yp o This function enbeds 1TRf inT[I’.m .

£ia S £' in 5!

“r

In addition © o tg = tgy 0 @ eince if x is in IL,{S o t)x

= G((fX)f in S) = ((f' O G):{)f' in S' = (tsg o C':):f: e IG
follows that Tla) = €|T(8,5) since tg3 is demse in T(I,5) .
Thic proves that Tla) naps T(2,S) homeomorphically onto
the closure in T(L?,S') of (&g 0 Gl . Lenced satislfics

(72,
Process J is coupletely regular because it catislics
(FP&.) and (FP ) « It is idempotent in viewr of theorea 2

ince it setisfics (F”) and (;P7) .

0

To prove that 3 does not saticly (I-‘Pg) on P it
is sufficient to find a palr of objects in E and a napping o
guch that the conditions of (FP,,) are satisficd but for
shich T(z) is not a homeomorphisms. Consider the folloiring
Trromnmle, Lot E' be the space R of real numters and leb
St bLe the collection of polynomial functions L' oa R o IT

N o _p.'

£1(X) 45 in EI[X] the ccrreszonding polynonial function £ io

{~e

defined by setting £'x cqual to the value of f£7(X) at xx + Let
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E be any closed interval of R, say [-1,1] and let
¢i——E' Dbe the natural injection. Define S to be
S!" 0 ue Since S' conslsts of polynoiial functions
ft_,f'oa is 1l - 1. The coantinuous fuaction T(a)
is not a houeonorphism. This is because T(E,S) 1is
compact and T(E',Sf) 4is not (for any object (E,S) of <&
T{Z,S) is compact iff all the functions in S are bounded).
An interesting property of the Tychonoff process J
is that the first four properties of theorem 4 characterize
it. In other words the following 'converse'! of theorean 4 holds
Theorenn 5, Let P be o process on P that saticfien

(FPB)_,(FP#.).:IFPS) and (TP.). Then P i35 tsomorphic to J | P

Proof: Let (E,S) be an object of ¥ . Since P setisties
(FPB) and (I“Pb) it follows that paXx = pgy 4iff fplpgx) =
fp(psx) for each f£in S d.e. iff fx = fy for each £ in
S« This means that tgx = tgy iff fx = fy for each £ in S.
Thcrefore there iz a 1 - 1 function v,4(E,8):pgE——T(L,S)
such that™ v9(E,3) 0 pg = tg. |

If £ 4isin S5 1let f‘l‘ denote the continuwous function
on T(E,8) with f£70 ty = L. Then I, 0 7,(L,5) = TplpgTs
This neans that 'yl(E,S) is an isomorphism of the uniforn space
(pgE, U(Sp)IpgE) 1dth the uniforn space (t4E, U(Sn) [tgE).
The arguent used to estaoblish the invariance of FPé) also

applies here to prrove the assertion.



-

If v;(C,5) 4is considered as a function :p
it follows fronm cqn'sider ations of uniform co*zuinun.‘o vy that it
hes a unique (Q_(SP), U(sq)) - unifornly continuous exitension
v(E,5) :P(E,3) 7(%,8) (sce Dourbaki [3]1 » 151) . Similarly
yil(E,S):tSE—»P(E,S). has a uniquo (Ufz; Q(SP)) ~ vniforrly

continuous extension to T(E,S) . This proves that +(IT,S) iz
an isomorphisa of (P(E,S), U(3;)) with (2(E,s), L(8g)) .

Since P and U sotisfy (FPE) it follows that +v(Z,2)
is a howmeomorphisa of P(Z,S) with T(E,S3)

The functions v(E,S) are such that y{(E,3) o Py
'\rl(E,S) 0 pg = tg end since J is a Housdorff rreeess lerma 1
shovs that the family ("((_E’S))(E,S) ;2 F defines an iscnorpiicn
of‘P into J | .

Corollawr, Let __:E be a8 snhaaterory o Eol,t'zincd tr recshriching

— 1

the obleets, TIf P 35 a nrocoss on . that catisfics (F;j_)_,.
FP‘,"‘ F.P,).) and FPC) then P sotisfics (FP7) o _Concaguentl-r
32 Pa P 15 gefined P is idcnnotonte

Prooft ’P is isomorphic to U IEE by the theoren., Since J

~

sé.tisfies (Z-"P7) by theoven 4 it :ﬁ‘ollo;:'s from the iavariancs ol
(17’}’7) that P saticfies this condition. IT PoP is celined
then by theorca 2 P is idenpotente

A process on :§ s Vhich is isomorphiie to I y can be
defined by essociating with each object (E,S) oi‘i a space
of filtcrss These filters are deofined by rieans of the fuactions

and &re looscly speaking the trace filters on T of the

&)

in
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2e Let £ be a function in S vhich iz not bounded above
{below) by a constant function, ~ Then the countable collec-
tion of sets [x|fx > nl] ([xlfix< -nl]) fern> 0 fora a
i’iltgr basis on E . The filter defined in either case is
S-completely regular. 7

36 If x 15 a point of E let }:_;x be the filter generated
by the collection of sets 'fuli‘u < fx+ 1/n] nlulfu>rz-1/al
vhore £ 1sin S and n> 0, This filter is S-completely
recvlar (it is here that 21l the details of definition 3 are
necessazry viien no structure for S is assumed).

The third example IT is an S-conpletely regular
filter along vihich each £ 1in S converges to fx., The
funetion £ converges to A along the first filter and to +of-x)
along the filter of example 2. This sugpaeststhat the converge:ace
of the functions in S along the S-completely regulaxr f£filters
should be considcred,

Since infinite linits are to be aduitted it is
convenient to describe briecfly the tuo point compactificatican L
of the real nunbezrs R obtained by adjoininpg + 00 gnd - o,

et R be the set R v [+o0] v [-o0] and define a topolosy oa

e

R by cefining neizhvournocd filters for each point. I x io
in B and x is in a subset V ofZ I then V is an 1 - nelsl-
bovrhood of x 4ff VN B is on Re-ncighbourhood of

(in the usual topolozy for the real nunbors L) . A fundameatal
cysten of neipghbourhoods for +o®(-o) ig dofined to be

the countable filter beasis of sets [mcRlx > n] v [+]

([zcRlx < -n] v[-*=]) , It is clear that R is compact in this
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topology and that it containa R as a donse subspacc.
The first result on the convergenca of functions in

S along arbitrary S-completely regular filters is

Theren G, If I 45 on Se-completely remlar filteor and

XYW X)

AZ £ 3z In S, then thore cirlsts on Swcompletely rozulaw
£ilter F' containinz F _such that lim £ coxists in T,

Proof: Acocuse that 1ina £ does not exist in R ({otheriisco
I itsclf ig a filter that will do). Thea there are i

poosibilitics. Either, for eome A 1a T f£A i1is a bounded

sot of roal numbers or, for each A ia T fA 15 unbournded.

In the first cace the closure T4 of fA 4n . i3

comppact end so, N FX + ¢ . If A isin TE, thon T and

ek
tho socts [x|/A = 1Mm<fx <A+ 1/m], n> 0 generate a filter
I! along vhich £ convergos to A.

In tho second casc either I and the scts [x|£z > nl,
n >0, o T and the sevs [x|frx <-nl, n> 0 goncrato a

filter on E. Agsume that the first of these possibllitics hioldc.

let L be the filter generated bty T and the cots [x|fx> nl,

n > 0. Clearly 1%1:-'1 £ =+, viich iz ia R .

The filter [I' is S-completely regular because of

oxanples 1 and 2 and the folloiwring

Tomwa 2. Let I oand P! bo two S-completely resular £iltcrs on

{o &
2L e et it

I _that generate a fllter F on T,  Then T ig S-commletelsr

vorlor.

Sk,
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Theoren 7. IL T is on S-commlotelyw romalars filter and i°

lim £ oxisss in ¥ for 311l £ dn S, then F is ~onorased
=% _ £
b tha fanllr of sois 5_‘"1 thore YV is any T noishbonp-

Locd of Ainn £

L

Prool: Let F; beaset in I and let I, be a subset of
Fl be a set in L with F, and C[Fl completely separated
by S « This neans that there exist tio integors n, k& with
O=ks n, n fuactions £1s0ee,f;, in 8§, and 2n real
nmmbers A (e)yeeey A {e)y ) yeee,irt (c), ¢ =1 or 2 such
1l k = n-k

that!

(1) 2,(1) > A(2), 1 = 1,000, k and pj(l) < p.j(2},
1 =1,e0ey, n =~k ; and

n-lz
(2) r, <A 5.21 [xloyx < (2)1) (jr:l [xli‘};+j:: >p,j(2)3)

2

nelz

k
_C__ggl[xlfix <Ai(1)3) N (le [J:lfk+3.:: >uj(1)]) STy

: ~
For any £ in S 1let £(L) denote lin £ ., Sinee =7,
T:I bl

is in E it follows fronm (2) that %\i(z) < hi(Z), is= 1, .-o.,k
[ueh]u < 1/2(A; (1) + A (2)] v [~>] i5s an R - neighbourhecd
V; of £,(0) 1 =1,...,k and [ueR|u > 1/2(;;.3.(1) + pj(Q))J"BJ“]
-— A - °
is an R = neighbourhood v,,ﬁ of i‘:j (Z) J = 1yaeeyn-k .
Since fglvi = [x]ex < 1/2(A; (1) + A;(2)] and

_{"'3_' $Ticey = Ll g0 > 1/2(p5(0) + 5(2)] 1t follows from (2)



k n=k
F, S o) N Sy W) € Ty
The set Fi vas chogen as an arbltrary set 1a I and
a3 a result the thoorem holds.

Corollary 1., Lot I _be an S~completely resvlar filter on L.

Thon Ma £ oxists in B for 21 £ in S 4iff F _is a
It
roxiinal S-cormmletely rerular fllter.

Proof: It has been shown that every £ in S converges alons
naximal S-completely regular filter.

On the other hand if l}f}m f exists in R for 211 £

in S 1let II containing I' be a maximal S-coapletely rezular

filter. It is8 clear that lin £ =1lin f for each £ in S

I 17
because !I is finer than F . I'roil the theorem it thon follous

-

that I and II are gencorated by the saue family of sets.

Consequently

I

-
A e
—

-

;

et Iy and _r_Tz bhe two naxinsl S-comnmletfely

Corollazr 2.

"rormlax £ilters on  E.  Then Il =1L, 1ff Jim £ = 1lim £ Lo
1 i
A 1

each £ dn S,

Proofs If lim £ = 1lim £ for each £ 1n S then both Lfilecrs

Iy I,

are generated by the same family of sets and so are identical.

Corollarr 3, ZIf x 3543 T ot I bo the filtor dofined
ot = L S ==

&

in exammle 3. It 1s a naximal S-comnlebelv romulor £Filtor con I,

Proof: It is S-ccippletely regular and as obLserved in examnle 3
each £ in S coaverges 2long lI, to £z, Dy corollary 1l

it 15 therefore a naxdlnal S-coupletely rezular £iltor.
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processes on $ .

Renarlks, TFrom the prcof of the compactnecs of N it can bve
seen that TN 1s essentislly a rnwodified version or ] e The
modification consists of replaciag the real line by its tio-
point corpactification N . In general each method of
extending the rezl line vwill produce a corresponding modifi-
cation of J . In each casc the rodified process vill satisiy

suitably medified versions of (FPy) (TP M(IP;) and (TPg) -

essuming only completely resular extensions are considered.
The seccond process of this scction - process F . is

defined by means oftM, 1r (E,Ss) 1is an object of +* derine

F{Z,5) to be the subspace of I1(E,S) coasisting of all the

U{s) -~ Couchy filters in that set. If a is in [Ion({(Z3,S),

(B',81)) define TF(a) to be Fla)[I{E,5)e To show that

F: &

that F(a):F(E,5)——F(E',5') and that Fla' o c¢) = Fla?) o Flc).

Z_ i3 a covariant functor it ig sufficient to prove

Poth of these essertions are conscequenccs of theorem 9 and tle
definition of Ie)e If I is in 1UZ,3) lila)l is the unique
maxinal Sfeconpletely regular £ilter [I' contained in cIl &
Since a 1is (U(3), B(3')) = uniforuly continuous ¢l is
U(S') - Cavchy if II is U(S) = Cauchy. Theorea 9 thea shous
that 1i{a)il 4s U(S*) - Cauchy and so Fla) maps T(Z,3) iato
r{e*',51), It also proves that Fla' o ¢) = F{a') o F(z) sinco
when ! is a U(S) =~ Cauchy filter in 1i(I,S), the U(s3") -

Caucliy filter IHa' o )il = I{a®)M' whore II' = l{c)I! 1z U(S?) -
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Cauchy.

Theorent 8 ghows that the filters ., xin E, =zare

?

211 U(S) - Cauchy. Councequently m;E is contzined in
F(E,%)s Let fo =my. Then £ E is dense in F{z,8) and
Ma) o £fg = fqy 0 c

The nrocess J isS defined to be the functer T end

the fomily (fo) of functions f. .

E S in é nt
From the definition of F as a 'subprocess' of TM it is

¢lear that the natural injeetions 1(Z,S):F(E,S)——I(E,S)
define a houomorphisa of £ into T,

The all ianclusive property of this rrocess is stated s

Caun

Theorea 190. 3’ and ﬂ a>a igomornhic rirocesses on <+ o licnece
SLCORC: o,

T is idenpoteont.

Proof: Let (Z,5) be an object of £ +» Thea Tl'Rf is a
f in S

subspace of “?:f « Theorem & shous that § naps F(E,S) onto

6(i(z,8)) » TRy « Let y(E,S) = §|F(E,5). Then +(E,S)
fia s
is a homeomorphiesm of TF(E,S) with a closed subzet of m Rp
£f in S

such that y(E,S) o fq = tg. This irplies that

v(E,8)F(E,5) = T(5,5). Since J is a Housdorff proccss these

honeonorphisins define an isomorphism of F into J (lerma 1).
The 'potential' process FoF is5 cerined because F

15 defined on P and satisfies (FP3). J- is therofore ideupotent

(by the corollary to theorca 5 or Ly either of theoreums 2 and 3).
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3 b

since AT g"l?.’! i3 in I limg dis dan V7,

3

wis proves that

e

G i5 continuous., Since § of fs = 2 {he lemna is proved.
Processes F and M coincide on the subcatesory
consisting of those objects (T,5) ZLor which every maximal

S~completely resular £ilter is U{3S) ~ Cauchy. This iz the

case 1ff ench function In S 15 bounded., Vhen every functina

I 4a &5 358 bounded it is clesr that lim £ i3 real foirr cacl
L

£ .in 8 and I in !YE,S). This shous that the sets

F(E,3) and M(E,S) colncide when every fuactlona 1a S is

bonnded, Assuma that S  contalns a2 unbounded {function fo °

Then one of thc two filters of exampla 2 In & 3 13 defined.

