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Abstract— The Severe Acute Respiratory Syndrome COVID-

19 virus (SARS-CoV-2) has had enormous impacts, indicating 
need for non-pharmaceutical interventions (NPIs) using Artificial 
Intelligence (AI) modeling.  Investigation of AI models and 
statistical models provides important insights within the province 
of Ontario as a case study application using patients’ 
physiological conditions, symptoms, and demographic 
information from datasets from Public Health Ontario (PHO) 
and the Public Health Agency of Canada (PHAC). The findings 
using XGBoost provide an accuracy of 0.9056 for PHO, and 0.935 
for the PHAC datasets. Age is demonstrated to be the most 
important variable with the next two variables being 
Hospitalization and Occupation. Further, AI models demonstrate 
identify the importance of improved medical practice which 
evolved over the six months in treating COVID-19 virus during 
the pandemic, and that age is absolutely now the key factor, with 
much lower importance of other variables that were important to 
mortality near the beginning of the pandemic.  

An XGBoost model is shown to be fairly accurate when the 
training dataset surpasses 1000 cases, indicating that AI has 
definite potential to be a useful tool in the fight against COVID-
19 even when caseload numbers needed for effective utilization of 
AI model are not large.  

 
 
Index Terms—Artificial Intelligence; Coronavirus Disease; 

COVID-19; Epidemiological Models; Machine Learning; 
Recovery Prediction; SARS-CoV-2; XGBoost 
 

I. INTRODUCTION 

HE Severe Acute Respiratory Syndrome COVID-19 virus 
(SARS-CoV-2) has had enormous impacts throughout the 
world, spreading at an alarming rate such that there have 

now been more than 28.6 million infections and 917 thousand 
deaths globally, including >6 million cases and 193 thousand 
deaths in the United States alone (Johns Hopkins, 2020). The 
world is collectively frustrated by the limited ability to predict 
and control future changes in the virus trajectory. The virus is 
pervasive, resulting in the need to develop a better 
understanding how alternative non-pharmaceutical 
interventions (NPIs) can be implemented to control the 
worldwide outbreak (including, but not limited to, shutdown 
of economies, and lockdown of peoples’ movements), while 

 
 

keeping the virus under a controllable magnitude until a 
vaccine becomes available.  

Mammoth changes in the operations of economies and 
populations have arisen as most countries have adopted self-
isolation as a means of decreasing infectivity levels and 
holding down the curve (‘planking’ or ‘flattening’ the curve of 
the virus). While successful in some countries, other nations 
continue to evolve into resurgence of the virus as a result of 
‘opening up the economy’ too quickly (e.g. the USA) or 
unable to enact social distancing and extensive poverty (e.g. 
India). These examples emphasize the need for insights on 
how governments need a guide for allowable behavior 
controls and means of opening up the economy as society 
moves forward.  

To provide insights into the effectiveness of alternative 
initiatives, the power of Artificial Intelligence (AI) as a 
technology is investigated as a means to improve prediction of 
the future impact on the medical care system.  Internationally, 
and more specifically within Canada, the pandemic has caused 
widespread lockdowns on activities within economies.  
Further, enormous angst arose in New York city, as an 
example, where medical preparedness was pushed to the limit 
during the height of their pandemic, where ventilators to assist 
people with breathing problems proved to be in short supply 
and were under frequent re-distribution between cities within 
the US. These types of implications questioning whether 
available Personal Protective Equipment (PPE) resources were 
expressed, as the virus raged through various country 
populations. President Trump undertook efforts to restrict 
forwarding of PPE outside the US, much to the concern of 
foreign countries including Canada, where agreements had 
been established, and hence, represented an attempt to derail 
forwarding along of PPE materials; these types of actions will 
change the attitudes in terms of reliance on foreign countries 
to provide critical items at times of need (the capacities of 
medical systems are definitely limited).  

