
A Survey on Ethereum Smart Contract Vulnerability Detection Using

Machine Learning
Onur Sürücü*a, Uygar Yepremc, Connor Wilkinsonb, Waleed Hilalb, S. Andrew Gadsdenb, John

Yawneya, Naseem Alsadib, Alessandro Giulianob

aAdastra Corporation, 200 Bay St. Suite, Toronto, ON, Canada; bUniversity of McMaster, 1280

Main St. W, Hamilton, Hamilton, ON Canada; cUniversity of Guelph, 50 Stone Rd E, Guelph, ON

Canada

ABSTRACT

Blockchain applications go far beyond cryptocurrency. As an essential blockchain tool, smart contracts are executable

programs that establish an agreement between two parties. Millions of dollars of transactions attract hackers at a hastened

pace, and cyber-attacks have caused large economic losses in the past. Due to this, the industry is seeking robust and

effective methods to detect vulnerabilities in smart contracts to ultimately provide a remedy. The industry has been

utilizing static analysis tools to reveal security gaps, which requires an understanding and insight over all possible

execution paths to identify known contract vulnerabilities. Yet, the computational complexity increases as the path gets

deeper. Recently, researchers have been proposing ML-driven intelligent techniques aiming to improve the efficiency and

detection rate. Such solutions can provide quicker and more robust detection options than the traditionally used static

analysis tools. As of this publication date, there is currently no published survey paper on smart contract vulnerability

detection mechanisms using ML models. In order to set the ground for further development of ML-driven solutions, in

this survey paper, we extensively reviewed and summarized a wide variety of ML-driven intelligent detection mechanism

from the following databases: Google Scholar, Engineering Village, Springer, Web of Science, Academic Search Premier,

and Scholars Portal Journal. In conclusion, we provided our insights on common traits, limitations and advancement of

ML-driven solutions proposed for this field.

Keywords: smart contract, Ethereum, blockchain, security, vulnerability detection, artificial intelligence, machine

learning

1. BRIEF INTRODUCTION

A blockchain is a digitally distributed and shared transaction ledger, shared amongst the nodes of a computer network

(miners). All nodes are governed by a consensus protocol, which refers of transaction rules and states to achieve agreement

and security across computer network [1]. By this inherent design, the information on blockchain (i.e., transaction data)

are immutable and indelible.

Smart contracts are computer programs or transaction protocols stored on blockchain that execute when

predetermined conditions are met. These contracts are just a collection of codes and data (state), which resides at a specific

address on the Ethereum blockchain. They are commonly being used to automate an execution of an agreement without

needing a third party (i.e., bank or government). For instance, contracts used for financial applications are typically for

managing, gathering or distributing an asset. Additionally, its immutability feature makes it a perfect option to store

important data (i.e., ownership, provenance) for notary purposes. The majority of smart contracts run on Ethereum

blockchain (market capitalization exceeding $400 billions), and they are being powered by a programming language

known “Solidity” [3]. The scripts typically contain simple conditional statements (“if/when...then…”) for managing the

given assets, similar to a paper contract. Each piece of code in the smart contract is executed sequentially and no parties

can influence the code execution. When predetermined conditions are met, the execution process is done across a network

of computers. Nowadays, decentralized applications (DApps) operate autonomously, by providing a user interface as

frontend and utilize smart contracts as the backend. DApps promises more transparency compared to the conventional

applications. For example, intentional cheating in local places in an organization cannot happen in a transparent ecosystem,

since the ledgers are publicly accessible. However, since these contracts can manage billions of dollars of virtual assets,

they become an attractive target for hackers. In June 2016, malicious individuals attacked decentralized application

organization’s (DAO) contracts by utilizing re-entrancy vulnerability to steal 3.6 million Ether ($10 billion US Dollars)

Disruptive Technologies in Information Sciences VI, edited by Misty Blowers,
Russell D. Hall, Venkateswara R. Dasari, Proc. of SPIE Vol. 12117,

121170C · © 2022 SPIE · 0277-786X · doi: 10.1117/12.2618899

Proc. of SPIE Vol. 12117 121170C-1

[4]. Thus, a simple developer negligence in smart contracts can cause the loss of millions of dollars. Due to that reason,

development for effective vulnerability detection tools has been ongoing, as the utility of DAOs are increasing. The

conventional statistical analysis tools for detecting weaknesses in smart contracts purely rely on manually defined patterns,

which are likely to be error-prone and can cause them to fail in complex situations. As a result, expert attackers can easily

exploit these manual checking patterns. To minimize the risk of the attackers, machine learning powered systems provide

more secure solutions relative to hard-coded static checking tools.

Machine learning (ML) is a branch of artificial intelligence, which uses algorithms to automatically learn by observing

prior data, and it has a capability of improving itself, similar to a human being. ML models are considered as black boxes

since the end-user does not necessarily fully know how the model makes its decision. Therefore, ML technology is a

feasible solution for detection of vulnerabilities in smart contracts. Many researches have inclined towards ML-driven

solutions for security issues [12]-[27].

Throughout our research, we noticed the future direction of the literature on smart contract vulnerability detection,

and our goal is to provide guidance for new developments in this field. In the academia of smart contracts, there is no

published survey paper on ML-driven smart contract vulnerability detection models, as of the date of this paper’s

publication. In order to set the ground for further development of ML method on smart contract vulnerability detection, in

this survey paper, we reviewed many ML-driven intelligent detection mechanism on the following databases: Google

Scholar, Engineering Village, Springer, Web of Science, Academic Search Premier, and Scholars Portal Journal. We

provided our insights on limitations and advancement of ML-driven solutions.

