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ABSTRACT  

Blockchain applications go far beyond cryptocurrency. As an essential blockchain tool, smart contracts are executable 

programs that establish an agreement between two parties. Millions of dollars of transactions attract hackers at a hastened 

pace, and cyber-attacks have caused large economic losses in the past. Due to this, the industry is seeking robust and 

effective methods to detect vulnerabilities in smart contracts to ultimately provide a remedy. The industry has been 

utilizing static analysis tools to reveal security gaps, which requires an understanding and insight over all possible 

execution paths to identify known contract vulnerabilities. Yet, the computational complexity increases as the path gets 

deeper. Recently, researchers have been proposing ML-driven intelligent techniques aiming to improve the efficiency and 

detection rate. Such solutions can provide quicker and more robust detection options than the traditionally used static 

analysis tools. As of this publication date, there is currently no published survey paper on smart contract vulnerability 

detection mechanisms using ML models. In order to set the ground for further development of ML-driven solutions, in 

this survey paper, we extensively reviewed and summarized a wide variety of ML-driven intelligent detection mechanism 

from the following databases: Google Scholar, Engineering Village, Springer, Web of Science, Academic Search Premier, 

and Scholars Portal Journal. In conclusion, we provided our insights on common traits, limitations and advancement of 

ML-driven solutions proposed for this field.  
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1. BRIEF INTRODUCTION  

A blockchain is a digitally distributed and shared transaction ledger, shared amongst the nodes of a computer network 

(miners). All nodes are governed by a consensus protocol, which refers of transaction rules and states to achieve agreement 

and security across computer network [1]. By this inherent design, the information on blockchain (i.e., transaction data) 

are immutable and indelible.  

Smart contracts are computer programs or transaction protocols stored on blockchain that execute when 

predetermined conditions are met. These contracts are just a collection of codes and data (state), which resides at a specific 

address on the Ethereum blockchain. They are commonly being used to automate an execution of an agreement without 

needing a third party (i.e., bank or government). For instance, contracts used for financial applications are typically for 

managing, gathering or distributing an asset. Additionally, its immutability feature makes it a perfect option to store 

important data (i.e., ownership, provenance) for notary purposes. The majority of smart contracts run on Ethereum 

blockchain (market capitalization exceeding $400 billions), and they are being powered by a programming language 

known “Solidity” [3]. The scripts typically contain simple conditional statements (“if/when...then…”) for managing the 

given assets, similar to a paper contract. Each piece of code in the smart contract is executed sequentially and no parties 

can influence the code execution. When predetermined conditions are met, the execution process is done across a network 

of computers. Nowadays, decentralized applications (DApps) operate autonomously, by providing a user interface as 

frontend and utilize smart contracts as the backend. DApps promises more transparency compared to the conventional 

applications. For example, intentional cheating in local places in an organization cannot happen in a transparent ecosystem, 

since the ledgers are publicly accessible. However, since these contracts can manage billions of dollars of virtual assets, 

they become an attractive target for hackers. In June 2016, malicious individuals attacked decentralized application 

organization’s (DAO) contracts by utilizing re-entrancy vulnerability to steal 3.6 million Ether ($10 billion US Dollars) 
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[4]. Thus, a simple developer negligence in smart contracts can cause the loss of millions of dollars. Due to that reason, 

development for effective vulnerability detection tools has been ongoing, as the utility of DAOs are increasing. The 

conventional statistical analysis tools for detecting weaknesses in smart contracts purely rely on manually defined patterns, 

which are likely to be error-prone and can cause them to fail in complex situations. As a result, expert attackers can easily 

exploit these manual checking patterns. To minimize the risk of the attackers, machine learning powered systems provide 

more secure solutions relative to hard-coded static checking tools.  

Machine learning (ML) is a branch of artificial intelligence, which uses algorithms to automatically learn by observing 

prior data, and it has a capability of improving itself, similar to a human being. ML models are considered as black boxes 

since the end-user does not necessarily fully know how the model makes its decision. Therefore, ML technology is a 

feasible solution for detection of vulnerabilities in smart contracts. Many researches have inclined towards ML-driven 

solutions for security issues [12]-[27].  

Throughout our research, we noticed the future direction of the literature on smart contract vulnerability detection, 

and our goal is to provide guidance for new developments in this field. In the academia of smart contracts, there is no 

published survey paper on ML-driven smart contract vulnerability detection models, as of the date of this paper’s 

publication. In order to set the ground for further development of ML method on smart contract vulnerability detection, in 

this survey paper, we reviewed many ML-driven intelligent detection mechanism on the following databases: Google 

Scholar, Engineering Village, Springer, Web of Science, Academic Search Premier, and Scholars Portal Journal. We 

provided our insights on limitations and advancement of ML-driven solutions.  