-

Since there 1s a naxlimal Swcompletely rezular filter T finex than

2,

it, it follows that JI:T.;x £, = +wfor -}, The fllter I i3 no
u(S) - Cauehy. =

Let P " pe the subcatesory of P obtained by considering
only those objocts (T,3) for wvhich S consists entirely of
vounded functions. Then I | E*n T | ¥ ond so \7J1+

-2
3 isomornhic to m IE °

Mexandrofl [6] essentially used process Ml to conctrucs

8L, Banaschewcki [5] uced this construction of 8 to cozmsiruct
VE in a vay analogeus to tne construction of Fas a wg hrrecess
of . siuce Fis isonorphic toJ 1t satisfies (rpy). It
(2,8) 4s on objoct of P it is clecr that for £ 4n S £ io

‘0

the restriction ¢f T to F(I,S) d.e., LI =1lim £ for cach

4

e

I in F(%,S).
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B is a T,=process on A. Let (E,S) be on object

of A and let ky #+ h, be two points in H(E,S). Since

~~

£

they ore dlstinct there exists at least one function £ in
S with hy(f) ¢ h{f) . Let g=1 - hy(£)el . Tals
fonesion is in S and hl{g) +0, hl(g) =0 , Consequently

hl is in Vé and h, is in V_ . This shows thot

&
4:[h2] is open end hence that [h,] is closed.

P sotisfies (FP,) _on A, Let (E,S) and (£',5')

be two objects of A and let a be in Nou((E,S),(Ef,51)).
Asswie that S =5S' o0 o and that {'——F' 00 is5 1 - 1.

The correspondence f£!'——f'" o0 ¢ is then a wnltary isororphisi
of the algebra S' with the elgelra S. 43 a result li{c)

is 1 = 1 and every h' in MH(E!',5') is H(a) h for some h
in K{E,S) . If £ isin S ond cquals £' o a then

H(a)Vy = [H{a)nlals) + 0] = [H{a)n|n(f'oa) + 0] =

Dila)n] (1i{a)n) (£1) * O]=V%, » This shows that H{a) is an crea
umapping and as a result that H(a) 3is a houeonornhism,

Process'¥f 15 not Heusdorlf oa A 2nd 14 dnes not

satisfy (FPS) on A, Consider the following

Exnuple. Let (E,3) te tho object of A4 where E 13 the

space of real numbers R and 8 16 the ceollection of rpclyrnomiazl
fuactions on R. If fl{X) is in R[X] it defincs ths rolynozizl
function £ on R Ly setting £x equal to the value of I{X)
at ¥e The correspondence L£{(X)——f is an algelra isomorphisn

of n[x] with S. Hilbers's Nullstellemsatz showa that ench
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To prove the second half of tho thcorcm it is scufiicient
to find a function g in S8 glvean hj in E(zZ,8), £ ia S
and & > 0 such that V = [h in H(E,S)||Th - Th l-< el =
[h ia H(E,5)|Inle) - h (f)l <el s Lot gy =f - b (£)
and let g = (z3v 0~-gy nO0)neg=~e.d . This function ic
in S and has the desired property.

It £ ds in S and the real number A is = 0
then for cach x in E hx(f n M ={fnAx=fzn)s=
hv(f):\ A and h,(fU(-h) = h,(f)t'(-h) o Froa the character-
ization of the order prescrving algebsa homomorphlesms h  of
II(E,S) it follows that for such a homomorphism h, L{(f{an A) =
h(f) n A and h(fv (-A) = h(f)v (=A) . Turthermors if |f] =
£U0 < £n0 thon h{[f]) = h{£})v 0 = h(£)n 0 = |ulr)] for
any ordey prescrving homonorphisa he

Consequently when each h in H(E,S) is crder
preserving it follows that hig) = h(lﬁll Nng-gdl)s=
h(lgllt\ ¢) - e = hilz ll)l\ g - = lh(sl)lln g-¢g =
In(f) - ho(‘), ne-c. Tais shows that hig) = 0 4iff
[n(£) = b (£)] > &

To couplete thls section it iz sufficient to obtain a
condition on S vwhich irplies that every h in I(E,S) is
order precorvinge. Isbell [7] defined a unitary real alrcebra

S on E to be closed under bomnded inversion 37 1/F 45 in S

vhen £ »1, vhere (1/8)x = 1/fx . Ile shored that 1f S 1o

closcd vndor bounded invergion then cach h 4an I(E,8) i3

order preoservin~. Lot h be in H(E,S) and such that for
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(iL,) x>y dmplies z+ A> y+ A for each real A; and

(TL5) for any pair x,y ia L +hore exists A gcuch that
X+ A>y 3 aad

(TLg) x<y+ A for each A>0 implies x<7

Condition (TL5) iz not in general satisficd by a translation
lattice of functions on a set. It vwas used by Kaplanshy to
obtain a representation of a translation lattice as a trans-
lation lattice of continuous functions on a compact space.
Shirota [9] defined a translation lattice to be a lattice L
with an external operation + that satisfieas (TLy) to (TLA)
inclusive., This definition of Shirota's is equivalent to
saying that a translation lattice consizctsc of a lattice L

and an order prescrving rnonold homomorphisma & of the totally
ordered abellan group of real numbers under addition into tho
lattice ordered ronoid of order rreserving functlons that zop
1. into iteclf, This last order is defined by sctting 6l<'62,
where each ai:L————»L is order preserving, if 8% < 8,x fecr
each x in L. 1In cther wvords a translation lattice L 13 a

lattice that admits the real numbers as lattice autouorphismse.
This surgests a possible representation theory for ordercd
groups ~ adimitting the group as lattice automorphlsms of a given
lattice L.

A tranclating lattice homomorphicm 1 of S into the

rcal numbers is a lattice homomorphism 1 :S——R such that
1{(e+ ) =1(f) + A« TFrom the definition of a translatlon

- 0 ™ < | : ‘ -
1atiiec of functions on a set I 1t is clear that each x in I
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defines a translation lattilce homomor;hism"LX;S————.R, wvhere
1&(f) = %,

The real numbers nay be conclidered as the translation
lattice of constant functions on a oae-polnt set. In this
case addition has the usual neaning and the lattice order is
the usual total order of the recal nunbers.

Let T:S——R be a translation lattice hononorphicen,
Define 1+ A on S by setting (T + AMf= 1(f) + A . Taen

into

w

1T + A is also a translation lattice homomorphism of
the real nunbers. Irom the standpoint of the lattice S these
wononorphlsns ars ecsentially the same.

Pick £, in S. Then if 1:5— R is a translatica
lattice homomorphisim there is a unique translation lattice
honoriorphism 1 :8——R such that 1 _(£)) =0 and 1=10 + e
rlal v ana Tle) =0 then 1(sy) = (L + A7, =
1,(f,) + A=A, This shous that 10 =1. L{r,)) is the uniquo
tronslation lattice homomorphism with 1—°(f6) = (O and
1 =1 o ¥ Ab

Agssune that S contains the zeroe funetion 0 defined
by setting Ox = 0 for ecach x in 8. Then S contains thc
'constant funetions cn . Such a traanslation lattice of functiorns

on L will be said to be a translotion latticae theat containg tho

constants,.

Let /A be the subcabogory of:}E obtained by restricting
the objocts to boe thoge poirs (Z,S) for which S is a
tranclation lattice that contains the concstants. If (E,8) is

an object of N\ dcfine LO(E,S) to Lo the sot of 211 tranclation
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lattice homozorphisnks 1 :s——Rr which nap the sero func-
tion on 0. If (L',8') 4is a gecond object of /\ and if «

is in Nom((E'f,S), (E!,5')) define Ly{a):L (Z,5)— 1L (E7,51)
by sctting (L (c)1){f*) =1(£* 0o a) & L, ()1 4s a tranz-
lation howmomorphisn because the corresgondence f£'—f' 0 «
is a lattice homoniorphism such that f£' + A——(I' + A) o ¢
=Ttoa+ AN. If (C”cS#) is a third object and a' 1is in
Lom((r&?,s1),(C",c")) then Lylat o c) = L (a?) o L_(c)

since (L (a! o ¢)1)(£") =1{f"0 a® 0 «) = (L (a)1) (£ o) =
(L, (L (a)1])(£"), for each " 4in &”,

It (E,5) is an object of A define 15 :c—1_(Z,3)
by setting 1Sx .1’;{ there 1x(f) » fx for each £
Then 4f o is in Hox((E,8),(E',S') Ifa) o L 1., 51 © a cince

(1fa) LN =1 (27 0 ) = (£ 0 a)x = £4(ax) = 11 (£1) .

in S

It follows-that a process on A rnay be defincd by
giving topologies for the sets LO(E,S) such that the subee
1SE cre dense and the functions Lo(a) are continuous, Since

the developuent co far is parallel to that of proccss fH ca

A 1t 1s natural to coasider the topology generated by the gats
Upy £ in S, where W, = [1 el (E,S)|T (£) + ¢l . Unfortunately

these sets do not appoar to fora a base for this torolozy and

go the fact that l\'lSE + ¢ immlics Ve =U = ¢ counnot

be used to prove that 14E 1is dence in the resulting spacc.
lowever 1f 0O, is the topelosy senerated by the ects

u f in $ with £ >0 they do form a baso since Up N U =
<
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‘.;’ e vaen £, 20 , Similoxly if O is the topolozy
generated by the cets I'If, f in S ond £=< 0 this teopoloZzy

ey Conun nea 7l Y . : 4 o
has these sets for a base since W, n Ug =Wy, . ir £, z=0.

Define L,(2,8) to be L,(E,S) with the-positive”
topology 0O . « Then 1a E 13 dense in this space beczuse the
sets Uf, f >0 forn a base for 0, + If a is in
nou((2,5), (E*,S?)) and £' 2 O then Lgl (0)Upy = [T L, (2,5) ]
(L{c) 1 )(£*) =Ul{f* 0 0) % 0] = Vot o o @nd since £' ooz O

L,{a) is a continuous function:i (E,8)——L {(2',5') . Conceque

ently if ];.-.t: /\—>2 _ i3 the coverisont functor uith
L. (e,s) = (1 (2,8), O,) ond L (ga) = L.o(c:) thon to7ethe

yith the fanily (1) of finetions L. it define:
E,s) AN >

O TEOCeS3 i% on /\ °

Slnilorly define L_(E,3) to be the set L (Z,3)

+3

]

-

together with the nezative topology O _ « As before each
'LSE is dense and each L (a) 1s continuocus. Lot L_ («) =
Ly{a) « Then L : N Z_is a covariont functor vhich

torcther with the fordly (1 S)-
(E,5) in N\

dofincs a process L . en AN

ol funetinag 1 3

As in the case of processﬂ it (2,3) is an object of
/\ the functions £ in S define roal-valued functions I
en L, (E,3) in a "natural’ way by setbing 1L =T1(2) =zo»
cach 1T in L,(E,S) « The functions T ors such that Tolg =
£ and 8§ flfao] is a tranclatioa latbico of functions on

Lo(E,S). If £ and g eredin S then fvgl=T1(zvg) =
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Since the homorphisms 1. are such that 1:,(-f) = ~1_(£)

for all £ ia S it is clear that if 5(E,3)1 is in %(E,3)
1(-£) = ~UZ) for a2l £ in 5 . Suppose 10(- )

for cach. £ in S but that 6(E,S)1o is not in T(Z,3) .
Then there exist n  functions ‘.f.“:l_,...,;’;‘n in. O and e3> C

cuch that if x is in I at least one of !.Li -1 (:E'i”7/ c
i = 1,...,!1 . Let g.; = ' - 1 (-Li) and deline Gi =

~(fg; n el-e) and g§ =g, v (~e)l+ ¢+ Since L (-£) =

- 1,(8) 1t follows that 1 feg)= 1 (cf) = ¢, 1 =1,000,m .
n
et g= N [g!’ N {,2] e Taen 1 (z) = e « lowover g =0 .
n e 2
If x 3isin E px = {\1[3.7:: ngix] and at least one of the

Cix ngi:{ = O, i= 1,...,2‘1 s Since 8.% n 532. Zz 01 = l..oo.'ﬂ

it follous that gr=0 . Since g =0 'l—o(g) =0, This is

a contradiction. Hence 6(E,S)1o is in %(E,8) if ’LO(-f) =

o

-10(;?) for each £ ia S .

Deriorl=, If S is a unitary real algebra on D vhileh is alco

cloced under v and N then it folloirs that if 1 :5 n dIs o

tronslation lattice hormororphisn such that 1(0) = 0 ~n1 1(-f)

=_-1(2) forerehr £ 3in S theal 35 2150 an sl~etra hoo-
riornhicna,
L - Al b tt\ ﬁ“b toror .ﬂA VA g d -p 2ean
ot o the catosory of A obtained by restricting

the objeets (I,5) %o thiose pairs for whieh 8 isdoscd uvader
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isonervhic processes on A\ o Let (2,5) ULe an object of

/\! and donote Ly JiS——E the nappiag delined Wy

setbing J.f = of , Then (Jo Jd)ff =% forall £ in S

and J(fug) =37 ndg, J{fng) =sfudg, JL+A) =30 «r.
Let XiR—R be tho correspoading antlautosmorphiscm of the

. . [
A3 40 iue

fte

lattice R i.es B = =X
‘Define ¥{E,8):L (E,5)—1L_(E,S) by setting
v{E,5)1 =X ol od . It is a roubine calculation to chowr

) L

the Tunction {Z,5) 4s 1 - 1 and onto since (y(u, ) o v{2,8))

b3
wm

that KXol o J is in LO(B,S) vhenn 1 1s in ( "

=Ke(Koelod)loc=(KoXK)olo(dod) =1 for cach

in L, (Z,5) . The fuaction v(E,8):L, (,8)——1L_(5,2) is a

Loneonmorphisme If £>» 0 4is in & then Jf =0 and

y(E,S)T:If = W;r o This is beecause 1{(£) =0 1fT (X o1 o J)(cf)
1(£) =0 « Cimiloply 4f £ =0 3isdia S thea J£> C

cnd  y(E,S)W. = ;. . This chows that v(E,3) is an

(o

)

+» O _) = homeomorphisa, The fonily (‘f(E,S))(E’S) in AT
of homecnmorphisms v{(E,5) defines an isomorplisn ¢ ofL (A Y
into L_| At. If (£,5) is ia A' then y(5,5) olg=T4
vocause Kol o dJ = 1, for each = ia D. Let £ be ia S
then (Kol o 3L} = (Xol) (-£) = Z({-£)x) = K(-Ix)

'L, (£) « IC (E',8') 43 a secoad obujcct of A a21d o
is in Hom{(L,5),(3',S") let 1 e ia L (T,8). Then
(£ 0 (L (a)1) 0o JMET) = (X o (L () L)) (=£?) = (1 ((-21) 0 2))
= X{(1(~{£' 0 a))) ={Lolodf'owa) = (L (a)(Kolo a)){L")
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This shows thas y({2',3') o L (2) = L_(c) o y(Z,5), and

heace that vy 1is on isororphisa of ,2'+I A' into L_[AT,
Renarl. For anry (B,8) 1a A' tho ses L(E,S)

[ Tia 1, (E8)[KoTod=1]. Ifeither L (E,3) or

L_(E,S) is a Hausdorf{ space it follows that L(Z,S) =

L,(E,8) . Hence if«:f+l A' or Z | A' is a Hausdorsy

rrocess they colncide and are both equal to ol , isI_‘,U\ '

a Lausdorff process on N'?