2. SECURITY ISSUES OF SMART CONTRACTS

In this section, we introduce common key vulnerabilities in smart contracts that can be exploited by malicious individuals.

In order to provide a finer demonstration of vulnerabilities, a further information on blockchain technology and smart

contract is provided in the initial portion of this section (section 2.1). Later, we described common vulnerabilities that ML

models addressed (section 2.2).

2.1 Overview of Smart Contract Technology

A blockchain is a chain of blocks (records), where the blocks are linked (chained) and secured utilizing cryptography. A

simple analogy of blockchain is a ledger, where blocks are similar to pages holding records. Each block contains the

following records: a transaction data, a time stamp, and the hash value of the previous block (parent block) and a nonce,

which is a random number for verifying the hash [5]. The blockchain is stored on a network of nodes (computers), where

all nodes have the copy of the blockchain. In other words, all nodes (miners) is required to store blockchain data on their

local system while synchronizing all of their block with those stored by other nodes based on a consensus model [6]. Due

to that reason, everything inside the blockchain is publicly visible, in other words, transparent. Once a block is on the

blockchain, it can’t be changed unless all nodes are agreed to (Consensus mechanism). The most popular public blockchain

platform for smart contracts is Ethereum. Also, Ethereum has its own currency known as Ether and it can be transferred

between accounts same as the other currencies. Ethereum network is aimed to provide a decentralized Turing-complete

machine (Ethereum Virtual Machine) by executing scripts using public nodes located in all around the world. Through

Ethereum, one can use programming languages (e.g., Solidity) to build smart contracts. Before deploying the contract, the

contract’s written language is converted to Ethereum bytecode, where the converted bytecode is deployed to the Ethereum

blockchain. In order to deploy the contract to the blockchain, the miners must be compensated for the computing energy

required to validate the transaction and execute the smart contracts code, where the fee is named as gas fee [3].

Due to nature of blockchain (i.e., immutability), smart contracts are relatively more susceptible to vulnerabilities than

other digital systems [7]. First, the second a contract is on a blockchain, any other contracts or individuals can invoke it.

Thus, the input combination can be anything, and there will be always an untested execution path of the deployed contract.

Therefore, in testing, covering as many of input combination as possible is critical. Secondly, if a deployed contract

contains a vulnerability, the developer cannot update the contract, since it is stored in an immutable ledger of blockchain.

2.2 Smart Contract Vulnerabilities

Re-entrancy vulnerability is occurred when a function invokes an untrusted contract [8]. Some smart contracts need to

have interaction between external contracts to complete the transaction. In that case, a user can invoke a deployed smart

contract by utilizing deployed contract’s unique address. All smart contracts have an unnamed function known as a fallback

function, in which no argument nor return value exist. In solidity, the call function transfers Ethers by invoking a method

Proc. of SPIE Vol. 12117 121170C-2

in source code or a method in an external contract. For instance, if a call method is being used to transfer an asset to

sender’s account, it will automatically call invoke sender’s fallback function. This process does not have any limitation

for call method invocation and the fallback function can be executed until allocated gas amount is consumed. Figure 1

shows a code snippet written in Solidity, which contains two simple smart contracts: victim and attacker [8]. Victim

contract acts like a bank, where it has a withdraw function for transferring Ether to the caller (line 4). At the end of the

transaction, the caller’s fallback function is invoked (line 10). The attacker utilizes the following scenario to steal Ether

from the callee: (1) Attacker starts the transaction by calling victim’s withdraw function; (2) victim executes the transaction

(line 4) and invokes the fallback function (line 10-12); (3) The fallback function recursively calls the withdraw function

again and again (re-entrancy); (4) Until the exit condition is satisfied, victim’s withdraw function sends ether to the

attacker.

Figure 1. A code snippet to demonstrate re-entrancy vulnerability [8].

In some cases, the developer sets condition based on the block timestamp to execute some critical operations. When,

a miner mines a new block, a timestep must be provided along the other information, and the block timestamp is linked to

the miner’s local computer or server’s clock. Due to the blockchain’s nature, the timestamp of a block can vary up to 900

seconds with other miner’s timestamps [9]. Therefore, if a smart contract utilizes “now” to invoke a critical method, then

a malicious miner can manipulate the code by alternating the timestamp, namely timestamp dependence vulnerability.

An infinite loop vulnerability is a common logic error in all programming languages. These errors usually occur in a

function with looping statements (for, while, or self-invocation loop) without a proper exit condition, known as infinite

loop. In this case, the deployed smart contract would run until it runs out its gas, without fully completing its functionality.

A block on a blockchain consists of past transactions, and the blockchain state is updated numerous times during each

period. There is no guarantee that the given transaction will be completed in sequence. So, the actual state of the smart

contract is unpredictable. Therefore, if two independent transactions are executed to invoke the same smart contract, which

then the order of the execution is decided by the miners. If the attacker is the miner, then the transactions can be rearranged

in such a way that the result would benefit him/her, namely transaction ordering dependency vulnerability [10].

An integer overflow/underflow vulnerability can occur, when a variable’s value or size exceeds its upper or lower

limits during a computation. For instance, if an account’s balance is at its lower or upper limit, then the variable’s value is

reset to zero. In the past, an anonymous hacker drained off 2000 Ethereum (is worth more than $2.3 million) by

manipulating this vulnerability [11].

3. MACHINE LEARNING METHODS FOR VULNERABILITY DETECTION

3.1 Feature Engineering for Smart Contracts

Feature engineering is the process of selecting, extracting, and transforming raw data into features that contains more

information, so that the ML model can recognize given input vector’s pattern. Due to that reason, various feature extraction

methods are being used with robust and viable ML methods. For smart contracts, various feature engineering techniques

Proc. of SPIE Vol. 12117 121170C-3

are being used to represent internal dynamics of the source code. Here, we briefly explained common feature engineering

techniques that has been used along with intelligent ML methods to increase the visibility of essential patterns.