 

2. SECURITY ISSUES OF SMART CONTRACTS 

In this section, we introduce common key vulnerabilities in smart contracts that can be exploited by malicious individuals. 

In order to provide a finer demonstration of vulnerabilities, a further information on blockchain technology and smart 

contract is provided in the initial portion of this section (section 2.1). Later, we described common vulnerabilities that ML 

models addressed (section 2.2). 

2.1 Overview of Smart Contract Technology 

A blockchain is a chain of blocks (records), where the blocks are linked (chained) and secured utilizing cryptography. A 

simple analogy of blockchain is a ledger, where blocks are similar to pages holding records. Each block contains the 

following records: a transaction data, a time stamp, and the hash value of the previous block (parent block) and a nonce, 

which is a random number for verifying the hash [5]. The blockchain is stored on a network of nodes (computers), where 

all nodes have the copy of the blockchain. In other words, all nodes (miners) is required to store blockchain data on their 

local system while synchronizing all of their block with those stored by other nodes based on a consensus model [6]. Due 

to that reason, everything inside the blockchain is publicly visible, in other words, transparent. Once a block is on the 

blockchain, it can’t be changed unless all nodes are agreed to (Consensus mechanism). The most popular public blockchain 

platform for smart contracts is Ethereum. Also, Ethereum has its own currency known as Ether and it can be transferred 

between accounts same as the other currencies. Ethereum network is aimed to provide a decentralized Turing-complete 

machine (Ethereum Virtual Machine) by executing scripts using public nodes located in all around the world. Through 

Ethereum, one can use programming languages (e.g., Solidity) to build smart contracts. Before deploying the contract, the 

contract’s written language is converted to Ethereum bytecode, where the converted bytecode is deployed to the Ethereum 

blockchain. In order to deploy the contract to the blockchain, the miners must be compensated for the computing energy 

required to validate the transaction and execute the smart contracts code, where the fee is named as gas fee [3].  

Due to nature of blockchain (i.e., immutability), smart contracts are relatively more susceptible to vulnerabilities than 

other digital systems [7]. First, the second a contract is on a blockchain, any other contracts or individuals can invoke it. 

Thus, the input combination can be anything, and there will be always an untested execution path of the deployed contract. 

Therefore, in testing, covering as many of input combination as possible is critical. Secondly, if a deployed contract 

contains a vulnerability, the developer cannot update the contract, since it is stored in an immutable ledger of blockchain.  

2.2 Smart Contract Vulnerabilities 

Re-entrancy vulnerability is occurred when a function invokes an untrusted contract [8]. Some smart contracts need to 

have interaction between external contracts to complete the transaction. In that case, a user can invoke a deployed smart 

contract by utilizing deployed contract’s unique address. All smart contracts have an unnamed function known as a fallback 

function, in which no argument nor return value exist. In solidity, the call function transfers Ethers by invoking a method 
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in source code or a method in an external contract. For instance, if a call method is being used to transfer an asset to 

sender’s account, it will automatically call invoke sender’s fallback function. This process does not have any limitation 

for call method invocation and the fallback function can be executed until allocated gas amount is consumed. Figure 1 

shows a code snippet written in Solidity, which contains two simple smart contracts: victim and attacker [8]. Victim 

contract acts like a bank, where it has a withdraw function for transferring Ether to the caller (line 4). At the end of the 

transaction, the caller’s fallback function is invoked (line 10). The attacker utilizes the following scenario to steal Ether 

from the callee: (1) Attacker starts the transaction by calling victim’s withdraw function; (2) victim executes the transaction 

(line 4) and invokes the fallback function (line 10-12); (3) The fallback function recursively calls the withdraw function 

again and again (re-entrancy); (4) Until the exit condition is satisfied, victim’s withdraw function sends ether to the 

attacker. 

 

 
Figure 1. A code snippet to demonstrate re-entrancy vulnerability [8]. 

In some cases, the developer sets condition based on the block timestamp to execute some critical operations. When, 

a miner mines a new block, a timestep must be provided along the other information, and the block timestamp is linked to 

the miner’s local computer or server’s clock. Due to the blockchain’s nature, the timestamp of a block can vary up to 900 

seconds with other miner’s timestamps [9]. Therefore, if a smart contract utilizes “now” to invoke a critical method, then 

a malicious miner can manipulate the code by alternating the timestamp, namely timestamp dependence vulnerability. 

An infinite loop vulnerability is a common logic error in all programming languages. These errors usually occur in a 

function with looping statements (for, while, or self-invocation loop) without a proper exit condition, known as infinite 

loop. In this case, the deployed smart contract would run until it runs out its gas, without fully completing its functionality. 