Concerns continue, including issues of a potential 
resurgence of virus infections if removal of lockdown 
conditions occurs too early and a second wave of the virus 
commences. If too early an opening of the economy occurs, or 
relaxation of some measures such as opening daycare or 
summer day camps for children, these actions may increase 
the spread of the virus. Some states, such as Florida, Texas 
and Arizona, opened up their economies very early and were 
then confronted with the difficult task of trying to re-
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implement lockdown procedures in hopes of controlling the 
rapidly spreading virus.  

There continues to be concern that Canada’s hospital 
system will become overwhelmed, and this possibility 
underlines the need for forecasting models to provide the 
country’s leaders with information (e.g., how many people are 
likely going to be admitted to hospitals, and how many will 
require intensive care and/or ventilators, who is most at risk, 
etc.) to help them make informed decisions. In response to the 
highly complex nature of the COVID-19 outbreak and 
variations in its behavior internationally, machine learning has 
potential to model the viral outbreak [1]. 

In response, and to improve the understanding of the 
success of various initiatives related to COVID-19 attenuation, 
this paper describes research related to the development of AI 
and statistical models that provide innovative insights into the 
COVID-19 pandemic. This research was undertaken to 
compare alternative models regarding their ability to identify 
the mortality risk of COVID-19 patients in the province of 
Ontario. Data-based methodologies were implemented to 
enable widespread usage of the resultant model, adaptable to 
various public health units in their planning for inflated 
caseloads on medical systems as well as to inform the public 
about who is at greatest risk. This research was undertaken to 
create city-wide and region-wide models aimed at improving 
predictions of mortality within the province of Ontario.  

Although the applications of AI modelling of the COVID-
19 outbreak are still in their infancy, this paper demonstrates 
significant benefits of evolving these models to improve 
mortality predictions from COVID-19, and hospital caseloads 
within a province of Canada context. This paper is organized 
as follows. The use of machine learning to address COVID-19 
is discussed in Section 2. The case study and problem setup 
are discussed in Section 3. Section 4 includes the experimental 
results and discussion of applying machine learning to study 
COVID-19. The paper is then concluded. 

II. MACHINE LEARNING TO ADDRESS COVID-19 

Machine Learning, as an approach to AI, enables improved 
predictions of the future impact on the healthcare system, 
stemming from the overall effect of the virus on the general 
population. In response to the highly complex nature of the 
COVID-19 outbreak and variations in its behavior 
internationally, researchers suggest machine learning is an 
effective tool to model the viral outbreak [1]. More precisely, 
multiple machine learning methods can be used to analyse 
COVID-19 cases in Ontario, with case information prevailing 
from two different publicly available datasets. These methods 
include Artificial Neural Network (ANN), Extreme Gradient 
Boosting (XGBoost), and Random Forest. Logistic 
Regression, a statistical regression-based model was also used 
for the predictions in this paper so that the Machine Learning 
results can be compared to the results of a simpler model. 
Other applications of the aforementioned Machine Learning 
algorithms have proven to be valuable in an enormous array of 
applications, including just as examples, landslide 
susceptibility models, predicted price changes in crude oil, and 

geographical origin analysis of music samples, respectively [2, 
3, 4].  

The ability to make reasonably accurate predictions on the 
future outcomes of COVID-19 have the potential to have an 
immense impact on choices surrounding behavioural 
directives, as well as decisions made for Canada’s healthcare 
system. Even with some degrees of self-isolation and social 
distancing, conditions are indicating a real possibility that 
Canada’s hospital system may become overwhelmed [5]. To 
provide an acceptable response to the demand for hospital 
beds, it is imperative that an approach is developed to 
distinguish between high risk and low risk COVID-19 
patients.  

