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ABSTRACT 

The unmanned aerial vehicle (UAV) and unmanned aerial system (UAS) are popular in nowadays applications 
including military, industry, weather casting, monitoring, and many other applications. According to several 
research, the system must be controlled in precise way to make sure that the UAV and UAS are moving in the 
desired trajectories. However, this task is not an easy task in real life due to the presence of disturbances and 
noise in feedback measurements. To overcome this issue, researchers either developed more stable controllers, 
i.e. active disturbance rejection control (ADRC), or they improved the measured signals using filters with more 
accurate/stable performance. This work belongs to the second category, where a newly developed filter, which 
is referred to as sliding innovation filter (SIF), is used to estimate the states of a UAV system while it is tracking 
a target at the same height to improve the quality of the controller.  
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1. INTRODUCTION  

Predictor-corrector filters and observers are widely used for state and parameter estimation [1-17]. These filters 
can be roughly divided into two categories: those aiming for optimal solutions and those focused on maintaining 
stability [18-33]. One of the most recent filters in the latter category is the Sliding Innovation Filter (SIF) [34-
61]. This filter shares similar principles with the Smooth Variable Structure Filter (SVSF) and sliding mode 
observers (SMOs) [62-85]. 

Unmanned air vehicles (UAVs) are extensively utilized in various applications such as military operations, 
agriculture, and target tracking [86-103]. There is considerable ongoing research in these areas, particularly in 
recent advancements. Relevant literature can be found in [104-138]. This study is a direct application focused 
on estimating a UAV while it targets a flying object at the same altitude level. The paper partially relies on the 
model derived in [139]. The SIF is employed to estimate both the target and UAV (observer) trajectories, based 
on data from several sensors measuring the observer's location and the target's position relative to the UAV. 

The remainder of the paper is organized as follows: Section 2 provides a summary of the SIF, while Section 3 
describes the model. Section 4 discusses the results, followed by the conclusion in Section 5. 

2. THE SLIDING INNOVATION FILTER 

The SIF algorithm can be summarized as follows [34-61, 139]: 
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3. UAV/TARGET TRACKING MODEL 

The system can be summarized as follows [139]: 
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Where 𝐰𝐰 and 𝒗𝒗 are the system and measurement noise vectors, respectively. 

4. SIMULATION RESULTS 

The system described in Section 3 was tested using the algorithm outlined in Section 2, and the results are 
depicted in Figure 1 and Table 1. The maximum absolute error (MAE) and the root mean squared error (RMSE) 
for the errors of x position were found to be less than 16.1 m, and less than 7.6 m, respectively. 

The remaining states exhibited very small errors, with RMSE for the errors being less than 0.17 m, and for their 
MAE being less 0.42 m. Figure 1 illustrates the amplitude of the errors in both estimating the locations of the 
observer and the target. Throughout most of the simulation time, the error in both cases was less than 1%. It is 
noteworthy that the error in estimating the target is higher than the error in estimating the observer. This can be 
attributed to the fact that the error in estimating the target is accumulated from both errors in estimating the 
observer and inherent errors in the target's movement. 

 

Table 1. RMSE and MAE for the results. 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 

 𝑥𝑥 7.5137 0.0101 16.0295 0.0371 
𝑦𝑦  0.0169 0.0104 0.0400 0.0276 
 𝑉𝑉𝑥𝑥 0.0015 0.0105 0.0041 0.0366 
 𝑉𝑉𝑦𝑦 0.0010 0.0100 0.0028 0.0322 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, the Sliding Innovation Filter (SIF) was employed to estimate the UAV's location while observing 
a target flying at the same altitude. Additionally, it estimated the target's location. The results showcase the 
efficiency of the SIF in a nonlinear measurement system. For future work, an experimental setup will be utilized 
to validate the simulated results. 
Declaration   
The final draft of this research paper has undergone a rigorous proofreading process, which included the utilization of 
advanced artificial intelligence (AI) technology. 
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Figure 1. The trajectories of the observer and the target, and their relative errors. 
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