Yote. Process esfland L cro exemples of ‘algebraic! fuaction
processes. Any suitable structure defined for collections of

R )
Az vwAtl

-

-

0]

fuactions on a set provides & corresponding preccesse
‘ff and o‘( alpcebrale proportices may be deduced by comporing the
process w.tt.hj
To conclude this discussion of specific proccsses it

is convenient to cowmbine theorems 10, 12 and 13, Let A'NA?
denote the subcatezory of P obtained L restricting th
objects to be those cormion to A' and A' i,e. those nairs
(£,5) 1here 8 is a unitary real algebra on E closed under
bounded inverslion and the binary opcrations v and »n o Tae
result of coibining these three theorems is stated as

Thcorem 1. JJATD AL, Fart AL At AAY g

SLIANT N A' 2ore igomorphic rrocesces on AU N AV, e

51l sotigse (FP 3),,11'_12, P 1_(1:_01_._(‘@,) and_ (u. o Tn

(A
b

addition they are all idenrotent (o3 rrocesses on A'NAAT)




Bl

Proof: The first tuo asscrtions are an irmnedlate conscquence
of treorems 10, 12 and 13 and the properties of theses rrocezscse.
ufflcient

1

o

To prove that they are all idemnotent it is
to show that JlA'n At o T art N A' and so on
defined., If (5,8) 4s A'N AT then (T(5,8), 5..) is also

I3

=

o a

5

in AN A, This is a consequence of the pronorties of the

piroduct topology and the fact that tSE is dense in T(E,3) .
(F(z,8),85) 4 (1(E,8),5;) and (L(E,S),S;) are 2lso ia A'N A,
his can be established in each case by corputation or by

notinz that the homeomorphisms from T(®,S) to F(E,s),N(E,3)

.

and L(E,S) 4induce correspondences of S, with Sg, S, and 5;

b

f N

viiich preserve the properties of closure under bounded inversion

and VU and n ,

§7. The extension gloebras of E, Let E denote a coapletely

resular space and let CE dencte the algebra of all realevalued
continuous functions on L. In the introduction the original
rroblem vas stated as

(EA): charactorice the subalscbras S  of CE for whilch

S = CXJE, vhere X is 2n exteansion of & ,

™o definitions are introduced 4o moke this preklem rore preciscs

Definition 5, An extension of a completely remulex snace I

is a rair (X;j) tthere X is a complctely remlar srpace and

J:E——¥{ 35 2 Loncomorphic enbedding udth 35 dense Iz U

Definition 6. IL %, 3) dc an extension of I the subrl-~obro

- =

Cv o ] “_[g o _ilm dn CK] of CE is c21lled an citencicn al-ehra
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3. Yor anyv dntezer n> 0 15 a non~compact  0=5pace,

This is a-'special case of example 2 since P is a locecally
coizpact space countable abt iafinity for each n>» 0 .
Q-spaces are characterized by the following theoren

tthich was essentielly proved by Hewite [10] .

>

Thooren 16. A completely remulor space I dis5 a Q~cpace 1£8

{-

1t is conplete in the structure  U(C.) .
-

Proof: Since H JA* NAt and JJAt NAT gre isomorphic

by theorem 14 it is clear that E is a Q-space iff t, :E—-TI(E,C.)

Cra z
is a homeomorphism. The space T(E,Cp) is complete in the
structure I_I_((CE)T) since J satisfies (FP6) o Idontifying
I itk 1ite image under tCE it follows that U(C;) =
sl(c) Yz .

! Conseqlr.éntly if tCE 1s a honmeoirorphism L i1s complote
in U(Cp) . Conversoly if L is complete in ulcy) it is 2
closed subset of T(E,CE) and therefore coincides vwith this ccote.

lieace tCE is a homcomorphism.

Corollarr 1, IL P45 a process on a subeatesory ¥ that sotis?

Lo
;)

-~
et

L

3

ce

(FPB)’(FPA;,)’(FPS) and (FP{)) thon Pis o Nerrocess oan ¥ . Iie

SRR Q~process 02 +$H .,

Proofs '»Sincc for any object (E,S) of SP is contained in
Cotm.5) 1t follows that U(Sp) is combained in -U-(CP(E,S)) .
Vhen P(Z,5) 1z compleve in U(8p). then it is complete in

E(CP(E,S)) and lionco is a Q-space. Trne neitt corollary is due to

Shirota [9] .






El.r.':...e. Let
(Vigl) is
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of T and I' regrectively there is o wiigue continuvous

Ead
1 e

0

function -flgg Yi: such thet £59 3. = gi

Thls is an autonotic consequence of the definition since

(Yi,gi o £) 1s an adiisslble pair for E .

Corollaxy 2 of theorem 16 and the second property of

w =exzbensions show that fri is donpe ia ¥, wnen (Yl.gl)
ig an Vv -extension of I ,

So far no uvse has becn made of the corplote rezularisy

of the space L . Even the pair (H(E,Cp),k; ) exists
T
—d

-
w

inderendently of the couplete resularity of I o To say the

<

T is completely remular is ecuivalent to asserting that hc ic
o

on embedding. Consequently if FE is comnletely repmlam then

an Y ~cxteonsion of B is also an eitensicn of D

Nemarks. Hewitt [10] introduced the concept of an WV -emtencion
of I by showing that (up to isomorphism) there exists a

unique Q;extension VE of the completely rezular space L such
that Cypl% = Cp o He gave two constructions of v L. Oxc

was by means of the real maximal ideals of CE and was esseatlally
(1i(E,Cp) s ) o - The other construction vas by means of the

s
Trchonoff process J ond yielded the extension (T(E'CELtb ).« The

-

A —extensions defined in definiticn 8 coinclde withthosong

liewrlts sinco (H(E,CE),hC ) satisfies both definitionc. Other
conatructions of Hewitt'shSpace YV E were provided by Shirota [2] .
lio pave two, the most important of whichwill be considered in

chapter tiree soction onc. le also considored the constructicn ¢f












be the scts V. = [g]]lfe - g¢] <1/a for ecach x ian IZJ .
£,1/n

This topolozy is called the tonolosr of unifori converzence

on & « A subcollection S of FE 1s gaid to be uniforz=lr
clogced 1f it 15 a closcd subset of ?D e then I 1is given

a topology CE is a unifornly closecd subcollecition of FE .

' The collecction FE is a unitary real algebraon I .
It iz a lattice with respect to the partial oxrder < defined
by getting £ <g 1if fx <ge for each x in I , since

FE iog cleosed wnder VY and N o In addition if £ in Fb

hos no gexos in E then 1/f is ia Fp » Tals fuaciion 1/2

15 c2lled the dnverse of f ., The colleckicon CE is a cub-

attice of CE that is closed uvndor iaversion 1.e. if £ in

C; has en iaverse 1/2 then 1/f 45 in Co o A subeollcetion
S of Fﬁ is said to be cloccd vader nocitive iaverslion i
vvhen £ dn S is such that fx >0 for each x in I <thoa

1/ 1z in S . A subalgebra S of I is closed uader
“inversion wvhon it 1s closed wnder positive iavercioa if £ 4na

Y,

S implies fo 8 and £n 6 are iy O o Thls 1s becauce
vhen £ in S has no zeros &a L nelther has [J| = £ v 0 -
£n 0, and s0 1/]f] isd4n S . The inverse of £ 4o
£e 1/]t] 2 fdch is in S .
7ith the aid of this terzinclozy a prelindnaxy character~

ization of CE ray be statced as
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To conclvde this chapter concider the application of
theoren 21 to (EA) by recns of theorenr 18 « Let S Do a
unitery subclgebra of Cp that satisfies conditions (1) and
(2) of theorem 18 . It ic necessary and sufficient to give
conditions on S 1ia order that SH satisfy the conditions
of theorem 21 .

The algebra Sy is wniforuly closed iff S is
‘uniformly closcde A3 S5 dis a sublattice of Ca it fcllows
tha SH is a sublattice of CH(E,S) « Consequently SH is
closed under positive inversion iff it is closed under
inversion. This is the case iff 1/f is in S vhenever £
in S 4g such that h(f) + 0 for all h ia H(E,S) .

The algebra S, satisfies (F) om H(E,S) 4iff the
alzebra S satisiles

(Fe)r when £ dn 8 fectors s £ = rh then 2

and _h are dn S 3if they converre to finite

1irits along the filters in the sect  F(Z,S)

i.c. the niinimal U(S) ~ Conchy filters on T .
Since the extensions (F(E,S),fg) and (H(E,S5),hg) are
isomorphic this assertion is an immedlate consequence of leina
3 in section four,

This coipletes the proof of the following strong version

¢f theoren 18 .

Theore 22. Lot S be a unitory subalmeben of O . S is
T
an extencion alzchra of CE ifTe
(1) S _is a sublattice ecloscd uvndor hounded inversiong

(2) 0(Z,S) is the tonclogy of B

dd
















continuous. Conocquently algp) = T /o © m{z) « Since
nf Lo

a compect space is completely remular, the fuactions in
C:» /o separeate the pointg and so Lf Lo =Ly for each £

in alr), miz)= =w(x)y t.ee x 2 vy « This proves that

r={(p oallz) when r is closed.

B

Let g be a uwniforinly closed unitary suvhalgze
of Oy » Thea p(a) is a closed cquiveleace relation on

K and so Ii/f(g__) is a compact space. Since a ic

contzined in (a o p ){2) 1t follows that every £ in

[

nay be written as £ =1y o ( f(_g_)) where £ is a

(uniquely defined) continuous funetion on E/p(a) o+ Let
2 [£;0f in g1 « Then gy is a wniformly closed unik ary
gubalgebra of G /plz) * By the Stoae~leierstracs theoren:

it colncides vith G, (2) 1ff 1t seporatves the pointses This

1\/F

ig certainly the case as (/o (2)x = m( pla))y iff Iz = fy
for each £ in a . Therefore a = a; of( p (2)) =

y o Mlpla)) = al pla)) = (@ 0p){a) wvhen a

[l
Q
2

e/ pla
mifornly closed vnitary subalgebra of CI, ..

»

Cemniline  Having solved the general prollen for tha gpecial

ccse A = CK' K compact, it is natural to consider howr the

proof epplies to cace A = C,y I 2 Ge-gpocee Eeogides nceding
At

o cheoracterization of those equiveleace relations z for

imich D/ is a Q-space (or Just corpletely regular) it ic

neccoey to have sore analegue of the Stoae~lelcorstrocs
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T 1is not a complote lattice, as it will be showm later
that € is a complete lattice iff E is locally compact
(theorea 5) .
The relations p(e) for ¢ in nay be distinguish-
ed among the rl(a) for a in QA and as a result provide
another nethod of characterizing the characteristic algebras

of I . This characterization is stated as

Thesren 3. Ior an algebra a in A the follorine conditions

are cqulvalent:

(1) _mla) o i is en embedding 3

(2) 3f x 43 3n iE and v 4 x 15 in BF
there exists £ in 2 with fx ¢ £y 3

and

(3) for 2ll x in 3% pr(a)lz] = [x] .

Proof: TFrom the definition of rxl(z) (2) and (3) are clearly
equivalent. The equivalence of (1) and (2) is an ionmedicte
consequence of the felloving lemma since 15 is dense in  3E.

ace and 16t r be an onen

Leovma 1.

(closecd) eonivolence relation on F . Let I be a subset of

I _such that L is dense in pl[E] . If mF F/r denotes

é
the natvral mappine thoen M [E 45 an embeddine 1607 for 21l i

in B, rlxl = [x] .

Proof: Assume that for all x in T rlx] = [x] . ’fhea L =
rlx] and since r is open (closed) E/x|T roy be honecomor-
phically embedded in F/r by a functlon J such that won =

J o, There ni:R——T1 1s the natural injection and



o
s

{9

nE:E_.E/._.__IE is tke natural mapping  (see Bourbalki [3]
nC2 and pd5) « Since T, is obvioucly a bOi‘-IGOE’.“.O"‘Phi"-"ﬂ in
this case it followus that Mo n = ™G is an eubedding.
Suppose T|E is a1 embeddinz, Let G = TZ and
denote by f£:F— -7 the ideatity funciion vihers f£x = =
for all x in '« Lot ¥:G E be the cohtinuous

funetion ..-,uch that @ o 7|3 = £|E

[ 4
»

¥ o mp[E]
913 = flE .

rlz]

Since T d4s laus

doril and

pix

I © is the funciica
E contained in p[Z] , then

is dense in

z[2] it follows that = £lrlx] « Consoquently I = z[=]
aad co for all x in I xfx] = [x] since | iz 21 -1.
An immediate consequence of this theorex is the

Lfollowdng

s1lavy, If (%,12)  is a comnact erbencion of T and
0T X is the condinvecus function vwilth L o d =1-
then £(A% A _@iE)  is eontained in Xn @ 17w,
Proofs If ga=2C.o0k thea T(z) oi iz an enbeddinz by

- h

the corollary to thecresm 2 .

The proof

orf

this ccrollery

ghows that there is a houcon o-r-nh:'. sm ntB3n/z(z) neh
that n o nlg) = £+ This theoren chous that if y 15 in
gz n @ 13 then nlaly is not in m™(2)(iZ) , Lecausc

v {a)y = wla)x dmplies == is not in iD by (2) . Siace
nomg) oi=Ffoi=1I& it follous that n maps A{m (2) (i
on kb, 1.ce £(3ENn @ iD) = XN @ XE .,
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Nemorlz, Ibre geaerally if (K,%) is a pair vhere K is a
compact space and MIE——X is continuous, then (332 n @ iL)

is contained in KEn @ k& iff iDL is zlz) - saturated

vhere g =Cr ok .

To each ¢ in corresponds the collection of
copach e*tenulons (K,k) of T with C. o k = c « GOne
such extension is (3E/efe), nle) o1 ) . Let X(e)

7{c) 4 mlc) 0 1 ) denote this extension of E « Since
;_(Cg) 15 the identity equivalence relation., I’(Cz’.) and
(pE,i) mnay beidentified, &lthough the definition of
(3E,1) as (H(E,C%j),hC;) sugsests that the compact exbeansion
correcpending to ¢ should be taken to bo (n(u,c), h,) iv
will be nore convenicnt to use the quotient construction

X(e)

The correspondcnce ¢ {c) delined for ¢ in T
1ey be extouded to A by defining Klz) = (32/z(a) , ={2)) .
A Let o' and g be two elezents of vith 2af
contained in g5 o Uhen 2 45 identilied with C"(a) then
at is identificd with a unifo rrly elosed unitary aubalbe.:ra

of Cp(,) « Let r(ala) denote the closcd equivalence

relation on K(z) defined by a' considered as a subalgobra

of Cp(,) » In cther words for :,y in la) = rlata)y
b
iff 'z =<' fLor 21l f!' in at', vhere £' donotes Loth

o function on B and a function on K(az) such that

£ 0o wla) oi =2,









a=ng W @ .

c in€(2)



,__[-, ,73 is a clicracterictic elgebra and so

x=2y o, Forexeh £ in g let A~ =7Ff3En CizZ].

“hen N f"l([Ai.}) is a closad sew D contalning

T
BEN @iE and if x disin JEN @ i3 rlz)lx]l =D .
"CAr) ie a complete lattice iff a is a characteristic
clmebra. This ig the case iff D n iZ = ¢ or in oth
vords iff D = pE n C iZ , Coasequently if E(E) is a
compleote lattice JSE N @ iE is clozed and so I is
locally coizpact. The converse has been proved.
Reuork, This theorcm 1s equivalent to Sarzuel'!s character-
zaticn of locally compact spaces [13] o The equivalence
iz discussed ia chapter four,

™e mairal cheracteristic algebzras of I (distinet

b

L{ron G:S ) cheracterize E as a completely resular space
vhen 32 N @€ i contains two poiats., This result lmoim to

Lancscheweki [16] is stated _ |
1 L and E' be two courletely reulor sraces

end let hiCr—0ny be a unitory algebra isomorphisn. The

Tollouvsing statensnts are ecuivalent wvhen 3D N @ iz eontainz

(1) thora 35 a horoenornhicnt ©@iB——e Rt gugh £hot
tho’.w,, 060 =_h.,_3
Up[ U
o
(2) nla) is o moxined choractoristic ol-obra of TF
) 1ff 2 is o maximol choracterigtic glacbrn of ¥ 3
and
(3) _h(z) is o chomacteriztic alrohma of Nt i77 a













is _contzined in  C. for 211 a 3

o‘f(g. ) af('a,, end L (o, © 2,)
"Z(al) v Lz, 3

15 contained in & (2 2) jead

(3) for ol a, 2

in naxticulor

St de N e

2 ”
2 5.0 2o

(
() AN a for all 2 and soofis 1l -1

>
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Proofs The first tuo properitics wre ilmmediabte consequences
of the derinition of & (note thet g1 v 2, 1is tho szzllest
[

2lgetra in Q»_con‘baining 2y end o,) and lemma 3 .