A block on a blockchain consists of past transactions, and the blockchain state is updated numerous times during each 

period. There is no guarantee that the given transaction will be completed in sequence. So, the actual state of the smart 

contract is unpredictable. Therefore, if two independent transactions are executed to invoke the same smart contract, which 

then the order of the execution is decided by the miners. If the attacker is the miner, then the transactions can be rearranged 

in such a way that the result would benefit him/her, namely transaction ordering dependency vulnerability [10]. 

An integer overflow/underflow vulnerability can occur, when a variable’s value or size exceeds its upper or lower 

limits during a computation. For instance, if an account’s balance is at its lower or upper limit, then the variable’s value is 

reset to zero. In the past, an anonymous hacker drained off 2000 Ethereum (is worth more than $2.3 million) by 

manipulating this vulnerability [11]. 

 

3. MACHINE LEARNING METHODS FOR VULNERABILITY DETECTION 

 
3.1 Feature Engineering for Smart Contracts 

Feature engineering is the process of selecting, extracting, and transforming raw data into features that contains more 

information, so that the ML model can recognize given input vector’s pattern. Due to that reason, various feature extraction 

methods are being used with robust and viable ML methods. For smart contracts, various feature engineering techniques 
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are being used to represent internal dynamics of the source code. Here, we briefly explained common feature engineering 

techniques that has been used along with intelligent ML methods to increase the visibility of essential patterns. 

Abstract syntax tree (AST) is a data structure that being used to reason a written language. The source code is 

converted using compilers into a data structure tree, where each node represents a syntactical element of the source code, 

and the tree shaped diagram displays the flow of each element inside the written program. Without disrupting the structured 

information, this method can provide details of the source code (e.g., number of functions) [17]. By analyzing a source 

code’s AST, a ML model can identify common traits of a secure or weak contract.  

Control flow graph (CFG) is a graph notation for representing all possible execution paths a program can handle. 

Usually, a smart contract’s opcode is utilized to analyze the execution paths of the program. The CFG method is mainly 

used for compile optimization and static analysis tools. Inside the graph, each node represents a basic block, where a jump 

in the source code starts a block, with the same principle, a jump target ends a block [18]. Thus, inside a block no jumps 

are occurred. As a last element in the graph, directed edges represent the action of jumping in the source code.  

Opcode (operation codes) is a human readable representation of bytecodes. It is the portion of a machine language 

instruction that contains a list of tasks or operations to be executed by the computer [19].  

3.2 Existing Analysis Tools 

As blockchain and digital currency become ever-prevalent internationally, detecting vulnerabilities in smart contracts has 

become an important problem. Attacks such as the DAO bug [12] or the freezing bug in the Parity multisig (multisignature) 

wallet [13] cost blockchain users hundreds of millions of dollars. As a result, several security tools aimed to identify and 

prevent such vulnerabilities. One of the earliest methods created was called Oyente [14], which successfully identified 

vulnerabilities such as the DAO bug vulnerability across roughly smart 9,000 of 19,000 contracts. It uses symbolic 

execution on EVM bytecode to detect issues within smart contracts. Due to its early implementation, and static ruleset, 

many newer vulnerabilities are not detected by Oyente, and as a result, has been improved upon by countless other 

methods. Most conventional security tools are similar to Oyente, in that their ruleset is predefined and as a result, they will 

not automatically adjust when new vulnerabilities are introduced. A similar but improved version of Oyente evolved a few 

years later, when SmartCheck was introduced by E. Marchenko [15]. SmartCheck focuses solely on vulnerabilities for 

smart contracts written in Solidity, Ethereum’s base programming language. It runs analysis on the syntax and linguistics 

used within the smart contracts, and detects vulnerabilities based on XPath patterns [16]. Unfortunately, its reliability on 

predefined XPath queries pose a similar issue to Oyente, wherein the defined XPath patterns decide the accuracy and 

effectiveness of SmartCheck. Additionally, they leave little room for growth and dynamic analysis, since the defined 

patterns are static. As a result, many researchers are attempting to utilize the dynamic capabilities of machine learning to 

construct novel vulnerability detection techniques, that outperform such traditional methods. This paper aims to review 

these newly developed approaches. 

3.3 Deep Learning Models 

Deep learning is a subfield of machine learning, where the algorithms are inspired by neural networks (NN). These neural 

nets essentially attempt to mimic the working principle of a human brain. The main difference with a classical machine 

learning algorithm is the data type (unstructured data) that it requires, and the learning strategy that it uses.   

