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ABSTRACT 

Indoor positioning and navigation have emerged as critical areas of research due to the limitations of GPS in 
enclosed environments. This study presents an innovative approach to high-precision indoor localization by 
employing the Extended Kalman Filter (EKF). Unlike traditional methods that often suffer from noise and 
multi-path effects, the EKF methodology accounts for nonlinearities and offers a recursive solution to estimate 
the state of dynamic systems. We deployed a sensor on a mobile robot that needs to move in an indoor 
environment while there is a moving obstacle that is moving around. Our findings demonstrate a significant 
accuracy in locating the obstacle while maneuvering inside the environment.  
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1. INTRODUCTION  

Indoor localization has become a prominent area of research due to the scarcity of accurate yet cost-effective 
sensors. Consequently, numerous efforts have been made to enhance accuracy by leveraging filters, particularly 
predictor-corrector filters. These filters encompass both optimal and robust variants, with the Extended Kalman 
Filter (EKF) standing out as a well-established example of the former, showcasing effectiveness and precision 
across various applications. 

In this study, a mobile robot is outfitted with sensors to measure distance and angle relative to a target. The 
robot is tasked with navigating within an indoor environment while evading a moving obstacle. Sensors capture 
the distance and angle of the target in relation to the robot, while additional sensors track the robot's position 
within the environment. The objective of the filter is to accurately estimate the locations of both the robot and 
the obstacle within the environment, compensating for the use of low-cost sensors with reliable accuracy. 

The remainder of the paper is structured into four sections. Two sections provide a summary of the EKF 
algorithm and the model under examination, while the other two sections delve into the discussion of results 
and their conclusion.  
*malshabi@sharjah.ac.ae 

Laser Radar Technology and Applications XXIX, edited by Gary W. Kamerman, 
Lori A. Magruder, Monte D. Turner, Proc. of SPIE Vol. 13049, 130490O

© 2024 SPIE · 0277-786X · doi: 10.1117/12.3015941

Proc. of SPIE Vol. 13049  130490O-1



 
 

 
 

2. THE EXTENDED KALMAN FILTER 

The EKF algorithm can be summarized as follows: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐱𝐱�𝑜𝑜0|0 , 𝐱𝐱�0|0  
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𝑇𝑇 + 𝐑𝐑𝑜𝑜�
−1

,     

𝐱𝐱�𝑜𝑜𝑘𝑘|𝑘𝑘 = 𝐱𝐱�𝑜𝑜𝑘𝑘|𝑘𝑘−1 + 𝐊𝐊𝑜𝑜𝑘𝑘 �𝑒𝑒𝑧𝑧𝑜𝑜𝑘𝑘|𝑘𝑘−1  � 

𝐏𝐏𝑜𝑜𝑘𝑘|𝑘𝑘 = �𝐈𝐈 − 𝐊𝐊𝑜𝑜𝑘𝑘 𝐇𝐇𝑜𝑜�𝐏𝐏𝑜𝑜𝑘𝑘|𝑘𝑘−1 
Then 
𝐱𝐱�𝑘𝑘|𝑘𝑘−1 = 𝐀𝐀𝐱𝐱�𝑘𝑘|𝑘𝑘−1 + 𝐀𝐀𝐱𝐱�𝑜𝑜𝑘𝑘−1|𝑘𝑘−1 − 𝐱𝐱�𝑜𝑜𝑘𝑘|𝑘𝑘 
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Where the state and measurement vectors are defined as 𝐱𝐱 and 𝒛𝒛, respectively. 𝑘𝑘 represents the time step, 
while 𝑘𝑘|𝑘𝑘 − 1 and 𝑘𝑘|𝑘𝑘 represent the a priori, and the a posteriori values, respectively. 𝐀𝐀, 𝐇𝐇,𝐏𝐏 and 𝐊𝐊 are the 
state, measurement, covariance and correction matrices, respectively. The error vector is 𝑒𝑒, while 𝑎𝑎� is the 
estimate of 𝑎𝑎. 𝐐𝐐 and 𝐑𝐑 are the system and measurement covariance matrices. 
 

3. UAV/TARGET TRACKING MODEL 

The system can be summarized as follows [97]: 
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Where 𝐰𝐰 and 𝒗𝒗 are the system and measurement noise vectors, respectively. The required paths for both robot 
and obstacle are shown in figure 1. 

 
Figure 1. Robot and obstacle trajectories in the environment 

4. SIMULATION RESULTS 

We utilized the algorithm outlined in Section 2 to derive the locations of the robot and the obstacle as described 
in Section 3. The results are presented in Figure 2 and Table 1. The maximum absolute error (MAE) and the 
root mean squared error (RMSE) for the errors were determined to be less than 1.61 cm and less than 0.88 cm, 
respectively. 

 

These errors accounted for less than 1.7% of the maximum absolute value. This demonstrates that the Extended 
Kalman Filter (EKF) was a suitable choice for accurately estimating the locations of the robot and obstacle 
within an indoor environment. 

Table 1. RMSE and MAE for the results. 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 

𝑥𝑥 0.8415 0.0091 1.6833 0.0283 
𝑦𝑦 0.8764 0.0093 1.8979 0.0312 
𝑉𝑉𝑥𝑥 0.0134 0.0091 0.0405 0.0270 
𝑉𝑉𝑦𝑦 0.0145 0.0087 0.0462 0.0255 
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Figure 2. The trajectories of the observer and the target, and their relative errors. 

 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, the Extended Kalman Filter (EKF) was employed to precisely estimate the location of a robot 
navigating within an indoor environment, while an obstacle moved in circular paths within the same 
environment. Furthermore, it accurately estimated the target's location. The results underscore the effectiveness 
and precision of the EKF in such application scenarios. 

For future endeavors, an experimental setup will be employed to validate the simulated results. 
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