Abstract syntax tree (AST) is a data structure that being used to reason a written language. The source code is

converted using compilers into a data structure tree, where each node represents a syntactical element of the source code,

and the tree shaped diagram displays the flow of each element inside the written program. Without disrupting the structured

information, this method can provide details of the source code (e.g., number of functions) [17]. By analyzing a source

code’s AST, a ML model can identify common traits of a secure or weak contract.

Control flow graph (CFG) is a graph notation for representing all possible execution paths a program can handle.

Usually, a smart contract’s opcode is utilized to analyze the execution paths of the program. The CFG method is mainly

used for compile optimization and static analysis tools. Inside the graph, each node represents a basic block, where a jump

in the source code starts a block, with the same principle, a jump target ends a block [18]. Thus, inside a block no jumps

are occurred. As a last element in the graph, directed edges represent the action of jumping in the source code.

Opcode (operation codes) is a human readable representation of bytecodes. It is the portion of a machine language

instruction that contains a list of tasks or operations to be executed by the computer [19].

3.2 Existing Analysis Tools

As blockchain and digital currency become ever-prevalent internationally, detecting vulnerabilities in smart contracts has

become an important problem. Attacks such as the DAO bug [12] or the freezing bug in the Parity multisig (multisignature)

wallet [13] cost blockchain users hundreds of millions of dollars. As a result, several security tools aimed to identify and

prevent such vulnerabilities. One of the earliest methods created was called Oyente [14], which successfully identified

vulnerabilities such as the DAO bug vulnerability across roughly smart 9,000 of 19,000 contracts. It uses symbolic

execution on EVM bytecode to detect issues within smart contracts. Due to its early implementation, and static ruleset,

many newer vulnerabilities are not detected by Oyente, and as a result, has been improved upon by countless other

methods. Most conventional security tools are similar to Oyente, in that their ruleset is predefined and as a result, they will

not automatically adjust when new vulnerabilities are introduced. A similar but improved version of Oyente evolved a few

years later, when SmartCheck was introduced by E. Marchenko [15]. SmartCheck focuses solely on vulnerabilities for

smart contracts written in Solidity, Ethereum’s base programming language. It runs analysis on the syntax and linguistics

used within the smart contracts, and detects vulnerabilities based on XPath patterns [16]. Unfortunately, its reliability on

predefined XPath queries pose a similar issue to Oyente, wherein the defined XPath patterns decide the accuracy and

effectiveness of SmartCheck. Additionally, they leave little room for growth and dynamic analysis, since the defined

patterns are static. As a result, many researchers are attempting to utilize the dynamic capabilities of machine learning to

construct novel vulnerability detection techniques, that outperform such traditional methods. This paper aims to review

these newly developed approaches.

3.3 Deep Learning Models

Deep learning is a subfield of machine learning, where the algorithms are inspired by neural networks (NN). These neural

nets essentially attempt to mimic the working principle of a human brain. The main difference with a classical machine

learning algorithm is the data type (unstructured data) that it requires, and the learning strategy that it uses.

In 2018, Goswami et al. mentioned that while existing symbolic tools (e.g., Oyente) for analyzing vulnerabilities have

proven to be efficient, their execution time increases significantly with depth of invocations in a smart contract [20]. They

proposed an LSTM neural network model to detect vulnerabilities in ERC-20 smart contracts in an effort to produce a less

time consuming and efficient alternative to symbolic analysis tools. The preprocessing steps followed in this paper were

very similar to the methods used by [21]. The model was trained and tested on a dataset of 165,652 ERC-20 smart contracts,

which consisted of bytecode data labeled by Maian and Mythril (statistical code analysis tools). The proposed model

achieved 93.26% accuracy, 92% recall and an 𝐹1 score of 93% on the testing set. Further they have compared the time

performance of their model to those of the symbolic analysis tools Maian and Mythril (static analysis tools). While their

proposed model had a runtime of 15 seconds on a testing set of 5,000 random tokens, Maian and Mythril took 32,476 and

9,475 seconds respectively. These results indicate the same type of improvement achieved over symbolic analysis tools as

in [20].

Proc. of SPIE Vol. 12117 121170C-4

Figure 2. Model with Self-Attention + CNN Overview [20].

In 2018, Liao et al. have adopted a sequence learning approach to detect smart contract security threats [21].

Smart contract data was obtained from the Google Big Query Ethereum blockchain dataset. Ultimately, an LSTM

model was trained on 620,000 contracts from this source. Once again, the derived opcodes from the contracts

were represented as one-hot vectors. As this type of representation results in highly sparse and uninformative

features, these vectors were transformed into code vectors using embedding algorithms, resulting in lower

dimensionality and a higher capability of capturing potential relationship between sequences. As another

preprocessing step, they have compared the statistical properties of the opcode lengths of contracts that were

identified as vulnerable and safe. Having observed that the properties of the two categories differ significantly,

they have limited the input data to the LSTM to only include contracts that had a maximum opcode length of

1600, as a design choice. Further, the distribution of the dataset (labeled by MAIAN) was realized to be

imbalanced with non-vulnerable instances making up 99.03% of the dataset. Therefore, all vulnerable contracts

were grouped together and oversampled to achieve a balanced distribution in the training set using the Synthetic

Minority Oversampling Technique (SMOTE). The results indicated the superiority of a sequential learning

approach over symbolic analysis tools. The model achieved a vulnerability detection accuracy of 99.57% and 𝐹1

score of 86.04%.