In 2018, Goswami et al. mentioned that while existing symbolic tools (e.g., Oyente) for analyzing vulnerabilities have 

proven to be efficient, their execution time increases significantly with depth of invocations in a smart contract [20]. They 

proposed an LSTM neural network model to detect vulnerabilities in ERC-20 smart contracts in an effort to produce a less 

time consuming and efficient alternative to symbolic analysis tools. The preprocessing steps followed in this paper were 

very similar to the methods used by [21]. The model was trained and tested on a dataset of 165,652 ERC-20 smart contracts, 

which consisted of bytecode data labeled by Maian and Mythril (statistical code analysis tools). The proposed model 

achieved 93.26% accuracy, 92% recall and an 𝐹1 score of 93% on the testing set. Further they have compared the time 

performance of their model to those of the symbolic analysis tools Maian and Mythril (static analysis tools). While their 

proposed model had a runtime of 15 seconds on a testing set of 5,000 random tokens, Maian and Mythril took 32,476 and 

9,475 seconds respectively. These results indicate the same type of improvement achieved over symbolic analysis tools as 

in [20]. 

Proc. of SPIE Vol. 12117  121170C-4



 

 
 

 

 

Figure 2. Model with Self-Attention + CNN Overview [20]. 

In 2018, Liao et al. have adopted a sequence learning approach to detect smart contract security threats [21]. 

Smart contract data was obtained from the Google Big Query Ethereum blockchain dataset. Ultimately, an LSTM 

model was trained on 620,000 contracts from this source. Once again, the derived opcodes from the contracts 

were represented as one-hot vectors. As this type of representation results in highly sparse and uninformative 

features, these vectors were transformed into code vectors using embedding algorithms, resulting in lower 

dimensionality and a higher capability of capturing potential relationship between sequences. As another 

preprocessing step, they have compared the statistical properties of the opcode lengths of contracts that were 

identified as vulnerable and safe. Having observed that the properties of the two categories differ significantly, 

they have limited the input data to the LSTM to only include contracts that had a maximum opcode length of 

1600, as a design choice. Further, the distribution of the dataset (labeled by MAIAN) was realized to be 

imbalanced with non-vulnerable instances making up 99.03% of the dataset. Therefore, all vulnerable contracts 

were grouped together and oversampled to achieve a balanced distribution in the training set using the Synthetic 

Minority Oversampling Technique (SMOTE). The results indicated the superiority of a sequential learning 

approach over symbolic analysis tools. The model achieved a vulnerability detection accuracy of 99.57% and 𝐹1 

score of 86.04%. 

In 2019, SoliAudit model was proposed to enhance the vulnerability detection of smart contracts [22]. Smart contract 

source code in Solidity is converted into an opcode sequence to preserve the structure of executions. Each contract goes 

through both a dynamic fuzzer and a vulnerability analyzer. The vulnerability analyzer consists of a static machine learning 

classifier, which detects vulnerable classes, whereas the fuzzer (this term was introduced in an earlier paper) will parse the 

Application Binary Interface (ABI) of a smart contract to extract its declared function descriptions, data types of their 

arguments and their signatures. It will then return the smart contract inputs and functions that are identified as vulnerable. 

The idea of a smart contract fuzzer was introduced by the authors of [22]. Vulnerability analyzer used a set of labels (13 

vulnerabilities) determined by analysis tools such as Oyente and Remix.  Before training the opcode sequence data using 

these labels, two types of feature extraction methods were tested. These were namely, n-gram with tf-idf and word2vec. 

The experiments were carried out by applying the former method together with algorithms such as Logistic Regression, 

Support Vector Machine, K-Nearest Neighbor, Decision Trees, Random Forests and Gradient Boosting. The output from 

the latter (word2vec) was a matrix and a Convolutional Neural Network (CNN) was preferred to train it as it considers the 

inner structure of the matrix. However, this combination of feature extraction and training did not yield good results. The 

best results for the classification of vulnerabilities were obtained using Logistic Regression with an accuracy of 97.3% and 

𝐹1 score of 90.4%.  

In 2019, similar to N. Lesimple, the authors in [23] explored the use of LSTM in the context of detecting smart contract 

vulnerabilities. Specifically using Average Stochastic Gradient Descent Weight-Dropped LSTM (or AWD-LSTM), A. 

Gogineni et al. attempted to showcase the reduced search time and increased accuracy of such a model, when compared 

to traditional models. They focus on four known vulnerabilities and showcase a weighted average 𝐹𝑏𝑒𝑡𝑎 score of 90% 

when compared against labels generated from traditional techniques. Similar to N. Lesimple’s results, the study is hindered 

by it’s dependency on gathering labels from traditional methods, not allowing it measure it’s relative accuracy to such 

methods. Though, this paper does identify that ML techniques can allow vulnerability detection techniques to produce 

accurate results in a more efficient fashion, introducing a more scalable approach. 