¢

Since each g in U is isouorphic to. C, fLor some

~

compact space K (for exauple K = E(z,a) or pz/rlz)) it

T¢llous vhat a is a lattlce that conteins the constants and

so (3) is satisfieds Property (4) holds because of (3) and
tlic obvious fact that £ in JL(a) is bounded iff £ is in

2 .

re

The collections oL (a) of continvous functions on I

are characterized by

Theoren 8, Let S be a colleetion of continuons funetions on

Ce

T o  Then there ordicts an alzebra a _in A(z)  with 5 = {
17 S sotisfics the follotwdng conditions:

.

((Ii) S is a translation sudlattice of €.  thal
—d

contring the constents ond ic closcd vncder

]

[}

=
-2
14
¥
(0
e e

rultinlication br real

Sl

(&’2) 3 iz malforaly cloceds

(Z’B) S iz elosed uwnder wositive inversion g ound
(;(A) £ 45in S iff £ U0 and £Nn C rre boih
171 D e
™en 8 oobisfies theoe ceaditlions 55 = 8 N CE is Iin

A

Proof: TFirst coasider the necessity o

l'b

a be in A end consider Z(a) .

=

thece conditionse Lo

)
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Let £ and g bein L(2) and let A be =0,
The distrivutivity of tho lattice of real nuubers inplies
that [(£n ) AU (-A) = [(£AA) (g~ AU (<2) =
Ao (-A)INnl(gn A) v (-A)] . Since a is a
lattice £ag isin (2) « Similarly fug is in
L (2) . L{a) contains the constants because a is a vnitory
cubeloobra and g is containcd in L{a) « If « iz > O
then of is in L(a) because for A 20 (af N A) u (-A) =
al{f A Ae) v (-2/)] . Since [(-1)f N Al u (-A) =
(«1)[(£ A A) U(-N)] it follows that L (2) is closed under
rprktiplication by real nunberse.

To show that L(a) satisfies (;C ) it remains %o
chow that L{z) is a translation lattice i.c. if £ is in
Llz) and « denotes the function oz =g for all =z in L
then £ +a is in oLfa) « Lot A be »0 and consider
[lera)nr]Jo(-d) = [fAn(A-a) +a] v(-d) =[£An(XA~c)]

U(«A =c) +a . Since g is a translation lattice it is
cufficient to show that when £ 4s in JZL(z2) and A > then
(CAA op) isin a.

Lot A, =max[[al,[pl] « The function £, = (£ A lu

)
(-2,) is in g and so also are the functions £, n A and
(£, n A) v p o Trom the definition of A, it follous that

o
(enMu p =(f,n Ao p andoo (£ AMu p Isin 2.
This shows that oL (2) satisfies («Z’ ) .

Let (£ ), Ye a cequonce of functions in L (2) tuos
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(f n0)u (~A) ond since g is closed under addition
(2nA) u(-p) dsdn a 3f A is 20 .

This coupletes the prool of the necessity of these
Lfouyr conditions,

‘Ascure that S saticfies (L), (&’2), (L 3) and
(‘Zl-,) » Conditions (.Z’l) and (&’2) shoir that ST is a

uniformly closed tranglation sublattice of Cﬁ vhich con-

td

tains bthe constants and is closed under rulti
3

'
1= ]
S
0
O
cr
[
O
=

g
]
0
£

muberse Asgune that S is an alzechbra. Taon S
a(z) .

If £ isin 8 and A i3 =0 then (£ ndA)u
{-A) i5 in 8™ =and so S is contained ia L (S%)

Since S eatisfies (L l',) and is closed uwader
rultiplication by (-1) it follows that 8 =XL(s¥®) ir s

contains 21l the positive functions in L(5F) « Lot £ 0O

3

Le in oL (S¥) + TFrom the first part of the theoren I wvl/fy
1g in Z(5¥). for cach n> 0., AMlso l/ful/a=1/7nAn
in of““ fer 211 n>0, I g, = /2 nn, it iz in

(£
W

5 and hence in S . For each x in I g x >0 and since

&)

saticfies (&fs) l/g-;n =fulfm isin S Ior each

n >0 . The funciions fuvl/n converge wuniforaly to £ and
gince S satisfiles (ofz) it follows that £ is in S .
Consequently S -=oL (5%)

This corpletes the proof of the theoren assuzing

is on algebrae
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The followiaz lexwma completes the theoren by shoving

that S¥ 13 an algebra if S satisfies (Zfl) and (12) .

Tenmn L, Lot T he aay 2t aad let SF  be a vniforols
[ ~F BRI - L)

¢lased tronslotion sublattice of :g thot _containg the

D
[-J
{

constent functions, Thon S+ 35 a subsleochra 388 4t is

closed vnder nuvltiplication by the real nimberse

Proof: The object (%,5%) is in A' end so process L is
defined for (E,5%) . The space L(L,S¥) is compact since
it is homeomorphic to T(E,S™) . The collection (Sf"‘:)L ol
functions fj on L(Z,5¥) such that £y o 1'3 = [ is a
wnilfornly closed translation lattice wihieh contains the cen-
ctants and separates the points of L(EL,8%) . |

I s* 15 closed ﬁnder rultiplication by recl
nubers the fact that oL is isozorghic to J[A' implics
that (SK)L_ is also closcd under muletiplication by real
NUWIDErS . Ihen (SK)L is cloced tmder multiplication by roal
nurbers it has the tvo-point property i.eo 3L 2 $ v ore tio
points of L(.E,SK) and if A,p are tuo real numbers ther
existo a funétion £y, in (SE)L with fyx = A and £yy =
oo Acsure that g7, 1s a function in (SE)L such that
}"l = 3_7_;:: + Gy = ..i,_L e Let e = kl: ;1 o Then gz; ic in
(SH)L and (egp)x = leg )y =A=-p. IT & =p-¢gy then
_fL = £gy + 6 315 a function with the desired property cince

i‘Lx-fLy=JL-pand i‘Ly-u..















(7,£) 4is o continuous image of JE » Therefore there is a
homeouiorphisn yiR(g)——T such that yo mlg) = £ « Thic
meains that ¢ o nlg) o 1= j and so (¥,3) is isozorphic
to - {&le), mle) o i)

Second, ascuue Y is not compact. Since Y i5 Coui-
pletely resular it has a P-cxiension ({)‘I,i‘Y') s 7The ¢xLone
sion (5Y,iy 0 j) of T is compact end iscnorphic o
(%({c), m(c) o 1) rhere ¢ = C.}’ 03 e Let y3E(g)l——3Y te

the homeomorphisu sueh that y o wle) o4 =1y 0 J . The
~1

cpace Y is mopped honeomorphnically by v © o iY oa

('y"l o i,)Y = X which is contained in K(g) + Clearly I
contains (mle) o i)5 and so (¥,j) is isomorphic to

(X,ﬁ‘(.(}_) o i)

Demorl. The set _—_ (E) is defined by means of the specific

compoct extonsioas Elc), ¢ in €(E), of I « Any othew

I’I

~ccific cholee of cempact extensions of I de

onding represeatative of cet of extensiocas of L e

o)

fhe extensions (Z,mle) o i) ia = (T) « nay be con-

A3 in vicir of

oo

structed a3 quotients of extensions i

Iy
D
[}

of thaot containg iT o2

<r

Tieoren 12, I? 2 48 2 suhse

,. r

¢ is in E(B) thon (2/rle)lz, m.(c) o 1) is en erbencion of

5 (uhere m, (¢) is the naturel mapping of Z oato z2/zle) |2
o

- - > ~y 2. .
T e I T 3isc o subooh o

n (r.(c)a, -n(_q) o i) of

o
{e) that contzing  (mie) o i)E the extension  (X,=le) o i)

15 isonorphic to the ertension u/”(C)’ m(c) o 1) hewe
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(Y,3) aore isomorphic cxtensions of T C:'Z' ok = Cf’f 0 J e
Theorem 11 shows that there exxists .a(aecessarily unique)

subset X, of Klg ) for vnich (X, nlg ) o 1) is in

-
EN

. » Consoquently the family ((X_, wl(g ) o 1), 50 o
of extensions (Z , mlc ) o 1) is a representetive non-
rcdundant set of extensions of E .
Denarl:., This shous that for a given coastruction of the
compact extensions of I a representative non-redundant
set of extensions of E nay be defined by identifyinz cach
cxtension (Y,3) vith a subspace of that compact extension
of E vuhich loosely cpeaking is a 8-cutension of (Y%,3) .
As shotm in section scven of chapter oane the
processes J ’ F, H ona L provide wethods of coastruc-
ting a represcantative collection of Q-extensions of &I .
The renainder of this scction is coacerned with another
method of obtaining a rerresentative ccllection of Qeeixten-
sions of L . It consists of delining subsets of the
compact exttensions K(g¢) to correspond to collecections S of
continuous real~valued functiona on I .
Let ¢ be in € mud let E aloo denote (wlg) o 1)Z
Thon I is a subset of Klg) o« Let £ be in Oy and doacte

the trace filter on E of U(x) - the ncizhbourhocd

by I

filter of x in K(eg) « If x i3 in [ l%m £ exdsts in
3
3

R and is fx e If x d48in L[ and lim £ cxisto in R
™

Earp
A






(e

-1
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It i5 clear that Z, 1is a subset of (5) containing

lﬂm
a

(ri{cy) 012 and g0 X = n(g_i'l,_qz)xl is contained in

7’(85199_2) 63 (S) »

An 2loost irnediate consequence of this theorea is

Theoren 15. Let €118, bo t1o clomonts of & uith Y

centained in Co o The followingz steteornents ore eanivoleoni:

(1) _*_rg(_gl,_q) €. 18 =€ _(5)3

=2 7.
( ) T{(clpcz) E (S) = EC (3) s and

{3) £ (3) _is ?.(21’9-2) = catuvrated and for -
-—09

Frooft Theorea 1 shows thaz (2) and (3) are equivalent.
Cbviously (2) iiplics (1) « On the other hand if (1) holds

Ghen w"l(gl,gg) ﬁcl (5) contains Ec' (3) vhich chous by

theorem 14 that (2) is true.
Asocunie that 8 is conbalred in < (cq) « Using the
rnotaticn of theorcn 10 it follows that every £ delines a
TS kg - - oY a2 ‘? X
continuvous L =~ valued function £ in C ;( e, ) cince a‘C(cl)

is contained in of(cf,) Since S 1lies in ot(g,l) these
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funevions £, £ in S, are conpatible with rlgj,c,) .

The set €, (8) = [x in Ele,) | £2] weefor cach L

in 5] . This set is rlgq,g,) ~ saturated (since the

functions £ are coupatible with ;(gl,g?) and gince I =

o
=

| € 2 (3) it Zollows that statenent (3) is satisfied. Con-
sequently all three statements hold in this case.

To shou that the operators & , ¢ in & , define a

representative collection of G-extensions of E it is sufificient
to establich the folloting counection beticen these opcrators

ond process .
=

0y

is a cubset of L (c) that contains ¢

Ca

Mooren 156, I

the extonsions (T(3,5),t5) and (& (), mlec) o i) o=

3oonornhic,.

"

Proof: Since J gatisliles (FPL',) and (FP5) theorea 15 of

-

chapter one shous that (¥(Z,5),%;) is an extension of E

wiien S contains a choracteristic algebra ef L o

-~ -
Fad

Let S = [f]f in 8] vhere £ 1is the extensica of I
£o Ec (s) . Consider the objeets (B,S) and | E.C(S) ,3) of
$ ond the mapping wlg) o i in Iom ((5,8)( €, (3),3))

Lo 4

Since S o nle) oi =8 and the corrcorondence £

7(r{e) o i) cabeds T(3Z,5) oa a closed subsct of T(E (3),3) .
Consicder the coumubative diagran
3
(E,s = —1¢E,S)

MCCyoi T(w(s)ex)
o

(E., 3D TCE (D, T),
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Zhie funcition tg is continvous since the toprolozy of Ec ()

is the weak topology Of €, (5),5) (sce theoren 1 of chapter

one) « Consequently (tg o rlg) o 1)E is donse in T( 8c(3),§ .

This implics that T{n(e) o 1) is 2 homeonorphicn.

To rrove the theoren it is sufficiont to shoir that
Ly is a honeozorphisn. Theoren 15 of chapbor one shous that
ty is a howeonorphlc embedding and 50 it is sufficient o chivs
that bt 50 (s) = = £, (5),3) .

AJ
5

Since S is a subset of L (¢) contalning ¢ it

follous that S- =g o Lot Cn = (8)" = (5%)p » Then gn

is a characteristic algebra of T(E,5) and (H(T(T,8),eq),n, )
™

is a compact exteasion of T(E,S) + It is clear Ly the Stouc-

T ~ i = s) - (o] h = r-:i"' r."l- % TE
Ueierotranos theoren thot CH(T(E,S),S_T) c Cp » Thic slows

=7

that the compact extension (H{(T(E,S),g-)s b, o tg) of I

=7

is lconorphic to the extenslon (X(c),w{e) ) o Let viX{c)—me

-
3

o1i
1(T(zZ,8) ,¢y) be the homeomorphism that nclkes the follod

iy r‘

8

dispron cormbative .
s
E T(E,S)
Mo her
Y

Kced H (TCE,S),sT)

Define the homeomorphic embedding ©:7( £, (3),3). by ectting

© = y"l oh, © T 2(c) 01) . Tan @ o ty o mle) o1 =
=T
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froun X o This is beccuse Z{g) dles in . U .

_ nz0 "n
Let g, =g, onle) ol « Then g, is in ¢ and since
-A.O -‘&o .‘;,o
£.X 70 for each x 4in D it follous that 1/g, is inL(cg) .
dbo ‘bo

Clearly Ezc(fl/g,, 1) conbtains T and onits %, » Therefore

Y= &C (3) vhera 8 = [l/gx Z, in R{e)N@ZX] vhich is a
- (o]

subset of of (¢) « This corollary follous from corollcry 1 .

Corollcry 3, Let S be a tronslation sublattice ol continvours

rool-valued functions on I that contoins the eonsctonhs oad is

closed vander rultiplication by (1) o I? 8% =58 % 15
dad

a
choracteristic 2lrebra ¢ of T the evtonsions (1(=,8),1 .)

a
cnd (€ )(s), mle) o i) ore isomorphic,

Droof: It is clear that S is a subset of L (¢) containing ¢
The result follous fron the theoren and theorcnm 13 ol choptcer oae
, ' i} -

vhich states that J | A" and of are iconorphic procosses.

Corollery 2, Let S be a waitsary subalrcira of continvous

o

realevolucd Suackions on T which 3o clescd vader bounded ine
version aand vhich i3 2lco o sublottice el CE . T2 5% =
SN Cg iz & chorocteoristic alpehra e ¢ T the exbeonsicns
(1(z,8) yho)__ond (€. (5), nlc) 01) oro icomornhic .