In 2019, SoliAudit model was proposed to enhance the vulnerability detection of smart contracts [22]. Smart contract

source code in Solidity is converted into an opcode sequence to preserve the structure of executions. Each contract goes

through both a dynamic fuzzer and a vulnerability analyzer. The vulnerability analyzer consists of a static machine learning

classifier, which detects vulnerable classes, whereas the fuzzer (this term was introduced in an earlier paper) will parse the

Application Binary Interface (ABI) of a smart contract to extract its declared function descriptions, data types of their

arguments and their signatures. It will then return the smart contract inputs and functions that are identified as vulnerable.

The idea of a smart contract fuzzer was introduced by the authors of [22]. Vulnerability analyzer used a set of labels (13

vulnerabilities) determined by analysis tools such as Oyente and Remix. Before training the opcode sequence data using

these labels, two types of feature extraction methods were tested. These were namely, n-gram with tf-idf and word2vec.

The experiments were carried out by applying the former method together with algorithms such as Logistic Regression,

Support Vector Machine, K-Nearest Neighbor, Decision Trees, Random Forests and Gradient Boosting. The output from

the latter (word2vec) was a matrix and a Convolutional Neural Network (CNN) was preferred to train it as it considers the

inner structure of the matrix. However, this combination of feature extraction and training did not yield good results. The

best results for the classification of vulnerabilities were obtained using Logistic Regression with an accuracy of 97.3% and

𝐹1 score of 90.4%.

In 2019, similar to N. Lesimple, the authors in [23] explored the use of LSTM in the context of detecting smart contract

vulnerabilities. Specifically using Average Stochastic Gradient Descent Weight-Dropped LSTM (or AWD-LSTM), A.

Gogineni et al. attempted to showcase the reduced search time and increased accuracy of such a model, when compared

to traditional models. They focus on four known vulnerabilities and showcase a weighted average 𝐹𝑏𝑒𝑡𝑎 score of 90%

when compared against labels generated from traditional techniques. Similar to N. Lesimple’s results, the study is hindered

by it’s dependency on gathering labels from traditional methods, not allowing it measure it’s relative accuracy to such

methods. Though, this paper does identify that ML techniques can allow vulnerability detection techniques to produce

accurate results in a more efficient fashion, introducing a more scalable approach.

In 2020, Xing et al. [24] developed a new feature extraction method called slicing matrix, which consists of

segmenting the opcode sequences derived from smart contract bytecodes to extract opcode features from each one

Proc. of SPIE Vol. 12117 121170C-5

individually. The purpose of this segmentation is to separate useful and useless opcodes. The extracted opcode features

are then combined to form the slice matrix. To carry out a comparative analysis, three models were created. These were

namely Neural Network Based on opcode Feature (NNBOOF), Convolution Neural Network Based on Slice Matrix

(CNNBOSM), Random Forest Based on opcode Feature (RFBOOF) [24]. These three models were each tested on three

different vulnerability classification tasks: greedy contract vulnerability, arithmetic overflow/underflow vulnerability and

short address vulnerability. While RFBOOF achieved the best results in all three cases based on precision, recall and 𝐹1

evaluation metrics, CNNBOSM performed slightly better than NNBOOF in general. The authors mention that the slice

matrix feature need further exploring.

In 2020, In N. Lesimple et al.’s paper [12], the authors study the effect of deep learning models when used to identify

vulnerabilities in Smart Contracts. It specifically highlights the vulnerabilities relating to Domain Specific Languages

(DSL), which is defined as a language engineered to work solely on a single program. This is highly relevant for

blockchain, as Solidity was specifically designed for Ethereum, and therefore is a DSL. The authors then identify some

common vulnerabilities in traditional smart contract code, and examine issues with traditional vulnerability checking

techniques. Of these, one of the most important issues with traditional techniques is that the subset of bugs found are due

to the strict predefined inputs that are used. The paper proposes that, through the use of Deep Learning, the input can be

varied significantly to identify faults that the predefined static tests would otherwise not. The authors then propose a novel

approach, which analysis the line level code and trains a Deep Learning Neural Network to understand the control paths

and data transformations occurring in the code [12]. As an input to the model, to allow for the model to understand the

code on a line level, the authors used an Abstract Syntax Tree (AST) structure, which relates variables to one another,

marking their dependencies and transformations throughout the code. The author analyzed several Natural Language

Processing techniques, and Recurrent Neural Networks, and eventually landed on using an LSTM network to train their

model. They found that LSTM’s outperformed most RNN models, and due to the vast variety in code syntax, the NLP

techniques were unable to interpret many situations, since the code and inputs were inconsistently structured. Their results

were quite accurate, but it is important to note that the results were tested against results from a traditional model that they

were actually attempting to replace. If this paper could acquire a test set of vulnerabilities that were not acquired through

the use of a traditional method, the results would be more poignant.