A. AI Modelling in Healthcare 

The role of AI in healthcare is being increasingly well 
established over the past decade. The insights available from 
interpreting diverse and vast datasets can produce lifesaving 
results. The advanced integration and instant access of 
technology allows for better management of patient data, 
spanning from the security and administration of electronic 
medical records, effortless linkage of data sources, and real-
time information sharing. This elevated level of data collection 
consequently leads to improved data manipulation. However, 
to effectively make use of the large and complex datasets 
including in-depth health data, there is need for 
epidemiologists and health care professionals to incorporate 
computational techniques that identify patterns in data [6]. 
This reinforces the need for use of Machine Learning and 
other mathematical modelling as key analytical tools in 
healthcare epidemiology [7]. 
Studies have shown that AI can be a valuable tool in the 
modelling and prediction of viral infections within the 
population. A 2018 study effectively mapped the transmission 
of the mosquito-born Zika virus (ZIKV) using multiple 
Machine Learning models; Backward Propagation Neural 
Network (BPNN), Gradient Boosting Machine (GBM) and 
Random Forest [8]. These models were used to generate the 
probability of Zika outbreak at the global level, with an area 
under the curve (AUC) between 0.963 and 0.966, indicating a 
very high level of accuracy [8]. This application of Machine 
Learning for the 2015 Zika epidemic established that AI 
methods are effective for disease transmission prediction and 
risk assessment. 
Machine Learning tools are not only useful for modelling the 
spread of a virus, but can also predict patient outcomes. In a 
study supported by the U.S. National Institute on Aging, 
researchers generated a ‘super learning model’, an ensemble 
of multiple Machine Learning approaches, that collectively 
forms a predictive algorithm with the best cross-validated 
mean-squared-error [9]. The findings concluded that Machine 
Learning methods for epidemiological predictions are highly 
dependent on typical characteristics such as gender and age, 
plus demonstrating accuracy can be augmented with additional 
biostatistics such as smoking habits, underlying heart 
conditions, reported physical activity tendencies, level of 
education, household income, and weight [9]. 

The various Machine Learning algorithms used in the study 
[11], were also integrated within a 2019 forecast that 
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monitored vital signs of Intensive Care Unit patients, and 
whether or not they would proceed to critical conditions [10]. 
Further, accuracy was found in the Random Forest Machine 
Learning algorithm for an analysis for predicting patient 
conditions remotely, improving existing single predictive 
models [11]. 

B. Early COVID-19 Results 

Specific to COVID-19 results, public health authorities, as 
well as common media, are placing attention on traditional 
epidemiological and statistical models. Although quick to 
develop with fewer datasets and foci [12], it has already been 
determined that standard models fitted to confirmed cases of 
COVID-19 are anticipated to have a high level of uncertainty, 
largely due to the deviation on reported dates for confirmed 
cases [13]. Moreover, the popularized Susceptible-Exposed-
Infectious-Recovered (SEIR) model, as well as the simpler, 
SIR model, can both provide useful insights into the 
effectiveness of transmission prevention strategies, but can 
still be expected to derive results with considerable 
uncertainty [14]. 

AI modelling of the pandemic has had good preliminary 
results. A study focussed on the development of AI 
predictions as a form of decision-making support had up to 
80% accuracy when using a K-Nearest Neighbors algorithm 
[15]. Surprisingly, this study found that characteristics of 
COVID-19, including fever, certain features in radiographic 
lung images, and strong immune responses were not useful in 
predicting which of the sampled 53 patients (all evidencing 
with initially mild symptoms) would progress to develop 
severe lung disease. Age and gender were also ineffective 
factors in predicting the development of serious disease. 
Instead, the results indicated that a combination of small 
changes in levels of the liver enzyme alanine aminotransferase 
(ALT), patient-reported myalgia, and raised hemoglobin levels 
most accurately predicted the development of serious disease 
conditions. 

Researchers at China’s Huazhong University of Science and 
Technology have used Machine Learning (using XGBoost) to 
develop a prognostic prediction algorithm to forecast the 
likelihood of an individual surviving the infection [16].  