Proof{ Analogous to the proof of corollary 3 (with 1% replaced
Vhen S = CE coerollary 4 shows that the eirtencionc

(80*(0}3),1) and (H(E,CE),!}CE) are icczmorphic. Conseguently
E '
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Proaf: et vy, and Y31 ©e tuo continuous functionsz with
this property. then v,1[37EZ = v4;15;E « Since 34T is

dense in Xy and X, 1is llausdoril it follows that Yo1 = Vi1

Romarlz, In vicw of this lenma it mokes sense to spealt of the

e

exristence of the function Y21 Lor a poir of extensions
(Z0dy)  and (X,,J,) of E . Consider three extensions

(Z;03;) 1=1,2,3 of E. If y, and Y;, exist go does

Y22 o -52 = 33 .
Leraa 6 suggests the definitioa of a second quasi-oxrder
for cittensions of I
Dofinition 3, Let (%,3;) and (X,,3,)  be two cxtensicns ef

Do St (%) £ (Xo,_i?) 1if the continucus funetion
Yoq 1%y X,__exicts (such that Yoy © 31 = 52) .

The ersunents used vheon dealing with the relation

Ly be repeated to shout R ig o aunci-opder which induces n

>

partial order on the set of isomornhisn clagses of the collection

F 3 ) ™
of extonsions of T .

Tt is clear that (I-Il.:jl) b (Zz,jg) ir (:{l,jl) <

(Z{E,j,,) i.0e 2 i5 & tcoarsert relation thon £ ,
,o

Let (X,3) be an extension of I , An exauination of
the proof of theoran 1l shows that (Z,J) = (X(Cy o :}),rr(cx o j) o il

I'ence this theorcn ay be restoted as









—X

heo

h c’fok

LY









choractorictic nlrobpn of Lo_e
. b

oW

Proofs: Considop lemma 7. I2 (cl,v )1;2 is a subses of X

then I, * Z; becauce n(cl,ge) ) ..(c ) = r(cl) Conversely

cesune X, 2 %y o Then X, R I;(c o Clecrly ﬁ(_ql,g_z)l;’.z:

= Klgp)  is the continuous function y on X, -wuith

2
vy o nlg,) od =mnlgy) oi . Since yiX, Klgy) it feollous

from the fact that I, 3 X that yI, io a subset of . i.c.
n{gyre,)%, 15 contained in X, .
Lerma & is an imoediate concequence of leima 7 and

tocoren L.

The second simple situation ocecurs whea ¢, is contained

in ¢4 « The solu iong are stated in the next two lemmas.

hid KX Rk alitd

Lemn 9. IL o, is conboined In ¢, then I, 2 T, I47 0, <

Lorma 10, If ¢, ic contoined in gy then I, < X; 377 (1)
¥ =07 1(eygy)T, 45 a subses of ¥ ond (2) rles,gy)lezd =

Prooz’.‘s:' Acsuwse that 722{2———.31 is a continuous functicn such
that v o nlgy) o i =nleg) od o Then wlgygy) o 7o T«'(_q,)) o
) oi and so wlgy,ey) o viX,——Kilg,) ic the identity
nopping of X, on itself. 1150 v o wlg,sgy)lvi, o mleg) o 1 =
vy otlg,) oi=nlg) oi and so v o nley,e) vl X,—vl, 1o
thio identity napplng of vl&'z cn itocell. Thcrefore ¢ is en

eidbedding and so I, <€ I; if I, 2 Xy Tiis proves leima 9.









€ %x(c.) is a subget of Ex(C, 0 1)
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Ex(C0 1) dis isomorphle to (ii(E,C, 0 1),y o i) by
h K
corollery 4 of theoren 16. Since ¥ satisfies (rP,)  this

crbension is isomorrhice to the extension (II(X,C.) i 0 1)
b -
S

-‘giaor e follouing commtative diogran

i
- h : )
ECE ('Cxﬂl) ] CX':' Cx
) H{dy
J HCE, Cxel) » H(X, Cx),

Since X ig a Q-spaco h,  is a homcomorphisn and therefore

o= 1151 J (i) o 32 € *(C-r 0 1)——» X is a homcozorphisna,
£ u

(0]
|-Io

Since ©Ool1l =1 iv follo::s that O is the ileantity wopning

cnd so € %{(C., 0 1) =X . Therefore VI is a subsct of
T

-r

and sirce VE is a C-space the rceoult Lollowvs.

Second, CuT 15 tho vnion of a1l the G -ov’*"o‘;s o

of B3 @isicint fron 3% . Corollory 2 of thecreu 16 chous

-9

thot the uvnion eof all the G.-subscts of 22 is a C-subgnace

5 eJ R
and 80 by the previous result it conteaing Vi o It coincides
1ith vE as a special case of

Terma 11, Lot -8 be eonbained 3n L) .  Then a E {3) 2

[
ot

e a2 - St

a vaion of Q.-sets disjoint Tron (mle) o 1)3 .
[#]

=)

Troof: If fisin. 5 let £ be the fuaction in C,,"("C) such
A

that £ o nle) J i (zec corollary 2 of theorca 10). Lot =z
be in CE (8) « fhen thore is a function £ dn S with £

£x,
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Proof: It is sufficient to show that vhen (X)) . - is a
C o ina.

Tamily of suboets X, of k(¢) each containinz (n(c)o i)E,

thon X = ar:}.ng‘_ﬂ is a Q-space. if each Xa is a Q-space.
This may be proved by neans of

Lorma 12, Let X bo a subset of Kle) containina (rle) o 37 .

As o subspace of Kle) X 15 a Q-space I£F thero cxists a

CCllCCul')”'!. 5 of continuougs ren 1-vJ.ucd .Lant:Lons cveh thats

(1) ‘1<e):r =2 = € *(S) and
x‘a

(2)  on ” the emxtensions of the functicns in S
. are compabitle with rlc)lz .

Then X 38 a O-gsroee the set S moy be token to be C. o mlc) e 1,
L

Given the lemna, the proof of thiz theoren is as £6lloiis.

Let Z, = ﬂ'l(_g)xa . Tuen 2 = 50*(3(;) viere 5, = C. 0 r{z) o i,

- A a
B a
Let Z=mwie) = 7 e N Zd = n (ﬂ’.l(c)" ) =
¢ Ina ¢ in<
N Z, o It is clear that Z = &= (U §5) and that on Z
(o4 :m_n_ ' T o inn

the extensions of the functions in U S eore coupatible wvith
a ina_ ©

r{c) « The lerma shows that X = mlg)Z is a Q-spacc.

Proof of lemma 123 Assume that X is a subset of Klg)

containing (nlg) o 1)E and let g = Cz onle) oi=clz .

Consicder the following diagran



MSYoa

o = mlc,cq) | Egl(CXIE)



oand o by theoren 13 Z = €Cf(CXlE) .
- b
' L.e{;' g = Ci’élB . ‘Theorea 15 shous that rr'l(g_l) Egl(SK[E)
= 2 and therefore X = w(g)Z = (wleyeq) o ﬁ(cl))rr"l(cl) € (c..[o)
. . B Bl

= mr{e,g;) 8cl(CKIE) « Corcllery 1 of theorem 16 shous thab

Ecl(CXlE) is a C-space. To complete the proof it is sufficient

X is a honconon-

. ? . L ; N
to ghow that wl(g,cy)| fgl(cxl}:) : Egl(cxlh)
phisn, Let = be in gcl(CXIE) and assune y rlc,cy)z « Then
since 931-.7" C:EIE ¥ is in g_c_l(cX'E) o Tuais shows that y ==

becauce &, separates the points of K(_c_l) e Ly thecrea L.

mi{gscy) | E cl(cxlE) is a homeonorphism and so X is a Q-space.

FEeuaxle, Thoorem 25 does not provide another explicli construc-
tion of v (¢)i . Does such a construction exist that uvses one
of the function processes or the operator € o ? Another

L) - -
aaraceericiic

problon of interest is the determination of those ¢
clzebras ¢ of E for vhich v (g)E =v (2)D .

jo

§3. A conseruction of the citencion alrebros of B o Let

deuote a completely regulor sraccs The purpose of this scection
‘is to show that 21l the extension algBbras of I may be
constructed from the characteristic algebras ¢ and the exton-
sion alpebras of I that contain Co « These perticulor

algcbras are characterized by

















otZierud.se
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”hcre are, howvever, many cxamples of algeor‘.s 2

for vhica XL (2 2) %a shon L i3 not PSGCLC.OCOTSDE{CU. Anong

-

tliese thore arc a lot of cnaractcr:. tic algebras ossiowa by
the followdng |
Tiarmle, Asi-:sze E iz not pscuuocomnuct end let =% + v be

*

tt’o po:.nts in Q that are not inU L , Then there is a

pouit'lve funection fy’y in CSB = 635 vaicih vanighes at
x and y and such that z{f, y) ~niB=¢ Iu.s is bLecouse

Cvz is a unlm of G, ®sets of 3L that are az xajoint fron
iE) Co*mcqucnuly cZ’(c[J, Y])% C[y,y] DY theorea 28, Le%

Gal/""? It is in ‘Z(c[xy]) and g"=gy=+°° Is

k is aany function in C,,q = CE then (L. + g) = (k + gly =

+ ooand co by theoren 10 k + g 1is in x(ﬁ[x,y]) « This
shous that of ( Sl 3',]) is not closed under addition. Aszcuro
. . )
the opposites, Then Lk =k + g+ (-l)g is in (_q[ , J)
. <~ aI

and s0 CE is f::onteined in of (3[2:,3’]) o« Therefore Cl"; =
Slx,v] and x = Yy « This is a centradictlon. Consequently
if n is the cardinal number of v L there are at least m
sarples of characteriétic alzebhrags ¢ of E such thaca ()
1s not a vector lattice.

These eJcL._a-Jlos of algevras g fLor widcen L (2) is
not clouod undo" c.dc.::.ﬁ on lead to the consideration of those
algetras a ouch that o (2) 1s not closcd under multiplice
ation. Tho followiing theorem shows that these tuo kinds of

algevras g colncide.






fl’...’fn

¢ satisfics (y),(L,),(5) (&)
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Demarlie  The proofs ol this thicorex and lenma are esscentially

the prools given by Isbell [7] for his theorem l.13

corollary 1.1,

and

The zlgebraz 2 in L debermine the closed equivalence

—

relations rfz) on BE and are in tura dofined by

relations (sce sections one and two) « A subset X

1111 be said to determine a if the fuanctions £ i

u 9 4 9 '. bt od
C; such that £]% is compatidle with rla)]x ore

Thae algebras 2z for vhich & (a) is closed
tinuous composition are characterized by

rmeeoren 30, E\f_ (2) 42 closcd vnder continuous compos

these

N

i P

in =2

uwder

tion

N1 Cpam =

')-J

forr anyr £ in

o
Ny

(£)N 4% = ¢ imnlics that @Z(£)

Proofs Lot £ in a De such that Z(f) n i1E = ¢

and ascuno

that Z(f) doos not determine a « The function £ may be

assuried to be positive since 7 is in g and has the sace

two preoperties. Let g be a function in LE such that

z] €Z(£) is compatible with p(z)]dZ(f) but such that g
isnot in o « Since k =1/ isind(z) and & is
infinite on Z(L) +the function Lk + g is infinite on Z(Z) .

Tacorci 10 shous that k + g 1s in L(a) «» Since gz

»
15 nov

ian g, L (g) 15 not closed wnder addition and hence is not

closed undey continuvous conposition,

Awu.n:c tha‘t of( 1) is not cormposition closed oz
1%

equivalently is not closed 'mdcr atditions Then there e

L'
BEWAPWRY |

1









;s and

Cr, and Z{2)n T =0 thon

LY
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betveen coupatible wnifornitics and continuous functions, A

unifornity of this tyne is called a functicn wiiformity,

-
Fod
Y -

2 Let 2 be a unifornaly closed unitary subalgebra of o e
Then Ufa) is a compatible unifermity for E which is a
structure of L 3iff g i3 a characteristic algobra of T .

In particular _Q(Ci—?) is a structure of E ,

3 Let ¢ be a characteristic algebra and let S be a ccl-
lection of functions containing ¢ and contained in &(g) .
Thea U(S) dis a structure of E . In particular UlC;) is

a structure ¢f L[ « It i3 the finest compatible function
uniforaity for E .

It (gi ) {in I is any fanily of compatible uniforeities
for I then the wnifcoraity U generated by this family is
also compatible. This is becouse the U-uniforar torolosy is
the supremum of the U;-uniform topologiess If one of the
U; dis a structwre of L then U i1itself iz a structurc of I .
Since E has at least one structure, for ezazple U(C), 1t

folloirs that thore oxists & finest structure of I vhich 1331l

be denoted by p_E o It is clear that a wiforuity U for I
is conpatible ifrl QB containg u.

Uhiile there is a cocrsest compatible wniformity for I -
namely the unifornity consisting of the single set E X I - in
gencral there is no coarsest structure, Sarmel [13] shoued
that the e:dsécnce of a coarsest structure charactorises the

locally compact Spaced
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A usefvl lema due $o Weil [13] is the follodng well
knowm variant of Uryschn's lemmaes It 1s stated without proof
es

'

ILerima le L5 U ke a widfornity for I and let F bo 2

cubscet of F o IT VTV ‘iz a eurroundins of U there is a2 un-

1foyrly continuous funetion £ on I guch that 00 s 1,
r

fx =0 for x in and _fz =1 for xx 3in C(V[F]) ,

Tae examples of coapatible uvnifor:ities in exauple 2

all satisiy the following equivalent conditionst

(1) for cny surroundinm V _in U thore cozicts 2

finite nunibeor of neints peeeyit, _in o

n
with B = % Vixl; ond
(2) for ony surrcvading ¥ in U there exmicts a
finite nunher of Veomell cets Fl,..ul'-'_.‘ such
n *
‘hnt T = .U e,

- - 2 » ) -~
Since VIx] is V~-gmall for any x in B, it is clear that (1)
implies (2) o+ On the other hand if 2 is in F; then V=]
contains T; and so (2) implies (1) . Thoe wniformities U fLor

I that cobisfy either (1) or (2) ore said to be totolly bound-

od., Condition (2) izmplies that the wniforulty geacrated by any
farily of totally bounded uniformitics ig itcelf totallybouadced.

Since _U_(CEF::) is a totally bounded structiure of I g {inect

S . .
tosnlly bownded struchture U™ eniztis, “he totally bounded une

iforndties are ¢f intercst becouse of the c¢lose conncction lLe-

tucen thea and compact spaces. This is stated es the folloving
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The compatible uniformities in examples 1 and 2 are
totally bounded iff the functions in 8 are all bounded.
lowever, all these wniforaities U do satisfy the folloiring
vealier equivalent conditions:

(1) for any surroundinz ¥ in U there erxists a

da

sequenca (x ) of voints . in E._ such that
n’'n ) 1 _

g = U Yl 1 3 and
n=1 A ==

(2) for anv surrouandinz ¥V 3in U thers exists a

&a

secquence (F”l")-n 0f V-snall sets F. such
4
[ -

that 72 =U p

-——-n-—-—.

Since V[x] is Ve-small for any x in I, (1) implies (2) .

