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Abstract—This article introduces a new filtering strategy 

based on combining elements of fuzzy logic and the smooth 
variable structure filter (SVSF). A revised formulation of the 
SVSF is presented in an effort to combine it with fuzzy logic, and 
is referred to as the RSVSF. Computer simulations are used to 
compare the new strategy, referred to as the Fuzzy-SVSF, with 
other popular Kalman-based estimation methods. Preliminary 
results indicate that combining fuzzy logic with the SVSF yields 
an improved estimation result and improved stability to system 
and modeling changes and uncertainties. 
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I.  INTRODUCTION 

Knowledge of the model and external environment, and an 
understanding of the uncertainties, is important for the safe and 
reliable control of any mechanical or electrical system. Quite 
often, exact knowledge of the system and its surroundings is 
not possible. In these cases, good approximations may yield 
satisfactory results. 

Fuzzy logic, sets, and theory were first proposed in [1,2]. It 
has since gained considerable attention in the area of intelligent 
and adaptive control, as well as artificial intelligence [3,4,5]. 
As the name suggests, fuzzy logic deals with reasoning 
conditions that may be approximated rather than using exact or 
fixed values. Consider the area of control, where instead of 
using digital values of 0 or 1 to describe a condition, fuzzy 
logic considers continuous values between 0 and 1 (inclusive). 
For example, if a system behaves according to one of two 
models, it may be possible to represent the system by using a 
blend or combination of the two models; as opposed to only 
one or the other. Fuzzy logic was first successfully applied on 
the control of a train, where the comfort and reliability was 
improved [5]. It has since been applied to a variety of 
commercial and industrial applications, including: elevators, 
vehicles, dishwashers, cameras, and even software [5]. 

According to [6], the fuzzy control concept employs a type 
of linguistic approach, such that the controlled variable values 
depends on inferences from IF-THEN-ELSE rules. Linear 
systems may be represented in a piecewise fashion, such that 
rules may be drawn. These rules can be used to approximate 
the system. Note that fuzzy logic may be applied to both linear 

and nonlinear systems, and it has been shown to improve 
overall control performance and reliability [5]. 

This paper studies and compares the application of six 
different estimation strategies. Popular Kalman filter (KF)-
based methods are studied, as well as the relatively new 
smooth variable structure filter (SVSF). The purpose of this 
paper is to introduce a new type of estimation strategy based on 
fuzzy logic and the SVSF, referred to as the Fuzzy-SVSF. 
Conceptually, this method is based on the Fuzzy-KF 
introduced in [6]. These estimation strategies are applied on an 
aerospace system for comparison purposes. The paper is 
organized as follows. The KF and SVSF estimation strategies 
are summarized, followed by the fuzzy-based methods. The 
simulation setup is described, and the six estimation strategies 
are applied to the system. The results are shown and discussed, 
followed by the main conclusions of the paper. 

II. ESTIMATION STRATEGIES 

A. Kalman Filter 

The most well-known and extensively studied estimation 
strategy is referred to as the Kalman filter (KF). It was 
introduced in the 1960s in an effort to solve a linear stochastic 
estimation problem [7,8]. By making use of a statistically 
optimal gain equation, the KF yields the most accurate state 
estimates under some strict assumptions [9]. For example, the 
system under study must be well-defined (known) and linear. 
Furthermore, the noise must be Gaussian and white. These 
conditions lead to a statistically optimal solution to a linear 
stochastic estimation problem [10]. The following equations, 
used recursively, make up the KF process. 

ොାଵ|ݔ  ൌ ො|ݔܣ    (2.1)ݑܤ

 ܲାଵ| ൌ ܣ ܲ|்ܣ  ܳ (2.2) 

ାଵܭ  ൌ ܲାଵ|்ܪ൫ܪ ܲାଵ|்ܪ  ܴ൯
ିଵ

 (2.3) 

ොାଵ|ାଵݔ  ൌ ොାଵ|ݔ  ାଵݖାଵ൫ܭ െ  ොାଵ|൯ (2.4)ݔܪ

 ܲାଵ|ାଵ ൌ ሺܫ െ ሻܪାଵܭ ܲାଵ|ሺܫ െ ሻ்ܪାଵܭ

 ାଵܭାଵܴାଵܭ
்  

(2.5) 

 The first two equations comprise the prediction stage, and 
are used to predict the state estimate and state error covariance, 
respectively. The following equations comprise the update 



stage. The KF gain is used to update the state estimates based 
on the measurement error, as well as update the state error 
covariance matrix. These values are used in the next time step, 
in a recursive process. Refer to the appendix for a list of 
nomenclature and their corresponding definition. 