In 2021, Liu Z. et al. proposed a combining GNN and expert knowledge based machine learning model for detecting

various smart contract vulnerabilities [25]. A graph neural network (GNN) is a deep learning method, where the principle

is to perform inference on data described by graphs. In computer science, a graph is a data structure consisting of two

components: nodes (vertices) and edges. Researches have proven that written programs can be converted to symbolic

graph representation, without disrupting semantic relationship between programming elements. Thus, smart contract codes

can be represented as contract graphs. In the experiment, ESC (Ethereum Smart Contracts) and VSC (VNT chain Smart

Contracts) real world datasets (containing 320,000 contracts), where ESC was used to evaluate timestamp dependence

vulnerabilities, while contracts from VSC is utilized for infinite loop vulnerabilities. The proposed model consists of two

different parallel processes (Security pattern extraction and contract graph extraction) at the beginning, and the combining

layer merged patterns in each section to find vulnerabilities, as shown in figure 3. First, a feed-forward neural network

generates the pattern feature for extracting security patterns from the contract’s source code. They have used an open-

sourced tool to extract the expert patterns from smart contract functions. The second process (message propagation phase)

is to create a GNN to achieve a contract graph. Inside the GNN model, nodes were the program elements (i.e., function),

where edges represented the flow (i.e., next function to be executed) of each program elements. Later, unwanted nodes

and edges are removed based on a node elimination strategy. As a preprocessing method, the authors casted rich control

and data flow semantics of the source code into a contract graph. After this step, they designed a node elimination stage

to highlight critical nodes by normalizing the graph. These two parallel processes were combined using vulnerability

detection phase, where both extracted features are combined convolution and full-connected layer. In experiment, the

proposed model is compared with non-ML-based security detection algorithms, namely Oyente, Myhrill, Smartcheck,

Securify, and Slither. Each algorithm and the proposed model performed a search of several vulnerabilities (re-entrancy,

timestamp dependence, and infinite loop vulnerabilities) of each function in the source code. The proposed algorithms

(CGE) achieved 89% accuracy on finding re-entrancy and timestamp dependence type of vulnerabilities, and 83%

accuracy on detecting infinite loop vulnerability [25].

Proc. of SPIE Vol. 12117 121170C-6

Figure 3. The process of vulnerability detection for the proposed combining GNN and expert knowledge model [25].

In 2021, Eth2Vec model is proposed to deficiency in current vulnerability detection tools when a code is rewritten. In

programming languages, a code rewrite is reimplementing a source code’s functionality without reusing it. When the smart

contract codes are rewritten, detecting vulnerabilities become harder. The authors first converted each smart contract

source code into EVM bytecodes. From the bytecode, the authors extracted only valuable information (i.e., function id,

list of callee functions etc.) for vulnerability detection. As the last process, a neural network structure is used to catch any

vulnerabilities in the source code. After testing the proposed model on 500 contracts, the Eth2Vec model was able to detect

vulnerabilities with a 77% precision even though the contracts are rewritten.

In 2021, O. Lutz et al. [13] introduce yet another method of detecting vulnerabilities within smart contracts. The

authors propose a solution entitled ESCORT, wherein they use a Deep Neural Network model to learn the semantics of

the input smart contract, and learn specific vulnerability types based on the found semantics. The goal of the ESCORT

model is to overcome the scalability and generalization limitations of traditional non-DNN models. Experimental results

of this paper yielded an F1 accuracy score of 95% on six found vulnerability types, with a detection time of 0.02 seconds

per contract. With such quick detection times, scalability is more easily achieved, satisfying one of the author’s goals.

Then, through the use of transfer learning, the ESCORT model slightly overcomes the issues found in other papers, such

as Y. Xu or N. Lesimple’s models [20-21], where newfound vulnerabilities can be realized by the model. Unfortunately,

it is rather difficult to obtain interpretability from such models, and though new vulnerabilities may be found,

understanding their cause remains to be exceedingly difficult.

In 2021, Sun et al. have attempted to detect the following vulnerabilities: re-entrancy, arithmetic issues (integer

overflow/underflow) and timestamp dependence using machine learning [20]. As a common prerequisite step, some stack-

operating instructions were truncated into more general forms (e.g., SWAP1, SWAP2, …, SWAPn. → SWAPx) to account

for variations in instructions among different compilers. Following this, opcodes were separated into 9 categories based

on their functions, as a label normalization step. As in [22] a word2vec transformation of the opcode sequences, preceding

the convolutional layers, was performed. In addition to the pooling and softmax layers that commonly follow convolutional

layers, this paper introduces an additional self-attention layer. The purpose of the self-attention layer is to create a

connection between adjacent words in the obtained feature matrix since one-hot encoders that were used to encode each

opcode instruction are just mere representatives and do not capture any functional similarity between them [20]. As a

result, the word embedding process has been enhanced through the use of self-attention. When compared to the

vulnerability detection performance of [22], they have both used a CNN but [22] used a word2vec embedding whereas

this paper employed an attention mechanism, which is the likely reason that they obtained better results. obtained better

results. The main improvement of the created model over the existing static analyzers such as Oyente and Mythril is that

it can achieve comparable performance in much less time.

Proc. of SPIE Vol. 12117 121170C-7

Figure 4. Model Overview of SoliAudit [22].

3.4 Classical Machine Learning Models

In this literature review, a classical machine learning model is referred to any method that does not employ deep or

ensemble learning. They have a simpler internal architecture and require structured data to learn the pattern of the given

input vector.

In 2019, Pouyan et al. employed popular supervised ML models to classify vulnerabilities in 1000 smart contracts [7].

The dataset was built collecting 1,013 smart contracts from Etherscan, where 80% was used for training and the remaining

was used for testing purposes. In order to label each contract based on its source code’s character, they used three different

feature extraction techniques: abstract syntax tree (AST), control flow graph (CFG), and Static code analysis. The extracted

features were grouped in two: features that represents execution path (e.g., function calls) and were directly added to the

control flow graph. The authors used Slither and Mythrill to assign labels to each contract. 36 types of vulnerabilities were

used to label each contract in test and train set. Vulnerability detection process was performed with common ML models:

Support Vector Machine (SVM), Neural Network (NN), Random Forest (RF), and Decision Tree (DT). After training each

model with training set, they were ranked based on the following evaluation metrics: accuracy, recall, F1, and precision.