Overall, there are a number of primary areas of scope where 
AI has demonstrated significant potential in fighting COVID-
19, including early warnings and alerts, tracking and 
prediction, data dashboards, diagnosis and prognosis, 
treatments, and cures, and societal control. However, the utility 
of AI models depends on the availability of pertinent data. 
Specifically, although AI models will not replace the role of 
experts or trusted epidemiological models, AI models have the 
potential to monitor and respond to the crisis – assisting in the 
quantification of medical caseloads and future global trends 
[17]. In a whitepaper by ttopstart, it was outlined that, 
regardless of the challenges in acquiring the necessary data 
and integrating the algorithms within existing medical 
workflows, AI will likely make immense differences in the 
future of healthcare administration and delivery [18].  

C. Adapting AI Models for Ontario, Canada 

AI models for Ontario as described herein, were deve
to assist hospitals and healthcare facilities to decide 
patients to prioritize in receiving medical attention, elev
hospitalization, or triage when the system is overwhe
The algorithm predicts the mortality risks based on pa
physiological conditions, symptoms, and demog
information. These data were collected from two so
Public Health Ontario (PHO) and the Public Health Age
Canada (PHAC), both of which cluster datasets by geog
health regions. In Ontario, these 36 regionalized 
authorities are called Public Health Units, as depic
Figure 1.  Due to large clusters of cases, Ontario is of
interest for this application of AI modeling. 

Figure 1. Public Health Units groups by geographical health region
Province of Ontario [19] 

III. CASE STUDY AND COMPUTER EXPERIMENTS 

Cumulatively, the available data across all regio
Ontario was for 39,794 individual cases (August 1, 
either grouped under recovery or mortality. One dimens
these outbreaks, considered the largest, was withi
Province’s long-term care facilities. Between January 1
June 1, 2020, nearly 18% of all provincial COVID-19
were confirmed as long-term care residents [20]. Durin
time, rates of COVID-19 within long-term care per 10
population reached as high as 72.8, as reported with
Leeds, Grenville & Lanark District Health Unit [20].   

This research developed and contrasted various m
learning and statistical models in order to predict the r
mortality for Canadians infected with COVID-19. The m
were calibrated using only publicly accessible Ca
COVID-19 data to highlight the applicability of AI mod
Specifically, two open access COVID-19 datasets
varying attribute information, were used to build and co
the models. The first dataset (PHO) was obtained 
Ontario Health Services [21], while the second (PHAC
obtained from Canada health services [22]. To ensur
comparisons were made between datasets, the COV
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cases were limited to only Ontario COVID-19 cases that were 
reported after January 19, 2020 and were resolved (recovered 
or died) by Aug 1, 2020. A summary of the two datasets and 
their attributes are listed below in Table 1.  

The Machine Learning models were adapted for Ontario to 
focus on three distinct case statuses, namely active, recovered, 
or reported deceased. PHO data reports 36, 988 cases between 
January 19th and August 1st [23], PHAC report 27,778 cases in 
Ontario for the same period [24]. Data after August 1st was not 
used as the caseloads prior to this were already substantial. 
Detailed characteristics of the website information in terms of 
variable definitions for both the PHO and PHAC datasets are 
as described in Table 1. 

TABLE I 
CHARACTERISTIC OF ONTARIO AND CANADIAN INDIVIDUAL COVID-19 CASE 

DATA 

Variable Ontario Dataset (PHO) Canadian Dataset (PHAC) 

Age 
Categorical: (<20, 20-
29, 30-39… 90+) Categorical 

Public Health 
Unit  

Categorical (all 33 
public health units in 
Ontario) Not Available 

Date Infected 

Numeric (Days from 
Jan 1,2020 to expected 
date of infection) 

Numeric (Weeks from Jan 
1,2020 to expected date of 
infection or earliest known 
date of infection) 

Date Reported  

Numeric (Days from 
Jan 1,2020 to reported 
date) Not Available 

Gender 
Categorical (M, F, 
Other) Categorical (M, F, Other) 

Case Acquisition 

Categorical (close 
contact, community 
spread, outbreak, travel, 
Unknown) 