In 2020, Xing et al. [24] developed a new feature extraction method called slicing matrix, which consists of 

segmenting the opcode sequences derived from smart contract bytecodes to extract opcode features from each one 
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individually. The purpose of this segmentation is to separate useful and useless opcodes. The extracted opcode features 

are then combined to form the slice matrix. To carry out a comparative analysis, three models were created. These were 

namely Neural Network Based on opcode Feature (NNBOOF), Convolution Neural Network Based on Slice Matrix 

(CNNBOSM), Random Forest Based on opcode Feature (RFBOOF) [24]. These three models were each tested on three 

different vulnerability classification tasks: greedy contract vulnerability, arithmetic overflow/underflow vulnerability and 

short address vulnerability. While RFBOOF achieved the best results in all three cases based on precision, recall and 𝐹1 

evaluation metrics, CNNBOSM performed slightly better than NNBOOF in general. The authors mention that the slice 

matrix feature need further exploring.  

In 2020, In N. Lesimple et al.’s paper [12], the authors study the effect of deep learning models when used to identify 

vulnerabilities in Smart Contracts. It specifically highlights the vulnerabilities relating to Domain Specific Languages 

(DSL), which is defined as a language engineered to work solely on a single program. This is highly relevant for 

blockchain, as Solidity was specifically designed for Ethereum, and therefore is a DSL. The authors then identify some 

common vulnerabilities in traditional smart contract code, and examine issues with traditional vulnerability checking 

techniques. Of these, one of the most important issues with traditional techniques is that the subset of bugs found are due 

to the strict predefined inputs that are used. The paper proposes that, through the use of Deep Learning, the input can be 

varied significantly to identify faults that the predefined static tests would otherwise not. The authors then propose a novel 

approach, which analysis the line level code and trains a Deep Learning Neural Network to understand the control paths 

and data transformations occurring in the code [12]. As an input to the model, to allow for the model to understand the 

code on a line level, the authors used an Abstract Syntax Tree (AST) structure, which relates variables to one another, 

marking their dependencies and transformations throughout the code. The author analyzed several Natural Language 

Processing techniques, and Recurrent Neural Networks, and eventually landed on using an LSTM network to train their 

model. They found that LSTM’s outperformed most RNN models, and due to the vast variety in code syntax, the NLP 

techniques were unable to interpret many situations, since the code and inputs were inconsistently structured. Their results 

were quite accurate, but it is important to note that the results were tested against results from a traditional model that they 

were actually attempting to replace. If this paper could acquire a test set of vulnerabilities that were not acquired through 

the use of a traditional method, the results would be more poignant. 

In 2021, Liu Z. et al. proposed a combining GNN and expert knowledge based machine learning model for detecting 

various smart contract vulnerabilities [25]. A graph neural network (GNN) is a deep learning method, where the principle 

is to perform inference on data described by graphs. In computer science, a graph is a data structure consisting of two 

components: nodes (vertices) and edges. Researches have proven that written programs can be converted to symbolic 

graph representation, without disrupting semantic relationship between programming elements. Thus, smart contract codes 

can be represented as contract graphs. In the experiment, ESC (Ethereum Smart Contracts) and VSC (VNT chain Smart 

Contracts) real world datasets (containing 320,000 contracts), where ESC was used to evaluate timestamp dependence 

vulnerabilities, while contracts from VSC is utilized for infinite loop vulnerabilities. The proposed model consists of two 

different parallel processes (Security pattern extraction and contract graph extraction) at the beginning, and the combining 

layer merged patterns in each section to find vulnerabilities, as shown in figure 3. First, a feed-forward neural network 

generates the pattern feature for extracting security patterns from the contract’s source code. They have used an open-

sourced tool to extract the expert patterns from smart contract functions. The second process (message propagation phase) 

is to create a GNN to achieve a contract graph. Inside the GNN model, nodes were the program elements (i.e., function), 

where edges represented the flow (i.e., next function to be executed) of each program elements. Later, unwanted nodes 

and edges are removed based on a node elimination strategy. As a preprocessing method, the authors casted rich control 

and data flow semantics of the source code into a contract graph. After this step, they designed a node elimination stage 

to highlight critical nodes by normalizing the graph. These two parallel processes were combined using vulnerability 

detection phase, where both extracted features are combined convolution and full-connected layer. In experiment, the 

proposed model is compared with non-ML-based security detection algorithms, namely Oyente, Myhrill, Smartcheck, 

Securify, and Slither. Each algorithm and the proposed model performed a search of several vulnerabilities (re-entrancy, 

timestamp dependence, and infinite loop vulnerabilities) of each function in the source code. The proposed algorithms 

(CGE) achieved 89% accuracy on finding re-entrancy and timestamp dependence type of vulnerabilities, and 83% 

accuracy on detecting infinite loop vulnerability [25]. 
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Figure 3. The process of vulnerability detection for the proposed combining GNN and expert knowledge model [25].  