Choose in T for each n . Then VI[x ] contains T
Jin n T n

and eo (2) implies (1) + A unifornity U is said to be

o-bounded if it satisfies cither (1) or (2) . Condition (2)
implies that a uniformity generated by a fauily of 9 ~bounded
uniformities is also e—bounded. Since U(Cp) is a o -bounced

structvre of E it follows that T hoo a finest 9J=bounded

structure vwhich will be denoted by .I_I_Er N

The o-bounded compatible unifornitics of a coanletely
resular space E mnay be used to distinguish the C-spaces as
shoim by the Following theorem, due to Shirota [9] .

Theorcn 2, Let I be a completely romulor spacc. T

ing statements zre eaquivalent:

(1) E is a C-space 3
(2) E_is comrlete in U(C. ) 3

@
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Cauchy filters as shomm by

Jerma 2, Let I a filter on E maxinagl amonz those rith a
basis of zero sets. Then F is a UY ~ Cavchy filter if fou
aNy_secuvenc T S ; n. 7

ony secvence (F, ) of sevg F,_dn F N, F +0¢ .

Proof: Let V and 1 be swrroundings of U sueh that

1'73 is contained in V , Let (Dn)n be a secfua nce of U=

sinall sets such that E = }21 Dn e For eachh n 1let fn te
a continuous function on I such that Z(fn) contains Dn
and is contained in I‘.T[Dn] s oSuch functions exist by lemna 1,
The gzcro sets Z(:E‘n) cover L and each of them is 1'53-s;mll
and heance V-snall,

Since F 4s a maximal for each n Z(f)) isin F

or else there exists a set F, in F with F nZ(f)) = d.

n
Assume that none of the Z(i‘n) belong to F and choose T,

[« =4 oo
disjoint from Z(i‘n) for each n ., Then /1) F, ==(nf;1I~‘n)n
v AT
(goy Z{£R)) = LD ) n 2(£,)) = ¢ . This 15 a contra-

diction. Therefore [ contains one of the Z2(f,) end as a
result is a _I_I_E':- Cauchy filter,

7o complete the proof of this thecren it is sufficient
in viewr of lerma 2 to showr that any filter I with a basic of
zero sets tvhich contains I has the property that any countable
intersection of sets in [T is non-void. Assume this i3 no% tihc
case. Then there is a filter F on [ 1ith a basis of zero

sets that contains !N and a sequence (gn)r1 of funetions ia

CIE with 0 € gns 1 such that for each n Z(gn) isin F
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. Oo ’
~e N 4=l o n 7 ¥
and such that n=1 2 Gn) =0 ., Let g= nZ=1 G, « It is in
-g _' ’ . - .
CS and convor es along £ to zero. Thereiore g conversces

&

[~

along M to zero. Purtherrore if X isin I gx + 0 and
so 1l/g is in 'Cﬁ . It thevefore converges alonz ! to a
finite limit. This is a contradict ion. Therefore 1I' is a
convergent filter and so (3) impliez (2).

Lemarks, The stateuents of theorems 1 and 2 are parallel,
This raises the followdinzg probleis. Are the uniforaities
Q(CE) and y?°' the sarie for any completely regular szace I[?
If not, for which spaces I do they coincide? The proof that
(3) implies (2) is essentially the sane as that given b7
Shirota [9]

This préliminary section concludes with a theoren about
the uniqueness of compatible wniformities, Its corollary will
be used later in this chapter to identify particular uniform-
ities.

Theoren 3, Let X be s tonolomical space ard let T be a

dense subsect, Let Uy and U, be tuwo compatible wniforzitics

on X. IL UIE=U,F then U =U, .

Proof: Since I' is & dense subset of X IFFX T 1is a deace

subset of IX X o Let Vl be a surrounding of _Ql that is

opene Then T)"l contains Vpn FXTF wnich in tura contains
VN FXT =Vy . Since U; is compatible it has a base of

open surroundings Vl o 7Their closures Vl also forn a bace

for U; . Therefore the sets Vi I'x ¥ form a base for Uy .



Consequehtly if QllF = QQIF U, and T, have a

comnon base and so are identical,

Corollorv, Let X be a topolozicel space and lets piB——X
be o function on the set E 1dth pE denge in ¥ o Let 1)
and U, bg compatible wniformities on X . Thon Up = g,
if their dnverse fmnees under D colncide,

' -1

Proof:t For any waifornity U on X (p xp){p'x p) U =
UlpE . Tiis is because if V is in U (x,7) is in {p x pJ 7
iff (px,py) is in V . Consequently when the inverse imaze
wider p coincide U;[pE= gélpfs. Since pE=TF is5 z dence
subset of X the theorea inplies that Uy =1, .

Reﬁarks. Vhile compatible uniformities were not defined for
ervitrary topological spaces it is clear waat taey are:
wiformities whose unifor: topology is coarscr than the topolesy
of the spacecs The space is completely reguler ifl a ccparated
structure exlsts. This theorem is analogous to the theorea
wvaich asserts that two continuous functions valued in a Hous-
dorff space coincide if they agree on a dense subset of their
domaine

$2. Uniforn nroccssecS. Consider the category jf rith objeecus

the pairs (E,U), where E 1is a non-void set and T is a
uniforaity for I, and with Hom((E,U),(Z',U')) the sct of 21l
(U,U') - wmiformly continuous functions aiZ——E' . A
general method of associating with each objoct of Y a topoleg-
ical space is sald to be a uniform process if it satisiies the

conditions of
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Definition 1. A ymiforn wrocess P oa I eonsists of a covor-

tant functor P: To > and a fanily (ny) of
- =(E,U in X

functions mJ:E—P(E,U) such that?

(UP;) __piE_3is dense in P(E,U)_; and

e

(UP,) 3£ o 45 in Hom((E,U),(E',U')) then

P(a)ong.=p2,oc.

.Remorks. 1o Condition (UPZ) states that the following diacran

is commutative

(E, V) o P(ETQ)

% 1 ) Wd-)l
(', UY YR, Y,

2. This definition differs fron definition 1 of
chapter one in two respects. In the first place it dofines
processes on T not on subcategpries of T . Taois is beczase
for the purposcs of this thosis there 15 no immediate roint in
considering procesces on subcategories of T . fThe sccond
difference is rmuch nore basic, In the case of a unifor:n

process it is noncensical to speak of a 'realt uniforn process
because no analozue to the value space existse.

F-enoples of uniform processes on L
1. The first two examples of function process on P sugoest
correspondingly ‘trivial' exanples of wniform processes.

2. To corrcsrond to the third example of a function process
on § there is the following process. Leb P(E,p_) be the cet T
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tor"e cher with the U-unifopn topology. Define Plc) to «
and pyx = X for 211 x in L.

The close analogy between the definition of 2 funec-
tlon process and the defiaition of a uniform process suzszests
that 1t is possible to cdevelop the discussion of wniforu pro-
cesses in a nanner porollel to the development in chapter one
of the 'theory - of function processes! .

Consider tuo processes P and Q on T . They may be
conpared Ly means of the restricted t¢ype of natural honomor-

rhism defined in
Dafinition 2, A homomorphism y of the rrocess ‘P into the

ess Q consists of a family ('{(E,y.))_(E U in T of

continvovs funetions y(E,U):P(Z,U)}——0(E,U) suca that:
(1) 4f ¢ is in Hon((5,U),(2',U')) then
x(&%,U") o P(a) = Cla) o v(E,U) 5 ond
(2) for ecach (Z,U)__in T +(R,U) o py= gy

A tomerorphism vy is called en iscrorphisn if each v(Z,U) is

a2 homeoriorphisme. Vhen an isomorphlsn ¥ of P into Q exists

they are szid to be iconorphic processes,

As in the case of function processes it is easy to
sliow that the relation of isomorphisim between uniforn processed
is an equivalence relation.

The introduction of the concept of isomorphisa for
wiform processes leads o a consideration of thoéo properties

of wniform processes that are invariant under isomorphisme The
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S

[~

iplest kind of invariant property is a topolozical propertye.

o

T2 (t) 3is a_torolozical property a uniforn process P is

sald to be a (t)-process if for ecch (E,u)_in T P(Z,U)

As in the case ol function processes when is a

lausdorfi process condition (2) of definition 2 implies con-

dition (1)..  This result is stated as

% £
T,orma Let P and Q be two uniform procesees and let

[J
[ O . e1a
e et o g

{v(z,r)) (2.0) inT 2o e femily of continuous functions
WA ,U

ks

QQ 15 a Yousdorff rrocess this fanily defines a homonorphicn
of P into QU 8

Proof: The same as that of lemma 1 in chapter one.

In the case of function processes properties (FPB)’(FPL,)’
(FPS) and (FP6) deal with the 'exteasion! of the functions
in S8 as continuous functions on the space P(E,35) . The
analogous properties for uniforr processes deal with the
tortension! of the uniformity U to the space P(Z,U) as a
coripatible uwniformity.

Let P be a uriform process. If (%,U) is a2n object
of Y then there is a finest ccmpatible uniformity U, £
P(Z,U) such that py is (U, Up)-uniformly continuous. The
properties (UPB)’(U-}‘;Z, ),(UP5) and (UPé) are defined os
follous:

(UPB) for ezch (Z,U)

{de
S

-
>

I . U= (p.”".‘x pU.Zlg.P_i.

\J
-— —

(UPZ,) for each (Z,U) in X, Ilp ig a separated

unifornity §
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P(E,U) 15 compact if U is totallw Hounded,

Procf: The lemma shoiiz that U3 is totelly bLounded. The
result follows from theorea 1, |

Reonork, It will be ehowvn in soction seven that any tiro uni-
form procecsces that satisly these four propncerties are isomor-
rhlc. This is the analogue of theoren 5 in chapter one.

The third geaeral type of invarisnt propérty of a
process P relates properties of the mappings ci to pronerties
of the continuvous functions Pla) « An exomnle of this type
analogous to (FP7) is

(vp,) 1f (B,0).(E',U") arc tuo objects of T and

if a is m Nor{(E,U) (Ef,U')) puch that

U={cx )"t U' then Plo)  enbeds P(Z,1)

on_a closed subspace of P(3!,UY)

This property 1s ianvariant. The proof of this
assertlon is the same as that of (FP,) . Since prorperty (IFPg4
is satisficed by falzcbraic! function proccsses thore does not
appear to be a uscful analozue for uniform proccsSES.

Another difference between uniforu and functlon pro-
cecoes is that if P is a waiforn rrocess it (ul.r’}") induces

T wuich is defined as follows:

a covariant functor P:-c’ T
1f (Z,U) is an object of YL 1ot P (z,U) = (P(L,U),U,) ang
if o is a mapping of T 1ot P (a) = Pla) « This dofincs
a covariant functor because if a:E——E' is (U,U')-

wniforuly continuous Pla) is (Qp,p_i',)-mliformly continuous.
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Ly is a process on T then QoP 1s cefincd %o

KR

he the covariant Duwnctor 2 O P = (ol _ ond the fanilsy

({c o ﬂ),-) of functions (oD D). 2 Q. O Do
3 (z,0) n X | [ A

s in the case of fuuction processes QoP satisfies the

I
4]
1%

second condition of definition 1 since vhen o n

Fom{(Z,0),(E",0")),(2 o P){a) o0 (g0 p)g = Q{P({a)) o qUP o Py

L=

= Qs 0 Pla) °PU=q§nP°P§¢0a=(qﬂp)goa.

.-..k) -—

I geacral Qo iz 2ot a unifori proeess os the

Tollowing example sheows,

Ixemple. Asc in the analogous ezample in chapter one if Q is
the process on I such that ¢{E,U) is the discrete space I ,
ay = x for each x Iin E and Qla) =a , then QoP is a
= P(E,U) for every object in I . As will

process iff p..h
G2
be scen later this is not the case for every unifor: .rocess'p .
I the functions 4a. are 211 continuoug then QP
=P

is_a rrocess. This introduces the fellowing problemt: if P

is a uniform process end (L,U) 4is an object of L vhen i3

P(Z,U) continuous with resnect to a topolory O

for E? Cne ansver to this question 1s stated &s

eoren L, Let P_be a valform process that sotisfieg (U

and let {E,U) _be an oblect of X , TI# 0. _is a tonolozy fon

L __then nU.lu' P(%,Y) _is coatinveous vwith resrect 4o O
R &7
vhen 0. 1g finor thon the U-uniform topelory of E o In
i - e - Laad

addition if ‘P sotisfies (UP,) tho converse holds.
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T and let C= V., The set C defines an equivalence
Vin U : .
relation on I which 1711l also be denoted by C .+ Let
Iy = E/C and let 7 $E——E; be the natural mapping which

soociates with each x in E its C-equivalence class,

[

Let S(E,U) be the set E; and the quotient topolozy cor-
responding to the U-uniform topology on E o
Assune that (E',U') is a seccond object and that «
is in Hom((E,U),(E',U')) . Then since a is (U,U')-uniforzly
continuous (a X a)’lc' contains € and eo (ax,ay) iz in C!
when (x,y) isin C, Let S(a):El—n?.J'_ be the unique
function for vhich n{ o« =8{a) o m « (Since a is contia-
vous wvith respect to the uniform topologles S{a) is a
continuous function, i.es S{a) is in FHou(S(E,u),3(z',U")) .
Then a' is in Hom{(E',U'),(E",U")) then S(at o «)
= 5(a') o S(c) because S(d) o S{a) o m = Sla') ormfoas=

> is a covariant functor.

m" o a'oc ¢ . Consequently s: X

For each object (E,U). in X let s; be the natural

-

mapping ™ . Then by definition S{a) 0 8y.= 8yy 0 0 and

s;2 = 8(E,U) « This shows that the functor S and the fonily

{5y)

of fuactions 8,, defines a mifora nrocess .
(¥4

(E,U) in T

Process © satisfics (UPB),(UP‘,"') and (UPS) . I

™Theoreil G.