Categorical (Domestic 
acquisition, International 
travel, Unknown) 

Occupation Not Available 
Categorical (healthcare 
worker, other) 

Hospitalization Not Available 
Categorical (ICU, hospital, 
neither) 

Cases Recovered 36,988 27,778 

Cases Died 2806 2612 

 
As evident in Table 1, several variables are the same across 

both datasets (Gender), similar but with minor differences 
(age, date infected, case acquisition), and several variables are 
only present in one or the other (Public Health Unit, Date 
Reported, Occupation and Hospitalization). By comparing the 
accuracy of models built using the different publicly available 
datasets, the importance of specific variables can be 
highlighted as well as begin to predict how a more complete 
dataset may improve the models’ accuracy. 

Also worth noting, is that the number of COVID-19 cases 
that recovered or died between Jan 23-Aug 16, 2020 differ 
between datasets by 194 deaths. This highlights that data 
anomalies and/or differences in reporting requirements exist 
between the two datasets. More detailed description of the 
reporting requirements and methodology for each dataset 
would be useful to identify what is causing the difference in 
COVID-19 cases but with the enormous speed of the 
pandemic, data assembly challenges continue to exist.   

A. Model Selection 

Three machine learning models and one statistical 
regression model were developed to predict the mortality risk 
of COVID-19 patients within Ontario. The models selected 
include; artificial neural network (ANN) [25], Random Forest 
[26], extreme gradient boosting decision tree (XGBoost) [27], 
and logistic regression [25]. These models were selected based 
on their prevalence in literature and accuracy in binary 
classification.  

B. Data Processing 

Before calibrating any of the models, the datasets were 
randomly divided into two parts; training dataset containing 
70% of the data, and the testing dataset containing the 
remaining 30% of the data. The training dataset was used to 
calibrate each model, whereas the testing dataset was used to 
evaluate the final models’ accuracy. 

Pre-processing techniques were applied to the training 
dataset. First, numeric variables were centered and scaled, and 
categorical variables were converted into dummy (or binary) 
variables. The SMOTE resampling technique was applied to 
the training dataset to adjust for the class imbalance (i.e. only 
a small number of COVID-19 patients actually die from this 
disease) [28].  

Tuning parameters for the machine learning models (ANN, 
Random Forest, XGBoost) were determined using a grid 
search approach and assessed using a 10-fold cross-validation 
technique repeated three times for each model. Tuning 
parameters were optimized to produce the maximum area 
under the receiver operating characteristic curve (Area Under 
the Curve, or AUC) based on the average 10-fold cross-
validation technique.  

The logistic regression’s input variables were selected using 
a step-wise Akaike Information Criterion (AIC) function  [25], 
which selects the array of input variables to be used based on 
step-wise selection process which is evaluated using the AIC.  

All models were developed and analyzed using the 
computer programming language R [29]. The models generate 
a probability of mortality for each recorded case outcome, and 
then decide the final predicted outcome, be it recovered or 
died, based on a 50% threshold value.  

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The AUC is an effective indicator measurement of accuracy 
to represent the performance of a classification model. In 
general, the AUC represents the degree to which the model 
can distinguish between different classes [30], and in this case, 
the classes being either a  patient has recovered or died. It is 
the area under the Receiver Operating Characteristics (ROC) 
curve, with 1.0 being a perfect measure of separability and 0.0 
means that the model is only generating false predictions [31]. 
When the AUC is near 0.5, it means that the model cannot 
recognise the different possible classes and predicts outcomes 
at random.  

The AUCs of each model for both datasets are depicted 
below in Figure 2. 
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Figure 2. Area Under the Curve of mortality prediction models for both the 

PHO and PHAC datasets 

Figure 2 highlights that for both datasets, all models have 
relatively high AUC values (>0.88). This indicates all models 
are able to distinguish which patients are most likely to 
recover and which ones have the highest risk of death with a 
high degree of accuracy. The most accurate model was 
XGBoost, achieving an AUC of 0.9056 for PHO and 0.935 for 
the PHAC datasets.  