In 2021, Eth2Vec model is proposed to deficiency in current vulnerability detection tools when a code is rewritten. In 

programming languages, a code rewrite is reimplementing a source code’s functionality without reusing it. When the smart 

contract codes are rewritten, detecting vulnerabilities become harder. The authors first converted each smart contract 

source code into EVM bytecodes. From the bytecode, the authors extracted only valuable information (i.e., function id, 

list of callee functions etc.) for vulnerability detection. As the last process, a neural network structure is used to catch any 

vulnerabilities in the source code. After testing the proposed model on 500 contracts, the Eth2Vec model was able to detect 

vulnerabilities with a 77% precision even though the contracts are rewritten. 

In 2021, O. Lutz et al. [13] introduce yet another method of detecting vulnerabilities within smart contracts. The 

authors propose a solution entitled ESCORT, wherein they use a Deep Neural Network model to learn the semantics of 

the input smart contract, and learn specific vulnerability types based on the found semantics. The goal of the ESCORT 

model is to overcome the scalability and generalization limitations of traditional non-DNN models. Experimental results 

of this paper yielded an F1 accuracy score of 95% on six found vulnerability types, with a detection time of 0.02 seconds 

per contract. With such quick detection times, scalability is more easily achieved, satisfying one of the author’s goals. 

Then, through the use of transfer learning, the ESCORT model slightly overcomes the issues found in other papers, such 

as Y. Xu or N. Lesimple’s models [20-21], where newfound vulnerabilities can be realized by the model. Unfortunately, 

it is rather difficult to obtain interpretability from such models, and though new vulnerabilities may be found, 

understanding their cause remains to be exceedingly difficult. 

In 2021, Sun et al. have attempted to detect the following vulnerabilities: re-entrancy, arithmetic issues (integer 

overflow/underflow) and timestamp dependence using machine learning [20]. As a common prerequisite step, some stack-

operating instructions were truncated into more general forms (e.g., SWAP1, SWAP2, …, SWAPn. → SWAPx) to account 

for variations in instructions among different compilers. Following this, opcodes were separated into 9 categories based 

on their functions, as a label normalization step. As in [22] a word2vec transformation of the opcode sequences, preceding 

the convolutional layers, was performed. In addition to the pooling and softmax layers that commonly follow convolutional 

layers, this paper introduces an additional self-attention layer. The purpose of the self-attention layer is to create a 

connection between adjacent words in the obtained feature matrix since one-hot encoders that were used to encode each 

opcode instruction are just mere representatives and do not capture any functional similarity between them [20]. As a 

result, the word embedding process has been enhanced through the use of self-attention. When compared to the 

vulnerability detection performance of [22], they have both used a CNN but [22] used a word2vec embedding whereas 

this paper employed an attention mechanism, which is the likely reason that they obtained better results. obtained better 

results. The main improvement of the created model over the existing static analyzers such as Oyente and Mythril is that 

it can achieve comparable performance in much less time.       
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Figure 4. Model Overview of SoliAudit [22]. 

3.4 Classical Machine Learning Models 

In this literature review, a classical machine learning model is referred to any method that does not employ deep or 

ensemble learning. They have a simpler internal architecture and require structured data to learn the pattern of the given 

input vector. 

In 2019, Pouyan et al. employed popular supervised ML models to classify vulnerabilities in 1000 smart contracts [7]. 

The dataset was built collecting 1,013 smart contracts from Etherscan, where 80% was used for training and the remaining 

was used for testing purposes. In order to label each contract based on its source code’s character, they used three different 

feature extraction techniques: abstract syntax tree (AST), control flow graph (CFG), and Static code analysis. The extracted 

features were grouped in two: features that represents execution path (e.g., function calls) and were directly added to the 

control flow graph. The authors used Slither and Mythrill to assign labels to each contract. 36 types of vulnerabilities were 

used to label each contract in test and train set. Vulnerability detection process was performed with common ML models: 

Support Vector Machine (SVM), Neural Network (NN), Random Forest (RF), and Decision Tree (DT). After training each 

model with training set, they were ranked based on the following evaluation metrics: accuracy, recall, F1, and precision. 

Due to the results, ML models were be able to identify 16 vulnerabilities among 36 with high performance. It was found 

that some specific ML models were more successful in finding certain vulnerabilities. For example, SVM model was 

successful of finding integer outflow, while NN achieved superior results detecting re-entrancy vulnerability. Due to the 

article’s summary, it was proven that extracted features of smart contracts can be passed to any popular ML model for 

vulnerability detection. Also, it is important to note that static code analyzers’ execution time (7,311 seconds) was 

drastically slower than any ML model (0.32 seconds) [7].  

In 2021, a vulnerability and transaction behaviour-based detection is proposed [26]. In this work, the authors built a 

model that correlates malicious activities, and the vulnerabilities present in smart contracts. In respect to strength of the 

correlation unsupervised ML models (K-means and HDBSCAN) assign a severity score to each smart contract. The model 

was trained to detect suspects among benign smart contracts. The aim of the research was to test their hypothesis, which 

was “the transaction behavior is a more critical factor in identifying malicious smart contracts than vulnerabilities in the 

smart contract.” Thus, they brought a different perspective to the literature of smart contracts vulnerability detection.   