P isc any process on I that saticfics these three prorerties

then there is a unique homenorphicn gy of © dnto P,
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frodis Let (Z,U) be an object of T and consider Syii—

5(5,J) o If Vg isin Uy then (s;x s-)*vs=v is in

S

U and from the definitlion of Sy9 C0VoC=V and
J)V = VS .
The collection of surroundings V in U for vhich
CoVoC=V is a base for the uniformity U eince
CoVoC contalns V and is contained in V2 . If ¥ is

such a surrounding of U let Vy = (m X wl)V. . The scis Ty

are ‘a base for a wiformity on I, which is Ug o
First, note that 7 = (m X m)~ "l e If (x,y) is
such that (ﬁlx,ﬁly) is in Ty there are points u and v

1a E such that (w,v) isin V end mu = mx, mv = my

Therefore (x,y) isinCo Vo C =V . Siace (m ™ X W )"1,1

contains V thls proves the equality.
Second, ("\/‘1)'l = (V-l)l, V, coatains Uy if V
contains W and Vy o ¥y = (VoV); « The first tuo assertions
are clear and so is the fact that (V o V), 1s contained in
Vi 07y o Let (xl,ul) be in Vy 0 V3 o Then there is &
roint yy in Ep with (x1,77) and (yg,2y) in V3 o Lot
THX =Xy , MY =Yy and mMZ = 2y . Since V ( 1)“~vl
{x,v) 2nd (y,2) are in V and 50 (x,z) 1sin Vo7V,
Thereforas (V o V)l ccutalns V’1 (o] Vl end the equality folloise.
1ls proves that the sevs V, fora a base for a unifoxaity oa
B which has U for its inverse image uader my = 5y .
The natural mapping is uniforzly continuous with respect

to this new uniformity and as a result is wntiauous with recpect






1E0
of these prorerties pU:: = pUy 127 (x,y) 1is in each surround-
ing of U . Therefore there is a 1 - 1 function v(E,U):3(E,T)
——P(E,8) such that ¥(L,U) o sy = Py (since syE = 5(Z,T)).
Theoren L shoirs that pU is continuous with reuceﬂz to the
U-uniform topology. Since «(E,U) o Sy = Py it follows fronm
the definition of a quotient topology that y(E,U) is continuous.
Penorls, The second ossertion of this theoren states that O
satisfies a 'universzl! property with reszect to (UPB),(UP[;’),
and (UP5) e Tt is clear that this 'universal' property defines
the ceparaticn preocess S up to isomiorphisiie The uniform space
(5(2,0),04) is called the sepcrated space associated vit!
(z,8)

. An important property of this process is that i%

preserves completeness as stated in

Thecren 7. {S(E,U),U5) is a comrlete wniform space i2f (I,T)

is complotes

Proof: Let [ denote a U-Cauchy filter on E and let [

T

denote a Ug-Cauchy filter on E; » Since sy is (g,gs)-
uniforialy continuous -sy_l_-‘_ is a Uy~Cauchy filter on Iq indden
converzges if I ceonverges in the U-uniform topologye.
-3
0a the other hand 5U-"-1 is a U-Cauchy filter tihich

converges 1f I converges. Since 5, satisfies (UPB)
sU"]‘;"-_l is a U-Cauchy filter. If Iy converzes to a point of
S(z,U) , say sy, then Iy is finer than the neighbourhood filtcr

(st) .« This filter consists of seis S[ %], Vg in Ug
and &0 sul‘lj(sux) = U(x) - the U-uniforn neighbourhoed filter

of x . This shows that sUJTl converges if Ll converges,
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Assuue that (E,U) is complcte. Then sal_I;‘_l
converzes in the U-uniform topolozy and so does ;U(sal;*"'_l)
viilch contains F; . Hence F; converges and so —(STE,_Q) »5g)
is a complete uniforit space.

Assune that (3(E,0),Us) 1s complete then syl
coaverges and so also does sal(sUE) vhich is contai;ed in
I » ThereforeF converges and so (Z,U) is a couplete opace.

This section concludes with the following abvious

~4

result., If (E,U) is an object in T then s, is a horeormor-

I<

phisn 38Ff U is 2 serarated uniformity, Coasequently S is

1denpotent. The Iirst assertion since 8y jsl -1 ilf 4%

is a honeomorphism. The process S is i1dermrotent because

S6Sis a process and each sy is a homeomorphiss.
=3

84, The Caunchy filteor process n. ir (z,U) is an object of

T let N(E,U) be the set of UlCauchy filters F oan L
together with the following topology for L: if F 13 any
subset of E let F- =[Fin H(Z,U0)IF is 4n F] ; the sects
I form a base for a topology for H(Z,U) since (Fyn Fz)si
= Fj} NT; .

Let (Z',U') be a second object of L and lot a
be in Nom((E,U),(Ef,U!)) . Decfine IH(a) by setting N(:)T =
el « Tais is a U'-Cauchy filter becavse a is (U,U')e
uniformly continuous., The function i{c) 1s continuous since

IZ"l(a)(F')“-- (c:n"':!‘l?')i'E for any subset TF' of Tt .,
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~ If a' is in Hon((E',U"),(2 ,U)) then K{a' o a)
= H{a') o Mla) since (a' o a)F = a'(aF) as both filters
have a common base. Consequently It X — 0" i5 a cov-
ariant functor.
then (E,U) is an object of T define ny:E—
| (E,U) by setting nyx equal to the filter X o; sets that
contain x . It is E;Cauchy and if F is a subset of L

ngx isdn F® 40f x ds in T i.es F' N nyE = ngF ,

-—

Let a be in Hom((E,U),(E',U*)) . Then Ia) o ny

= nye 0 & because a(%) = (ax) . This shows that the

functor I ond the fanily (a,) of functions n,

define a process vhich will be denoted bY‘Yl-a

Remarks, For any object (E,U) of : there are tuo obvious
meppings of E into the set M{E,U) « One is the function
Ny and the other is the mapping which corresponds the U=
u;iform neighbourhood filter of x to each point x . If the
second one is used the topology of N(E,U) has to be defined
in terms of the sets - where T is in the U-uniforn top=-
clogy of ﬁ o Civen this modified version of the functor I
the second type of rappings fail to satisfy condition (UPZ) .
For this reason the functions ny are the ones used to
define M., These functions and the modified version of I
2lso deifine a processe.

For the purposes of this thesis, the properties of T\

that are of interest are stated in














ir.pli.es

vhen T, is coatained in [x|2z < A] and P,
b~ T e

Toramnles of U-commletely resular £ilters

contains

1., If F is any subset of I the fanily ("I[F])v in U °F
seta VI[F] is a U-completely rezular filter . In par;icular
the U-uniform neighbourhood fiiters of the points of I cre
U-completely regular,

2, If U contains U; then the Uy~completely regular

Q

filters are U-completely regular, If S5 1is the set of

<
i

uniforely continuous real-valued functions then U(S) is
contained in U and so every U(S)-completely regular filter
(in perticular every S-completely regular filter) is also a
U-completely rezular Lilter.

Then ordered by inclusion it is clear that the U-
completely rezular filters form an inductive set and so by
Zorn's lerma every U-conpletely rezuler filter is contained
in a maximal U-completely regular filter. These maxinal

filters II have the property that for aany U-ccapletely rezulcr

I3
3y
E
=
-t
-
jo 5
G
=
Q
[N

filter F either I contains F or

gonerate a proper Iilter. This is a consequence of

Terna 5, Let T and F' be two U-completely rezulor filterg

" emmpm——y

‘01 L +that penerate a filter F on [ . Thon I is U

conpletely remular,

I'roof: Let T be aset in F o Then there are sets I and

' in F and [FE' respcctively such that A F' is in T

£y
(="

.

and is contained in T .« Let D and D' be subscts ¢f T



and P! which belong to T and F' and cre such thas there
is a purrounding V ia U with V[D] contained in F and
YI[D'] contained in F* . The set DA D' isin I and
since VID] » V[D'] contains VI[D~ D'] 3t follows that T
contains VI[D A D'] . Ilence F iz U-completely resular.

Corollarr 1, If £ 35 g U-uniformly continuvous real-valued

.

O=-commlctely regrlar filger

{3
-3¢
0}
fo

fuaction on B and

then there exists a U~-completely recvlor filtcr F! contain-

ine P psuch thet 1lin £ exists in 2 .

Froof}{ Trom exanrle 2 it follows that if S 1s the collection
of U-uniformly continuous real-valued functions oa1 I then
the S-~completely rezular filters are U-comrletely regulor
filters. Consequeatly the argunent of theorem 6 in chapter
one applics to prove the ciristence of such an F!

Corollary 2. If £ is a U-unifewnly coantinuous reoleyalued

1 1

—t

a nominal  U-coomletely remilor

Q

fonetion on E  and

filter thon lim £ exists in T o
. 11
Proof: It is an irmedlsate consecquence of corollary 1.

This second corcllary may be used to shouw that there
are U(S)-completely regular filters that arc not OS-completely
regular. Consider the folloiing

Twamnle. Let I be the set R of real nmuubers and et S =[e]

——

vihere ex = x for each x in E . The unifornity U(S) is
the usunal uniformity for R « The maxzimal OS—completely
rezular filters are thoe neighbourhood filters of the poing

with respect to thie usual topolozy and the two filtors at
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Q..

'infinity! generated by the families ({<= ,=r)), an

..l

((a,=)), « The function sin x is a U{3)-unifornly contin-
wous functlon wirich does not converze along the filters as
"Infinity' . Consequently corollary 2 to lemma 5 shows that
there are maximal U(3)-completely resular filters vwhich are
not S~completely regular,.

Given any filter F on E the sets V[F], Fin T
and V in 43_}_ generate a filter U[F] which is contained in

r

e This is obvious since -(Vlr\ VZ)[I?ln F2] is conbained

in Vy[Fy] aV,[2,]1 . Ihe filtor UIF] iz U-complotely

remular and F is U-comnletelr remuler 3£f U[F]l = F o Let
F bein I and V,7 be surroundings of U such that V

P~

2 . Ten ULLIF]] is comtained in VIF] aad so

-t

coatains
U[r] is U-completely regular. If F is U-coupletely res-
ular the sets V[F], F ia F and V in U forn a bas

for F and so F = U[F] ., The converse is obvious. IZ F!

is U-cormletely reguler and I contains F' thon ULZ]

contains F' . It is clear that U[F] contains L[E'] , but

w1t

this filter equals ' .
If F is 2 U-Couchy filtor so is ULF] . Let V

and W be swrroundings of U such that V conteins L’B N
IT T 4s a U-small set in F then ULF] s a Wl-z1ell set
(and hencs V-suall) in U[Fl . I£ F!' contains F ond T

Ulrl_. It is sufficient

i a U-Couchy filter then U[r']

to prove that ULF] contains E[F'] . Let Vaond W be

surroundings in U with 1‘12 contained in V and let T, F!
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be -srall sets in F and " F!' respectively. If x is in
FNF' then W[x] contains U[F] and is contained in VIF']
Consequently U[T] coatains U[F!]

“here are two immediate consequeances of this last

assertion. The first is that gz " U-Cauchy U-zoanletelwr

resulay filter is a navdinsl U-completely reslor filter, The

second 1s a characterization of the wminimal U~Cauvchy filters:

a U-Couchy filter is a mininal U-Couchy filter I€f 31t 1s

U-completely remular. IS I is a minimal U-Cauchy filter

i

then F = U[F] and so it is U-completely regular., If F is
a U-Cauchy U-completely regular filter and F contains a
U~Cauchy filter I' then I = U[F] = U[F'] vhich is contailned
in T « Hence F=F! and s0o T is nminimal,
Demarl:, This showrs that if S5 dis any collection of real-valucd
functions on & the maximal S-completely reguler filters

hat are U(S)-Cavchy are the maximal U(S)=-completely regulcr
filters that are U(S5)-Cauchy.

The naxzimal U-completely regular filters are cliaraciere

ized es follows: g U-completely remulor filter F is moszinmal

iff there exists on ulepalilter F. containing I with F =

Ulr,l . If 1 is a moximal U-completely rezular filter and

I, is any vltrafilter containing I thea Ulr ] .is clearly
equal to M. Let I, be an ultrafilter ond assuns that Z

is a U-completely regular filter contalaing U[F ] . Let 7
bte a set in [ that is not in U[F ] . Then there is a set

D in T and a symectric surrounding V ian U such that F
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The last assertion is an imnediate conscquence of
corollary 1 since under the additional assumption I =
o« LU Larzl)

§6s Process B. Let (E,I) be an object of T , Define

B(E,U) to be the set of maximal U-completely regular fil-

ters I together with the topology generated by the sets

CH, 0 a subset of E in the U-uniforn torology, vhere c*
= [11 4n B(E,U)|0 is in ] . The sets O form a base

for this topologzy since 03_{ n O’; = (01 n 02)SE .

£ (E',U') 4is a second object of Y and o is in
Hou{(E,U) ,{E7,U")) define V() by setting I{c)ll = U'lci]
which by theorem 9 is in D(E',U') .  The function Ela):
B(E,U)——B(E',U') is continuous. Lot O' be a subset of
D' in the U'-unifora topology and assume B(a)_I;TO iz in
(on)¥, i.e. O' isin Bla I,
Bla)lf, and V' a swrounding of U' with 0' containing

« Let 01' be an open set in

wtfo,9 . If a“l(Ol') iz in 11 then 0y is in oI ard so

™

¥'[0; '] is in Utlcii] = 5{a)il » Therelfore the set 5 Ha)(0n)®

containg the ncighbourhocd (cz"l(Ol'))3£ of I, since a« is
continuvous with respect to the unifern topologiess. lience
S{a) is coantinuous.

Let o' be in Hom{{Z',u"),(E",u")) . Then Ifa! o c)
=3{a') o Ble) « If II is in B(E,U) then Ela’ 0 a)i =
U"[af(c1)] which contains U"let(U'Lef])] = (Bla*) o Ble))ii

Since those filters are raximal they coilncide and the identity
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I (E,U) is an object of T then byl is contained
in the set G{E,U) . Define gy to be by« It follows

immediately that the functor G ond the fondly (f;U)

of functions g, deflne a uniform process. Let G

denote this nrocess.

Since G is a subprocess of B it follous thet _G§

satisfies (UP, ), {UP.) and (UP,) . The first two propertics
belong to § since for any object (E,U) in T U. obviously
contains U5lG(E,U) . 9 satisfies (UP,) because it is a

subprocess of a rrocess with this properuy.

Proccss G  satisfies (UP.),) and (UP.) . To prove
this assertion an explicit description of I_JG is obtaincd by
essentially the saue argument that is used to describe U,
in theoren 8.

Let (E;J) be an object of T . If V is a symmetric
surrounding of U let V3 be the set of pzirs of filters I
in G(E,U) which share a V-small set. The argunent of theorexn
8 shows that the fauily (VB) metete in T of seta Vy is
a base of a wnifornity for C(ufU) Soemne =

This wilformity is compatible., Let V te a oymmetrice

G(z,8) « Thea

H
|2
3
ct
Q
1)

surrounding of U and let I be a

1 contains a V-srall set O in the U-uaiform topolozy ard =9

L

6¥n clr,u) is contained in V,[IIl . Therefore the correszond-
r= 3=
ing uniforn topolozy is coarser than the torology of C(..‘:U .
This uniformity is Uy because its inverse image under

&y is U . Let V and U be sgmetric surroundings of U


atisf5.es







PAYES ]
Another prorecrir 029G vwhich is a con isequence of the
fact that it is a svhprocess of B is stated as
Theoren 1L, Tot T Yo a commlebtelr rerulor suace and leat
U Do a compatible miiloraulty for E . Then 703 —C(3,U)
1s en_emedeinm iff U iIs a strvcture of E.

Prool: Theorenr 11 shous that Ep is an cnkbeddiapg vith res-

rect to the U-uniforn topology ig” T is a sepercoted unif-
oiiltys. It is thereifors an e&beﬁding of the space E if U
is a structure of £ . On the other hand if Cy is an exbed-
Ging then U is a sepeorated uwniforiity and co the U-wiferm
torolesy is the torclozy of E i.ee U 1is a structure ¢f E o

Corollarm-, ILet E bLe a commletely rescular stace and 1ot U

be a structure of 3 .  Then .38 @¢(:,0). iz & hozeomon-

prisn i15f Y 15 complete in U o

Iroof: Since = is a structure of I the theoren shous that
r, It is also an isomorphisz of the unilorn

n
space (E,J) =zrith the space ;UE, rUﬂlgnE) since it is 1l - 1,

I8 &g, is a honcorwrpuicz theorea 13 ghoirs that & 1g complete
in U . Converselry if T is corplete Ir U  then gUE is a

closed set as it is coumplete in the restrictica of U, « licnce

-I-

cys = &(5,Y%) and so .- ig a Loveonorplilsz,.
An irmediate consequence of this conseguence ¢l tlisg
corollary is that § has the followdng ‘funivercal! property

for each odject (B,U) in X :let  (T,¥) _ho = corplote seonr-

cted miform shace ond Jeb a:D——=1F be 2 (U V) unilormly

continuous function § then there exists a uniaue continvous

funetion pn.C(”’U)———dbz' such _thod Cq O 5 20 Consider
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he fcllowing commbative diasran

fu _VG(E, )
L l G(N
5.
F vy G(F,Y).