The Logistic Regression model has the second-highest AUC 
for both PHO and PHAC datasets. This is interesting since 
regression models are often found to be less accurate than 
machine learning models, especially when datasets contain a 
large number of input variables, although in this application, 
since there are only six variables, the advantage of machine 
learning models ability to identify complex relationships 
between input variables and the outcomes are somewhat 
limited. These findings indicate that not being able to 
incorporate the complex relationships between input variables 
and the outcome is important but not terribly deficient, when 
compared to machine learning models, as the logistic model 
produces results better than ANN and Random Forest.  

A. Variable importance between datasets 

As illustrated in Figure 2, all models developed using the 
PHAC dataset outperformed the models developed using the 
PHO dataset. This indicates the variables included in the 
PHAC dataset provide greater information in predicting 
COVID-19 mortality, than the variables included in the PHO 
dataset. To characterize this further, a variable importance 
graph is provided in Figure 3, indicating importance of 
individual variables for the most accurate model in both 
datasets (XGBoost). 

Figure 3. XGBoost Variable Importance graph by dataset 

Figure 3 depicts the variable importance for the XG
model for both datasets (PHO and PHAC). The va
importance is calculated as the gain associated with
variable for the final model, with the most important va
being scaled to 100. Age is demonstrated in Figure 3 to 
most important variable for the XGBoost model, for
datasets. The importance of the Age variable reflects th
that long-term care facilities, where ages are typically
experience much higher COVID-19 mortality risk (81
deaths from COVID-19 in Canada occurred in Long
Care homes. (CBC, 2020)). 

The next two most important variables for the P
XGBoost model are Hospitalization and Occupation. W
someone is hospitalized, or their occupation is a heal
worker, has a substantial impact on predicting the morta
a COVID-19 patient. This also indicates that the inc
accuracy noticed for the models built using the PHAC d
is likely in large part due to the addition of these two var
(hospitalization and occupation). The two variables lo
only in the PHO dataset, namely Date Reported and 
Health Unit, appear to be only relatively important f
model’s prediction. This indicates that by creating a pu
available dataset that contains all eight of these var
improved accuracy of mortality prediction model wou
attained. 

B. Differences in Early and Late Datasets 
TABLE  1  

COMPARISON BETWEEN EARLIER AND LATER DATASETS 
Age Group First 4 Weeks 

(FeB 21st – Mar 20th) 
Latest 5 weeks 
(Jun 21st – July 24th) 

Cases Deaths Cases Deaths 
<20 59 0 240 0 
20-29 355 0 492 0 
30-39 394 0 407 0 
40-49 447 0 287 0 
50-59 530 8 293 0 
60-69 462 19 186 0 
70-79 258 41 60 0 
80+ 153 51 82 18 
Not Stated 9 7 2 2 
Total 2667 126 2049 20 
 

Comparing the mortality data between (i) the beginn
the COVID-19 outbreak and for the next four weeks 

0.9056
0.8970

0.8904 0.8938

0.935 0.9288 0.926 0.9298

0.8

0.85

0.9

0.95

XGBoost Neural Net RandomForest Logistic 
Regression

AUC of Prediction Models 

PHO PHAC
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the ongoing pandemic, relative to (ii) the last five weeks 
reveals how the demographics of the pandemic shifted over 
time. In Error! Reference source not found. the cases and 
deaths reported in the first four weeks and last five weeks are 
contrasted. The number of deaths per confirmed case has 
dropped dramatically, from 0.047 fatalities per case in the 
winter to 0.0098 per case through the summer as evidenced in 
the data reports. Additionally, in the later period, all of the 
deaths were concentrated in the 80+ years and the ‘age not 
stated’ categories, while the earlier period recorded deaths in 
those as young as 50-59 years.  