Due to the results, ML models were be able to identify 16 vulnerabilities among 36 with high performance. It was found

that some specific ML models were more successful in finding certain vulnerabilities. For example, SVM model was

successful of finding integer outflow, while NN achieved superior results detecting re-entrancy vulnerability. Due to the

article’s summary, it was proven that extracted features of smart contracts can be passed to any popular ML model for

vulnerability detection. Also, it is important to note that static code analyzers’ execution time (7,311 seconds) was

drastically slower than any ML model (0.32 seconds) [7].

In 2021, a vulnerability and transaction behaviour-based detection is proposed [26]. In this work, the authors built a

model that correlates malicious activities, and the vulnerabilities present in smart contracts. In respect to strength of the

correlation unsupervised ML models (K-means and HDBSCAN) assign a severity score to each smart contract. The model

was trained to detect suspects among benign smart contracts. The aim of the research was to test their hypothesis, which

was “the transaction behavior is a more critical factor in identifying malicious smart contracts than vulnerabilities in the

smart contract.” Thus, they brought a different perspective to the literature of smart contracts vulnerability detection.

In 2021, Y. Xu et al.’s paper introduced two ‘novel’ smart contract vulnerability detecting approach using both a K-

Nearest Neighbors (KNN) model and a Stochastic Gradient Descent (SGD) model [16]. Identifying some common

vulnerabilities identified by traditional methods today, they attempt to use each of the machine learning models to identify

eight of the most prominently recognized traditional vulnerability types: re-entrancy, arithmetic, access control, denial of

service, unchecked low level calls, bad randomness, front running, and denial of service. As with N.Lesimple’s paper [23],

the input to their model uses an AST structure, allowing the model to gather line by line information about the smart

contract code. The labels for the vulnerabilities were identified using traditional methods. The paper notes high accuracy,

precision and recall, for four of the eight vulnerabilities. The other four did not have enough samples in the dataset, and

the corresponding results were recognized as inconclusive. As with the N. Lesimple paper, the test set was created from

results from using traditional methods, indicating that the authors were unable to illustrate how the KNN model differed

from traditional techniques.

3.5 Ensemble Learning Models

Ensemble learning is a combination of multiple machine learning algorithms in an effort to increase the generalizability

of the final outcome by fusing each model’s individual outputs. Therefore, the objective of ensemble learning is to

compensate other’s weaknesses and ultimately achieve a greater performance.

Proc. of SPIE Vol. 12117 121170C-8

In 2021, ContractWard model is proposed as a faster alternative for Oyente [27]. The dataset consisted of 49502

smart contracts, where each of them contained six possible vulnerabilities: integer overflow/underflow, transaction

ordering dependency, call stack depth attack, timestamp dependency, and re-entrancy vulnerability. Each contract’s

source code is converted to opcodes. On average, a smart contract contains 4364 opcode elements with 100 types of

opcodes in total. After the simplification process, there were only 50 opcode types left. Due to that reason, the authors

wrapped opcodes with similar functionalities in a same category, and ultimately simplified features in the dataset. Later,

they used n-gram technique (sliding window of binary-byte size) to track relations of each opcodes, since they assume

that the operations have higher relation with its neighbors. Oyente was used to assign multi label to each contract. After

the labeling process, the researchers encountered class-imbalance problem, due to rarity of some vulnerabilities. They

employed synthetic minority oversampling technique to extend the number of minority class. The training process

adopted 5 candidate ML models: eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Random

Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbour (KNN). In evolution stage, Micro-F1 and Micro-

F1 (variations of F1 metric) is utilized to rank the predictors. The XGBoost model showed a robust performance by

achieving over 96% F1, Micro-F1, and Macro-F1score.

In 2021, Esghie et al. proposed a novel monitoring framework (named as Dynamit) to uncover re-entrancy

vulnerabilities in Ethereum smart contracts [28]. The novelty of the proposed model is that it does not observe the

contract’s code to make the prediction. Instead, their model relied on transaction metadata and balance data from

blockchain system. Furthermore, additional to vulnerability detection, they were be able to get an execution trace that

reproduces the attack. The framework has two main processes: monitoring transaction of the smart chain (the monitor)

and detecting re-entrancy vulnerability (the detector). The monitor constantly listens to Ethereum blockchain client to

fetch information about desired transactions by utilizing Web3js (Ethereum JavaScript API). Total of four different

features are being extracted by the monitor: gas usage of transaction, contract 1 & 2 balance differences, and average call

stack depth. The balance difference feature is essentially the balance of the contract’s address before and after execution

of the transaction. The average call stack depth feature represents the measure of recursive external calls invoking

contract’s function. In the study, the candidate predictors were popular ML models: Random Forest (RF), Naïve Bayes,

Logistic Regression and K-Nearest Neighbours (KNN). At total, 105 transactions monitored by each model, where 53 of

them were benign and 52 were harmful transactions and each transaction was associated with a label. After training and

testing each models, RF model achieved the best classification score by detecting re-entracy vulnerability with 86%

accuracy, 82% f1 score, and 74% recall. In order to test the validity of the Dynamit framework, the authors altered the

smart contracts as well, where RF model (as a detector) achieved 94% accuracy, 93% f1 score and 94% recall.