In 2021, Y. Xu et al.’s paper introduced two ‘novel’ smart contract vulnerability detecting approach using both a K-

Nearest Neighbors (KNN) model and a Stochastic Gradient Descent (SGD) model  [16]. Identifying some common 

vulnerabilities identified by traditional methods today, they attempt to use each of the machine learning models to identify 

eight of the most prominently recognized traditional vulnerability types: re-entrancy, arithmetic, access control, denial of 

service, unchecked low level calls, bad randomness, front running, and denial of service. As with N.Lesimple’s paper [23], 

the input to their model uses an AST structure, allowing the model to gather line by line information about the smart 

contract code. The labels for the vulnerabilities were identified using traditional methods. The paper notes high accuracy, 

precision and recall, for four of the eight vulnerabilities. The other four did not have enough samples in the dataset, and 

the corresponding results were recognized as inconclusive. As with the N. Lesimple paper, the test set was created from 

results from using traditional methods, indicating that the authors were unable to illustrate how the KNN model differed 

from traditional techniques. 

3.5 Ensemble Learning Models 

Ensemble learning is a combination of multiple machine learning algorithms in an effort to increase the generalizability 

of the final outcome by fusing each model’s individual outputs. Therefore, the objective of ensemble learning is to 

compensate other’s weaknesses and ultimately achieve a greater performance. 
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In 2021, ContractWard model is proposed as a faster alternative for Oyente [27]. The dataset consisted of 49502 

smart contracts, where each of them contained six possible vulnerabilities: integer overflow/underflow, transaction 

ordering dependency, call stack depth attack, timestamp dependency, and re-entrancy vulnerability. Each contract’s 

source code is converted to opcodes. On average, a smart contract contains 4364 opcode elements with 100 types of 

opcodes in total. After the simplification process, there were only 50 opcode types left. Due to that reason, the authors 

wrapped opcodes with similar functionalities in a same category, and ultimately simplified features in the dataset. Later, 

they used n-gram technique (sliding window of binary-byte size) to track relations of each opcodes, since they assume 

that the operations have higher relation with its neighbors. Oyente was used to assign multi label to each contract. After 

the labeling process, the researchers encountered class-imbalance problem, due to rarity of some vulnerabilities. They 

employed synthetic minority oversampling technique to extend the number of minority class. The training process 

adopted 5 candidate ML models: eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Random 

Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbour (KNN). In evolution stage, Micro-F1 and Micro-

F1 (variations of F1 metric) is utilized to rank the predictors. The XGBoost model showed a robust performance by 

achieving over 96% F1, Micro-F1, and Macro-F1score. 

In 2021, Esghie et al. proposed a novel monitoring framework (named as Dynamit) to uncover re-entrancy 

vulnerabilities in Ethereum smart contracts [28]. The novelty of the proposed model is that it does not observe the 

contract’s code to make the prediction. Instead, their model relied on transaction metadata and balance data from 

blockchain system. Furthermore, additional to vulnerability detection, they were be able to get an execution trace that 

reproduces the attack. The framework has two main processes: monitoring transaction of the smart chain (the monitor) 

and detecting re-entrancy vulnerability (the detector). The monitor constantly listens to Ethereum blockchain client to 

fetch information about desired transactions by utilizing Web3js (Ethereum JavaScript API). Total of four different 

features are being extracted by the monitor: gas usage of transaction, contract 1 & 2 balance differences, and average call 

stack depth. The balance difference feature is essentially the balance of the contract’s address before and after execution 

of the transaction. The average call stack depth feature represents the measure of recursive external calls invoking 

contract’s function. In the study, the candidate predictors were popular ML models: Random Forest (RF), Naïve Bayes, 

Logistic Regression and K-Nearest Neighbours (KNN). At total, 105 transactions monitored by each model, where 53 of 

them were benign and 52 were harmful transactions and each transaction was associated with a label. After training and 

testing each models, RF model achieved the best classification score by detecting re-entracy vulnerability with 86% 

accuracy, 82% f1 score, and 74% recall. In order to test the validity of the Dynamit framework, the authors altered the 

smart contracts as well, where RF model (as a detector) achieved 94% accuracy, 93% f1 score and 94% recall. 