While the changes noted in Table 2 were influenced to 
some degree by the change in testing requirements which 
allowed the recording of a greater number of non-serious 
cases, the drop in mortalities also indicate there was 
considerable improvement (success) of treatment in hospitals. 
Specifically, as the pandemic progressed and many months 
have passed since COVID-19 was first reported in Canada, the 
global understanding of the disease, and improvements in 
treatment options occurred. Through research and medical 
practice, doctors in Canada now have more tools to fight 
serious cases of COVID-19 in hospitals. Steroids are now 
commonly used to significantly reduce deaths in patients with 
lung injuries as evidenced by studies from University of 
Oxford [32]. Additionally, anti-viral treatment Remedesivir 
has been approved in Canada to aid critically ill patients [32]. 

Of interest in terms of exploring the power of the AI, 
training an XGBoost model on data from the two periods 
noted in Table 2, the results showed there was better accuracy, 
AUC, for the earlier time period of 0.914, and for the later 
time frame, the AUC fell to 0.838, but demonstrate good 
results for both.  Most importantly,  the AI results demonstrate 
the ability to detect the importance of different variables and 
detect trends (proven, as able to characterize the implications 
of the research and medical practices).  

 
Figure 4. XGBoost: Variable Importance by Time Period 

As indications of the adjustments identified over time, the 
results in Figure 4. XGBoost: Variable Importance by Time Period 
illustrate the changes in variable importance of the 
characteristics used by the XGBoost model are illustrated for 
the early and later datasets.  The model based on the earlier 

data used a number of characteristics such as
hospitalization status, date infected and gender to a 
higher degree. The model based on later data relied a
entirely on age and somewhat on hospitalization, with m
consideration for any of the other categories. As the r
indicate in Table 2 showed, all the deaths were among e
people (80+ years), indicating very clearly that age
identified as the very important issue for predicting mor
the importance of hospitalization became dramatically l
a result of the learning curve from improved understa
resulting in a dramatic decrease of importanc
hospitalization resulting in mortality.  These takeaways 
course, now evident, from the reported results now ava
but the key is that the AI model was able to identi
implications of the improved medical systems
understanding of the virus, to decrease the occasio
mortality.   

C. Number of Cases needed to build an accurate model

The accuracy of the models built in the previous se
were calibrated using a large training dataset containing
27,000 patients. However, individual communities
hospitals may wish to develop their own COVID-19 mo
prediction model but may have significantly less 
available for AI model calibration. The following s
identifies how the number of cases available for calib
may impact the models overall accuracy and thus pro
guidance for these communities.  

The impact of dataset size was analyzed using the
accurate model and dataset, XGboost – PHAC. Eight da
with different sizes were created, using random sampli
separate XGBoost model was trained on each dataset a
AUC was calculated using a hold-out testing d
containing 30%of the overall Covid-19 case data. To e
consistency, the entire process was repeated three time
the results averaged. Figure 4 below highlights the
averaged results for each dataset. 
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Figure 5. Average AUC versus Dataset Size 

As expected, the AUC of the model increases with the size 
of dataset used to train the model. With only 50 cases to train 
the model the AUC is 0.6791 which indicates the model is not 
that effective in discerning the risk of mortality for COVID-19 
patients. However, an XGBoost model trained using 300 cases 
has an AUC of 0.8833, indicating the model is fairly accurate 
and after the training dataset surpasses 1000 cases, the 
increase in AUC is minimal, only increasing by 0.0015 by 
including more than 10,000 additional cases into the training 
dataset.  

D. Discussion 

From the three Machine Learning models and the one 
statistical model, the XGBoost model provides the highest 
level of precision and accuracy from both the PHO and PHAC 
datasets, as seen in Error! Reference source not found.. This 
observation is critical to this study because it shows how an 
advanced machine learning model such as XGBoost, can 
provide more accurate COVID-19 outcomes in comparison to 
a statistical model, such as the logistics regression model.   