The corollary slows that gv is a homeonorphism and hence

“a
cavse F dis a Hausdorff space. The function c, is

= gl\',l o Gla) 4s the desired function. It is unique be-

(UpsX) -vnifornly continuous. because Gla) is (Uq,¥,)=
uniforily continuous and &y is an isomorphism of (I,Y)

As in the case of process B this 'universzl' pro-
perty mey be applied to extend uniforrily continuous real-

alued functions., If £ is o U-unifornly continoous reale

valued funetion on T thore is a unicue continuous reol-

(b

volued function £ _on G(=,U) _such that fH0 7, =f o

~

A
-—

This function is QG-tmiformJ.y continuous. These assertions

followr immediately from the 'universal! property since the
set of real numbers is coiplete in its uvsual wniformit

vhich is separated.
From this 1t follows that for any object (E,I) of

-0, iz =2 function wnifowity ifFf U is a funetion vnifornitr,
Aesure that _T_[G is a function unifos

rrdtye Then rince U is
the inverse inaze of Q—G undezr gU the ‘'restrictions! of

the functions that defince U, (by peais of GU) is a collection

S of functions such that U = ]._I_(S) « Conversely assumg that
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it is complete in its finest structure _QX vhose restriction
QKIE is the finest structuwre of E g-equivalent to U .
Thils completes the proof of

Theoren 3., Let U be a structure of F . Then the e-cquiv-

olence class efU] of U contains a finest structurc,

Permarks. The existence of the finest structure in ¢[U] was
pointed out to the author by Banaschewski in a 'c-'zx_‘itten comimune-
ication. He also gave a preliminary characterization of these
textremal ! uniformities: the finest structure in ¢[U]l is the
finest uniformity coarser than the intcrsection of the filters
("X M on Ex E, vhere for each lI in ¢G(Z,U), (wx mI
iz the filter generated by the sets FX TF, F in 1l .

It follows from Shirota's theoren (theorenm 2 of
chapter three) that for a structure U of E, C(E,U) is a
Q-space iff U is g-equivalent to some o ~bounded structure
of E . Furthermore, since any completely rezular space X
has a finest ¢ =bounded structure IIXr and a finest function
structure _[_I_X" = y_(cx) , vwhen G(E,U) ié a Q-space tae
ebove argument ghows that the class ¢[U]l contains a finest

¢ -bounded sctructure and a finest function structure. The

fact that the arzument applies depends on the result: QG

is  o-bounded (a function structure) iff U is & -bounded

(a function structure) .
The main problen that arises with sll these 'extrenal?

structures 13 their characterisation. The 'ertrenzl! function
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b |

Corcllary, Let I Dbe a completely romuler spoce znd let U

be a structure of E ., Then (G(L,U),gy) < (C(E,5°),7,« ) <

(B, 0 ) @) <((E,0¥) 5y ) = (BIE,1),z,) «

Proof: It is an immedlate consequenee of the definition of
and the theoren,

The subset G(E,U) of B(E,U) is described by reans
of the uniformity U . Are descriptions of this type possible
for @(E,U%) and G(E,U“)? The folloing theorenm character-
izes G(E,_Q‘p) vnen the functions £ in cg(p;) are considered
as functions on DB(E,U) .

‘)

Thoorem 12. 11 in B(E,U)_is in G(E,UY) 4£7 thore is a

fimetion £ in C(U)_such that £113$0 ond 1/f 15 dn

c(u)_.
Proof: Let S = C(U) and let X Dbe the subspace byE of
B(Z,U) » Let ¢ be the characteristic algebra CB(E-,-_Q) |z
= c¥(U)x . Then ¢(z,u%) = € (54lX), vhere S, is the
extension of S to C(E,U) i.e.- Sg = C(QC_) . Assuningz this
to be the case the theorem follows from the corollary to lenma
11 of chapter tvo.

(a(z,u®)
U¥ = y(s) and G is isomorphic to J . Furthermore

y&ye) is tisomorphic'! to (T(E,S),ts) since

(7(E,8),tg) is 'isouorphic’ to (T(X,SGIX),tSG!X o gp_) since
£ =gy Eand J satisties (FP7) o Theorem 16 of chapter tiro
shows that (T X,SGIZ),tSG'K ) 4is Yisomorphic' to EQ_(SG'X)

and the natural injection. Therefore there is a homeomorphisa
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‘Y3G(E,_I_J:" )— € (SGIJ’I) puch that vy o gUE =y 0 b,JE » lHence

‘o(g,u¥) = £ (8glx

Remorlic,  The proolem of describing CG(E,U ) by means of U
seems to be much nore difficult - presumakly because cf the
semewhat inaccessible nature of the uniformity U . In the
case of a completely regular space L, Shirota"‘ Theoren
(theorem 2 in chapter three) shows that C(u,U ) = G(J..,U“lp)

(7
since U“

= U(C;) « Mn examination of the proof that (3)
implies (2) in this theorem shows that - by using Veil's louma
(lemma 1 of chapter three) - 4f 1 is a filter in D(E,D)
Midich is ;L_I_" ~Cauchy but not UY -Cauchy then there is a
function £ in C*(U) with 2(£) disjoint from G(T,U7)

end £} =0. Therefore €G(Z,U”) iz a union of Cy-
subsets of B(E,U) » This suggests the following problom: is

€ G(E,U%) the union of the Gy~subsets of B(L,U) disjoint
from C(E,U)?
$5, Ertonsion alrcbras ond strvctures., Let E be a completely

regular gpace and let U be a structure of L ., 7%his section
considors the question of when C(U) is an extension algebra
of E . One answer is glven as

Theorem 13. C(U)__3is an extension algebra 3£8  C(U)_=

1.,
1(z, (1) )-2—c(u)
Proof: Since U is a structure of I the weak topolozy

0(E,c(u)) is the topolezy of E (see corcllary 2 of thecrea ¢)

and so (L(Z,c(U)), 1’C(U)) is an extension of I . Therolore






If ¢(U) is an extension algzetra thea ClU) =

Cc (z,0¢) T as a result of thecrem 13. Tierefore C(U) satic-

fies tne concditions of the theoren,

Zerarks, This theoren is quite similar to theorea 22 in
chapter one since the conditious are stated partly in term
the C(U)-completely regular filters that zre U(C(T)) =1

~Couchys. There is a counnection between this theoren and the con-

Jecture of chapter tvo. G(E,y_q) is a Q-space and the extencion
of C(U) to G E,_U_‘f) satisfies (efl),(éfz),(ofB) and (IA)

v

o 3, v v . .
of theorew 3 in chapter two when C(U) is U’ -inversion closed,

Thie conjecture asserts that as a result Cx(l{) = CE(E,U @, 5 .

rrovides a setting in which to look for a counterexanple

i =-

rn.s
L4119

to the conjecture >

If S d1is an extension algevra of E then there exdsts a

G-extension (¥,z) of I such that S =Cy 0 g = C|E . Since

Y is complete in U(C,) ond the exwtension (G(E,E(S)),gv(s)) is
isomorphic to (Y,s) by theorem 1 it follows that:
(1) s = clu(s)) ; :
(2) S is (Q(S))q’ = U(S)=-inversion closed} and
.3 - * B . 20l vrit h - ]
(3.) S Carz, (g(s))q’)l Coxbincd with theoren 14

this completes the proof of

"heorem 15, S is an extension a2loebra of T 48P thers i3 n

wiforalty U for E. such thob:

L T R i
]

(1) s =cl(u_;
(2) S_is U¥_=inversion closedj ond

(3) §% = c’fG(E,Etf)lB .

%) See Erratum e 260.
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Remarlks, The unsatisfactory part of theorems 14 and 15 is the
requirenent that c“(g) = CKG(E’UQ')IE‘. If the conjecture of
chapter two is valid it can be o;itted. Cn the other hand
foiling that, it is still of interest to attenpt to character-
ize internally those wniforuities U for which C*(U) =

™) = €%y, y¥)IE or for wnich C¥(@ = TgpylE . It
is not hard to see that the e:ttremal structures of section one

satisly the second more restrictive proeprtv.



4.
L5 COUSTRUCTIO!N! OF COITPACT SPACTS

$§l. Topolosical rrocessces. The objects of the category Z.

L4 L]

of topological sppaces may be written as pairs (Z,0) whore
E is a '.se'*‘c and O is a topology for E « In this motation
Ion((L,0),(Z%,0')) 4is the collectlion of (Q,0')-continuous
functions aif——=IE' , This formal similarity of = to &b
and I suggests the folloing definition,

Befinition 1. If 2  is = subeaterory of 2. a tornols~ierd

wrocess P on = consists of a covarisnt fvnctor P Zo—-

R4

-y

———=> ond a fanily (p{}_)_ of functiongs patD
. <7(z,0) inZ =
P(7,0)__cueh thots

. l.(TPl) Dcl_is dense in P(E,0) 3, ond

ne of 2 in llem((Z,0),(5!,0°))

O Lo
T

{2

(TPZ) if o is 2 many

Pla) 0 P = Pyr.0C s

Domorlz, 1. As preliminary oxamples of toroloziecal proccsses

on 2. the first threc examples of function processes in chanter
one sunrest corrésponding exzomples of topolozical procecse An
analozue of the fourth example is the procccs vhich eccociates
with each topologiccl space a conpletely rezuler gpace Ly iden-
tifying polnts that are not distinguiched by the continuous

real-valved functions,

232









235

vherae _I_I_(E’-Q) is the finest QO-compatible wniformity for L
Let A be a natural functor on a subcategory ¥ o

and let P be a function process defined on the subcategory

AZ o of . Define tPA to be thg tonolorical process

on > . o—consisting of the covariant functor P o A and the
fornily  (p ) of functions n :E
A(Q) E,Q) in 2 A(0)
P(E,A(0)) = (P o K)(E,0)_Q Although the definition of P,

presupposes that a process is defined it is in any case trivial

to verify this, leeping in nind the definition of a natural

functor. The topological process F , on Z_ is said to be

irduced by the natural functor A and the function process
P |

Lrormles of induced tonelomical processes on 2

1. TFor any space (E,0) the object (E'C(E,Q_)) is in AN
and so the induced processes J c? 3'0, \ffc and a"c are
21l defined on 2 .« Since the original function processes

are all isoworphic on A'N A'  (thoorenm 1L of chapter onc)
it follows that the induced processes are all isomorphic.
Another process that is induced is mc . |

2. Tor the same reason the natural functor c* induces the

topological procesces JC*’ Hc_, = mc*, #C* and JC*

thich are all isomerrhic processes on Z .
™he fact that there are topological procesces induced
by function processes raises the following question. Uhich

topological processes oa a subcategory 2 o of Z can (up to






P g
12 P zma P,
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that P 5 ond L p_  @ra isomorphic processes on Z o * This

shows that ‘P is a Q-process. lience every compactification
P on Zo has ausoci ated ¥ith it the contiauvous QC-process ‘P
vhich can be obtained by means of the natural fuactor A of
and the lattice functicn L .

$2. Tae “'-onc-Cccq conpactification on 2 o As noted in

chapter two Stone and Ccch defined a compact extension for a
conpletely resular space I by requlring that every function
in CE have an extension., One construction of such a space ic
(s3,1) = (2(E, C-,) hC ) » This tono“o'ficel process on the sube-
category of co*nnlctcly regular epaces may be extended to Z

as the process ﬂcx— defined in the previous section. The nate-
ural functor is of course the functor GT also defined in

section one. It ves observed in chaptor tiwro that hc is an
re

enbedding iff the space E 1s completely regular. Consequently
the compac‘i::l.f':!.cat:i.cm‘ﬂp % on 2 provides an exctension of an

object (Z,0) in2 if? 0 1is a completely regular topologye.

$3. The Alcxaondroff conpactification on > e Mlcxandroff [23]

deoeribed a fone-pointt extension of a locally coupact space
as follows. A point pee (could be [E]) is adjoined to I and

the topolozy of E © [pa] is definod by setting a cubset O

opea if it is an open subset of E or if it contains p,, and
its complement is a comipact subset of L . Since E is locally

cosipact this defines a topology for IEwu (Pl with respeets to
E

vhich it is a compact extension of












euski's maxinal zero-dimensional space (K,,%,)

Lemarli, The fact that a compactification can be associzted

with dimension zcro raisces the problea os to vwhether this is
pocsible ;.oz'_ any finite dimension n o 7Tuhc arguzent uscd to
deline Az . may be applied wihen the alzebra Cir is su vably
characterized JZLor a coupact n-diuensional spazce K

$5. Iroudenthal's rinecoimact procecs on 2. . Al Op6n sub-
—

cet O of a topological space IJ is said to te riz-comrnach
if the boundary B (C) of 0 is coupact. If 0 415 riz-coz-
pact s0 s LT and if 0! is rimecompact so is QU OF

since B (0O WUV 0!) is a closed subses of B (0)vw B (01)

A filter I on I is said to be rim=-compact 12 Ior
each set T in T thore is a rirm-compact set 0 in £ suca

s said to te

(20

that F containg 0 . A topolezical spzce T
ria-conpact if all tie neighbourhood filters are ric-conzzcet
and E is Hausdorfii. This is egquivaleat (o asserting thaat
= 1is Hausdorfr e.nd has a basis of riu-ccipact cetse.

A continuvous function £ on a2 tozoloziczl space O

o,

is sa2id to be rim~ccapact if £ and (-1)f eatizly the con-
dition {r.c.): tvhen X < 1 there is o ri--cozrmacht st O
vith [z inEBlm-<Aal co =0 <[ =10 Zlre ],

L.
O
oA
3
3
§~4
P
by
3]
“w

These concepis are linl:ed by the Lol

Toomay 2, Let E be a rim-comnact snace and let U be 2n

onea set con sodning the. closure of the rin-comtaoct set 0,

Then there exists a rineconmact function £ with 0 < £<3

such that £l0 =0 end £|CU =21,










Ireudenthalls ris~cornoct r-ocess nn 2 iz tke cormcetlifle

m

[§]

cation 1ﬁfﬁ {or the isomorphic process F, ). It ex
r

with hils original rethed of associzting a compact space ish
& riu-corpact space and clearly rrovides an ettersion of
3,0) iff 0 is a riu-compacs $010lozy.

Lenioriks, I'rom the reint of vierr of the natural fuscter 2,
T &

thieorenl 2 is the important resuvlt. It is an irmedizte fermzl
consequence of the condition (r.c) ard the fact that the
itersection and uﬁion of two piz-cozpact eets zre both rin-
compact. llence any othor general cless of open sets thzt is
closed under finite vnion and intersection cdefine a corresnsn-
ding natural functor and consequently a compactifications

Tor exanple consider the onen-clesed sets or the open sets witn
cequentially coripact boundaries. In the first case the
resulting compactification is Baraschewrski's process. Since a
conpact spacelis sequentially compact i1t is not herd to ceo
that there is a homomorphisnm of the corpactilication dellned
by the second example into Freudenthal's rin-coumact process.

Vi ol o

85« Iroudentiinlls & ~commoctification on 2:5_; Treudenthal [25]

defined a compact space that can te associated with a Ziven

2a

topoloziczl space (E,0) by means of a relation Jd defined Tor

nen subsets of (E,0) . This relation is delined with the

1d of the following concepte.

o)

o

~

In a topologsicel space 5 g subset D 33 said to

comnect the cubsets Iy and T, of E if, in the subspace

FltJ D Lth , there is no decomposition into tiro opon sets
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