B. Revised KF (RKF) 

In an effort to combine the KF with fuzzy logic, a revised 
KF was created [6]. In the revised KF strategy, the state 
estimate is corrected by a gain that is lagged by one time step. 
According to [6], the current state estimate is revised based on 
the previous a posteriori output error rather than the current a 
priori output estimate. The RKF is shown as follows [6]. 

ାଵܭ  ൌ ܣ ்ܲܪ൫ܪ ܲ|்ܪ  ܴ൯
ିଵ

 (2.5) 

ොାଵ|ݔ  ൌ ො|ݔܣ  ݖାଵ൫ܭ െ  ො|൯ (2.6)ݔܪ

ොାଵ|ାଵݔ  ൌ ොାଵ|ݔ    (2.7)ݑܤ

 ܲାଵ ൌ ሺܣ െ ሻܪାଵܭ ்ܲܣ  ܳ (2.8) 

 First the revised Kalman gain is calculated, and used to find 
an a priori state estimate. This estimate is then revised further 
based on the input to the system. The updated state error 
covariance matrix is used again in the following time step. The 
process is repeated iteratively. 

C. Smooth Variable Structure Filter (SVSF) 

The smooth variable structure filter (SVSF) was first 
introduced in 2007 [11]. It was based on an earlier, more 
complicated derivation [12]. The SVSF is based on sliding 
mode estimation and is formulated in a predictor-corrector 
fashion. The sliding mode strategy allows the estimation 
strategy to be very robust to modeling uncertainties and errors 
[10]. Since its introduction, the SVSF has been significantly 
developed and expanded [13,14,15,16]. The SVSF estimation 
process may be summarized by the following sets of equations 
[10]. 

ොାଵ|ݔ  ൌ ො|ݔܣ    (2.9)ݑܤ

 ܲାଵ| ൌ ܣ ܲ|்ܣ  ܳ (2.10) 

 ݁௭,ାଵ| ൌ ାଵݖ െ  ොାଵ| (2.11)ݔܪ

 

ାଵܭ
ൌ ାܪ ൫ห݁௭,ାଵ|ห  ห݁௭,|ห൯ߛ

∙ ݐܽݏ ൬
݁௭,ାଵ|
߰

൰൨ ൣ݀݅ܽ݃൫݁௭,ାଵ|൯൧
ିଵ

 

(2.12) 

ොାଵ|ାଵݔ  ൌ ොାଵ|ݔ   ାଵ݁௭,ାଵ| (2.13)ܭ

 ܲାଵ|ାଵ ൌ ሺܫ െ ሻܪାଵܭ ܲାଵ|ሺܫ െ ሻ்ܪାଵܭ

 ାଵܭାଵܴାଵܭ
்  

(2.14) 

 ݁௭,ାଵ|ାଵ ൌ ାଵݖ െ  ොାଵ|ାଵ (2.15)ݔܪ

The SVSF gain is a function of the measurement error ݁௭, a 
smoothing boundary layer ߰, and a convergence rate ߛ. The 
boundary layer width is defined as a measurement of the 
uncertainty in the estimation process. In particular, the 
estimation process may be illustrated in the following figure. 

 
Fig. 1. The SVSF estimation process is illustrated here. An initial 
estimate is forced towards the true system state trajectory, and is 
bounded to it within a region referred to as the existence subspace. 

 
Fig. 2a. The SVSF estimated trajectory is smoothed when the 
smoothing subspace encompasses the existence subspace [10]. In 
other words, the uncertainties are being suppressed in the estimation 
process. 

 The SVSF gain yields a robust estimation strategy, due to 
the inherent switching effect. It is bounded-input, bounded-
output (BIBO) stable and is based on a decreasing estimation 
error [11]. Note that the smoothing boundary layer is described 
in more detail in Figs. 2a and 2b. When the existence subspace 
boundary is defined smaller than the smoothing boundary 
layer, the estimated state trajectory is smoothed. However, 
chattering remains when the smoothing term is too small, as 
uncertainties have been underestimated. The magnitude of 
chattering may be used to determine the amount of uncertainty 
present in the estimation process [13]. 

D. Revised Smooth Variable Structure Filter (RSVSF) 

 This paper introduces a revised SVSF formulation in order 
to combine the SVSF with fuzzy logic, similar to [6]. The 
strategy is similar to (2.5) through (2.8). The SVSF gain (2.12) 
is revised accordingly to formulate the RSVSF gain: 



 
Fig. 2b. Chattering is present during the SVSF estimation process wen 
the smoothing subspace is defined too small [10]. In this case, not all 
of the uncertainties have been considered. 
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(2.16) 

 Note that the initial measurement errors are set to zero. The 
state estimates and state error covariance are updated as per 
(2.6) through (2.8), while also calculating the a priori and a 
posteriori measurement errors. The process is repeated 
iteratively. 