In many respects, it is not surprising that the XGBoost 
performed well, as it has been a favourite in applied machine 
learning competitions since its release in 2014 due to its 
execution speed and model performance (e.g. [32] [33]). 

Moreover, the results obtained using the national dataset 
(PHAC) are consistently higher than the results from the 
datasets release by the provincial government (PHO). The 
inconsistencies as to what information is made available 
between the two datasets are the cause of the different 
accuracy ranges, with key items being the inclusion of 
hospitalisation status and patient occupation in the PHAC 
database. However, the dataset available from PHO also 
produced significant results, with interesting attributes coming 
from the inclusion of location data pertaining to the Public 
Health Unit of the cases. The variable importance graph 

(Figure 3) suggests the PHAC results are bettered by 
into consideration hospital status as it displays the seve
the case; however, hospitalisation and ICU status m
useful for the mortality prediction of already severe CO
19 cases, but this piece of data comes after the patient’
has already reached a point of severity that requires m
intervention, and therefore cannot be used to predict w
or not a case will develop to the point of needing profes
healthcare and possibly develop to the point of fatality.  

AI has not yet been impactful against COVID-19 sin
use of AI is hampered by availability of data related to 
of confidentiality to protect those and their families who
or may be impacted by this dreadful virus. There is 
discussion about the mortality risk of COVID-19 patie
the province of Ontario as may be apparent through bette
and AI modeling, to assess which patients to priorit
receiving medical attention. Overcoming the constrain
data confidentiality will require a careful balance betwee
privacy and public health concerns, and more rigorous h
AI interaction. 

V. CONCLUSIONS 

The implications of the Severe Acute Respiratory Syn
COVID-19 virus (SARS-CoV-2) at world scale have
profound and the potential for initiation of a second w
impacts from the virus are expected. The power of Ar
Intelligence (AI) as a technology was demonstrated as a 
to improve prediction of the future impact on the medica
system.  The needs for forecasting models are obvio
provide the country’s leaders with information (e.g.
many people are likely going to be admitted to hospital
how many will require intensive care and/or ventilators
is most at risk, etc.) to help them make informed decision

Substantial success was demonstrated as evident in ter
the accuracy of the XGBoost AI modeling, achieving an
of 0.9056 for PHO and 0.935 for the PHAC datasets. As
the value of the AI modeling as gained from the importa
individual variables was demonstrated, providing imp
insights into the most important variable for the XG
model. Exploring the ability of the AI model to be sensi
changing conditions, and in this case specifically
improvements in the understanding how to treat the r
the AI model was able to identify the dramatic importa
the age of the mortality becomes dramatically important
much lower impacts on the other variables that descri
individual caseloads. The results relying only upon th
five weeks of data showed that AI picks up the overwhe
importance of age is clearly evident, as an indicati
mortality from COVID-19.   

This is confirmed for the AI modelling wherein ther
separate but very demonstrative evidence that showed
term care facilities, where ages are typically high an
morbidities are frequent, are the most important 
differentiating between COVID-19 case outcomes (81
deaths from COVID-19 in Canada occurred in Long
Care homes). 

After age, the next two most important variables f
PHAC XGBoost model are Hospitalization and Occup
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Whether someone is hospitalized, or their occupation as a 
healthcare worker has a substantial impact on predicting the 
mortality of a COVID-19 patient.  As well, the AI modeling 
showed that an XGBoost model trained using 300 cases has an 
AUC of 0.8833, indicating the model is fairly accurate, and 
that data after 1000 cases, improved accuracies from data are 
limited, indicating that development of an AI model from a 
much lesser basis than was the primary data utilized for this 
research, is still able to provide informative and useful results. 

As the analyses described herein indicate, AI has the 
potential to be a tool in the fight against COVID-19 and 
similar pandemics. However, as Georgios Petropoulos 
concludes, “AI systems are still at a preliminary stage, and it 
will take time before the results of such AI measures are 
visible.” [34] 
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