In 2021, Y. Xue et al. [29] explores the concept of cross-contract vulnerabilities, which they posit are

overlooked by most other vulnerability detection methods. Cross-contract vulnerabilities are “exploitable bugs

that manifest in the presence of more than two interacting contracts” [29]. The complications of such an analysis

arise when three or more contracts are interconnected, and this results in a highly non-trivial analysis to detect

vulnerabilities amongst the connections. Rather than acquiring a fully labelled data set (of both benign and

malware samples), the authors here focused on data paths that they knew were benign, and allowed their novel

fuzzing framework approach, xFuzz, detect vulnerabilities in the data paths where malware might exist. The

results presented show that their novel xFuzz approach detected 15 newly discovered vulnerabilities, that had not

been detected by traditional static techniques. Furthermore, their approach was efficient, taking only 20% of the

time than other fuzzing tools, while detecting almost twice as many vulnerabilities. The authors of this paper

addressed several novel topics which prove the usefulness of certain ML techniques (tree-based models) when

applied to detecting contract vulnerabilities: the efficiency of a reduced space fuzzing technique, and the

effectiveness of cross-contract analysis, the latter of which is typically a highly complex issue, best handled by

state-of-the-art ML techniques.

4. CONCLUSION

In today’s world, blockchain has become an increasingly prevalent method of the distribution of information and

currency. It’s ability to transfer information both quickly and transparently, makes it an ideal method to track orders,

transfer payments, and perform many other peer-to-peer transactions. Smart contracts are an integral component of all

blockchain transactions. These contracts automatically execute the transaction of information, based on a set of

immutable and publicly accessible instructions, so all parties can be confident in the outcome. Unfortunately, these

contracts are subject to many kinds of vulnerabilities. These vulnerabilities have led to many malicious attacks, such as

Proc. of SPIE Vol. 12117 121170C-9

TheDAO attack, which resulted in a loss of approximately $10 billion USD. As a result, methods to detect and correct

these vulnerabilities are constantly being developed.

Some early methods, including Oyente and SmartCheck were introduced, and found a set list of vulnerabilities

based upon predefined pattern detection methods. Though these early methods were successful in identifying the list of

known vulnerabilities, the solutions were not robust to newer threats, as the ruleset upon which the analysis was based

would have to be manually updated to reflect the newfound vulnerabilities. To adapt to the dynamic nature of

vulnerabilities in smart contracts, machine learning techniques were explored, to attempt to outperform these traditional

methods.

In this paper, we explored multiple machine learning techniques to identify vulnerabilities in smart contracts.

Amongst them, deep learning algorithms were used in a variety of ways, with different types of input that allowed the

models to identify vulnerabilities that the traditional methods sometimes could not. The input often consisted of a means

to derive a mapping between the variables in the smart contract code, which allowed the models to detect the

relationships between variables, and identify vulnerable structures and variable connections. The many reviewed uses of

deep learning algorithms varied from one another by their design of the input structure, and these through their input

design, the models were able to recognize different vulnerabilities in a myriad of ways. The reviewed methods utilizing

classical machine learning methods and ensemble learning methods were largely developed in a similar fashion: to

design a unique input structure for the model, to provide it with as much information relating to the structure and

purpose of the smart contract as possible. The structure of the models themselves changed in each of the reviewed cases,

though the models accuracy and effectiveness was largely dependent on the structure of the model’s input. Examples of

the input structures included raw opcode, sets of function inputs and outputs, Abstract Syntax Trees (AST), the

transaction metadata and many others. One of the largest benefits of this wide variety in allowed input structures, is that

implementer is not dependent on a specific type of information. For instance, if an individual cannot easily gain access to

the smart contract source code, they can still utilize the transaction metadata to effectively detect vulnerabilities.

Generally, it was found that the machine learning models outperformed the traditional methods in their efficiency, and

matched their effectiveness.

Throughout this analysis, several faults were also noted for existing machine learning implementations. The first

was the common labelling techniques used, which used traditional methods to label their input data. Most of the

suggested models relied on supervised models, meaning labelled data was required for the model to train. To acquire the

labels, to recognize the smart contracts as vulnerable or benign, traditional methods such as Oyente were used. As a

result, the machine learning models were attempting to recognize vulnerabilities that were already interpretable through

traditional methods. To improve this, manual detection of vulnerabilities should be implemented, or more unsupervised

approaches should be explored. A second flaw found in many of the review approaches, was the inability for the models

to provide interpretability. Due to the nature of machine learning models, sometimes the patterns found cannot be

explained, and as a result, if a contract is found to be vulnerable, it becomes impossible to explain why. This is

especially true when dealing with unsupervised approaches, as the models may identify vulnerabilities in code, but not

have a defined labels to explain to any human why the contract was vulnerable. Since interpretability is an extremely

important requirement when dealing with identifying vulnerabilities, further thought will have to be put into

unsupervised approaches, to ensure the user knows why their contract is vulnerable. In conclusion, machine learning

techniques provide many efficient and effective methods to identify smart contract vulnerabilities with a variety of input

structures, but further research should be conducted in this space to provide interpretable solutions that outperform the

traditional non-ML methods.

REFERENCES

[1] J. A. Kroll, I. C. Davey, and E. W. Felten, “The Economics of Bitcoin Mining, or Bitcoin in the Presence of

Adversaries,” 2013.

[2] M. Bartoletti and L. Pompianu, “An Empirical Analysis of Smart Contracts: Platforms, Applications, and Design

Patterns BT - Financial Cryptography and Data Security,” 2017, pp. 494–509.

[3] W. Zou et al., “Smart Contract Development: Challenges and Opportunities,” IEEE Trans. Softw. Eng., vol. 47,

no. 10, pp. 2084–2106, 2021, doi: 10.1109/TSE.2019.2942301.

[4] N. Atzei, M. Bartoletti, and T. Cimoli, “A Survey of Attacks on Ethereum Smart Contracts (SoK),” in Principles

of Security and Trust, 2017, pp. 164–186.

[5] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Bus. Inf. Syst. Eng., vol. 59, no. 3, pp. 183–187,

Proc. of SPIE Vol. 12117 121170C-10

2017, doi: 10.1007/s12599-017-0467-3.