III. FUZZY-BASED METHODS 

A. Fuzzy-KF 

The fuzzy-based methods used in this paper are based on 
[6]. The first step is to calculate the Fuzzy-KF gain by using 
the measurement or initial condition, as follows. 

ାଵߢ  ൌ ܣ ଶܲ,்ܪ൫ܪ ଶܲ,்ܪ  ߮൯
ିଵ

 (3.1) 

The a priori estimate is then calculated by the following: 

ොାଵ|ݔ  ൌ ො|ݔܣ   ାଵ݁௭,ାଵ| (3.2)ߢ

 The state estimate is then calculated and used again in the 
next iteration. 

ොାଵ|ାଵݔ  ൌ ොାଵ|ݔ   ାଵ (3.3)ݑܤ

 The next step is to calculate the state error covariance in 
order to obtain the measurement estimate for the next time step. 

 ߱ାଵ ൌ ାଵߢ ଵܲ,ߢାଵ
்  (3.4) 

 ଶܲ,ାଵ ൌ ሺܣ െ ሻܪାଵߢ ଶܲ,்ܣ  ߱ାଵ (3.5) 

 Finally, the covariance is updated using the measurement 
estimation error covariance, as follows: 

 ଵܲ,ାଵ ൌ ܪ ଶܲ,ାଵ்ܪ  ߮ାଵ (3.6) 

The above process is repeated iteratively. More detail on the 
Fuzzy-KF may be found in [6]. 

B. Fuzzy-SVSF 

Conceptually, the fuzzy-based SVSF estimation process is 
very similar to the Fuzzy-KF, except that the gain is formulated 
differently. The equations are listed here for completeness. 

ାଵߢ  ൌ  ௦௩௦ (3.7)ܭܣ

ොାଵ|ݔ  ൌ ො|ݔܣ   ାଵ݁௭,ାଵ| (3.8)ߢ

ොାଵ|ାଵݔ  ൌ ොାଵ|ݔ   ାଵ (3.9)ݑܤ

 ߱ାଵ ൌ ାଵߢ ଵܲ,ߢାଵ
்  (3.10) 

 ଶܲ,ାଵ ൌ ሺܣ െ ሻܪାଵߢ ଶܲ,்ܣ  ߱ାଵ (3.11) 

 ଵܲ,ାଵ ൌ ܪ ଶܲ,ାଵ்ܪ  ߮ାଵ (3.12) 

The above equations represent the Fuzzy-SVSF process, 
which is repeated iteratively. The initial state estimations and 
measurement errors are typically set to zero. The SVSF gain 
defined by (2.12) is used in (3.7). 

IV. SIMULATION SETUP AND RESULTS 

The estimation strategies are applied and simulated on an 
electrohydrostatic actuator (EHA) for comparison purposes. An 
EHA is a commonly used hydraulic circuit used in aerospace 
systems, and has been described in detailed in [6,10,17,15]. 
The state space equation of the EHA is described 
mathematically as follows: 

ାଵݔ ൌ ݔܣ  ݑܤ   (4.1)ݓ

The state vector corresponds to the EHA position (ܿ݉), 
velocity (ܿ݉/ݏ), and acceleration (ܿ݉/ݏଶ). The initial state 
values are set to zero. The system matrix and input matrix are 
defined respectively by: 

ܣ  ൌ 
1 ܶ 0
0 1 ܶ

െ522.02 െ28.616 0.9418
൩ (4.2) 

ܤ ൌ ሾ0 0 542.02ሿ் (4.3)

where ܶ is the sample rate defined as 0.001 seconds. The 
system noise ݓ is random with absolute maximum amplitude 
0.001 for all three states. A random signal with maximum 
amplitude of 1 is used as the system input ݑ. The measurement 
equation is defined as follows: 

ݖ  ൌ ݔܪ    (4.4)ݒ

where the measurement matrix is defined by: 

ܪ  ൌ ቂ1 0 0
0 1 0

ቃ (4.5) 

The measurement noise ݒ is random with absolute maximum 
amplitude 0.1 for both states. 

 The initial filter estimates are set to 0, and the initial state 
error covariance matrix is defined as a diagonal matrix of 10. 
The system and measurement noise covariances are defined 
respectively as follows: 

 ܳ ൌ 
1 ൈ 10ି 0 0

0 1 ൈ 10ି 0
0 0 1 ൈ 10ି

൩ (4.6) 



 ܴ ൌ ቂ1 ൈ 10ିଶ 0
0 1 ൈ 10ିଶ

ቃ (4.7) 

 The SVSF ‘memory’ of convergence rate is set as ߛ ൌ 0.1 
and the smoothing boundary layer widths is set, by tuning 
based on minimizing state estimation error, as ߰ ൌ
ሾ5 50 500ሿ். Two cases were studied. The first case 
involves normal conditions, and the second case involves the 
presence of modeling uncertainty half-way through the 
simulation. The system model is changed half-way to the 
following: 

ܣ  ൌ 
1 ܶ 0
0 1 ܶ

െ250 െ15 0.85
൩ (4.8) 

A. Normal Case 

 The following figure shows the estimation results for the 
normal case. All six strategies are able to follow the true 
position trajectory well. The KF and RKF methods converge 
the slowest to the true position trajectory; however, once on the 
trajectory the methods perform very well. In fact, the KF-based 
methods performed the best for this case. This was to be 
expected given that the system is linear, well-defined, and in 
the presence of Gaussian system and measurement noise. 