In 2021, Y. Xue et al. [29] explores the concept of cross-contract vulnerabilities, which they posit are 

overlooked by most other vulnerability detection methods. Cross-contract vulnerabilities are “exploitable bugs 

that manifest in the presence of more than two interacting contracts” [29]. The complications of such an analysis 

arise when three or more contracts are interconnected, and this results in a highly non-trivial analysis to detect 

vulnerabilities amongst the connections. Rather than acquiring a fully labelled data set (of both benign and 

malware samples), the authors here focused on data paths that they knew were benign, and allowed their novel 

fuzzing framework approach, xFuzz, detect vulnerabilities in the data paths where malware might exist. The 

results presented show that their novel xFuzz approach detected 15 newly discovered vulnerabilities, that had not 

been detected by traditional static techniques. Furthermore, their approach was efficient, taking only 20% of the 

time than other fuzzing tools, while detecting almost twice as many vulnerabilities. The authors of this paper 

addressed several novel topics which prove the usefulness of certain ML techniques (tree-based models) when 

applied to detecting contract vulnerabilities: the efficiency of a reduced space fuzzing technique, and the 

effectiveness of cross-contract analysis, the latter of which is typically a highly complex issue, best handled by 

state-of-the-art ML techniques. 

 

4. CONCLUSION 

In today’s world, blockchain has become an increasingly prevalent method of the distribution of information and 

currency. It’s ability to transfer information both quickly and transparently, makes it an ideal method to track orders, 

transfer payments, and perform many other peer-to-peer transactions. Smart contracts are an integral component of all 

blockchain transactions. These contracts automatically execute the transaction of information, based on a set of 

immutable and publicly accessible instructions, so all parties can be confident in the outcome. Unfortunately, these 

contracts are subject to many kinds of vulnerabilities. These vulnerabilities have led to many malicious attacks, such as 
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TheDAO attack, which resulted in a loss of approximately $10 billion USD. As a result, methods to detect and correct 

these vulnerabilities are constantly being developed. 

Some early methods, including Oyente and SmartCheck were introduced, and found a set list of vulnerabilities 

based upon predefined pattern detection methods. Though these early methods were successful in identifying the list of 

known vulnerabilities, the solutions were not robust to newer threats, as the ruleset upon which the analysis was based 

would have to be manually updated to reflect the newfound vulnerabilities. To adapt to the dynamic nature of 

vulnerabilities in smart contracts, machine learning techniques were explored, to attempt to outperform these traditional 

methods. 

In this paper, we explored multiple machine learning techniques to identify vulnerabilities in smart contracts. 

Amongst them, deep learning algorithms were used in a variety of ways, with different types of input that allowed the 

models to identify vulnerabilities that the traditional methods sometimes could not. The input often consisted of a means 

to derive a mapping between the variables in the smart contract code, which allowed the models to detect the 

relationships between variables, and identify vulnerable structures and variable connections. The many reviewed uses of 

deep learning algorithms varied from one another by their design of the input structure, and these through their input 

design, the models were able to recognize different vulnerabilities in a myriad of ways. The reviewed methods utilizing 

classical machine learning methods and ensemble learning methods were largely developed in a similar fashion: to 

design a unique input structure for the model, to provide it with as much information relating to the structure and 

purpose of the smart contract as possible. The structure of the models themselves changed in each of the reviewed cases, 

though the models accuracy and effectiveness was largely dependent on the structure of the model’s input. Examples of 

the input structures included raw opcode, sets of function inputs and outputs, Abstract Syntax Trees (AST), the 

transaction metadata and many others. One of the largest benefits of this wide variety in allowed input structures, is that 

implementer is not dependent on a specific type of information. For instance, if an individual cannot easily gain access to 

the smart contract source code, they can still utilize the transaction metadata to effectively detect vulnerabilities. 

Generally, it was found that the machine learning models outperformed the traditional methods in their efficiency, and 

matched their effectiveness. 

Throughout this analysis, several faults were also noted for existing machine learning implementations. The first 

was the common labelling techniques used, which used traditional methods to label their input data. Most of the 

suggested models relied on supervised models, meaning labelled data was required for the model to train. To acquire the 

labels, to recognize the smart contracts as vulnerable or benign, traditional methods such as Oyente were used. As a 

result, the machine learning models were attempting to recognize vulnerabilities that were already interpretable through 

traditional methods. To improve this, manual detection of vulnerabilities should be implemented, or more unsupervised 

approaches should be explored. A second flaw found in many of the review approaches, was the inability for the models 

to provide interpretability. Due to the nature of machine learning models, sometimes the patterns found cannot be 

explained, and as a result, if a contract is found to be vulnerable, it becomes impossible to explain why. This is 

especially true when dealing with unsupervised approaches, as the models may identify vulnerabilities in code, but not 

have a defined labels to explain to any human why the contract was vulnerable. Since interpretability is an extremely 

important requirement when dealing with identifying vulnerabilities, further thought will have to be put into 

unsupervised approaches, to ensure the user knows why their contract is vulnerable. In conclusion, machine learning 

techniques provide many efficient and effective methods to identify smart contract vulnerabilities with a variety of input 

structures, but further research should be conducted in this space to provide interpretable solutions that outperform the 

traditional non-ML methods. 
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