[6] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. M. Leung, “Decentralized Applications: The

Blockchain-Empowered Software System,” IEEE Access, vol. 6, pp. 53019–53033, 2018, doi:

10.1109/ACCESS.2018.2870644.

[7] P. Momeni, Y. Wang, and R. Samavi, “Machine Learning Model for Smart Contracts Security Analysis,” 2019

17th Int. Conf. Privacy, Secur. Trust, pp. 1–6, 2019, doi: 10.1109/PST47121.2019.8949045.

[8] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “ReGuard: Finding Reentrancy Bugs in Smart

Contracts,” in 2018 IEEE/ACM 40th International Conference on Software Engineering: Companion (ICSE-

Companion), 2018, pp. 65–68.

[9] B. Jiang, Y. Liu, and W. K. Chan, “ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection,” in

2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE), 2018, pp. 259–269,

doi: 10.1145/3238147.3238177.

[10] P. Tantikul and S. Ngamsuriyaroj, “Exploring Vulnerabilities in Solidity Smart Contract.,” in ICISSP, 2020, pp.

317–324.

[11] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Systematic Review of Security Vulnerabilities in

Ethereum Blockchain Smart Contract,” IEEE Access, vol. 10, pp. 6605–6621, 2022, doi:

10.1109/ACCESS.2021.3140091.

[12] N. Lesimple, “Exploring Deep Learning Models for Vulnerabilities Detection in Smart Contracts,” 2020.

[13] O. Lutz et al., “ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep Neural Network and

Transfer Learning.” 2021.

[14] X. Liang Yu, “Oyente,” GitHub, 2017.

[15] E. Marchenko, “SmartCheck,” GitHub, 2020, [Online]. Available: https://github.com/smartdec/smartcheck.

[16] Y. Xu, G. Hu, L. You, and C. Cao, “A Novel Machine Learning-Based Analysis Model for Smart Contract

Vulnerability",” Secur. Commun. Networks, vol. ID 5798033, p. 12, doi: 10.1155/2021/5798033.

[17] B. Wang, H. Chu, P. Zhang, and H. Dong, “Smart Contract Vulnerability Detection Using Code Representation

Fusion,” in 2021 28th Asia-Pacific Software Engineering Conference (APSEC), 2021, pp. 564–565, doi:

10.1109/APSEC53868.2021.00069.

[18] F. Contro, M. Crosara, M. Ceccato, and M. D. Preda, “EtherSolve: Computing an Accurate Control-Flow Graph

from Ethereum Bytecode,” in 2021 IEEE/ACM 29th International Conference on Program Comprehension

(ICPC), 2021, pp. 127–137, doi: 10.1109/ICPC52881.2021.00021.

[19] S. Bistarelli, G. Mazzante, M. Micheletti, L. Mostarda, D. Sestili, and F. Tiezzi, “Ethereum smart contracts:

Analysis and statistics of their source code and opcodes,” Internet of Things, vol. 11, p. 100198, 2020, doi:

https://doi.org/10.1016/j.iot.2020.100198.

[20] Y. Sun and L. Gu, “Attention-based Machine Learning Model for Smart Contract Vulnerability Detection,” J.

Phys. Conf. Ser., vol. 1820, p. 12004, 2021, doi: 10.1088/1742-6596/1820/1/012004.

[21] W. J.-W. Tann, X. Han, S. Gupta, and Y.-S. Ong, Towards Safer Smart Contracts: A Sequence Learning

Approach to Detecting Vulnerabilities. 2018.

[22] J.-W. Liao, T.-T. Tsai, C.-K. He, and C.-W. Tien, “SoliAudit: Smart Contract Vulnerability Assessment Based

on Machine Learning and Fuzz Testing,” in 2019 Sixth International Conference on Internet of Things: Systems,

Management and Security (IOTSMS), 2019, pp. 458–465, doi: 10.1109/IOTSMS48152.2019.8939256.

[23] A. K. Gogineni, S. Swayamjyoti, D. Sahoo, K. K. Sahu, and R. Kishore, “Multi-Class classification of

vulnerabilities in Smart Contracts using AWD-LSTM, with pre-trained encoder inspired from natural language

processing,” CoRR, vol. abs/2004.0, 2020, [Online]. Available: https://arxiv.org/abs/2004.00362.

[24] C. Xing, Z. Chen, L. Chen, X. Guo, Z. Zheng, and J. Li, “A new scheme of vulnerability analysis in smart

contract with machine learning,” Wirel. Networks, Jul. 2020, doi: 10.1007/s11276-020-02379-z.

[25] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, Smart Contract Vulnerability Detection using Graph

Neural Network. 2020.

[26] R. Agarwal, T. Thapliyal, and S. K. Shukla, “Vulnerability and Transaction behavior based detection of

Malicious Smart Contracts,” CoRR, vol. abs/2106.1, 2021, [Online]. Available: https://arxiv.org/abs/2106.13422.

[27] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “ContractWard: Automated Vulnerability Detection

Models for Ethereum Smart Contracts,” IEEE Trans. Netw. Sci. Eng., vol. 8, pp. 1133–1144, 2021.

[28] M. Eshghie, C. Artho, and D. Gurov, “Dynamic Vulnerability Detection on Smart Contracts Using Machine

Learning,” in Evaluation and Assessment in Software Engineering, 2021, pp. 305–312, doi:

10.1145/3463274.3463348.

Proc. of SPIE Vol. 12117 121170C-11

[29] Y. Xue et al., “Machine Learning Guided Cross-Contract Fuzzing,” CoRR, vol. abs/2111.1, 2021, [Online].

Available: https://arxiv.org/abs/2111.12423.

Proc. of SPIE Vol. 12117 121170C-12