 The root mean square error (RMSE) results are calculated 
for this case, and the results are shown in the following table. 

Table 1. RMSE Results for Normal Case 

 
Position  

(ܿ݉) 
Velocity 
 (ݏ/݉ܿ)

Acceleration 
(ଶݏ/݉ܿ)

KF 1.48 ൈ 10ିଷ 1.75 ൈ 10ିଶ 3.85
RKF 1.47 ൈ 10ିଷ 1.99 ൈ 10ିଶ 4.02

Fuzzy-KF 1.63 ൈ 10ିଷ 4.65 ൈ 10ିଶ 6.37
SVSF 1.66 ൈ 10ିଷ 3.95 ൈ 10ିଶ 5.07

RSVSF 1.65 ൈ 10ିଷ 4.77 ൈ 10ିଶ 6.49
Fuzzy-SVSF 1.64 ൈ 10ିଷ 4.78 ൈ 10ିଶ 6.42

 

 
Fig. 2. EHA estimation results for all six filtering strategies, for the 
normal case. All filters are able to follow the trajectory well. 

B. Fault Case 

The following figure shows the results for the case when 
modeling uncertainty is injected half-way through the 
simulation. 

 
Fig. 3. EHA estimation results for all six filtering strategies, for the 
fault case. The modeling uncertainty is injected half-way through the 
simulation. The SVSF-based methods yield the most accurate results 
in this case.  

 The RMSE results are calculated for this case, and the 
results are shown in the following table. 

Table 2. RMSE Results for Fault Case 

 
Position 

(ܿ݉) 
Velocity 
 (ݏ/݉ܿ)

Acceleration 
(ଶݏ/݉ܿ)

KF 4.15 ൈ 10ିଶ 0.46 156
RKF 4.15 ൈ 10ିଶ 0.57 164

Fuzzy-KF 1.56 ൈ 10ିଶ 1.78 270
SVSF 7.05 ൈ 10ିଷ 0.48 178

RSVSF 7.02 ൈ 10ିଷ 0.63 179
Fuzzy-SVSF 5.42 ൈ 10ିଷ 0.68 181

 

As the SVSF is more robust to modeling uncertainties and 
errors, it was expected to outperform the KF in this case. The 
position estimation results demonstrate the expectations. In 
fact, the SVSF-based strategies outperformed the KF-based 
strategies by about an order of magnitude. The fuzzy-based 
methods yielded even more accurate results. For example, the 
Fuzzy-KF outperformed the other KF-based methods; likewise, 
the Fuzzy-SVSF outperformed the other SVSF-based methods. 
However, all six methods yielded about the same velocity and 
acceleration results. For control in an uncertain system 
environment, the Fuzzy-SVSF method should be considered. 

V. CONCLUSIONS 

This paper introduced a new estimation strategy which 
combined elements of fuzzy logic with the smooth variable 
structure filter (SVSF), and is referred to as the Fuzzy-SVSF. 
Preliminary results indicate an improvement to position 
estimation accuracy as well as stability to modeling changes 
and instability. Future research will involve implementing the 
Fuzzy-SVSF on a physical setup, built for experimentation, as 
well as provide a detailed proof of stability. 



APPENDIX 

The list of nomenclature is shown as follows. 

Table 3. List of Nomenclature 

 System matrix ܣ
 Input gain or matrix ܤ

 Measurement matrix ܪ or ܥ
 Identity matrix (‘ones’ along the diagonal) ܫ
 Gain (KF or SVSF) ܭ
ܲ State error covariance matrix 
ܳ System noise covariance matrix 
ܴ Measurement noise covariance matrix 
ܵ Measurement error covariance matrix 
ܶ Time step or sample rate 
݁ Measurement error 
 State(s) ݔ
 Measurement(s) ݖ
 System noise ݓ
 Measurement noise ݒ
 SVSF ‘memory’ or convergence rate ߛ
߰ SVSF smoothing boundary layer 
 Fuzzy-based gain ߢ
߮ Probability density function of measurement error
߱ Fuzzy function of a residual 
^ Superscript refers to an estimate 
݇|݇ Subscript refers to a posteriori (‘after the fact’)

݇  1|݇ Subscript refers to a priori value (‘before the fact’)
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